SIEMENS

SIMOTION

SIMOTION IT
SIMOTION IT Programming and
Web Services

Programming Manual

Valid as of Version 4.4

04/2014

Preface

Fundamental safety 1
instructions

Introduction 2
Software programming 3

Appendix

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

/\ DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

/\ WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

/\ CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

/\ WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.
Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG Copyright © Siemens AG 2014.
Industry Sector ® 04/2014 Subject to change All rights reserved

Postfach 48 48

90026 NURNBERG

GERMANY

Preface

SIMOTION Documentation

An overview of the SIMOTION documentation can be found in the SIMOTION Documentation
Overview document.

This documentation is included as electronic documentation in the scope of delivery of
SIMOTION SCOUT. It comprises ten documentation packages.

The following documentation packages are available for SIMOTION V4.4:
e SIMOTION Engineering System Handling

® SIMOTION System and Function Descriptions
¢ SIMOTION Service and Diagnostics

e SIMOTION IT

¢ SIMOTION Programming

¢ SIMOTION Programming - References

e SIMOTIONC

e SIMOTIONP

e SIMOTION D

® SIMOTION Supplementary Documentation

Hotline and Internet addresses

Additional information
Click the following link to find information on the the following topics:
® Ordering documentation / overview of documentation
® Additional links to download documents
® Using documentation online (find and search manuals/information)
http://www.siemens.com/motioncontrol/docu

Please send any questions about the technical documentation (e.g. suggestions for
improvement, corrections) to the following e-mail address:
docu.motioncontrol@siemens.com

My Documentation Manager

Click the following link for information on how to compile documentation individually on the
basis of Siemens content and how to adapt it for the purpose of your own machine
documentation:

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 3

Preface

http://www.siemens.com/mdm

Training
Click the following link for information on SITRAIN - Siemens training courses for automation
products, systems and solutions:
http://www.siemens.com/sitrain

FAQs

Frequently Asked Questions can be found in SIMOTION Utilities & Applications, which are
included in the scope of delivery of SIMOTION SCOUT, and in the Service&Support pages
in Product Support:

http://support.automation.siemens.com

Technical support

Country-specific telephone numbers for technical support are provided on the Internet under
Contact:

http://www.siemens.com/automation/service&support

SIMOTION IT Programming and Web Services
4 Programming Manual, 04/2014

Table of contents

=== PSPPIt 3
1 Fundamental safety INSIIUCHONS.........cooo i s e 9
1.1 General safety INSITUCHIONS.oii e e e e e e eeeeees 9
1.2 Lo (U g F= T IET=T ot U142 PP 10
2 110 To 15 T2 1o) o A PP 11
21 Overview Of SIMOTION IT ..ottt e e e e e s e e e e s e snbeeeeeaeeaannaeeeeeeeessennes 11
2.2 NEW FEATUMES. ...ttt e ettt e e e et e e e e e et e e e e e e e e nnbeeeeeeeanstaeeeeeannnteeeeas 12
3 SOftWare ProgramIMING.......c..oceeieeecceraaarereeaereesarersaseerseeseeasaareessaseessassneeaaareessssseesaameesssmsenssaneessasnneessnsesees 13
3.1 UL o [(T LYo [o= To (=L T SO PP PPPRRUP 13
3.1.1 User-defined HOME PAGE.......oooiiiiiiiiee et e e e e e aa e 13
3.1.2 L a1 (oTo [V T3 { o] o PP PESTPSO 14
3.1.3 Loading of MWSL pages into the CONTIOIIET...............uuiuiiiiiiiiiiiiieieeeeeeeeeeee e 14
3.1.4 ComPIliNG MWWSL fIlES... .. e e e e e e e e e e e e e e e e e e s e e s aaabanbraaeeenes 15
3.15 Embedded, USer-defined PagEs...........ocooiiiiiiiiieeeee e 19
3.1.6 /1= o TU =T [(o] PP PPPRPUP 20
3.1.7 JavaScript and WED SEIVICES............uuiiiiieiiiii e e e e e 24
3.1.7.1 Variable access with JavaScript and Web SErviCes.............ccccciiiiiiiiiiiiiiiieeeee e, 24
3.1.7.2 Communication with the OPC XML DA server (OPCXMLJS)......c.uuurrriiirrieiiieririiiieriireiveinvienninannnnns 24
3.1.7.3 Representation of OPC XML-DA data in the browser (appl.jS)......cccceeerirrinniriireannn 37
3.1.8 MiniWeb Server Language (MWSL).........oioii oo a e e e 47
3.1.8.1 Mode of operation of the MWVSL............oooiiiieeee e e 47
3.1.8.2 Structure 0f @ MWVSL fil.....c ettt e e e e e e e s e e e e s e nneeaeeean e e as 48
G T R TR T =l (o] gl 41T TST= T [OSSN 48
3.1.8.4 Variable tYPeS.oeeveiiiiicie e e e e e et ——— i ————————————a 50
3.1.8.5 SCIIPL VANADIES.ttt e e e e e e e e e e e e 50
3.1.8.6 GlODaAl VANIADIES.coiiiiiieiii e e e ea e 52
3.1.8.7 SPECIAI VAIADIES.......uuviiiiiiieiiiieee et e e e e e e e e e e e e e e 53
3.1.8.8 Configuration CONSTANTS............uuuiiiiiiiiiee e e e e e e e e e e e e e e e aeraanas 54
3.1.8.9 Variables and URL parametersccoooiiiiiiiiiiiiiiie i e e e e e e e e e e 55
B Tt I Ty O 1@ @ 141 = PRSI 56
3.1.8.11 Variables and access t0 COOKIES...........ooi it e e neaaee e s 57
3.1.8.12 Variables and HTTP header information..............cuuiiiiiiiiiiiiiee e 57
Tt I Tt B B O 01T =1 o] PP PP PP P PRSP 58
3.1.8.14 Conditional OPEratiONS.c.cuuiiiiiiiiie aeraaaas 61
G T < TR < T 0o Yo o 1= RPN 63
R Tt I T S L U T T o S F PP PPUPPPPP 64
B Tt I T A 7 411 1= o £ PR 64
3.1.8.18 Overview of MWSL fUNCLONS.........ooiiiiiiiiiiie e e e e e e e s sneeaeeean e s 65
3.1.8.19 Mode of operation of the template mechanism..............cccuvviiiiiiiiiiiiii e, 66
3.1.8.20 Structure of the template file...........ooooi i 67
3.1.8.21 Structure 0f @ dat@ SOUICE..........oiiiiiiiiiiiie ettt e e e e s e e e e s snenaeean e as 68
3.1.8.22 Template transSformMation.............eeeiiiiiiiiiiii e 69

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 5

Table of contents

3.1.8.23 MWSL in XML @HFDULES. ...ceiiiiiiiiee ittt et et e e e et e e e s e e e snnneeaen e e s 73
G T R T2 =T]][RPN 74
3.1.9 Server Side INCIUAES (SSI).....eiiiiiiiiiiie et s e e e e st e e e e s sneeeeeeeessenee 82
3.1.9.1 Integration Of PrOCESS VAIUES.........cccuuiiiiiie ettt ettt e e e e e e e s e ae e e e e s snneaeeean e e as 82
3.2 OPC XIML-DA WED SEIVICE.....ceiieiiiiiiiiee i iiitiie e e ettt e e e ettt e e e e sttt e e e e s atbaeeaeeessbaeeeeesasbeeeeeeessenees 84
3.21 Web Services INTrOQUCTION.ooiii e e e e e e e e e e e e s e s 84
3.2.2 OVBIVIBW. ..ttt ettt e ettt e e e e ettt e e e e e e et te e e e e e e sanbteeeeae e e s beeeeaeeeannbeeeeeeeaanstsneeeeseansseeeaeesssnnnns 84
3.2.3 Comparison of OPC XML DA / SIMATIC NET OPC DA........tiiiieeiiiiieee et 86
3.24 Schematic representation of creating the client application...........ccccccoooiiiiiiiiic e, 87
3.25 Schematic representation at runtime of the client application.........................ccciiiinnnn, 88
3.2.6 10T =1 = LT o TP 88
3.2.6.1 Hardware and software requirements for creating the client application.............ccccccccovienennn. 88
3.2.6.2 Configuring the SIMOTION device interface for using the client application...............cccccccceen. 89
3.2.6.3 OPC XML DA aCCESS PrOtECHION.uuutiiiiiiiiiiiieiieee eeraanas 89
3.2.7 OPC XML-DA Variable @CCESS.cciiiuiiiiiieeieitiiiiie e ettt e e e e sttt e e e e s sttt e e e e e sastaeeeaeessstaeeeeesessennes 90
3.2.8 Example of a client appliCation.............ooooiiiiiiii e a0
3.2.9 SIMOTION IT OPC XML-DA SErver interface...........ccuuiieiiiiiieeeiiiiiiee e eeiieee e e siieee e e ssieeeeesseeenees 91
B Ty B O 1YY V1= PR 91
3.2.9.2 Methods which can be called SyNnChronOUSIY...........ccooiiiiiiiiiiiii e 91
3.2.9.3 ACCESS 10 VANADIES. e e e e e e 93
3.3 Trace Interface via SOAP (TVS) WED SEIVICE........occuuiiiiiiii i 94
3.3.1 TFACE OVEIVIEW......ceiiiiiiiii ittt oottt ettt e e e e e e e e e e e e e e ababb e ettt e eeeeaaaeeeeeeeaannnnnns 94
3.3.2 B I = Lo IR =TT U =Y o o7 TSRS 95
3.3.3 PrOCEAUIBEIMS. ...ttt e e et e e e e e e e e e e e aan b a b e e e e e eeaeanaeeas 96
3.34 (=T ro] g o =T g Lo | [T oo TR PP 97
3.35 BasiCs Of SUDSCIIPLIONS.ttt e e e e e e e e e e e e e s e e aasbnbraaeeeees 97
3.3.6 101 (= = Lo Y TSRS 99
KR N Ty B €1 o] oY= 1 1o 1= i1 11 o) o USSP 99
R R N T |V =Y { T o SRR 101
BTG T G 0 B 10 o T g o] 1 o] o - F PP P PP PP 107
Y o L= 3T [PP 109
4.1 A AT I {0 T 1o 1= PR 109
411 N o I I T Lo Y SRR 109
4.1.2 Lo == 1 (=11 U || 5 PRSPPSO 109
4.1.3 DYoo To [0 141 Vo PRSPPI 110
4.1.4 o L= SRS 110
415 o g TetoTe LIS] (10 o TR TSRO OO PPPPRt 111
4.1.6] {1 = PRSPPI 111
4.1.7 EXISTVAADIE. ...ttt e e e e e e e e e e e e 112
4.1.8 (7= =T oo [U =T 1= Y SRR 112
4.1.9 (7= A SRR 112
g O T 1= | PP ERPPRP 114
g B T 17 U 1 AN o o TSP ERPOTRP 115
g N] 01 =P RRPSTRP 115
g I T T - | ORI 115
g O S 1= RSP URRSURP 116
o I S o Y- T (==Y 0T) PR 116
e I T o Y- T = =Y [PSR 116
A.AAT7 ProCeSSXMLDALA.coiiiiiiii et e e et r e e e e e e aaaaaaaa e 118
g I T =T Vo | 1= TSP PSPPSR 119
SIMOTION IT Programming and Web Services

Programming Manual, 04/2014

Table of contents

g I T Y= o] =Tt 0 { o o RSP RRPRSPRP 120
o I O B 1=y AV = | U 120
o I B S o =T = Y= o o TP 120
O I /(Y 122
o I T VA1 41 (=Y oY = o T 122
g I VA 4 (A - | PSR PRTRR 123
o I T VA1 [41 (=Y Y | I = = T 125
g I S N[0T 1= [To [GO 126
g I A [0 T L= I SO 127
1T L= P 129

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 7

Fundamental safety instructions 1

1.1 General safety instructions

/\\ WARNING

Risk of death if the safety instructions and remaining risks are not carefully observed

If the safety instructions and residual risks are not observed in the associated hardware
documentation, accidents involving severe injuries or death can occur.

® Observe the safety instructions given in the hardware documentation.

e Consider the residual risks for the risk evaluation.

/I\ WARNING

Danger to life or malfunctions of the machine as a result of incorrect or changed
parameterization

As a result of incorrect or changed parameterization, machines can malfunction, which in
turn can lead to injuries or death.
® Protect the parameterization (parameter assignments) against unauthorized access.

® Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY
STOP or EMERGENCY OFF).

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Fundamental safely instructions

1.2 Industrial security

1.2

10

Industrial security

Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, solutions, machines, equipment and/or networks. They are
important components in a holistic industrial security concept. With this in mind, Siemens’
products and solutions undergo continuous development. Siemens recommends strongly
that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable
preventive action (e.g. cell protection concept) and integrate each component into a holistic,
state-of-the-art industrial security concept. Third-party products that may be in use should
also be considered. For more information about industrial security, visit http://
www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific
newsletter. For more information, visit http://support.automation.siemens.com

/I\ WARNING

Danger as a result of unsafe operating states resulting from software manipulation

Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe
operating states to develop in your installation which can lead to death, severe injuries and/
or material damage.

e Keep the software up to date.
Information and newsletters can be found at:
http://support.automation.siemens.com

® Incorporate the automation and drive components into a state-of-the-art, integrated
industrial security concept for the installation or machine.
For more detailed information, go to:
http://www.siemens.com/industrialsecurity

o Make sure that you include all installed products into the integrated industrial security
concept.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Introduction

2.1 Overview of SIMOTION IT

Overview of SIMOTION IT manuals

The "SIMOTION IT Ethernet-based HMI and diagnostic functions" are described in three
manuals (IT = Information Technology):

See also

SIMOTION IT Diagnostics and Configuration

This manual describes the direct diagnosis of SIMOTION devices. Access is by means of
a standard browser (e.g. Firefox) via the IP address of the SIMOTION device. You can use
the standard diagnostic pages or your own HTML pages for access.

See the manual SIMOTION IT Diagnostics and Configuration.

SIMOTION IT Programming and Web Services

This manual describes the creation of user-defined web pages and access to the diagnostic
functions via the two web services provided by SIMOTION IT.

A web service enables users to create their own client applications in any programming
language. These applications then communicate with the SIMOTION device using web
technologies. The SOAP (Simple Object Access Protocol) communication protocol is used
for transmitting commands.

The manual includes information on programming such clients, as well as a description of
the SIMOTION IT web services (OPC XML-DA, Trace via SOAP TVS) via which data and
operating states of the controller can be accessed and the variable trace functions can be
used.

SIMOTION IT Virtual Machine and Servlets

This manual describes the Java-based function packages. The Jamaica Virtual Machine
(JamaicaVM) is a runtime environment for Java applications on the SIMOTION device. It
is an implementation of the "Java Virtual Machine Specification."

The Servlets section of the manual describes the use of servlets in a SIMOTION device.
See the manual SIMOTION IT Virtual Machine and Servlets.

PDF in the Internet: SIMOTION IT Diagnostics and Configuration (http://
support.automation.siemens.com/\WWW/view/de/61148061/0/en)

PDF in the Internet: SIMOTION IT Virtual Machine and Servlets (http://
support.automation.siemens.com/\WWW/view/de/61148107/0/en)

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 11

http://support.automation.siemens.com/WW/view/de/61148061/0/en
http://support.automation.siemens.com/WW/view/de/61148061/0/en
http://support.automation.siemens.com/WW/view/de/61148107/0/en
http://support.automation.siemens.com/WW/view/de/61148107/0/en

Introduction

2.2 New features

2.2 New features

What new features does the current version offer?
Version 4.4

e New way of creating MWSL pages (Page 14). The MWSL files stored in HTML format on
the control are compiled online. Offline compilation as with .mcs is no longer necessary.

o New MWSL functions (Page 65)
createGUID, die, DecodeString, EncodeString, ExistFile, GetLanguage, IsAuthAlgo,
isFinite, isNaN, IsSSL, parseFloat, parselnt, ReadFile, ReplaceString, ShareRealm,
WriteToTab

e New version of the MWSL server language
o New MWSL operators (Page 58)

® File extensions for web sites have been changed from .mcs/.mbs to .mwsl/.mwsl.cms.

SIMOTION IT Programming and Web Services
12 Programming Manual, 04/2014

Software programming 3

3.1 User-defined pages

3.1.1 User-defined Home page

You can create your own home page and display it instead of the home page for the standard
diagnostic pages of the control. To do this, you need to change the default page of the web
server in the WebCfg.xml file.

Procedure
1. Creating your own home page. Save this home page, for example, as MyIndex.mws1.
2. Transmit the home page to the memory card of the SIMOTION device using the Files page.

3. Open the WebCfg.xml file in an available editor. The file can be found either on the supplied
DVD in the 3_Configuration directory (in the default state) or on the SIMOTION device
memory card (possibly in a modified state) in directory \USER\SIMOTION\HMICFG.

4. Replace the file name index.mwsl in the <SERVEROPTIONS> in element
<DEFAULTDOCUMENT VALUE="index.mwsl" /> with the name of your home page,
including the path name "files" (all user-defined HTML pages are stored in the FILES
directory).

Example: <DEFAULTDOCUMENT VALUE="files/MyIndex.mwsl" />

5. Save the changed WebCfg.xml on the memory card via the Manage Config > WebCfg
transmission page.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 13

Software programming

3.1 User-defined pages

3.1.2

Introduction

Individually designed web pages with access to device data

3.1.3

14

SIMOTION IT DIAG offers the option of storing machine-specific pages on the SIMOTION
control. They are stored in a separate binary format (* .mws1 . cms). The following resources
can be used to integrate the process values of the SIMOTION control.

o Server Side Includes (SSI): Server-side, static, simplest, unformatted display (Page 82).
In the HTML code of the page, process values can be integrated simply and without a
representation option (e.g. number of decimal points) at any point.

® MiniWeb Server Language (MWSL): Server-side, static, formatted display using scripts in
the SIMOTION control (Page 47).
The generation of HTML code and the formatted integration of process values (e.g. in HEX
or decimal value representation) can be selectively controlled with this script language.

e OPC XML-DA web service: Dynamic, formatted display using JavaScript in the browser
(Page 24).
The OPCXML.JS library offers elegant use of process values for JavaScript when
dynamizing HTML pages.

The creation of user-defined pages requires knowledge of HTML and JavaScript programming.
Key words for advanced programming: XML, HTTP Request, Ajax, and web services.

The following figures shows an example of a simple user-defined page.

Figure 3-1 Example of a simple user-defined page

Loading of MWSL pages into the controller

The source code of an MWSL page must be created as a file with the extension .mwsl. An
MWSL file is an HTML file with MWSL extensions to be able to copy the control information.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

The source code files is converted to the internal format of the controller in different ways:
® | oad the files via the Files > Files page.

® Copy the files onto the card using a card reader.

® | oad the files via FTP.

When loading via a card reader or FTP, the files must be stored in directory /JUSER/SIMOTION/
HMI/FILES.

See also
Structure of a MWSL file (Page 48)
Embedded, user-defined pages (Page 19)

3.14 Compiling MWSL files

The .mwsl files have the same basic structure as standard HTML pages. The source code file
should be coded with UTF-8 if special characters are to be displayed correctly.

1. Create the MWSL pages with a tool of your choice. The pages are assigned the file
extension .mwsl|

2. Compile the page. The converted files will appear in the target directory with the same
name as the associated source files having the file extension .mwsl.cms

3. Check and test the page in the User's Area.

4. Errors that occur when compiling the MWSL file are output in the lodfile. Errors that occur
when the web page is called are written in the source text of the MWSL page as error
messages.

The /FILES directory and all subdirectories are examined for the corresponding file types. The
compiler replaces the original file by the compiled code. The compiled files have the extension
*.cms

Compilation of the MWSL pages
There are three ways of compiling MWSL pages:

1. Click the Compile button. All files of the FILES directory are compiled. This option is
recommended, for example, after an FTP upload.

2. When the controller boots. All files of the FILES directory are compiled.

3. Compile the first time the page is called via its URL. This is also the case when the users
area is called.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 15

Software programming

3.1 User-defined pages

Note
Backing up the originals

Because the .mwsl files are deleted during conversion, the originals should always be backed
up on the PC and only a copy put on the card.

Successfully compiled pages with the .cms extension

The following example shows compilation via the Files page. On the Files page, you will find
the Directory Operations with which the MWSL pages can be loaded into the controller via
the Send button and compiled.

Figure 3-2 Loading of MWSL files

If a file has been loaded without error, it is given the extension .cms

Note

Files with errors do not have an .cms extension. In the above example, there is a problem
with the file NewFile.mwsl

Example of compilation of a user-defined page
An MWSL page can be created using any text editor.

<html>
<head/>
<body>

 State: <MWSL>WriteVar ("DeviceInfo.BzU");</MWSL>
</body>

SIMOTION IT Programming and Web Services
16 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

</html>
NewFile.mwsl|
In this example, the source text is saved as a file with the name NewFile.mwsl.
The MWSL is used in the example to output device data. Structure of a MWSL file (Page 48)

The device data is accessed in the MWSL-Ausdriicken by means of the variables provider.
See Section Variables Provider in the SIMOTION IT Diagnostics and Configuration Manual.

