## SINAMICS S120/S150

List Manual • 01/2012

## SINAMICS

## SIEMENS

## SIEMENS

|  | Preface |  |
| :---: | :---: | :---: |
| SINAMICS | Parameter |  |
|  | Function diagrams |  |
| SINAMICS S120/S150 | Faults and alarms | 3 |
|  | Appendix |  |
| List Manual | List of abbreviations | B |
|  | List of references |  |
|  | Index | D |
| Valid for |  |  |
| Drive Firmware version |  |  |
| SINAMICS 4.5 |  |  |

## Safety Notices

This manual contains information that you should observe to ensure your own personal safety and prevent material damage. The notices referring to your personal safety are highlighted in the manual by a warning triangle; notices that relate to material damage only have no warning triangle. The notices shown below are graded according to the level of hazard (from most to least hazardous):


## Danger

Indicates that death or serious injury will result if proper precautions are not taken.


## Warning

Indicates that death or serious injury may result if proper precautions are not taken.

## Caution

With a warning triangle, indicates that minor injury may result if proper precautions are not taken.

## Caution

Without a warning triangle, indicates that material damage may result if proper precautions are not taken.

## Notice

Indicates that an undesirable result or state may occur if the corresponding instructions are not observed.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A warning notice with a warning triangle indicating possible personal injury may also include a warning relating to material damage.

## Qualified Personnel

The associated device/system may only be installed and operated in conjunction with this documentation. The device/system may only be commissioned and operated by qualified personnel. For the purpose of the safety notices in this documentation, "qualified personnel" are those authorized to commission, ground, and label equipment, systems, and circuits in accordance with established safety procedures.

## Proper Use of Siemens Products

Please observe the following:


## Warning

Siemens products are only permitted to be used for the applications specified in the catalog and in the associated technical documentation. If third-party products and components are to be used, they must be recommended or approved by Siemens. To ensure proper and safe operation of these products, they must be correctly transported, stored, set up, mounted, installed, commissioned, operated, and maintained. The permissible ambient conditions must be met. Information in the associated documentation must be observed.

## Trademarks

All names identified with $®$ are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

## Copyright Siemens AG 2012 All Rights Reserved

The reproduction, transmission, or use of this document or its contents is not permitted without express written permission. Failure to observe this rule will lead to damage claims. All rights reserved, especially those relating to granting patents or GM registration.

## Siemens AG

Industry Sector
Postfach 4848
90327 NÜRNBERG GERMANY

## Liability Disclaimer

We have checked that the contents of this document correspond to the hardware and software described. Nevertheless, we cannot assume responsibility for any deviations that may arise. The data in this document is regularly checked and any necessary corrections included in subsequent editions.
© Siemens AG 2012
Subject to change without prior notice.

## Preface

## SINAMICS documentation

The SINAMICS documentation is organized in the following categories:

- General documentation/catalogs
- Manufacturer/service documentation


## More information

Information on the following topics is available under the link:

- Ordering documentation/overview of documentation
- Additional links to download documents
- Using documentation online (find and search in manuals/information).
http://www.siemens.com/motioncontrol/docu
Please send any questions about the technical documentation (e.g. suggestions for improvement, corrections) to the following e-mail address:
docu.motioncontro@siemens.com


## My Documentation Manager

Information on how to produce individual contents for your own machine documentation based on Siemens contents is available under the link:
http://www.siemens.com/mdm

## Training

Information about SITRAIN (Siemens Training on products, systems and solutions for automation) is available under the following link:
http://www.siemens.com/sitrain

## FAQs

You can find Frequently Asked Questions in the Service\&Support pages under Product Support:
http://support.automation.siemens.com

## SINAMICS

You can find information on SINAMICS at:
http://www.siemens.com/sinamics

## Usage phases and their tools/documents (as an example)

Table Preface-1Usage phases and the available tools/documents

| Usage phase | Tools/documents |
| :---: | :---: |
| Orientation | SINAMICS S Sales Documentation |
| Planning/configuration | SIZER configuration tool Configuration Manuals, Motors |
| Decision making / ordering | SINAMICS S Catalogs |
| Installation/assembly | - SINAMICS S120 Equipment Manual for Control Units and Additional System Components <br> - SINAMICS S120 Equipment Manual for Booksize Power Units <br> - SINAMICS S120 Equipment Manual for Chassis Power Units <br> - SINAMICS S150 Operating Instructions |
| Commissioning | - STARTER commissioning tool <br> - SINAMICS S120 Getting Started <br> - SINAMICS S120 Commissioning Manual <br> - SINAMICS S120 CANopen Commissioning Manual <br> - SINAMICS S120 Function Manual <br> - SINAMICS S120/S150 List Manual <br> - SINAMICS S150 Operating Instructions |
| Usage/operation | - SINAMICS S120 Commissioning Manual <br> - SINAMICS S120/S150 List Manual <br> - SINAMICS S150 Operating Instructions |
| Maintenance/servicing | - SINAMICS S120 Commissioning Manual <br> - SINAMICS S120/S150 List Manual <br> - SINAMICS S150 Operating Instructions |

## Target group

This documentation is aimed at machine manufacturers, commissioning engineers, and service personnel who use SINAMICS.

## Benefits

This documentation contains the comprehensive information about parameters, function diagrams and faults and alarms required to commission and service the system.

This manual should be used in addition to the other manuals and tools provided for the product.

## Standard scope

The scope of the functionality described in this document can differ from the scope of the functionality of the drive system that is actually supplied.

- Other functions not described in this documentation might be able to be executed in the drive system. This does not, however, represent an obligation to supply functions of this kind when new equipment is delivered or during servicing.
- The documentation can also contain descriptions of functions that are not available in a particular product version of the drive system. The functionalities of the supplied drive system should only be taken from the ordering documentation.
- Extensions or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types. This documentation cannot take into consideration every conceivable type of installation, operation and service/maintenance.

## Search tools

The following guides are provided to help you locate information in this manual:

1. Table of contents

- General table of contents for the complete manual (after the preface).
- Table of contents for function diagrams (Section 2.1).

2. List of abbreviations
3. List of references
4. Index

## Technical Support

Country-specific telephone numbers for technical support are provided on the Internet at:
http://www.siemens.com/automation/service\&support

## EC Declaration of Conformity

The EC Declaration of Conformity for the EMC Directive can be found on the Internet at:
http://support.automation.siemens.com
There, as the search term, enter the number 15257461 or contact your local Siemens office.

## Table of contents

1 Parameter ..... 1-11
1.1 Overview of parameters ..... 1-12
1.1.1 Explanation of parameter list ..... 1-12
1.1.2 Number ranges of parameters ..... 1-31
1.2 List of parameters ..... 1-34
1.3 Parameters for data sets ..... 1-1596
1.3.1 Parameters for command data sets (CDS) ..... 1-1596
1.3.2 Parameters for drive data sets (DDS) ..... 1-1599
1.3.3 Parameters for encoder data sets (EDS) ..... 1-1612
1.3.4 Parameters for motor data sets (MDS) ..... 1-1614
1.3.5 Parameters for power unit data sets (PDS). ..... 1-1618
1.4 Parameters for write protection and know-how protection ..... 1-1620
1.4.1 Parameters with "WRITE NO LOCK" ..... 1-1620
1.4.2 Parameters with "KHP_WRITE_NO_LOCK". ..... 1-1622
1.4.3 Parameters with "KHP_ACTIVE_READ" ..... 1-1623
2 Function diagrams ..... 2-1625
2.1 Table of contents ..... 2-1627
2.2 Explanations on the function diagrams ..... 2-1639
2.3 Overviews ..... 2-1644
2.4 CU310-2 input/output terminals ..... 2-1670
2.5 CU320-2 input/output terminals ..... 2-1679
2.6 S120M input/output terminals ..... 2-1686
2.7 CU_LINK ..... 2-1688
2.8 CX32-2 input/output terminals ..... 2-1690
2.9 PROFIdrive ..... 2-1694
2.10 Internal control/status words ..... 2-1755
2.11 Sequence control ..... 2-1768
2.12 Brake control ..... 2-1771
2.13 Safety Integrated Basic Functions. ..... 2-1776
2.14 Safety Integrated Extended Functions ..... 2-1783
2.15 Setpoint channel ..... 2-1805
2.16 Setpoint channel not activated ..... 2-1816
2.17 Basic positioner (EPOS) ..... 2-1818
2.18 Position control ..... 2-1834
2.19 Encoder evaluation ..... 2-1839
2.20 Servo control ..... 2-1849
2.21 Vector control ..... 2-1869
2.22 Technology functions ..... 2-1899
2.23 Technology controller ..... 2-1907
2.24 Signals and monitoring functions ..... 2-1913
2.25 Diagnostics ..... 2-1922
2.26 Data sets ..... 2-1928
2.27 Basic Infeed ..... 2-1934
2.28 Smart Infeed ..... 2-1941
2.29 Active Infeed ..... 2-1950
2.30 Terminal Board 30 (TB30) ..... 2-1962
2.31 Communication Board CAN10 (CBC10) ..... 2-1967
2.32 Terminal Module 15 for SINAMICS (TM15DI/DO) ..... 2-1974
2.33 Terminal Module 31 (TM31) ..... 2-1978
2.34 Terminal Module 120 (TM120) ..... 2-1988
2.35 Terminal Module 150 (TM150) ..... 2-1991
2.36 Terminal Module 41 (TM41) ..... 2-1995
2.37 Auxiliaries ..... 2-2009
2.38 Voltage Sensing Module (VSM) ..... 2-2012
2.39 Basic Operator Panel 20 (BOP20) ..... 2-2015
2.40 Braking Module External ..... 2-2017
3 Faults and alarms ..... 3-2019
3.1 Overview of faults and alarms ..... 3-2020
3.1.1 General information on faults and alarms ..... 3-2020
3.1.2 Explanation of the list of faults and alarms ..... 3-2025
3.1.3 Number ranges of faults and alarms ..... 3-2028
3.2 List of faults and alarms ..... 3-2030
A Appendix ..... A-2533
A. 1 ASCII table (excerpt) ..... A-2534
B List of abbreviations ..... B-2535
C List of references ..... C-2545
D Index ..... D-2551

## Parameter

## Contents

| 1.1 | Overview of parameters | $1-12$ |
| :--- | :--- | ---: |
| 1.2 | List of parameters | $1-34$ |
| 1.3 | Parameters for data sets | $1-1596$ |
| 1.4 | Parameters for write protection and know-how protection | $1-1620$ |

### 1.1 Overview of parameters

### 1.1.1 Explanation of parameter list

## Basic structure of parameter descriptions

The data in the following example has been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.
The parameter list (See Section 1.2) is structured as follows:
Start of example

| pxxxx[0...n] | BICO: Long parameter name / short parameter name |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Drive object (function module) | Can be changed: $\mathrm{C} 1(\mathrm{x}), \mathrm{C} 2(\mathrm{x}), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_REG | Access level: 2 |  |
|  | Data type: Unsigned32/Integer16 | Dynamic index: CDS, p0170 | Function diagram: 2080 |  |
|  | P group: Closed-loop control | Unit group: 7_1 | Unit selection: p0505 |  |
|  | Not for motor type: FEM | Scaling: p2000 | Expert list: 1 |  |
|  | Min |  | Factory setting 0.00 [Arms] |  |
|  | 0.00 [ Nm ] | 10.00 [ Nm ] |  |  |
| Description: | Text |  |  |  |
| Values: | 0: Name and meaning of value 0 |  |  |  |
|  | 1: Name and meaning of value 1 |  |  |  |
|  | 2: $\quad$ etc. $\quad$ ame and meaning of value 2 |  |  |  |
| Recommendation: | Text |  |  |  |
| Index: | [0] = Name and meaning of index 0 |  |  |  |
|  | [1] = Name and meaning of index 1 |  |  |  |
|  | [2] = Name and meaning of index 2 |  |  |  |
|  | etc. |  |  |  |
| Bit array: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Name and meaning of bit 0 | Yes | No | 8010 |
|  | 01 Name and meaning of bit 1 | Yes | No | - |
|  | 02 Name and meaning of bit 2 etc. | Yes | No | 8012 |
| Dependency: | Text |  |  |  |
|  | See also: pxxxx, rxxxx |  |  |  |
|  | See also: Fxxxxx, Axxxxx |  |  |  |
| Danger: | Warning: Caution: | Safety notices with a warning triangle |  |  |
|  |  |  |  |  |
| Caution: | Notice: | Safety notices without a warning | triangle |  |
| Note: | Information which might be useful. |  |  |  |

## pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index (optional).

Examples of representation in the parameter list:

- p... Adjustable parameter (read and write parameter)
- r... Display parameter (read-only)
- p0918 Adjustable parameter 918
- p0099[0...3] Adjustable parameter 99, indices 0 to 3
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ( $\mathrm{n}=$ configurable)
- r0944 Display parameter 944

Other examples of the notation used in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- r0945[2](3) Display parameter 945, index 2 of drive object 3
- p0795.4 Adjustable parameter 795, bit 4
- r2129.0... 15 Display parameter 2129 with bit array (maximum 16 bits)

The following applies to adjustable parameters:
The parameter value as delivered is specified under "Factory setting" with the relevant unit in square brackets. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions or parameters:

- Execute macros p0015, p0700, p1000, p1500
- Set PROFIBUS telegram (BICO interconnections) p0922
- Set component lists
p0230, p0300, p0301, p0400
- Automatic calculation and pre-assignment p0112, p0340, p0578, p3900
- Restore factory settings p0970

The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square brackets.

## Note:

The parameter list can contain parameters that are not visible in the expert lists of the respective commissioning software (e.g. parameters for trace functions).

## BICO: Long parameter name / short parameter name

The following abbreviations can appear in front of the parameter name:

- BI: Binector Input

This parameter is used for selecting the source of a digital signal.

- BO: Binector Output

This parameter is available as a digital signal for interconnection with other parameters.

- CI: Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector Output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

## Note:

A connector input (Cl) cannot be just interconnected with any connector output (CO, signal source).
When interconnecting a connector input using the commissioning software, only the corresponding possible signal sources are listed.

## Drive object (function module)

A drive object (DO) is an independent, "self-contained" functional unit that has its own parameters and, in some cases, faults and alarms.

When carrying out commissioning using the commissioning software, you can select/deselect additional functions and their parameters by activating/deactivating function modules accordingly.

## Note:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions

The parameter list specifies the associated drive object and function module for each individual parameter.

## Examples:

- p1070 CI: Main setpoint

SERVO (extended setpoint), VECTOR
The parameter is available only in association with drive object SERVO and the "Extended setpoint channel" function module or with drive object VECTOR irrespective of activated function modules.

- p1055 BI: Jog bit 0

SERVO, VECTOR
The parameter is available in association with drive objects SERVO and VECTOR irrespective of activated function modules, i.e. it is also available with every activated function module belonging to the respective drive object.

A parameter can belong to one, several or all drive objects.
The following information relating to "Drive object" and "Function module" can be displayed under the parameter number:

Table 1-1 Data in the "Drive object (function module)" field

| Drive object (func- <br> tion module) | Type | Meaning |
| :--- | :---: | :--- |
| All objects | - | All drive objects have this parameter. |
| A_INF | 10 | Active Infeed Control <br> Closed-loop controlled, self-commutated infeed/regenerative feed- <br> back unit for generating a constant DC-link voltage |
| A_INF (line trans- <br> former) | - | Active Infeed with "Line transformer" function module (r0108.4). |
| A_INF (dynamic grid <br> support) | - | Active Infeed with "Dynamic line buffering" function module (r0108.7). |
| A_INF (line droop con- <br> trol) | - | Active Infeed with "System droop control" function module (r0108.12). |
| A_INF (parallel) | - | Active Infeed with "Parallel connection" function module (r0108.15). |
| A_INF (master/slave) | - | Active Infeed with "Master/Slave" function module (r0108.19). |
| A_INF (brk mod ext) | - | Active Infeed with "Braking Module External" function module <br> (r0108.26). |
| A_INF (cooling unit) | - | Active Infeed with "Cooling unit" function module (r0108.28) |
| A_INF (PROFINET) | - | Active Infeed with "PROFINET" function module (r0108.31). |
| B_INF | 30 | Basic Infeed Control <br> Unregulated line infeed unit (without feedback) for rectifying the line <br> voltage of the DC link |
| B_INF (parallel) | - | Basic Infeed with "Parallel connection" function module (r0108.15). |
| B_INF (brk mod ext) | - | Basic Infeed with "Braking Module External" function module <br> (r0108.26). |
| B_INF (cooling unit) | - | Basic Infeed with "Cooling unit" function module (r0108.28) |
| B_INF (PROFINET) | - | Basic Infeed with "PROFINET" function module (r0108.31). |
| CU_CX32 | 4 | Controller Extension for boosting the processing performance |

Table 1-1 Data in the "Drive object (function module)" field, continued

| Drive object (function module) | Type | Meaning |
| :---: | :---: | :---: |
| CU_I | 3 | Control Unit SINAMICS Integrated (only SIMOTION D4x5-2). |
| CU_I_D410 | 201 | Control Unit SINAMICS Integrated for SIMOTION D410-2. |
| CU_LINK | 254 | Object for Controller Extension 32 (CX32) |
| CU_S_AC_DP | 2 | Control Unit SINAMICS S120 AC Drive with PROFIBUS interface. |
| CU_S_AC_PN | 3 | Control Unit SINAMICS S120 AC Drive with PROFINET interface. |
| CU_S120_DP | 6 | Control Unit SINAMICS S120 with PROFIBUS interface. |
| CU_S120_DP (CAN) | - | Control Unit SINAMICS S120 with PROFIBUS interface and function module "CAN" (p0108.29). |
| CU_S120_DP (COMM BOARD) | - | Control Unit SINAMICS S120 with PROFIBUS interface and "COMM board" function module (p0108.30). |
| CU_S120_DP (PROFI- NET $)$ | - | Control Unit SINAMICS S120 with PROFIBUS interface and function module "PROFINET" (p0108.31). |
| CU_S120_PN | 4 | Control Unit SINAMICS S120 with PROFINET interface. |
| CU_S120_PN (CAN) | - | Control Unit SINAMICS S120 with PROFINET interface and function module "CAN" (p0108.29). |
| CU_S120_PN (COMM BOARD) | - | Control Unit SINAMICS S120 with PROFINET interface and "COMM board" function module (p0108.30). |
| CU_S120_PN (PROFINET) | - | Control Unit SINAMICS S120 with PROFINET interface and function module "PROFINET" (p0108.31). |
| CU_S150_DP | 7 | Control Unit SINAMICS S150 with PROFIBUS interface. |
| CU_S150_DP (CAN) | - | Control Unit SINAMICS S150 with PROFIBUS interface and function module "CAN" (p0108.29). |
| $\begin{aligned} & \text { CU_S150_DP (COMM } \\ & \text { BOARD) } \end{aligned}$ | - | Control Unit SINAMICS S150 with PROFIBUS interface and "COMM board" function module (p0108.30). |
| CU_S150_DP (PROFI- NET) | - | Control Unit SINAMICS S150 with PROFIBUS interface and function module "PROFINET" (p0108.31). |
| CU_S150_PN | 5 | Control Unit SINAMICS S150 with PROFINET interface. |
| CU_S150_PN (CAN) | - | Control Unit SINAMICS S150 with PROFINET interface and function module "CAN" (p0108.29). |
| CU_S150_PN (COMM BOARD) | - | Control Unit SINAMICS S150 with PROFINET interface and "COMM board" function module (p0108.30). |
| CU_S150_PN (PROFINET) | - | Control Unit SINAMICS S150 with PROFINET interface and function module "PROFINET" (p0108.31). |
| ENC | 300 | Object for a DRIVE-CLiQ encoder. |
| HUB | 150 | DRIVE-CLiQ Hub Module. |
| S_INF | 20 | Smart Infeed Control <br> Unregulated line infeed/feedback unit for generating the DC link voltage. |
| S_INF (parallel) | - | Smart Infeed with "Parallel connection" function module (r0108.15). |

Table 1-1 Data in the "Drive object (function module)" field, continued

| Drive object (function module) | Type | Meaning |
| :---: | :---: | :---: |
| S_INF (brk mod ext) | - | Smart Infeed with "Braking Module External" function module (r0108.26). |
| S_INF (cooling unit) | - | Smart Infeed with "Cooling unit" function module (r0108.28). |
| S_INF (PROFINET) | - | Smart Infeed with "PROFINET" function module (r0108.31). |
| SERVO | 11 | Servo drive. |
| SERVO (extended M_ctrl) | - | Servo drive with "Extended torque control" function module (r0108.1). |
| SERVO (cl. loop position ctrl) | - | Servo drive with "Closed loop position control" function module (r0108.3). |
| SERVO (EPOS) | - | Servo drive with "Basic positioner" function module (r0108.4). |
| SERVO (DSC Spline) | - | Servo drive with function module "DSC with Spline" (r0108.6). |
| SERVO (APC) | - | Servo drive with "Advanced Positioning Control (APC)" function module (r0108.7). |
| SERVO (extended setpoint) | - | Servo drive with "Extended setpoint channel" function module (r0108.8). |
| SERVO (ESR) |  | Servo drive with "Extended stop and retract" function module (r0108.9). |
| SERVO (Spin_diag) | - | Servo drive with "Spindle" function module (r0108.11). <br> This function module can only be used in conjunction with a Sensor Module Integrated 24 (SMI24). |
| SERVO (Lin) | - | Servo drive with "Linear motor" function module (r0108.12). |
| SERVO (Safety rot) | - | Servo drive with "Safety rotary axis" function module (r0108.13). |
| SERVO (ext. brake) | - | Servo drive with "Extended brake control" function module (r0108.14) |
| SERVO (Tech_ctrl) | - | Servo drive with "Technology controller" function module (r0108.16). |
| SERVO (ext. msg) | - | Servo drive with "Extended messages/monitoring functions" function module (r0108.17). |
| SERVO <br> (cogging_M_comp) | - | Servo drive with "cogging torque compensation" function module (r0108.22). |
| SERVO (Dig IO) | - | Servo drive for SINAMICS S120M with "Digital inputs/outputs" function module (r0108.23) |
| SERVO (cooling unit) | - | Servo drive with "Cooling unit" function module (r0108.28). |
| SERVO (CAN) | - | Servo drive with "CAN" function module (r0108.29). |
| SERVO (PROFINET) | - | Servo drive with "PROFINET" function module (r0108.31). |
| SERVO_AC |  | Servo drive for SINAMICS S120 AC Drive. |
| SERVO_AC (extended M_ctrl) | - | Servo drive for SINAMICS S120 AC Drive with "Extended torque control" function module (r0108.1). |
| SERVO_AC (position control) | - | Servo drive for SINAMICS S120 AC Drive with "Position control" function module (r0108.3). |

Table 1-1 Data in the "Drive object (function module)" field, continued

| Drive object (function module) | Type | Meaning |
| :---: | :---: | :---: |
| SERVO_AC (EPOS) | - | Servo drive for SINAMICS S120 AC Drive with "Basic positioner" function module (r0108.4). |
| SERVO_AC (DSC spline) | - | Servo drive for SINAMICS S120 AC Drive with "DSC with spline" function module (r0108.6). |
| SERVO_AC (APC) | - | Servo drive for SINAMICS S120 AC Drive with "Advanced Positioning Control (APC)" function module (r0108.7). |
| SERVO_AC (extended setpoint) | - | Servo drive for SINAMICS S120 AC Drive with "Extended setpoint channel" function module (r0108.8). |
| SERVO_AC (ESR) |  | Servo drive for SINAMICS S120 AC Drive with "Extended stop and retract" function module (r0108.9). |
| SERVO_AC <br> (Spin_diag) | - | Servo drive for SINAMICS S120 AC Drive with "Spindle" function module (r0108.11). <br> This function module can only be used in conjunction with a Sensor Module Integrated 24 (SMI24). |
| SERVO_AC (lin) | - | Servo drive for SINAMICS S120 AC Drive with "Linear motor" function module (r0108.12). |
| SERVO_AC (Safety rot) | - | Servo drive for SINAMICS S120 AC Drive with "Safety rotary axis" function module (r0108.13). |
| SERVO_AC (ext. brake) | - | Servo drive for SINAMICS S120 AC Drive with "Extended brake control" function module (r0108.14). |
| SERVO_AC <br> (Tech_ctrl) | - | Servo drive for SINAMICS S120 AC Drive with "Technology controller" function module (r0108.16). |
| SERVO_AC (ext. mess.) | - | Servo drive for SINAMICS S120 AC Drive with "Extended messages/monitoring functions" function module (r0108.17). |
| SERVO_AC (cog_M_comp) | - | Servo drive for SINAMICS S120 AC Drive with "Cogging torque compensation" function module (r0108.22) |
| SERVO_AC (cooling unit) | - | Servo drive for SINAMICS S120 AC Drive with "Cooling unit" function module (r0108.28). |
| SERVO_AC (CAN) | - | Servo drive for SINAMICS S120 AC Drive with "CAN" function module (r0108.29). |
| $\begin{aligned} & \text { SERVO_AC (PROFI- } \\ & \text { NET) } \end{aligned}$ | - | Servo drive for SINAMICS S120 AC Drive with "PROFINET" function module (r0108.31). |
| TB30 | 100 | Terminal Board 30. |
| TM120 | 207 | Terminal Module 120. |
| TM15 | 203 | Terminal Module 15 (SIMOTION D4xx-2 only). |
| TM150 | 208 | Terminal Module 150. |
| TM15DI_DO | 204 | Terminal Module 15 (for SINAMICS). |
| TM17 | 202 | Terminal Module 17 (SIMOTION D4xx-2 only). |
| TM31 | 200 | Terminal Module 31. |
| TM41 | 201 | Terminal Module 41. |

Table 1-1 Data in the "Drive object (function module)" field, continued

| Drive object (function module) | Type | Meaning |
| :---: | :---: | :---: |
| TM54F_MA | 205 | Terminal Module 54F Master. |
| TM54F_SL | 206 | Terminal Module 54F Slave. |
| VECTOR | 12 | Vector drive. |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ) | - | Vector drive with "Closed-loop speed/torque control" function module (r0108.2). |
| VECTOR (pos ctrl) | - | Vector drive with "Position control" function module (r0108.3). |
| VECTOR (EPOS) | - | Vector drive with "Basic positioner" function module (r0108.4). |
| VECTOR (Safety rot) | - | Vector drive with "Safety rotary axis" function module (r0108.13). |
| VECTOR (ext. brake) | - | Vector drive with "Extended brake control" function module (r0108.14). |
| VECTOR (parallel) | - | Vector drive with "Parallel connection" function module (r0108.15). |
| VECTOR (tech_ctrl) | - | Vector drive with "Technology controller" function module (r0108.16). |
| VECTOR (ext. mess.) | - | Vector drive with "Extended messages/monitoring functions" function module (r0108.17). |
| VECTOR (F3E) | - | Vector drive with "F3E power unit" function module (r0108.26). The power unit is the PM250 for CU310-2 CRANES. |
| VECTOR (cooling unit) | - | Vector drive with "Cooling unit" function module (r0108.28). |
| VECTOR (CAN) | - | Vector drive with "CAN" function module (r0108.29). |
| VECTOR (PROFINET) | - | Vector drive with "PROFINET" function module (r0108.31). |
| VECTOR_AC |  | Vector drive for SINAMICS S120 AC Drive. |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ) | - | Vector drive for SINAMICS S120 AC Drive with "Speed/torque control" function module (r0108.2). |
| VECTOR_AC (position control) | - | Vector drive for SINAMICS S120 AC Drive with "Position control" function module (r0108.3). |
| VECTOR_AC (EPOS) | - | Vector drive for SINAMICS S120 AC Drive with "Basic positioner" function module (r0108.4). |
| VECTOR_AC (Safety rot) | - | Vector drive for SINAMICS S120 AC Drive with "Safety rotary axis" function module (r0108.13). |
| VECTOR_AC (ext. brake) | - | Vector drive for SINAMICS S120 AC Drive with "Extended brake control" function module (r0108.14). |
| VECTOR_AC (parallel) | - | Vector drive for SINAMICS S120 AC Drive with "Parallel connection" function module (r0108.15). |
| VECTOR_AC <br> (Tech_ctrl) | - | Vector drive for SINAMICS S120 AC Drive with "Technology controller" function module (r0108.16). |
| VECTOR_AC (ext. mess.) | - | Vector drive for SINAMICS S120 AC Drive with "Extended messages/monitoring functions" function module (r0108.17). |
| VECTOR_AC (F3E) | - | Vector drive for SINAMICS S120 AC Drive with "F3E power unit" function module (r0108.26). <br> The power unit is the PM250 for CU310-2 CRANES. |

Table 1-1 Data in the "Drive object (function module)" field, continued

| Drive object (func- <br> tion module) | Type | Meaning |
| :--- | :---: | :--- |
| VECTOR_AC (cooling <br> unit) | - | Vector drive for SINAMICS S120 AC Drive with "Cooling unit" function <br> module (r0108.28). |
| VECTOR_AC (CAN) | - | Vector drive for SINAMICS S120 AC Drive with "CAN" function mod- <br> ule (r0108.29). |
| VECTOR_AC (PROFI- <br> NET) | - | Vector drive for SINAMICS S120 AC Drive with "PROFINET" function <br> module (r0108.31). |

## Note:

The drive object type is used to identify the drive objects in the drive system (e.g. r0107, r0975[1]).

## Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information "C1(x), C2(x), T, U" ((x): optional) means that the parameter can be changed only in the specified drive object state and that the change will not take effect until the object switches to another state. One or more states are possible.

The following states may be specified:

- C1(x) Device commissioning
C1: Commissioning 1

Device commissioning is in progress (p0009 >0).
Pulses cannot be enabled.
The parameter can only be changed when the device commissioning settings ( $\mathrm{p} 0009>0$ ) are as follows:

- C1: Can be changed for all settings p0009>0.
- $\mathrm{C} 1(\mathrm{x})$ : Can only be changed when the settings are p0009 $=x$

A modified parameter value does not take effect until device commissioning mode is exited with p0009 $=0$.

- $\mathrm{C} 2(\mathrm{x})$ Drive object commissioning


## C2: Commissioning 2

Drive commissioning is in progress ( $\mathrm{p} 0009=0$ and p0010>0).
Pulses cannot be enabled.
The parameter can only be changed when the drive commissioning settings ( $\mathrm{p} 0010>0$ ) are as follows:

- C2: Can be changed for all settings p0010>0
- C2(x): Can only be changed when the settings are p0010 $=x$

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U

Operation
U: Run
Pulses are enabled.

- T Ready for operation

T: Ready to run
The pulses are not enabled and the status " $\mathrm{C} 1(\mathrm{x})$ " or " $\mathrm{C} 2(\mathrm{x})$ " is not active.

## Note:

Parameter p0009 is CU-specific (available on the Control Unit).
Parameter p0010 is drive-specific (available for each drive object).
The operating state of individual drive objects is displayed in r0002.

## Calculated

Specifies whether the parameter is influenced by automatic calculations.
The calculation attribute defines which activities influence the parameter.
The following attributes apply:

- CALC_MOD_ALL
- p0340 = 1
- Project download with commissioning software and send from p0340=3
- CALC_MOD_CON
- $\mathrm{p} 0340=1,3,4$
- CALC_MOD_EQU
- p0340 = 1, 2
- CALC_MOD_LIM_REF
- p0340 = 1, 3,5
- p0578 = 1
- CALC_MOD_REG
- $\mathrm{p} 0340=1,3$


## Note:

For p3900 > 0, p0340 = 1 is also called automatically.
After p1910 $=1, \mathrm{p} 0340=3$ is also called automatically.

## Access level

Specifies the access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.
The system uses the following access levels:

- 1: Standard
- 2: Extended
- 3: Expert
- 4: Service

Parameters with this access level are password protected.

## Note:

Parameter p0003 is CU-specific (available on the Control Unit).

## Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector/connector output).
Parameters can have the following data types:

- I8 Integer8 8-bit integer
- I16 Integer16 16-bit integer
- I32 Integer32 32-bit integer
- U8 Unsigned8 8 bits without sign
- U16 Unsigned16 16 bits without sign
- U32 Unsigned32 32 bits without sign
- Float FloatingPoint32 32-bit floating-point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when BICO interconnections are established:

Table 1-2 Possible combinations of BICO interconnections

|  | BICO input parameter |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cl parameter |  |  | BI parameter |
| BICO output parameter | Unsigned32/Inte ger16 | Unsigned32/Inte ger32 | Unsigned32/Floa tingPoint32 | Unsigned32/Bina ry |
| CO: Unsigned8 | x | x | - | - |
| CO: Unsigned16 | X | X | - | - |
| CO: Integer16 | X | X | - | - |
| CO: Unsigned32 | X | X | - | - |
| CO: Integer32 | X | X | - | - |
| CO: FloatingPoint32 | x | x | $\mathrm{x}^{1}$ | - |
| BO: Unsigned8 | - | - | - | x |
| BO: Unsigned16 | - | - | - | x |
| Legend: $\mathrm{x}:$ BICO interconnection permitted <br>  $-:$ BICO interconnection not permitted |  |  |  |  |
| 1 Exception: <br> BICO input parameters with data type "Unsigned32/FloatingPoint32" can also be interconnected with the following BICO output parameters, although these are not of the "FloatingPoint32" data type: CO: r8850, CO: r8860, CO: r2050, CO: r2060 |  |  |  |  |

Table 1-2 Possible combinations of BICO interconnections, continued

|  | BICO input parameter |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | CI parameter |  |  | BI parameter |
| BICO output parameter | Unsigned32/Inte <br> ger16 | Unsigned32/Inte <br> ger32 | Unsigned32/Floa <br> tingPoint32 | Unsigned32/Bina <br> ry |
| BO: Integer16 | - | - | - | x |
| BO: Unsigned32 | - | - | - | x |
| BO: Integer32 | - | - | - | x |
| BO: FloatingPoint32 | - | - | - |  |
| Legend: | x: BICO interconnection permitted |  |  |  |
| 1 Exception: |  |  |  |  |
| BICO input parameters with data type "Unsigned32/FloatingPoint32" can also be interconnected with the following |  |  |  |  |
| BICO output parameters, although these are not of the "FloatingPoint32" data type: |  |  |  |  |
| CO: r8850, CO: r8860, CO: r2050, CO: r2060 |  |  |  |  |

## Dynamic index

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ( $\mathrm{n}=$ number -1 ).

This field can contain the following information:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] $\rightarrow$ main setpoint [command data set 0]
p1070[1] $\rightarrow$ main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)
- "p2615" (traversing blocks count)


## Note:

Information on the data sets can be taken from the following references:
References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

## Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

## Example:

Function diagram: 3060.3 3060: Function diagram number
3: $\quad$ Signal path (optional)

## P group (refers only to access via BOP (Basic Operator Panel))

Specifies the functional group to which the parameter belongs. The required parameter group can be set via p0004.

## Note:

Parameter p0004 is CU-specific (available on the Control Unit).

## Unit, unit group, and unit selection

The standard unit of a parameter is specified in square brackets after the values for "Min", "Max", and "Factory setting".
For parameters where the unit can be switched, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be switched over.

## Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be switched over using p0505.