The page can only be displayed if the User's Area settings are correct. In this example, the
EmbeddedSimple version has been selected. Embedded, user-defined pages (Page 19)

Figure 3-3 User's Area Output NewFile.mwsl.cms

The page outputs can be checked in the User's Area. The screenshot shows the output of the
sample file. If there are errors in compilation, the file is named NewFile.mwsl.cms

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 17

Software programming

3.1 User-defined pages

Error analysis

Figure 3-4 User's Area MWSL error message

Error messages that occur when the page is executing are inserted in the source text of the
MWSL page as a comment. You can access the source text in the browser by displaying the
source text of the current frame. In the example, an attempt is made to access the function
WriteVarX (), which does not exist.

Errors occurring during compilation are output in a log file formed by appending ".log" to the
file name.

Files in the old MBS and MCS format

Interpretation of MCS and MBS files (e.g. user-defined files) is still supported in Version 4.4
to ensure downward compatibility. A diagnostic buffer entry indicates that the format is
obsolete. For future versions, this downward compatibility is not ensured. For this reason, old
pages should be stored in the new format.

SIMOTION IT Programming and Web Services
18 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

3.1.5 Embedded, user-defined pages

Integrating user-defined pages

As from Version 4.1.3, user-defined pages can be embedded in the framework of the
SIMOTION IT DIAG standard pages.

Figure 3-5 User's Area with embedded page

The menu in the User's Area links the files in the FILES folder in two different ways:

® EmbeddedSimple: The User's Area page loads all web pages contained in the FILES folder
as tabs. The file name is shown without an extension.

® Embedded: The page loads a user-definable tab.

You can switch between EmbeddedSimple and Embedded on theSettings page. See the
Manual SIMOTION IT Diagnostics and Configuration, Section Standard pages.

Settings in WebCfg.xml

StandAlone

In WebCfg.xml , the appearance of the User's Area can be set with the configuration constants
<UserArea> and <UserDir> .

The <UserArea> tag can be used to set how the tab is displayed (the default setting is shown
in bold):

<UserArea>(StandAlone | Embedded | EmbeddedSimple)</UserArea>

<UserDir> denotes the directory for the tab files relative to the FILE directory.

<UserDir></UserDir>

<UserArea>StandAlone</UserArea>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 19

Software programming

3.1 User-defined pages

Access to the User's Area is permanently linked to the user.mwsl file. To display the User's
Area , this file must exist and be available for calling.

EmbeddedSimple
<UserArea>EmbeddedSimple</UserArea>

Select this option to use all the files found in the directory labeled <UserDir> to create the
tab.

The respective file name (without the extension) is used as the title, and the corresponding
menu link refers to this file.

Embedded - Using the menu editor
<UserArea>Embedded</UserArea>

If, on the Settings page, the checkbox Enable user editor has been selected, in the User's
Area , the menu editor (Page 20) will be displayed in which menus can be customized.

WebCfg.xml example:

<SERVERPAGES version="78.00">
[...]
<CONFIGURATION_ DATA>
<USERCONFIG>
<UserArea>Embedded</UserArea>
<UserDir/>
</USERCONFIG>
</CONFIGURATION_DATA>
[...]
</SERVERPAGES>

3.16 Menu editor

Creating individual menus using the menu editor

With Version 4.1.3 and higher, you can use the Menu editor link to call the menu editor, which
enables you to configure custom menus for the User's Area.

SIMOTION IT Programming and Web Services
20 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Prerequisites for using the menu editor

To use the menu editor, in WebCfg.xml, the configuration constant <UserArea> must be set
to Embedded. Alternately, on the Settings page, User pages can be set to Embedded.

Figure 3-6 Configuration data menu editor

The Enable user menu editor option must then be selected on the Settings page.

Figure 3-7 Settings menu editor

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 21

Software programming

3.1 User-defined pages

Working with the menu editor
The User's Area page now contains the Menu editor tab.

Figure 3-8 Starting the menu editor for the first time

The first time the menu editor is launched, a largely blank page appears.

New menu items can be created with the Append new entry button.

Figure 3-9 Menu editor with several items
In the screenshot above, the NewFile.mwsl file has been added. The buttons can be used to
add or delete and change the position of files.

The names of the files to be displayed for the corresponding menu commands are entered in
the File name column.

The Menu text column contains the name of the menu item.

Button (@ is used to create new menu items; these are inserted before the current item in each
case.

Button @ deletes the corresponding menu item.

SIMOTION IT Programming and Web Services
22 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Button ® moves the menu item up.

Button @ moves the menu item down.

Example

Two files are entered in the menu editor.

Figure 3-10 Example menu editor

The User's Area now only shows the selected pages.

Figure 3-11 Example Menu Editor - display of Users's Area

To hide the tab Menu editor on the page, on the Settings page, the option Enable user menu
editor must be deactivated.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 23

Software programming

3.1 User-defined pages

3.1.7 JavaScript and web services

3.1.71 Variable access with JavaScript and web services

Access to a device with the JavaScript library

Using the DOM functionality of JavaScript , it is possible to implement simple web service
clients. This opens up a multitude of new options within a browser, e.g.:

® Reading and cyclic updating of variable contents using an OPC XML-DA Read command
® Writing of variables using an OPC XML-DA Write command
® Browsing of the entire SIMOTION variable management area

® Setting up and querying an OPC XML-DA Subscription

The functionality is provided by several JavaScript files:

® opcxml.js: Contains functions for the structure of the necessary XML documents and for
communication with an OPC XML-DA server.

® appl.js: Based on opcxml.js and implements the following objects:

— Variable browser. Representation of the SIMOTION variable management area in a tree
topology within the browser

— Property viewer: Representation of variable properties (value, data type, access rights,
Enums) in the form of a table within a browser. For writable variables, the table contains
an entry field for changing the variable content.

— Watch table: Representation of a watch table in the browser

3.1.7.2 Communication with the OPC XML DA server (opcxml.js)

OPCReadRequest

The OPCReadRequest class can be used to read the values for a list of variables.

function OPCReadRequest (parLocaleld, parResultCB)

Transfer parameters:

SIMOTION IT Programming and Web Services
24 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

® parlocaleId: Language identifier ("DE", "EN")

® parResultCB: Callback function that must be provided by the caller
This function is called by OPCReadRequest when a response has arrived from the OPC
XML DA server. The OPCReadRequest object is disposed of automatically (by calling the
"destructor" method) if the callback function returns the value "true."

function OPCReadRequestCB (parResponse)

Transfer parameters:

— parResponse: Array of ltemValues with the result of the read request.

function OPCItemValue ()
{
this.mItemPath;
this.mItemName;
this.mItemHandle;
this.mItemValue;
this.mItemResultId;

If mItemResultId is defined, an error occurred during reading. In this case,
mItemResultId is assigned the OPC XML DA error ID.

Example:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">
<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript">
function read()
{
var tmpReadCB = function (parResponse)

{

tmpResultStr = "";
for (var tmpIndex = 0; tmpIndex < parResponse.length;
tmpIndex++)

var tmpItemValue = parResponse[tmpIndex];
var tmpValue = (tmpItemValue.mItemValue) ?
tmpItemValue.mItemValue
tmpItemValue.mItemResultId;
tmpResultStr += tmpIltemValue.mItemPath
+ H: :"
tmpItemValue.mItemName
tmpValue
u\n";

+ + + +

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 25

Software programming

3.1 User-defined pages

alert (tmpResultStr) ;

return true;
}
var tmpReadRequest = new OPCReadRequest ("DE", tmpReadCB) ;
tmpReadRequest.addItem ("SIMOTION", "var/userdata.userl") ;
tmpReadRequest.addItem ("SIMOTION", "var/userdata.user2")
tmpReadRequest.addItem ("SIMOTION", "var/userdata.userl0"
tmpReadRequest.sendReadRequest () ;

)

}
</script>
<title>Insert title here</title>
</head>
<body>
<input type="button" onclick="read();" value="Read"/>
</body>

</html>

OPCGetPropertiesRequest

The OPCGetPropertiesRequest class can be used to read the properties of variables:

26

Values
Data types
Access rights

Enum components

function OPCGetPropertiesRequest (parLocaleld, parResultCB)

Transfer parameters:

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

® parlocaleId: Language identifier ("DE", "EN")

® parResultCB: Callback function that must be provided by the caller.
This function is called by OPCGetPropertiesRequest when a response has arrived from
the OPC XML DA server. The OPCGetPropertiesRequest object is disposed of
automatically (by calling the "destructor" method) if the callback function supplies "true" as
a return value.

function OPCGetPropertiesRequestCB (parResponse)
parResponse: Array of PropertyResults that contain the properties of variables:

function OPCPropertyResult ()

{
this.mItemPath;
this.mItemName;
this.mName;
this.mIsItem;
this.mHasChildren;
this.mResultId;
this.mValue;
this.mType;
this.mAccessRights;
this.mEffectiveness;
this.mEnums;
this.mIsEnum;

User interface:

® addItem(parItemPath,parItemName) adds a variable to the variables list
® removeltem (parItemHandle) deletes a variable from the variables list

® sendGetPropertiesRequest () sends the read request

® destructor () releases the entire request object

Example:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">
<title>GetProperties</title>
<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript">
function getProperties|()
{
var tmpGetPropertiesCB = function (parResponse)
{
tmpResultStr = "";
for (var tmpIndex = 0; tmpIndex < parResponse.length;

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 27

Software programming

3.1 User-defined pages

tmpIndex++)

var tmpPropertyResult = parResponse[tmpIndex];

var tmpEnums = "";

if (tmpPropertyResult.mEnums &&
(tmpPropertyResult.mEnums.length > 0))

for (var tmpIndex = 0;
tmpIndex < tmpPropertyResult.mEnums.length;
tmpIndex++)

{
tmpEnums += " " +

tmpPropertyResult.mEnums [tmpIndex] + "\n";

}

if (!tmpPropertyResult.mResultId)

{

tmpResultStr += tmpPropertyResult.mItemPath +

e o+
tmpPropertyResult.mItemName +
":\n Type = " +
tmpPropertyResult.mType +
"\n value = " +
tmpPropertyResult.mValue +
"\n AccessRights = " +
tmpPropertyResult.mAccessRights +
"\n Enums = \n" + tmpEnums +"\n";

}

else

{

tmpResultStr += tmpPropertyResult.mItemPath +
"::" + tmpPropertyResult.mItemName

+ ":\n ResultId = " +
tmpPropertyResult.mResultId +
"\H\I'l",'

}
alert (tmpResultStr) ;

return true;
}
var tmpGetPropertiesRequest =
new OPCGetPropertiesRequest ("DE", tmpGetPropertiesCB) ;
tmpGetPropertiesRequest.addItem ("SIMOTION",
"var/userdata.userl");
tmpGetPropertiesRequest.addItem ("SIMOTION",
"var/userdata.user20") ;
tmpGetPropertiesRequest.addItem ("SIMOTION",
"dev/Service.BZU.value") ;
tmpGetPropertiesRequest.sendGetPropertiesRequest () ;
}
</script>
</head>
<body>
<input type="button" onclick="getProperties();"
value="getProperties"/>
</body>

SIMOTION IT Programming and Web Services
28 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

</html>

OPCWriteRequest

OPCWriteRequest writes three values of one or more variables.

function OPCWriteRequest (parLocalelId, parResultCB)

Transfer parameters:
® parlLocalelId: Language identifier ("DE", "EN")

® parResultCB: Callback function that must be provided by the caller.
The function is called on conclusion of the send request.

function OPCWriteRequestCB (parResultList)
parResultList is an array of ltemValues that contains the results of the write request.

function OPCItemValue ()
{
mItemPath
mlItemName
mItemHandle
mltemValue
mItemResultId
}
The OPCWriteRequest object is disposed of automatically (by calling the "destructor"
method) if the callback function returns the value "true."

User interface:

® addItem(parItemPath,parItemName,parType) adds a variable to the variables list
and returns a variable handle, which can be used to reference the variable within the
request. ParType designates the OPC XML DA data type to be used for writing. If parType
is not passed, the "xsi::string" data type is applied.

® removeltem(parItemHandle) removes a variable from the variables list

® setlItemValue (parItemHandle,parValue) sets the value that is to be written for a
variable

® sendWriteRequest () sends the write request

® destructor () releases all resources occupied by the write object

Example:
<!DOCTYPE html PUBLIC "-//W3C//DID HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">

<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.]js"></script>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 29

Software programming

3.1 User-defined pages

<script type="text/javascript">
function writeValues ()
{
var tmpWriteCB = function (parWriteResult)
{
var tmpString = "";
for (var tmpIndex = 0; tmpIndex < parWriteResult.length;
tmpIndex++)

var tmpIltemValue = parWriteResult[tmpIndex];

var tmpValue = (tmpItemValue.mItemResultId) °?
tmpItemValue.mItemResultId : tmpItemValue.mItemValue;

tmpString += tmpIltemValue.mItemPath + "::" +
tmpItemValue.mItemName + " = " + tmpValue + "\n";

}
alert (tmpString) ;
}
var tmpWrite = new OPCWriteRequest ("DE", tmpWriteCB) ;
var tmpIltemHandle = tmpWrite.addItem("SIMOTION",
"var/userdata.userl");
tmpWrite.setItemValue (tmpItemHandle, "123");
tmpIltemHandle = tmpWrite.addItem("SIMOTION",
"var/userdata.user2") ;
tmpWrite.setItemValue (tmpIltemHandle, "234");
tmpIltemHandle = tmpWrite.addItem ("SIMOTION",
"var/userdata.userlO") ;
tmpWrite.setItemValue (tmpItemHandle, "345") ;
tmpWrite.sendWriteRequest () ;
}

</script>
<title>Write</title>
</head>
<body>
<input type="button" value="Write" onclick="writeValues()"/>
</body>
</html>

OPCBrowseRequest
The OPCBrowseRequest class can be used to browse the variable management area of a
control.

function OPCBrowseRequest (parclaalocaleId,parResultCB)

Transfer parameters:

SIMOTION IT Programming and Web Services
30 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

® parlocaleId: Language identifier ("DE", "EN")

® parResultCB: Callback function that must be provided by the caller
The function is called on conclusion of the send request.

function OPCBrowseRequestCB (parResult,parltemPath,parItemName)
parResult is an array of type BrowseResult and contains the Browse information.

function BrowseResult ()
{
mItemPath;
mlItemName;
mName;
mIsItem;
mHasChildren;
}
parItemPath and parItemName are the path and name of the directory whose content
is displayed in BrowseResult.

User interface:

® sendBrowseRequest (parItemPath,parItemName) sends the Browse request.
parItemPath and parItemName are the path and name of the directory to be browsed.

Example:

<!DOCFZ)TYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://

www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">

<script type="text/Jjavascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript">
function browse ()
{

var tmpBrowseRequestCB = function (parBrowseResult,

parItemPath,
parItemName)
{
var tmpString = parItemPath + "::" + parItemName + "\n";
for (var tmpIndex = 0; tmpIndex < parBrowseResult.length;

tmpIndex++)

var tmpBrowseResult = parBrowseResult[tmpIndex];
tmpString += tmpBrowseResult.mItemName + "\n";
}
alert (tmpString) ;
}
var tmpBrowseRequest =
new OPCBrowseRequest ("DE", tmpBrowseRequestCB) ;
tmpBrowseRequest.sendBrowseRequest ("SIMOTION", "var/") ;

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 31

Software programming

3.1 User-defined pages

</script>

<title>Browse</title>
</head>
<body>

<input type="button" value="Browse" onclick="browse();"/>
</body>

</html>

OPCSubscriptionRequest

32

The OPCSubscriptionRequest class can be used to set up, poll, and delete an OPC XML
DA subscription.

function OPCSubscriptionRequest (parLocalelId, parResultCB,parCancelCB)

Transfer parameters:

parLocaleId Language identifier ("DE", "EN").call

parResultCB Callback function that must be provided by the user. This callback function
is called following setup and a refresh action.

function OPCSubscriptionRequestCB (parResultList,parResult)
parResultList is an array of type OPCItemValue, which contains the variable values
which have been determined.

function OPCItemValue ()
{
mItemPath
mItemName
mItemHandle
mItemValue
mItemResultId
}

parCancelCB Bback function that must be provided by the user. This callback function is
called after a subscription is released.

function OPCSubscriptionCancelCB ()
The function has no transfer parameters to be passed.

User interface:

addItem (parItemPath,parItemName) adds the passed variable to the internal list of
subscription variables

removeltem (parItemHandle) deletes the passed variable from the list of subscription
variables.

cancel () logs out an active subscription on the server

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

® refresh () reads the current variable values.

Only variables whose values have changed since the preceding query are passed. The
first call of refresh after generating the OPCSubcription object or the first call after a cancel
causes the subscription to log in with the current internal variable list on the server. Refresh
must be called cyclically. The hold time mechanism of the OPC XML DA subscription is not
supported, i.e. a wait time must be programmed between each 2 refresh cycles by means
of a JavaScript timer. However, the wait time of the OPC XML DA subscription is active,
i.e. a response to a refresh call is sent only after the wait time elapses, provided a variable
value has not changed in the meantime.

® destructor ()
Logs out the subscription on the server and releases the resources occupied by the
subscription object. Destructor must be called before releasing the object.

Example:
<!DOCFI)TYPE html PUBLIC "-//W3C//DTD HTML 4.0l Transitional//EN" "http://
www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">
<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript">
var gloSubscription;
var gloItemHandle 1;
var gloItemHandle 2;
function subscription()
{
if (!gloSubscription)
{

var tmpSubscriptionCB = function (parValues)
{
for (var tmpIndex = 0;
tmpIndex < parValues.length;
tmpIndex++)

var tmpltemHandle =
parValues [tmpIndex] .mItemHandle;
var tmpItemValue =
parValues |[tmpIndex] .mItemValue;
if (tmpItemHandle == gloItemHandle 1)
{
var tmpValueNode =
document.getElementById ("userl");
tmpValueNode.firstChild.nodeValue =
tmpItemValue;
}
else if (tmpItemHandle == gloItemHandle 2)
{
var tmpValueNode =
document.getElementById ("user2");
tmpValueNode.firstChild.nodeValue =
tmpItemValue;

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 33

Software programming

3.1 User-defined pages

34

var tmpTimerCB = function|()
{
gloSubscription.refresh();
}
setTimeout (tmpTimerCB, 300) ;
}
var tmpCancelCB = function()
{
if (gloSubscription)
{
gloSubscription.destructor();
gloSubscription = null;

}
gloSubscription =
new OPCSubscriptionRequest ("DE",
tmpSubscriptionCB, tmpCancelCB) ;
gloItemHandle 1 =
gloSubscription.addItem ("SIMOTION",
"var/userdata.userl");
gloItemHandle 2 =
gloSubscription.addItem ("SIMOTION",
"var/userdata.user2") ;
gloSubscription.refresh();

}
function cancel ()
{
if (gloSubscription)
gloSubscription.cancel () ;

}

</script>
<title>Subscription</title>
</head>
<body>
<div>
<input type="button" wvalue="Start"
onclick="subscription();"/>
<input type="button" value="Cancel" onclick="cancel();"/>
</div>
<table>
<tr>
<td>userl</td>
<td id="userl">userl</td>
</tr>
<tr>
<td>user2</td>
<td id="user2">user2</td>
</tr>
</table>
</body>
</html>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

OPCSubscriptionAutoRefresh

OPCSubscriptionAutoRefresh provides the same function as
OPCSubscriptionRequest, with the exception that the timer-controlled call of the refresh
function occurs automatically.

function
OPCSubscriptionAutoRefresh (parLocaleld,parResultCB, parCancelCB,

parCycleTime)

Transfer parameters:

parLocalelId
parResultCB

parCancelCB
See OPCSubscriptionRequest

parCycleTime
Cycle time in which the refresh function is called, in ms

User interface:

startRefresh () starts the query cycle
cancel () See OPCSubscriptionRequest

addItem(parItemPath, parItemName,parItemHandle) See
OPCSubscriptionRequest
After the variable is added, the refresh cycle is restarted automatically.

removeltem (parltemHandle)

destructor ()

Example:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">
<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript">
var gloSubscription;
var gloItemHandle 1;
var gloItemHandle 2;
var gloItemHandle 3;
function subscription()
{
if (!gloSubscription)
{

var tmpSubscriptionCB = function (parValues)

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 35

Software programming

3.1 User-defined pages

for (var tmpIndex = 0; tmpIndex < parValues.length;
tmpIndex++)

var tmpIltemHandle =
parValues[tmpIndex] .mItemHandle;
var tmpltemValue =
parValues |[tmpIndex] .mItemValue;
if (tmpItemHandle == gloItemHandle 1)
{
var tmpValueNode =
document.getElementById ("userl");
tmpValueNode.firstChild.nodeValue =
tmpItemValue;
}
else if (tmpItemHandle == gloItemHandle 2)
{
var tmpValueNode =
document.getElementById ("user2") ;
tmpValueNode.firstChild.nodeValue =
tmpItemValue;
}
else if (tmpItemHandle == gloItemHandle 3)
{
var tmpValueNode =
document.getElementById ("user3") ;
tmpValueNode.firstChild.nodeValue =
tmpItemValue;

}
var tmpCancelCB = function()
{
if (gloSubscription)
{
gloSubscription.destructor();
gloSubscription = null;

}
gloSubscription =
new OPCSubscriptionAutoRefresh ("DE",
tmpSubscriptionCB, tmpCancelCB, 300) ;
gloItemHandle 1 =
gloSubscription.addItem ("SIMOTION",
"var/userdata.userl");
gloItemHandle 2 =
gloSubscription.addItem ("SIMOTION",
"var/userdata.user2") ;
gloSubscription.startRefresh();

}
function addvar ()
{
if (gloSubscription)
{
gloItemHandle 3 =
gloSubscription.addItem ("SIMOTION",

SIMOTION IT Programming and Web Services
36 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

"var/userdata.user3");

}

function removeVar ()

{
if (gloSubscription)
{

gloSubscription.removeltem(gloItemHandle 3);

}
function cancel ()
{
if (gloSubscription)
gloSubscription.cancel () ;
}
</script>
<title>Auto refresh</title>
</head>
<body>
<div>
<input type="button" wvalue="Start"
onclick="subscription();"/>
<input type="button" value="Add variable"

onclick="addvar();"/>
<input type="button" value="Remove variable"
onclick="removeVar();"/>
<input type="button" value="Cancel" onclick="cancel();"/>
</div>
<table>
<tr>
<td>userl</td>
<td id="userl">userl</td>
</tr>
<tr>
<td>user2</td>
<td id="user2">user2</td>
</tr>
<tr>
<td>user3</td>
<td id="user3">user3</td>
</tr>
</table>
</body>
</html>

3.1.7.3 Representation of OPC XML-DA data in the browser (appl.js)

appl.js
The JavaScript library appl.js assembles classes for the representation of the data determined
with OPC XML-DA requests.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 37

Software programming

3.1 User-defined pages

ApplDataTable

ApplDataTable implements a dynamic table in which process variables can be displayed.
The variable values are updated cyclically with an OPC XML-DA subscription.