## Note:

Detailed information on switching over units can be found in the following references:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions
References: /BA3/ SINAMICS S150 Operating Instructions

All the potential unit groups and possible unit selections are listed below.
Table 1-3 Unit groups ( p 0100 )

| Unit group | $\begin{array}{c}\text { Unit selection for } \mathrm{p0100}= \\ 0\end{array}$ |  | $\mathbf{1}$ |
| :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}Reference variable <br>

at \%\end{array}\right]\)

Table 1-3 Unit groups ( p 0100 ), continued

| Unit group | Unit selection for $\mathbf{p 0 1 0 0}=$ <br> 0 |  | Reference variable <br> at $\%$ |
| :---: | :--- | :--- | :--- |
| $14 \_2$ | W | HP | - |
| $14 \_6$ | kW | HP | - |
| $25 \_1$ | $\mathrm{kgm}^{2}$ | $\mathrm{lb} \mathrm{ft}^{2}$ | - |
| $27 \_1$ | kg | lb | - |
| $28 \_1$ | $\mathrm{Nm} / \mathrm{A}$ | $\mathrm{lbf} \mathrm{ft} / \mathrm{A}$ | - |
| $29 \_1$ | $\mathrm{~N} / \mathrm{Arms}$ | $\mathrm{lbf} / \mathrm{Arms}$ | - |
| $30 \_1$ | m | ft | - |

Table 1-4 Unit groups ( p 0349 )

| Unit group | Unit selection for p0349 = |  | Reference variable <br> at $\%$ |
| :---: | :--- | :--- | :--- |
| $15 \_1$ | mH | $\%$ | $\frac{1000 \cdot \mathrm{p} 0304}{2 \cdot \pi \cdot \sqrt{3} \cdot \mathrm{p} 0305 \cdot \mathrm{p} 0310}$ |
| $16 \_1$ | Ohm | $\%$ | $\frac{\mathrm{p} 0304}{\sqrt{3} \cdot \mathrm{p} 0305}$ |

Table 1-5 Unit groups (p0505)

| Unit group | Unit selection for $\mathrm{p} 0505=$ |  |  |  | Reference variable at \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |  |
| 2_1 | Hz | \% | Hz | \% | p2000 |
| 2_2 | kHz | \% | kHz | \% | p2000 |
| 3_1 | rpm | \% | rpm | \% | p2000 |
| 4_1 | $\mathrm{m} / \mathrm{min}$ | \% | $\mathrm{ft} / \mathrm{min}$ | \% | p2000 |
| 4_2 | m/min | $\mathrm{m} / \mathrm{min}$ | $\mathrm{ft} / \mathrm{min}$ | $\mathrm{ft} / \mathrm{min}$ | - |
| 5_1 | Vrms | \% | Vrms | \% | p2001 |
| 5_2 | V | \% | V | \% | p2001 |
| 5_3 | V | \% | V | \% | p2001 |
| 6_1 | mArms | \% | mArms | \% | p2002 |
| 6_2 | Arms | \% | Arms | \% | p2002 |
| 6_3 | mA | \% | mA | \% | p2002 |
| 6_4 | A | \% | A | \% | p2002 |
| 6_5 | A | \% | A | \% | p2002 |
| 7_1 | Nm | \% | lbf ft | \% | p2003 |

Table 1-5 Unit groups (p0505), continued

| Unit group | Unit selection for $\mathrm{p} 0505=$ |  |  |  | Reference variable at \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |  |
| 7_2 | Nm | Nm | lbf ft | lbf ft | - |
| 7_3 | Nm | \% | lbf ft | \% | 1.0 |
| 8-1 | N | \% | Ibf | \% | p2003 |
| 8_2 | N | N | Ibf | Ibf | - |
| 8_3 | N | \% | Ibf | \% | 1.0 |
| 14_1 | W | \% | HP | \% | r2004 (drive) |
| 14_3 | W | \% | HP | \% | r2004 (infeed) |
| 14_4 | W | \% | HP | \% | r2004 (drive) |
| 14_5 | kW | \% | HP | \% | r2004 (drive) |
| 14_7 | kW | \% | HP | \% | r2004 (infeed) |
| 14_8 | kW | \% | HP | \% | r2004 (drive) |
| 14_9 | W | W | HP | HP | - |
| 14_10 | kW | kW | HP | HP | - |
| 14_11 | var | \% | var | \% | r2004 |
| 14_12 | kvar | \% | kvar | \% | r2004 |
| 17_1 | Nms/rad | \% | lbf ft $\mathrm{s} / \mathrm{rad}$ | \% | p2000/p2003 |
| 18_1 | V/A | \% | V/A | \% | p2002/p2001 |
| 19_1 | A/V | \% | A/V | \% | p2001/p2002 |
| 21_1 | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{F}$ |  |
| 21_2 | K | K | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{F}$ | - |
| 22_1 | $\mathrm{m} / \mathrm{s}^{2}$ | $\mathrm{m} / \mathrm{s}^{2}$ | $\mathrm{ft} / \mathrm{s}^{2}$ | $\mathrm{ft} / \mathrm{s}^{2}$ | - |
| 22_2 | $\mathrm{m} / \mathrm{s}^{2}$ | \% | $\mathrm{ft} / \mathrm{s}^{2}$ | \% | p2007 |
| 23_1 | Vrms <br> $\mathrm{s} / \mathrm{m}$ | Vrms <br> $\mathrm{s} / \mathrm{m}$ | Vrms s/ft | Vrms s/ft | - |
| 24_1 | $\mathrm{Ns} / \mathrm{m}$ | Ns/m | lbf s/ft | lbf s/ft | - |
| 24_2 | $\mathrm{Ns} / \mathrm{m}$ | \% | lbf s/ft | \% | p2000/p2003 |
| 26_1 | $\mathrm{m} / \mathrm{s}^{3}$ | $\mathrm{m} / \mathrm{s}^{3}$ | $\mathrm{ft} / \mathrm{s}^{3}$ | $\mathrm{ft} / \mathrm{s}^{3}$ | - |
| 39_1 | $1 / \mathrm{s}^{2}$ | \% | $1 / \mathrm{s}^{2}$ | \% | p2007 |

Table 1-6 Unit group (p0595)

| Unit group | Unit selection for p0595 = <br> Value |  |
| :---: | :---: | :---: |
| $9 \_1$ | The values that can be set and the technological units are shown in <br> p0595 (See Section 1.2). |  |

## Parameter values

| Min | Minimum value of the parameter [unit] |
| :--- | :--- |
| Max | Maximum value of the parameter [unit] |
| Factory setting | Value when shipped [unit] |
|  | In the case of a binector/connector input, the signal |
| source of the default BICO interconnection is specified. A |  |
| non-indexed connector output is assigned the index [0]. |  |
|  | A different value may be displayed for certain parameters <br> (e.g. p1800) during first commissioning. |
|  | Reason: <br> The setting for these parameters is determined by the <br> operating environment of the Control Unit (e.g. depend- <br> ing on the device type, macro, or power unit). |

## Note:

For SINAMICS G150/G130/S150, the macros and their settings are provided in the following documentation:

References: /BAx/ $x=1,2,3$
SINAMICS G150/G130/S150 Operating Instructions

## Not for motor type

Specifies for which motor type this parameter has no significance.
ASM: Induction motor
FEM: Separately excited synchronous motor
PEM: Permanent-magnet synchronous motor
REL: Reluctance motor / SIEMOSYN motor

## Scaling

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.

The following reference variables are available:

- p2000 ... p2007: Reference speed, reference voltage, etc.
- PERCENT: 1.0 = 100 \%
- 4000H: 4000 hex $=100 \%$


## Expert list

Specifies whether this parameter is available in the expert list of the specified drive objects in the commissioning software.

1: Parameter is available in the expert list.
0 : Parameter is not available in the expert list.

## Notice:

Users assume full responsibility for using parameters marked "Expert list: 0" (parameter does not exist in the expert list).
These parameters and their functionalities have not been tested and no further user documentation is available for them (e.g. description of functions). Moreover, no support is provided for these parameters by "Technical Support" (hotline).

## Description

Explanation of the function of a parameter.

## Values

List of the possible values of a parameter.

## Recommendation

Information about recommended settings.

## Index

The name and meaning of each individual index is specified for indexed parameters.

The following applies to the values (Min, Max, Factory setting) for indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

## Bit array

For parameters with bit arrays, the following information is provided about each bit:

- Bit number and signal name
- Meaning with signal states 0 and 1
- Function diagram (optional)

The signal is shown on this function diagram.

## Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

See also: List of other relevant parameters to be considered.

## Safety notices

Important information that must be observed to avoid the risk of physical injury or material damage.

Information that must be observed to avoid any problems.
Information that the user may find useful.
Danger The description of this safety notice can be found at the beginning of this manual (see Safety Notices).

## Warning



Caution


Caution

Notice

Note

The description of this safety notice can be found at the beginning of this manual (see Safety Notices).

The description of this safety notice can be found at the beginning of this manual (see Safety Notices).

The description of this safety notice can be found at the beginning of this manual (see Safety Notices).

The description of this safety notice can be found at the beginning of this manual (see Safety Notices).

Information that the user may find useful.

### 1.1.2 Number ranges of parameters

## Note:

The following number ranges represent an overview for all of the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in Section 1.2.

Parameters are grouped into the following number ranges:
Table 1-7 Number ranges for SINAMICS

| Range |  | Description |
| :---: | :---: | :---: |
| From | To |  |
| 0000 | 0099 | Display and operation |
| 0100 | 0199 | Commissioning |
| 0200 | 0299 | Power unit |
| 0300 | 0399 | Motor |
| 0400 | 0499 | Encoder |
| 0500 | 0599 | Technology and units, motor-specific data, probes |
| 0600 | 0699 | Thermal monitoring, maximum current, operating hours, motor data, central probe |
| 0700 | 0799 | Control Unit terminals, measuring sockets |
| 0800 | 0839 | CDS, DDS data sets, motor changeover |
| 0840 | 0879 | Sequence control (e.g. signal source for ON/OFF1) |
| 0880 | 0899 | ESR, parking, control and status words |
| 0900 | 0999 | PROFIBUS/PROFIdrive |
| 1000 | 1199 | Setpoint channel (e.g. ramp-function generator) |
| 1200 | 1299 | Functions (e.g. motor holding brake) |
| 1300 | 1399 | V/f control |
| 1400 | 1799 | Control |
| 1800 | 1899 | Gating unit |
| 1900 | 1999 | Power unit and motor identification |
| 2000 | 2009 | Reference values |
| 2010 | 2099 | Communication (fieldbus) |
| 2100 | 2139 | Faults and alarms |
| 2140 | 2199 | Signals and monitoring |
| 2200 | 2359 | Technology controller |
| 2360 | 2399 | Staging, hibernation |

Table 1-7 Number ranges for SINAMICS, continued

| Range |  | Description |
| :---: | :---: | :---: |
| From | To |  |
| 2500 | 2699 | Position control (LR) and basic positioning (EPOS) |
| 2700 | 2719 | Reference values, display |
| 2720 | 2729 | Load gear |
| 2800 | 2819 | Logic operations |
| 2900 | 2930 | Fixed values (e.g. per cent, torque) |
| 3000 | 3099 | Motor identification results |
| 3100 | 3109 | Real time clock (RTC) |
| 3110 | 3199 | Faults and alarms |
| 3200 | 3299 | Signals and monitoring |
| 3400 | 3659 | Infeed control |
| 3660 | 3699 | Voltage Sensing Module (VSM), Braking Module internal |
| 3700 | 3779 | Advanced Positioning Control (APC) |
| 3780 | 3819 | Synchronization |
| 3820 | 3849 | Friction characteristic |
| 3850 | 3899 | Functions (e.g. long stator) |
| 3900 | 3999 | Management |
| 4000 | 4599 | Terminal Board, Terminal Module (e.g. TB30, TM31) |
| 4600 | 4699 | Sensor Module |
| 4700 | 4799 | Trace |
| 4800 | 4849 | Function generator |
| 4950 | 4999 | OA application |
| 5000 | 5169 | Spindle diagnostics |
| 5400 | 5499 | Line droop control (e.g. shaft generator) |
| 5500 | 5599 | Dynamic grid support (solar) |
| 5600 | 5613 | PROFlenergy |
| 5900 | 6999 | SINAMICS GM/SM/GL/SL |
| 7000 | 7499 | Parallel connection of power units |
| 7500 | 7599 | SINAMICS SM120 |
| 7700 | 7729 | External signals |
| 7770 | 7789 | NVRAM, system parameters |
| 7800 | 7839 | EEPROM read/write parameters |
| 7840 | 8399 | Internal system parameters |
| 8400 | 8449 | Real time clock (RTC) |
| 8500 | 8599 | Data and macro management |

Table 1-7 Number ranges for SINAMICS, continued

| Range |  |  |
| :---: | :---: | :--- |
| From | To |  |
| 8600 | 8799 | CAN bus |
| 8800 | 8899 | Communication Board Ethernet (CBE), PROFIdrive |
| 8900 | 8999 | Industrial Ethernet, PROFINET, CBE20 |
| 9000 | 9299 | Topology |
| 9300 | 9399 | Safety Integrated |
| 9400 | 9499 | Parameter consistency and storage |
| 9500 | 9899 | Safety Integrated |
| 9900 | 9949 | Topology |
| 9950 | 9999 | Diagnostics, internal |
| 10000 | 10199 | Safety Integrated |
| 11000 | 11299 | Free technology controller 0, 1, 2 |
| 20000 | 20999 | Free function blocks (FBLOCKS) |
| 21000 | 25999 | Drive Control Chart (DCC) |
| 50000 | 53999 | SINAMICS DC MASTER (DC control) |
| 61000 | 61001 | PROFINET |

### 1.2 List of parameters

Product: SINAMICS S120/S150, Version: 4502400, Language: eng
Objects: A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM 15 , TM150, TM15DI_DO, TM17, TM 31 , TM41, TM $54 F-M A$, TM 54 F _SL̄, VECTOR, VECTOR_AC, VECTOR_I_A $\bar{C}$




## COMM: Commissioning

MotID: Motor data identification
SS2: Safe Stop 2
SOS: Safe Operating Stop
STO: Safe Torque Off

| r0002 | TB30 operating display / TB30 op_display |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 250 | - |
| Description: | Operating display for Terminal Board 30 (TB30). |  |  |
| Value: | 0 : Module in cyclic operation |  |  |
|  | 40: Module not in cyclic operation |  |  |
|  | 60: Fault |  |  |
|  | 70: Initialization |  |  |
|  | 80: Reset active |  |  |
|  | 120: Module de-activated |  |  |
|  | 200: Wait for run-up |  |  |
|  | 250: Device signals a topology error |  |  |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |  |  |
| r0002 | TM120 operating display / TM120 op_display |  |  |
|  | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $\begin{aligned} & \text { Max } \\ & 250 \end{aligned}$ | Factory setting |
| Description: | Operating display for Terminal Module 120 (TM120) |  |  |
| Value: | 0 : Module in cyclic operation |  |  |
|  | 40: Module not in cyclic operation |  |  |
|  | 50: Alarm |  |  |
|  | 60: Fault |  |  |
|  | 70: Initialization |  |  |
|  | 120: Module de-activated |  |  |
|  | 200: Wait for booting/partial booting250: Device signals a topology error |  |  |
|  |  |  |  |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |  |  |
| r0002 <br> TM15 | TM15 operating display / TM15 op_display |  |  |
|  | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 | Max $250$ | Factory setting |
| Description: | Operating display for Terminal Module 15 (TM15). |  |  |
| Value: | 0 : Module in cyclic operation |  |  |
|  | 40: Module not in cyclic operation |  |  |
|  | 50: Alarm |  |  |
|  | 60: Fault |  |  |
|  | $\begin{array}{ll}\text { 70: } & \text { Initialization } \\ \text { 120: } & \text { Module de-activated }\end{array}$ |  |  |
|  |  |  |  |


| Notice: | 200: Wait for booting/partial booting <br> 250: Device signals a topology error |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | For several missing enable signals, the corresponding value with the highest number is displayed. |  |  |  |
| r0002 | TM | 50 operating | op_display |  |
| TM150 | Can | e changed: - | Calculated: - | Access level: 1 |
|  | Data | type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Gr | up: - | Units group: - | Unit selection: - |
|  | Not | motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 250 | F |
| Description: | Operating display for Terminal Module 150 (TM150) |  |  |  |
| Value: | 0: Module in cyclic operation |  |  |  |
|  | 40: Module not in cyclic operatio |  |  |  |
|  | 50: Alarm |  |  |  |
|  | 60: Fault |  |  |  |
|  | 70: Initialization |  |  |  |
|  | 120: Module de-activated |  |  |  |
|  | 200: Wait for booting/partial booting |  |  |  |
|  | 250: Device signals a topology error |  |  |  |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |  |  |  |
| r0002 | TM15DI/DO operating display / TM15D op_display |  |  |  |
| TM15DI_DO | Can be changed: - |  | Calculated: - | Access level: 1 |
|  | Data type: Integer16 |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: - |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 250 | - |
| Description: Value: | Operating display for Terminal Module 15 (TM15). |  |  |  |
|  | 0 0 Module in cyclic operation |  |  |  |
|  | 40: Module not in cyclic operatio |  |  |  |
|  | 50: Alarm |  |  |  |
|  | 60: Fault |  |  |  |
|  | 70: Initialization |  |  |  |
|  | 120: Module de-activated |  |  |  |
|  | 200: Wait for booting/partial booting250: Device signals a topology error |  |  |  |
|  |  |  |  |  |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |  |  |  |
| r0002 | TM17 operating display / TM17 op_display |  |  |  |
| TM17 | Can be changed: - |  | Calculated: - | Access level: 1 |
|  | Data type: Integer16 |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: - |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 250 |  |
| Description: | Operating display for Terminal Module 17 (TM17). |  |  |  |
| Value: | 0: | Module in cycli |  |  |
|  | 40: | Module not in c |  |  |
|  |  | Alarm |  |  |
|  | 60: | Fault |  |  |
|  | 70: | Initialization |  |  |
|  | 120: | Module de-activ |  |  |
|  | 200: | Wait for booting |  |  |
|  | 250: | Device signals |  |  |


| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |
| :---: | :---: |
| r0002 | TM31 operating display / TM31 op_display |
| TM31 | Can be changed: - Calculated: - Access level: 1 |
|  | Data type: Integer16 Dynamic index: - Func. diagram: |
|  | P-Group: - Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> 0 250 - |
| Description: | Operating display for Terminal Module 31 (TM31). |
| Value: | 0: Module in cyclic operation |
|  | 40: Module not in cyclic operation |
|  | 50: Alarm |
|  | 60: Fault |
|  | 70: Initialization |
|  | 120: Module de-activated |
|  | 200: Wait for booting/partial booting |
|  | 250: Device signals a topology error |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |
| r0002 | TM41 operating display / TM41 op_display |
| TM41 | Can be changed: - Calculated: - Access level: 1 |
|  | Data type: Integer16 Dynamic index: - Func. diagram: - |
|  | P-Group: - Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | 0250 |
| Description: | Operating display for Terminal Module 41 (TM41). |
| Value: | 0 : Operation - everything enabled |
|  | 10: Operation - set "enable setpoint" = "1" (p1142) |
|  | 12: Operation - RFG frozen, set "RFG start" = "1" (p1141) |
|  | 13: Operation - set "enable RFG" = "1" (p1140) |
|  | 18: Operation - brake on fault, remove fault, acknowledge |
|  | 21: Ready for operation - set "Operation enable" = "1" (p0852) |
|  | 31: Ready for switching on - set "ON/OFF1" = "0/1" (p0840) |
|  | 41: Switching on inhibited - set "ON/OFF1" = "1/0" (p0840) |
|  | 42: Switching on inhibited - set "OC/OFF2" = "1" (p0844) |
|  | 43: Switching on inhibited - set "OC/OFF3" = "1" (p0848) |
|  | 45: Switching on inhibited - remove fault cause, acknowledge fault |
|  | 46: Switching on inhibited - exit comm mode (p0009, p0010) |
|  | 70: Initialization |
|  | 120: Module de-activated |
|  | 200: Wait for booting/partial booting |
|  | 250: Device signals a topology error |
| Notice: | For several missing enable signals, the corresponding value with the highest number is displayed. |
| Note: | OC: Operating condition |
|  | RFG: Ramp-function generator |
|  | COMM: Commissioning |




| Index: | [0] = Parameter number <br> [1] = Parameter index |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: p0006 |  |  |
| Note: | Procedure: |  |  |
|  | 1. |  |  |
|  | The parameter number to be displayed should be set in index 0 . Only the monitoring parameters (read-only parameters) can be set that actually exist for the actual drive object. |  |  |
|  | If the set parameter number is not indexed, or if there is an index in index 1 that lies outside the valid range of the set parameter, then index 1 is automatically set to 0 . |  |  |
|  | 2. |  |  |
|  | The index that belongs to the parameter set in index 0 should be set in index 1 . The permissible changes in index 1 always depend on the parameter number set in index 0 . |  |  |
| p0006 | BOP operating display mode / BOP op_disp mode |  |  |
| A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 4 |
| Description: | Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for operation" and "operation". |  |  |
| Value: | 0: Operation --> r0021, otherwise r0020 <--> r0021 |  |  |
|  | 1: Operation --> r0021, otherwise r0020 |  |  |
|  | 2: Operation --> p0005, otherwise p0005 <--> r0020 |  |  |
|  | 3: Operation --> r0002, otherwise r0002 <--> r0020 |  |  |
|  | 4: p0005 |  |  |
| Dependency: Note: | Refer to: p0005 |  |  |
|  | Mode 0 ... 3 can only be selected if also r0020, r0021 are available on the drive object. |  |  |
|  | Mode 4 is available for all drive objects. |  |  |
| p0006 | BOP operating display mode / BOP op_ disp mode |  |  |
| CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, TB30, TM120, <br> TM15, TM150, <br> TM15DI_DO, TM17, <br> TM31, TM41, <br> TM54F_MA, <br> TM54F_SL | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 4 | 4 | 4 |
| Description: | Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for operation" and "operation". |  |  |
| Value: | 4: p0005 |  |  |
| Dependency: | Refer to: p0005 |  |  |
| Note: | Mode 0 ... 3 can only be selected if also r0020, r0021 are available on the drive object. |  |  |
|  | Mode 4 is available for all drive objects. |  |  |



## Notice: $\quad$ For p0009 $=10000$ the following applies:

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$
Note: The drives can only be powered up outside the device commissioning (the inverter enabled). In this case, p0009 must be 0 (Ready) and the individual drive objects must have already gone into operation (p0010).
p0009 = 1: Device configuration
At the first commissioning of the device, after booting, the device is in the "device configuration" state. To start the internal automatic first commissioning of the drive unit, p0009 should be set to 0 (Ready) after the ID for the actual topology (r0098) was transferred into the ID for the target topology (p0099). To do this, it is sufficient to set a single index value of $\mathrm{p} 0099[\mathrm{x}]$ the same as $\mathrm{r} 0098[\mathrm{x}]$. Before the device has been completely commissioned, no other parameter can be changed. After the first commissioning was carried out, in this state, when required, other basic device configuration parameters can be adapted (e.g. the basic sampling time in p0110).
p0009 = 2: Defines the drive type / function module
In this state, the drive object types and/or the function modules can be changed or selected for the individual drive objects. To do this, the drive object type can be set using p0107[0...15] and the function can be set using p0108[0...15] (refer to p0101[0...15]).
p0009 = 3: Drive basic configuration
In this state, after the device has been commissioned for the first time, basic changes can be made for the individual drive objects (e.g. sampling times in p0111, p0112, p0115 and the number of data sets in p0120, p0130, p0140, p0170, p0180).
p0009 = 4: Data set basic configuration
In this state, after the device has been commissioned for the first time, for the individual drive objects changes can be made regarding the assignment of the components (p0121, p0131, p0141, p0151, p0161) to the individual data sets and the assignment of the power unit, motor and encoder to the drive data sets ( $\mathrm{p} 0185, \ldots$ ).
p0009 = 29: Device download
If a download is made using the commissioning software, the device is automatically brought into this state. After the download has been completed, p0009 is automatically set to 0 (ready). It is not possible to manually set p0009 to this value.
p0009 = 30: Parameter reset
In order to bring the complete unit into the "first commissioning" state or to load the parameters saved using p0977, to start, p0009 must be set to this value. p0976 can then be changed to the required value.
p0009 = 50: OA application configuration
In this state, after the device has been commissioned for the first time, changes can be made for the individual drive objects regarding the activity ( p 4956 ) of the OA applications.
p0009 = 55: OA application installation
OA applications can be installed and/or uninstalled in this state.
p0009 = 101: Topology input
In this state, the DRIVE-CLiQ target topology can be entered using p9902 and p9903.
p0009 = 111: Insert drive object
This state allows a new drive object to be inserted using p9911.
p0009 = 112: Delete drive object
This state allows existing drive objects to be deleted using p9912 after the device has been commissioned for the first time.
p0009 = 113: Change drive object number
This state allows the drive object number of existing drive objects to be changed using p9913 after the device has been commissioned for the first time.
p0009 = 114: Change component number
This state allows the component number of existing components to be changed using p9914 after the device has been commissioned for the first time.
p0009 = 115: Parameter download
This state allows the complete device and drive commissioning using the parameter services.
p0009 = 117: Delete component
This state allows components to be deleted using p9917 after the device has been commissioned for the first time.

| p0010 | Infeed commissioning parameter filter / INF comm par_filt |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
| S_INF | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 1 |
| Description: | Sets the parameter filter to commission an infeed unit. |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
| Value: | 0: Ready |  |  |
|  | 1: Quick commissioning |  |  |
|  | 2: Power unit commissioning |  |  |
|  | 5: Technological application/units |  |  |
|  | 29: Only Siemens int |  |  |
|  | 30: Parameter reset |  |  |
| Note: | The drive can only be powered up outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 . |  |  |
|  | For p3900 not equal to 0 , at the end of the quick commissioning, this parameter is automatically reset to 0 . |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | Encoder DO commissioning parameter filter / EncDO com par_filt |  |  |
| ENC | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter to commission an encoder drive object. |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready |  |  |
|  | 4: Encoder commissioning |  |  |
|  | 5: Technological application/units |  |  |
|  | 29: Only Siemens int |  |  |
|  | 30: Parameter reset |  |  |
| Note: | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | Drive commissioning parameter filter / Drv comm. par_filt |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1)$, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 2800, 2846 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 10000 | 1 |
| Description: | Sets the parameter filter to commission a drive. |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
| Value: | 0: Ready |  |  |
|  | 1: Quick commissioning |  |  |
|  | 2: Power unit commissioning |  |  |
|  | 3: Motor commissioning |  |  |
|  | 4: Encoder commissioning |  |  |
|  | 5: Technological application/units |  |  |
|  | 15: Data sets |  |  |
|  | 17: Basic positioner commissioning |  |  |



| p0010 | TM15 commissioning parameter filter / TM15 comm par_filt |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: $\mathrm{C} 2(1)$, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 15 (TM15). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready |  |  |
|  | 29: Only Siemens int |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0970 |  |  |
| Note: | Only the following values are possible: $\mathrm{p} 0010=0,30$ |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | TM150 commissioning parameter filter / TM150 com par_filt |  |  |
| TM150 | Can be changed: $\mathrm{C} 2(1)$, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 150 (TM150). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready |  |  |
|  | 29: Only Siemens int |  |  |
|  | 30: Parameter reset |  |  |
| Dependency:Note: | Refer to: p0970 |  |  |
|  | Only the following values are possible: $\mathrm{p} 0010=0,30$ |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | TM15DI/DO commissioning the parameterizing filter / TM15D com par_filt |  |  |
| TM15DI_DO | Can be changed: $\mathrm{C} 2(1)$, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 15 (TM15). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | $0:$ Ready <br> 29: Only Siemens int <br> 30: Parameter reset |  |  |
| Dependency: | Refer to: p0970 |  |  |
| Note: | Only the following values are possible: p0010 = 0,30 |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |


| p0010 | TM17 commissioning parameter filter / TM17 comm par_filt |  |  |
| :---: | :---: | :---: | :---: |
| TM17 | Can be changed: $\mathrm{C} 2(1)$, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 17 (TM17). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready |  |  |
|  | 29: Only Siemens int |  |  |
|  | 30: Parameter reset |  |  |
| Dependency: Note: | Refer to: p0970 |  |  |
|  | Only the following values are possible: $00010=0,30$ |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | TM31 commissioning parameter filter / TM31 comm par_filt |  |  |
| TM31 | Can be changed: $\mathrm{C} 2(1), \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 31 (TM31). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready <br> 29: Only Siemens int <br> 30: Parameter reset |  |  |
| Dependency: Note: | Refer to: p0970 |  |  |
|  | Only the following values are possible: $\mathrm{p} 0010=0,30$ |  |  |
|  | Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1. |  |  |
| p0010 | TM41 commissioning parameter filter / TM41 comm par_filt |  |  |
| TM41 | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 30 | 0 |
| Description: | Sets the parameter filter for commissioning a Terminal Module 41 (TM41). |  |  |
|  | Setting this parameter filters out the parameters that can be written into in the various commissioning steps. |  |  |
|  | For the BOP, this setting also causes the read access operations to be filtered. |  |  |
| Value: | 0: Ready |  |  |
|  | 4: Encoder commission |  |  |
|  | 5: Technological applic |  |  |
|  | 29: Only Siemens int |  |  |
|  | 30: Parameter reset |  |  |
| Dependency: | Refer to: p0970 |  |  |
| Note: | Procedure for "Reset param | to 30 and p0970 to |  |



| p0013[0...49] | BOP user-defined list / BOP list |
| :---: | :---: |
| A_INF, B_INF, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TB30, <br> TM120, TM15, <br> TM150, TM15DI_DO, <br> TM17, TM31, TM41, <br> TM54F_MA, <br> TM54F_SL, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T Calculated: - Access level: 3 <br> Data type: Unsigned16 Dynamic index: - Func. diagram: <br> P-Group: Functions Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setti <br> 0 65535 0 |
| Description | Sets the required parameters to read and write via the Basic Operator Panel (BOP). <br> Activation: <br> 1. p0003 $=3$ (expert). <br> 2. p0013[0...49] = requested parameter number <br> 3. If required, enter p0011 = password in order to prevent non-authorized de-activation. <br> 4. p0016 = 1 --> activates the selected user-defined list. <br> De-activation/change: <br> 1. p0003 $=3$ (expert). <br> 2. If required, p0012 = p0011, in order to be authorized to change or de-activate the list. <br> 3. If required $p 0013[0 \ldots 49]=$ required parameter number. <br> 4. p0016 = 1 --> activates the modified user-defined list. <br> 5. p0003 $=0$--> de-activates the user-defined list. |
| Dependency: | Refer to: p0009, p0011, p0012, p0976 |
| Note: | The following parameters can be read and written on the Control Unit drive object: <br> - p0003 (access stage) <br> - p0009 (device commissioning, parameter filter) <br> - p0012 (BOP password acknowledgement (p0013)) <br> The following applies for the user-defined list: <br> - password protection is only available on the drive object Control Unit and is valid for all of the drive objects. <br> - p0013 cannot be included in the user-defined list for all drive objects. <br> - p0003, p0009, p0011, p0012, p0976 cannot, for the drive object Control Unit, be included in the user-defined list. <br> - the user-defined list can be cleared and de-activated "restore factory setting". <br> A value of 0 means: Entry is empty. |



| p0015 | Macro drive unit / Macro drv unit |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: C1 | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 999999 | 1 |
| Description: | Runs the corresponding macro files. |  |  |
|  | The selected macro file must be available on the memory card/device memory. |  |  |
|  | Example: |  |  |
|  | p0015 = 6 --> the macro file PM000006.ACX is run. |  |  |
| Dependency: | Refer to: p0700, p1000, p1500, r8570 |  |  |
| Caution: | When executing a specific macro, the corresponding programmed settings are made and become active. |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | The macros in the specified directory are displayed in r8570. r8570 is not in the expert list of the commissioning software. |  |  |
|  | Macros available as standard are described in the technical documentation of the particular product. |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |
| p0016 | Activate BOP user-defined list / BOP user list act |  |  |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $\mathrm{C} 1, \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Setting for activating/de-activating the user-defined list for the Basic Operator Panel (BOP). If p0016 = 1, then it is only possible to access parameters in the parameter list ( p 0013 ). |  |  |
| Value: | 0: BOP user-defined list de-activated <br> 1: BOP user-defined list activated |  |  |
| Dependency: | Refer to: p0011, p0012, p0013 |  |  |
| Note: | The user-defined list can only be de-activated with p0011 = p0012 |  |  |
| $\begin{aligned} & \text { r0018 } \\ & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Control Unit firmware version / CU FW version |  |  |
|  | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 4294967295 | - |
| Description: | Displays the firmware version of the Control Unit. |  |  |
| Dependency: | Refer to: r0128, r0148, r0158, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |


| r0019.0... 14 | CO/BO: Control word BOP / STW BOP |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: |  |
|  | P-Group: Displays, signals | Units group: - | Unit selection: |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the control word for the Basic Operator Panel (BOP). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 ON / OFF (OFF1) | ON | OFF (OFF1) | - |
|  | 01 No coast-down / coast-down (OFF2) | No coast down | Coast down (OFF2) | - |
|  | 02 No Quick Stop / Quick Stop (OFF3) | No Quick Stop | Quick Stop (OFF3) | - |
|  | 07 Acknowledge fault (0-> 1) | Yes | No | - |
|  | 13 Motorized potentiometer raise | Yes | No | - |
|  | 14 Motorized potentiometer lower | Yes | No | - |
| r0020 | Speed setpoint smoothed / n_set smth |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Displays, signals | Calculated: - | Access level: 2 |  |
|  |  | Dynamic index: - | Func. diagram: | 6799 |
|  |  | Units group: 3_1 | Unit selection: |  |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |  |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |  |
| Description: | Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). |  |  |  |
| Dependency: | Refer to: r0060 |  |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |  |
|  | The speed setpoint is available smoothed (r0020) and unsmoothed (r0060). |  |  |  |
| $\overline{\mathrm{r} 0020}$ <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Velocity setpoint smoothed / v_set smth |  |  |  |
|  | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: | 6799 |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: |  |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |  |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |  |
| Description: | Displays the currently smoothed velocity setpoint at the input of the velocity controller or U/f characteristic (after the interpolator). |  |  |  |
| Dependency: | Refer to: r0060 |  |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060). |  |  |  |


| r0021 | CO: Actual speed smoothed / n_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 1680 $4710,6799$ |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the smoothed actual value of the motor speed. |  |  |
| Dependency: | Refer to: r0022, r0063 |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity.The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063). |  |  |
|  |  |  |  |

## r0021

CO: Actual velocity smoothed / v_act smooth

Data type: FloatingPoint32
Calculated: -
SERVO_I_AC (Lin)
P-Group: Displays, signals
Not for motor type: -
Units group: 4_1
Scaling: p2000
Min - Max
$-[\mathrm{m} / \mathrm{min}] \quad-[\mathrm{m} / \mathrm{min}]$
Access level: 2
Func. diagram: 1580, 1680, 4710, 6799

Unit selection: p0505
Expert list: 1
Factory setting

- [m/min]

Description: Displays the smoothed actual value of the motor velocity
Dependency: Refer to: r0022, r0063
Note: $\quad$ Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).

| r0021 | CO: Actual speed smoothed / n_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4710, 6799 |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the smoothed actual value of the motor speed. |  |  |
|  | For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0021. |  |  |
| Dependency: | Refer to: r0022, r0063 |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063). |  |  |
|  | For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated. |  |  |


| r0022 | Speed actual value rpm smoothed / n_act rpm smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 1680, 4710, 6799 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the smoothed actual value of the motor speed. |  |  |
| Dependency: | Refer to: r0021, r0063 |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063). |  |  |

## r0022

SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)

## Actual velocity smoothed / v_act smooth

Can be changed: -
Data type: FloatingPoint32

P-Group: Displays, signals
Not for motor type: -
Min

- [m/min]

Calculated: -
Dynamic index: -

Units group: -
Scaling: p2000
Max

- [m/min]

Access level: 2
Func. diagram: 1580, 1680, 4710, 6799

Unit selection: -
Expert list: 1
Factory setting

- [m/min]

Description: Displays the smoothed actual value of the motor velocity.
Dependency:
Refer to: r0021, r0063
Note:
Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).

## r0022

Speed actual value rpm smoothed / n_act rpm smooth
VECTOR,
VECTOR_AC,
VECTOR_I_AC
Can be changed
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [rpm]

Displays the smoothed actual value of the motor speed.
r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.
For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0022.
Dependency: Refer to: r0021, r0063
Note: $\quad$ Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).
For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.

| r0024 | CO: Line supply frequency smoothed / f_line smooth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [Hz] | Max - [Hz] | Factory setting - [Hz] |
| Description: | Displays the smoothed line supply frequency. |  |  |
| Dependency: | Refer to: r0066 |  |  |
| Note: | Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The line frequency is available smoothed (r0024) and unsmoothed (r0066). |  |  |
|  | A positive sign of the frequency is obtained when the line supply phases $\mathrm{U}, \mathrm{V}$ and W are connected with the correct phase sequence. |  |  |
|  | A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a negative direction of the rotating field of the 3-phase line supply voltage. |  |  |
| r0024 | Output frequency smoothed / f_outp smooth |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1690, 5300, 5730, 6799 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [Hz] | Max - [Hz] | Factory setting - [Hz] |
| Description: | Displays the smoothed converter frequency. |  |  |
| Dependency: | Refer to: r0066 |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The output frequency is available smoothed (r0024) and unsmoothed (r0066). |  |  |


| r0025[0...3] | CO: Input voltage smoothed / U_inp smooth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the smoothed actual value of the input voltage. |  |  |
| Index: | [0] = Voltage at input termin <br> [1] = Voltage at VSM or at in <br> [2] = Voltage of the voltage <br> [3] = Smoothed voltage of vo | from line supply mo the line filter ne supply model m line supply model |  |
| Dependency: | Refer to: r0072 |  |  |
| Note: | Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signals are not suitable as process quantity and may only be used as display quantities. |  |  |
|  | The input voltages are available smoothed (r0025) and unsmoothed (r0072). |  |  |
|  | Re r0025[0]: |  |  |
|  | Pulsed voltage at the line supply input terminals of the power unit. The value is calculated from the modulation depth r0074 and is therefore only correct in the closed-loop controlled mode and when the pulses are enabled. |  |  |
|  | Absolute voltage at the inpu from the VSM measured val | line filter or the con 662 and is therefor | VSM. The value is calculated SM is not connected. |

Re r0025[2]:
Estimated value for the voltage of the voltage source that is calculated in the voltage model of the line supply PLL. Re r0025[3]:
Smoothed display value of the filtered source voltage from r0072[3].

## r0025

SERVO,
SERVO_AC,
SERVO_I_AC, VEC-
TOR, VECTOR_AC, VECTOR_I_AC

CO: Output voltage smoothed / U_outp smooth

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [Vrms]

Calculated: -
Dynamic index: -
Units group: -
Scaling: p2001
Max

- [Vrms]


## Access level: 2

Func. diagram: 1690, 5730, 6799 Unit selection: -
Expert list: 1
Factory setting

- [Vrms]

Description: Displays the smoothed output voltage of the power unit.
Dependency: Refer to: r0072
Note: $\quad$ Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The output voltage is available smoothed (r0025) and unsmoothed (r0072).

| r0026 | CO: DC link voltage smoothed / Vdc smooth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 2 |
| S_INF | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799, 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min $-[V]$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting <br> - [V] |
| Description: | Displays the smoothed actual value of the DC link voltage. |  |  |
| Dependency: | Refer to: r0070 |  |  |
| Notice: | This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used. |  |  |
| Note: | A_INF, B_INF, S_INF: smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The DC link voltage is available smoothed (r0026) and unsmoothed (r0070). |  |  |


| r0026 | CO: DC link voltage smoothed / Vdc smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, <br> SERVO_I_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -[V] \end{gathered}$ | Factory setting - [V] |
| Description: | Displays the smoothed actual value of the DC link voltage. |  |  |
| Dependency: | Refer to: r0070 |  |  |
| Notice: | For SINAMICS S120 AC Drive (AC/AC) the following applies: |  |  |
|  | When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter. |  |  |
| Note: | SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The DC link voltage is available smoothed (r0026) and unsmoothed (r0070). |  |  |


| r0026 | CO: DC link voltage smoothed / Vdc smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC, VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6799, 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$ | Factory setting $-[V]$ |
| Description: | Displays the smoothed actual value of the DC link voltage. |  |  |
| Dependency: | Refer to: r0070 |  |  |
| Notice: | For SINAMICS S120 AC Drive (AC/AC) the following applies: |  |  |
|  | When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter. |  |  |
| Note: | SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The DC link voltage is availa | (0026) and unsmooth |  |


| r0027 | CO: Absolute actual current smoothed / I_act abs val smth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO, <br> SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799, $8850,8950$ |
| SERVO_I_AC, VECTOR, VECTOR_AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the smoothed absolute actual current value. |  |  |
| Dependency: | Refer to: r0068 |  |  |
| Notice: | This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used. |  |  |
| Note: | A_INF, S_INF, VECTOR: Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | SERVO: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068). |  |  |



| r0028 | Modulation depth smoothed / Mod_depth smth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799, 8950 |
| TOR, VECTOR_AC, VECTOR I AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{gathered} \text { Max } \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the smoothed actual value of the modulation depth. |  |  |
| Dependency: | Refer to: r0074 |  |  |
| Note: | A_INF: Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The modulation depth is ava | (r0028) and unsmoo |  |


| r0029 | Reactive current actual value smoothed /I_react smooth |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ Arms $]$ | $-[$ Arms $]$ |  |
| Description: | Displays the smoothed actual value of the reactive current component. |  |  |
| Note: | Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The reactive current actual value is available smoothed (roo29) and unsmoothed (r0076). |  |  |



Note: | Smoothing time constant $=300 \mathrm{~ms}$ |
| :--- |
| The signal is not suitable as a process quantity and may only be used as a display quantity. |
| The active current actual value is available smoothed (r0030) and unsmoothed (r0078). |

| r0030 | Current actual value torque-generating smoothed / Iq_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799 |
| TOR, VECTOR AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the smoothed torque-generating actual current. |  |  |
| Dependency: | Refer to: r0078 |  |  |
| Note: | SERVO: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | VECTOR: Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The following applies for SERVO: |  |  |
|  | The torque-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]). |  |  |
|  | The following applies for VECTOR: |  |  |
|  | The torque-generating current actual value is available smoothed (r0030 with 300 ms ) and unsmoothed (r0078). |  |  |


| r0030 | Current actual value force generating smoothed / Iq_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730,6799 |
| SERVO_I_AC (Lin) | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the smoothed force-generating actual current. |  |  |
| Dependency: | Refer to: r0078 |  |  |
| Note: | SERVO: Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | VECTOR: Smoothing time constant $=300 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  |  |  |  |
|  | The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]). |  |  |
|  | The following applies for VECTOR: |  |  |
|  | The torque-generating current actual value is available smoothed (r0030 with 300 ms ) and unsmoothed (r0078). |  |  |


| r0031 | Actual torque smoothed / M_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799 |
| TOR, VECTOR AC, | P-Group: Displays, signals | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [ Nm ] | Max <br> - [Nm] | Factory setting <br> - [ Nm ] |
| Description: | Displays the smoothed torque actual value. |  |  |
| Dependency: | Refer to: r0080 |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The active current actual value is available s | moothed (r0031) and |  |


| r0031 | Force actual value smoothed / F_act smooth |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730,6799 |
| SERVO_I_AC (Lin) | P-Group: Displays, signals | Units group: $8 \_1$ | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ |
| Description: | Displays the smoothed force setpoint. |  |  |
| Dependency: | Refer to: r0080 |  |  |
| Note: | Smoothing time constant = 100 ms |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |


| r0032 | CO: Active power actual value smoothed / P_actv_act smth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO, <br> SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799, 8750, 8850, 8950 |
| SERVO_I_AC, VECTOR, VECTOR_AC, | P-Group: Displays, signals | Units group: 14_10 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min <br> - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the smoothed actual value of the active power. |  |  |
| Dependency: | Refer to: r0082 |  |  |
| Notice: | This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used. |  |  |
| Note: | Significance for the drive: Power output at the motor shaft |  |  |
|  | Significance for the infeed: Line power drawn |  |  |
|  | For A_INF, B_INF and S_INF the following applies: |  |  |
|  | The active power is available smoothed (r0032 with 300 ms ) and unsmoothed (r0082). |  |  |
|  | The following applies for SERVO: |  |  |
|  | The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]). |  |  |
|  | For VECTOR and VECTORMV, the following applies: |  |  |
|  | The active power is available smoothed (r0032 with 100 ms ) and unsmoothed (r0082). |  |  |


| r0032 | CO: Active power actual value smoothed / P_actv_act smth |  |  |
| :---: | :---: | :---: | :---: |
| B_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6799, 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: 14_10 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the smoothed actual value of the active power. |  |  |
| Dependency: | Refer to: r0082 |  |  |
| Notice: | This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used. |  |  |
|  | For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing. |  |  |
| Note: | Significance for the drive: Power output at the motor shaft |  |  |
|  | Significance for the infeed: Line power drawn |  |  |
|  | For A_INF, B_INF and S_INF the following applies: |  |  |
|  | The active power is available smoothed (r0032 with 300 ms ) and unsmoothed (r0082). |  |  |

The following applies for SERVO:
The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]). For VECTOR and VECTORMV, the following applies:
The active power is available smoothed (r0032 with 100 ms ) and unsmoothed (r0082).

| r0033 | Torque utilization smoothed / M_util smooth |
| :---: | :---: |
| SERVO, <br> SERVO AC, <br> SERVO_I_AC | Can be changed: - Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8012 <br> P-Group: Displays, signals Units group: - Unit selection: - <br> Not for motor type: - Scaling: PERCENT Expert list: 1 <br> Min Max Factory setting <br> $-[\%]$ $-[\%]$ $-[\%]$ |
| Description: | Displays the smoothed torque utilization as a percentage. <br> The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196. |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. <br> The torque utilization is available smoothed (r0033) and unsmoothed (r0081). <br> For M_set total (r0079) > M_max offset (p1532), the following applies: <br> - demanded torque = M_set total - M_max offset <br> - actual torque limit = M_max upper effective (r1538) - M_max offset <br> For M_set total (r0079) <= M_max offset (p1532), the following applies: <br> - demanded torque = M_max offset - M_set total <br> - actual torque limit = M_max offset - M_max lower effective (r1539) <br> For the actual torque limit $=0$, the following applies: $\mathrm{rO033}=100 \%$ <br> For the actual torque limit < 0, the following applies: r0033 $=0 \%$ |
| r0033 | Force utilization smoothed / F_util smooth |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: - Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8012 <br> P-Group: Displays, signals Units group: - Unit selection: - <br> Not for motor type: - Scaling: PERCENT Expert list: 1 <br> Min Max Factory setting <br> $-[\%]$ $-[\%]$ $-[\%]$ |
| Description: | Displays the smoothed force utilization as a percentage. <br> The force utilization is obtained from the required smoothed force referred to the force limit. |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. <br> The force utilization is available smoothed (r0033) and unsmoothed (r0081). <br> For F_set total (r0079) > F_max offset (p1532), the following applies: <br> - demanded torque = F_set total - F_max offset <br> - actual force limit = F_max upper effective (r1538) - F_max offset <br> For F_set total (r0079) <= F_max offset ( p 1532 ), the following applies: <br> - demanded force = F_max offset - F_set total <br> - actual force limit = F_max offset - F_max lower effective (r1539) <br> For the actual force limit = 0, the following applies: r0033 = $100 \%$ <br> For the actual force limit < 0, the following applies: r0033 $=0 \%$ |


| r0033 | Torque utilization smoothed / M_util smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8012 |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196. |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | The torque utilization is available smoothed (r0033) and unsmoothed (r0081). |  |  |
|  | For M_set total (r0079) > 0, the following applies: |  |  |
|  | - Required torque $=$ M_set total |  |  |
|  | - Actual torque limit = M_max upper effective (r1538) |  |  |
|  | For M_set total (r0079) <= 0, the following applies: |  |  |
|  | - Required torque $=-\mathrm{M}$ _set total |  |  |
|  | - Actual torque limit = - M_max lower effective (r1539) |  |  |
|  | For the actual torque limit = 0, the following applies: r0033 = 100\% |  |  |
|  | For the actual torque limit < 0, the following applies: r0033-0\% |  |  |


| r0034 | CO: Motor utilization / Motor utilization |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8017 |
| TOR, VECTOR_AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: ASM, REL, FEM | Scaling: PERCENT | Expert list: 1 |
|  | Min - [\%] | Max - [\%] | Factory setting - [\%] |
| Description: | Displays the motor utilization from motor temperature model 1 (12t) or 3. |  |  |
| Dependency: | The motor utilization is only determined for permanent-magnet synchronous motors when the motor temperature model 1 (12t) or 3 is activated. |  |  |
|  | For motor temperature model $1(12 \mathrm{t})(\mathrm{p} 0612.0=1)$, the following applies: |  |  |
|  | - r0034 $=($ motor model temperature - 40 K$) /(\mathrm{p} 0605-40 \mathrm{~K})$ * $100 \%$ |  |  |
|  | For motor temperature model $3(\mathrm{p} 0612.2=1)$, the following applies: |  |  |
|  | - r0034 = (motor model temperature - p0613) / (p5390-p0613) * 100 \% |  |  |
|  | Refer to: p0611, p0612, p0615 |  |  |
| Notice: | After the drive is switched on, the system starts to determine the motor temperature with an assumed model value. This means that the value for the motor utilization is only valid after a stabilization time. |  |  |
| Note: | Smoothing time constant $=100 \mathrm{~ms}$ |  |  |
|  | The signal is not suitable as a process quantity and may only be used as a display quantity. |  |  |
|  | For r0034 = -200.0 \%, the following applies: |  |  |
|  | The value is invalid (e.g. the motor temperature model is not activated or has been incorrectly parameterized). |  |  |


| r0035 | CO: Temperature input / Temp_input |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850,8950 |
|  | P-Group: Displays, signals | Units group: $21 \_1$ | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-\left[{ }^{\circ} \mathrm{C}\right]$ | $-\left[{ }^{\circ} \mathrm{C}\right]$ |  |





| p0040 | Reset energy consumption display / Energy usage reset |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Setting to reset the display in r0039 and r0041. |  |  |
|  | Procedure: |  |  |
|  | Set p0040-0 --> 1 |  |  |
|  | The displays are reset and the parameter is automatically set to zero. |  |  |
| Dependency: | Refer to: r0039 |  |  |
| r0041 | Energy consumption saved / Energy cons saved |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [kWh] | Max <br> - [kWh] | Factory setting - [kWh] |
| Description: | Displays the saved energy referred to 100 operating hours. |  |  |
| Dependency: | Refer to: p0040 |  |  |
| Note: | This display is used for a fluid-flow machine. |  |  |
|  | The flow characteristic is entered into p3320 ... p3329. |  |  |
|  | For an operating time of below 100 hours, the display is interpolated up to 100 hours. |  |  |


| p0045 | Display values smoothing time constant / Disp_val T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[m s]$ | $150.00[\mathrm{~ms}]$ |  |
| Description: | Sets the smoothing time constant for the following display values: |  |  |
|  | r5515[1], r5516[1] |  |  |


| p0045 | Display values smoothing time constant / Disp_val T_smooth |  |  |
| :---: | :---: | :---: | :---: |
| S_INF, SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4715, 5610, 5730, 6714, 8012 |
| TOR, VECTOR_AC, VECTOR_I_AC | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ms] | $\begin{aligned} & \text { Max } \\ & 10000.00 \text { [ms] } \end{aligned}$ | Factory setting 1.00 [ms] |
| Description: | Sets the smoothing time constant for the following display values: <br> SERVO: r0078[1], r0079[1], r0081 (calculated from the quantities smoothed with p0045), r0082[1]. VECTOR: r0063[1], r0068[1], r0080[1], r0082[1]. |  |  |


| r0046.0... 29 | CO/BO: Missing enable sig / Missing enable sig |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A_INF, S_INF |  | be changed: - | Calculated: - | Acce |  |
|  |  | type: Unsigned32 | Dynamic index: - | Func | 893 |
|  |  | roup: Displays, signals | Units group: - | Unit |  |
|  |  | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Displays missing enable signals that are preventing the closed-loop infeed control from being commissioned. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | OFF1 enable missing | Yes | No | - |
|  | 01 | OFF2 enable missing | Yes | No | - |
|  | 03 | Operation enable missing | Yes | No | - |
|  | 08 | EP terminals enable missing | Yes | No | - |
|  | 16 | OFF1 enable internal missing | Yes | No | - |
|  | 17 | OFF2 enable internal missing | Yes | No | - |
|  | 19 | Pulse enable internal missing | Yes | No | - |
|  | 26 | Infeed inactive or not operational | Yes | No | - |
|  | 29 | Cooling unit ready signal missing | Yes | No | - |
| Dependency: | Refer to: r0002 |  |  |  |  |
| Note: | The value r0046 $=0$ indicates that all enable signals for the infeed are present. |  |  |  |  |
|  | Bit $00=1$ (enable signal missing), if: |  |  |  |  |
|  | - the signal source in p0840 is a 0 signal. |  |  |  |  |
|  | - there is a "switching on inhibited". |  |  |  |  |
|  | Bit $01=1$ (enable signal missing), if: |  |  |  |  |
|  | - the signal source in p0844 or p0845 is a 0 signal. |  |  |  |  |
|  | Bit $03=1$ (enable signal missing), if: |  |  |  |  |
|  | - the signal source in p0852 is a 0 signal. |  |  |  |  |
|  | Bit $08=1$ (enable signal missing), if: |  |  |  |  |
|  | - the pulse enable via terminal EP is missing (booksize: X 21 , chassis: X 41 ). |  |  |  |  |
|  | Bit $16=1$ (enable signal missing), if: |  |  |  |  |
|  | - there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$. |  |  |  |  |
|  | Bit $17=1$ (enable signal missing), if: |  |  |  |  |
|  | - the commissioning mode is selected ( $\mathrm{p} 0009>0$ or $\mathrm{p} 0010>0$ ) or there is an OFF2 fault response or the OFF1 sig nal source (p0840) is changed. |  |  |  |  |
|  | Bit $19=1$ (internal pulse enable missing), if: |  |  |  |  |
|  | - synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle |  |  |  |  |
|  | Bit $26=1$ (enable signal missing), if: |  |  |  |  |
|  | - the infeed is inactive (p0105 = $)$ ) or is not operational (r7850[DO-Index] $=0$ ). |  |  |  |  |
|  | Bit $29=1$ (enable signal missing), if: |  |  |  |  |
|  | - the cooling unit ready signal via BI: $\mathrm{p} 0266[1]$ missing. |  |  |  |  |

r0046.0... 29 CO/BO: Missing enable sig / Missing enable sig

| Bit | Signal name | $\mathbf{1}$ signal | $\mathbf{0}$ signal | FP |
| :--- | :--- | :--- | :--- | :--- |
| 00 | OFF1 enable missing | Yes | No | - |
| 01 | OFF2 enable missing | Yes | No | - |
| 08 | EP terminals enable missing | Yes | No | - |


r0046.0... 31 CO/BO: Missing enable sig / Missing enable sig

SERVO,
SERVO_AC,
SERVO_I_AC, VEC-
TOR, VECTOR_AC,
VECTOR_I_AC

Can be changed: -
Data type: Unsigned32
P-Group: Displays, signals
Not for motor type: -
Min

## Calculated: -

Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 1
Func. diagram: 2634
Unit selection: -
Expert list: 1
Factory setting

Description: Displays missing enable signals that are preventing the closed-loop drive control from being commissioned.
Bit field:

| Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: |
| 00 | OFF1 enable missing | Yes | No | - |
| 01 | OFF2 enable missing | Yes | No | - |
| 02 | OFF3 enable missing | Yes | No | - |
| 03 | Operation enable missing | Yes | No | - |
| 04 | Armature short-circuit / DC braking, enable missing | Yes | No | $\begin{aligned} & 7014, \\ & 7016 \end{aligned}$ |
| 05 | STOP2 enable missing | Yes | No | - |
| 06 | STOP1 enable missing | Yes | No | - |
| 08 | Safety enable missing | Yes | No | - |
| 09 | Infeed enable missing | Yes | No | - |
| 10 | Ramp-function generator enable missing | Yes | No | - |
| 11 | Ramp-function generator start missing | Yes | No | - |
| 12 | Setpoint enable missing | Yes | No | - |
| 16 | OFF1 enable internal missing | Yes | No | - |
| 17 | OFF2 enable internal missing | Yes | No | - |
| 18 | OFF3 enable internal missing | Yes | No | - |
| 19 | Pulse enable internal missing | Yes | No | - |
| 20 | Armature short-circuit/DC braking internal enable missing | Yes | No | $\begin{aligned} & 7014, \\ & 7016 \end{aligned}$ |
| 21 | STOP2 enable internal missing | Yes | No | - |
| 22 | STOP1 enable internal missing | Yes | No | - |
| 25 | Function bypass active | Yes | No | - |
| 26 | Drive inactive or not operational | Yes | No | - |
| 27 | De-magnetizing not completed | Yes | No | - |
| 28 | Brake open missing | Yes | No | - |
| 29 | Cooling unit ready signal missing | Yes | No | - |



Bit 22: Being prepared
Bit $26=1$ (enable signal missing), if:

- the drive is inactive ( $\mathrm{p} 0105=0$ ) or is not operational (r7850[DO-Index]=0).
- All power units of a parallel connection are deactivated (p0125, p0895).

Bit $27=1$ (enable signal missing), if:

- de-magnetizing has still not been completed (only for vector).

Bit $28=1$ (enable signal missing), if:

- the holding brake is closed or has still not been opened.

Bit $29=1$ (enable signal missing), if:

- the cooling unit ready signal via BI : $\mathrm{p} 0266[1]$ missing.

Bit $30=1$ (speed controller inhibited), if one of the following reasons is present:

- A 0 signal is available via $\mathrm{BI}: \mathrm{p} 0856$.
- the function generator with current input is active.
- the measuring function "current controller reference frequency characteristic" is active.
- the pole position identification is active.
- motor data identification is active (only certain steps).

Bit $31=1$ (enable signal missing), if:

- the speed setpoint from jog 1 or 2 is entered.

| r0046.0... 31 | CO/BO: Missing enable sig / Missing enable sig |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: - C |  | ulated: - | Access level: 1 |  |
|  | Data type: Unsigned32 D |  | amic index: - | Func. diagram: 2634 |  |
|  | P-Group: Displays, signals U |  | group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | ing: - | Expert list: 1 |  |
|  | Min |  |  | Factory setting |  |
|  | - |  |  | - |  |
| Description: | Displays missing enable signals that are preventing the closed-loop drive control from being commissioned. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | OFF1 enable missing | Yes | No | - |
|  | 01 | OFF2 enable missing | Yes | No | - |
|  | 02 | OFF3 enable missing | Yes | No | - |
|  | 03 | Operation enable missing | Yes | No | - |
|  | 04 | Armature short-circuit / DC braking, enable missing | Yes | No | $\begin{aligned} & 7014, \\ & 7016 \end{aligned}$ |
|  | 05 | STOP2 enable missing | Yes | No | - |
|  | 06 | STOP1 enable missing | Yes | No | - |
|  | 08 | Safety enable missing | Yes | No | - |
|  | 09 | Infeed enable missing | Yes | No | - |
|  | 10 | Ramp-function generator enable missing | Yes | No | - |
|  | 11 | Ramp-function generator start missing | Yes | No | - |
|  | 12 | Setpoint enable missing | Yes | No | - |
|  | 16 | OFF1 enable internal missing | Yes | No | - |
|  | 17 | OFF2 enable internal missing | Yes | No | - |
|  | 18 | OFF3 enable internal missing | Yes | No | - |
|  | 19 | Pulse enable internal missing | Yes | No | - |
|  | 20 | Armature short-circuit/DC braking internal enable missing | Yes | No | $\begin{aligned} & 7014, \\ & 7016 \end{aligned}$ |
|  | 21 | STOP2 enable internal missing | Yes | No | - |
|  | 22 | STOP1 enable internal missing | Yes | No | - |
|  | 25 | Function bypass active | Yes | No | - |
|  | 26 | Drive inactive or not operational | Yes | No | - |
|  | 27 | De-magnetizing not completed | Yes | No | - |
|  | 28 | Brake open missing | Yes | No | - |
|  | 29 | Cooling unit ready signal missing | Yes | No | - |
|  | 30 | Velocity controller inhibited | Yes | No | - |
|  | 31 | Jog setpoint active | Yes | No | - |
| Dependency: | Refer to: r0002 |  |  |  |  |

Note:
The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p 1230 has a 1 signal

Bit 05, Bit 06: Being prepared
Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.

STO selected via terminals:

- the pulse enable via terminal EP is missing (booksize: X21, chassis: X41), or the signal source in p9620 is for a 0 signal.
STO selected via PROFIsafe or TM54F:
- A safety-relevant signal is present with a STOP A response.

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit 11 = 1 (enable signal missing) if the velocity setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the velocity setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal.
Bit $16=1$ (enable signal missing), if:
- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive $(\mathrm{p} 0105=0)$ or is not operational (r7850[DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit 21 = 1 (enable signal missing), if:
The pulses have been enabled and the velocity setpoint has still not been enabled, because:

- the holding brake opening time ( p 1216 ) has still not expired.
- the motor has still not been magnetized (induction motor).

Bit 22: Being prepared
Bit $26=1$ (enable signal missing), if:

- the drive is inactive $(\mathrm{p} 0105=0)$ or is not operational (r7850[DO-Index]=0).


|  | 43: | MotID: Commutating angle, step 4 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 45: | MotID: Commutating angle rotating, step 1 |  |  |
|  | 46: | MotID: Commutating angle rotating, step 2 |  |  |
|  | 47: | MotID: Commutating angle rotating, step 3 |  |  |
|  | 48: | MotID: Commutating angle rotating complete |  |  |
|  | 50: | MotID: kT determination, step 1 |  |  |
|  | 51: | MotID: kT determination, step 2 |  |  |
|  | 52: | MotID: kT determination, step 3 |  |  |
|  | 53: | MotID: kT determination evaluation |  |  |
|  | 54: | MotID: kT determination end |  |  |
|  | 60: | MotID: Reluctance constant measurement, step 1 |  |  |
|  | 61: | MotID: Reluctance constant measurement, step 2 |  |  |
|  | 62: | MotID: Reluctance constant measurement, step 3 |  |  |
|  | 63: | MotID: Reluctance constant measurement end |  |  |
|  | 70: | MotID: Moment of inertia measurement, step 1 |  |  |
|  | 71: | MotID: Moment of inertia measurement, step 2 |  |  |
|  | 72: | MotID: Moment of inertia measurement, step 3 |  |  |
|  | 73: | MotID: Moment of inertia measurement end |  |  |
|  | 80: | MotID: Magnetizing inductance measurement, step 1 |  |  |
|  | 81: | MotID: Magnetizing inductance measurement, step 2 |  |  |
|  | 82: | MotID: Magnetizing inductance measurement, step 3 |  |  |
|  | 83: | MotID: Magnetizing inductance measurement evaluation |  |  |
|  | 84: | MotID: Magnetizing inductance measurement end |  |  |
|  | 90: | MotID: Saturation characteristic. step 1 |  |  |
|  | 91: | MotID: Saturation characteristic. step 2 |  |  |
|  | 92: | MotID: Saturation characteristic. step 3 |  |  |
|  | 93: | MotID: Saturation characteristic evaluation 1 |  |  |
|  | 94: | MotID: Saturation characteristic evaluation 2 |  |  |
|  | 95: | MotID: Saturation characteristic end |  |  |
|  | 96: | MotID: Converter model, step 1 |  |  |
|  | 97: | MotID: Converter model, step 2 |  |  |
|  | 98: | MotID: Converter model, step 3 |  |  |
|  | 99: | MotID: Converter model, step 4 |  |  |
|  | 100: | PollD: Motion-based, step 1 |  |  |
|  | 101: | PolID: Motion-based, step 2 |  |  |
|  | 102: | PollD: Motion-based, step 3 |  |  |
|  | 103: | PolID: Motion-based, step 4 |  |  |
|  | 104: | PollD: Motion-based, step 5 |  |  |
| r0047 | Motor data identification and speed controller optimization / MotlD and n_opt |  |  |  |
| VECTOR, | Can be changed: - |  | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: Integer16 |  | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 300 | - |
| Description: | Displays the actual status for the motor data identification (stationary measurement) and the speed/velocity controller optimization (rotating measurement). |  |  |  |
| Value: | 0 : | No measurement |  |  |
|  | 115: | Measurement q leakage inductance (part 2) |  |  |
|  | 120: | Speed controller optimization (vibration test) |  |  |
|  | 140: | Calculate speed controller setting |  |  |
|  | 150: | Measurement, moment of inertia |  |  |
|  | 170: | Measurement, magnetizing current and saturation characteristic |  |  |
|  | 190: | Speed encoder test |  |  |
|  | 195: | Measurement q leakage inductance (part 1) |  |  |
|  | 200: | Rotating measurement selected |  |  |
|  | 210: | Pole position identification selected |  |  |
|  | 220: | identification, leakage inductance |  |  |
|  | 230: | Identification, rotor time constant |  |  |
|  | 240: | Identification, stator inductance |  |  |
|  | 250: | Identification, stator inductance LQLD |  |  |



Note: The drive data set changeover is suppressed when selecting the motor identification, during the rotating measurement, the encoder calibration and the friction characteristic record.

| r0056.1.. 15 | CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 2526 |  |
| SERVO__AC | P-Group: Displays, signals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |
| Description: | Displays the status word of the closed-loop control. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 01 De-magnetizing completed | Yes | No | - |
|  | 04 Magnetizing completed | Yes | No | 2701 |
|  | 08 Field weakening active | Yes | No | - |
|  | 14 Vdc_max controller active | Yes | No | - |
|  | 15 Vdc_min controller active | Yes | No | - |
| Note: | Re bit 04: |  |  |  |
|  | The bit is immediately set after power-on |  |  |  |
|  | Exception: |  |  |  |
|  | For an induction motor with brake (except for $\mathrm{p} 1215=2$ ), the bit is only set when $60 \%$ of the reference flux is reached. |  |  |  |

r0056.0...15 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl

VECTOR_AC, VECTOR_I_AC

Data type: Unsigned16
P-Group: Displays, signals
Not for motor type: -
Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Min Max

Description: Displays the status word of the closed-loop control.
Bit field:

| Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: |
| 00 | Initialization completed | Yes | No | - |
| 01 | De-magnetizing completed | Yes | No | - |
| 02 | Pulse enable present | Yes | No | - |
| 03 | Soft starting present | Yes | No | - |
| 04 | Magnetizing completed | Yes | No | - |
| 05 | Voltage boost when starting | Active | Inactive | 6300 |
| 06 | Acceleration voltage | Active | Inactive | 6300 |
| 07 | Frequency negative | Yes | No | 6719 |
| 08 | Field weakening active | Yes | No | - |
| 09 | Voltage limit active | Yes | No | 6714 |
| 10 | Slip limit active | Yes | No | 6310 |
| 11 | Frequency limit active | Yes | No | 6719 |
| 12 | Current limiting controller voltage output active | Yes | No | - |
| 13 | Current/torque limiting | Active | Inactive | 6060 |
| 14 | Vdc_max controller active | Yes | No | 6220, |
|  |  |  |  | 6320 |
| 15 | Vdc_min controller active | Yes | No | 6220, |
|  |  |  |  | 6320 |



| r0061 | CO: Actual speed unsmoothed / n_act unsmoothed |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 4710, 4715 |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the unsmoothed actual speed values sensed by the encoders. |  |  |
| Note: | The speed actual value within a PROFIBUS cycle (r2064[1]) is averaged and displayed. |  |  |
| r0061 | CO: Actual velocity unsmoothed / v_act unsmoothed |  |  |
| ENC (Lin_enc) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 4710, 4715 |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the unsmoothed actual velocity values sensed by the encoders. |  |  |
| Note: | The velocity actual value within a PROFIBUS cycle (r2064[1]) is averaged and displayed. |  |  |
| r0061[0..1] | CO: Actual speed unsmoothed / n_act unsmoothed |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 4710, 4715 |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the unsmoothed actual speed values sensed by the encoders. |  |  |
| Index: | $\text { [1] = Encoder } 2$ |  |  |
| $\overline{\mathrm{r} 0061[0 . .1]}$ | CO: Actual velocity unsmoothed / v_act unsmoothed |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 4710, 4715 |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$ |  |  |



| r0063 | CO: Actual velocity smoothed / v_act smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1580, 1590, 4710, 5300 |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the actual smoothed velocity actual value for velocity control. |  |  |
| Dependency: | Refer to: r0021, r0022, r0061, p1441, p1451 |  |  |
| Note: | In encoderless operation, the the velocity actual value is calculated and can be smoothed using p1451. |  |  |
|  | For operation with encoder, r0063 is smoothed with p1441. |  |  |
|  | The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0061). |  |  |


| r0063 | CO: Speed actual value / n_act |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the actual smoothed actual speed. |  |  |
| Note: | For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero. |  |  |
| r0063[0...2] | CO: Speed actual value / n_act |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1680, 4715 |
| VECTOR | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the actual speed of the closed-loop For U/f control and when slip compensation quency is shown in r0063[0]. | speed control and th is deactivated (see p | ronous speed to the output fre- |

Index: [0] = Unsmoothed
[1] = Smoothed with p0045
[2] = Calculated from f_set - f_slip
Dependency: Refer to: r0021, r0022
Note: $\quad$ The speed actual value is calculated in encoderless operation and for U/f control.
For operation with encoder, r0063[0] is smoothed with p1441.
The speed actual value (r0063[0]) is additionally displayed - smoothed with p0045-in r0063[1].
The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.
The actual speed (r0063[0]) is available as a display quantity with additional smoothing in r0021.

| r0064 | CO: Speed controller system deviation / n_ctrl system dev |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 6040 |
|  | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the actual system deviation of the speed controller. <br> In servo control mode with active reference model, the system deviation to the P component of the speed controller is displayed. |  |  |
| Note: |  |  |  |
| r0064 | CO: Velocity controller system deviation / v_ctrl system dev |  |  |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 6040 |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting <br> - [m/min] |
| Description: | Displays the actual system deviation of the velocity controller. <br> In servo control mode with active reference model, the system deviation to the P component of the velocity controller is displayed. |  |  |
| Note: |  |  |  |
| r0065 | Slip frequency / f_Slip |  |  |
| sERVO, <br> SERVO AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1710, 6310, 6727, 6730, 6732 |
|  | P-Group: Displays, signals | Units group: 2_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [Hz] | $\begin{aligned} & \text { Max } \\ & -[H z] \end{aligned}$ | Factory setting <br> - [Hz] |
| Description: | Displays the slip frequency for induction motors (ASM). |  |  |
| r0066[0...1] | CO: Line frequency / f_line |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8864, 8950, 8964 |
|  | P-Group: Displays, signals | Units group: 2_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min $-[H z]$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: | Displays the line frequency. |  |  |
|  | Re index 0 : <br> Displays the instantaneous value of the line supply PLL. Re index 1 : |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Displays the values smoothed with a time constant of 50 ms to monitor the frequency. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r0024 |  |  |
| Note: | A positive sign of the frequency is obtained when the line supply phases $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are connected with the correct phase sequence. |  |  |

A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a negative direction of the rotating field of the 3 -phase line supply voltage.

| r0066 | CO: Output frequency / f_outp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1690, 5300, 5730, 6310, 6730, 6731, 6799 |
|  | P-Group: Displays, signals | Units group: 2_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [Hz] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: | Displays the Motor Module output frequency. |  |  |
| Dependency: | Refer to: r0024 |  |  |
| Note: | The output frequency is available smoothed (r0024) and unsmoothed (r0066). |  |  |
| r0067[0...1] | Absolute current value permissible / I_abs val perm |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the actual permissible absolute line-side current. |  |  |
| Index: | $[0]=\text { Motor mode }$ |  |  |
| Dependency: | The permissible current is the minimum from the maximum converter current (r0209), the parameterized current limits ( p 3530 to p 3533 ) as well as the maximum permissible current of line filter (r3534). |  |  |
|  | Refer to: p3530, p3531, r3534 |  |  |
| r0067 | CO: Output current, maximum / I_outp max |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5722, 6300, 6640, 6724 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the maximum output current of the Motor Module. |  |  |
| Dependency: | The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection. <br> Refer to: p0290, p0640 |  |  |

## r0068

A_INF, S_INF
SERVO,
SERVO AC,
SERVO_I_AC
P-Group: Displays, signals
Not for motor type: -
Min

- [Arms]

Calculated: -
Can be changed: -
Data type: FloatingPoint32
Dynamic index: -

Units group: 6_2
Scaling: p2002
Max

- [Arms]

Access level: 3
Func. diagram: 5730, 7017,
8014, 8017, 8850, 8950
Unit selection: p0505
Expert list: 1
Factory setting

- [Arms]

Description: Displays actual absolute current.
Dependency: Refer to: r0027
Notice: $\quad$ For A_INF, S_INF the following applies:
The value is updated with the current controller sampling time.


| r0069[0...6] | Phase current actual value / I_phase act value |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5730, 6714, 6730, 6731, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $-[A]$ | $\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$ | Factory setting - [A] |
| Description: | Displays the measured actual phase currents as peak value. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase W }} \\ & {[3]=\text { Phase U offset }} \\ & {[4]=\text { Phase } V \text { offset }} \\ & {[5]=\text { Phase W offset }} \\ & {[6]=\text { Total U, V, W }} \end{aligned}$ |  |  |
| Note: | In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. |  |  |
| r0070 | CO: Actual DC link v | ct val |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 8750, 8850, 8864, 8940, 8950, 8964 |
|  | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min $-[V]$ | Max <br> - [V] | Factory setting - [V] |
| Description: | Displays the measured actual value of the DC link voltage. |  |  |
| Dependency: | Refer to: r0026 |  |  |
| Note: | The DC link voltage is available smoothed (r0026) and unsmoothed (r0070). |  |  |
| r0070 | CO: Actual DC link voltage / Vdc act val |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730 |
|  | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [V] | - [V] | - [V] |
| Description: | Displays the measured actual value of the DC link voltage. |  |  |
| Dependency: | Refer to: r0026 |  |  |
| Notice: | For SINAMICS S120 AC Drive (AC/AC) the following applies: |  |  |
|  | When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed. |  |  |
| Note: | The DC link voltage is available smoothed (r0026) and unsmoothed (r0070). |  |  |


r0072[2]:
Displays the estimated value for the voltage of the voltage source that is calculated in the voltage model of the line supply PLL. (input quantities of the model are the measured values of the line currents and the DC link voltage as well as the characteristics of the line filter p0225, p0226 as well as the line inductance p3424).
r0072[3]:
Displays the smoothed value for the source voltage in r0072[2]. The PT1 smoothing time constant is set in p3472.

| r0072 | CO: Output voltage / U_output |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5730, 6730, 6731, 6799 |
|  | P-Group: Displays, signals | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the actual power unit output voltage (Motor Module). |  |  |
| Dependency: | Refer to: r0025 |  |  |
| Note: | The output voltage is available smoothed (r0025) and unsmoothed (r0072). |  |  |
| r0073 | Maximum modulation depth / Modulat_depth max |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6723, 6724, 6725 |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{gathered} \text { Max } \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the maximum modulation depth. Refer to: p1803 |  |  |
| Dependency: |  |  |  |
| r0074 | CO: Modulat_depth / Modulat_depth |  |  |
| A_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730, 6730, 6731, 6799, 8940, 8950 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the actual modulation depth. |  |  |
| Dependency: | Refer to: r0028 |  |  |
| Note: | For space vector modulation, $100 \%$ corresponds to the maximum output voltage without overcontrol. Values above $100 \%$ indicate an overcontrol condition - values below $100 \%$ have no overcontrol. <br> The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 $\times$ r0070) / (sqrt(2) $\times 100 \%$ ). The modulation depth is available smoothed (r0028) and unsmoothed (r0074). |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -

## Min

- [Arms]

Description:
Displays the reactive current setpoint.