Figure 3-12 Example of implementing a dynamic table (ApplDataTable)

function
ApplDataTable (parDocument,parClassName, parColumnClasses, parColumnIds
,parHeader)

Transfer parameters:
® parDocument: JavaScript document used to generate elements
® parClassName: Entered as "class" attribute in the "Table" tag of the HTML table

® parColumnClasses: Array whose "length" attribute specifies the number of table
columns. The values of the array are used as a "class" attribute for the table columns (<td
class="...">).

® parColumnIds
: Array whose values are used together with the parRowld parameter (described below)
for the "id" attributes of the table columns. The value of the "id" attribute is produced by
chaining together the Columnld and Rowld (in that order).

® parHeader: Array containing the column headings of the table

The transfer parameters passed are used to set the "class" and "id" attributes such that the
table display can be specified using style sheets.

SIMOTION IT Programming and Web Services
38 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

User interface:

The user interface of class ApplDataTable consists of a series of functions that are useful for
general use in the web site and their passed and returned parameters.

® addRow (parRowlId, parRowClass) appends a new row to the table

parRowId: Used as a value for the id attribute of row (<tr id="..">)

parRowClass: Used as a value for the "class" attribute of row (<tr class="...">)

® 3ddElement (parElement,parDestructor,parColSpan,parColClass)
Inserts the HTML element passed using parElement in the table.

parElement: HTML element to be inserted in the table

parDestructor (optional)
Function that is called if the HTML element is deleted from the table (used in Internet
Explorer to prevent memory leaks).

parColSpan (optional)
: Specifies the number of columns the element is to span.

parColClass (optional)

parColClass can be used to overwrite the ColClass assigned when the
ApplDataTable object is created, if special formatting is to be applied for the current
element.

® addvariable (parPath,parName, parColSpan,parColClass)
: Inserts a variable in the table. The value of the variables is updated cyclically.

parPath
Variable path (e.g. "SIMOTION" or "SIMOTION diagnostics")

parName
Variable name (e.g. "var/userdata.user1")

parColSpan (optional)
See addElement

parColClass (optional)
See addElement

® addText (parText,parColSpan, parColClass): Inserts textin the table.

parText
: Text to be inserted.

parColSpan (optional)
See addElement

parColClass (optional)
See addElement

SIMOTION IT Programming and Web Services

Programming Manual, 04/2014

39

Software programming

3.1 User-defined pages

® sddRemoveButton (parRemoveCB,parRemoveData,parlImage)
Inserts a button in the table for removing the current row.

— parRemoveCB (parData) (optional)
Transfer parameter passed to the Callback function. Data passed when
addRemoveButton is called

— parRemoveData (optional)
Data passed as a parameter when parRemoveCB is called.

— parImage: (optional)
Optional parameters: DOM object of an HTML img element (e.g. created with
document.createElement("img")), which is to appear on the button

® addImage (parlImage)
Inserts an image in the table.

— parImage: URL of the image to be inserted

® getVariables () supplies an array of all variables of the table
Each entry of the array consists of an object with the elements mItemPath, mItemName,
and mItemHandle.

® addRefreshCB (parRefreshCB) registers a Callback function on the table object, which
is called on completion of a refresh cycle; an array of OPCItemvalue-Objekten is passed
to the Callback function.

OPCItemValue
{

mItemPath

mItemName

mlItemHandle

mlItemValue

mItemResultId
}destructor () must be called if the table is no longer required.
This function releases all the resources occupied by the table. In particular, the subscription
used by the table is logged off on the OPC XML DA server. The function must also be called
when the page is exited (onunload).

Example:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">

<script type="text/javascript" src="/common.]js"></script>
<script type="text/javascript" src="/opcxml.]js"></script>
<script type="text/javascript" src="/appl.js"></script>
<script type="text/javascript">
var gloApplDataTable = null;
function init ()

{

if (gloApplDataTable == null)
{
var tmpColumnIds = new Array("Name 0", "Value 0",
"Name 1","Value 1");
var tmpColumnClasses = new Array ("Name","Value",

"Name", "Value")

SIMOTION IT Programming and Web Services
40 Programming Manual, 04/2014

Software programming

var tmpHeader

gloApplDataTable

gloApplDataTable.
gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.

gloApplDataTable.
gloApplDataTable.
gloApplDataTable.

var tmpTableRoot

3.1 User-defined pages

= new Array ("Name", "Value",
"Name", "Value") ;
= new ApplDataTable (document,
"ReadTableClass",
tmpColumnClasses,
tmpColumnIds,
tmpHeader) ;
addRow ("Row_0", "RowClass_ 0");
addText ("CPULoad.Percent") ;
addVariable ("SIMOTION diagnostics",
"CPULoad.Percent");
addText ("user2") ;
addvariable ("SIMOTION",
"var/userdata.user2");
addRow ("Row_ 1", "RowClass 1");
addText ("user3") ;
addvariable ("SIMOTION",
"var/userdata.user3") ;
addText ("userd") ;
addvariable ("SIMOTION",
"var/userdata.user4d") ;
addRow ("Row_2", "RowClass 0");
addText ("user5") ;
addvariable ("SIMOTION",
"var/userdata.user5") ;
addText ("usero") ;
addvariable ("SIMOTION",
"var/userdata.user6") ;
addRow ("Row_3", "RowClass 1");
addText ("user7") ;
addvariable ("SIMOTION",
"var/userdata.user7");
addText ("user8") ;
addvariable ("SIMOTION",
"var/userdata.user8") ;
addRow ("Time", "Time") ;
addText ("Time",1,"Time") ;
addVariable ("SIMOTION diagnostics",
"DeviceInfo.Systemtime",
3,"Time") ;

document.getElementById ("TableRoot") ;

if
{

(tmpTableRoot)

tmpTableRoot.appendChild (gloApplDataTable.mTable) ;

}
function close()
{
if
{

(gloApplDataTable

!'= null)

gloApplDataTable.destructor () ;

}

</script>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

41

Software programming

3.1 User-defined pages

ApplBrowser

42

<style type="text/css">
table.ReadTableClass {background-color:#FFFFEO;
border:1lpx solid black;
border-collapse:collapse;}
th.Name {border:lpx solid black;}
th.Value {border:1lpx solid black;}
td.Name {width:80px;border-right:1lpx solid black;}
td.Value {background-color:#FFFFAO;width:120px;
text-align:right;
border-right:1px solid black;padding-right:15px;}
td.Input {width:200px;}
td.Time {border-top:lpx solid black;}
tr.RowClass 0 {background-color:#FFFFDO;border:0px; }
tr.RowClass_1 {background-color:#FFFFB0;border:0px;}
#Name 1Row_ 2 {background-color:#AOFFAO; }
</style>
<title>Table</title>
</head>
<body onload="init ();" onunload="close();">
<div id="TableRoot"></div>
</body>
</html>

In the final section of the source code, the <style> tag demonstrates how the colors of table
rows and individual table cells can be changed using CSS formatting.

This means that the tr.RowClass_0 declaration, for example, can ensure that a yellow
background is produced when gloApplDataTable.addRow("Row_0","RowClass_0"). is called.

ApplBrowser enables the variable management area of the control to be queried.

After you have created an object of this type, the 1st browse operation is started automatically.
If the browse information of a subtree has been received, the callback function
parNewTreeFct is first called. Afterwards, the callback function parNewNodeFct or
parNewLeafFct is called, depending on the type of information (node or leaf). All callback
functions receive an object of type Appl1BrowseElement as the first parameter.

User interface ApplBrowseElement:
® getElement () supplies an HTML anchor object (<a ...>) for displaying information

® setCB(parCB)
: Registers a Callback function at the ApplBrowseElement-Objekt; this function is called if
a user clicks the anchor object This function also receives an ApplBrowseElement-
Objekt as a passed transfer parameter.

® destructor () must be called if the object is no longer required. This also applies to
exiting the page (onunload).

ApplBrowser (parDocument,
parItemPath,
parItemName,
parNewTreeFct,

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

parNewNodeFct,
parNewLeafFct)

Transfer parameters:
® parDocument: JavaScript document used to generate elements

® parItemPath, parItemName specifies the starting point for browsing the variable
management area

® parNewTreeFct (parBackElement,parItemPath, parItemName): Callback
function that is called when the structure of a new subtree begins.

— parBackElement object of type ApplBrowseElement
The content describes the start node. If a user clicks the HTML anchor of this object,
the elements of the preceding subtree (if present) are determined.

— parltemPath, parItemName: Path and name of the current subtree

® parNewNodeFct (parBrowseElement): Callback function that is called for a node
element

— parBrowseElement object of type ApplBrowseElement
The content describes a node. If a user clicks the HTML anchor of this object, a browse
operation is started for the subtree connected to this node.

® parNewLeafFct (parBrowseElement) Callback function thatis called for a leaf element

— parBrowseElement object of type ApplBrowseElement
The content describes a leaf.

User interface:

® destructor releases all resources occupied by the browser

Example:
<!DO(FZ)TYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<title>Browser demo</title>
<script type="text/javascript" src="/common.]js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript" src="/appl.js"></script>
<script type="text/javascript">
var gloBrowseTable = null;
var gloBrowser = null;
function addItem(parBrowseElement)
{
var tmpBodyElement = gloBrowseTable.firstChild;
var tmpTableRowElement = document.createElement ("tr");
var tmpTableDataElement = document.createElement ("td");
var tmpLinkElement = parBrowseElement.getElement () ;
tmpTableDataElement.appendChild (parBrowseElement.getElement ()) ;
tmpTableRowElement.appendChild (tmpTableDataElement) ;
tmpBodyElement.appendChild (tmpTableRowElement) ;
}

function browse ()

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 43

Software programming

3.1 User-defined pages

var tmpNewTreeFct =
function (parBrowseElement, parItemPath, parItemName)
{
var tmpBrowseTableHook =
document.getElementById ("BrowseTable");
if (tmpBrowseTableHook.firstChild)
tmpBrowseTableHook.removeChild (
tmpBrowseTableHook.firstChild) ;
gloBrowseTable = document.createElement ("table");
var tmpBodyElement = document.createElement ("tbody");
gloBrowseTable.appendChild (tmpBodyElement) ;
tmpBrowseTableHook.appendChild (gloBrowseTable) ;
if (parBrowseElement)
{
parBrowseElement.getElement () . firstChild.nodeValue =
" o4
parBrowseElement.getElement () . firstChild.nodeValue;
addItem (parBrowseElement) ;
}
alert ("Path: " + parItemPath + "\nName: " + parItemName);
)z
var tmpNewNodeFct = function (parBrowseElement)
{
parBrowseElement.getElement () . firstChild.nodeValue =
"ono4
parBrowseElement.getElement () .firstChild.nodeValue;
addItem (parBrowseElement) ;
}i

var tmpNewLeafFct = function (parBrowseElement)

var tmpCB = function (parBrowseElement)
{
var tmpText = "Path: " +
parBrowseElement .mItemPath + "\n" +
"Name: " +
parBrowseElement.mItemName + "\n";
alert (tmpText) ;
}
parBrowseElement.setCB (tmpCB) ;
addItem (parBrowseElement) ;
bi

gloBrowser = new ApplBrowser (document,

nw nw
’

tmpNewTreeFct,
tmpNewNodeFct,
tmpNewLeafFct) ;
}
function leave ()
{
if (gloBrowser)
gloBrowser.destructor () ;
}
</script>
</head>
<body onload="browse();" onunload="leave();">
<div id="BrowseTable"></div>
</body>

SIMOTION IT Programming and Web Services
44 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

</html>

ApplBrowseTree

ApplBrowseTree builds upon the ApplBrowser and displays the browse result in tree
format.

ApplBrowseTree (parDocument,

parItemPath,
parItemName,
parTablePrefix,
parLeafCB,
parNodeCB,
parBackCB,
parFilterCB,
parLeafImg,
parNodeImg,

parBackImg)

Transfer parameters:

parDocument
: JavaScript document used to generate elements

parltemPath, parItemName
: Specifies the starting point for browsing the variable management.

parTablePrefix
Prefix for referencing elements in CSS

parLeafCB
Callback function that is called if a leaf is clicked

parNodeCB
Callback function that is called if a node is clicked. Each of the callback functions receives
an ApplBrowseElement as a first parameter.

parBackCB
Callback function that is called if the first element of the tree is clicked

parLeafImg, parNodeImg, parBackImg
: Symbols that are displayed by a back, node, or leaf element.

User interface:

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 45

Software programming

3.1 User-defined pages

® getElement ()
Supplies a table element that contains the browse results.

® destructor ()
Releases the table and all resources connected to it

Example:
<!DOCTYPE HTML PUBLIC "-//W3C//DID HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">
<html>
<head>
<title>Browse table demo</title>
<style type="text/css">
table.BrowseTree {table-layout:fixed;}
td.BrowseTreeImgO {width:20px;}
td.BrowseTreeImgl {width:20px;}
td.BrowseTreeBrowse {overflow:visible;text-align:left;}
a.reflLeaf {cursor:pointer;}
a.refNode {cursor:pointer;}
</style>
<script type="text/javascript" src="/common.js"></script>
<script type="text/javascript" src="/opcxml.js"></script>
<script type="text/javascript" src="/appl.js"></script>
<script type="text/javascript">
var gloBrowseTree = null;
function browse ()

{

var tmpLeafCB = function (parBrowseElement)
{
var tmpText = "Path: " + parBrowseElement.mItemPath + "\n"
+ "Name: " + parBrowseElement.mItemName +
"\n";

alert (tmpText) ;
var tmpFilterCB = function (parBrowseElement)

var tmpltemName = parBrowseElement.mItemName;
var tmpPos = tmpIltemName.indexOf ("unit/");
if (tmpPos != 0)
{
tmpPos = tmpIltemName.indexOf ("to/");
if (tmpPos != 0)
tmpPos = tmpIltemName.indexOf ("var/");
}
return (tmpPos == 0);
}
gloBrowseTree = new ApplBrowseTree (document,
"SIMOTION",
" "I
"BrowseTree",
tmpLeafCB,
undefined,
undefined,
tmpFilterCB
)i
var tmpBrowseTreeHook =

SIMOTION IT Programming and Web Services
46 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

document.getElementById ("BrowseTree") ;
tmpBrowseTreeHook.appendChild (gloBrowseTree.getElement ()) ;
}

function leave()
{
if (gloBrowseTree)
gloBrowseTree.destructor () ;
}
</script>
</head>
<body onload="browse();" onunload="leave();">
<div id="BrowseTree"></div>
</body>
</html>

3.1.8 MiniWeb Server Language (MWSL)

3.1.8.1 Mode of operation of the MWSL

The web server language is a scripting language that is interpreted on the web server. This
scripting language is fairly similar to JavaScript, but is only a small subset of the complete
language.

The MWSL enables the client to be operated with a simple browser without scripting, because
the web server generates the pages dynamically.

MWSL enables access and processing of variables. Among other things, MWSL allows access
to process variables that are present on the web server system. MWSL and the integrated
template mechanism can then be used very effectively to process and evaluate these variables.

The template mechanism used to produce the dynamic pages is similar to a very simplified
XSLT process. See W3C XSL transformation (http://www.w3.org/standards/xml/
transformation)

The client requests a URL on the web server. The address is converted to the access to an
MWSL file in the web server. From this file, the MWSL service generates a temporary HTML
file on the web server. This file is then sent to the client and displayed there.

Note
Enabling access to the process variables

Access to the process variables with the MWSL functions GetVar and SetVar requires
activation of the setting Enable OPC_XML (load symbols to RT) in SCOUT.

You can find more information in the manual SIMOTION IT Diagnostics and Configuration,
in the chapters 'Accessing the global variables (V4.2 and higher)' and 'Making unit variables
available'.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 47

http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation

Software programming

3.1 User-defined pages

3.1.8.2 Structure of a MWSL file

An MWSL file is basically an HTML file which also contains MWSL tags. To distinguish them
from HTML files, MWSL files have the extension ".mwsl." Loading of MWSL pages into the
controller (Page 14)

Example:
<HTML>
<HEAD>
</HEAD>
<BODY>
<table>
<tr>
[...]
<td>
<MWSL>
//MWSL code to be executed
</MWSL>
</td>
[...]
<td>
<MWSL>
//MWSL code to be executed
</MWSL>
</td>
[...]
</tr>
</table>
</BODY>
</HTML>

If the MWSL functionality is required, the following tags must be added:
® The <MWSL>-tag introduces an MWSL script
® The </MWsL>-tag marks the end of the script

For reasons of clarity, the examples below do not always include the HTML code and begin
directly with the <MwsL.>" tag.

3.1.8.3 Error messages

MWSL error messages

Errors that occur while an MWSL page is being used are output in two different ways:

1. Errors that occur when compiling the MWSL file are output in the logfile. The name of the
log file is formed by appending ".log" to the file name.

2. Errors that occur when executing a web page, that is, when the page is called from the
server, are written into the source text of the MWSL page as error messages.

SIMOTION IT Programming and Web Services
48 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Error output in the MWSL page

The source text of a page can be loaded to the editor in the Internet Explorer by right-clicking
with the mouse and selecting the menu command Show Source Text.

Example
This example shows the comment associated with the query relating to an unavailable variable.

exec.mwsl
<html>
<head>
<title>SIMOTION
<MWSL>
WriteVar ("DeviceInfo.Board") ;
</MWSL>
</title>
<meta name="DC.Subject" content="SIMOTION">
<meta name="DC.Publisher" content="Siemens AG">
<meta name="DC.Format" content="text/html">
<meta name="DC.Language" content="en">
<meta name="DC.Rights" content="Copyrights Siemens AG 2003">
</head>
<body style="font-family: Arial">
<p>
<MWSL>WriteVar ("var/userData.user8") ; </MWSL>
</p>
<p>
<MWSL>WriteVar ("var/userData.user9") ; </MWSL>
</p>
</body>
</html>

In exec.mwsl file, the statement Writevar ("var/userData.user9"); is used to query
a non-existent variable.

Source text for the output page:
<html>
<head>
<title>SIMOTION D435</title>
<meta name="DC.Subject" content="SIMOTION">
<meta name="DC.Publisher" content="Siemens AG">
<meta name="DC.Format" content="text/html">
<meta name="DC.Language" content="en">
<meta name="DC.Rights" content="Copyrights Siemens AG 2003">
</head>
<body style="font-family: Arial">
<p>
495399
</p>
<p>

<!-- MWSL2 Runtime Message (WARNING) :
Src Line# (MethodName) Source Text

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 49

Software programming

3.1 User-defined pages

3.1.84

3.1.8.5

50

000003 # (INTERPRETER) WriteVar ("var/userData.user9") ;</MWSL>
External function returned an error: E6B20014.
-——>

</p>
</body>
</html>

The MWSL2 Runtime Message comment contains a description of the cause of the error.

Variable types

MWSL distinguishes between script variables and global variables:
® Script variables are defined within the script

® Global variables are provided by variable sources

Note

Global variables are not part of the script engine. Rather, they represent information from the
web server environment. Variables are accessed exclusively via access functions. The global
variables are grouped into variable sources according to their origin.

Script variables

Script variables are variables that are only valid on the current page.

The variables apply beyond MWSL tags, i.e. they can be created in one MWSL tag and be
used starting in the next MWSL tag.

For these variables, no distinction is made between variable types, i.e. there is no Int, Char,
etc.

A variable is created as follows:
var <Variablenname> = <Wert>;

The variable type is determined internally by the variable assignment.