Calculated: -
Dynamic index: -
Units group: 6_2
Scaling: p2002

## Max

- [Arms]

Access level: 3
Func. diagram: 8946
Unit selection: p0505
Expert list: 1
Factory setting

- [Arms]


## Dependency: Refer to: r3471, p3610

Note: The reactive current requirement of a line filter should be covered by the controlled infeed/regenerative feedback so that the converter always operates with a power factor of 1 compared to the line. Setpoint r0075 includes the reactive current for a line filter that depends on the actual operating point (r3471).
If the line phases are reversed and the line voltage therefore has a negative orientation ( $\mathrm{r} 0066<0$ ), it should be noted that the sign of the reactive current is reversed.

| r0075 | CO: Current setpoint field-generating / Id_set |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 5722, 6714 |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the field-generating current setpoint (Id_set). |  |  |
| Note: | This value is irrelevant for the U/f control mode. |  |  |


| r0076 | CO: Reactive current actual value / I_reactive_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 1775, 8850, 8946, 8950 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the reactive current actual value. |  |  |
| Dependency: | Refer to: r0029, r0075 |  |  |
| Note: | The reactive current actual | smoothed (r0029) and | r0076). |


| r0076 | CO: Current actual value field-generating / Id_act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 1710, |
| SERVO_I_AC, VEC- |  | 5714, 5730, 6714, 6799 |  |
| TOR,VECTOR_AC, | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Max | Expert list: 1 |
|  | Min | - [Arms] | Factory setting |
|  | $-[$ Arms $]$ | - [Arms] |  |
| Description: | Displays the field-generating current actual value (ld_act). |  |  |
| Dependency: | Refer to: r0029 |  |  |
| Note: | This value is irrelevant for the U/f control mode. |  |  |
|  | The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076). |  |  |


| r0077 | CO: Active current setpoint / I_active_set |  |  |
| :--- | :--- | :--- | :--- |
| A_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774,8940, |
|  |  |  | 8946 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ [Arms $]$ | $-[A r m s]$ |  |
| Description: | Displays the active current setpoint (lq_set). |  |  |


| $\widehat{\mathbf{0 0 7 7}}$ | CO: Current setpoint torque-generating / Iq_set |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 1774, 5714, 6710, 6714, 6719 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the torque/force generating current setpoint. <br> This value is irrelevant for the U/f control mode. |  |  |
| Note: |  |  |  |
| r0077 | CO: Current setpoint force-generating / Iq_set |  |  |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 1774, 5714, 6710, 6714, 6719 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the torque/force generating current setpoint. |  |  |
| Note: |  |  |  |
| r0078 | CO: Active current actual value / I_active_act |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 1775, 8850, 8946, 8950 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the actual value for the active current. |  |  |
| Dependency: | Refer to: r0030 |  |  |
| Note: | The active current actual value is available smoothed (r0030) and unsmoothed (r0078). |  |  |
| r0078[0...1] | CO: Current actual value torque-generating / Iq_act |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 5730 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the torque-generating current actual value (lq_act). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r0030, p0045 |  |  |
| Note: | The torque-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]). |  |  |


| r0078[0...1] | CO: Current actual value force-generating / lq_act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 5730 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the force-generating current actual value (lq_act). |  |  |
| Index: | [0] = Unsmoothed |  |  |
| Dependency: | Refer to: r0030, p0045 |  |  |
| Note: | These values are irrelevant for the U/f control mode. |  |  |
|  | The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]). |  |  |


| r0078 | CO: Current actual value torque-generating / Iq_act |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1710, 6310, 6714, 6799 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the torque-generating current actual value (lq_act). |  |  |
| Dependency: | Refer to: r0030 |  |  |
| Note: | This value is irrelevant for the U/f control mode. |  |  |
|  | The torque-generating current actual value is available smoothed (r0030 with 300 ms ) and unsmoothed (r0078). |  |  |


| r0079[0...1] | CO: Torque setpoint total / M_set total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610,8012 |
| SERVO_I_AC | P-Group: Displays, signals | Units group: $7 \_1$ | Unit selection: 00505 |
|  | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{Nm}]$ | $-[\mathrm{Nm}]$ |  |
|  |  |  |  |
| Description: | Displays the torque setpoint at the output of the speed controller (before clock cycle interpolation). |  |  |
| Index: | $[0]=$ Unsmoothed |  |  |
|  | $[1]=$ Smoothed with p0045 |  |  |


| r0079[0...1] | CO: Total force setpoint / F_set total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610,8012 |
| SERVO_I_AC (Lin) | P-Group: Displays, signals | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ |
| Description: | Displays the force setpoint at the output of the velocity controller (before clock cycle interpolation). |  |  |
| Index: | $[0]=$ Unsmoothed |  |  |
|  | $[1]=$ Smoothed with p0045 |  |  |



| r0081 | CO: Torque utilization / M_Utilization |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8012 |
| SERVO_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min - [\%] | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the torque utilization as a percentage. |  |  |
| Dependency: | Refer to: r0033 |  |  |
| Note: | The torque utilization is available smoothed (r0033) and unsmoothed (r0081). |  |  |
|  | The torque utilization is obtained from the required torque referred to the torque limit as follows: <br> - Positive torque: r0081 = ((r0079 + p1532) / (r1538-p1532)) * $100 \%$ |  |  |
|  |  |  |  |
|  | The calculation of the torque utilization depends on the selected smoothing time constant (p0045). |  |  |


| r0081 | CO: Force utilization / F_utilization |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8012 |
| SERVO_I_AC (Lin) | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | $-[\%]$ | Factory setting |
|  | $-[\%]$ | - [\%] |  |
| Description: | Displays the force utilization as a percentage. |  |  |
|  | The force utilization is obtained from the required smoothed force referred to the force limit. |  |  |
| Dependency: | Refer to: r0033 |  |  |
| Note: | The force utilization is available smoothed (r0033) and unsmoothed (r0081). |  |  |
|  | The calculation of the force utilization depends on the selected smoothing time constant (p0045). |  |  |


| r0081 | CO: Torque utilization / M_Utilization |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8012 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the torque utilization as a percentage. |  |  |
|  | The torque utilization is obtained from the required smoothed torque referred to the torque limit. |  |  |
| Dependency: | Refer to: r0033 |  |  |
| Note: | The torque utilization is available smoothed (r0033) and unsmoothed (r0081). |  |  |
|  | The torque utilization is obtained from the required torque referred to the torque limit as follows: <br> - Positive torque: r0081 = (r0079/r1538) * $100 \%$ |  |  |
|  | - Negative torque: r0081 $=(-$ | - 100 \% |  |


| r0082 | CO: Active power actual value / P_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: 14_7 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the instantaneous active power. |  |  |
| Dependency: | Refer to: r0032 |  |  |
| Note: | The active power is available smoothed (r0032) and unsmoothed (r0082). |  |  |
| r0082 | CO: Active power actual value / P_act |  |  |
| B_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8750, 8850, 8950 |
|  | P-Group: Displays, signals | Units group: 14_7 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min <br> - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the instantaneous active power. |  |  |
| Dependency: | Refer to: r0032 |  |  |
| Notice: | For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing. |  |  |
| Note: | The active power is available smoothed (r0032) and unsmoothed (r0082). |  |  |
| r0082[0...2] | CO: Active power actual value / P_act |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730 |
|  | P-Group: Displays, signals | Units group: 14_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the instantaneous active power. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Electric power }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r0032 |  |  |
| Note: | The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]). |  |  |


| r0082[0...2] | CO: Active power actual value / P_act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5730 |
| SERVO_I_AC (Lin) | P-Group: Displays, signals | Units group: $14 \_8$ | Unit selection: 00505 |
|  | Not for motor type: - | Scaling: 2004 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{kW}]$ | $-[\mathrm{kW}]$ | $-[\mathrm{kW}]$ |
| Description: | Displays the instantaneous active power. |  |  |
| Index: | $[0]=$ Unsmoothed |  |  |
|  | $[1]=$ Smoothed with p0045 |  |  |
| Dependency: | $[2]=$ Electric power | Refer to: r0032 |  |


| Note: | The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]). |  |  |
| :---: | :---: | :---: | :---: |
| r0082[0...2] | CO: Active power actual value / P_act |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714, 6799 |
|  | P-Group: Displays, signals | Units group: 14_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min $-[\mathrm{kW}]$ | $\begin{aligned} & \operatorname{Max} \\ & -[k W] \end{aligned}$ | Factory setting $-[k W]$ |
| Description: Index: | $\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Electric power }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r0032 |  |  |
| Note: | The mechanical active power is available smoothed (r0032 with 100 ms , $\mathrm{r0082}$ [1] with p0045) and unsmoothed (r0082[0]). |  |  |
| r0083 | CO: Flux setpoint / Flex setp |  |  |
| SERVO, SERVO AC SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5722 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{gathered} \text { Max } \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the flux setpoint. |  |  |
| r0083 | CO: Flux setpoint / Flex setp |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the flux setpoint. |  |  |
| r0084 | CO: Flux actual value / Flux act val |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5722 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the flux actual value. |  |  |


| r0084[0...1] | CO: Flux actual value /Flux act val |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6726,6730, <br> VECTOR_I_AC |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |


| r0087 | CO: Actual power factor / Cos phi act |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714,6730, |
| VECTOR_I_AC |  | Units group: - | 6732,6799 |
|  | P-Group: Displays, signals | Scaling: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the actual active power factor. |  |  |


| r0088 | CO: DC link voltage setpoint / Vdc setpoint |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8940, 8964 |
|  | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [V] | - [V] | - [V] |
| Description: | Displays the setpoint for the |  |  |

r0088 CO: DC link voltage setpoint / Vdc setpoint
VECTOR (Tech_ctrl), Can be changed: - Calculated:
VECTOR_AC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)
Data type: FloatingPoint32
Dynamic index: -
Units group: 5_2
Scaling: p2001
Max
$[\mathrm{V}] \quad-[\mathrm{V}]$
Description: Displays the setpoint for the DC link voltage.

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting
[V]

p0092 only affects the automatic default for the clock cycles (p0115) in the drive. If the clock cycles are modified subsequently in expert mode ( $\mathrm{p} 0112=0$ ), p0092 $=0$ should be set so that the new values are not overwritten again by the automatic default when the parameters are downloaded.
The conditions for current controller clock cycle for isosynchronous operation must still be carefully ensured (refer under Caution!)




| Value: | $0:$ | No selection |
| :--- | :--- | :--- |
|  | $1:$ | Drive object type SERVO |
|  | $2:$ | Drive object type VECTOR |
|  | $3:$ | SINAMICS GM (DFEMV \& VECTORMV) |
|  | $4:$ | SINAMICS SM (AFEMV \& VECTORMV) |
|  | $5:$ | SINAMICS GL (VECTORGL) |
|  | $6:$ | SINAMICS SL (VECTORSL) |
|  | $12:$ | Drive object type VECTOR parallel circuit |
|  | $13:$ | Drive object type VECTORMV - GM parallel circuit |
|  | $14: \quad$ Drive object type VECTORMV - SM parallel circuit |  |
|  | $15: \quad$ Drive object type DC_CTRL |  |
|  | $16: \quad$ Drive object type SERVO HMI |  |
|  | $17: \quad$ Drive object type VECTOR HMI |  |
|  | $24: \quad$ Drive object type VECTORMV - SM parallel circuit |  |
|  |  | Refer to: r0098, p0099 |
|  |  | Refer to: A01330 |
|  |  | For p0097 $=0$, p0099 is automatically set to the factory setting. |
|  | The possible settings are dependent upon the device type. |  |


| r0098[0...5] | Actual device topology / Device_act topo |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Topology | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: Index: | Displays the automatically detected actual device topology in coded form. |  |  |
|  | [0] = DRIVE-CLiQ socket X100 <br> [1] = DRIVE-CLiQ socket X101 <br> [2] = DRIVE-CLiQ socket X102 <br> [3] = DRIVE-CLiQ socket X103 <br> [4] = DRIVE-CLiQ socket X104 <br> [5] = DRIVE-CLiQ socket X105 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0097, p0099 |  |  |
| Note: | Topology coding: abcd efgh hex |  |  |
|  | $\mathrm{a}=$ number of Active Line Modules |  |  |
|  | $b=$ number of Motor Modules |  |  |
|  | $c=$ number of motors |  |  |
|  | $\mathrm{d}=$ number of encoders (or the line supply voltage sensing for Active Line Modules) |  |  |
|  | $e=$ number of additional encoders (or the line supply voltage sensing for Active Line Modules) |  |  |
|  | $\mathrm{f}=$ number of Terminal Modules |  |  |
|  | $g$ = number of Terminal Boards |  |  |
|  | $\mathrm{h}=$ reserved |  |  |
|  | if the value 0 is displayed in all indices, then components are not detected via DRIVE-CLiQ. |  |  |
|  | If a value $F$ hex occurs a | ding (abcd efgh hex) | w has occurred. |



[23] = Drive object number object 23
Note: The numbers are automatically assigned once and can no longer be changed as long as the object has not been deleted.
In the commissioning software, this object number cannot be entered using the expert list, but is automatically assigned when inserting an object.

| r0102[0...1] | Number of drive objects / DO count |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 2 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Topology | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  | Factory setting |  |
| CU_S150_DP, |  | Max | - |

Description: Displays the number of existing or existing and prepared drive objects.

| Index: | $[0]=$ Existing drive objects |
| :--- | :--- |
|  | $[1]=$ Existing and prepared drive objects |
| Dependency: | Refer to: p0101 |

Note: The numbers of the drive objects are in p 0101.
Index 0:
Displays the number of drive objects that have already been set up.
Index 1:
Displays the number of drive objects that have already been set up and, in addition, the drive objects that still have to be set up.

| r0103 | Application-specific view / Appl_spec view |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 2 |
| S_INF, SERVO, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| SERVO_AC, | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| SERVO_I_AC, VEC- | Not for motor type: - | Scaling: - | Expert list: 1 |
| TOR, VECTOR_AC, |  |  |  |
| VECTOR_I_AC |  | Max | Factory setting |
|  | Min | 65535 | - |
| Description: | 0 | Displays the application-specific view of the individual drive object. |  |
| Dependency: | Refer to: p0107, r0107 |  |  |


| p0103[0...23] | Application-specific view / Appl_spec view |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: C1(2) | Calculated: - | Access level: 2 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Expert list: 1 |  |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  | Max |  |
| CU_S150_DP, |  | 999 | Factory setting |
| CU_S150_PN | Min |  |  |
|  | 0 |  |  |
| Description: | The application-specific view of an existing drive object is entered into each index. |  |  |
|  | The parameter cannot be changed. |  |  |


| Note: | In the non-volatile memory, the application-specific views are defined in files with the following structure: PDxxxyyy.ACX <br> xxx: Application-specific view (p0103) <br> yyy: Type of drive object (p0107) <br> Example: <br> PD052011.ACX <br> --> "011" stands for the drive object, type SERVO <br> --> "052" is the number of the view for this drive object |
| :---: | :---: |
| p0105 | Activate/de-activate drive object / DO act/deact |
| A_INF, B_INF, CU_LINK, ENC, HUB, S_INF, SERVO, <br> SERVO_AC, SERVO_I_AC, TB30, TM120, TM150, TM15DI_DO, TM17, VECTOR, <br> VECTOR_AC, VECTOR_I_AC | Can be changed: T Calculated: - Access level: 2 <br> Data type: Integer16 Dynamic index: - Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> 0 2 1 |
| Description: | Setting to activate/de-activate a drive object. |
| Value: | $\begin{array}{ll}\text { 0: } & \text { De-activate drive object } \\ \text { 1: } & \text { Activate drive object } \\ \text { 2: } & \text { Drive object, de-activate and not present }\end{array}$ |
| Recommend.: <br> Dependency: | After inserting all of the components of a drive object, before activating, first wait for Alarm A01316. <br> Refer to: r0106 <br> Refer to: A01314, A01316 |
| Caution: | When activating drive objects with the safety functions enabled, the following applies: After reactivating, a warm restart ( $\mathrm{p} 0009=30$, $\mathrm{p} 0976=2,3$ ) or POWER ON should be carried out. |
| Notice: | The following applies when activating: <br> If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed. |
| Note: | $R e$ value $=0,2$ : <br> When a drive object is deactivated it no longer outputs any errors. <br> If value $=0$ : <br> All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error. <br> If value $=1$ : <br> All components of the drive object must be available for error-free operation. <br> If value $=2$ : <br> Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value. |




| r0106 | Drive object active/inactive / | t/inact |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, <br> CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, S_INF, <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TB30, <br> TM120, TM15, <br> TM150, TM15DI_DO, <br> TM17, TM31, TM41, <br> VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Integer16 <br> P-Group: Closed-loop control <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting |
| Description: Value: | Displays the "active/inactive" state of <br> 0 : Drive object inactive <br> 1: Drive object active | bject. |  |
| Dependency: | Refer to: p0105 |  |  |
| r0107 | Drive object type / DO type |  |  |
| A_INF, B_INF, CU_LINK, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150,TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Integer16 <br> P-Group: Closed-loop control <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 600 \end{aligned}$ | Factory setting |
| Description: | Displays the type of each drive object. |  |  |
| Value: | SINAMICS S <br> SINAMICS G <br> SINAMICS I <br> SINAMICS NX/CX32 <br> SINAMICS GM <br> SINAMICS DC <br> SINAMICS GL <br> SINAMICS S110 <br> ACTIVE INFEED CONTROL <br> SERVO <br> VECTOR <br> VECTORMV <br> VECTORGL <br> VECTOR3P |  |  |


|  | 16: | VECTORSL |  |
| :---: | :---: | :---: | :---: |
|  | 17: | DC_CTRL |  |
|  | 18: | VECTORM2C |  |
|  | 19: | VECTORDM |  |
|  | 20: | SMART INFEED CONTROL |  |
|  | 30: | BASIC INFEED CONTROL |  |
|  | 35: | BRAKE MODULE M2C |  |
|  | 40: | ACTIVE INFEED CONTROLMV |  |
|  | 41: | BASIC INFEED CONTROLMV |  |
|  | 42: | ACTIVE INFEED CONTROLM2C |  |
|  | 51: | SINAMICS G120 230 (SingleDO-Drive which combines Device+Vector) |  |
|  | 52: | SINAMICSG120 240_2 (SingleDO-Drive which combines Device+Vector) |  |
|  | 54: | SINAMICSG120 G120D(SingleDO-Drive which combines Device+Vector) |  |
|  | 70: | HLA |  |
|  | 100: | TB30 (Terminal Board) |  |
|  | 101: | SINAMICS SL |  |
|  | 102: | SINAMICS MV |  |
|  | 150: | DRIVE-CLiQ Hub Module |  |
|  | 200: | TM31 (Terminal Module) |  |
|  | 201: | TM41 (Terminal Module) |  |
|  | 202: | TM17 High Feature (Terminal Module) |  |
|  | 203: | TM15 (Terminal Module) |  |
|  | 204: | TM15 (Terminal Module for SINAMICS) |  |
|  | 205: | TM54F - Master (Terminal Module) |  |
|  | 206: | TM54F - Slave (Terminal Module) |  |
|  | 207: | TM120 (Terminal Module) |  |
|  | 208: | TM150 (Terminal Module) |  |
|  | 254: | CU-LINK |  |
|  | 300: | ENCODER |  |
|  | 600: | SINAMICS V60-G2 V80-G2 |  |
| Dependency: | Refer to: p0103, r0103 |  |  |
| p0107[0...23] | Drive object type / DO type |  |  |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: C 1 (2) |  | Calculated: - |
|  | Data type: Integer16 |  | Dynamic index: - |
|  | P-Group: - |  | Units group: - |
|  | Not for motor type: - |  | Scaling: - |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min |  | Max |
|  | 0 |  | 600 |
| Description: | The type of an existing drive object is entered into each index. |  |  |
| Value: | 0 : | - |  |
|  | 1: | SINAMICS S |  |
|  | 2: | SINAMICS G |  |
|  | 3: | SINAMICS I |  |
|  | 4: | SINAMICS NX/CX32 |  |
|  | 5: | SINAMICS GM |  |
|  | 6: | SINAMICS DC |  |
|  | 7: | SINAMICS GL |  |
|  | 9: | SINAMICS S110 |  |
|  | 10: | ACTIVE INFEED CONTROL |  |
|  | 11: | SERVO |  |
|  | 12: | VECTOR |  |
|  | 13: | VECTORMV |  |
|  | 14: | VECTORGL |  |
|  | 15: | VECTOR3P |  |
|  | 16: | VECTORSL |  |
|  | 17: | DC_CTRL |  |
|  | 18: | VECTORM2C |  |

Dependency:

## Caution:



Note:

VECTORDM
SMART INFEED CONTROL
BASIC INFEED CONTROL
BRAKE MODULE M2C
ACTIVE INFEED CONTROLMV
BASIC INFEED CONTROLMV
ACTIVE INFEED CONTROLM2C
SINAMICS G120 230 (SingleDO-Drive which combines Device+Vector)
SINAMICSG120 240_2 (SingleDO-Drive which combines Device+Vector)
SINAMICSG120 G120D(SingleDO-Drive which combines Device+Vector)
HLA
100: TB30 (Terminal Board)
101: SINAMICS SL
102: SINAMICS MV
150: DRIVE-CLiQ Hub Module
200: TM31 (Terminal Module)
201: TM41 (Terminal Module)
202: TM17 High Feature (Terminal Module)
203: TM15 (Terminal Module)
204: TM15 (Terminal Module for SINAMICS)
205: TM54F - Master (Terminal Module)
206: TM54F - Slave (Terminal Module)
207: TM120 (Terminal Module)
208: TM150 (Terminal Module)
254: CU-LINK
300: ENCODER
600: SINAMICS V60-G2 V80-G2
Index:
[0] = Drive object type, Control Unit
[1] = Drive object type, object 1
[2] = Drive object type, object 2
[3] = Drive object type, object 3
[4] = Drive object type, object 4
[5] = Drive object type, object 5
[6] = Drive object type, object 6
[7] = Drive object type, object 7
[8] = Drive object type, object 8
[9] = Drive object type, object 9
[10] = Drive object type, object 10
[11] = Drive object type, object 11
[12] = Drive object type, object 12
[13] = Drive object type, object 13
[14] = Drive object type, object 14
[15] = Drive object type, object 15
[16] = Drive object type, object 16
[17] = Drive object type, object 17
[18] = Drive object type, object 18
[19] = Drive object type, object 19
[20] = Drive object type, object 20
[21] = Drive object type, object 21
[22] = Drive object type, object 22
[23] = Drive object type, object 23
Refer to: p0103, r0103
If you change this parameter and exit the device commissioning mode, then the complete software will be set up again and all of the previous drive parameter settings are deleted.

The number (p0101) and the associated drive object type are in the same index.
For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up ( p 0009 from 2 to 0 ) the drive parameters are set up again.

| r0108 | Drive objects, function module / DO function module |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF | Can be changed: - C | Calculated: - | Access le |  |
|  | Data type: Unsigned32 Dy | Dynamic index: - | Func. diag |  |
|  | P-Group: Closed-loop control U | Units group: - | Unit selec |  |
|  | Not for motor type: - S | Scaling: - | Expert lis |  |
|  | Min M | Max | Factory s |  |
|  | - - | - | - |  |
| Description: | Displays the activated function module for the particular drive object. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 04 Line transformer / Line transf | Activated | Not activated | - |
|  |  | $t$ Activated | Not activated | - |
|  | 07 Dynamic grid support / Dyn. grid support | Activated | Not activated | - |
|  | 15 Parallel connection / Parallel | Activated | Not activated | - |
|  | 18 Free function blocks / FBLOCKS | Activated | Not activated | - |
|  | 19 Master/Slave / Master/Slave | Activated | Not activated | - |
|  | 26 Braking Module external / Brk Mod ext | Activated | Not activated | - |
|  |  | Activated | Not activated | - |
|  | 28 Cooling unit / Cool_unit | Activated | Not activated | - |
| Note: | A "function module" is a functional expansion of a drive object that can be activated when commissioning. |  |  |  |
| r0108 | Drive objects, function module / DO function module |  |  |  |
| B_INF, S_INF | Can be changed: - | Calculated: - | Access le |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diag |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selec |  |
|  | Not for motor type: - | Scaling: - | Expert lis |  |
|  | Min | Max | Factory s |  |
|  | - |  | - |  |
| Description: | Displays the activated function module for the particular drive object. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 15 Parallel connection / Parallel | Activated | Not activated | - |
|  | 18 Free function blocks / FBLOCKS | Activated | Not activated | - |
|  | 26 Braking Module external / Brk Mod ext | Activated | Not activated | - |
|  | 28 Cooling unit / Cool_unit | Activated | Not activated | - |
|  | 31 PROFINET / PROFINET | Activated | Not activated | - |
| Note: | A "function module" is a functional expansion of a drive object that can be activated when commissioning. |  |  |  |
| $\begin{aligned} & \hline \text { p0108[0...23] } \\ & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Drive objects, function module / DO function module |  |  |  |
|  | Can be changed: C1(2) | Calculated: - | Access le |  |
|  | Data type: Unsigned32 Drser | Dynamic index: - | Func. diag |  |
|  | P-Group: - U | Units group: - | Unit selec |  |
|  | Not for motor type: - S | Scaling: - | Expert lis |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | Min M | Max | Factory s |  |
|  | - - |  | 00000000 00000000 |  |
| Description: | The function module of an existing drive object is entered into each index (see p0101, p0107). |  |  |  |
|  | The following bits are available for the Control Unit (Index 0): |  |  |  |
|  | Bit 18: Free function blocks |  |  |  |
|  | Bit 29: CAN |  |  |  |
|  | Bit 30: COMM BOARD |  |  |  |
|  | Bit 31: PROFINET |  |  |  |

For all other drive objects (Index >0), the significance of the bits should be taken from the display parameters r0108 of the drive object.


[^0]

| r0108 | Drive objects, function module / DO function module |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO_AC | Can be changed: - C |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 D |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Closed-loop control U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: - | Expert list: 1 |  |
|  | Min Max |  | Max | Factory setting |  |
|  | Min |  |  | - |  |
| Description: | Displays the activated function module for the particular drive object. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 01 | Extended closed-loop torque control / Ext M_ctrl | Activated | Not activated | - |
|  | 02 | Closed-loop speed/torque control / $\mathrm{n} / \mathrm{M}$ | Activated | Not activated | - |
|  | 03 | Cl-loop pos ctrl / Pos ctrl | Activated | Not activated | - |
|  | 04 | Basic positioner / EPOS | Activated | Not activated | - |
|  | 06 | DSC with spline / DSC spline | Activated | Not activated | - |
|  | 07 | Advanced Positioning Control (APC) / APC | Activated | Not activated | - |
|  | 08 | Extended setpoint channel / Extended set | Activated | Not activated | - |
|  | 09 | Extended Stopping and Retraction / ESR | Activated | Not activated | - |
|  | 10 | Moment of inertia estimator / J_estimator | Activated | Not activated | - |
|  | 11 | Spindle diagnostics / Spin_diag | Activated | Not activated | - |
|  | 12 | Linear motor / Lin | Activated | Not activated | - |
|  | 13 | Safety rotary axis / Safety rot | Activated | Not activated | - |
|  | 14 | Extended brake control/ Extended brk | Activated | Not activated | - |
|  | 16 | Technology controller / Tech_ctrl | Activated | Not activated | - |
|  | 17 | Extended messages/monitoring / Ext msg | Activated | Not activated | - |
|  | 18 | Free function blocks / FBLOCKS | Activated | Not activated | - |
|  | 22 | Cogging torque compensation / Cog_M_comp | Activated | Not activated | - |
|  | 28 | Cooling unit / Cool_unit | Activated | Not activated | - |
|  | 29 | CAN / CAN | Activated | Not activated | - |
|  | 31 | PROFINET / PROFINET | Activated | Not activated | - |
| Note: | A "function module" is a functional expansion of a drive object that can be activated when commissioning. |  |  |  |  |
| r0108 | Drive objects, function module / DO function module |  |  |  |  |
| SERVO_I_AC | Can be changed: - C |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 Dy |  | Dynamic index: - | Func. diag |  |
|  | P-Group: Closed-loop control U |  | Units group: - | Unit selec |  |
|  | Not for motor type: - S |  | Scaling: - | Expert lis |  |
|  | Min M |  | Max | Factory setting |  |
|  |  |  |  | - |  |
| Description: | Displays the activated function module for the particular drive object. |  |  |  |  |
| Bit field: |  | Bit Signal name <br> 01 Extended closed-loop torque control / Ext M_ctrl | 1 signal | 0 signal | FP |
|  |  |  | Activated | Not activated | - |
|  | 0206 | Closed-loop speed/torque control/n/M | Activated | Not activated | - |
|  |  | DSC with spline / DSC spline | Activated | Not activated | - |
|  | 06 07 | Advanced Positioning Control (APC) / APC | Activated | Not activated | - |
|  |  | Extended setpoint channel / Extended set | Activated | Not activated | - |
|  | 08 | Extended Stopping and Retraction / ESR | Activated | Not activated | - |
|  | 09 | Moment of inertia estimator / J_estimator | Activated | Not activated | - |
|  | 10 | Spindle diagnostics / Spin_diag | Activated | Not activated | - |
|  | 11 | Linear motor / Lin | Activated | Not activated | - |
|  | 12 | Safety rotary axis / Safety rot | Activated | Not activated | - |
|  | 13 | Extended brake control/ Extended brk | Activated | Not activated | - |
|  | 14 16 | Technology controller / Tech_ctrl | Activated | Not activated | - |
|  | 16 17 | Extended messages/monitoring / Ext msg | Activated | Not activated | - |
|  | 17 18 | Free function blocks / FBLOCKS | Activated | Not activated | - |


| 22 | Cogging torque compensation / | Activated | Not activated |
| :--- | :--- | :--- | :--- |
| Cog_M_comp |  |  |  |
| 28 | Cooling unit / Cool_unit | Activated | Not activated |
| 29 | CAN / CAN | Activated | Not activated |
| 31 | PROFINET / PROFINET | Activated | Not activated |

Note: $\quad$ A "function module" is a functional expansion of a drive object that can be activated when commissioning.

| r0108 | Drive objects, function module / DO function module |  |  |
| :---: | :---: | :---: | :---: |
| TB30, TM120, | Can be changed: - | Calculated: - | Access level: 2 |
| TM150,TM15DI_DO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the activated function module for the particular drive object. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 18 Free function blocks / FBLOCKS | Activated | Not activated |
|  | 31 PROFINET / PROFINET | Activated | Not activated |

Note: A "function module" is a functional expansion of a drive object that can be activated when commissioning.



Note: A "function module" is a functional expansion of a drive object that can be activated when commissioning. The following bits are only automatically set, if the power units are detected with the appropriate properties.
Bit 16: Parallel connection of the same power units (only automatically set for G150/G130).
Bit 20: Software gating unit (only automatically set when power units are connected in parallel).
Bit 24: Type PM330 power units are presently not supported.
Bit 26: Type PM250 power units with F3E energy recovery are only supported for S120 CRANES.
Bit 28: Power units with liquid cooling.



|  | SINAMICS S, Active Infeed (p0112 = 1 not for p0092 = 1): |
| :---: | :---: |
|  | p0112 $=1: 400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$ ) |
|  | p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$ ) |
|  | p0112 = 3: $125 /-/-/ 2000 \mu \mathrm{~s}$ |
|  | p0112 = 4: $125 /-/-/ 1000 \mu \mathrm{~s}$ |
|  | p0112 = 5: $125 /-/-/ 500 \mu \mathrm{~s}$ |
|  | SINAMICS S, Smart Infeed (p0112 = 1 not for p0092 = 1): |
|  | p0112 $=1: 400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$ ) |
|  | p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$ ) |
|  | p0112 = 3: $250 /-/-/ 2000 \mu \mathrm{~s}$ |
|  | p0112 = 4: $250 /-/-/ 1000 \mu \mathrm{~s}$ |
|  | p0112 = 5: Not possible |
|  | SINAMICS S, Basic Infeed, booksize: |
|  | p0112 = 4: $250 /-/-/ 2000 \mu \mathrm{~s}$ |
|  | SINAMICS S, Basic Infeed, chassis: |
|  | p0112 = 1: $2000 /-/-/ 2000 \mu \mathrm{~s}$ |
|  | p0112 $=2$ 2 $2000 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting) |
|  | p0112 = 3: $2000 /-/-/ 2000 \mu \mathrm{~s}$ |
|  | p0112 = 4: Not possible |
|  | p0112 = 5: Not possible |
|  | SINAMICS S/G, vector drive (p0112 = 1 not for p0092 = 1 and not for PM340): |
|  |  |
|  | p0112 = 2: $250 / 1000 / 2000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$ |
|  | p0112 = 3: $250 / 1000 / 1000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$ (for rated pulse frequency $=2.0,4.0 \mathrm{kHz}$ ) |
|  | SINAMICS S, vector drive: |
|  | p0112 = 4: $250 / 500 / 1000 / 500 / 1000 / 2000 / 2000 \mu \mathrm{~s}$ |
|  | p0112 = 5: $250 / 250 / 1000 / 500 / 1000 / 2000 / 1000 \mu \mathrm{~s}$ |
| Value: | 0: Expert |
|  | 1: xLow |
|  | 2: Low |
|  | 3: Standard |
|  | 4: High |
|  | 5: xHigh |
| Recommend.: | When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(\mathrm{p} 0009=0)$ the controller settings are re-calculated using p0340 $=4$. |
| Dependency: | It is prohibited to select a parameter value from p0112 if the associated current controller clock cycle cannot set (e.g. p0112 = 1 is not possible for a vector drive and PM340 power unit). |
|  | If, for a servo drive, p112 = 5 is set, then the pulse frequency p1800 is preassigned 8 kHz . For D410-2 and vector drive, the current controller sampling time can only be permanently changed for p0112 $=0$. |
|  | Refer to: p0092 |
| Note: | For p0112 $=0$ (expert) the individual sampling times in p0115 can be adjusted. |
|  | The setting p0112 = 1 cannot be set for a vector drive with power unit type PM340 (refer to r0203). |
| p0113 | Minimum pulse frequency, selection / f_puls min sel |
| SERVO, | Can be changed: C 1 (3) Calculated: - Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 Dynamic index: - Func. diagram: - |
| SERVO_-AC | P-Group: Closed-loop control Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | $2.000[\mathrm{kHz}] \quad 4.000[\mathrm{kHz}] \quad 4.000$ [kHz] |
| Description: | The current controller sampling time (p0115[0]) is pre-assigned by selecting the minimum pulse frequency. |
| Dependency: | The parameter can only be changed with p0112 = 0 (expert). For isochronous operation (p0092 = 1) the parameter can only be set so that a current controller clock cycle of $125 \mu \mathrm{~s}$ is obtained as an integer number. |

The required pulse frequency can be set in p1800 after commissioning ( $\mathrm{p} 0009=\mathrm{p} 0010=0$ ). Refer to: p0112, r0114, p0115, p1800
Note: The current controller sampling time ( $\mathrm{p} 0115[0]$ ) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=4.0 \mathrm{kHz}, \mathrm{p} 0115[0]=125 \mu \mathrm{~s}$ is set. The current controller sampling time ( $\mathrm{p} 0115[0]$ ), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$. For a power unit type PM340 (refer to r0203), only the values 2.0 and 4.0 kHz can be set.

| p0113 | Minimum pulse frequency, selection/f_puls min sel |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: $\mathrm{C} 1(3)$ | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $1.000[\mathrm{kHz}]$ | $4.000[\mathrm{kHz}]$ | $2.000[\mathrm{kHz}]$ |

Description: The current controller sampling time (p0115[0]) is pre-assigned by selecting the minimum pulse frequency.
Dependency: The parameter can only be changed with p0112 = 0 (expert). For isochronous operation (p0092 = 1) the parameter can only be set so that a current controller clock cycle of $125 \mu \mathrm{~s}$ is obtained as an integer number.

The required pulse frequency can be set in p1800 after commissioning (p0009 = p0010 = 0). Refer to: p0112, r0114, p0115, p1800
Note: The current controller sampling time ( $\mathrm{p} 0115[0]$ ) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=1.0 \mathrm{kHz}, \mathrm{p} 0115[0]=500 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set. The current controller sampling time ( $\mathrm{p} 0115[0]$ ), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.
For a power unit type PM340 (refer to r0203), only the values 1.0 and 2.0 kHz can be set. 1.0 kHz can be set in order to achieve a current controller clock cycle of $500 \mu \mathrm{~s}$. However, in this case, the minimum pulse frequency p1800 is limited to 2 kHz

| r0114[0...9] | Minimum pulse frequency, recommended / f_puls min recom |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $-[\mathrm{kHz}]$ | Max <br> - [kHz] | Factory setting - [kHz] |
| Description: | Displays the recommended values (indices 0 and 1) for the minimum pulse frequency ( p 0113 ). <br> If the system rejects a change to p0113 because the value to be used lies outside the permitted value range, then instead the recommended value from r0114 can be used. |  |  |
| Index: | [0] = If only the actual drive is <br> [1] = If all drives connected to <br> [2] $=2$. possible pulse frequency <br> [3] $=3$. possible pulse frequency <br> $[4]=4$. possible pulse frequency <br> [5] $=5$. possible pulse frequency <br> [6] = 6. possible pulse frequency <br> [7] = 7. possible pulse frequency <br> [8] $=8$. possible pulse frequency <br> [9] = 9. possible pulse frequency | Q line are changed |  |
| Dependency: | Refer to: p0113 |  |  |
| Note: | After exiting commissioning (p are displayed in indices 1 to 9 . these can be entered into p1800. in r0114. <br> A value of 0 kHz does not defin | $=0$ ), the pulse freq estrictions do not ap um pulse frequency <br> nded pulse frequen | from the sampling time p115[0] ving selected an output filter), was already taken into account |


| p0115[0...6] | Sampling times for internal control loops / t_sample int ctrl |
| :---: | :---: |
| A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC | Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mu \mathrm{~s}]$ $16000.00[\mu \mathrm{~s}]$ $[0] 125.00[\mu \mathrm{~s}]$ <br>   $[1] 125.00[\mu \mathrm{~s}]$ <br>  $[2] 125.00[\mu \mathrm{~s}]$  <br>  $[3] 4000.00[\mu \mathrm{~s}]$  <br>  $[4] 1000.00[\mu \mathrm{~s}]$  <br>  $[5] 4000.00[\mu \mathrm{~s}]$  <br>  $[6] 4000.00[\mu \mathrm{~s}]$  |
| Description: | Sets the sampling times for the control loops. <br> The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert). |
| Recommend.: Index: | When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(\mathrm{p} 0009=0)$ the controller settings are re-calculated using p0340 $=4$. <br> [0] = Current controller <br> [1] = Speed controller <br> [2] = Flux controller <br> [3] = Setpoint channel <br> [4] = Pos controller <br> [5] = Positioning <br> [6] = Technology controller |
| Dependency: | The sampling times can only be separately set if 00112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms . <br> Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * 0 0115[0]; where N is an integer number). The sampling time of the speed controller ( $\mathrm{p} 0115[1]$ ) can have as a maximum a value of $800 \%$ of the current controller sampling time (p0115[0]). <br> For servo drives, the maximum sampling time of the current controller is $250 \mu \mathrm{~s}$ and for vector drives, $500 \mu \mathrm{~s}$. The sampling times for setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ( $\mathrm{p} 0115[6]$ ) must have at least $2 x$ the value of the current controller sampling time ( $\mathrm{p} 0115[0]$ ). <br> Refer to: r0110, r0111, p0112 |
| Note: | For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller clock cycle is $400 \mu \mathrm{~s}$. <br> For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time. <br> For BLM booksize, only the current controller sampling time of $250 \mu$ s is permitted. For BLM chassis, only the current controller sampling time of $2000 \mu$ s is permitted. <br> For power unit type PM340 (r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The maximum current controller clock cycle for servo drives and the minimum current controller clock cycle for vector drives is $250 \mu \mathrm{~s}$. <br> If sampling times in p0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ( $\mathrm{p} 0115[6]$ ) are always greater than or equal to twice the current controller sampling time (p0115[0]). |



| Note: | For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. <br> For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller clock cycle is $400 \mu \mathrm{~s}$. <br> For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time. <br> For BLM booksize, only the current controller sampling time of $250 \mu$ s is permitted. For BLM chassis, only the current controller sampling time of $2000 \mu$ s is permitted. <br> For power unit type PM340 (r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The maximum current controller clock cycle for servo drives and the minimum current controller clock cycle for vector drives is $250 \mu \mathrm{~s}$. <br> If sampling times in p 0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ( $\mathrm{p} 0115[6]$ ) are always greater than or equal to twice the current controller sampling time (p0115[0]). |
| :---: | :---: |
| p0115[0] | Sampling time for supplementary functions / t_samp suppl_fct |
| TB30, TM150, <br> TM15DI_DO, TM31 | Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mu \mathrm{~s}]$ $16000.00[\mu \mathrm{~s}]$ $4000.00[\mu \mathrm{~s}]$ |
| Description: <br> Index: <br> Note: | Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible. <br> [0] = Basic sampl. time <br> This parameter only applies to set the sampling times of possible supplementary functions. <br> The sampling times for inputs/outputs must be set in p4099. |
| p0115[0] TM120 | Sampling time for supplementary functions / t_samp suppl_fct |
| Description: Index: | Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu$ s are permissible. <br> [0] = Basic sampl. time |
| p0115[0] | Sampling time for supplementary functions / t_samp suppl_fct |
| TM41 | Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mu \mathrm{~s}]$ $16000.00[\mu \mathrm{~s}]$ $4000.00[\mu \mathrm{~s}]$ |
| Description: Index: | Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu$ s are permissible. <br> [0] = Basic sampl. time |


| Note: | This parameter only applies to set the sampling times of possible supplementary functions. |
| :--- | :--- |
|  | The sampling times for inputs/outputs or encoder emulation must be set in p4099. |


| p0115[0...6] | Sampling times for internal control loops /t_sample int ctrl |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: $\mathrm{C} 1(3)$ | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mu \mathrm{~s}]$ | $16000.00[\mu \mathrm{~s}]$ | $[0] 250.00[\mu \mathrm{~s}]$ |
|  |  | $[1] 1000.00[\mu \mathrm{~s}]$ |  |
|  |  | $[2] 1000.00[\mu \mathrm{~s}]$ |  |
|  |  | $[3] 1000.00[\mu \mathrm{~s}]$ |  |
|  |  | $[4] 2000.00[\mu \mathrm{~s}]$ |  |
|  |  | $[5] 4000.00[\mu \mathrm{~s}]$ |  |
|  |  | $[6] 4000.00[\mu \mathrm{~s}]$ |  |


| Description: | Sets the sampling times for the control loops. |
| :---: | :---: |
|  | The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert). |
| Recommend.: | When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(p 0009=0)$ the controller settings are re-calculated using p0340 $=4$. |
|  | When adjusting the current controller sampling time, it is recommended to use values that are an integer multiple of $6.25 \mu \mathrm{~s}$. The sampling times of analog or digital inputs/outputs (see p0799, p4099) should be set to an integer multiple of the current controller sampling time. |
|  | If the current controller sampling time is to be reduced with respect to the default setting (e.g. $<250 \mu \mathrm{~s}$ ), then it is recommended that the motor data identification (standstill measurement) is executed beforehand, in order to avoid a thermal overload of the power unit as a result of high pulse frequencies (p1800). |

Index: [0] = Current controller
[1] = Speed controller
[2] = Flux controller
[3] = Setpoint channel
[4] = Pos controller
[5] = Positioning
[6] = Technology controller
Dependency: Depending on the number and type of vector drives, the sampling times are preset differently.
The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .

Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the speed controller ( $\mathrm{p} 0115[1]$ ) can have as a maximum a value of 800\% of the current controller sampling time (p0115[0]).
The sampling times for setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ( $\mathrm{p} 0115[6]$ ) must have at least $2 x$ the value of the current controller sampling time ( $\mathrm{p} 0115[0]$ ).
The sampling time of the current controller p0115[0] and pulse frequency p1800 are checked at each parameter download, and when necessary changed, if, for $p 0092=1$, the current controller clock cycle is not an integral multiple of $125 \mu$ s or if p0112 is set $>1$. For p0092 $=0$, the check with p0112 $=0$ (= expert) can be deactivated.
Refer to: r0110, r0111, p0112
Note: For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. For power unit type PM340 (r0203), only current controller sampling times of $250 \mu \mathrm{~s}$ or $500 \mu \mathrm{~s}$ can be set. The minimum current controller clock cycle is otherwise $125 \mu \mathrm{~s}$ (SINAMICS G: $250 \mu \mathrm{~s}$ ), the maximum current controller clock cycle is $500 \mu \mathrm{~s}$. The minimum speed controller clock cycle for SINAMICS G is 1 ms .
Current controller clock cycles less than $250 \mu$ s are restricted by the number of drives or by the number of power units connected in parallel (also see F01340).

For chassis power units connected in parallel, it is recommended to connect the DRIVE-CLiQ cables (partially) in parallel between the Control Unit and the individual Motor Modules.
For D410-2, the current controller sampling times can only be permanently changed with p0112 = 0 (e.g. to $250 \mu \mathrm{~s}$ ).


Re p0117 = 1:
The latest closed-loop control determines when the setpoints for each of the individual controls become active. The same computing dead time is set for each control (p0118). Current is impressed (flows) for the individual controls without any offset with respect to time.
Re p0117 = 2:
The computing dead time is manually set. The user must optimize the value in p0118.
Re p0117 = 3:
The computing dead time is manually set. The user must optimize the value in p0118.
Re p0117 = $4 \ldots 6$ :
Behavior as for $\mathrm{p} 0117=0 \ldots 2$, however for vectors, the earliest times are not determined.

| p0118 | Current controller computing dead time / I_ctrl t_dead |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: U, T | Calculated: - | Access level: 4 |
| S_INF, VECTOR, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_AC, VECTOR I AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ $\mu \mathrm{s}$ ] | Max $2000.00 \text { [ } \mu \mathrm{s}]$ | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | This parameter is pre-set as a function of the current controller sampling time (p0115[0]) and normally does not have to be changed. |  |  |
| Dependency: | Refer to: p0117 |  |  |
|  | Refer to: A02100 |  |  |
| Note: | For $\mathrm{p} 0118<=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller clock cycle (p0115[0]). |  |  |
|  | After p0118 has been changed, we recommend that the current controller is adapted (p1715). |  |  |


| p0118 | Current controller computing dead time / l_ctrl t_dead |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 2000.00[\mu \mathrm{~s}] \end{aligned}$ | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | This parameter is pre-set as a function of the current controller sampling time ( $\mathrm{p} 0115[0]$ ) and normally does not have to be changed. |  |  |
| Dependency: | Refer to: p0117 |  |  |
|  | Refer to: A02100 |  |  |
| Note: | For $\mathrm{p} 0118<=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller clock cycle (p0115[0]). |  |  |
|  | After p0118 has been changed, we recommend that the current controller is adapted (p1715). |  |  |




| p0125[0...n] | Activate/de-activate power unit components / PU_comp act/deact |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: C1(4), T | Calculated: - | Access level: 2 |
| S_INF, SERVO, | Data type: Integer16 | Dynamic index: PDS, p0120 | Func. diagram: - |
| SERVO_AC, | Units group: - | Unit selection: - |  |
| SERVO_I_AC, VEC- | P-Group: Data sets | Scaling: - | Expert list: 1 |
| TOR, VECTOR_AC, | Not for motor type: - |  |  |
| VECTOR_I_AC |  | Max | Factory setting |
|  | Min | 1 |  |
|  | 0 | 2 |  |
| Description: | Setting to activate/de-activate a power unit component. |  |  |
| Value: | $0: \quad$ De-activate component |  |  |
|  | $1: \quad$ Activate component |  |  |
| Recommend.: | $2: \quad$ Component, de-activate and not present |  |  |
|  | After inserting a component, before activating, first wait for Alarm A01317. |  |  |



| r0128[0...n] | Power unit, firmware version / PU FW version |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the firmware version of the power unit. |  |  |
| Dependency: | Refer to: r0018, r0148, r0158, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
|  | For parallel circuit configurations, the parameter index is assigned to a power unit. |  |  |
| p0130 | Number of Motor Data Sets (MDS) / MDS count |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C1(3) | Calculated: - | Access level: 2 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 8575 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 16 | 1 |
| Description: | Sets the number of Motor Data Sets (MDS). |  |  |
| p0131[0...n] | Motor component number / Mot comp_no |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C1(4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 199 | 0 |
| Description: | The motor data set is assigned to a motor using this parameter. |  |  |
|  | This unique component number is assigned when parameterizing the topology. |  |  |
|  | Only component numbers can be entered into this parameter that correspond to a motor. |  |  |


| p0139[0...2] | Copy Motor Data Set MDS / Copy MDS |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(15) | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 8575 |
| SERVO_I_AC, VEC- | P-Group: Data sets | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Expert list: 1 |  |
| VECTOR_I_AC | Min | Factory setting |  |
|  | 0 | 0 |  |
|  | Copying a Motor Data Set (MDS) into another. |  |  |
| Description: | [0] = Source motor data set |  |  |
| Index: | [1] = Target motor data set |  |  |
|  | [2] = Start copying procedure |  |  |
|  | Procedure: |  |  |
|  | 1. In Index 0, enter which motor data set should be copied. |  |  |
|  | 2. In Index 1, enter the motor data set data that is to be copied into. |  |  |
|  | 3. Start copying: Set index 2 from 0 to 1. |  |  |
|  | p0139[2] is automatically set to 0 when copying is completed. |  |  |
|  | When copying, p0131 is not taken into account. |  |  |



Note: If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.

For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142).


| p0144[0...n] | Voltage Sensing Module detection via LED / VSM detection LED |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Detects the Voltage Sensing Module (VSM) module assigned to this infeed.

| p0144[0...n] | Sensor Module detection via LED / SM detection LED |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: EDS, p0140 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Detects the Sensor Module assigned to this drive and data set. |  |  |
| Note: | While p0144 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Sensor Module |  |  |
| p0145[0...n] | Voltage Sensing Module, activate/de-activate / VSM act/deact |  |  |
| A_INF, S_INF | Can be changed: C1(4), T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 |  |
| Description: | Setting to activate/de-activate a Voltage Sensing Module (VSM). |  |  |
| Value: | 0: De-activate component |  |  |
|  | 1: Activate component |  |  |
|  | 2: Component, de-activate and not present |  |  |
| Recommend.: | After inserting a component, before activating, first wait for Alarm A01317. |  |  |
| Dependency: | Refer to: r0146 |  |  |
|  | Refer to: A01314, A01317 |  |  |

Note: $\quad$ For chassis infeeds, it is not possible to activate/de-activate the Voltage Sensing Module (VSM) via p0145. The VSM can only be activated/de-activated in the group with the appropriate infeed via p0125[0...n].
The activation of a component can be rejected if the component was inserted for the first time. In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited.


| r0146[0...n] | Voltage Sensing Module, active/inactive / VSM act/inact |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | - |  |
| Description: | Displays the "active" or "inactive" state of a Voltage Sensing Module (VSM). |  |  |
| Value: | $0: \quad$ Component inactive |  |  |
|  | $1: \quad$ Component active |  |  |



| r0148[0...n] | Sensor Module firmware version / SM FW version |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the firmware version of the Sensor Module. |  |  |
| Dependency: | Refer to: r0018, r0128, r0158, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| p0150 | VSM2 data sets selection / VSM2 dat_sets qty |  |  |
| A_INF, S_INF | Can be changed: C1(3) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 1 | 2 | 1 |
| Description: | Sets the number of VSM2 data sets. |  |  |
| Dependency: | The Voltage Sensing Module 2 (VSM2) can only be used if the "line transformer" function module has been activated ( $\mathrm{r} 0108.4=1$ ). |  |  |
|  | For the VSM2, parameters p5460 and following are significant. |  |  |
| Note: | The Voltage Sensing Module 2 (VSM2) should always be connected to the primary side of the line transformer if at all possible. |  |  |
| p0150 | Number of VSM data sets / VSM dat_sets qty. |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C1(3) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$ | $\operatorname{Max}$ $2$ | Factory setting 1 |
| Description: | Sets the number of VSM data sets. |  |  |
| p0151[0...n] | Voltage Sensing Module 2 component number / VSM2 comp_num |  |  |
| A_INF, S_INF | Can be changed: C1(4) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: 00150 | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$ | Factory setting 0 |
| Description: | The VSM2 data set is assigned to a VSM2 evaluation using this parameter. |  |  |


| p0151[0...1] | DRIVE-CLiQ Hub Module component number / Hub comp_no |  |  |
| :---: | :---: | :---: | :---: |
| HUB | Can be changed: C 1 (4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$ | Factory setting <br> 0 |
| Description: | This parameter is used to This unique component nu Only the numbers of comp [0] = DRIVE-CLiQ node 1 [1] = DRIVE-CLiQ node 2 | t to a DRIVE-CLiQ Hub Mo when parameterizing the to s hubs can be entered in th | meters. |
| p0151 | Terminal Module component number / TM comp_no |  |  |
| TM120, TM15, | Can be changed: $\mathrm{C} 1(4)$ | Calculated: - | Access level: 3 |
| TM150,TM15DI_DO, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| TM17, TM31, TM41, | P-Group: Data sets | Units group: - | Unit selection: - |
| TM54F_SL | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting 0 |
| Description: | Sets the component numb This unique component nu Only component numbers | Module. <br> when parameterizing the to o this parameter that corre | Terminal Module. |
| p0151[0...n] | Voltage Sensing Module component number / VSM comp_no |  |  |
| VECTOR, | Can be changed: C1(4) | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned8 | Dynamic index: p0150 | Func. diagram: |
| VECTOR_I_AC | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$ | Factory setting 0 |
| Description: | The VSM data set is assigned to a VSM evaluation using this parameter. |  |  |
| Note: | If two VSM are connected at the Motor Module, then the first ( $\mathrm{p} 0151[0]$ ) is assigned to the line voltage measurement (see p3801) and the second, to the motor voltage measurement (see p1200). |  |  |
| p0154[0...n] | Voltage Sensing Module 2 detection via LED / VSM2 detection LED |  |  |
| A_INF, S_INF | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Detects the Voltage Sensing Module 2 (VSM2) assigned to this infeed. |  |  |


| p0154 | DRIVE-CLiQ Hub Module detection via LED / Hub detection LED |  |  |
| :---: | :---: | :---: | :---: |
| HUB | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting <br> 0 |
| Description: | Detects any DRIVE-CLiQ Hub Module that has been assigned. |  |  |
| p0154 | Terminal Module detection via LED / TM detection LED |  |  |
| TM120, TM15, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| TM150, TM15DI_DO, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| TM54F MA | P-Group: Terminals | Units group: - | Unit selection: - |
| TM54F_SL | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{gathered} \operatorname{Max} \\ 1 \end{gathered}$ | Factory setting 0 |
| Description: | Detects the Terminal Module assigned to this drive and data set. |  |  |
| Note: | While p0154 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Terminal Module. |  |  |


| p0155[0...n] | Voltage Sensing Module 2, activate/de-activate / VSM2 act/deact |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: $\mathrm{C} 1(4), \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Setting to activate/de-activate a Voltage Sensing Module 2 (VSM2).
Value: 0 : De-activate component
1: Activate component
2: Component, de-activate and not present
Recommend.: After inserting a component, before activating, first wait for Alarm A01317.
Dependency: Refer to: r0156
Refer to: A01314, A01317

| p0155[0...n] | Voltage Sensing Module, activate/de-activate / VSM act/deact |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C1(4), T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: p0150 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | Factory setting |  |
|  | 0 | 1 |  |
| Description: | Setting to activate/de-activate a Voltage Sensing Module (VSM). |  |  |
| Value: | $0: \quad$ De-activate component |  |  |
|  | $1: \quad$ Activate component |  |  |
| Recommend.: | $2: \quad$ Component, de-activate and not present |  |  |
| Dependency: | Refer to: r0156 |  |  |
|  | Refer to: A01314, A01317 |  |  |



| r0157 | Terminal Module EPROM data version / TM EPROM version |  |  |
| :---: | :---: | :---: | :---: |
| TM120, TM15, <br> TM150, TM15DI_DO, <br> TM17, TM31, TM41, <br> TM54F_MA, <br> TM54F_SL | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the version of the EPROM data of the Terminal Module. |  |  |
| Dependency: | Refer to: r0127, r0147 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| r0157[0...n] | Voltage Sensing Module, EPROM data version / VSM EPROM version |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the version of the EPROM data of the Voltage Sensing Module (VSM). |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| r0158[0...n] | Voltage Sensing Module 2 firmware version / VSM2 FW version |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the firmware version of the Voltage Sensing Module 2 (VSM2). |  |  |
| Dependency: | Refer to: r0018, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| r0158 | DRIVE-CLiQ Hub Module firmware version / Hub FW version |  |  |
| HUB | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Displays the firmware version of the DRIVE-CLiQ Hub Module. |  |  |


| r0158 | Terminal Module firmware version / TM FW version |  |  |
| :---: | :---: | :---: | :---: |
| TM120, TM15, | Can be changed: - | Calculated: - | Access level: 3 |
| TM150, TM15DI_DO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TM17, TM31, TM41, TM54F MA, | P-Group: Terminals | Units group: - | Unit selection: - |
| TM54F_SL | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the firmware version of the Terminal Module. |  |  |
| Dependency: | Refer to: r0018, r0128, r0148, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| r0158[0...n] | Voltage Sensing Module firmware version / VSM FW version |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the firmware version of the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: r0018, r0128, r0197, r0198 |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| p0161 | HF Damping Module component number / HF Damp comp_no |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C 1 (4) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the component number for the HF Damping Module. |  |  |
|  | This unique component number is assigned when parameterizing the topology. |  |  |
|  | Only component numbers can be entered into this parameter that correspond to an HF Damping Module. |  |  |
| p0161 | Option board, component number / Opt board comp_no |  |  |
| TB30 | Can be changed: C 1 (4) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 9100 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | $199$ |  |
| Description: | Sets the component numb <br> This unique component n <br> Only component numbers | when (e.g. Terminal Board | n option board |


| p0162 | CU-LINK slave component number / CU-LINK comp_no |  |  |
| :---: | :---: | :---: | :---: |
| CU_LINK | Can be changed: C 1 (4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 199 | 0 |
| Description: | Sets the component number for the expansion component (e.g. CX32, NX10) for CU-LINK. This unique component number is assigned when parameterizing the topology. |  |  |
|  |  |  |  |
| p0162 | HF Choke Module component number / HF Choke comp_no |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C 1 (4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 199 | 0 |
| Description: | Sets the component number for the HF Choke Module. |  |  |
|  | This unique component number is assigned when parameterizing the topology. |  |  |
|  | Only component numbers can be entered into this parameter that correspond to an HF Choke Module |  |  |
| p0165 | Activate/de-activate filter module / FM act/deact |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C1(4), T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 2 | 1 |
| Description: | Setting for activating/de-activating the filter module. |  |  |
| Value: | 0: De-activate component |  |  |
|  | 1: Activate component |  |  |
|  | 2: Component, de-activ |  |  |
| Recommend.: | After inserting a component, before activating, first wait for Alarm A01317. |  |  |
| Dependency: | Refer to: r0166 |  |  |
|  | Refer to: A01314, A01317 |  |  |
| Note: | The activation of a component can be rejected if the component was inserted for the first time. |  |  |
|  | In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited. |  |  |
|  | When a component is deactivated it no longer outputs any errors. |  |  |
|  | If value $=0$ : |  |  |
|  | The component was completely commissioned and is deactivated using this value. It can be removed from the DRIVE-CLiQ without any error. |  |  |
|  | The component must be available for error-free operation. |  |  |
|  | If value $=2$ : |  |  |
|  | A component in a project generated offline and set to this value must never be inserted in the actual topology from the very start. |  |  |



| p0186[0...n] | Motor Data Sets (MDS) number / MDS number |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 1 (4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: DDS, p0180 | Func. diagram: 8575 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 15 | 0 |
| Description: | Using the parameter, each Drive Data Set (= index) is assigned the associated Motor Data Set (MDS). The parameter value therefore corresponds to the number of the assigned motor data set. |  |  |
|  |  |  |  |
| p0187[0...n] | Encoder 1 encoder data set number / Enc 1 EDS number |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C1(4) | Calculated: - | Access level: 3 |
|  |  |  | Func. diagram: 1580, 8570 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 99 | 99 |
| Description: | Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 1. |  |  |
|  | The value corresponds to the number of the assigned encoder data set. |  |  |
|  | Example: |  |  |
|  | Encoder 1 in drive data set 2 should be assigned to encoder data set 0 . |  |  |
|  | --> p0187[2] = 0 |  |  |
| Notice: | Writing to p0187 is rejected if the pole position identification is selected (p1982 = 1) and additional data sets with the same MDS data set ( p 0186 ) are available, which however have a different encoder data set number in p 0187. |  |  |
|  | If all data sets with this MDS p0187 are to be changed, then the pole position identification of the data sets involved should be temporarily deselected ( $\mathrm{p} 1982=0$ ), p0187 changed for all MDS data sets and then the pole position identification reselected (p1982 = 1). |  |  |
|  | If a motor with pole position identification is to be operated with two different encoders, then for this motor, two motor data sets should be introduced. |  |  |
| Note: | A value of 99 means that no encoder has been assigned to this drive data set (not configured). |  |  |
| p0187[0...n] | Encoder 1 encoder data set number / Enc 1 EDS number |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C1(4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: DDS, p0180 | Func. diagram: 1580, 8570 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min$0$ | Max | Factory setting |
|  |  | 99 | 99 |
| Description: | Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 1. |  |  |
|  | The value corresponds to the number of the assigned encoder data set. |  |  |
|  |  |  |  |  |
|  | $\text { --> p0187[2] = } 0$ |  |  |
| Note: | A value of 99 means that | en assigned to this drive data se | configured). |





| r0197 | Bootloader vers / Bootloader vers |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 4 |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Expert list: 1 |  |
| CU_S120_DP, |  | Max |  |
| CU_S120_PN, |  | - | Factory setting |
| CU_S150_DP, |  |  |  |
| CU_S150_PN | Min |  |  |
|  | - |  |  |
| Description: | Displays the bootloader version. |  |  |
| Dependency: | Refer to: r0018, r0128, r0148, r0158, r0198 |  |  |
| Note: | Example: | The value 1010100 should be interpreted as V01.01.01.00. |  |


| r0198[0...1] | BIOS/EEPROM data version / BIOS/EEPROM vers |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: | Unit selection: |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the BIOS and EEPROM data version. |  |  |
|  |  |  |  |
|  | r0198[1]: EEPROM data version |  |  |
| Dependency: <br> Note: | Refer to: r0018, r0128, r0148, r0158, r0197 |  |  |
|  | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |
| p0199[0...24] | Drive object name / DO name |  |  |
| All objects | Can be changed: C1 | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$ | Factory setting 0 |
| Description: | Freely assignable name for a drive object. |  |  |
|  | In the commissioning software, this name cannot be entered using the expert list, but is specified in the configuration assistant. The object name can be subsequently modified in the Project Navigator using standard Windows resources. |  |  |
| Note: | The parameter is not influenced by setting the factory setting. |  |  |


| r0200[0...n] | Power unit code number actual / PU code no. act |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF, SERVO, | Data type: Unsigned16 | Dynamic index: PDS, p0120 | Func. diagram: - |
| SERVO_AC, | Units group: - | Unit selection: - |  |
| SERVO_I_AC, VEC- | P-Group: Converter | Scaling: - | Expert list: 1 |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Factory setting |
| VECTOR_I_AC | Min | - | - |
|  | - |  |  |
| Description: | Displays the unique code number of the power unit. |  |  |
| Note: | r0200 = p0201: No power unit found |  |  |


| p0201[0...n] | Power unit code number / PU code no |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: C2(2) | Calculated: - | Access level: 3 |
| S_INF | Data type: Unsigned16 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 05535 | 0 |
| Description: | Sets the actual code number from r0200 to acknowledge the power unit being used. |  |  |
|  | When commissioned for the first time, the code number is automatically transferred from r0200 into p0201. |  |  |
| Dependency: | Refer to: F07815 |  |  |

Note: $\quad$ The parameter is used to identify when the drive is being commissioned for the first time.
The power unit commissioning can only be exited (p0201 = r0200), if the actual and acknowledged code numbers are identical ( $\mathrm{p} 0010=2$ ).
For parallel circuit configurations, the parameter index is assigned to a power unit.

| p0201[0...n] | Power unit code number / PU code no |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(2) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: PDS, p0120 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Converter | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 65535 | 0 |

Description: $\quad$ Sets the actual code number from r0200 to acknowledge the power unit being used.
When commissioned for the first time, the code number is automatically transferred from r0200 into p0201.

Dependency: Refer to: F07815
Notice: $\quad$ When p0201 = 10000, the rated power unit data is reloaded and dependent parameters are set (e.g. p0205, p0210, p0230, p0857, p1800). p0201 is then automatically assigned the value of r0200 if the code number of the power unit could be read. A warm start must be performed after this procedure (automatically if necessary).
Note: $\quad$ The parameter is used to identify when the drive is being commissioned for the first time.
The power unit commissioning can only be exited ( $\mathrm{p} 0201=\mathrm{r} 0200$ ), if the actual and acknowledged code numbers are identical ( $\mathrm{p} 0010=2$ ). However, if the comparator in p9906 or p9908 is at 2 (low) or 3 (minimum), the power unit commissioning is automatically set to $\mathrm{p} 0201=\mathrm{r} 0200$ upon exiting.
When the code number is changed, the connection voltage ( p 0210 ) is checked and, if necessary, adjusted.
For parallel circuit configurations, the parameter index is assigned to a power unit.

| r0203[0...n] | Actual power unit type / PU actual type |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF, SERVO, | Data type: Integer16 | Dynamic index: PDS, p0120 | Func. diagram: - |
| SERVO_AC, | Units group: - | Unit selection: - |  |
| SERVO_I_AC, VEC- | P-Group: Converter | Scaling: - | Expert list: 1 |
| TOR, VECTOR_AC, | Not for motor type: - |  |  |
| VECTOR_I_AC |  | Max | Factory setting |

Description: Displays the type of power unit found.

## Value:

| 2: | MICROMASTER 440 |
| :--- | :--- |
| 3: | MICROMASTER 411 |
| 4: | MICROMASTER 410 |
| 5: | MICROMASTER 436 |
| 6: | MICROMASTER 440 PX |
| 7: | MICROMASTER 430 |
| 100: | SINAMICS S |
| 101: | SINAMICS S (value) |
| 102: | SINAMICS S (combi) |
| 103: | SINAMICS S120M (distributed) |
| 112: | PM220 (SINAMICS G120) |
| 113: | PM230 (SINAMICS G120) |
| 114: | PM240 (SINAMICS G120) |
| 115: | PM250 (SINAMICS G120 / S120) |
| 116: | PM260 (SINAMICS G120) |
| 118: | SINAMICS G120 Px |
| 120: | PM340 (SINAMICS S120) |
| 130: | PM250D (SINAMICS G120D) |
| 133: | SINAMICS G120C |
| 150: | SINAMICS G |
| 151: | PM330 (SINAMICS G120) |
| 200: | SINAMICS GM |
| 250: | SINAMICS SM |






| p0210 | Drive unit line supply voltage / V_connect |  |  |
| :---: | :---: | :---: | :---: |
| B_INF | Can be changed: $\mathrm{C} 2(1)$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8760 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 70 [Vrms] | Max <br> 1000 [Vrms] | Factory setting 400 [Vrms] |
| Description: | Sets the drive unit supply voltage (3-ph. AC). |  |  |
| Dependency: | The parameter can be reduced to p0210 $=70 \mathrm{~V}$ if p0212.0 is set. |  |  |
| Caution: | If the line supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating. In this case, an appropriate alarm is output. |  |  |
| Notice: | When connected to 3-ph. 230 V AC (only booksize units) the following must be observed: - the undervoltage and overvoltage limits change (r0296, r0297). |  |  |
|  | - when using the internal braking chopper of Basic Line Modules (20 or 40 kW ) the threshold when the braking chopper becomes active is reduced to 385 V . When using an external braking chopper, it must be ensured that a suitable activation threshold is used. |  |  |
|  | - all of the components connected to this DC link must also be adapted to the low line supply voltage. It is especially important that the rated DC voltage of all of the drives connected to this DC link is set with p0210 (e.g.$\text { p0210(SERVO) }=1.35 \times \text { p0210(B_INF) = } 310 \mathrm{~V}) .$ |  |  |
|  | - it is not possible to use a Control Supply Module (CSM) to generate a 24 V supply from the DC link, as the minimum continuous DC link voltage should not be below 430 V . |  |  |
| Note: | The supply voltage range depends on the voltage class of the power unit. |  |  |
|  | 400 V chassis units: $380 \mathrm{~V}<=\mathrm{p} 0210<=480 \mathrm{~V}$ |  |  |
|  | 690 V chassis units: $500 \mathrm{~V}<=\mathrm{p} 0210<=690 \mathrm{~V}$ |  |  |
|  | 400 V booksize units can also be connected to 3-ph. 230 V AC : |  |  |
|  | 400 V booksize units: 180 V <= p0210 <= 480 V |  |  |
|  | A reduced supply voltage up to 70 V is possible if $\mathrm{p} 0212.0=1$ has been set. |  |  |
| p0210 | Drive unit line supply voltage / V_connect |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C2(2), T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 1[\mathrm{~V}] \end{aligned}$ | Max | Factory setting |
|  |  | 63000 [V] | $600 \text { [V] }$ |
| Description: | Sets the drive unit supply voltage. |  |  |
|  | AC/AC unit: The rms value of the phase-to-phase line supply voltage should be entered. |  |  |
|  | DC/AC unit: The rated DC voltage of the connection busbar should be entered. |  |  |
| Dependency: | Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$. |  |  |
|  | The switch-in thresholds of the Vdc_max controller are then directly determined using p0210. |  |  |
| Caution: | If the line supply voltage is some cases to prevent the | tered value, the Vdc rating. In this case, | be automatically de-activated in arm is output. |
| Note: | Setting ranges for p 0210 as a function of the rated power unit voltage: |  |  |
|  | U_rated $=400 \mathrm{~V}$ : |  |  |
|  | - p0210 = $380 \ldots 480 \mathrm{~V}$ (AC/AC), $510 \ldots 720 \mathrm{~V}$ (DC/AC) |  |  |
|  | U_rated $=500 \mathrm{~V}$ : |  |  |
|  | - p0210 = $500 \ldots 600 \mathrm{~V}$ (AC/AC), $675 \ldots 900 \mathrm{~V}$ (DC/AC) |  |  |
|  | U_rated $=660 \ldots 690 \mathrm{~V}$ : |  |  |
|  | - p0210 = 660 ... 690 V (AC/AC), $890 . . .1035 \mathrm{~V}$ (DC/AC) |  |  |
|  | U_rated $=500 \ldots 690 \mathrm{~V}$ : |  |  |
|  | - p0210 = $500 \ldots 690 \mathrm{~V}$ (AC/AC), $675 . . .1035 \mathrm{~V}$ (DC/AC) |  |  |

The pre-charging switch-in threshold for the DC link voltage ( Vdc ) is calculated from p0210:
Vdc_pre $=$ p0210 * 0.82 * 1.35 (AC/AC)
Vdc_pre $=$ p0210 * 0.82 (DC/AC)
The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p0210 as a function of the rated power unit voltage:
U_rated $=400 \mathrm{~V}$ :

- U_min $=$ p0210 * 0.78 (AC/AC) > $330 \mathrm{~V}, \mathrm{p} 0210$ * 0.60 (DC/AC) > 380 V

U_rated $=500 \mathrm{~V}$ :

- U_min $=$ p0210 * $0.76(A C / A C)>410 \mathrm{~V}$

U_rated $=660 \ldots 690 \mathrm{~V}$ :

- U_min $=$ p0210 * $0.82(A C / A C)>565 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) $>650 \mathrm{~V}$

U_rated $=500 \ldots 690 \mathrm{~V}$ :

- U_min $=p 0210$ * $0.82(\mathrm{AC} / \mathrm{AC})>420 \mathrm{~V}, \mathrm{p} 0210$ * $0.63(\mathrm{DC} / \mathrm{AC})>480 \mathrm{~V}$


The pre-charging switch-in threshold for the DC link voltage ( Vdc ) is calculated from p0210:
Vdc_pre $=$ p0210 * 0.82 * 1.35 (AC/AC)
Vdc_pre $=$ p0210 * 0.82 (DC/AC)
The undervoltage thresholds for the DC link voltage ( Vdc ) are calculated from p0210 as a function of the rated power unit voltage:
U_rated $=400 \mathrm{~V}$ :

- U_min $=$ p0210 * $0.78(\mathrm{AC} / \mathrm{AC})>330 \mathrm{~V}, \mathrm{p} 0210$ * $0.60(\mathrm{DC} / \mathrm{AC})>380 \mathrm{~V}$

U_rated $=500 \mathrm{~V}$ :

- U_min $=$ p0210 * $0.76(A C / A C)>410 \mathrm{~V}$

U_rated $=660 \ldots 690 \mathrm{~V}$ :

- U_min $=$ p0210 * 0.82 (AC/AC) > $565 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) > 650 V

U_rated $=500 \ldots 690 \mathrm{~V}$ :