Example:
<MWSL>
var stringl = "Hello";
var string2 = "World";
write(stringl + " " + string2);
</MWSL>

Two variables are created in the example shown above: stringl and string2.
The two strings are strung together (with spaces).

The write command outputs the result. See write (Page 122)

Output: Hello World

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Example:
<MWSL>

var numl = 5;

var num2 = 7;

var Result;

Result = numl + num2;
</MWSL>

Two variables are created in the example shown above: numl and num?2.
The two numbers are added, and the result is stored in the Result variable.
Result contains the value 12.

The data type is converted in the same way as ECMA Script 262. See ECMA script (http:/
www.ecma-international.org/publications/standards/Ecma-262.htm)

Keyword var

The keyword var introduces a variable declaration. In ECMA script, variables do not have to
be explicitly declared.

Syntax:

var VarName = InitalValue, VarName?2 = InitialValue2, ..;
Multiple variables are declared and (optionally) initialized with initial values.
You can specify several declarations, separated by commas.

For further information, please refer to the ECMA Script Definitions.

Ranges of visibility and validity

The visibility and validity of variables is analogous to ECMA script. (However, MWSL currently
does not recognize any functions.)

Example:
<MWSL>
var MyVar = 10;
{
MyVar = 20;
write ("Inner:" + MyvVar + ",");
}
write ("Outer:"™ + MyVar + "\n");
</MWSL>

Output: Inner: 20, Outer: 20

In this example, the variable MyVvar of the outer level will be accessed in the operation block,
because a variable named Myvar was not declared on the operation block level.

Therefore, the Myvar = 20 operation changes the value of the variable on the outer level.

<MWSL>
var MyVar = 10;

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 51

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Software programming

3.1 User-defined pages

3.1.8.6

Definition

var MyVar = 20;
write ("Inner:" + MyVar + ",");

}
write ("Outer:" + MyVar + "\n");
</MWSL>

Output: Inner: 20, Outer: 10

In this example, the variable MyVar is created new at the inner level, which leaves the value
of the variable Myvar having the same name at the outer level unchanged.

Global variables

Global variables enable access to the variable management area of the web server. There are
different types of global variables:

e PROCESS variables enable access to normal variables of the web server. This is known
as standard access.

e DEFAULT variables are identical to the PROCESS variables.

e URL variables provide access to variables contained in a URL.

e HTTP variables return the content of variables in the HTTP header.
® COOKIE variables allow access to cookies.

A variable can be accessed using the following command:
GetVar ("var/userData.userl", "PROCESS");

The variable source PROCESS must be written in upper case. If the var/userData.userl
variable is not present, "null" is returned.

PROCESS is the standard variable source. Therefore, PROCESS can also be omitted.
GetVar ("var/userData.userl") ;

If a variable provider is to be addressed directly, the name of the desired provider can be
specified instead of the variable source PROCESS.

Format string for the GetVar and WriteVar functions

52

The format string always starts with a % sign, followed by the specification of the number of
characters. This is then followed by the type information.

The following type information is available:

® %d for Integer values

o %f for Float values

® Y%e for representing the value with exponent

® Y%s for Strings

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

See also

3.1.8.7

3.1 User-defined pages

Examples
GetVar ("var/systemClock", "PROCESS", "%d");

GetVar ("var/modeOfOperation”™, "PROCESS"™, "%s");

Table 3-1 Format strings

Example Meaning

"%.6s" Outputs the first 6 characters of the specified variable (as a string).

"%.3s" Outputs the first 3 characters of the specified variable (as a string).

"%.s" Outputs the complete variable (as a string).

"%3.2f" Outputs the variable interpreted as Float. The 3 indicates that 3 total places are output.

The 2 indicates that, of the 3 places, 2 places after the decimal point will be displayed.

"%4d" Outputs the variable interpreted as Integer. Four places are output.
This parameter can only be passed if the variable source "PROCESS" has also been

passed.

If the format string is omitted, the complete variable content is returned.

Float numbers are rounded at output. For example, the number pi is output with the formatting
"%4.3f"as 3,142

GetVar (Page 112)
WriteVar (Page 123)

Special variables

Via the variable source HTTP, the value of the special variable Username can be queried.
GetVar ("Username", "HTTP")

This call of GetVvar returns the user currently logged on to the Web server.

The special variable HTTP supplies information on the HTTP connection.
GetVar ("HTTP", "HTTP")

Output:

Host: 192.168.1.1User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:
28.0) Gecko/20100101 Firefox/28.0Accept: text/html,application/xhtml
+xml,application/xml;g=0.9,*/*;g=0.8Accept-Language: de,en-
US;g=0.7,en;g=0.3Accept-Encoding: gzip, deflateReferer: http://
192.168.1.1/index.mwslConnection: keep-alive

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 53

Software programming

3.1 User-defined pages

3.1.8.8

Configuration constants

Accessing constants of the WebCfg.xml configuration file

54

It is possible to create constant variables in the WebCfg.xml file. Accessing these constants
enables more flexible programming, meaning that user-defined pages can be controlled using
relevant configuration parameters.

A constant is defined in the following section of WebCfg.xmil:
/SERVERPAGES/CONFIGURATION DATA/UserConfig

<SERVERPAGES>
<CONFIGURATION DATA>
<USERCONFIG>
<MyParam>MyParamValue</MyParam>
</USERCONFIG>
</CONFIGURATION DATA>
</SERVERPAGES>

It is possible to access the MyParam constant in an HTML page by specifying the
"constants/MyParam" path.

<html>
<head>
</head>
<body style="font-family: Arial">
<table width="100%" height="100%" bgcolor="#00349A">
<tr>
<td style="color: #FFFFFF">
<MWSL>WriteVar ("constants/MyParam") ;</MWSL>
</td>
</tr>
</table>
</body>
</html>

Result:
<html>
<head>
</head>
<body style="font-family: Arial">
<table width="100%" height="100%" bgcolor="#00349A">
<tr>
<td style="color: #FFFFFEF">
MyParamValue
</td>
</tr>
</table>
</body>
</html>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

3.1.8.9 Variables and URL parameters

MWSL offers the option of editing URL parameter values using the Writevar, GetVar,
SetVar, and ExistVariable functions.

Example of a URL with appended parameters. The line break has been added for better
readability:

http://localhost/MWSL/StringOperationtest.mwsl?
Parameterl=Hallo&Parameter2=du! &StartValue=2&EndvValue=5

The URL points to the page StringOperationtest.mwsl and transfers the parameters
Parameterl, Parameter?2, StartValue and EndvValue.

The following command outputs the URL variable Parameter1:

WriteVar ("Parameterl", "URL");

Note that "URL" must be written in upper case.

If a URL variable that is not present in the URL is requested, an empty string (
returned. This return is not a script error.

) is always

Parameters in URLs

In a URL, parameter passing begins after the "?" character. Individual parameters are
separated by "&" characters. The value is assigned after the "=" character.

Certain characters require a coding in order to be passed correctly. The following table provides
an overview of the most commonly used escape codes.

Table 3-2 URL escape codes

Character Escape code
Blank %20
< %3C
> %3E
%23
% %25
{ %78
} %7D
| %7C
\ %5C
A %5E
~ %T7E
[%5B
] %5D
) %60
; %3B
/ %2F
? %3F

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 55

Software programming

3.1 User-defined pages

Character Escape code
: %3A
@ %40
= %3D
& %26
$ %24

The coding consists of the '%' character followed by the ASCII hexadecimal value of the desired
character.

You can find more information on the Internet, e.g. at http://de.selfhtml.org/.

3.1.8.10 COOKIES
The following example shows how a cookie can be created in an MWSL file.

For this purpose, insert the <META> tag into the <HEAD> tag:

http-equiv="SET-COOKIE" content="siemens automation language=de;"

Example:
<HTML>
<HEAD>
<META http-equiv="SET-COOKIE"
content="siemens automation language=de;">
</HEAD>
<BODY>
[...]
</BODY>
</HTML>

For more information on cookies: http://de.selfhtml.org/

Setting a cookie as an HTTP header

Itis possible to set HTTP header for the HTTP response from MWSL. For example, this allows
a cookie to be set via the HTTP header and not as a <META> tag.

Example:

<MWSL>
var strCookie;
strCookie = "Set-cookie: siemens automation language=";
strCookie = strCookie + GetVar("Language", "URL");

strCookie = strCookie + ", path=/\r\n";
AddHTTPHeader (strCookie);

write ("HTTP lang: " + GetVar ("Cookie", "HTTP"));
</MWSL>

In this example, a cookie for detection of the language setting is set.

SIMOTION IT Programming and Web Services
56 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

3.1.8.11 Variables and access to COOKIES

The access occurs similarly as for the URL parameters. The single difference is that the
variable type is now COOKIE instead of URL.

The variable specified in the example can be accessed with the following command, for
example:

GetVar ("siemens automation language", "COOKIE");

Note that COOKIE must be written in upper case.

Ifthe COOKIE siemens automation language is set with en, for example, the above call
would return this value.

For more information on cookies: http://de.selfhtml.org/

If the variable is not present, there is no output.

3.1.8.12 Variables and HTTP header information

Using the variable source HTTP, the values are read out of the HTTP query header fields.
These are, for example, Accept, Content-Type, Of User-Agent.

Table 3-3 Example output of an HTTP header field

WriteVar ("User-Agent", "HTTP");

Output of the Mozilla Firefox browser:
Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0) Gecko/20100101 Firefox/25.0

Table 3-4 Example of generation of an HTTP HEADER with the HTML META tag

Example:
<HTML>

<HEAD>

[...]
<META http-equiv="Accept-Language" content="de">

[...]
</HEAD>
<BODY>

[...]
</BODY>
</HTML>

In this example, the HTTP variable Accept-Language is defined in the META tag using the
"http-equiv="Accept-Language" command. Itis initialized by the content attribute with
the value de.

Additional information on META information: http://de.selthtml.org/htmi/kopfdaten/
meta.htm#allgemeines

This variable is accessed similarly as for the URL parameters. The difference is that the
variable source is HTTP and not URL. The variable specified in the example can be accessed
with the following command:

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 57

Software programming

3.1 User-defined pages

GetVar ("Accept-Language", "HTTP");

The variable source HTTP must be written in upper case.

Format string for the GetVar and WriteVar functions

As the third parameter of the functions Getvar and Writevar, a format string can be
specified. The format string defines from which position how many characters of the variable
source will be returned.

GetVar ("Accept-Language", "HTTP", "[3,51")

See also

3.1.8.13

MWSL operators

58

In the above example, 5 characters of the HTTP variables Accept-Language are returned
starting from the third character.

The format string can only be passed if a variable source, such as HTTP in the above example,
has also been passed.

If the format string is omitted, the complete variable content is returned.

Global variables (Page 52)
GetVar (Page 112)
WriteVar (Page 123)

Operators

All operators presented here behave as defined in ECMA 262. For more information, refer to
the ECMA 262 Specification.

Boolean values are converted to numerical values 0O (for false) and 1 (for true) where applicable.

Table 3-5 Relational operators

Operator Comment

x <y This operator returns true if the x variable is less than the y variable. Otherwise, the
value returned is false.

x <=y This operator returns true if the x variable is less than or equal to the right y variable.
Otherwise, the value returned is false.

x >y This operator returns true if the x variable is greater than the y variable. Otherwise,
the value returned is false.

X >=y This operator returns true if the x variable is greater than or equal to the y variable.

Otherwise, the value returned is false.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Operator Comment

X ==y This operator returns true if the x variable is equal to the y variable. Otherwise, the
value returned is false.

x =y This operator returns true if the x variable is not equal to the y variable. Otherwise,
the value returned is false.

Table 3-6 Logic operators

Operator Remark
Ix Logical NOT
This operator returns a false if x is true.

if x is false, the value returned by the operator will be true.

X && Yy Logical AND

This operator returns true if x and y have the value true. Otherwise, the value returned
is false.

x ||y Logical OR

This operator returns a false if x and y have the value false. Otherwise, the value
returned is true.

Table 3-7 Object operators

Operator Remark
new Creating an object
This operator creates on object. The object can be of a pre-integrated or a user-defined
type.
delete Deleting an object

This operator deletes an object created with new.

Table 3-8 Bit-by-bite operators

Operator Remark

X &y Bit-by-bit AND
If x and y are one at a bit position, this bit position will have the value one. All bit
positions are checked.
x |y Bit-by-bit OR
If x or y are one at a bit position, this bit position will have the value one. All bit positions
are checked.

y Bit-by-bit XOR
If x or y is one at a bit position, but they are not both one, this bit position will have
the value one. All bit positions are checked.

x >> vy Right shift considering the sign

In %, the bits are shifted right by v digits. If x is positive, zeroes are filled in from the
left; if x is negative, ones are filled in from the left.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 59

Software programming

3.1 User-defined pages

60

Operator Remark
X >>> vy Right shift without considering the sign
In x, the bits are shifted right by vy digits. Zeroes are filled in from the left.
x <<y Left shift
In %, the bits are shifted left by vy digits. Zeroes are filled in from the right.
~X Bit-by-bit NOT
Inverted bits of x.
Table 3-9 Arithmetic operators
Operator Remark
X +y Plus operator
This operator adds x and y.
++x Increment
Increments the value of x by one. x++ or ++x is possible.
X -y Minus operator
This operator subtracts the value y from x.
--x Decrement
Decrements the value of x by one. x-- or x is possible.
x / This operator divides x by y. The return value is a float.
X % Modulo
This operator returns the integer remainder of a division of x and vy.
X *y This operator multiplies x by vy.
Table 3-10 Assignment operators
Operator Remark
X =y Assignment operator
This operator assigns the value of the right-hand expression to x, in this case the
variable y.
X += vy Addition
Assigns x the value of x + y.
X -=y Subtraction
Assigns x the value of x — .
X *=y Multiplication
Assigns x the value of x * .
x /=y Division
Assigns x the value of x / y.
x "=y Bit-by-bit OR
Assigns x the value of x ~ y.
x |=vy Bit-by-bit OR

Assigns x the value of x | y.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Operator Remark
X &=y Bit-by-bit AND
Assigns x the value of x | y.

X %=y Modulo
Assigns to x the integer remainder of a division with .

X >>= vy Bit-by-bit right shift

Assigns x the value of x >> y.
X <<=y Bit-by-bit left shift

Assigns x the value of x << y.

Table 3-11 Conditional operator

Operator Remark

Condition ? x : y Conditional operator

This operator has the value x, if the condition is true.
Otherwise, the value of the operator is .

3.1.8.14 Conditional operations

if Conditions
The if condition is familiar from Ecma 262.

Syntax
if (<condition>)
Operationl
else
Operation2;

If the condition is true, instruction 1 is run.

If the condition is false, instruction 2 is run. If no e1se part is present, processing continues
in accordance with the i f operation.

Example:
<MWSL>

[...]
if (ExistVariable ("Parameter", "PROCESS"))
{

WriteVar ("Parameter") ;
}

[...]
</MWSL>

If the Parameter process variable exists, its content is output.

If not, the instruction is skipped and the program execution is then resumed. In the example
above, this would be the code that follows after the closing curly bracket.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 61

Software programming

3.1 User-defined pages

If an else branch is present, it is run provided that the condition has not been fulfilled.

Example:
<MWSL>

[...]
if (ExistVariable ("Parameter") && GetVar ("Parameter")>=3)
{

write ("The parameter value is:");

WriteVar ("Parameter") ;

write ("This 1is a valid value!");

}

else
{
write ("Parameter process variable is not permitted or is not available");
}
[...]
</MWSL>

If the Parameter variable is not present, the e1se part is executed. A message is then output,
indicating that no variable with the specified name exists.

As the examples show, an operation can be replaced by an operation block.

An operation block is a list of operations that is enclosed in curly brackets.

Example:
<MWSL>
[...]
if (ExistVariable ("Parameter") && GetVar ("Parameter")>=3)
{
WriteVar ("Parameter") ;
}
else
{
write ("Parameter process variable is not permitted or is not
available™");
}
[...]
</MWSL>

If the Parameter process variable exists and the content is greater than or equal to 3, it is
output. Otherwise, a corresponding output is made.
switch Condition

The switch operation makes it possible to compare an <expression> with many conditions
<value1>, <valuet2>, etc.

SIMOTION IT Programming and Web Services
62 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

switch (<expression>)
{
case <valuel>:
//Program block
break;
case <value2>:
//Program block
break;
//etc.
default:
//Program block

3.1.8.15 Loops

for Loop
The MWSL provides a loop mechanism, such as is already familiar from JavaScript.
For a detailed description, refer to the ECMA 262 Specification.

Syntax
for(Start statement; End condition; Run statement)
{
Loop body, code to be executed
}

Sequence:

1. The start instruction is executed
2. The loop body is executed

3. The run operation is executed
4

. As long as the end condition is true, the processing is repeated starting from the loop body

).

Example:
for (i=1; i<5; i++)
{

write (i) ;

}

Output: 1234

do while Loop

Inthe do while loop, the body of the loop is first run then the while <condition> is tested.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 63

Software programming

3.1 User-defined pages

do
{
//Operation block
} while (<condition>);

break continue
To break or resume loop execution, two operations break and continue are available.

With the break operation, the loop is always exited immediately without testing the <condition>
again.

The continue operation jumps immediately to the head of the loop.

3.1.8.16 Functions

A user-defined function consists of the function operation and a program block of operations.
No or multiple parameters can be passed.

A <Wert> can be returned. If no return value is specified, the function will return undefined.

function Function name ([<parameterl>,
<parameter2>, ...])

{
//Program block
return <Wert>;

3.1.8.17 Comments

Comments can comprise one or more lines in the MWSL.

// One-line comment. All characters are
ignored up to the line break.

/*
Multi-line comment starts with '/*' and
must be ended with '*/'.

*/

SIMOTION IT Programming and Web Services
64 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

3.1.8.18 Overview of MWSL functions

The MWSL provides a variety of functions, which are presented in the following overview table.

For detailed descriptions of the functions, refer to the appendix.

Table 3-12 MWSL functions

Function name

Explanation

AddHTTPHeader(<Http header>) (Page 109)

Insert <Http Header> in a page.

createGUID() (Page 109)

Generates a unique alphanumeric ID in the
system.

DecodeString(<string>) (Page 110)

Converts a string encoded with EncodeString
back to its original.

die(<Param0>,<Param1>,...) (Page 110)

Abort program execution.

EncodeString(<string>) (Page 111)

Replaces special characters by their URL-coded
hex value (%hh).

ExistFile(<file name>) (Page 111)

Checks whether a file with the name
<parFileName> exists. The function returns file
length as returned value.

ExistVariable(<variable name>, <variable
source>) (Page 112)

Query of the existence of a variable.

GetLanguage() (Page 112)

Returns the currently set language in English.

GetVar(<variable name>, <variable source>,
<format string>) (Page 112)

Return of the value of a variable of the
corresponding variable source

InsertFile(<text file>) (Page 114)

Import of a <Test File>. A path can be specified.

IsAuthAlgo(<parAuthMethod>) (Page 115)

Returns true if the user logged on at the time of
calling could be identified by the authentication
method specified in parAuthMethod.

isFinite(<value>) (Page 115)

Returns false if the passed value is NaN or infinite.

isNaN(<value>) (Page 115)

Checks whether the passed value is an invalid
double.

IsSSL() (Page 116)

Returns true if the client is connected to the server
via an SSL connection.

parseFloat(<string>) (Page 116)

Conversion of a string to a double value.

parselnt(<value>,[<basis>]) (Page 116)

Conversion of a string to an integer value.

ProcessXMLData(<DATA>, <TEMPLATE>)
(Page 118)

Generation of dynamic HTML files with special
XML files.

string ReadFile(<file name>) (Page 119)

Returns the content of the file as the return value.

ReplaceString<variable name>,<search
pattern>,<replacement string>) (Page 120)

Replacement of strings matching the search
pattern.

SetVar(<variable name>, <value>) (Page 120)

Sets values of variables.

ShareRealm(<group name>) (Page 120)

Indicates whether the current user is a member of
the group that is passed as a parameter. The
return value can be true or false.

write(<text>) (Page 122)

Writes <Text> strings to the HTML page. <Text>
can also be the return value of functions.

WriteToTab(<parTabPos>, <parFillChar>)
(Page 122)

Write <parFillChar> up to position <parTabPos>.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

65

Software programming

3.1 User-defined pages

Function name Explanation

WriteVar(<variable name>, <variable source>, Output of a variable value. The syntax is identical
<format string>) (Page 123) to the GetVar() function.

WriteXMLData (<DATA>, <TEMPLATE>) Outputs the data directly in contrast to

(Page 125) ProcessXMLData().

Table 3-13 MWSL process variables

Process variable Explanation

Nodelndex (Page 126) | Parse process variable for the template.
This variable outputs the number of nodes that have already been run.

NodeLevel (Page 127) | Parse process variable for the template.
This variable outputs the hierarchy level of the current node.

3.1.8.19 Mode of operation of the template mechanism

A Template is applied to data elements of a data source. This mechanism allows separate
implementation of data and processing.

The Template-mechanism is started by the ProcessXMLData () and WriteXMLData ()
commands.

MWSL

File
Process XMLData()

XML
Data Source

GetVar("ATTR");

Use Template

XML
Template

No more XML Data

Result HTML

Figure 3-13 Basic overview of the template mechanism
The data file contains structured data that can be output as transformed data using the
Template-mechanism.