- U_min $=$ p0210 * $0.82(\mathrm{AC} / \mathrm{AC})>420 \mathrm{~V}, \mathrm{p} 0210$ * $0.63(\mathrm{DC} / \mathrm{AC})>480 \mathrm{~V}$

| p0211 | Rated line freq / Rated line freq |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T C | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 D | Dynamic index: - | Fun | 8964 |
|  | P-Group: Closed-loop control U | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Exp |  |
|  | Min $10 \text { [Hz] }$ | $\begin{aligned} & \text { Max } \\ & 100[\mathrm{~Hz}] \end{aligned}$ | Fac 50 [ |  |
| Description: | Sets the rated line frequency for the infeed. |  |  |  |
| Dependency: | Refer to: p3409 |  |  |  |
| Notice: | For p3409 = 1, the following applies: |  |  |  |
|  | After operation has been enabled, the rated line supply frequency ( p 0211 ) is automatically set to a value of 50 Hz or 60 Hz corresponding to the currently measured frequency. This means that the parameter value of p0211 is, under certain circumstances, changed. |  |  |  |
| p0212 | Power unit configuration / PU config |  |  |  |
| B_INF | Can be changed: C2(2) C | Calculated: - | Acce |  |
|  | Data type: Unsigned16 D | Dynamic index: - | Fun |  |
|  | P-Group: Converter U | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Expe |  |
|  | Min M | Max | Fact |  |
|  | - - | - | 0000 |  |
| Description: | Sets the power unit configuration. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Drive unit line supply voltage reduced <br> 02 Supply voltage tolerance range extended | $\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \\ & \text { d } \quad \text { Yes } \end{aligned}$ | 0 signal <br> No <br> No | FP |
| Dependency: | Re bit 00: <br> Reduced supply voltages are only possible on Bit $0=1$ can only be set if r0192.22 $=1$. <br> Refer to: r0192, p0210 | booksize power un |  |  |
| Caution: | Re bit 00: |  |  |  |
|  | Working with reduced input voltages de-activates undervoltage detection. Re bit 03: |  |  |  |
| Note: | Re bit $00=0$ : <br> It is not possible to reduce the supply voltage in Re bit $00=1$ (only for B_INF): <br> With this setting the supply voltage in p0210 ca units with a rated power of up to 40 kW . | in p0210. <br> can be reduced to 7 | can only | ze pow |
| p0212 | Power unit configuration / PU config |  |  |  |
| SERVO, | Can be changed: C2(2) C | Calculated: - | Acce |  |
| SERVO_AC, | Data type: Unsigned16 D | Dynamic index: - | Func |  |
| S | P-Group: Converter U | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Expe |  |
|  | Min M | Max | Fact |  |
|  | - - | - | 0000 |  |
| Description: | Sets the power unit configuration. |  |  |  |
| Bit field: | Bit Signal name <br> 01 External pre-charging present | 1 signal Yes | 0 signal <br> No | FP |


| Dependency: | Re bit $01=1:$ |
| :--- | :--- |
|  | The external pre-charging setting only affects the DC/AC power units. |
| Note: | Re bit $01=0$ : |
|  | There is no external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is bypassed. |
|  | Re bit $01=1:$ |
|  | There is external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is calculated. |


| p0212 | Power unit configuration / PU config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(2) | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Converter | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting 0000 bin |  |
|  | - | - |  |  |
| Description: | Sets the power unit configuration. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Drive unit line supply voltage reduced | Yes | No | - |
|  | 01 External pre-charging present | Yes | No | - |
|  | 03 Automatically adapt Vdc_max limit | No | Yes |  |
| Dependency: | Re bit 00: |  |  |  |
|  | Reduced supply voltages are only possible for booksize and chassis power units (DC/AC). |  |  |  |
|  | Bit $0=1$ can only be set if r0192.22 $=1$. |  |  |  |
|  | Re bit $01=1$ : |  |  |  |
|  | The external pre-charging setting only affects the DC/AC power units. |  |  |  |
|  | Re bit $03=1$ : |  |  |  |
|  | The automatic adaptation (reduction) of the Vdc max limit is deactivated (only for chassis power units). Bit 3 only has an effect, if bit 0 is simultaneously set. |  |  |  |
|  | Refer to: r0192, p0210 |  |  |  |
| Caution: | Re bit 00: |  |  |  |
|  | Working with reduced input voltages de-activ Re bit 03 : | Re bit 03: |  |  |
|  | If the automatic setting of the Vdc max limit is deactivated, then all of the components connected to the DC link must be suitable for the maximum DC link voltage of the power unit (e.g. 820 V for 400 V units). |  |  |  |
| Note: | Re bit $00=0$ : |  |  |  |
|  | It is not possible to reduce the supply voltage in p0210. |  |  |  |
|  | Re bit $00=1$ : |  |  |  |
|  | With this setting the supply voltage in p0210 can be reduced to 100 V . |  |  |  |
|  | Booksize PU: only for operating mode p1300 = 19 |  |  |  |
|  | Chassis PU: only for operating mode p1300 > 19 and closed-loop DC voltage control |  |  |  |
|  | Re bit $01=0$ : |  |  |  |
|  | There is no external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is bypassed. Re bit $01=1$ : |  |  |  |
|  |  |  |  |  |  |  |
|  | There is external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is calculated. |  |  |  |
|  | Re bit $03=0$ : |  |  |  |
|  | The DC link voltage limit is calculated from p0210. |  |  |  |
|  | Re bit 03 = 1: |  |  |  |
|  | The DC link voltage limit is set to the maximum value of the power unit. |  |  |  |



| p0221[0...1] | Infeed filter capacitance / INF C_filter |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mu \mathrm{~F}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100000.00[\mu \mathrm{~F}] \end{aligned}$ | Factory setting $0.00[\mu \mathrm{~F}]$ |
| Description: Index: | Sets the filter capacitance of the line filter (connected in a delta configuration). <br> [0] = Line filter <br> [1] = Line filter, optional |  |  |
| Note: | When a Siemens line filter is For a parallel circuit, the val Index 0 refers to the first line Index 1 refers to the optiona | is parameter is auto o the capacitance of [0]. <br> from p0220[1]. | with the correct value. |
| p0222[0...1] | Infeed filter resistance / INF R_filter |  |  |
| A_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | $\begin{aligned} & \operatorname{Max} \\ & 100.00000[\mathrm{ohm}] \end{aligned}$ | Factory setting 0.00000 [ohm] |
| Description: Index: | Sets the filter resistance in <br> [0] = Line filter <br> [1] = Line filter, optional | er capacitance. |  |
| Note: | When a Siemens line filter is For a parallel circuit, the val Index 0 refers to the first line Index 1 refers to the optiona | is parameter is auto o the resistance of a [0]. <br> from p0220[1]. | with the correct value. |
| p0223 | Infeed inductance between filter and power unit / INF L filter/PU |  |  |
| A_INF, S_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.001[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{mH}] \end{aligned}$ | Factory setting $2.100[\mathrm{mH}]$ |
| Description: | Sets the inductance between the filter and power unit. |  |  |
| Note: | The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens line reactors. |  |  |
| p0224 | Infeed resistance between filter and power unit / INF R filter/PU |  |  |
| A_INF, S_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | $\begin{aligned} & \operatorname{Max} \\ & 100.00000[\mathrm{ohm}] \end{aligned}$ | Factory setting 0.00100 [ohm] |
| Description: | Sets the resistance between the filter and power unit |  |  |
| Note: | The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens line reactors. |  |  |

For a parallel circuit, the value corresponds to the resistance of a power unit.

| p0225 | Infeed inductance between line supply and filter / INF L line/filter |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.001[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.001 [mH] |
| Description: | Sets the inductance between line supply and filter. |  |  |
| Note: | The value must be, for example, appropriately increased if an additional inductance (reactor or transformer is installed in front of the filter). |  |  |
| p0226 | Infeed resistance between line supply and filter / INF R line/filter |  |  |
| A_INF, S_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ohm] | Max <br> 100.00 [ohm] | Factory setting 0.00 [ohm] |
| Description: | Sets the resistance between the line supply and filter. |  |  |
| Note: | The value must be, for example, appropriately increased if an additional resistor is installed in front of the filter. |  |  |
| p0227 | Infeed, DC link capacitance, power unit / INF C |  |  |
| A_INF, S_INF | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.20[\mathrm{mF}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{mF}] \end{aligned}$ | Factory setting 1.00 [mF] |
| Description: | Sets the total DC link capacitance. |  |  |
| Note: | The total DC link capacitance of a DC link group comprises the sum of the sub-capacitances of all motor/infeed modules and the additional DC link capacitors. |  |  |
| p0230 | Drive filter type, motor side / Drv filt type mot |  |  |
| VECTOR, | Can be changed: $\mathrm{C} 2(1,2)$ | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| ECTOR_I_AC | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 0 |
| Description: | Sets the type of the filter at the motor side. |  |  |
| Value: | 0: No filter <br> 1: Motor reactor <br> 2: dv/dt filter <br> 3: Sine-wave filter, Siem <br> 4: Sine-wave filter, third |  |  |
| Dependency: | The following parameters ar p0230 = 1 : <br> --> p0233 (power unit, moto p0230 $=3$ : <br> --> p0233 (power unit, moto <br> --> p0234 (power unit sine-w | g 0230 : <br> inductance <br> inductance <br> tance) $=$ filter capaci |  |



Dependency: This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.
Refer to: p0230
Note: $\quad$ When exiting the quick commissioning using p3900 = 1, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase $(\mathrm{p} 0010=0)$ and then the controller calculation ( $\mathrm{p} 0340=3$ ) is carried out.


| p0235 | Motor reactor in series number / L_mot in SeriesQty |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(1, 2) | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | Factory setting |  |
|  | 1 | 1 |  |
| Description: | Sets the number of reactors connected in series at the power unit output. |  |  |
| Dependency: | Refer to: p0230 |  |  |
| Caution: | If the number of motor reactors connected in series does not correspond to this parameter value, then this can |  |  |
|  | result in an unfavorable control behavior. |  |  |
| Note: | The parameter cannot be changed for chassis units and for p0230 =1. |  |  |



| p0252 | Maximum operating time power unit fan / PU fan t_oper max |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 4 |
| S_INF, SERVO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| SERVO_AC, SERVO I AC, VEC- | P-Group: Modulation | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ h ] | 100000 [h] | 40000 [h] |
| Description: | Sets the maximum operating time of the power unit fan. <br> The pre-alarm (warning) is output 500 hours before this set value. <br> The monitoring is de-activated with p0252 $=0$. |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0251 |  |  |
| Note: | For chassis units, the maximum operating time in the power unit parameter is set to 50000 via the factory setting. |  |  |


| p0254[0...n] | Power unit internal fan operating hours counter / PU int fan t_oper |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [h] | 4294967295 [h] | 0 [h] |
| Description: | Displays the power unit internal fan operating hours. |  |  |
|  | The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced). |  |  |
| Dependency: | Refer to: p0252 |  |  |
| p0255[0...1] | Power unit contactor monitoring time / PU cont t_monit |  |  |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| S_INF, SERVO, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO I AC, VEC- | P-Group: Modulation | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 6500 [ms] | 0 [ms] |
| Description: Index: | Sets the monitoring time for internal monitoring of the contactor feedback contacts. <br> [0] = Pre-charge contactor <br> [1] = Bypass contactor |  |  |
| Dependency: | Refer to: F30060, F30061 |  |  |
| Note: | This parameter is only effective for chassis power units with 3 AC line connection and line contactors. A value of 0 de-activates the associated line contactor monitoring. |  |  |
| p0260 | Cooling unit, starting time 1 / RKA start time 1 |  |  |
| A_INF (Cool_unit), | Can be changed: U, T | Calculated: - | Access level: 3 |
| B_INF (Cool_unit), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9795 |
| S_INF (Cool_unit), SERVO (Cool_unit), | P-Group: Converter | Units group: - | Unit selection: - |
| SERVO_AC (Cool_unit), | Not for motor type: - | Scaling: - | Expert list: 1 |
| SERVO_I_AC (Cool_unit), VEC- |  |  |  |
| TOR (Cool_unit), |  |  |  |
| VECTOR_AC (Cool_unit), |  |  |  |
| VECTOR_I_AC (Cool_unit) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.0 [s] | 60.0 [s] | 5.0 [s] |
| Description: | Sets starting time 1 to monitor the cooling unit after power-on command. <br> After powering up, the following signals must be present within starting time 1: <br> - "RKA powered up" <br> - "RKA liquid flow OK" <br> When a fault occurs, an appropriate message is output. |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Dependency: | Refer to: F49152, F49153 |  |  |
| Note: | RKA: Cooling unit |  |  |


| p0261 | Cooling unit, starting time 2 / RKA start time 2 |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Cool_unit), B_INF (Cool_unit), S_INF (Cool_unit), SERVO (Cool_unit), SERVO_AC (Cool_unit), SERVO_IAC (Cool_unit), VECTOR (Cool_unit), VECTOR_AC (Cool_unit), VECTOR_I_AC (Cool_unit) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 9795 <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [s] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1200.0[s] \end{aligned}$ | Factory setting 180.0 [s] |
| Description: | Sets starting time 2 to monitor the cooling unit after power-on command. <br> After powering up, the following signals must be present within starting time 2 : <br> - "RKA conductivity, no fault" <br> - "RKA conductivity, no alarm" |  |  |
| Dependency: | Refer to: p0266 |  |  |
| p0262 | Cooling unit, fault conductivity delay time / RKA cond t_del |  |  |
| A_INF (Cool_unit), B_INF (Cool_unit), S_INF (Cool_unit), SERVO (Cool_unit), SERVO_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR (Cool_unit), VECTOR_AC (Cool_unit), VECTOR_I_AC (Cool_unit) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 9795 <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min}_{0} \\ & 0.0[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 30.0[\mathrm{~s}] \end{aligned}$ | Factory setting 0.0 [s] |
| Description: | Sets the delay time for the fault "RKA: Conductive limit value exceeded" during operation. <br> The fault is only output if, during operation, the conductivity exceeds the permissible fault value and the value remains for a longer time than is set in this parameter. |  |  |
| Dependency: | Refer to: F49151 |  |  |


| p0263 | Cooling unit fault liquid flow, delay time / RKA flow t_del |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Cool_unit), <br> B_INF (Cool_unit), <br> S_INF (Cool_unit), <br> SERVO (Cool_unit), <br> SERVO_AC <br> (Cool_unit), <br> SERVO_I_AC <br> (Cool_unit), VEC- <br> TOR (Cool_unit), <br> VECTOR_AC <br> (Cool_unit), <br> VECTOR_I_AC <br> (Cool_unit) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 9795 <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [s] } \end{aligned}$ | Max $20.0 \text { [s] }$ | Factory setting $3.0 \text { [s] }$ |
| Description: <br> Dependency: | Sets the delay time for the fault "RKA: Liquid flow too low". <br> The fault is only output if the cause is present for a time longer than is set in this parameter. <br> Refer to: F49153 |  |  |
| p0264 <br> A_INF (Cool_unit), <br> B_INF (Cool_unit), <br> S_INF (Cool_unit), <br> SERVO (Cool_unit), <br> SERVO_AC <br> (Cool_unit), <br> SERVO_I_AC <br> (Cool_unit), VEC- <br> TOR (Cool_unit), <br> VECTOR_AC <br> (Cool_unit), <br> VECTOR_I_AC <br> (Cool_unit) | Cooling unit, run-on <br> Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - | un-on time <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 9795 <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 180.0 \text { [s] } \end{aligned}$ | Factory setting 30.0 [s] |
| Description: | Sets the run-up time of the cooling unit after a power-off command. |  |  |
| r0265.0... 3 | BO: Cooling unit, control word / RKA CTW |  |  |
| A_INF (Cool_unit), <br> B_INF (Cool_unit), <br> S_INF (Cool_unit), <br> SERVO (Cool_unit), <br> SERVO_AC <br> (Cool_unit), <br> SERVO_I_AC <br> (Cool_unit), VEC- <br> TOR (Cool_unit), <br> VECTOR_AC <br> (Cool_unit), <br> VECTOR_I_AC <br> (Cool_unit) | Can be changed: - <br> Data type: Unsigned8 <br> P-Group: Commands <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  |  | Max | Factory setting |
| Description: | Displays the control word for the cooling unit. |  |  |


| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 00 | Power up cooling unit | Activating | De-activating | - |
| 01 | Message converter off | OFF | ON | - |  |
|  | 02 | Acknowledge faults | Acknowledgement | No acknowledgement | - |
|  | 03 | Leakage sensing OK | No leaked liquid | Leaked liquid |  |


| p0266[0...7] | BI: Cooling unit, feedback signals, signal source / RKA fdbk S_src |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Cool_unit), | Can be changed: U, T | Calculated: - | Access level: 3 |
| B_INF (Cool_unit), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| S_INF (Cool_unit), | P-Group: Communications | Units group: - | Unit selection: - |
| SERVO (Cool_unit), | Not for motor type: - | Scaling: - | Expert list: 1 |
| SERVO_AC |  |  |  |
| (Cool_unit),  <br> SERVO_I_AC  <br> (Cool_unit), VEC-  <br> TOR (Cool_unit),  <br> VECTOR_AC  <br> (Cool_unit),  <br> VECTOR_I_AC  <br> (Cool_unit) - |  |  |  |

Description: Sets the signal sources for the feedback signals from the cooling unit.
Index:
[ 0 ] C Cooling unit powered up
[1] = Cooling unit ready to be powered up
[2] = Cooling unit, no alarm present
[3] = Cooling unit, no fault present
[4] = Cooling unit, no leaked liquid
[5] = Cooling unit, liquid flow OK
[6] = Cooling unit, conductivity < fault threshold
[7] = Cooling unit, conductivity < alarm threshold



| Notice: | For chassis power units, for the extended line supply voltage range from 500 V to 690 V , the value in p 0280 is automatically adapted if the line supply voltage in p0210 is changed. The individual parameter setting for p0280 is then lost and if necessary must be re-entered. |
| :---: | :---: |
| Note: | A brief dynamic increase of the DC link voltage does not result in an alarm. Pre-setting values: <br> 380 ... 480 V booksize units: 660 V <br> 380 ... 480 V chassis units: 750 V <br> 500 ... 690 V chassis units: 0.875 * p0210 + 502 V <br> Maximum values: <br> 380 ... 480 V booksize units: 785 V <br> 380 ... 480 V chassis units: 785 V <br> 500 ... 690 V chassis units: 1130 V |
| p0281 | Line supply overvoltage, alarm threshold / U_I_over A thresh |
| A_INF, S_INF | Can be changed: T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8860, 8960 <br> P-Group: Converter Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $100[\%]$ 200 [\%] 110 [\%] |
| Description: <br> Dependency: <br> Note: | Sets the alarm threshold for a line supply overvoltage condition. <br> The setting is made as a percentage of the drive unit supply voltage ( p 0210 ). <br> Refer to: p0211, p0221, p0222, p0223, p0224, p0225, p0226 <br> If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified. |
| p0282 | Line supply undervoltage, alarm threshold / U_I_under A thresh |
| A_INF, S_INF | Can be changed: T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8860, 8960 <br> P-Group: Converter Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $10[\%]$ 100 [\%] 85 [\%] |
| Description: | Sets the alarm threshold for a line undervoltage condition. <br> The setting is made as a percentage of the drive unit supply voltage ( p 0210 ). |
| Dependency: | Refer to: p0222, p0224, p0225, p0226, p3421, p3422 <br> Refer to: A06105 |
| Note: | If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified. |
| p0283 | Line supply undervoltage, shutdown (trip) threshold / U_I_under tr_thrsh |
| A _INF, S_INF | Can be changed: C2(1), T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8860, 8960 <br> P-Group: Converter Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $10[\%]$ 100 [\%] 75 [\%] |
| Description: | Sets the shutdown threshold for the line supply undervoltage. <br> The setting is made as a percentage of the drive unit supply voltage ( p 0210 ). |
| Dependency: | Refer to: p0282 <br> Refer to: F06100 |
| Notice: | For booksize Active Line Modules, the following applies: <br> When operated without Active Interface Module ( $\mathrm{p} 0220=41 \ldots 45$ ), the minimum shutdown threshold is $75 \%$. |


| p0284 | Line supply frequency exceeded, alarm threshold / f_I_exc A thresh |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8864, 8964 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 100.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 110.0 [\%] |
| Description: Dependency: | Sets the alarm threshold for Set as a percentage of the $r$ Refer to: p0211 | high line frequency. |  |
| p0285 | Line supply frequency undershot, alarm threshold / f_I_under A thresh |  |  |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8864, 8964 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 90.0 [\%] |
| Description: <br> Dependency: | Sets the alarm threshold for Set as a percentage of the r Refer to: p0211 | cy. |  |
| p0287[0..1] | Ground fault monitoring thresholds / Gnd flt threshold |  |  |
| A_INF, S_INF, SERVO, <br> SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting [0] 6.0 [\%] |
|  |  |  | [1] 16.0 [\%] |
| Description: | Sets the shutdown thresholds for the ground fault monitoring. <br> The setting is made as a percentage of the maximum power unit current (r0209). |  |  |
| Index: | [0] = Threshold at which pre-charging starts <br> [1] = Threshold at which pre-charging stops |  |  |
| Dependency: | Refer to: F30021 |  |  |
| Note: | The parameter only applies to booksize and chassis power units. De-activating the ground fault monitoring: <br> - Sequence: --> p0287[1] = 0 --> p0287[0] = 0 <br> - irrespective of the firmware version of the power unit. <br> Sets the thresholds: <br> - the prerequisite is at least firmware version 2.2 of the power unit. |  |  |
| r0289 | CO: Maximum power unit output current / PU I_outp max |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the actual maximum output current of the power unit taking into account derating factors. |  |  |


| p0290 | Power unit overload response / PU overld response |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 8014 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the response to a thermal overload condition of the power unit. |  |  |
|  | The following quantities can result in a response to thermal overload: |  |  |
|  | - heat sink temperature (r0037 index 0) |  |  |
|  | - chip temperature (r0037 index 1) |  |  |
|  | - power unit overload I2T (r0036) |  |  |
|  | Possible measures to avoid thermal overload: |  |  |
|  | - reduce the output current limit r0289 and r0067 (for closed-loop speed/velocity or torque/force control) or the output frequency (for U/f control) indirectly via the output current limit and the intervention of the current limiting controller). |  |  |
|  | - reduce the pulse frequency (only for vector control). |  |  |
|  | A reduction, if parameterized, is always realized after an appropriate alarm is output. |  |  |
| Value: | 0: Reduce output current or output frequency |  |  |
| Dependency: | For a corresponding alarm or fault, r2135.13 is set to 1 or r2135.15 is set to 1 . |  |  |
|  | Refer to: r0036, r0037, p0108, r0108, p0230, r2135 |  |  |
|  | Refer to: A05000, A05001, A07805 |  |  |
| Caution: | If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter. |  |  |
| Note: | The setting p0290 $=0$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). |  |  |
|  | Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. |  |  |
|  | When the motor data identification routine is selected, p0290 cannot be changed. |  |  |
| p0290 | Power unit overload response / PU overld response |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 8014 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 3 | 0 |
| Description: | Sets the response to a thermal overload condition of the power unit. |  |  |
|  | The following quantities can result in a response to thermal overload: |  |  |
|  | - heat sink temperature (r0037 index 0) |  |  |
|  | - chip temperature (r0037 index 1) |  |  |
|  | - power unit overload I2T (r0036) |  |  |
|  | Possible measures to avoid thermal overload: |  |  |
|  | - reduce the output current limit r0289 and r0067 (for closed-loop speed/velocity or torque/force control) or the output frequency (for U/f control) indirectly via the output current limit and the intervention of the current limiting controller). |  |  |
|  | - reduce the pulse frequency (only for vector control). |  |  |
|  | A reduction, if parameterized, is always realized after an appropriate alarm is output. |  |  |
| Value: | 0: Reduce output | uency |  |
|  | 1: No reduction, sh | ad threshold is reach |  |
|  | 2: Reduce I_outpu | ulse (not using I2t) |  |
|  | 3: Reduce the puls | $\mathrm{I} 2 \mathrm{t})$ |  |


| Dependency: | If a sine-wave filter is parameterized as output filter ( $\mathrm{p} 0230=3,4$ ), then only responses can be selected without pulse frequency reduction (p0290 = 0, 1). |
| :---: | :---: |
|  | If a fault or alarm is present, then r2135.13 or r2135.15 is set. |
|  | Refer to: r0036, r0037, p0108, r0108, p0230, r2135 |
|  | Refer to: A05000, A05001, A07805 |
| Caution: | If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter. |
| Note: | The setting p0290 $=0,2$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). |
|  | Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. |
|  | For $\mathrm{p} 0290=2,3$, the 12 t overload detection of the power unit does not influence the responses. |
|  | When the motor data identification routine is selected, p0290 cannot be changed. |


| r0293 | CO: Power unit alarm threshold model temperature / PU A_thr mod_temp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8014 |
| SERVO_IAC, VEC- | P-Group: Converter | Units group: $21 \_1$ | Unit selection: $\mathbf{p 0 5 0 5}$ |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-\left[{ }^{\circ} \mathrm{C}\right]$ | $-\left[{ }^{\circ} \mathrm{C}\right]$ | $-\left[{ }^{\circ} \mathrm{C}\right]$ |


| Description: | Temperature alarm threshold for the difference from the chip and heat sink temperature in the thermal model. |
| :--- | :--- |
| Dependency: | Refer to: r0037 |
|  | Refer to: F30024 |
| Note: | The parameter is only relevant for chassis power units. |


| p0294 | Power unit alarm with l2t overload / PU I2t alrm thresh |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8014 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, VEC- } \end{aligned}$ | P-Group: Converter | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 95.0 [\%] |
| Description: | Sets the alarm threshold for Drive: <br> If this threshold is exceeded Infeed: <br> When the threshold value is | it overload. <br> rm is generated and <br> an overload alarm is | onds as parameterized |
| Dependency: | Refer to: r0036, p0290 |  |  |
| Note: | The I2t fault threshold is $100 \%$. If this value is exceeded, fault F30005 is output. |  |  |
| p0294 | Power unit alarm with l2t overload / PU 12t alrm thresh |  |  |
| B_INF | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8014 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 95.0 [\%] |
| Description: | Sets the alarm threshold for | t overload. |  |



| r0297 | DC link voltage overvoltage threshold / Vdc U_upper_thresh |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, S_INF, SERVO, SERVO AC, SERVO_IAC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Converter <br> Not for motor type: - <br> Min <br> - [V] | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max <br> - [V] | Access level: 2 <br> Func. diagram: 8750, 8760, 8850, 8864, 8950, 8964 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [V] |
| Description: <br> Dependency: | If the $D C$ link voltage exceeds the threshold specified here, the drive unit is tripped due to $D C$ link overvoltage. Refer to: F30002 |  |  |
| $\begin{aligned} & \hline \mathbf{p 0 3 0 0}[\mathbf{0 . . . n ]} \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Motor type selection <br> Can be changed: $\mathrm{C} 2(1,3)$ <br> Data type: Integer16 <br> P-Group: Motor <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: MDS, p0130 <br> Units group: - <br> Scaling: - <br> Max <br> 10001 | Access level: 1 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: | Selects the motor type or start to read in the motor parameters for a motor with DRIVE-CLiQ (p0300 = 10000). <br> The following applies for $\mathrm{p} 0300<10000$ : The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list: <br> 1 = Rotating induction motor <br> 2 = Rotating synchronous motor <br> 3 = Linear induction motor (reserved) <br> 4 = Linear synchronous motor <br> The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor ( p 0308 ) is neither used nor displayed (in the BOP/AOP). |  |  |
| Value: | 0: No motor <br> 1: Induction motor (rotating) <br> 2: Synchronous motor (rotating, permane <br> 4: Synchronous motor (linear, permanent <br> 102: 1PH2 induction motor <br> 104: 1PH4 induction motor <br> 107: 1PH7 induction motor <br> 108: 1PH8 induction motor <br> 111: Induction motor (rotary) for OEMs <br> 134: 1PM4 induction motor <br> 136: 1PM6 induction motor <br> 166: 1PL6 induction motor <br> 200: 1PH8 synchronous motor <br> 206: 1FT6 synchronous motor <br> 207: 1FT7 synchronous motor <br> 222: Synchronous motor (rotary) for OEMs <br> 236: 1FK6 synchronous motor <br> 237: 1FK7 synchronous motor <br> 261: 1FE1 synchronous motor <br> 276: 1FS6 synchronous motor <br> 283: 1FW3 synchronous motor <br> 286: 1FW6 synchronous motor <br> 291: 2SP1 synchronous motor <br> 401: 1FN1 synchronous motor (linear) <br> 403: 1FN3 synchronous motor (liiear) <br> 400: 1FN6 synchronous motor (linear) <br> 444: Synchronous motor (linear) for OEMs <br> 10000: Motor with DRIVE-CLiQ <br> 10001: Motor with DRIVE-CLiQ 2nd data set | ent-magnet) <br> t-magnet) |  |


| Dependency: | When the motor type is changed, the code number in p0301 may be reset to 0 . |
| :---: | :---: |
|  | If p0300 is changed during quick commissioning ( $p 0010=1$ ), then the matching technological application ( $p 0500$ ) is automatically pre-assigned. This does not occur when commissioning the motor ( $p 0010=3$ ). If $p 0300=10000$ is written for a parameter download, p0500 is pre-assigned with DRIVE-CLiQ corresponding to the motor type. <br> Refer to: p0301 |
| Caution: | If a catalog motor is selected ( $\mathrm{p} 0300>=100$ ) and an associated motor code number ( p 0301 ), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 2 for p0301 $=2 x x x x$ ). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters. |
|  | The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed): |
|  | Type/code number ranges |
|  | 102 / 102xx, 112xx, 122xx |
|  | 104 / 104xx, 114xx, 124xx |
|  | 107 / 107xx, 117xx, 127xx |
|  | 108 / 108xx, 118xx, 128xx, 138xx, 148xx, 158xx |
|  | 134 / 134xx, 144xx, 154xx |
|  | 136/ 136xx, 146xx, 156xx |
|  | 166/166xx, 176xx, 186xx |
|  | 200/200xx, 210xx, 220xx |
|  | 204 / 204xx, 214xx, 224xx |
|  | 206 / 206xx, 216xx, 226xx |
|  | 207 / 207xx, 217xx, 227xx |
|  | 237 / 237xx, 247xx, 257xx |
|  | 261 / 261xx, 262xx |
|  | 283 / 283xx, 293xx |
|  | 286/286xx, 296xx |
|  | 403 / 403xx, 413xx |
|  | 406 / 406xx, 416xx, 426xx |
| Note: | With $\mathrm{p} 0300=10000$, for a motor with DRIVE-CLiQ, the motor parameters are automatically downloaded, with $p 0300=10001$, the motor parameters of a second data set (if available). |
|  | If a motor type has not been selected ( $0300=0$ ), then the drive commissioning routine cannot be exited. |
|  | A motor type with a value above $\mathrm{p} 0300>=100$ describes motors for which a motor parameter list exists. |
|  | Motor types with a value below p0300 < 100 correspond to the selection of a third-party motor. When appropriately selected, this means that the motor parameters are pre-assigned the settings for a third-party motor. |
|  | This also applies for parameters for a motor with DRIVE-CLiQ. In this case p0300 can only be set to p0300 = 10000 or 10001 (read motor parameters) or to the corresponding non-Siemens motor (first digit of the motor code number) in order to be able to cancel the write protection. |



Notice: $\quad$ For 1PQ8 motors $(\mathrm{p} 0300=18)$ the fan type p0335 should be set to 5 .

Note: $\quad$ With $\mathrm{p} 0300=10000$, for a motor with DRIVE-CLiQ, the motor parameters are automatically downloaded, with p0300 = 10001, the motor parameters of a second data set (if available).
If a motor type has not been selected ( $\mathrm{p} 0300=0$ ), then the drive commissioning routine cannot be exited.
A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.
Motor types with a value below p0300 < 100 correspond to the selection of a third-party motor. When appropriately selected, this means that the motor parameters are pre-assigned the settings for a third-party motor.
This also applies for parameters for a motor with DRIVE-CLiQ. In this case p0300 can only be set to p0300 $=10000$ or 10001 (read motor parameters) or to the corresponding non-Siemens motor (first digit of the motor code number) in order to be able to cancel the write protection.

| p0301[0...n] | Motor code number selection / Mot code No. sel |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1,3) | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |


| Description: | The parameter is used to select a motor from a motor parameter list. |
| :---: | :---: |
|  | When changing the code number (with the exception to the value 0 ), all of the motor parameters are pre-assigned from the internally available parameter lists. |
| Dependency: | Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. For 1PH2, $1 \mathrm{PH} 4,1 \mathrm{PH} 7,1 \mathrm{PM} 4,1 \mathrm{PM} 6$, 1FT6 motors, code numbers are also possible, whose fourth decimal position is greater by a value of 1 or 2 than the matching motor type in p0300. For 1FE1 motors, the third decimal position can be higher by a value of 1 . |
|  | Refer to: p0300 |
| Note: | The motor code number can only be changed if the matching catalog motor was first selected in p0300. |
|  | For a motor with DRIVE-CLiQ, p0301 cannot be changed. In this case, p0301 is automatically written to the code number of the motor parameter read in (r0302) if p0300 is set to 10000. |
|  | When selecting a catalog motor ( $\mathrm{p} 0300>=100$ ), drive commissioning can only be exited if a code number is selected. |
|  | If, for direct drives, the motor code number (p0301) is changed, this does not automatically result in the angular commutation offset being determined (p0431). |


| p0301[0...n] | Motor code number selection / Mot code No. sel |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | The parameter is used to select a motor from a motor parameter list. |  |  |
|  | When changing the code number (with the exception to the value 0 ), all of the motor parameters are pre-assigned from the internally available parameter lists. |  |  |
| Dependency: | Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. Refer to: p0300 |  |  |
| Note: | The motor code number can only be changed if the matching catalog motor was first selected in p0300. |  |  |
|  | When selecting a catalog motor (p0300 >= 100), drive commissioning can only be exited if a code number is selected. |  |  |


| p0301[0...n] | Motor code number selection / Mot code No. sel |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | The parameter is used to select a motor from a motor parameter list. |  |  |
|  | When changing the code number (with the exception to the value 0 ), all of the motor parameters are pre-assigned from the internally available parameter lists. |  |  |
| Dependency: | Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. For 1PH2, 1PH4, 1PH7, 1PM4, 1PM6, 1FT6 motors, code numbers are also possible, whose fourth decimal position is greater by a value of 1 or 2 than the matching motor type in p0300. For 1FE1 motors, the third decimal position can be higher by a value of 1 . |  |  |
|  | Refer to: p0300 |  |  |
| Note: | The motor code number can only be changed if the matching catalog motor was first selected in p0300. |  |  |
|  | For a motor with DRIVE-CLiQ, p0301 cannot be changed. In this case, p0301 is automatically written to the code number of the motor parameter read in (r0302) if p0300 is set to 10000. |  |  |
|  | When selecting a catalog motor ( $\mathrm{p} 0300>=100$ ), drive commissioning can only be exited if a code number is selected. |  |  |


| r0302[0...n] | Motor code number of motor with DRIVE-CLiQ / Motor code Mot DLQ |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max - | Expert list: 1 |
| VECTOR_IAC | Min | Factory setting |  |
|  | - | - |  |
| Description: | Displays the motor code number from the saved motor data from a motor with DRIVE-CLiQ. |  |  |
| Note: | Drive commissioning can only be exited if the code number that was downloaded (r0302) matches the stored code |  |  |
|  | number (p0301). If the numbers differ, then the motor data set should be re-loaded using p0300 = 10000. |  |  |
|  | The motor data are always expected from the first encoder that is assigned to the drive data sets (refer to p0187 = |  |  |
|  | encoder 1) data set number. |  |  |
|  | The value is not updated cyclically but only on specific events (e.g. update DRIVE-CLiQ device). |  |  |
|  | r0302 = 0: No motor with DRIVE-CLiQ found |  |  |



| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | Motor data set selected | MDS1 | MDS0 | - |
|  | 01 | Motor connection type | Delta | Star | - |
|  | 02 | Windings can be changed | Yes | No | - |
|  | 03 | Windings can be changed number | 2 | 0 | - |
| Dependency: | Refer to: p0145, p0300 |  |  |  |  |
| Note: | SMI: SINAMICS Sensor Module Integrated |  |  |  |  |
| p0304[0...n] | Rated motor voltage / Mot U_rated |  |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ |  | Calculated: - | Access level: 1 |  |
|  | Data type: FloatingPoint32 |  | Dynamic index: MDS, p0130 | Func. diagram: 6300, 6724 |  |
|  | P-Group: Motor |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | 0 [Vrms] |  | 20000 [Vrms] | 0 [Vrms] |  |
| Description: | Sets the rated motor voltage (rating plate). |  |  |  |  |
| Dependency: | Refer to: p0349 |  |  |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor mation in p0300 should be carefully observed when removing write protection. |  |  |  |  |
| Note: | When the parameter value is entered the connection type of the motor (star-delta) must be taken into account. |  |  |  |  |
| p0305[0...n] | Rated motor current / Mot I_rated |  |  |  |  |
| SERVO, | Can be changed: $\mathrm{C} 2(1,3)$ |  | Calculated: - | Access level: 1 |  |
| SERVO_AC, | Data type: FloatingPoint32 |  | Dynamic index: MDS, p0130 | Func. diagram: 6300 |  |
|  | P-Group: Motor |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | 0.00 [Arms] |  | 10000.00 [Arms] | 0.00 [Arms] |  |
| Description: | Sets the rated motor current (rating plate). |  |  |  |  |
| Dependency: | Refer to: p0349 |  |  |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor mation in p0300 should be carefully observed when removing write protection. |  |  |  |  |
| Notice: | If p 0305 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). |  |  |  |  |
| Note: | When the parameter value is entered the connection type of the motor (star-delta) must be taken into account. |  |  |  |  |
| p0305[0...n] | Rated motor current / Mot I_rated |  |  |  |  |
| VECTOR, | Can be changed: $\mathrm{C} 2(1,3)$ |  | Calculated: - | Access level: 1 |  |
| VECTOR_AC, | Data type: FloatingPoint32 |  | Dynamic index: MDS, p0130 | Func. diagram: 6300 |  |
|  | P-Group: Motor |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max <br> 10000.00 [Arms] | Factory setting 0.00 [Arms] |  |
|  |  | [Arms] |  |  |  |
| Description: | Sets the rated motor current (rating plate). |  |  |  |  |
| Dependency: | Refer to: p0349 |  |  |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |  |  |
| Notice: | If p 0305 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum current p 0640 is pre-assigned accordingly. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). <br> If the rated motor current exceeds twice the maximum drive converter current (r0209), then the maximum current is reduced due to the current harmonics that increase overproportionally (r0067). |  |  |  |  |
| Note: | When the parameter value is entered the connection type of the motor (star-delta) must be taken into account. |  |  |  |  |


| p0306[0...n] | Number of motors connected in parallel / Motor qty |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 10 | 1 |
| Description: | Sets the number (count) of motors that can be operated in parallel using one motor data set. |  |  |
|  | Depending on the motor number entered, internally an equivalent motor is calculated. |  |  |
|  | The following should be carefully observed for motors connected in series: |  |  |
|  | The following rating plate data should only be entered for one motor: |  |  |
|  | - resistances and inductances: p0350, p0352, p0353, p0354, p0356, p0357, p0358, p0360 |  |  |
|  | - currents: p0305, p0318, p0320, p0323, p0325, p0329, p0338, p0391, p0392 |  |  |
|  | - torques/forces: p0312, p0319 |  |  |
|  | - power ratings: p0307 |  |  |
|  | - masses/moments of inertia: p0341, p0344 |  |  |
|  | All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0370, r0373, r0374). |  |  |
| Recommend.: | For motors connected in parallel, external thermal protection should be provided for each individual motor. |  |  |
| Dependency: | Refer to: r0331, r0370, r0373, r0374, r0376, r0377, r0382 |  |  |
| Caution: | The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)). |  |  |
|  | The mounting regulations when connecting motors in parallel must be carefully maintained! Especially for synchronous motors, the pole position of motors that are rigidly coupled with one another (mechanically) must be identical. |  |  |
|  | The number of motors set must correspond to the number of motors that are actually connected in parallel. |  |  |
|  | After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1). |  |  |
|  | For synchronous motors connected in parallel with p1300 >= 20, be following applies: |  |  |
|  | - the individual motors must be mechanically coupled with one another and the EMF must be aligned to one another. |  |  |
|  | For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies: |  |  |
|  | - an individual motor must not be loaded beyond its stall point. |  |  |
| Notice: | If p0306 is changed during assigned. This is not the ca | ing ( $\mathrm{p} 0010=1$ ), then the maxim sioning the motor $(\mathrm{p} 0010=3)$. | urrent p0640 is appropriately pre- |


| p0306[0...n] | Number of motors connected in parallel / Motor qty |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(1, 3) | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: Unsigned8 | Dynamic index: MDS, p0130 | Func. diagram: |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: FEM | Scaling: - | Expert list: 1 |
|  | Min <br> 1 | $\begin{aligned} & \text { Max } \\ & 50 \end{aligned}$ | Factory setting 1 |
| Description: | Number of motors that can be operated in parallel using one motor data set. |  |  |
|  | Depending on the motor number entered, internally an equivalent motor is calculated. |  |  |
|  | The following should be carefully observed for motors connected in series: |  |  |
|  | The following rating plate data should only be entered for one motor: |  |  |
|  | - resistances and inductances: p0350 ... p0361 |  |  |
|  | - currents: p0305, p0320, p0323, p0325, p0329, p0389, p0390, p0391, p0392 |  |  |
|  | - power ratings: p0307 |  |  |
|  | - masses/moments of inertia: p0341, p0344 |  |  |
|  | All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0333). |  |  |
| Recommend.: | For motors connected in pa | rmal protection should be provid | or each individual |
| Dependency: | Refer to: r0331 |  |  |