An XML file consists of a series of XML nodes. A name as well as a set of attributes are
assigned to each XML node. An attribute, in turn, consists of a name and a value.

SIMOTION IT Programming and Web Services
66 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

The Template file contains a set of transformation operations.
A transformation operation can be assigned to an XML node (with a certain name).

During the transformation process, the data fragment is read node-by-node from top to bottom.
If a Template can be assigned to a node, this Template is executed and the attributes of the
current node are available to the Template as variables.

3.1.8.20 Structure of the template file

The Template file is an XML file whose data nodes contain the transformation operations for
processing a data file.

Example
<?xml version="1.0" ?>
<TEMPLATES>

[...]
<TEMPLATE NAME="Variable">

[...]
<POSITION NAME="LINE">
<! [CDATA[

[...]
<MWSL>Name () </MWSL>
[...]
11>
</POSITION>

[...]
</TEMPLATE>

[...]
</TEMPLATES>

The Template file evaluates the data nodes of the data file.

The individual Template tags are defined in the <TEMPLATES> tag (in the example above, only
one template tag is defined).

The line <TEMPLATE NAME="Variable"> defines that this Template (the subsequent code)
is only run for data notes of the "Variable" type. The type of a data node is specified either
through the name of the data node or through a special attribute named "Template”.

<POSITION NAME="LINE">

[...]
</POSITION>

This tag is used to specify the area of the web page in which the content of the template is to
be output.

The positions HEAD, LINE, and FOOT are available and are run in that order during processing.

The content of the POSTITION is encapsulated in a CDATA-block in order to protect it from the
XML parser:

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 67

Software programming

3.1 User-defined pages

<! [CDATA[[...111>

MWSL can now be used to access the attributes of the current data node and to output them
or use them in other operations.

Example:
<MWSL> WriteVar ("Name")</MWSL>

3.1.8.21 Structure of a data source

A data source is an XML fragment, in which the nodes of the XML fragment form the data
elements.

Note

If the XML fragment does not contain a root node, MWSL itself generates a root node so that
the data source conforms to XML.

The XML fragment can also be a complete XML document.

Example:
<?xml version="1.0" standalone="yes"?>
[...]
<Variable Name="ZUFUEHRUNG.STATE"
Type="String"
InitialvValue="good"
Behavior="Manual"
Description="Status of part infeed."
/>
[...]
<Variable Name="Language"
Type="String"
InitialValue="de DE"
Behavior="Manual"
Description="Language setting of web page"
/>
[...]

The example defines data nodes (in the example: Variable) with the associated attributes.
The different nodes can be evaluated using a corresponding template file.

A further option is the creation of a data structure (hierarchy). That is, data nodes can be
created that, in turn, contain other data nodes.

Example:
<?xml version="1.0" standalone="yes"?>
[...]
<StructVariable Name="Farbe"
Type="String"

SIMOTION IT Programming and Web Services
68 Programming Manual, 04/2014

Software programming

InitialValue="gelb"
Behavior="Manual"
Description="Fictitious
[...]
<Subvar Name="Rotteil"
Type="Integer"
InitialValue="128"
Behavior="Manual"
Description="The red proportion

3.1 User-defined pages

value">

of the color"

/>
<Subvar Name="Blauteil"
Type="Integer"
InitialvValue="128"
Behavior="Manual"
Description="The blue proportion of the color"
/>
<Subvar Name="Gruenteil"
Type="Integer"
InitialvValue="128"
Behavior="Manual"
Description="The green proportion of the color"
/>
[...]
</StructVariable>

[...]

This example uses the data node of type Structvariable. This data node contains several

data nodes of type Subvar.

Different templates can be used for the different types of data nodes.

3.1.8.22 Template transformation

The ProcessxMLData () command dynamically generates an HTML file (or just a text
fragment) from an XML data file and an XML template file.

For this purpose, the parser runs through the data file step by step, from top to bottom.

The parser reads in a data node. Following this, a search is performed in the template file for
a matching template for this data node. If a template is found, this template will be applied to
the data node. The template is an MWSL fragment. The sole difference is that the attributes
of the XML data node in the template are available as standard process variables if a variable
source is not specified. If there are identical names, the XML attributes overlay the
corresponding process variables. If the variable source PROCESS is specified explicitly, the

process variables are always used.

Example:
Prozessvariable

Color Value "Green"

Data file:

<?xml version="1.0"

[...]

<Variable Name="ZUFUEHRUNG.STATE"
Farbe="Red"

standalone="yes"?>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

69

Software programming

3.1 User-defined pages

/>

[...]

<Variable Name="Language"
/>

[...]

Template file:
<?xml version="1.0" 2>

<TEMPLATES>

<TEMPLATE NAME="Variable">
<POSITION NAME="LINE">

<! [CDATA[

<MWSL>write (GetVar ("Name")+":");</MWSL>
<MWSL>write (GetVar ("Color")+"\r\n");</MWSL>

11>
</POSITION>
</TEMPLATE>
</TEMPLATES>

Output:
ZUFUEHRUNG.STATE: Red

Language: Green

Sequence of a Template-process

Source

<APPMENU>

LABH. = "Call Page”
TITLE ="Callsa."/>

<BUTTON NAME = "Menul"

LABH. = "File Access 1"
TITLE ="Accessa.."
STATUS= "Access.."/>

<BUTTON NAME = "Menu2"

</APPMENU>

Template

<TEMPLATES>

<I[CDATA[
<TR>
<TD>

</TD>

<TEMPLATENAME="BUTTON">
<POSTION NAME="LINE">

<INPUT CLASS= "MainMenu"
TYPE = "BUTTON"
TITLE= "%=TITLE%"
VALUE="%=LABLEY"

The figure shows the sequence of the Template Parse-process.

The Template is run through one time for each data element (yellow and green blocks). The
attributes of the current data element can thereby be accessed as variables.

70

SIMOTION IT Programming and Web Services

Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Chronological sequence

1. The <APPMENU> tag is found in the Source and the Template is run. No processing
operation is found for this tag in the Template, therefore, no data element is written to the
output.

2. The first <BUTTON> tag is found and processed by the Template .
3. The second <BUTTON> tag is found and processed by the Template .

4. No other tags are found; processing is complete.

Another example:

Calling MWSL file
<HTML>

<HEAD>

<TITLE>

MWSL Template Test Page

</TITLE>
</HEAD>
<BODY >
<MWSL>

write (ProcessXMLData (

"<EXTERNAL SRC=\"/FILES/MWSL/variables.xml \"/>",
"<TEMPLATES><EXTERNAL SRC=\"/FILES/MWSL/variablesTemplate.xml\"/

</TEMPLATES>")
);
</MWSL>
</BODY>
</HTML>

variables.xml
<?xml version="1.0" standalone="yes"?>
<Provider Name ="MyVarProvider">
<Variable Name="ZUFUEHRUNG.STATE"
Type="String"
InitialValue="good"
Behavior="Manual"
Description="Status of part infeed."
/>
<Variable Name="Language"
Type="String"
InitialValue="de DE"
Behavior="Manual"
Description="Language setting of web page"
/>
</Provider>
<!-- End of File -->

variablesTemplate.xml
<?xml version="1.0" 2>

<TEMPLATES>
<TEMPLATE NAME="Provider">
<POSITION NAME="HEAD">

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 71

Software programming

3.1 User-defined pages

<! [CDATA[
<TABLE BORDER="1">
<TR>
<TH>
Variablenname
</TH>
</TR>
11>
</POSITION>
<POSITION NAME="FOOT">
<! [CDATA [
<TR>
<TD>
<MWSL><!--GetVar ("Name") ; -—></MWSL>
</TD>
</TR>
</TABLE>
11>
</POSITION>
</TEMPLATE>
<TEMPLATE NAME="Variable">
<POSITION NAME="LINE">
<! [CDATA [
<TR>
<TD>
<MWSL>
<l--
GetVar ("Name") ;
-—>
</MWSL>
</TD>
</TR>
11>
</POSITION>
</TEMPLATE>
</TEMPLATES>

Call the ProcessXMLData command to start the parser with the data file variables.xml. The
<Provider> tag is found first.

In the variablesTemplate.xml template file, a search is performed in order to ascertain whether
a template has been defined for this type.

The Position="HEAD" area is executed.

The parser reads the next tag from the data file and generates the additional lines of the HTML
file to be output based on the appropriate template in the template file.

The same happens with the next tag.
The footer part of the template provider is executed with the end tag </Provider>.

In the following expression, the generated parts are shown bold.

Generated file:
<HTML>

<HEAD>
<TITLE>

SIMOTION IT Programming and Web Services
72 Programming Manual, 04/2014

Software programming

MWSL Template Test Page
</TITLE>
</HEAD>
<BODY >
<TABLE BORDER="1">
<TR>
<TH>Variablenname</TH>
</TR>
<TR>
<TD>ZUFUEHRUNG. STATE</TD>
</TR>
<TR>
<TD>Language</TD>
</TR>
<TR>
<TD>Hallo</TD>
</TR>
</TABLE>
</BODY>
</HTML>

3.1.8.23 MWSL in XML attributes

3.1 User-defined pages

As part of template parsing, it is also useful to write MWSL-statements to XML attributes of

the data file, which are then evaluated at the time of parsing.

Example:

<?xml version="1.0" standalone="yes"?>

<Motor Name="M1"
Nummer="1"
Type="Dreh"
Nennleistung = "7"
Drehzahl="3"
Alter="2"
Farbe="RED"

Prozess="&MWSL;WriteVar (" CPULoad.Percent", " PROCESS&qu

ot;,

" $e") ;

/>

The example uses the following MWSL command:

&END MWSL;"

"&MWSL;WriteVar (" CPULoad.Percent", " PROCESS", "

$e") ;
&END MWSL;"

The command would appear as follows in a template file or an MWSL file:

<MWSL>WriteVar ("CPULoad.Percent",

"PROCESS",

"se") ; </MWSL>

This command outputs the value of the CPULoad. Percent variables from the PROCESS

variable source.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

73

Software programming

3.1 User-defined pages

3.1.8.24

Please note that <MwWSL> must be replaced with sMWSL;, and </MWSL> with §END_ MWSL; .
In addition, double quotation marks " must be replaced with squot;

The rest conforms to the MWSL syntax.

Examples

Examples of how MWSL can be used

The examples shown here outline the options for using MWSL.

Setting variable values using the SetVar function

<MWSL>
SetVar (GetVar ("VARNAME") , GetVar (GetVar ("VARNAME"), "URL"));
</MWSL>

In this example, the variable whose name is saved in the VARNAME process variable is
initialized with the value of the VARNAME URL variable.
For illustration

GetVar ("VARNAME") supplies the content of the VARNAME process variable. This value will
be viewed, in turn, as a variable name.

If we assume that the content of the VARNAME process variable is "Jack", the overall call already
looks much simpler:

Overall call: Setvar ("Jack", Getvar ("Jack", "URL"));

If we were to assume that the URL variable "Jack" had the content "is a great guy", this would
be equivalent to the following expression:

SetVar ("Jack", "is a great guy");

TestTemplate.mwsl|

74

This example will be used to briefly explain the template mechanism again.
For illustrative purposes, a few passages in the respective files are marked.

The template produces a table.

The called file

TestTemplate.mwsl
<HTML>

<HEAD>
<TITLE>
MWSL Template Test Page
</TITLE>
</HEAD>
<BODY>
<MWSL>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

write (ProcessXMLData ("<EXTERNAL SRC=\"/FILES/MWSL/variables.xml\"/>",
"<TEMPLATES><EXTERNAL SRC=\"/FILES/MWSL/variablesTemplate.xml\"/>

</TEMPLATES>")
) ;
</MWSL>
</BODY>
</HTML>

VariablesTemplate.xml
<?xml version="1.0" ?>
<TEMPLATES>
<TEMPLATE NAME="Provider">
<POSITION NAME="HEAD">
<! [CDATA[
<TABLE BORDER="1">
<TR>
<TH>
Varname
</TH>
<TH>
Type
</TH>
<TH>
Description
</TH>
<TH>
Value
</TH>
<TH>
NI/NL
</TH>
</TR>
11>
</POSITION>
<POSITION NAME="FOOT">
<! [CDATA[
<TR>
<TD COLSPAN="5">
</TD>
</TR>
</TABLE>
11>
</POSITION>
</TEMPLATE>

<TEMPLATE NAME="Variable">
<POSITION NAME="LINE">
<! [CDATA[
<TR>
<TD align=center>

<A HREF="<MWSL>Link () </MWSL>"><MWSL>Name () </MWSL>

</TD>

<TD>
<MWSL>Type () </MWSL>

</TD>

<TD>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

75

Software programming

3.1 User-defined pages

76

<MWSL>Description () </MWSL>

</TD>
<TD align=right>

<MWSL>InitialValue () </MWSL>

</TD>
<TD>

<MWSL> NodeIndex () </MWSL> / <MWSL> NodeLevel () </MWSL>

</TD>
</TR>
11>
</POSITION>
</TEMPLATE>
</TEMPLATES>

In this case, the template file consists of multiple templates. The Provider template places
the header and footer parts for the data (table header and footer).

The variable template is appointed for the lines of data output (one table row per variable

entry).

The data are inserted after the corresponding attributes.

The data file variables.xml

<?xml version="1.0" standalone="yes"?>

<Provider Name ="MyVarProvider">
<Variable Name="ZUFUEHRUNG.STATE"
Type="String"
InitialValue="good"
Behavior="Manual"
Description="Status of part infeed"
/>
<Variable Name="Language"
Type="String"
InitialValue="de DE"

Behavior="Manual"

Description="Language setting of web page"

/>

</Provider>

Generated HTML file
<HTML>

<HEAD>
<TITLE>
MWSL Template Test Page
</TITLE>
</HEAD>
<BODY>
<TABLE BORDER="1">
<TR>
<TH>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Varname
</TH>
<TH>
Type
</TH>
<TH>
Description
</TH>
<TH>
Value
</TH>
<TH>
NI/NL
</TH>
</TR>
<TR>
<TD align=center>
ZUFUEHRUNG.STATE
</TD>
<TD>
String
</TD>
<TD>
Status of part infeed
</TD>
<TD align=right>
good
</TD>
<TD>
2/ 2
</TD>
</TR>
<TR>
<TD align=center>
Language
</TD>
<TD>
String
</TD>
<TD>
Language setting of web page
</TD>
<TD align=right>
de DE
</TD>
<TD>
3/ 2
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 77

Software programming

3.1 User-defined pages

MainNavigation.mwsl

<html>
<head>
<title>
MiniWeb Main Navigation
</title>
</head>
[...]
<body>
<table>
<tr>
<MWSL>
write (ProcessXMLData (
"<EXTERNAL SRC=\"/XML/MainNavigation.xml\"/>",
"<TEMPLATES><EXTERNAL
SRC=\"/Templates/MainNavigation.xml\"/>
</TEMPLATES>"));
</MWSL>
</tr>
</table>
</body>
</html>

This file contains the actual body of the HTML page to be generated.

The dynamic part is generated with the ProcessXMLData () command and inserted in
<table>.

/XML/MainNavigation.xml
MainNavigation.xml contains the data part for the generation.

<?xml version="1.0" standalone="yes"?>

<MAINNAVIGATION>
<APPLICATION NAME = "Entrance"
CLIENTAREA = "/Portal/Entrance.mwsl"
TITLE = "Back to Entrance Page." />
<APPLICATION NAME = "MWSL Test"
CLIENTAREA = "/MWSL/Start.mwsl"
TITLE = "Test environment for MWSL."/>
<APPLICATION NAME = "File Browser"
REALM = "Administrator"
CLIENTAREA = "/www"
TITLE = "Browse the Filesystem" />
[...]
<APPLICATION NAME = "CSSA"
REALM = "User"
CLIENTAREA = "/CSSA/Main.mwsl"
TITLE = "PKI Interface."/>
<APPLICATION NAME = "VarSimulator"
CLIENTAREA = "/Simulator/Simulator index.mwsl"
TITLE = "Simulate several variables."/>
</MAINNAVIGATION>

SIMOTION IT Programming and Web Services
78 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

[Templates/MainNavigation.xml

<?xml version="1.0" standalone="yes"?>
<TEMPLATES>
<TEMPLATE NAME="APPLICATION">
<POSITION NAME="LINE">

<! [CDATA[
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "<MWSL> WriteVar ("TITLE")</MWSL>"
value = "<MWSL> WriteVar ("NAME")</MWSL>"
OnClick =
"NavigatelApp ('<MWSL>WriteVar ("CLIENTAREA") </MWSL>"')"
/>
</td>
11>
</POSITION>
</TEMPLATE>
</TEMPLATES>

This file is run for each data node and the appropriate variables are inserted.

Generated HTML file

<html>
<head>
<title>
MiniWeb Main Navigation
</title>
</head>
<body>
<table>
<tr>
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "Back to Entrance Page."
value = "Entrance"
OnClick = "NavigateApp ('/Portal/Entrance.mwsl')"
/>
</td>
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "Test environment for MWSL."
value = "MWSL Test"
OnClick = "NavigateApp ('/MWSL/Start.mwsl')"
/>
</td>
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "Browse the Filesystem"
value = "File Browser"
OnClick = "NavigateApp ('/www')"
/>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 79

Software programming

3.1 User-defined pages

</td>
[...]
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "PKI Interface."
value = "CSSA"
OnClick = "NavigateApp('/CSSA/Main.mwsl')"
/>
</td>
<td>
<input class = "MainMenu"
type = "BUTTON"
title = "Simulate several variables."
value = "VarSimulator"
OnClick = "NavigateApp
('/Simulator/Simulator index.mwsl')"
/>
</td>
</tr>
</table>
</body>
</html>
AppNavigation.mwsl
Call:
<MWSL>
WriteXMLData ("<EXTERNAL SRC=\"" + GetVar ("XML", "URL") + "\"/>",
"<TEMPLATES><EXTERNAL SRC=\"" +
GetVar ("TEMPLATE", "URL") + "\"/></TEMPLATES>");
</MWSL>

When the call is made, the data and the template file are transferred from the URL.

In this example, the transferred template file is assumed to be AppNavigation.xml and the
transferred data file MWSLTestMenu.xml.

MWSLTestMenu.xml

<?xml version="1.0" ?>

<APPMENU>
<MENU>
<BUTTON NAME = "Menul"
LABEL = "Variablentest"
TITLE = "Tooltip"
STATUS = "Statusline"
CLIENTAREA = "/MWSL/Variablentest.mwsl?Parameter=4711"
/>
[...]
<BUTTON NAME = "Menu9"
LABEL = "Versuch"
TITLE = "Tooltip"
STATUS = "Statusline"

SIMOTION IT Programming and Web Services
80 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

CLIENTAREA = "/MWSL/Versuch.mwsl" />
</MENU>
</APPMENU>

In the following template file, some attributes are queried as to their existence and the
corresponding lines executed.

In this case, only the condition for CLTENTARER is run since no other queried attribute is
present.

AppNavigation.xml

<?xml version="1.0" standalone="yes"?>
<TEMPLATES>
<TEMPLATE NAME="BUTTON">
<POSITION NAME="LINE">

<! [CDATA[
<TR>
<TD>
<INPUT CLASS = "MainMenu"
TYPE = "BUTTON"
TITLE = "<MWSL>TITLE () </MWSL>"
VALUE = "<MWSL>LABEL () </MWSL>"
<MWSL>
if (ExistVariable("CLIENTAREA"))
{
write ("OnClick=
\"top.ClientArea.window.navigate ('"+
GetVar ("CLIENTAREA") + "'")\"");
}
if (ExistVariable ("TOP"))
{
write ("OnClick = \"top.window.navigate ('" +
GetVar ("TOP") + "'")\"");
}
if (ExistVariable ("WIN"))
{
write ("OnClick = \"window.open('" +
GetVar ("WIN") + "'")\"");
}
if (ExistVariable ("ACTION"))
{
write ("OnClick = \"top.ClientArea.window." +
GetVar ("ACTION") + "\"");
}
</MWSL>
/>
</TD>
</TR>
11>
</POSITION>
</TEMPLATE>
</TEMPLATES>

The template file contains if conditions, in which attributes from the data file are queried.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 81

Software programming

3.1 User-defined pages

This results in different statements for each data node during runtime.

The generated HTML file will then only contain the line corresponding to the respective data

node.
generierte Ausgabe
<TR>
<TD>
<INPUT CLASS = "MainMenu"
TYPE = "BUTTON"
TITLE = "Tooltip"
VALUE = "Variablentest"
OnClick = "top.ClientArea.window.navigate (
'/MWSL/Variablentest.mwsl?Parameter=4711")"
/>
</TD>
</TR>
[...]
<TR>
<TD>
<INPUT CLASS = "MainMenu"
TYPE = "BUTTON"
TITLE = "Tooltip"
VALUE = "Versuch"
OnClick =
"top.ClientArea.window.navigate ('/MWSL/Versuch.mwsl')"
/>
</TD>
</TR>

3.1.9 Server Side Includes (SSI)

3.1.91 Integration of process values

You can include process values in the user-defined HTML pages using Server Side Includes
(SSI).

Note

In SIMOTION controls V4.1 and higher, HTML pages with SSI must be available as a binary
file to display process values. A standard HTML page can be converted to a binary file using
the supplied conversion tool (Page 14).

HTML pages with static content only do not have to be converted.

Integration of process values

The variables are integrated in the HTML page using the <¥=IDENTIFIER %> character
string. IDENTIFIER is a placeholder, which you must replace with variables from the variable
providers. For example, the variable <$=DeviceInfo.Board%> returns the name of the
control. On a D435, for example, the value is "D435".

SIMOTION IT Programming and Web Services
82 Programming Manual, 04/2014

Software programming

3.1 User-defined pages

Details of the variables and syntax can be found in the Variable providers chapter of the
SIMOTION IT Diagnostics and Configuration manual.

The source text below shows an example for integrating the variable userData.userl. First,
the value of the variable is output (system variable userData.userl: <$=var/
userData.userl %>). The value of the variable is used as a default in the input field and

can be overwritten by a user input.

<html>
<head>
<title>Demo Seite</title>
</head>

<body text="#000000" bgcolor="#FFFFFF" link="#FF0000"
alink="#FF0000" v1ink="#FF0000">

Demoseite

Systemvariable userData.userl : <%= var/userData.userl %>

<form method="post" action="/VarApp">

SIMOTION C: userData.userl:

<input type="TEXT" name="var/userData.userl" value="<
%= var/userData.userl %>" />

<input type="submit" value="Wert schreiben" />
</form>
</body>
</html>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 83

Software programming

3.2 OPC XML-DA web service

3.2

3.2.1

3.2.2

OPC XML-DA web service

Web services introduction

A SIMOTION IT web service supports application programs in text-based access to process
values. The application program performs strictly symbolic access independently of the
programming language, the operating system, and the time of programming. Details of the
international standard of web services can be researched on the Internet or in technical
literature.

The SIMOTION control offers the OPC XML-DA web service for data access in accordance
with the OPC XML-DA definition V1.01 of the OPC Foundation and the Trace Via SOAP web
service (TVS) for the use of the SIMOTION Runtime Trace.

e Addon\4_Accessories\SIMOTION_IT\7_Webservices\WSDL\OPC XMLDA 1.01.wsdl
e Addon\4_Accessories\SIMOTION_IT\7_Webservices\WSDL\TVS.wsdl

An example of a client using the OPC XML-DA service is supplied.

® Addon\4_Accessories\SIMOTION_IT\7_Webservices\Example

Web services can also be used with JavaScript in HTML pages. The standard diagnostics
pages of SIMOTION IT use these. See Variable access with JavaScript and web services
(Page 24)

Required knowledge for programming: OPC XML-DA, web services, XML, SOAP, Javascript/
AJAX.

Key words for advanced programming: Structuring of applications with model, view, controller
architecture, if, for example, dynamic variable values are to be displayed and updated in the
background.

Overview

The SIMOTION IT OPC XML DA server enables access via Ethernet to data and operating
modes of the SIMOTION device.

What is OPC XML DA?

84

OPC stands for Open Connectivity and denotes a standard interface for communication in
automation technology

With OPC XML DA, it is possible to communicate with a controller using Ethernet-based
standard telegrams.

Commands are transmitted via the SOAP (Simple Object Access Protocol) communication
protocol.

The interface is defined in a configuration file using a description language (WSDL) based on
XML vocabulary. It describes the format of the HTTP request and response telegrams with
which function calls are output (see OPC XML-DA R1.0 Specification: OPC Foundation
Download (http://www.opcfoundation.org/Downloads.aspx)).

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

http://www.opcfoundation.org/Downloads.aspx

Software programming
3.2 OPC XML-DA web service

This interface can only be used by client applications.

The figure below shows an example client of the OPC Foundation . The client enables browsing
via the system, interface, 10, and global device variables.

™ Browse Address Space

= (1 SIMOTION Al | Description [Wale [Data Typs | Resut
(0 dr/ 28 value (2) Ihem W shae NO Sitring S_0OK
_-I e ?i:idaﬂweﬂ] Itern Canonical Data Type Sting RuntimaType S_OK
- clg/ 8 qualty (3) Item Quaity good Quaily 5_OK
—.I ik %o:ce.ssﬂnjis[ﬁ] Item Access Fights neadable accessRights S_0K
TIEMS 2 j:ﬁeuTypel?l Iterm EL) Type erumerated euType 5_0K
4 gy " eulnio [8) ltem EU Info Swingl2] Stringl] $_O0K

=] Outpit_cam_1
+ (] internalT oT race]

(1 userDefaul

N EH & E

+] effectiveData
+ B simudstion

+ 8 conbol

+ B resel

+ o B

+ 8 enowRsaction
+ 8 state

+] counteCamD ata.

+ B activationModeChangadConifigD ats
+ B restadActivation

+ B enolroup

+ B2 Dutput

) vart

B systemilock

B servolontrolClock

2 ipollock

8 servoTaskCycle

(] taceContiol

(] taceState]

() TCOFetGenDveside]

] useData

B taskRuntimeMonitoring

] tagkRuntime.

1 effectiveT askRuntime v % >

tfiif.itfiiL

Figure 3-14 OPC Foundation Client

Purpose and benefits
The purpose and benefits of SIMOTION IT OPC XML-DA server are as follows:

® Symbolic access (without project information) to the data of the controller. Only knowledge
of the variable names is required.

® Non-dependence on the engineering and project versions. The client can still access the
data even if the control program has been modified.

® The server can be addressed by any client application which conforms to the OPC XML-
DA V1.0 standard, regardless of its operating system (e.g. Linux).

What previous knowledge is required?

For the user to understand the SIMOTION IT OPC XML-DA server described in this chapter,
prior knowledge of the terms associated with OPC XML-DA (see OPC XML-DA R1.0
Specification) is necessary.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 85

Software programming
3.2 OPC XML-DA web service

3.2.3 Comparison of OPC XML DA / SIMATIC NET OPC DA
Comparison
The "SIMATIC NET OPC Server for SIMOTION" product exists in addition to the SIMOTION
IT OPC XML DA server. This package also allows access to data and operating modes of the
SIMOTION device via SIMATIC NET OPC DA.
The following table compares the two packages and describes the basic procedure:
Table 3-14 Basic procedure for accessing data
SIMOTION IT OPC XML DA SIMATIC NET OPC DA

No configuration (OPC export) necessary with OPC export with SIMOTION SCOUT required,

SIMOTION SCOUT. which has to be repeated for every project change.

Symbols are resolved in the SIMOTION device, Symbols are resolved during OPC export and

communication by means of text format (XML). stored in the OPC server on the Windows system
in binary format; binary communication -> higher
data throughput.

At present only SIMOTION with OPC XML DA. Simultaneous access to SIMOTION and S7

Access to S7 devices not possible at present. devices.

Client can run on any operating system. Based on Windows COM/DCOM technology;
client and server can only run on Windows
operating systems.

Communication using standard protocols (TCP/IP, | S7 protocol used for communication, appropriate

XML, SOAP) does not require vendor-specific manufacturer-specific drivers required on the

(SIEMENS) tools or drivers on the client system. | client.

Communication is only possible via Ethernet (e.g. | Communication is possible via PROFIBUS/MPI

PROFINET). and Ethernet (e.g. PROFINET).

Direct addressing via firewalls is possible. Generally, DCOM communication is not released
for firewalls.

SIMOTION IT Programming and Web Services
86 Programming Manual, 04/2014

Software programming
3.2 OPC XML-DA web service

3.24 Schematic representation of creating the client application

Example arrangement
The figure below shows an arrangement example of the relevant software for the creation of

a client application on a PC. The PC and the SIMOTION device are networked via Ethernet.

- e.g. PC with .NET or Java N
4 runtime environment \
\

I

|

l OPC XML-DA Client Application ’
|

v -
\ T /
\) | /
A Proxy object | WSDL y
N\ I /
AN | /
AN 7/
DLg(D \\ //
o \\ //
L — 1
W Industrial Ethernet
~ - B B
// \\
\

O <
~ _od

il SIMOTION
D4x5-2

Figure 3-15 Design stage overview (example)

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming
3.2 OPC XML-DA web service

3.25 Schematic representation at runtime of the client application

Example arrangement
The figure below shows an example of accessing the OPC XML-DA server of a SIMOTION
device via Ethernet during runtime. The example shows other devices connected to the

SIMOTION device via PROFIBUS.

M Industrial Ethernet _ -
< AN

I |OPC XML DA server \

" | Kernel and
\ | User data /

SIMOTION
D4x5-2

B PROFIBUS IO (IRT) =

SINAMICS
S120

Figure 3-16 Overview at runtime (example)

3.26 Installation

3.2.6.1 Hardware and software requirements for creating the client application

Hardware requirements at the design stage

Note

You can freely select the programming environment. The following requirements are
examples of Microsoft Visual Studio .NET, but are not mandatory.

SIMOTION IT Programming and Web Services

88 Programming Manual, 04/2014

Software programming
3.2 OPC XML-DA web service

Table 3-15 Hardware requirements at the design stage

Feature Minimum requirement
Processor Intel Pentium Ill or compatible,
800 MHz
Main memory 128 MB RAM

Software requirements at the design stage

Note

You can freely select the programming environment. The following requirements are an
example for Microsoft Visual Studio .NET, but they are not binding.

® Microsoft Visual Studio .NET:
http://msdn.microsoft.com/vstudio/ (http://msdn.microsoft.com/en-us)
http://www.microsoft.com/net/ (http://www.microsoft.com/net/)

e Configuration file (WSDL), according to OPC XML- R1.0 Specification.

3.2.6.2 Configuring the SIMOTION device interface for using the client application

Configuring the interface

In order to establish a connection between a PC and a SIMOTION device when the system is
running, you must carry out the following steps for the configuration of the Ethernet interface:

Table 3-16 Configuring the interface

Step Procedure

1 You must activate the functionality in the SIMOTION project when configuring the
control hardware via the "Ethernet Extended / Webserver" properties in the "Simotion
IT - Web server settings" function.

2 The IP address of the SIMOTION control via which the OPC XML-DA server is accessed
must be known. The IP address can be configured using the interface settings in HW
Config.

3.26.3 OPC XML DA access protection

Settings for the OPC XML-DA access protection

WebCfg.xml provides a way of setting up access protection for OPC XML-DA, by means of a
REALM.

<SOAPAPP>
<STATIC>
<l--
place all statically linked WebServices here

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 89

http://msdn.microsoft.com/en-us
http://www.microsoft.com/net/

Software programming

3.2 OPC XML-DA web service

3.2.7

3.2.8

Example

90

-—=>
<WEBSERVICE NAME="OpcXml" URL="/SOAP/OPCXML"
REALM="OPC XML USER GROUP" />
<WEBSERVICE NAME="TVS" URL="/SOAP/TVS" />
</STATIC>
</SOAPAPP>

OPC XML-DA variable access

Access to the OPC XML-DA data uses the same access syntax as that described in the
Variable providers chapter of the SIMOTION IT Diagnostics and Configuration manual.

Table 3-17 Examples of accessing variables

Variables Access syntax
Global device variables glob/<var name>
1/0 variables io/_direct.<var name>

io/_image.<var name>
io/_quality.<var name>
Unit (MCC/ST/LAD-FBD) unit/<unit name>.<var name>

Access to the /O variables (access syntax)
"_direct" addresses the direct I/O access (current values) of the I/O variables

_image": addresses the process image of the 1/O variables
"_quality": addresses the Quality, i.e. the detailed status of the 1/O variables

Example of a client application

An example showing what a minimal client application foran OPC client can look like is included
on the AddOn DVD in the \VOL2\Addon\4_Accessories\SIMOTION_IT\7_Webservices
\Example directory. The example explains the most important programming steps for the
"Read" method with the Microsoft Visual Studio development environment.

The application example displays a Read button in a dialog box. When the button is activated,
the client connects to the SIMOTION IT OPC XML DA server and reads a variable. The result
is displayed in the output field of the dialog box.

The dialog box of the application example is shown in the following figure:

Figure 3-17 Demo client

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming

Programming steps

3.2 OPC XML-DA web service

The following programming steps are needed:

1.

Create a new project with Microsoft Visual Studio .NET and import the WSDL file as the
interface description ("Add Web Reference" menu).

2. Create a dialog box with a text field and a Read button.

Enter the name assigned for the reference, e.g. "OPCXMLServer", in the program (using
DemoClient.OPCXMLServer).

Declare the server URL in the program as follows:
http://<IP address>/soap/opcxml
Enter the IP address of your SIMOTION control in place of <IP address>.

Instantiate the server proxy object in accordance with the code example and provide the
call-up with the required parameters.

. The required data is returned.

3.29 SIMOTION IT OPC XML-DA server interface

3.2.9.1 Overview

Introduction

This section describes the methods you can run across the interface to the
OPC XML-DA V1.0 server. The server itself is integrated in the SIMOTION device.

For firmware version V4.2 and higher, a license is no longer required for using the OPC XML-
DA server.

This is just a brief overview. These methods are described in detail in the document "OPC
XML-DA Specification R1.0" of OPC Foundation.

You can find an up-to-date and detailed interface description on the home page of the OPC
Foundation: http://www.opcfoundation.org (http://www.opcfoundation.org)

3.29.2 Methods which can be called synchronously

The SIMOTION IT OPC XML DA server provides the following methods, which can be called
synchronously, under the "OpcXmiIDaService" type:

Description of methods

Browse

The "Browse" method allows you to navigate through the available variables.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 91

http://www.opcfoundation.org

Software programming
3.2 OPC XML-DA web service

GetProperties

The "GetProperties" method can query the settings for a specific variable (e.g. access rights,
time stamp, data type).

GetStatus

The "GetStatus" method supplies information about the server status, the program version and
the supported interface version.

Read

The "Read" method reads out variable lists.

Subscribe

The "Subscribe" method passes a list of variable names and receives a handle for the
subscription. This handle can be used in the SubscriptionPolledRefresh method to poll the
values of the previously defined variables again. See Basics of subscriptions (Page 97).

The buffering property, which corresponds to the "EnableBuffering" attribute, is not supported.
This has an effect on the "SubscribeRequestitem" and "SubscribeRequestltemList" methods.

SubscriptionPolledRefresh

The "SubscriptionPolledRefresh" method returns the values of the variables written
beforehand using the Subscribe method. The handle specifying the subscription is used as a
parameter.

The "Holdtime" parameter defines the earliest possible response time. This limits the frequency
of data transmission.

The "ReturnAllterms" parameter determines how the "WaitTime" parameter is used.

® True
"WaitTime" is ignored, all requested values are returned immediately.

e False
For the period set in the "WaitTime" parameter, the server checks whether one of the
requested values has changed since the last call.
If the specified time expires without a value having been changed, an empty response is
returned.
If values change during the specified time, the changed values are returned immediately
and the polling ended.

SubscriptionCancel

The "SubscriptionCancel" method cancels the subscription and returns the subscription
handle.

Which subscription is to be canceled, must be specified at the call.

If an asynchronous call form is used, the client is informed later of which subscription has been
canceled, via a client handle.

Note

Once the subscription has been canceled, the subscription handle ceases to be valid for the
client.

SIMOTION IT Programming and Web Services
92 Programming Manual, 04/2014

Software programming
3.2 OPC XML-DA web service

Write
The "Write" method writes variable lists.

3.29.3 Access to variables

Variable access using methods

Variables can be accessed via the methods which can be called synchronously and
asynchronously.

Note
Information on accessing the variables of the different providers can be found in the Variable
providers chapter of the SIMOTION IT Diagnostics and Configuration manual.

To make variables available on the SIMOTION IT OPC XML DA server, you have to declare
them as VAR_GLOBAL. See the Making unit variables available chapter of the SIMOTION
IT Diagnostics and Configuration manual.

SIMOTION IT Programming and Web Services

Programming Manual, 04/2014 93

Software programming
3.3 Trace Interface via SOAP (TVS) web service

3.3 Trace Interface via SOAP (TVS) web service

3.31 Trace overview

Introduction
The SOAP-based service provides a trace service option.

WebTrace uses the same runtime mechanisms as SIMOTION SCOUT Trace. The useful
options are described in the chapters Trace (device frace) and Trace (system trace) of the
SIMOTION IT Diagnostics and Configuration manual.

Trace-Service

The "Trace Interface via SOAP" web service enables variable values to be written to a buffer.
The values are packed in files and can be retrieved asynchronously via an HTTP request.

This interface can only be used by client applications. The client enables the time characteristic
of variables to be traced.

A WSDL file is available for creating the application.

SIMOTION IT Programming and Web Services
94 Programming Manual, 04/2014

Software programming
3.3 Trace Interface via SOAP (TVS) web service

3.3.2 Trace sequence

Introduction

When working with a trace, the trace can assume various states. The following graphic shows
the possible states and transitions. The methods named are described in chapter "Trace

interface".
PowerOn CancelTrace
STOPPED |+
InitializeWebTrace StartTrace StopTrace
——
0
o
Q0 ee®
oM o Trigger event
arrives
CancelTrace FINISHED Time expires/ RIGGERED
\—J buffer full

Figure 3-18 WebTrace

States

After a trace has been created with "InitializeWebTrace", this trace is in the STOPPED state.
With "StartTrace", a trace starts up and writes the desired data to the buffer. Accordingly, a
trace can be stopped again with "StopTrace". After the start, a trace switches to the RUNNING
state. If the time specified in the call has expired, a trace assumes the FINISHED state. A trace
can be deleted at any time with "CancelTrace" in order to create a new trace, for example.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 95

Software programming

3.3 Trace Interface via SOAP (TVS) web service

3.33 Procedure/terms

HTTP methods - data exchange

The trace data are stored as compiled data on the RAM disk using the ReadData method. This
data must be retrieved via ordinary HTTP requests.

Note

The data are not deleted by retrieval alone! To prevent the RAM disk from overflowing, an
HTTP DELETE call to this URL must follow an HTTP GET call. (Reason: The use case under
consideration is one in which a client may have to request the same trace data more than
once, e.g. to compare traces that have already been executed.) These temporary data are
completely deleted only after a CancelTrace operation, regardless of whether they have
already been retrieved or not.

TRIGGERED
The trace offers a triggering option. Depending on the trigger method, different constants or
variable symbols must be specified for this. The trace starts with:
e Arising edge (RE),
if the variable exceeds the value of a constant.
e Afalling edge (FE),
if the variable falls below the value of a constant.
e Within a tolerance band (WIB),
if the variable lies between two constants.
e Qutside of a tolerance band (OOB),
if the variable lies outside of a tolerance band.
e Bit mask has value (BHV),
if the variable has a specified value after masking with a constant.
If the trace is set up in TRIGGERED mode, a trigger condition as described below must be
specified. This trigger acts as a SingleShot. However, the MatchCountTriggerPoint parameter
can be used to set the trigger for repeated occurrences (e.g. five: start trace/data recording
only on the fifth time appearance of the trigger condition).
In this case, the trace takes place only after the trigger. The data are recorded for the duration
specified during setup.
IMMEDIATE / ENDLESS
The counterpart to the TRIGGERED trace is the IMMEDIATE trace, which begins the trace
immediately after the "StartTrace" call has occurred. In this case as well, the data are recorded
for the duration specified during setup.
The ENDLESS Trace uses a ring buffer trace. Trigger conditions are not evaluated. ENDLESS
Trace starts as soon as the StartTrace event arrives. However, it is terminated only when
StopTrace is called explicitly. The size of the ring buffer must also be specified using the
SIMOTION IT Programming and Web Services
96 Programming Manual, 04/2014

Software programming

3.34

3.3.5

Introduction

3.3 Trace Interface via SOAP (TVS) web service

duration for the initialization call. Thus, an appropriate value must be found that uses fewer
resources, but is sufficient to retrieve data in a timely manner via HTTP.

The size of the ring buffer (B) is determined from the number of variables (N), their size (S),
the transferred time duration (t) and the cycle clock (T) in which they are traced.

n-1
B=tT * 2§
i=0

Within the transferred time duration, the buffer must be discharged at least once by calling the
"readData" function in order to prevent the oldest trace data from being overwritten each time.

If the parameters require a larger memory area, the recording duration is reduced such that
no more than the available memory space is occupied.

512 KB is available for SIMOTION C, SIMOTION D410-2, and 1024 KB is available as ring
buffer for all other SIMOTION modules.

Error handling

All implemented methods of the TVS (trace via SOAP) supply either the requested data or
status information, or an SOAP_FAULT. This behavior enables the use of the SoapFaultError
in the .NET framework. The Try-Catch mechanism enables convenient error handling.

Basics of subscriptions

"GetStatus" must be called in order to query the status of a trace. The fastest possible detection
of a status change requires extremely frequent polling, which places an unnecessary load on
the CPU in the control and causes heavy traffic on the network.

To optimize this operation, OPC XML DA provides "subscriptions". With subscriptions, a query
does not receive a response until the required variable changes or a timeout occurs. Thus, the
connection is kept open without causing traffic. As soon as relevant data are available for the
client, these data are sent to the client.

The trace supports this mechanism via the SOAP web service also. However, in this case,
only the status of the trace object is checked, as this is the only valuable information in this
environment.

As soon as the status changes (e.g. RUNNING -> FINISHED), the clients that issued the query
receive a response accordingly. In essence, any number of clients is possible (as long as there
are sufficient resources).