Notice: If p0306 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum current p0640 is appropriately preassigned. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ).
Note: $\quad$ Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel. Separately-excited synchronous motors must not be connected in parallel.
Synchronous and reluctance motors that are not coupled with one another align themselves when the pulses are switched in. If the motors have different load levels, then equalization currents flow between the motors.

| p0307[0...n] | Rated motor power / Mot P_rated |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1, 3) | Calculated: - |  |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: 14_6 | Unit selection: p0100 |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | $100000.00[\mathrm{~kW}]$ | Factory setting list: 1 |
|  | $0.00[\mathrm{~kW}]$ | 0.00 [kW] |  |
| Description: | Sets the rated motor power (rating plate). |  |  |
| Dependency: | IECdrives (p0100 =0): Units kW |  |  |
|  | NEMA drives (p0100 = 1): Units hp |  |  |
|  | Refer to: p0100 |  |  |
|  | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
|  | mation in p0300 should be carefully observed when removing write protection. |  |  |


| p0307[0...n] | Rated motor power / Mot P_rated |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(1, 3) | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 14_6 | Unit selection: p0100 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-100000.00[\mathrm{~kW}]$ | $0.00[\mathrm{~kW}]$ |  |
| Description: | Sets the rated motor power (rating plate). |  |  |
| Dependency: | IECdrives (p0100 = 0): Units kW |  |  |
|  | NEMA drives $(p 0100=1):$ Units hp |  |  |
| Caution: | Refer to: p0100 |  |  |
|  | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
| Note: | mation in p0300 should be carefully observed when removing write protection. |  |  |


| p0308[0...n] | Rated motor power factor / Mot cos_phi_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 1.000 | 0.000 |
| Description: | Sets the rated motor power factor (cos phi, rating plate). |  |  |
|  | For a parameter value of 0.000, the power factor is internally calculated and displayed in r0332. |  |  |
| Dependency: | This parameter is only available for IEC motors (p0100 = 0). |  |  |
|  | Refer to: p0100, p0309, r0332 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor mation in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 = 2xx). |  |  |
| p0309[0...n] | Rated motor efficiency / Mot eta_rated |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$ |  | Factory setting |
|  |  | 99.9 [\%] | 0.0 [\%] |
| Description: | Sets the rated motor efficiency (rating plate). |  |  |
|  | For a parameter value of 0.0, the power factor is internally calculated and displayed in r0332. |  |  |
| Dependency: | This parameter is only available for NEMA motors (p0100 = 1). |  |  |
|  | Refer to: p0100, p0308, r0332 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor mation in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 = 2xx). |  |  |
| p0310[0...n] | Rated motor frequency / Mot f_rated |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [Hz] | $3000.00[\mathrm{~Hz}]$ | $0.00[\mathrm{~Hz}]$ |
| Description: | Sets the rated motor frequency (rating plate). |  |  |
| Dependency: | The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$. |  |  |
|  | If p 0310 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. |  |  |
|  | Refer to: p0311, r0313, p0314 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p 0310 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |  |  |
| Note: | For synchronous motors, the parameter is not required and must therefore be pre-assigned zero. For p0310 $=0$, it is not possible to calculate the pole pair; instead, it must be entered in p0314. |  |  |


| p0310[0...n] | Rated motor frequency / Mot f_rated |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6300 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [Hz] | 3000.00 [Hz] | 0.00 [Hz] |
| Description: | Sets the rated motor frequency (rating plate). |  |  |
| Dependency: | The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$. |  |  |
|  | The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz . |  |  |
|  | Refer to: p0311, r0313, p0314 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0310 is changed during quick commissioning ( $p 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |  |  |


| p0311[0...n] | Rated motor speed / Mot n_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [rpm] | 210000.0 [rpm] | 0.0 [rpm] |
| Description: | Sets the rated motor speed (rating plate). |  |  |
| Dependency: | If p0311 is changed and for p0314 $=0$, the pole pair ( r 0313 ) is re-calculated automatically. |  |  |
|  | Refer to: p0310, r0313, p0314 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0311 is changed during quick commissioning ( $p 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ( p 0010 $=3$ ). |  |  |




| p0312[0...n] | Rated motor torque / Mot M_rated |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: $7 \_4$ | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{Nm}]$ | $1000000.00[\mathrm{Nm}]$ | $0.00[\mathrm{Nm}]$ |
|  | Sets the rated motor torque (rating plate). |  |  |
| Description: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
| Caution: | mation in p0300 should be carefully observed when removing write protection. |  |  |


| p0312[0...n] | Rated motor force / Mot F_rated |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: C2(3) | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: $8 \_4$ | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~N}]$ | $0.00[\mathrm{~N}]$ |  |
| Description: | Sets the rated motor force (rating plate). |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
|  | mation in p0300 should be carefully observed when removing write protection. |  |  |

r0313[0...n] Motor pole pair number, actual (or calculated) / Mot PolePairNo act
SERVO,
SERVO_AC,

SERVO_I_AC

## Calculated: -

Dynamic index: MDS, p0130
Units group: -
Scaling: -
Max
Max

Access level: 2
Func. diagram: 5300
Unit selection: -
Expert list: 1
Factory setting

Min

Displays the number of motor pole pairs. The value is used for internal calculations.
r0313 = 1: 2-pole motor
r0313 = 2: 4-pole motor, etc.

| Dependency: | For p0314>0, the entered value is displayed in r0313. |
| :---: | :---: |
|  | For $\mathrm{p} 0314=0$, the pole pair number ( r 0313 ) is automatically calculated from the rated frequency $(\mathrm{p} 0310)$ and the rated speed ( p 0311 ). |
|  | Refer to: p0310, p0311, p0314 |
| Note: | For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero. |
| r0313[0...n] | Motor pole pair number, actual (or calculated) / Mot PolePairNo act |
| VECTOR, | Can be changed: - Calculated: - Access level: 2 |
| VECTOR_AC, | Data type: Unsigned16 Dynamic index: MDS, p0130 Func. diagram: 5300 |
| V | P-Group: Motor Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | - - - |
| Description: | Displays the number of motor pole pairs. The value is used for internal calculations. |
|  | r0313 = 1: 2-pole motor |
|  | r0313 = 2: 4-pole motor, etc. |
| Dependency: | For p0314 > 0, the entered value is displayed in r0313. |
|  | For $\mathrm{p} 0314=0$, the pole pair number $(\mathrm{r} 0313)$ is automatically calculated from the rated power ( p 0307 ), rated frequency ( p 0310 ) and rated speed ( p 0311 ). |
|  | Refer to: p0307, p0310, p0311, p0314 |
| Note: | For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero. |


| p0314[0...n] | Motor pole pair number / Mot pole pair No. |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1,3) | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4000 | 0 |


| Description: | Sets the motor pole pair number. |
| :---: | :---: |
|  | p0314 = 1: 2-pole motor |
|  | r0314 = 2: 4-pole motor, etc. |
| Dependency: | For $\mathrm{p} 0314=0$, the pole pair number is automatically calculated from the rated frequency $(\mathrm{p} 0310)$ and the rated speed ( p 0311 ) and displayed in r0313. |
| Notice: | If p0314 is changed during quick commissioning ( $p 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |
|  | For induction motors, the value need only be input if the rated data of a generator is entered therefore resulting in a negative rated slip. In this case, the number of pole pairs in r0313 is too low by 1 and must be manually corrected. |


| p0314[0...n] | Motor pole pair number / Mot pole pair No. |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(1, 3) | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Fax | Factory setting |
|  | 0 |  |  |
| Description: | Sets the motor pole pair number. |  |  |
|  | p0314 $=1: 2$-pole motor |  |  |
| Dependency: | r0314 $=2: 4$-pole motor, etc. |  |  |


| Notice: | If p0314 is changed during quick commissioning ( $p 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |
| :---: | :---: |
|  | For induction motors, the value need only be input if the rated data of a generator is entered therefore resulting in a negative rated slip. In this case, the number of pole pairs in r0313 is too low by 1 and must be manually corrected. |


| p0315[0...n] | Motor pole pair width / MotPolePair width |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: C2(1, 3) | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $1.00[\mathrm{~mm}]$ | $30.00[\mathrm{~mm}]$ |  |
| Description: | Sets the pole pair width of the linear motor. |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
|  | mation in p0300 should be carefully observed when removing write protection. |  |  |


| p0316[0...n] | Motor torque constant / Mot kT |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 28_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 400.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | Factory setting 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: | Sets the torque constant of the synchronous motor. p0316 $=0$ : The torque constant is calculated from the motor data. p0316>0: The selected value is used as torque constant. |  |  |
| Dependency: | Refer to: r0334, r1937 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Infor mation in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |  |  |


| p0316[0...n] | Motor force constant / Mot kT |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 29_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min 0.00 [N/Arms] | Max <br> 15000.00 [N/Arms] | Factory setting 0.00 [N/Arms] |
| Description: | Sets the force constant of the synchronous motor. p0316 = 0: The force constant is calculated from the motor data. p0316 > 0: The selected value is used as force constant. |  |  |
| Dependency: | Refer to: r0334, r1937 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |  |  |


| p0316[0...n] | Motor torque constant / Mot kT |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 28_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] | 400.00 [ $\mathrm{Nm} / \mathrm{A}$ ] | 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: | Sets the torque constant of the synchronous motor. p0316 = 0 : The torque constant is calculated from the motor data. p0316 > 0: The selected value is used as torque constant. |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: r0334 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |  |  |
| p0317[0...n] | Motor voltage constant / Mot kE |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C2(3) | Calculated: - <br> Dynamic index: MDS, p0130 | Access level: 3 |
|  |  |  | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [Vrms] } \end{aligned}$ |  | Factory setting |
|  |  | 24000.0 [Vrms] | 0.0 [Vrms] |
| Description: | Sets the voltage constant for synchronous motors. |  |  |
|  | Units for rotating synchronous motors: Vrms/(1000 rpm), phase-to-phase |  |  |
| Dependency: | Refer to: r1938 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is not used for induction motors ( $0300=1 \mathrm{xx}$ ). |  |  |
| p0317[0...n] <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Motor voltage constant / Mot kE |  |  |
|  | Can be changed: $\mathrm{C} 2(3)$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.0 [Vrms s/m] | 5000.0 [Vrms s/m] | 0.0 [Vrms s/m] |
| Description: | Sets the voltage constant for synchronous motors. |  |  |
|  | Units for linear synchronous motors: Vrms s/m, phase |  |  |
| Dependency: | Refer to: r1938 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p 0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is not used for induction motors (p0300 = 1xx). |  |  |
| p0318[0...n] | Motor stall current / Mot I_standstill |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C2(3) | Calculated: - | Access level: 3 |
|  |  | Dynamic index: MDS, p0130 | Func. diagram: 8017 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [Arms] | Max | Factory setting |
|  |  | 10000.00 [Arms] | 0.00 [Arms] |
| Description: | Sets the stall current for synchronous moto | $(p 0300=2 x x)$. |  |


| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Infor- |
| :--- | :--- |
| mation in p 0300 should be carefully observed when removing write protection. |  |
| Note: | The parameter is used for the I 2 t monitoring of the motor (refer to p0611). |
|  | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |


| p0318[0...n] | Motor stall current / Mot I_standstill |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(3) | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8017 |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [Arms] } \end{aligned}$ | Max <br> 10000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the stall current for synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ). |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The parameter is used for the 12 t monitoring of the motor (refer to p0611). |  |  |
|  | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |  |  |

p0319[0...n] Motor stall torque / Mot M_standstill

Calculated: -
Dynamic index: MDS, p0130
Units group: 7_4
Scaling: -
Max
100000.00 [Nm]

Access level: 3
Func. diagram: -
Unit selection: p0100
Expert list: 1
Factory setting
0.00 [ Nm ]

Description: $\quad$ Sets the standstill (stall) torque for rotating synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ).
Caution: When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note: $\quad$ This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ).
This parameter value is not evaluated from a control-related perspective.

| p0319[0...n] | Motor stall force / Mot F_standstill |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: C2(3) | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 8_4 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$ | Factory setting 0.00 [N] |
| Description: | Sets the standstill (stall) force for linear synchronous motors ( $0300=4 \mathrm{xx}$ ). |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter value is not evaluated from a control-related perspective. |  |  |
| p0320[0...n] | Motor rated magnetizing current/short-circuit current / Mot I_mag_rated |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [Arms] | 5000.000 [Arms] | 0.000 [Arms] |
| Description: | Induction motors: |  |  |
|  | Sets the rated motor magnetizing current. |  |  |
|  | For p0320 $=0.000$ the magnetizing curr | ternally calculated and display | r0331. |


|  | Synchronous motors: |
| :---: | :---: |
|  | Sets the rated motor short-circuit current. |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |
| Note: | The magnetization current p 0320 for induction motors (not for catalog motors) is reset when quick commissioning is exited with p3900 > 0 . |
|  | VECTOR: |
|  | If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase ( $\mathrm{p} 0010>0$ ), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant. |


| p0322[0...n] | Maximum motor speed / Mot n_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(1, 3) | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [rpm] | 210000.0 [rpm] | 0.0 [rpm] |
| Description: | Sets the maximum motor speed. |  |  |
| Dependency: | Refer to: p1082, r1082 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0322 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |  |  |



| p0322[0...n] | Maximum motor speed / Mot n_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Spin_diag), | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
| SERVO_AC | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| (Spin_diag), <br> SERVO I AC | P-Group: Motor | Units group: - | Unit selection: - |
| (Spin_diag) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [rpm] | 260000.0 [rpm] | 0.0 [rpm] |
| Description: | Sets the maximum motor speed. |  |  |
| Dependency: | Refer to: p1082, r1082 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0322 is changed during with quick commissioning, $=3)$. | ing ( $p 0010=1$ ), the maximum ccordingly. This is not the case | p1082, which is also associated commissioning the motor (p0010 |


| p0322[0...n] | Maximum motor speed / Mot n_max |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [rpm] | 210000.0 [rpm] | 0.0 [rpm] |
| Description: | Sets the maximum motor speed. |  |  |
| Dependency: | Refer to: p1082, r1082 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0322 is changed during quick commissioning ( $p 0010=1$ ), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$ ). |  |  |


| p0323[0...n] | Maximum motor current / Mot I_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722 |
| AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [Arms] | $\begin{aligned} & \text { Max } \\ & 20000.00 \text { [Arms] } \end{aligned}$ | Factory setting 0.00 [Arms] |
| Description: | Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors). |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p 0323 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum current p 0640 is pre-assigned accordingly. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). |  |  |
| Note: | The parameter has no effect for induction motors. |  |  |
|  | For synchronous motors, a value must always be entered for the maximum motor current. |  |  |


| p0323[0...n] | Maximum motor current / Mot I_max |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722 |
| VECTOR_I | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [Arms] | Max 20000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors). |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If $p 0323$ is changed during quick commissioning ( $p 0010=1$ ), then the maximum current $p 0640$ is pre-assigned accordingly. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). |  |  |
| Note: | The parameter has no effect for induction motors. |  |  |
|  | The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640. |  |  |


| p0324[0...n] | Winding maximum speed / Winding n_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [rpm] | 210000.0 [rpm] | 0.0 [rpm] |
| Description: | Sets the maximum speed for the winding. |  |  |
| Dependency: | Refer to: p1082, r1082 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If $p 0324$ is changed during ciated with quick commissio (p0010 = 3). | ing ( $p 0010=1$ ), then the maxim ned appropriately. This is not the | speed p 1082 , which is also assowhen commissioning the motor |




| p0325[0...n] | Motor pole position identification current, 1st phase / Mot PollD I 1st ph |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | $0.000[A r m s]$ | 0.000 [Arms] |  |
|  | Ses the current for the 1st phase of the two-stage technique for pole position identification routine. |  |  |



| p0326[0...n] | Motor stall force correction factor / Mot F_stall_corr |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 5 [\%] | 300 [\%] | 60 [\%] |
| Description: | Sets the correction factor for the stall force at a 600 V DC link voltage. |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | When quick commissioning is exited with p3900 $>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |
|  | The reference value for this parameter is inversely proportional to the leakage inductance of the motor ( p 0353 , p0354, p0356). |  |  |
|  | The following applies for firmware version 2.6 SP2 and higher: |  |  |
|  | If leakage inductances are changed for motor data identification, the value in p0326 is automatically adapted to maintain the stall torque. |  |  |


| p0327[0...n] | Optimum motor load angle / Mot phi_load opt |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $0.0\left[{ }^{\circ}\right]$ | $135.0\left[{ }^{\circ}\right]$ | $90.0\left[^{\circ}\right]$ |
|  | Sets the optimum load angle for synchronous motors with reluctance torque (e.g. $1 \mathrm{FE} . .$. motors). |  |  |



| r0330[0...n] | Rated motor slip / Mot slip_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Motor | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{Hz}] \end{aligned}$ | Max $-[\mathrm{Hz}]$ | Factory setting - [Hz] |
| Description: | Displays the rated motor slip. |  |  |
| Dependency: | Refer to: p0310, p0311, r0313 |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 = 2xx). |  |  |
| r0331[0...n] | Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722, 6722, 6724 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Induction motor: |  |  |
|  | Displays the rated magnetizing current from p0320. |  |  |
|  | For $00320=0$, the internally calculated magnetizing current is displayed. |  |  |
|  | Synchronous motor: |  |  |
|  | Displays the rated short-circuit current from p0320. |  |  |
| Dependency: | If p0320 was not entered, then the parameter is calculated from the rating plate parameters. |  |  |
| Note: | In the case of multi-motor operation r0331 is increased by the factor p0306 compared to p0320. |  |  |
| r0332[0...n] | Rated motor power factor / Mot cos_phi_rated |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the rated power factor for induction motors. |  |  |
|  | For IEC motors, the following applies (p0100 = 0): |  |  |
|  | For $00308=0$, the internally-calculated power factor is displayed. |  |  |
|  | For p0308 > 0, this value is displayed. |  |  |
|  | For NEMA motors, the following applies (p0100 = 1): |  |  |
|  | For p0309 = 0, the internally-calculated power factor is displayed. |  |  |
|  | For p0309 > 0, this value is converted into the power factor and displayed. |  |  |
| Dependency: | If p0308 is not entered, the parameter is calculated from the rating plate parameters. |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$ ). |  |  |



| r0333[0...n] | Rated motor force / Mot F_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 8_4 | Unit selection: p0100 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{N}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{N}] \end{aligned}$ | Factory setting <br> - [N] |
| Description: |  |  |  |
| Dependency: | IECdrives (p0100 = 0): Units N |  |  |
|  | NEMA drives ( $\mathrm{p} 0100=1$ ): unit lbf |  |  |
| Note: | For synchronous motors, r0333 is calculated input in p0312. If $\mathrm{p} 0316=0$, then $\mathrm{r} 0333=\mathrm{p}$ | from p0305, p0316, p0327 and 312 is displayed. | B. The result can deviate from the |


| r0334[0...n] | Actual motor-torque constant / Mot kT act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: 28_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [Nm/A] | Max <br> - [ $\mathrm{Nm} / \mathrm{A}$ ] | Factory setting <br> - [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: | Displays the torque constant of the synchronous motor used. |  |  |
| Dependency: | IEC drives (p0100 = 0): unit Nm/A |  |  |
|  | NEMA drives (p0100 = 1): unit lbf ft / A |  |  |
|  | Refer to: p0316 |  |  |
| Note: | This parameter is not used for induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ). |  |  |
|  | For synchronous motors, parameter r0334 $=\mathrm{p} 0316$ is displayed. For $\mathrm{p} 0316=0, \mathrm{r} 0334$ is calculated from p 0305 and p0312. |  |  |


| r0334[0...n] | Actual motor force constant / Mot kT act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: 29_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ N/Arms | $-[$ N/Arms $]$ | $-[N /$ Arms $]$ |
| Description: | Displays the force constant of the synchronous motor used. |  |  |


| Dependency: | IEC drives $(\mathrm{p} 0100=0):$ unit $\mathrm{N} / \mathrm{A}$ |
| :--- | :--- |
|  | NEMA drives $(\mathrm{p} 0100=1):$ unit Ibf $/ \mathrm{A}$ |
|  | Refer to: p0316 |
| Note: | For synchronous motors, parameter $\mathrm{r} 0334=\mathrm{p} 0316$ is displayed. For $\mathrm{p} 0316=0, \mathrm{rO334}$ is calculated from p0305 and |
|  | p 0312. |


| r0334[0...n] | Actual motor-torque constant / Mot kT act |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 28_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{Nm} / \mathrm{A}]$ | $-[\mathrm{Nm} / \mathrm{A}]$ |  |


| p0335[0...n] | Motor cooling type / Motor cooling type |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1, 3), T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 128 | 0 |

Description: Sets the motor cooling system used.
Value: $\quad 0: \quad$ Non-ventilated

1: Forced cooling
2: Liquid cooling
4: $\quad$ Non-ventilated and internal fan
5: Forced cooling and internal fan
6: Liquid cooling and internal fan 128: No fan
Dependency: For 1LA5 and 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311.
Caution: When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note: The parameter influences the thermal 3-mass motor model.
1LA1 and 1LA8 motors are characterized by the fact that they have an internal rotor fan. This "internal cooling" lies within the motor frame and is not visible. Air is not directly exchanged with the motor ambient air. For 1PQ8 motors, p0335 should be set to 5 as these motors are force-ventilated motors.
p0335 = 128 applies for 1LA7 motors, frame size 56. These are operated without a fan.

| $\mathbf{r 0 3 3 6 [ 0 . . . n ] ~}$ | Actual rated motor frequency / Mot f_rated act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | $-[\mathrm{Hz}]$ | $-[\mathrm{Hz}]$ |  |
|  | Displays the rated frequency of the motor. |  |  |

Dependency: Refer to: p0311, p0314
Note: $\quad$ For $\mathrm{p} 0310=0$ or for synchronous motors, the rated motor frequency r0336 is calculated from the rated speed and the pole pair number.
For $\mathrm{p} 0310>0$, this value is displayed (not for synchronous motors).

| r0337[0...n] | Rated motor EMF / Mot EMF_rated |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-[V r m s]$ | $-[V r m s]$ | $-[V r m s]$ |
|  | Displays the rated EMF of the motor. |  |  |
| Description: | EMF: Electromagnetic force |  |  |


| r0337[0...n] | Rated motor EMF / Mot EMF_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms s/m] | Max <br> - [Vrms s/m] | Factory setting <br> - [Vrms s/m] |
| Description: | Displays the rated EMF of the motor. |  |  |
| Note: | EMF: Electromagnetic force |  |  |
| p0338[0...n] | Motor limit current / Mot I_limit |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [Arms] | 10000.00 [Arms] | 0.00 [Arms] |
| Description: | Sets the motor limit current for synchronous motors (for a 600 V DC link voltage). |  |  |
|  | Using this current, the maximum torque is achieved at the rated speed (voltage limit characteristic). |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Notice: | If p0338 is changed during quick commissioning ( $p 0010=1$ ), then the maximum current $p 0640$ is appropriately preassigned. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). |  |  |


| r0339[0...n] | Rated motor voltage / Mot U_rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Motor | Units group: - | Unit selection: - |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the rated motor voltage. |  |  |
| Note: | For induction motors (p0300 = 1xx) the parameter is set to p0304. |  |  |
|  | For synchronous motors, parameter r0339 = p0304 is displayed. If p0304 = 0, then r0339 is calculated from p0305 and p0316. |  |  |


p0340 = 3:
--> All of the parameters influenced for p0340 $=4,5$
--> p0325 (is only calculated for p0325 = 0)
--> p0348 (*) (is only calculated for p0348 = 0)
--> p0441, p0442, p0443, p0444, p0445 (only for 1FT6, 1FK6, 1FK7 motors)
--> p0492, p1082, p1980, p1319, p1326, p1327, p1612, p1752, p1755
p0340 $=4$ :
--> p1441, p1460, p1462, p1463, p1464, p1465, p1470, p1472, p1590, p1592, p1596, p1656, p1657, p1658, p1659, p1715, p1717
--> p1461 (for p0348 > p0322, p1461 is set to $100 \%$ )
--> p1463 (for p0348 > p0322, p1463 is set to $400 \%$ )
p0340 = 5:
--> p1037, p1038, p1520, p1521, p1530, p1531, p2140 ... p2142, p2148, p2150, p2155, p2161, p2162, p2163,
p2164, p2175, p2177, p2194, p3820 ... p3829
VECTOR:
p0340 = 1:
$-->$ All of the parameters influenced for p0340 $=2,3,4,5$
--> p0341 (*)
--> p0342, p0344, p0600, p0640, p1082, p1145, p1231, p1232, p1333, p1349, p1360, p1362, p1441, p1442,
p1576, p1577, p1609, p1610, p1611, p1619, p1620, p1621, p1654, p1726, p1825, p1828 ... p1832, p1901, p1909, p1959, p2000, p2001, p2002, p2003, p2005, p2007, p3806. p3927, p3928
p0340 $=2$ :
--> p0350 (*), p0354 ... p0361 (*), p0652 ... p0660
--> p0625 (matching p0350)
p0340 = 3 :
--> All of the parameters influenced for p0340 $=4,5$
--> p0346, p0347, p0492, p0622, p1262, p1320 ... p1327, p1582, p1584, p1612, p1616, p1744, p1748, p1749, p1755, p1756, p2178
p0340 = 4:
--> p1290, p1292, p1293, p1299, p1338, p1339, p1340, p1341, p1345, p1346, p1460, p1461, p1462, p1463, p1464, p1465, p1470, p1472, p1590, p1592, p1600, p1628, p1629, p1630, p1643, p1703, p1715, p1717, p1740, p1756, p1757, p1760, p1761, p1764, p1767, p1781, p1783, p1785, p1786, p1795, p7036, p7037, p7038 p0340 = 5:
--> p260 ... p264, p1037, p1038, p1520, p1521, p1530, p1531, p1574, p1750, p1802, p1803, p2140, p2142, p2148, p2150, p2161, p2162, p2163, p2164, p2175, p2177, p2194, p3207, p3208, p3815, p3820 ... p3829
Note: p0340 = 1 contains the calculations of $p 0340=2,3,4,5$ without overwriting the motor parameters from the Siemens motor lists ( $\mathrm{p} 0301>0$ ).
p0340 = 2 calculates the motor parameters ( $\mathrm{p} 0350 \ldots \mathrm{p} 0360$ ), but only if it does involve a Siemens catalog motor (p0301 = 0).
$p 0340=3$ contains the calculations of p0340 $=4,5$.
p0340 $=4$ only calculates the controller parameters.
p0340 $=5$ only calculates the controller limits.
When quick commissioning is exited using p3900 > 0, p0340 is automatically set to 1 .
At the end of the calculations, p0340 is automatically set to 0 .
If the STARTER commissioning software writes a 3 into p0340 when "downloading to target device", then this corresponds to a "complete calculation of the motor/control parameters without equivalent circuit diagram data". The same calculations are carried out as for $\mathrm{p} 0340=1$, however, without the equivalent circuit diagram parameters of the motor ( $\mathrm{p} 0340=2$ ), the motor moment of inertia ( p 0341 ) and the motor weight ( p 0344 ).
For third-party linear synchronous motors $(p 0300=4)$ equivalent circuit diagram data are not calculated $(p 0340=$ 2).

| p0341[0...n] | Motor moment of inertia / Mot M_mom of inert |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 1700, 5042, $5210,6030,6031$ |
| TOR, VECTOR_AC, VECTOR I AC | P-Group: Motor | Units group: 25_1 | Unit selection: p0100 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.000000\left[\mathrm{kgm}^{2}\right]$ | $\begin{aligned} & \text { Max } \\ & 100000.000000\left[\mathrm{kgm}^{2}\right] \end{aligned}$ | Factory setting $0.000000\left[\mathrm{kgm}^{2}\right]$ |
| Description: | Sets the motor moment of inertia (without load). |  |  |
| Dependency: | IEC drives ( $\mathrm{p} 0100=0$ ): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$ |  |  |
|  | NEMA drives (p0100 = 1): unit lb ft^2 |  |  |
|  | The parameter value is included, together with p0342, in the rated starting time of the motor. |  | the motor. |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | SERVO: |  |  |
|  | p0341 * p0342 + p1498 influence the speed/torque pre-control in encoderless operation. |  |  |
|  | VECTOR: |  |  |
|  | The product of p0341 ${ }^{*} \mathrm{p} 0342$ is used when the speed controller ( $\mathrm{p} 0340=4$ ) is calculated automatically. |  |  |


| p0341[0...n] | Motor weight / Mot weight |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: C2(3), U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5042, 5210 |
|  | P-Group: Motor | Units group: 27_1 | Unit selection: p0100 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000000[\mathrm{~kg}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 10000.000000[\mathrm{~kg}] \end{aligned}$ | Factory setting 0.000000 [kg] |
| Description: | Sets the high moments of inertia (without load). |  |  |
| Dependency: | IEC drives ( $\mathrm{p} 0100=0$ ): unit kg m^2 |  |  |
|  | NEMA drives ( $\mathrm{p} 0100=1$ ): unit lb ft^2 |  |  |
|  | The parameter value is included, together with p0342, in the rated starting time of the motor. |  |  |
|  | Refer to: p0342, r0345 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | p0341 * p0342 + p1498 influence the speed/torque pre-control in encoderless operation. |  |  |
| p0342[0...n] | Ratio between the total and motor moment of inertia / Mot Mominert Ratio |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 1700, 5042, 5210, 6030, 6031 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1.000 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000.000 \end{aligned}$ | Factory setting 1.000 |
| Description: | Sets the ratio between the total moment of inertia/mass (load + motor) and the intrinsic motor moment of inertia/mass (no load). |  |  |
| Dependency: | This means that together with p0341, the rated starting (accelerating time) of the motor is calculated for a vector drive. |  |  |
|  | Refer to: p0341, r0345, p1498 |  |  |
| Note: | SERVO: |  |  |
|  | p0341 * p0342 + p1498 influence the speed/torque pre-control in encoderless operation. |  |  |
|  | VECTOR: |  |  |
|  | The product of p0341 * p 0342 is used when the speed controller ( $\mathrm{p} 0340=4$ ) is calculated automatically. |  |  |


| p0342[0...n] | Ratio between the total and motor force of inertia / Mot Momlnert Ratio |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: C2(3), U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5042,5210 |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Max | Expert list: 1 |
|  | Min | 10000.000 | Factory setting |

r0343[0...n] Rated motor current identified / Mot I_rated ident
VECTOR,
VECTOR_AC,
VECTOR I AC

Can be changed: -
Data type: FloatingPoint32
P-Group: Motor
Not for motor type: -
Min
0.00 [Arms]

Description: Displays the identified rated motor current.

## Calculated: -

Dynamic index: MDS, p0130
Units group: -
Scaling: -
Max
10000.00 [Arms]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [Arms]

| p0344[0...n] | Motor weight (for the thermal motor model) / Mot weight th mod |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3), T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Motor | Units group: 27_1 | Unit selection: p0100 |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~kg}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 50000.0[\mathrm{~kg}] \end{aligned}$ | Factory setting 0.0 [kg] |
| Description: | Sets the motor weight. |  |  |
| Dependency: | IEC drives ( $\mathrm{p} 0100=0$ ): unit kg |  |  |
|  | NEMA drives (p0100 = 1): unit lb |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The parameter influences the thermal 3 mass model of the induction motor. |  |  |
|  | The parameter is not used for synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ). |  |  |


| r0345[0...n] | Nominal motor starting time / Mot t_start_rated |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[s] \end{gathered}$ | $\begin{aligned} & \text { Max } \\ & -[s] \end{aligned}$ | Factory setting - [s] |
| Description: | Displays the rated motor starting time. |  |  |
|  | This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333). |  |  |
| Dependency: | Refer to: r0313, r0333, r0336 |  |  |



| p0347[0...n] | Motor de-excitation time / Mot t_de-excitat. |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $20.000[\mathrm{~s}]$ | $0.000[\mathrm{~s}]$ |

Description: Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time For SERVO, the de-excitation time is only used for DC current braking.