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 97

Software programming
3.3 Trace Interface via SOAP (TVS) web service

Operational sequence

The operational sequence of a subscription is as follows:

Subscribe

Create subscription and
query ServerHandle

»
>

Y

SubcriptionRefresh

Start request

Receive response

\

SubcriptionCancel

Cancel subscription and
Serverhandle

Figure 3-19 Subscription

First, a subscription must be created. It is answered with a unique ServerHandle, which is
required for further communication.

SubscriptionRefresh can be called as often as necessary to start a new query. This request
receives two time specifications in milliseconds as parameters:

e HoldTime:
This time indicates the minimum hold time for the response, irrespective of whether the
status has changed.

o WaitTime:
The WaitTime begins after the HoldTime has expired. If the trace status has changed, the
response to the current status is sent immediately. If there is no change, the response is
sent once the WaitTime has expired.

The exact method calls are explained in the next section.

SIMOTION IT Programming and Web Services
98 Programming Manual, 04/2014

Software programming
3.3 Trace Interface via SOAP (TVS) web service

3.3.6 Interface

3.3.6.1 Global definitions

TraceStateEnum

Enumerator that indicates the status of the trace object.

Declaration:

public enum TraceStateEnum
{

RUNNING,

STOPPED,

ERROR,

EMPTY,

FINISHED,

TRIGGERED

TraceDataCycleEnum

Enumerator that specifies the cycle clock in which the data are to be traced. It must be noted
here that large traces may cause a level overflow.

Declaration:

public enum TraceDataCycleEnum
{

I1PO1,

IPO2,

SERVO

Structure VDSC
Structure that contains information about the traced variables. These are:
® Variable name varName
® Variable type varType in S7 notation (e.g. DINT or BYTE)

® varOffset specifies the offset of the variable within the data stream (relative to the start
of the 1/0 container)

® Variable length varLen (optional)

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 99

Software programming
3.3 Trace Interface via SOAP (TVS) web service

Declaration:

public class VDSC
{
public string VarName;
public string VarType;
public System.UInt32 VarOffset;
public System.UInt32 Varlen;

TriggerCondition

Structure indicating the trigger of a trace. The TriggerCondition contains the variable to be
compared in symbolic names according to VarProvider notation.

® vVariable refers to the variable for comparison.

® Constantl is a constant which is set according to the trigger type.

® Constant2 is a constant which is set according to the trigger type.

® Operation indicates the comparison type as enumerator TriggerOperationType.

® MatchCountTriggerPoint indicates how many times the trigger condition must apply
before the trigger is activated and data tracing starts.

® GlobalTriggerID is optional and contains the unique ID, which is generated by the
browser when a distributed trace is set up.

Declaration:

public class TriggerCondition

{
public string Variable;
public string Constantl;
public string Constant?2;
public TriggerOperationType Operation;
public System.UInt32 MatchCountTriggerPoint;
public System.UInt32 GlobalTriggerID;

For this purpose, the comparison type:
Call:

public enum TriggerOperationType {
RE,

FE,

WIB,

SIMOTION IT Programming and Web Services
100 Programming Manual, 04/2014

Software programming

00B,
BHV

3.3 Trace Interface via SOAP (TVS) web service

The following table gives an overview of various possible combinations of trigger types and

constants.
Trigger type Symbol | Description Constant1 Constant2
Rising Edge RE Triggered if variable exceeds the | Limit -Not used-
value of Constant1 in positive exceeded
direction
Falling Edge FE Triggered if variable exceeds the | Limit -Not used-
value of Constant1 in negative exceeded
direction
Within a wIB Triggered if variable is located Lower limit Upper limit
tolerance Band within the interval spanned by
Constant1 and Constant2
Out of 0o0B Triggered if variable is located Lower limit Upper limit
tolerance Band outside the interval spanned by
Constant1 and Constant2
Bit pattern BHV The bit pattern triggers if the Bit mask Result of
relevant bit is 1 both in the bit comparison
mask and in the comparison
result.
((v&c1)==c2)

Overview of trigger types and constants

Enumerator that determines the type of trace.

Call:

public enum TraceStartTypeEnum

{
IMMEDIATE,
ENDLESS,
TRIGGERED

3.3.6.2 Methods

StartTrace

The startTrace method starts an initialized trace. The SoapFault "No Trace available" is
returned if a trace has not yet been initialized. StartTrace is ignored (with a positive result)
if the trace is already in progress.

SIMOTION IT Programming and Web Services

Programming Manual, 04/2014

101

Software programming

3.3 Trace Interface via SOAP (TVS) web service

StopTrace

CancelTrace

102

The GlobalTriggerID must be transferred for a distributed trace. The trigger ID is a unique
ID, which unambiguously identifies the station currently responsible for triggering; the same
ID is used for all stations.

When a trace is restarted, the trigger ID must be reassigned so that the trigger events can be
distinguished from one another.

Call:

public TVS Client.TVS.StartTrace Response StartTrace
(
uint GlobalTriggerID

)

public class StartTrace Response
{
public TraceStateEnum TraceState;

}

The StopTrace method stops a trace in progress. The "No Trace available" SoapFault is
returned when a trace has not yet been initialized. This is ignored (with a positive result) if the
trace has already stopped.

Call:

public TVS Clientl.TVS.StopTrace Response StopTrace ()

public class StopTrace Response
{

public TraceStateEnum TraceState;

}

The CancelTrace method deletes an active trace. The traces switches to EMPTY status,
and all trace data are deleted. (Note: Data blocks of the WebTrace that have been requested
but have not yet been retrieved are also deleted (see WebTrace::ReadData())

The "No Trace available" SoapFault is returned when a trace has not yet been initialized.

Call:

public TVS_Client.TVSIO.CancelTrace_Response CancelTrace ()

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming
3.3 Trace Interface via SOAP (TVS) web service

public class CancelTrace Response
{

public TraceStateEnum TraceState;

}

GetStatus

The GetStatus method returns the current status of the trace. When a trace object is deleted

or has become invalid, then TracelsValid will contain "false". In this case, the trace must be
deleted via CancelTrace.

Call:

public TVS Client.TVSIO.GetStatus Response GetStatus ()

public class GetStatus Response
{
public bool TraceIsValid;
public TraceStateEnum TraceState;

ReadData

The readData method saves trace data on the RAM disk and supplies the URLSs of the files
in the return value. These data can be retrieved from the client with an HTTP-GET request.

The "No Tracedata available" SoapFault is returned if no trace data are available.

Call:

public ReadData Response ReadData ()

public class ReadData Response

{
public TraceStateEnum TraceState;
public string[] URL;

InitializeWebTrace

A trace is created with InitializeWebTrace. VariablesToTrace is the list of symbolic
names in accordance with VarProvider notation. TraceDataCycle determines the cycle clock
in which the data is to be recorded. TraceStartType determines the type of trace.
Duration specifies the duration of the recording in milliseconds. With an endless trace, this
parameter specifies the size of the ring buffer in milliseconds.

SIMOTION IT Programming and Web Services

Programming Manual, 04/2014 103

Software programming
3.3 Trace Interface via SOAP (TVS) web service

MatchCountTriggerPoint in TriggerInformation determines how often the trigger
must occur before it actually performs a trigger operation and, as a result, starts the recording.

Pretrigger specifies the number of values which are to be recorded prior to triggering
("history™).

Call:

public InitializeWebTrace Response InitializeWebTrace
(

string[] VariablesToTrace,

TraceDataCycleEnum TraceDataCycle,

TraceStartTypeEnum TraceStartType,

uint Pretrigger,

uint Duration,

TriggerCondition TriggerInformation,

string[] DevicesInvolved

public class InitializeWebTrace Response
{
public VDSC[] CurrentlyTracedVariables;
public TraceStateEnum TraceState;
public string UID;
public string[]DevicesInvolved;

InitializeWebTraceEx

InitializeWebTraceEx is identical to InitializeWebTrace apart from the return value, where the
variables are sorted according to their particular offset.

GetTraceParameters

GetTraceParameters can be used to read out an existing trace configuration.
Only one WebTrace is returned (if one actually exists).
Call:

public GetTraceParameters Response GetTraceParameters
(
string UID

public class GetTraceParameters Response

{

SIMOTION IT Programming and Web Services

104 Programming Manual, 04/2014

Software programming

EnableTrigger

ReadData

3.3 Trace Interface via SOAP (TVS) web service

public TraceTypeEnum TraceType;

public VDSC[] CurrentlyTracedVariables;
public TraceStateEnum TraceState;

public TraceDataCycleEnum TraceDataCycle;
public string UID;

public TraceStartTypeEnum TraceStartType;
public unsignedInt Pretrigger;

public unsignedInt Duration;

public TriggerCondition TriggerInformation;
public unsignedInt IOContainerOffset;
public unsignedInt IOContainerLength;
public hexBinary ClientHandle;

public string[]DevicesInvolved;

Only for the distributed trace.

When a distributed trace has been set up and started, this activates the triggers. The
TriggerID must be unique so that the stations can differentiate between them and do not
lose their way on the network. The sequence is important: All traces should be running before
the trigger is activated, to avoid loss of trigger events.

Return value: TriggerState activated or not activated.
Call:

public EnableTrigger Response EnableTrigger

(
uint TriggerID

public class EnableTrigger Response

{

public TraceStateEnum TraceState;

With ReadData, the TVS service is requested to read out the trace buffer and pack the data
in temporary files. These can then be accessed via HTTP under the relative paths specified
in URL. If the buffer is empty, a response is made to the request with the "No Tracedata
available" SoapFault. Currently, a maximum of 8 compiled files with a maximum of 8,192
recording points are provided for each request.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 105

Software programming

3.3 Trace Interface via SOAP (TVS) web service

ReadDataArchive

If a trace is in the STOPPED state, this function can be used to request the recorded data.

The function supplies a URL, from which a WTRC data archive can be downloaded and then
displayed in the WebTraceViewer.

Note

The WTRC file is deleted as soon as it has been downloaded.

Call:

public ReadDataArchive Response ReadDataArchive ()

public class ReadDataArchive Response
{
public TraceStateEnum TraceState;
public string URL;
}

ReadDataArchives

106

Only for the distributed trace.

ReadDataArchives automatically retrieves the trace data for all stations involved in a
distributed trace and combines them in a WTRC file. The URLField array is used to transfer
a list of the URLSs for all the stations involved in the trace. The trace must be in the STOPPED
state in order to use this method.

The return value is identical to that for ReadDataArchive.
Call:

public ReadDataArchives Response ReadDataArchives

(
public string[] URLField;

)

public class ReadDataArchives Response
{
public TraceStateEnum TraceState;
public string URL
}

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Software programming
3.3 Trace Interface via SOAP (TVS) web service

3.3.6.3 Subscriptions

Introduction

The subscription methods are listed below.

Subscribe

A subscription is created using the Subscribe method. The response is a ServerHandle
that can be used to uniquely identify a subscription operation. In addition, the current
TraceStatus is supplied.

Call:

public TVS Client.TVS.Subscribe Response Subscribe ()

public class Subscribe Response {
public System.UInt32 ServerHandle;
public TraceStateEnum TraceState;

}

SubscriptionRefresh

SubscriptionRefresh is used to query the status of the trace again; the trace was previously
queried with the Subscribe method. The server response is received after HoldTime
(milliseconds) + WaitTime (milliseconds), if the status has not changed during this time, or the
response is received (at the earliest) after the HoldTime has expired and before the WaitTime
has expired, if the status of the trace changes during the WaitTime . As such, the response is
never expected before the HoldTime has elapsed.

In the response, StateChanged indicates whether the status has changed between request
and response (true) or whether the TraceState status matches the status during the request
(false = WaitTime expired).

Call:

public TVS Client.TVS.SubscriptionRefresh Response SubscriptionRefresh (
System.UInt32 ServerHandle ,
System.UInt32 WaitTime ,
System.UInt32 HoldTime

)

public class SubscriptionRefresh Response {
public bool StateChanged;
public TraceStateEnum TraceState;

}

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 107

Software programming
3.3 Trace Interface via SOAP (TVS) web service

SubscriptionCancel

With subscriptionCancel, a subscription is canceled and the resource is enabled. The
response indicates whether the Cancel operation was successful. Any current
SubscriptionRefreshs are cancelled and responses sent immediately.

Call:

public TVS Client.TVS.SubscriptionCancel Response SubscriptionCancel (
System.UInt32 ServerHandle)

public class SubscriptionCancel Response {
public bool SubscriptionCanceled;

}

SIMOTION IT Programming and Web Services
108 Programming Manual, 04/2014

Appendix

4.1 MWSL functions

411 AddHTTPHeader

Syntax AddHTTPHeader (<Http-Header>)
This command can be used to add HTTP headers from MWSL . These are then not transmitted as
part of the document but rather in the protocol portion of HTTP.
The AddHTTPHeader command must therefore come before the HTML tag of a page.
However, it is important to make sure that no MWSL functions that result in output into the page
are used before the HTML tag.
Parameters <Http-Header> Character string that ends with \r\n.
If multiple HTTP headers are to be entered (only possible with Set-
cookie), the individual headers must be separated by \r\n.
MWSL example <MWSL>

var strCookie;
strCookie = "Set-cookie: siemens automation language=de";
AddHTTPHeader (strCookie);
</MWSL>
<html>
<head>
<title>
MWSL Function AddHTTPHeader
</title>
</head>
<body style="background-color:#DCDCDC">
<h2>Testpage</h2>
</body>
</html>

41.2 createGUID

Syntax

String createGUID()
Generates a unique alphanumeric ID in the system.

Parameters

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 109

Appendix
4.1 MWSL functions

Example <MWSL>
write (createGUID()) ;
</MWSL>
Output 5022420B-02A7-0000-B362-3B7F4E87148D
Valid as of V4.4

413 DecodeString

Syntax string DecodeString (<string>)
Converts a string encoded with EncodeString back to its original.
Parameters <string> String in which URL-coded special characters are converted back to
normal characters.
Example <MWSL>
var tmpString = "StraBe Fliisse Geladnde Vogel";
write ("Original: " + tmpString + "
");

var tmpEncodedString = EncodeString (tmpString);
write ("Encoded: " + tmpEncodedString + "
");

var tmpDecodedString = DecodeString (tmpEncodedString) ;

write ("Decoded: " + tmpDecodedString);
</MWSL>

Output Original: Strabe Fliusse Geldnde Vogel

Encoded:

Straßes#x20;Flae#xfc;sses#x20;Gelsa#txed; nde Ve#xf6;gel

Decoded: StraBe Flisse Gelande Vogel

Valid as of V4.4
414 die
Syntax die (<Param0>,<Paraml>, ...)

Break program execution.

Parameters <Param0>,<Param1>,... Concatenation and output of the parameters.

Example <MWSL>

function dieTest ()

{
write ("Is there a life after die?");
die("--- ",123," --=-");

}i

dieTest () ;

write ("There is a life after die");

</MWSL>
Output Is there a life after die?--- 123 ---
Valid as of V4.4

SIMOTION IT Programming and Web Services
110 Programming Manual, 04/2014

Appendix

41.5

4.1 MWSL functions

EncodeString

Syntax

string EncodeString(<string>)
Replaces special characters by their URL-coded hex value (%hh).

Parameters

<string> String in which the replacement will be performed.

Example

<MWSL>
var tmpString = "StraBe Fliisse Gelande Vogel";
write ("Original: " + tmpString + "
");
var tmpEncodedString = EncodeString (tmpString);
write ("Encoded: " + tmpEncodedString + "
");
var tmpDecodedString = DecodeString (tmpEncodedString) ;
write ("Decoded: " + tmpDecodedString);
</MWSL>

Output

Original: StraBe Fliisse Geldnde Vogel

Encoded:
Straßes#x20;Fla#xfc;sses#x20;Gelatxed; nde Ve#xf6;gel

Decoded: StraBe Flusse Gelande Vogel

Valid as of

V4.4

41.6

Syntax

long ExistFile(<file name>)
Checks whether a file with the name <file name> exists.

The function returns the file length as the returned value.
Special aspect due to the MWSL Compiler: Because all files that are associated with the MWSL

Compiler (*.mwsl, *.msl, *.xsl, *.js, *.xmlf, *.css) are only present on the memory card in a compiled
form, a ExistFile call must always be made to the compiled file (*.cms) in this case.

Parameters

<file name> Name of the sought file.

The file path refers to the root directory of the user USER/SIMOTION/
HMI.

Example

<MWSL>
var tmpLength = ExistFile("/files/test.mwsl.cms");

write("File length:"+ tmpLength);
</MWSL>

Output

File length: 38

Example

<MWSL>
var tmpLength = ExistFile("/files/mydata.txt");
write ("File length:"+ tmpLength); </MWSL>

Output

File length: 22

Valid as of

V4.4

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 111

Appendix
4.1 MWSL functions

417 ExistVariable

Syntax bool ExistVariable (<Variable Name>, <Variable Source>)

This function queries the presence of a variable. It returns true or false.

Parameters <variable name> Variable name
<variable source> See GetVar (Page 112)
Example ExistVariable ("DeviceInfo.BZU", "PROCESS").Ifthe process variable "Devicelnfo.BZU

" existis, true is returned, otherwise false.

See also

Conditional operations (Page 61)

41.8 GetLanguage

Syntax String GetLanguage ()
Returns the currently set language.

The return value depends on whether one of the following values is found in the displayed sequence:
1. Content of the cookie siemens automation language if the cookie exists.

2. Value of the HTTP header Accept-Language if the value exists.

3. Return of the SERVEROPTIONS value language set in WebCfg.xml.

Parameters
Example <MWSL>
write ("The currently set language is'" + GetLanguage() + "'");
</MWSL>
Output The currently set language is 'de’
Valid as of V4.4
419 GetVar
Syntax GetVar (<Variable Name>, <Variable Source>, <Format String>);

This function returns the value of a variable from a variable source.

If a parameter does not exist, "null" will be returned.

Parameters <variable name> Variable name

SIMOTION IT Programming and Web Services
112 Programming Manual, 04/2014

Appendix
4.1 MWSL functions

<variable source> Name of variable source
Valid values:

® URL

® HTTP

® PROCESS
Read variables from the providers.

® COOKIE
Read variables from the HTTP header of the cookie

® XML
® SENDPAGE

® DEFAULT

The default setting is PROCESS.
If not source is stated, DEFAULT is selected, that is, the variable
provider.
The name of the variable providers, such as SIMOTION, MINIWEB,
etc., are not designations for variable sources.

The suitable provider is searched for in the web server based on the
variable name.

<Format String> The handling of the format string depends on the variable source.

Thus, this property is not possible for the variable sources COOKIE
and URL.

Syntax of an HTTP variable: Variables and HTTP header information
(Page 57)
Syntax of a process variable: Global variables (Page 52)

Example GetVar ("var/userData.userl"); Returns the content of the variable var/
userData.userl.

Because PROCESS is the default variable source, the result corresponds to that of the following call.

GetVar ("var/userData.userl", "PROCESS"); Returns the content of the variable var/
userData.userl, the variable source PROCESS.

GetVar ("Parameter", "URL"); Returnsthe contentofthe Parameter variable fromthe URL.

GetVar ("Accept-Language", "HTTP", "?2-")Returns the content of the HTTP variable
Accept-Language.

The format string "2-" indicates that all characters up to the first occurrence of the "-" character
will be returned.

GetVar ("var/userData.userl", "PROCESS", "[2,3]"); Returns three characters,
starting from position 2 of the process variable var/userData.userl. The result is characters
2-5 of the process variable.

GetVar ("Accept-Language", "HTTP", "[3,0]") Returnsthe content of the HTTP
variable Accept-Language starting from the third character.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 113

Appendix

4.1 MWSL functions

4110 InsertFile

Syntax InsertFile (<File name>)
This command allows an existing text file to be imported individually.
The text file is interpreted before insertion with MWSL and embedded into the existing source text
at the insertion point in the target file.
If the file has an ending (*.mwsl, *.msl, *.xsl, *.js, *.xmlf, *.css) associated with the MWSL compiler,
the MWSL scripts it contains will be run.
URL parameters can be passed with usual syntax (<file name>?<parameter>=<value>).
Parameters <file name> | Name of text file, including path.
Example <HTML>
<HEAD>
</HEAD>
<BODY>
[...]
<table>
[...]
<tr>
<td>
An HTML file is now displayed on the right-hand page.
</td>
<td>

</td>
<td>
<MWSL>
if (ExistFile ("/FILES/TMPL/Output.mwsl.cms") > 0)
{
InsertFile ("/FILES/TMPL/Output.mwsl?myparam=123") ;
}
</MWSL>
</td>
</tr>
[...]
</table>
[...]
</BODY>
</HTML>
In the right-hand column of the table, the content of the file Output .mws1 isinserted and displayed
in HTML format.
SIMOTION IT Programming and Web Services
114 Programming Manual, 04/2014

Appendix

4.1 MWSL functions

4.1.11 IsAuthAlgo
Syntax bool IsAuthAlgo (<parAuthMethod>)
Returns true if the user logged on at the time of calling was successfully identified by the
authentication method specified in parAuthMethod.
Parameters <parAuthMethod> Possible specifications: FormulaAuthentication,
DigestAuthentication, BasicAuthentication,
CertificateAuthentication
Example <MWSL>
write (IsAuthAlgo ("FormulaAuthentication"));
</MWSL>
Output 1
Valid as of V4.4
4.1.12 isFinite
Syntax bool isFinite (<value>)
Returns false if the passed value is NaN or infinite.
Parameters <value> Value for the check.
Example <MWSL>
write ("Test of the number 123456 - isFinite: ");
write (isFinite (123456) + "
");
write ("Test of NaN - isFinite: ");
write (isFinite (parselnt ("ABC", 2)));
</MWSL>
Output Test of the number 123456 - isFinite: 1
Test of NaN - isFinite: O
Valid as of V4.4
4.1.13 isNaN
Syntax bool isNaN (<value>)
Checks whether the passed value is an invalid double.
Parameters <value> Value for the check.
Example <MWSL>
write ("Test of 123456 - isNaN: ");

(

write (isNaN (123456) + "
");
("Test of NaN - isNaN: ");
(

2)))

write
write (isNaN (parselInt ("ABC",
</MWSL>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

115

Appendix
4.1 MWSL functions

Output Test of 123456 - isNaN: O
Test of NaN - isNaN: 1
Valid as of V4.4
4.1.14 IsSSL
Syntax bool IsSSL()
Returns true if the client is connected to the server via an SSL connection.
Parameters
Example <MWSL>
write("If the client is connected to the server via an SSL
connection:");
write (IsSSL());
</MWSL>
Output If the client is connected to the server via an SSL connection: 1
Valid as of V4.4

41.15 parseFloat

Syntax double parseFloat (<string>)

Conversion of a string to a double value.
Parameters <string> String to be converted
Example
Output
Valid as of V4.4

4.1.16 parseint

Syntax int parselnt (<value>, [<base>])
Conversion of a string to an integer value.

Parameters <value> String to be converted If a value starts with 0x, it will be interpreted as
hexadecimal. Values starting 0 will be interpreted as octal. All other
values are shown in decimal format.

Maximum value: 0x7FFFFFFE. If values exceed the upper limit, the
maximum value 2147483647 is returned. If the value shall be shown
as a negative number, put "-" in front.

<base> Basis to which the string shall be converted. Values: "2" = binary, "8"
= octal, "16" = hexadecimal. No value = decimal interpretation.

SIMOTION IT Programming and Web Services
116 Programming Manual, 04/2014

Appendix

4.1 MWSL functions

Example <MWSL>

var tmpVar0 "Ox1";

var tmpVarl = "0x2";

var tmpSum = tmpVar(0 + tmpVarl;
write (tmpSum + "
");

var tmpVarInt0 = parselnt (tmpVarQ) ;
var tmpVarIntl = parselnt (tmpVarl);
tmpSum = tmpVarIntO + tmpVarIntl;
write (tmpSum + "
");

tmpVar0 = "101";

tmpVarl = "100";

tmpSum = tmpVar0 + tmpVarl;

write (tmpSum + "
");

tmpVarInt0 = parselnt (tmpVar0,"2");
tmpVarIntl = parselnt (tmpVarl,"2");
tmpSum = tmpVarIntO + tmpVarIntl;
write (tmpSum + "
");

tmpVar0 = "A";

tmpvVarl = "B";

tmpSum = tmpVarO + tmpVarl;

write (tmpSum + "
");

tmpVarInt0 = parselnt (tmpVar0O,"16");
tmpVarIntl = parselnt (tmpVarl,"16");

tmpSum = tmpVarInt0 + tmpVarIntl;
write (tmpSum + "
");

</MWSL>

Output 0x10x2
3

201

9

AB

21

Valid as of V4.4

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

117

Appendix

4.1 MWSL functions

4.1.17 ProcessXMLData
Syntax ProcessXMLData (<DATA>, <TEMPLATE>)
With this command, dynamic HTML files can be generated based on a data and template file.
The parameter <DATA> contains the data that are interpreted with the template in parameter
<TEMPLATE>.
ProcessXMLData combines the two files into one HTML file. The data nodes of the data file are
evaluated by the template file to be displayed.
This produces a separation of the data from the content. With a subsequent change to the template
file, the appearance of the pages can be altered without changing the data.
This makes it easier to added to data. Using different templates, it is possible to generate pages
with the same data but completely different appearances.
Additional information about the template mechanism: Mode of operation of the template
mechanism (Page 66)
Parameters <DATA> Data for the dynamic HTML file
A file or a variable containing the data can be passed as a parameter.
File:
"<EXTERNAL SRC=\"/datafile.xml \"/>",in which
datafile.xml is the file containing the data.
Variable:
<variable name>
Specifies the variable name.
<TEMPLATE> Template (how the data are displayed)
A file or a variable containing the templates can be passed as a
parameter.
File:
"<TEMPLATES><EXTERNAL SRC=\"/Template.xml\"/> </
TEMPLATES>"", in which "Template.xml" is the file containing the
templates.
Variable:
<variable name>
Specifies the variable name.
SIMOTION IT Programming and Web Services
118 Programming Manual, 04/2014

Appendix

4.1 MWSL functions

Example ProcessXMLData ("<EXTERNAL SRC=\"/MWSL/variables.xml \"/>",
"<TEMPLATES><EXTERNAL
SRC=\"/MWSL/variablesTemplate.xml\"/></TEMPLATES>") ;
MWSL example <MWSL>
var Head = "<Provider Name =\"MyVarProvider\">";
var Data = "<Variable Name=\"ZUFUEHRUNG\" Type=\"String\"
InitialvValue=\"good\" Behavior=\"Manual\"
Description=\"Part infeed.\"/>";
var Foot = "</Provider>";

var XMLData = Head + Data + Foot;

var TemplateHead "<TEMPLATES>";

var TemplateFoot = "</TEMPLATES>";
var TemplateFile = "<EXTERNAL SRC=\"" + GetVar ("Template", "URL")
+ ll\ll/>",.

ProcessXMLData (XMLData, TemplateHead + TemplateFile +
TemplateFoot) ;
</MWSL>

The xMLData variable contain the data nodes with the associated attributes.

The example shows how variables can be defined for a template. The variable TemplateFile for
the actual template consists of a reference to a file in this case.

Note that the quotation marks in the template are protected from the XML parser by a preceding
\.

4118 ReadFile

Syntax string ReadFile (<file name>)
This function is similar to the function InsertFile, except that the content of the file is not written,
but only returned as a return value.
Parameters <file name> Name of text file, including path.
Example <MWSL>
var tmpFile = ReadFile("/files/include.mwsl");
write (tmpFile);
</MWSL>
Output The content of file include.mws1 is written to variable tmpFile and then written into the output.
Valid as of V4.4

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 119

Appendix

4.1 MWSL functions

4.1.19 ReplaceString
Syntax ReplaceString (<variable name>,<search pattern>,<replacement string>)
Replacing strings.
Parameters <variable name> Variable in which the characters shall be replaced.
<search pattern> Search pattern for replacing the characters.
<replacement string> string that is inserted.
Example <MWSL>
var tmpString "Ein String";
var tmpOutString;
tmpOutString = ReplaceString (tmpString, "n","N");
write("Result: " + tmpOutString);
</MWSL>
Output Result: EiN StriNg
Valid as of V4.4
4.1.20 SetVar
Syntax SetVar (<Variable Name>, <Value>)
This function is used to place process variables.
Parameters <variable name> Variable name
<value> The new variable value.
Example SetVar ("var/userData.userl", "NewUserData");
Sets the process variable var/userData.userl to the value NewUserData.
4.1.21 ShareRealm
Syntax ShareRealm (<Group>)
Indicates whether the current user is a member of the group that is passed as a parameter.
The return value can be true or false.
Parameters <Group> The following groups are currently allowed as parameters:
e NO REALM No group association
® ANY REALM Any group association
® [group name]
Member of group [group name] Groups depend on configuration.
SIMOTION IT Programming and Web Services
120 Programming Manual, 04/2014

Appendix
4.1 MWSL functions

Example write (ShareRealm ("ANY REALM"));

If the current user is in any defined group, 1 is output.
Otherwise, 0 is output.

MWSL example <MWSL>
if (ShareRealm("ANY REALM"))
{
write ("<tr valign=\"baseline\">\r\n");
write ("<td><H2>Hello " + GetVar("Username", "HTTP") +
", you're successfully logged in.</H2></td>\r\n");
write ("</tr>\r\n");
}
</MWSL>

If the user is a member of any group, the instructions in the curly brackets are carried out.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 121

Appendix

4.1 MWSL functions

4.1.22 write
Syntax write (<Text>)
The write function writes text to the output of an HTML page.
Parameters <Text> Text, return values of functions, or variable contents can be passed.
Example <MWSL>

write ("Hello World"):;
// Output: Hello World

write ("Hello" + " " 4+ "World");
// Output: Hello World

write (GetVar ("Parameter", "URL"));

// Output of the content of variable Parameter in the URL.

write (5+6);

// Output: 11

var zahll = 5;

var zahl2 = 7;

var string = "Hello";

write(string + ": " + zahll + zahl2);
// Output: Hello: 57

write(zahll + zahl2);
// Output: 12

write ("Content of Parameter: " + GetVar ("Parameter", "URL"));
// RAusgabe: Content of Parameter: Hello
// 1if Parameter contains the string "Hello".

</MWSL>

4.1.23 WriteToTab

Syntax WriteToTab (<parTabPos>,<parFillChar>)
Write from <parFill> to position <parTabPos>.
Parameters <parTabPos> Position up to which writing is to be performed (modulo).
<parFillChar> The 1st character that is written.
SIMOTION IT Programming and Web Services
122 Programming Manual, 04/2014

Appendix
4.1 MWSL functions

Example <MWSL>

WriteToTab (10,"1");
write ("xxx");
WriteToTab (10,"2");

</MWSL>
Output 111111111xxx222222
Valid as of V4.4

4.1.24 WriteVar

Syntax WriteVar (<Variable Name>, <Variable Source>, <Format String>);

This command writes the content of a variable to the output.

The functionality of the function Writevar is similar to that of the function Getvar.
WriteVar is equivalent to the call: Writevar(..) === write(GetVar (..))

The sole difference is that Writevar outputs the content of the specified variable, while
GetVar () returns the content as a return value.

Parameters <variable name> Variable name

<variable source> Name of variable source
Valid values:

® URL

® HTTP

® PROCESS
Read variables from the providers.

® COOKIE
Read variables from the HTTP header of the cookie

® XML
® SENDPAGE

® DEFAULT

The default setting is PROCESS.
If not source is stated, DEFAULT is selected, that is, the variable
provider.
The name of the variable providers, such as SIMOTION, MINIWEB,
etc., are not designations for variable sources.

The suitable provider is searched for in the web server based on the
variable name.

<Format String> The handling of the format string depends on the variable source.

Thus, this property is not possible for the variable sources COOKIE
and URL.

The call syntax is equivalent to that of the GetVar() (Page 112) function.

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 123

Appendix

4.1 MWSL functions

Example <MWSL>
write (GetVar ("Parameter", "URL"));
// The content of the variable Parameter is output here.
//GetVar returns the value of the variable,
// which is then written to the output with write.
// (See also GetVar () and write().)
// The same output can also be achieved with the following
// command.
WriteVar ("Parameter", "URL");
//WriteVar writes directly to the output and supplies
// no return value
WriteVar ("var/userData.userl");
// Outputs the content of var/userData.userl, which is a
// process variable.
WriteVar ("Accept-Language", "HTTP", "?2-")
// Outputs the content of the HTTP variable "Accept-Language"
// up to the "-" character.
WriteVar ("var/userData.userl", "PROCESS", "[2,3]1");
// Outputs characters 2 - 5 of the process variable var/
userData.userl.
WriteVar ("Accept-Language", "HTTP", "[3,0]")
// Outputs the content of the HTTP variable "Accept-Language"
// starting from the third character.
</MWSL>
Example <MWSL>
// Identical calls
WriteVar ("var/modeOfOperation") ;
WriteVar ("var/modeOfOperation", "PROCESS") ;
WriteVar ("var/modeOfOperation", "DEFAULT");
</MWSL>
See also
Global variables (Page 52)
SIMOTION IT Programming and Web Services
124 Programming Manual, 04/2014

Appendix

4125 WriteXMLData

4.1 MWSL functions

Syntax WriteXMLData (<DATA>, <TEMPLATE>)

WriteXMLData outputs the data in contrast to ProcessXMLData.
Instead of write (ProcessXMLData (..)); , you can also write WriteXMLData (...) ;
WriteXMLData () ; is assigned the same parameters as ProcessXMLData () ; .

Parameters <DATA>

Data for the dynamic HTML file

A file or a variable containing the data can be passed as a parameter.

File:
"<EXTERNAL SRC=\"/Datendatei.xml \"/>",in which "data
file.xml" is the file containing the data.

Variable:
<variable name>

Specifies the variable name.

<TEMPLATE>

Template (how the data are displayed)

A file or a variable containing the templates can be passed as a
parameter.

File:
"<TEMPLATES><EXTERNAL SRC=\"/Template.xml\"/></

TEMPLATES>", , in which "Template.xml" is the file containing the
templates.

Variable:

<variable name>

mechanism (Page 66)

Exampb WriteXMLData ("<EXTERNAL SRC=\"/MWSL/variables.xml \"/>",
"<TEMPLATES><EXTERNAL
SRC=\"/MWSL/variablesTemplate.xml\"/></TEMPLATES>") ;

Additional information about the template mechanism: Mode of operation of the template

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

125

Appendix

4.1 MWSL functions

4.1.26 Nodelndex

Variable NodeIndex NodeIndex is a process variable that is available when a template is

parsed.

This variable outputs the number of nodes that have already been run

through.

The access is exactly the same as for other variables of the

PROCESS variable source.

Additional information about the template mechanism: Mode of

operation of the template mechanism (Page 66)
Example <?xml version="1.0" ?>

<TEMPLATES>
<TEMPLATE NAME="Variable">
<POSITION NAME="LINE">
<! [CDATA[
<MWSL> WriteVar ("NodeIndex ") </MWSL>
11>
</POSITION>
</TEMPLATE>
</TEMPLATES>
SIMOTION IT Programming and Web Services

126 Programming Manual, 04/2014

Appendix
4.1 MWSL functions

4127 NodeLevel

Variable NodeLevel NodeLevel is a process variable that is available when a template is
parsed.

This variable outputs the hierarchy level of the current node.

The access is exactly the same as for other variables of the
PROCESS variable source.

Additional information about the template mechanism: Mode of
operation of the template mechanism (Page 66)

Example <?xml version="1.0" ?>
<TEMPLATES>
<TEMPLATE NAME="Variable">
<POSITION NAME="LINE">
<! [CDATA[
<MWSL> WriteVar ("NodeLevel") </MWSL>
11>
</POSITION>

</TEMPLATE>
</TEMPLATES>

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014 127

Index

B

Browse, 91

C

CancelTrace, 102
Client application, 90
Communication package, 84

D

DEFAULTDOCUMENT, 13
delete, 59

G

GetProperties, 92
GetStatus, 92, 103

H
Home page, 13

J

JavaScript
ApplBrowser, 42
ApplBrowseTree, 45
ApplDataTable, 38
Device access, 24
Library appl.js, 37
OPCBrowseRequest, 30
OPCGetPropertiesRequest, 26
OPCReadRequest, 24
OPCSubscriptionAutoRefresh, 35
OPCSubscriptionRequest, 32
OPCWriteRequest, 29

M

MWSL, 59
.cms extension, 16
Access to the process variables, 47
break, 64

SIMOTION IT Programming and Web Services
Programming Manual, 04/2014

Comments, 64
continue, 64
COOKIE variables, 57
COOKIES, 56
do, 63
Error message, 18
Error messages, 48
For, 63
Format string, 58
Format string GetVar, WriteVar, 52
function, 64
Function overview, 65
Global variables, 52
HTTP header, 57
If, 61
Load pages into the controller, 15
MBS and MCS files, 18
Mode of operation, 47
new, 59
Operators, 58
Processing variable values, 55
return, 64
Script variables, 50
Structure, 48
switch, 62
Template mechanism, 66
Translation, 15
URL parameters, 55
UTF-8, 15
while, 63
MWSL examples
SetVar(), 74
TestMenu, 80
TestTemplate, 74
MWSL functions
AddHTTPHeader, 109
createGUID, 109
DecodeString, 110
EncodeString, 111
ExistFile, 111
ExistVariable, 112
GetlLanguage, 112
GetVar, 112
InsertFile, 114
IsAuthAlgo, 115
isFinite, 115
isNaN, 115
IsSSL, 116
parseFloat, 116

129

Index

parselnt, 116 MWSL, 47
ProcessXMLData, 118 OPC XML server, 24
ReadFile, 119

ReplaceString, 120

SetVar, 120 w

Erfr;aﬁ)ealm, 120 Write, 93

write, 122
WriteToTab, 122
WriteVar, 123
WriteXMLData, 125

O

OPC
XML DA, 84
OPC XML DA
Access protection, 89
OPC XML server interface, 91
OPC XML-DA R1.0 Specification, 84

R

Read, 92
References, 3
Ring buffer, 97

S

Server Side Includes, 82
SOAP, 84

StartTrace, 101

StopTrace, 102

Subscribe, 92
SubscriptionCancel, 92
SubscriptionPolledRefresh, 92

T

Template mechanism
Nodelndex, 126
NodeLevel, 127

TraceDataCycleEnum, 99

TraceStateEnum, 99

U

User-defined pages, 14
Home page, 13
JavaScript, 24

SIMOTION IT Programming and Web Services
130 Programming Manual, 04/2014

	SIMOTION IT Programming and Web Services
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Industrial security

	2 Introduction
	2.1 Overview of SIMOTION IT
	2.2 New features

	3 Software programming
	3.1 User-defined pages
	3.1.1 User-defined Home page
	3.1.2 Introduction
	3.1.3 Loading of MWSL pages into the controller
	3.1.4 Compiling MWSL files
	3.1.5 Embedded, user-defined pages
	3.1.6 Menu editor
	3.1.7 JavaScript and web services
	3.1.7.1 Variable access with JavaScript and web services
	3.1.7.2 Communication with the OPC XML DA server (opcxml.js)
	3.1.7.3 Representation of OPC XML-DA data in the browser (appl.js)

	3.1.8 MiniWeb Server Language (MWSL)
	3.1.8.1 Mode of operation of the MWSL
	3.1.8.2 Structure of a MWSL file
	3.1.8.3 Error messages
	3.1.8.4 Variable types
	3.1.8.5 Script variables
	3.1.8.6 Global variables
	3.1.8.7 Special variables
	3.1.8.8 Configuration constants
	3.1.8.9 Variables and URL parameters
	3.1.8.10 COOKIES
	3.1.8.11 Variables and access to COOKIES
	3.1.8.12 Variables and HTTP header information
	3.1.8.13 Operators
	3.1.8.14 Conditional operations
	3.1.8.15 Loops
	3.1.8.16 Functions
	3.1.8.17 Comments
	3.1.8.18 Overview of MWSL functions
	3.1.8.19 Mode of operation of the template mechanism
	3.1.8.20 Structure of the template file
	3.1.8.21 Structure of a data source
	3.1.8.22 Template transformation
	3.1.8.23 MWSL in XML attributes
	3.1.8.24 Examples

	3.1.9 Server Side Includes (SSI)
	3.1.9.1 Integration of process values

	3.2 OPC XML-DA web service
	3.2.1 Web services introduction
	3.2.2 Overview
	3.2.3 Comparison of OPC XML DA / SIMATIC NET OPC DA
	3.2.4 Schematic representation of creating the client application
	3.2.5 Schematic representation at runtime of the client application
	3.2.6 Installation
	3.2.6.1 Hardware and software requirements for creating the client application
	3.2.6.2 Configuring the SIMOTION device interface for using the client application
	3.2.6.3 OPC XML DA access protection

	3.2.7 OPC XML-DA variable access
	3.2.8 Example of a client application
	3.2.9 SIMOTION IT OPC XML–DA server interface
	3.2.9.1 Overview
	3.2.9.2 Methods which can be called synchronously
	3.2.9.3 Access to variables

	3.3 Trace Interface via SOAP (TVS) web service
	3.3.1 Trace overview
	3.3.2 Trace sequence
	3.3.3 Procedure/terms
	3.3.4 Error handling
	3.3.5 Basics of subscriptions
	3.3.6 Interface
	3.3.6.1 Global definitions
	3.3.6.2 Methods
	3.3.6.3 Subscriptions

	4 Appendix
	4.1 MWSL functions
	4.1.1 AddHTTPHeader
	4.1.2 createGUID
	4.1.3 DecodeString
	4.1.4 die
	4.1.5 EncodeString
	4.1.6 ExistFile
	4.1.7 ExistVariable
	4.1.8 GetLanguage
	4.1.9 GetVar
	4.1.10 InsertFile
	4.1.11 IsAuthAlgo
	4.1.12 isFinite
	4.1.13 isNaN
	4.1.14 IsSSL
	4.1.15 parseFloat
	4.1.16 parseInt
	4.1.17 ProcessXMLData
	4.1.18 ReadFile
	4.1.19 ReplaceString
	4.1.20 SetVar
	4.1.21 ShareRealm
	4.1.22 write
	4.1.23 WriteToTab
	4.1.24 WriteVar
	4.1.25 WriteXMLData
	4.1.26 NodeIndex
	4.1.27 NodeLevel

	Index