Note:
The parameter is calculated using p0340 = 1, 3 .
For induction motors, the result depends on the rotor time constant (r0384).
if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).

| p0347[0...n] | Motor de-excitation time / Mot t_de-excitat. |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $20.000[\mathrm{~s}]$ | $0.000[\mathrm{~s}]$ |
|  | Ses the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. |  |  |


|  | The inverter pulses cannot be switched in (enabled) within this delay time. |
| :--- | :--- | :--- |
| Note: | The parameter is calculated using p0340 $=1,3$. |


| p0348[0...n] | Velocity at the start of field weakening Vdc = $600 \mathrm{~V} / \mathrm{Mot}$ v_field weaken |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: C2(3), U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5722 |
| SERVO_I_AC (Lin) | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.0 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 1000.0[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.0 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the velocity at the start of field weakening for a DC link voltage of 600 V . |  |  |
| Dependency: | Refer to: p0320, r0331 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |


| p0349 | System of units, motor equivalent circuit diagram data / Unit_sys mot ESB |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3) | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTORRAC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | 1 | 2 | 1 |

Description: Sets the actual system of units for motor equivalent circuit diagram data.
Value: 1: System of units, physical
2: $\quad$ System of units, referred
Dependency: Refer to: p0304, p0305, p0310
Note: $\quad$ The reference parameter for resistances of the rated motor impedance $Z=p 0304 /(1.732$ * p 0305 ) is in the $\%$ units system.
Inductances are converted into a resistance using the factor 2 * Pi * p0310.
If a reference parameter ( $\mathrm{p} 0304, \mathrm{p} 305, \mathrm{p} 0310$ ) is zero, then it is not possible to make a changeover to "referred" values (per unit values).

| p0350[0...n] | Motor stator resistance, cold / Mot R_stator cold |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: $16 \_1$ | Unit selection: p0349 |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Min | 2000.00000 [ohm] | Factory setting list: 1 |
|  | 0.00000 [ohm] | 0.00000 [ohm] |  |
|  | Sets the stator resistance of the motor at ambient temperature p0625 (phase value). |  |  |
| Description: | Refer to: p0625, r1912 |  |  |
| Dependency: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- |  |  |
| Caution: | mation in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The motor identification routine determines the stator resistance from the total stator resistance minus the cable |  |  |
|  | resistance (p0352). |  |  |


| p0352[0...n] | Cable resistance / Mot R_cable cold |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERV | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00000 [ohm] | 120.00000 [ohm] | 0.00000 [ohm] |
| Description: | Resistance of the power cable between the Motor Module and motor. |  |  |
| Caution: | The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated. |  |  |
| Note: | The parameter influences the temperature adaptation of the stator resistance. |  |  |
|  | The motor identification routine does not change the cable resistance. This is subtracted from the total measured stator resistance in order to calculate the stator resistance (p0350, p0352). |  |  |
|  | The cable resistance is reset when quick commissioning is exited with p3900 $>0$. |  |  |


| p0352[0...n] | Cable resistance / Mot R_cable cold |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR__ | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | Max <br> 120.00000 [ohm] | Factory setting 0.00000 [ohm] |
| Description: | Resistance of the power cable between the Motor Module and motor. |  |  |
| Dependency: | Refer to: p7003 |  |  |
| Caution: | The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated. |  |  |
| Notice: | Parallel circuits with one winding system (p7003 = 0): |  |  |
|  | p0352 includes the feeder cable resistance of an individual Motor Module. The total feeder cable resistance is obtained from p0352 divided by the number of activated Motor Modules (refer to r0395). |  |  |
|  | Parallel circuits with multi-winding system (p7003 = 1): |  |  |
|  | p0352 includes the complete feeder cable resistance and is directly added to the stator resistance (refer to r0395). |  |  |
| Note: | The parameter influences the temperature adaptation of the stator resistance. |  |  |
|  | The motor identification sets the cable resistance to $20 \%$ of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of $10 \%$ of the measured value. |  |  |

## Exception:

For parallel circuit configurations with one winding system (p07003 = 0), the cable resistance is directly measured. It is important to note that only the component of an individual Motor Module is entered into p0352.
The cable resistance is reset when quick commissioning is exited with p3900 $>0$.

| p0353[0...n] | Motor series inductance / Mot L_series |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.000[\mathrm{mH}]$ | $\begin{aligned} & \text { Max } \\ & 1000000.000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.000 [mH] |
| Description: | Sets the series inductance. |  |  |
| Note: | For the automatic calculation <br> For the automatic calculation <br> The series inductance is reset <br> The reference value for p0326 p0356). | or 3 , the calculation of p0348 is 3 or 4 , the calculation of p1715 mmissioning is exited with p3900 oportional to the leakage induct | enced by p0353 if p0348 was 0 . fluenced by p0353. <br> of the motor (p0353, p0354, |


| p0353[0...n] | Motor series inductance / Mot L_series |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000000.000[\mathrm{mH}] \end{aligned}$ | Factory setting $0.000[\mathrm{mH}]$ |
| Description: | Sets the series inductance. |  |  |
| Note: | For the automatic calculation with $\mathrm{p} 0340=1,3$ or 4 , the calculation of p 1715 is influenced by p0353. |  |  |


| p0354[0...n] | Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: $16 \_1$ | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Max | Expert list: 1 |


| p0354[0...n] | Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
| VECTOR_I_AC | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | $\begin{aligned} & \text { Max } \\ & 300.00000[\mathrm{ohm}] \end{aligned}$ | Factory setting 0.00000 [ohm] |
| Description: | Sets the rotor/secondary section resist For separately-excited synchronous mot This parameter value is automatically tification routine (p1910) (not for separ | of the motor at the ambient tempe Sets the damping resistance in th ted using the motor model (p0340 excited synchronous motors). | ure 00625 . <br> tor direction (d-axis). 1,2 ) or using the motor |
| Dependency: | Refer to: p0625 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 = 2xx). |  |  |
| p0355[0...n] | Motor damping resistance, q axis / Mot R_damp q |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | $\begin{aligned} & \operatorname{Max} \\ & 300.00000[\mathrm{ohm}] \end{aligned}$ | Factory setting 0.00000 [ohm] |
| Description: | Sets the damping resistance of the separately-excited synchronous motor quadrature to the rotor direction (q axis) This parameter value is automatically calculated using the motor model ( $\mathrm{p} 0340=1,2$ ). |  |  |
| p0356[0...n] | Motor stator leakage inductance / Mot L_stator leak. |  |  |
| SERVO, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.00000[\mathrm{mH}]$ | $\begin{aligned} & \text { Max } \\ & 1000.00000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.00000 [mH] |
| Description: | Induction motor, separately-excited synchronous motor: Sets the rotor leakage inductance of the motor. Synchronous motor: Sets the stator quadrature axis inductance of the motor. |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The reference value for p0326 is inversely proportional to the leakage inductance of the motor (p0353, p0354, p0356). |  |  |


| p0356[0...n] | Motor stator leakage inductance / Mot L_stator leak. |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00000[\mathrm{mH}]$ | $1000.00000[\mathrm{mH}]$ | $0.00000[\mathrm{mH}]$ |
| Description: | Induction motor, separately-excited synchronous motor: Sets the rotor leakage inductance of the motor. |  |  |
|  | Synchronous motor: Sets the stator quadrature axis inductance of the motor. |  |  |


|  | This parameter value is automatically calculated using the motor model ( $p 0340=1,2$ ) or using the motor identification routine (p1910). |  |  |
| :---: | :---: | :---: | :---: |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | If the stator leakage inductance (p0356) for induction motors is changed outside the commissioning phase ( p 0010 > 0 ), the magnetizing inductance ( p 0360 ) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic ( p 1960 ). |  |  |
| p0357[0...n] | Motor stator inductance, d axis / Mot L_stator d |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00000 [mH] | $1000.00000[\mathrm{mH}]$ | 0.00000 [mH] |
| Description: | Sets the stator direct-axis inductance of the synchronous motor. |  |  |
|  | This parameter value is automatically calculated using the motor model ( $\mathrm{p} 0340=1,2$ ) or using the motor identification routine ( p 1910 ). |  |  |
| Note: | The parameter is not used for separately-excited synchronous motors (p0300 = 5). |  |  |
|  | For permanent-magnet synchronous motors ( $\mathrm{p} 0300=2$ ), this is the non-saturated value and is ideal for a low current. |  |  |



| p0358[0...n] | Motor rotor leakage inductance / damping inductance, d axis / Mot L_r leak / LDd |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
| VECTOR_I_AC | P-Group: Motor | Units group: $15 \_1$ | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Scaling: - | Max |
|  | Min | $1000.00000[\mathrm{mH}]$ | Factory setting |
|  | $0.00000[\mathrm{mH}]$ | $0.00000[\mathrm{mH}]$ |  |
| Description: | Sets the rotor/secondary section leakage inductance of the motor. 1 |  |  |
|  | For separately-excited synchronous motors: Sets the damping inductance in the rotor direction (d-axis). |  |  |
|  | This value is automatically calculated using the motor model (p0340 =1, 2) or using the motor identification routine |  |  |
|  | (p1910) (not for separately-excited synchronous motors). |  |  |

Caution: When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note: The parameter is not used for synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ). VECTOR:
If the rotor leakage inductance ( p 0358 ) for induction motors is changed outside the commissioning phase ( p 0010 > 0 ), then the magnetizing inductance ( p 0360 ) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).

| p0359[0...n] | Motor damping inductance, q axis / Mot L_damp q |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
| VECTOR_I_AC | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Max |
|  | Min | $1000.00000[\mathrm{mH}]$ | Fxpert list: 1 |
|  | $0.00000[\mathrm{mH}]$ | $0.00000[\mathrm{mH}]$ |  |
| Description: | Sets the damping inductance of the separately-excited synchronous motor quadrature to the rotor direction (q axis). |  |  |
|  | This parameter value is automatically calculated using the motor model (p0340 =1, 2$).$ |  |  |


| p0360[0...n] | Motor magnetizing inductance/magn. inductance, d axis saturated / Mot Lh/Lh d sat |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00000 [mH] | $10000.00000[\mathrm{mH}]$ | 0.00000 [mH] |
| Description: | Sets the magnetizing inductance of the motor. |  |  |
|  | For separately-excited synchronous motors: Sets the saturated magnetizing inductance in the rotor direction (daxis). |  |  |
|  | This parameter value is automatically calculated using the motor model ( $p 0340=1,2$ ) or using the motor identifica tion routine (p1910) (not for separately-excited synchronous motors). |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |

Note: $\quad$ The parameter is not used for synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ).


| p0361[0...n] | Motor magnetizing inductance q axis, saturated / Mot L_magn q sat |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min $0.00000[\mathrm{mH}]$ | $\begin{aligned} & \text { Max } \\ & 10000.00000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.00000 [ mH ] |
| Description: | Sets the saturated magnetizing inductance of the separately-excited synchronous motor quadrature to the rotor direction (q axis). |  |  |



| p0363[0...n] | Motor saturation characteristic flux 2 / Mot saturat.flux 2 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6723,6726 |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10.0[\%]$ | $300.0[\%]$ | 85.0 [\%] |
| Description: | The saturation characteristic (flux as mapping of current) is defined using 4 points. |  |  |
|  | This parameter specifies the y coordinate (flux) for the 2nd value pair of the characteristic. |  |  |

Induction motors (ASM) and separately-excited synchronous motors (SESM):
The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.
The parameter sets the second motor flux as a [\%] referred to the rated motor flux.
Permanent-magnet synchronous motors (PESM):
The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature
axis flux.
The parameter sets the second stator quadrature axis flux as a [\%] referred to the product of the unsaturated
quadrature inductance (p0356) and the rated motor current.
The following applies for the flux values:
p0362 < p0363 < p0364 < p0365
The following applies for the stator quadrature axis flux values (PESM):
20\% < p0362 < p0363 < p0364 < p0365
Refer to: p0367
For permanent-magnet synchronous motors (PESM):
If the parameters are not set as specified, i.e. not in ascending order and to more than $20 \%$, the unsaturated
quadrature inductance ( p 0356 ) is always used for quadrature axis flux calculation purposes.
For induction motors, p0363 = $100 \%$ corresponds to the rated motor flux.
For separately-excited synchronous motors p0363 = 100\% corresponds to an induced terminal voltage with the

| p0364[0...n] | Motor saturation characteristic flux 3 / Mot saturat.flux 3 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6723, 6726 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 115.0 [\%] |
| Description: | The saturation characteristic (flux as mapping of current) is defined using 4 points. |  |  |
|  | This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic. |  |  |
|  | Induction motors (ASM) and separately-excited synchronous motors (SESM): |  |  |
|  | The saturation characteristic describes the mapping of the magnetizing current onto the motor flux. |  |  |
|  | The parameter sets the third motor flux as a [\%] referred to the rated motor flux. |  |  |
|  | Permanent-magnet synchronous motors (PESM): |  |  |
|  | The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux. |  |  |
|  | The parameter sets the third stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance ( p 0356 ) and the rated motor current. |  |  |
| Dependency: | The following applies for the flux values: |  |  |
|  | p0362 < p0363 < p0364 < p0365 |  |  |
|  | The following applies for the stator quadrature axis flux values (PESM): |  |  |
|  | 20\% < p0362 < p0363 < p0364 < p0365 |  |  |
|  | Refer to: p0368 |  |  |
| Caution: | For permanent-magnet synchronous motors (PESM): |  |  |
|  | If the parameters are not set as specified, i.e. not in ascending order and to more than $20 \%$, the unsaturated quadrature inductance ( p 0356 ) is always used for quadrature axis flux calculation purposes. |  |  |
| Note: | For induction motors, p0364 = 100 \% corresponds to the rated motor flux. |  |  |
|  | For separately-excited synchronous motors p0364 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed). |  |  |
|  | With permanent-magnet synchronous motors, p0362 $=100 \%$ corresponds to the product of the unsaturated quadrature inductance ( p 0356 ) and the rated motor current ( p 0305 ). |  |  |

When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).

| p0365[0...n] | Motor saturation characteristic flux 4 / Mot saturat.flux 4 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6723, 6726 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 10.0 [\%] | 300.0 [\%] | 125.0 [\%] |
| Description: | The saturation characteristic (flux as mapping of current) is defined using 4 points. |  |  |
|  | This parameter specifies the y coordinate (flux) for the 4th value pair of the characteristic. |  |  |
|  | Induction motors (ASM) and separately-excited synchronous motors (SESM): |  |  |
|  | The saturation characteristic describes the mapping of the magnetizing current onto the motor flux. |  |  |
|  | The parameter sets the fourth motor flux as a [\%] referred to the rated motor flux. |  |  |
|  | Permanent-magnet synchronous motors (PESM): |  |  |
|  | The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux. |  |  |
|  | The parameter sets the fourth stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance ( p 0356 ) and the rated motor current. |  |  |
| Dependency: | The following applies for the flux values: |  |  |
|  | p0362 < p0363 < p0364 < p0365 |  |  |
|  | The following applies for the stator quadrature axis flux values (PESM): |  |  |
|  | 20\% < p0362 < p 0363 < p0364 < p0365 |  |  |
|  | Refer to: p0369 |  |  |
| Caution: | For permanent-magnet synchronous motors (PESM): |  |  |
|  | If the parameters are not set as specified, i.e. not in ascending order and to more than $20 \%$, the unsaturated quadrature inductance (p0356) is always used for quadrature axis flux calculation purposes. |  |  |
| Note: | For induction motors, p0365 = $100 \%$ corresponds to the rated motor flux. |  |  |
|  | For separately-excited synchronous motors p0365 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed). |  |  |
|  | With permanent-magnet synchronous motors, p0362 $=100 \%$ corresponds to the product of the unsaturated quadrature inductance ( p 0356 ) and the rated motor current ( p 0305 ). |  |  |
|  | When quick commissioning is exited with p3900 $>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |


| p0366[0...n] | Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6723, 6726 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 5.0 [\%] | 800.0 [\%] | 50.0 [\%] |
| Description: | The saturation characteristic (flux as mapping of current) is defined using 4 points. |  |  |
|  | This parameter specifies the x coordinate for the 1st value pair of the characteristic. Induction motors (ASM) and separately-excited synchronous motors (SESM): |  |  |
|  |  |  |  |
|  | The saturation characteristic describes the mapping of the magnetizing current onto the motor flux. |  |  |
|  | The parameter sets the first magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM). |  |  |
|  | Permanent-magnet synchronous motors (PESM): |  |  |
|  | The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux. |  |  |
|  | The parameter sets the first stator quadrature axis current as a [\%] referred to the rated motor current (p0305). |  |  |




| r0372[0...n] | Cable resistance / Mot R_cable |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: <br> Dependency: | Displays the total cable resistance between Motor Module and motor, as well as the internal converter resistance. Refer to: r0238, p0352 |  |  |
| r0373[0...n] | Motor rated stator resistance / Mot R_stator rated |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
| VECTOR_I_AC | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627). |  |  |
| Dependency: | Refer to: p0627 |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 $=2 x \mathrm{x}$ ) . |  |  |
| r0374[0...n] | Motor rotor resistance cold / damping resistance d axis / Mot R_r cold / RDd |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, SERVO- I AC VEC- | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the rotor/secondary section resistance of the motor for the ambient temperature p0625. <br> For separately-excited synchronous motors: Displays the damping resistance in the rotor direction (d-axis). |  |  |
| Dependency: | Refer to: p0625 |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 $=2 x \mathrm{x}$ ). |  |  |
| r0375[0...n] | Motor damping resistance, q axis / Mot R_damp q |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| V | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the damping resistance of the separately-excited synchronous motor quadrature to the rotor direction (q axis). |  |  |


| r0376[0...n] | Rated motor rotor resistance / Mot R_rotor rated |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the rated (nominal) rotor/secondary section resistance of the motor at the rated temperature (total of p0625 and p0628). |  |  |
| Dependency: | Refer to: p0628 |  |  |
| Note: | The parameter is not used for synchronous motors (p0300 = 2xx). |  |  |
| r0377[0...n] | Motor leakage inductance, total / Mot L_leak total |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  |  | Dynamic index: MDS, p0130 | Func. diagram: 6640 |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [mH] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting - [mH] |
| Description: | Induction motor: |  |  |
|  | Displays the stator leakage inductance of the motor including the series inductance (p0353). |  |  |
|  | Displays the stator quadrature axis inductance of the motor including the series inductance (p0353). |  |  |
| r0377[0...n] | Motor leakage inductance, total / Mot L_leak total |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  |  | Dynamic index: MDS, p0130 | Func. diagram: 6640 |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [mH] | Max - [mH] | Factory setting - [mH] |
| Description: | Induction motor, separately-excited synchronous motor: |  |  |
|  | Displays the stator leakage inductance of the motor, including the series inductance ( p 0353 ) and the motor reactor (p0233). |  |  |
|  | Synchronous motor: |  |  |
|  | Displays the stator quadrature inductance, including the series inductance (p0353) and the motor reactor (p0233). |  |  |


| r0378[0...n] | Motor stator inductance, d axis / Mot L_stator d |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min - [mH] | Max <br> - [mH] | Factory setting - [mH] |
| Description: | Displays the stator longitudinal inductance of the synchronous motor including the series inductance (p0353) and the motor reactor ( p 0233 ). |  |  |
| Note: | The parameter is not used for separat | ed synchronous motors (p030 |  |


| r0380[0...n] | Motor damping inductance, $\mathbf{d}$ axis / Mot L_damping_d |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |
| Description: | Displays the damping inductance of the separately-excited synchronous motor in the rotor direction (d-axis). |  |  |


| r0381[0...n] | Motor damping inductance, q axis / Mot L_damping_q |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 15_1 | Unit selection: p 0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
| Description: | Displays the damping inductance of a separately-excited synchronous motor quadrature to the rotor direction (q <br> axis). |  |  |


| r0382[0...n] | Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
| VECTOR_I_AC | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting - [mH] |
| Description: | Displays the magnetizing inductance of the motor. |  |  |
|  | For separately-excited synchronous motors: Displays the saturated magnetizing inductance in the rotor direction (daxis). |  |  |
| Note: | The parameter is not used for synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}$ ). |  |  |


| r0383[0...n] | Motor magnetizing inductance q axis, saturated / Mot L_magn q sat |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
| Description: | Displays the saturated magnetizing inductance of a separately-excited synchronous motor quadrature to the rotor |  |  |
|  | direction (q axis). |  |  |


| r0384[0...n] | Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6722 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | $-[\mathrm{ms}]$ | Factory setting |
|  | $-[\mathrm{ms}]$ | $-[\mathrm{ms}]$ |  |
|  |  |  |  |
| Description: | Displays the rotor time constant. |  |  |
|  | For separately-excited synchronous motors: Displays the damping time constant in the rotor direction (d-axis). |  |  |

Note: $\quad$ The parameter is not used for synchronous motors.
The value is calculated from the total of the inductances on the rotor side ( $\mathrm{p} 0358, \mathrm{p} 0360$ ) divided by the rotor/damping resistance ( p 0354 ). The temperature adaptation of the rotor resistance for induction motors is not taken into account.

| r0385[0...n] | Motor damping time constant, q axis / Mot L_damping q |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Max |
|  | Min | $-[\mathrm{ms}]$ | Fxpert list: 1 |
|  | $-[\mathrm{ms}]$ | Factory setting |  |
| Description: | Displays the damping time constant of a separately-excited synchronous motor quadrature to the rotor direction (q |  |  |
|  | axis). |  |  |
| Note: | The value is calculated from the total of the inductances on the damping side (p0359, p0361) divided by the damp- |  |  |
|  | ing resistance (p0355). |  |  |


| r0386[0...n] | Motor stator leakage time constant / Mot T_stator leak |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Scaling: - | Max | Expert list: 1 |
| VECTOR_I_AC | Not for motor type: - | Min | Fms] |
|  | $-[\mathrm{ms}]$ | Factory setting |  |
| Description: | Displays the stator leakage time constant. | [ms] |  |
| Note: | The value is calculated from the total of all leakage inductances (p0233*, p0353, p0356, p0358) divided by the total  <br>  of all motor resistances (p0350, p0352, p0354). The temperature adaptation of the resistances is not taken into <br>  account. <br>  * only applies for VECTOR (r0107). |  |  |


| r0387[0...n] | Motor stator leakage time constant, q axis / Mot T_Sleak /T_Sq |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Max |
|  | Min | $-[\mathrm{ms}]$ | Fxpert list: 1 |
|  | $-[\mathrm{ms}]$ | Factory setting |  |
| Description: | Displays the stator leakage time constant quadrature to the rotor direction (q axis). |  |  |
| Note: | The value is calculated from the total of all leakage inductances (p0233, p0356, p0359) divided by the total of all |  |  |
|  | motor resistances (p0350, p0352, p0355). |  |  |
|  | The temperature adaptation of the resistances is not taken into account. |  |  |

p0389[0...n] Excitation rated no-load current / Exc I_noload_rated

VECTOR_AC,
VECTOR_I_AC
Data type: FloatingPoint32
P-Group: Motor
Not for motor type: ASM, PEM, REL
Dynamic index: MDS, p0130
Units group: -
Scaling: -
Max
10000.00 [A]
$0.00[A]$
Sets the rated no-load current (I_F0) for the excitation.
Description:

Access level: 1
Func. diagram: 6727
Unit selection: -
Expert list: 1
Factory setting 0.00 [A]

| p0390[0...n] | Rated excitation current / Exc I_rated |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,3)$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [A] | 10000.00 [A] | 0.00 [A] |
| Description: | Setting the rated current (I_F) of the controlled excitation rectifier (DC master). |  |  |
| p0391[0...n] | Current controller adaptation, starting point KP / I_adapt pt KP |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5714 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [Arms] } \end{aligned}$ | Max <br> 6000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1715 is effective. |  |  |
| Dependency: | Refer to: p0392, p0393, p1402, p1715 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | For p0393 $=100 \%$ or $\mathrm{p} 1402.2=0$, the current controller adaptation is disabled and p1715 is effective over the entire range. |  |  |
| p0391[0...n] | Current controller adaptation, starting point KP / I_adapt pt KP |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6714 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [Arms] | Max <br> 6000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1715 is effective. |  |  |
| Dependency: | Refer to: p0392, p0393, p1402, p1715 |  |  |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p 0300 should be carefully observed when removing write protection. |  |  |
| Note: | When quick commissioning is exited with p3900 $>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |


| p0392[0...n] | Current controller adaptation, starting point KP adapted / I_adapt pt KP adap |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 5714 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [Arms] | Max <br> 6000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the starting point of the current-dependent current controller adaptation where the adapted current controller gain p1715 x p0393 is effective. |  |  |
| Dependency: | Refer to: p0391, p0393, p1402, p1715 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | For p0393 = $100 \%$ or p1402.2 entire range. | nt controller adaptation is disabl | d p 1715 is effective over the |



| r0395[0...n] | Actual stator resistance / R_stator act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6300, 6730, $6731,6732$ |
| TOR, VECTOR_AC, VECTOR I AC | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the actual stator resistance (phase value). <br> The parameter value also contains the temperature-independent cable resistance. |  |  |
| Dependency: | In the case of induction motors the parameter is also affected by the motor temperature model. Refer to: p0350, p0352, p0620 |  |  |
| Note: | In each case, only the stator resistance of the active Motor Data Set is included with the stator temperature of the thermal motor model. |  |  |


| r0396[0...n] | Actual rotor resistance / R_rotor act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6730 |
| TOR, VECTOR AC | P-Group: Motor | Units group: 16_1 | Unit selection: p0349 |
| VECTOR_I_AC | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the actual rotor/secondary section resistance (phase value). |  |  |
| Dependency: | Refer to: p0354, p0620 |  |  |
| Note: | In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model. |  |  |


| p0398[0...n] | Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | -10.000000 | 10.000000 | 0.000000 |
| Description: | The magnetic cross coupling of the motor's $d$ and $q$ axes caused by saturation (current-dependent) leads to an angle offset affecting the axis system d'q'; this decouples the magnetic quantities. |  |  |
|  | The angle offset can be described as a 3rd order polynomial function of the load current consumed: phiOffset $=f\left(C 1^{*} i q+C 3^{*} i q^{\wedge} 3\right)$ |  |  |
|  |  |  |  |


| p0399[0...n] | Angle magn decoupling (cross saturation) coeff $\mathbf{3} /$ Magn decoupl C3 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -10.000000 | 10.000000 | 0.000000 |
| Description: | The magnetic cross coupling of the motor's d and q axes caused by saturation (current-dependent) leads to an |  |  |
|  | angle offset affecting the axis system d'q'; this decouples the magnetic quantities. |  |  |

The angle offset can be described as a 3rd order polynomial function of the load current consumed:
phiOffset $=f\left(C 1 * i q+C 3 * i q^{\wedge} 3\right)$
This parameter is the coefficient C3; it describes the cubic load impact effect.


| 10059: Digital encoder (incremental) identified |  |  |  |
| :---: | :---: | :---: | :---: |
| Caution: | An encoder type with p0400<9999 defines an encoder for which there is an encoder parameter list. When selecting a catalog encoder (p0400 < 9999) the parameters from the encoder parameter list cannot be changed (write protection). To remove write protection, the encoder type should be set to a third-party encoder ( $00400=9999$ ). |  |  |
| Note: | The connected encoder can be identified by setting p0400 to 10000 or 10100 . This assumes that the encoder supports this method, which is possible in the following cases: Motor with DRIVE-CLiQ, encoder with EnDat interface, DRIVE-CLiQ encoder. |  |  |
|  | The encoder data (e.g. pulse number p0408) can only be changed when p0400 $=9999$. |  |  |
|  | When using an encoder with track $A / B$ and zero pulse, as standard, fine synchronization is not set using a zero mark. If, for a synchronous motor, fine synchronization is to be realized using a zero mark, then the following must be executed: |  |  |
|  | - set p0400 to 9999 |  |  |
|  | - set p0404.15 to 1 |  |  |
|  | Prerequisite: |  |  |
|  | Coarse synchronization must be selected (e.g. pole position identification) and the zero pulse of the encoder must be either mechanically or electronically (p0431) adjusted to the pole position. |  |  |
|  | For p0400 = 10000 the following applies: |  |  |
|  | If an identification is not possible, then p0400 is set to 0 . |  |  |
|  | For p0400 $=10100$ the following applies: |  |  |
|  | If an identification is not possible, p0400 remains set to 10100 until it becomes possible. |  |  |
| p0401[0...n] | Encoder type, OEM selection / Enc type OEM sel |  |  |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,4)$ | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: EDS, p0140 | Func. diagram: 1580, 4704 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 32767 | 0 |
| Description: | Selects the encoder from the list of encoder types that the OEM supports. |  |  |
| Note: | The connected encoder can be identified by $\mathrm{p} 0400=10000$. This means that the encoder must support this and is possible in the following cases: Motor with DRIVE-CLiQ, encoder with EnDat interface. |  |  |
|  | If an identification is not possible, then p0400 is set to 0 . |  |  |
|  | The encoder data (e.g. pulse number p0408) can only be changed when p0400 $=9999$. |  |  |
|  | Using p0400 $=20000$, the encoder type can be selected from the list of OEM encoders using p0401. |  |  |


| p0402[0...n] | Gearbox type selection / Gearbox type sel |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(1,4) | Calculated: - |  |
| SERVO_AC, | Data type: Integer16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 10100 | 9999 |

Description: $\quad$ Selects the gearbox type to pre-set the inversion and the gearbox factor.
Measuring gear factor = motor or load revolutions / encoder revolutions.

| Value: | $1:$ | Gearbox 1:1 not inverted |
| :--- | :--- | :--- |
|  | $2:$ | Gearbox 2:7 inverted |
|  | $3: \quad$ Gearbox 4:17 inverted |  |
|  | $4: \quad$ Gearbox 2:10 inverted |  |
|  | 9999: Gearbox, user-defined |  |
|  | 10000: Identify gearbox |  |
|  | 10100: Identify gearbox |  |
| Dependency: | Refer to: p0410, p0432, p0433 |  |

Access level: 1
unc. diagram: -
Unit selection: -

Factory setting
9999

```
Note: }\quad\mathrm{ Re p0402 = 1:
    Automatic setting of p0410 = 0000 bin, p0432 = 1, p0433 = 1.
    Re p0402 = 2:
    Automatic setting of p0410 = 0011 bin, p0432 = 7, p0433 = 2.
    Re p0402 = 3:
    Automatic setting of p0410=0011 bin, p0432=17, p0433=4.
    Re p0402 = 4:
    Automatic setting of p0410 = 0011 bin, p0432 = 10, p0433 = 2.
    Re p0402 = 9999:
    No automatic setting of p0410, p0432, p0433. The parameters should be manually set.
    Re p0402 = 10000:
    It is only possible to identify the gearbox type for a motor with DRIVE-CLiQ. Parameters p0410, p0432 and p0433
    are set corresponding to the identified gearbox. If an identification is not possible, then p0402 is set to 9999.
```

| p0404[0...n] | Encoder configuration effective / Enc_config eff |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(4) |  | Calculated: - | Acce |  |
|  | Data type: Unsigned32 |  | Dynamic index: EDS, p0140 | Fun | 4704 |
|  | P-Group: Encoder |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | $\begin{aligned} & 0000 \\ & 0000 \end{aligned}$ | 0000 |
| Description: | Settings for the basic encoder properties. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Linear encoder | Yes | No | - |
|  | 01 | Absolute encoder | Yes | No | - |
|  | 02 | Multiturn encoder | Yes | No | - |
|  | 03 | Track A/B sq-wave | Yes | No | - |
|  | 04 | Track A/B sine | Yes | No | - |
|  | 05 | Track C/D | Yes | No | - |
|  | 06 | Hall sensor | Yes | No | - |
|  | 08 | EnDat encoder | Yes | No | - |
|  | 09 | SSI encoder | Yes | No | - |
|  | 10 | DRIVE-CLiQ encoder | Yes | No | - |
|  | 11 | Digital encoder | Yes | No | - |
|  | 12 | Equidistant zero mark | Yes | No | - |
|  | 13 | Irregular zero mark | Yes | No | - |
|  | 14 | Distance-coded zero mark | Yes | No | - |
|  | 15 | Commutation with zero mark (not ASM) | Yes | No | - |
|  | 16 | Acceleration | Yes | No | - |
|  |  | Track A/B analog | Yes | No | - |
|  |  | Voltage level 5 V | Yes | No | - |
|  |  | Voltage level 24 V | Yes | No | - |
|  |  | Remote sense (only SMC30) | Yes | No | - |
|  | 23 | Resolver excit. | Yes | No | - |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). |  |  |  |  |
|  | When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |  |  |
| Notice: | If an SSI encoder (bit $9=1$ ) is used as motor encoder for permanent-magnet synchronous motors, then this is only permissible in conjunction with an additional $A / B$ track (bit $3=1$ or bit $4=1$ ). |  |  |  |  |
| Note: | ZM: Zero mark |  |  |  |  |
|  | SMC: Sensor Module Cabinet |  |  |  |  |
|  | If a technique to determine the commutation information/data has not been selected (e.g. track C/D, Hall sensor), and the encoder pulse number is an integer multiple of the pole number, then the following applies: |  |  |  |  |
|  | The track $A / B$ is adjusted to match the magnetic position of the motor. |  |  |  |  |
|  | Re bit 01, 02 (absolute encoder, multiturn encoder): |  |  |  |  |
|  | These bits can only be selected for EnDat encoders, SSI encoders or DRIVE-CLiQ encoders. |  |  |  |  |

Re bit 10 (DRIVE-CLiQ encoder):
This bit is only used for the large-scale integrated DRIVE-CLiQ encoders that provide their encoder data directly in DRIVE-CLiQ format without converting this data. This bit is not, therefore, set for first-generation DRIVE-CLiQ encoders.
Re bit 12 (equidistant zero mark):
The zero marks occur at regular intervals (e.g. rotary encoder with 1 zero mark per revolution or linear encoder with constant zero mark distance).
The bit activates monitoring of the zero mark distance (p0424/p0425, linear/rotary) or in the case of the linear encoder with 1 zero mark and p0424 = 0 zero mark monitoring is activated.
Re bit 13 (irregular zero mark):
The zero marks occur at irregular intervals (e.g. a linear scale with only 1 zero mark in the traversing range). The zero mark distance is not monitored.

Re bit 14 (distance-coded zero mark):
The distance (clearance) between two or several consecutive zero marks allows the absolute position to be calculated.
Re bit 15 (commutation with zero mark):
Only applicable for synchronous motors.
The function can be de-selected by priority via p0430.23.
For distance-coded zero marks, the following applies:
The phase sequence of the C/D track (if available) must be the same as the phase sequence of the encoder (A/B track).
The phase sequence of the Hall signal (if available) must be the same as the phase sequence of the motor. Further, the position of the Hall sensor must be mechanically adjusted to the motor EMF.
The fine synchronization is only started after two zero marks have been passed.

| p0405[0...n] | Square-wave encoder track A/B / Sq-wave enc A/B |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(4) | Calculated: - Access I |  |
|  | Data type: Unsigned32 | Func. diagram: 4704 |  |
|  | P-Group: Encoder | Unit selection: - |  |
|  | Not for motor type: - | Expert list: 1 |  |
|  | Min | Factory setting |  |
|  | - |  |  |
| Description: | Settings for the track $\mathrm{A} / \mathrm{B}$ in a square-wave encoder. |  |  |
|  | For square-wave encoders, p0404.3 must also be 1. |  |  |
| Bit field: | Bit Signal name | 0 signal | FP |
|  | 00 Signal | Unipolar | - |
|  | 01 Level | HTL | - |
|  | 02 Track monitoring | None | - |
|  | 03 Zero pulse | 24 V unipolar | - |
|  | 04 Switching thresh | Low | - |
|  | 05 Pulse/direction | Inactive | - |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list ( p 0400 ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | Re bit 02: |  |  |
|  | When the function is activated, track monitoring can be de-activated by setting p0437.26. |  |  |
|  | Re bit 05: |  |  |
|  | When the function is activated, a frequency setpoint and a direction for traveling can be entered via an encoder interface. |  |  |







| p0421[0...n] | Absolute encoder rotary multiturn resolution / Enc abs multiturn |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: 4704 |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Scaling: - | Expert list: 1 |  |
| VECTOR_I_AC | Not for motor type: - | Max | Factory setting |
|  | Min | 65535 | 4096 |
|  | 0 |  |  |
| Description: | Sets the number of rotations that can be resolved for a rotary absolute encoder. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog |  |  |
|  | encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed |  |  |
|  | when removing write protection. |  |  |


| p0422[0...n] | Absolute encoder linear measuring step resolution / Enc abs meas step |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: C 2 (4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: 4704 |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [nm] | $\begin{aligned} & \text { Max } \\ & 4294967295[\mathrm{~nm}] \end{aligned}$ | Factory setting 100 [nm] |
| Description: | Sets the resolution of the absolute position for a linear absolute encoder. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | The serial protocol of an absolute encoder provides the position with a certain resolution, e.g. 100 nm . This value must be entered here. |  |  |


| p0423[0...n] | Absolute encoder rotary singleturn resolution / Enc abs singleturn |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: 4704 |
| SERVO_IAC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 1073741823 | 8192 |


|  | lute position. |
| :--- | :--- |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog <br> encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed <br> when removing write protection. |


| p0424[0...n] | Encoder, linear zero mark distance / Enc lin ZM_dist |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Scaling: - | Expert list: 1 |  |
| VECTOR_I_AC | Not for motor type: - | Max | Factory setting |
|  | Min | $65535[\mathrm{~mm}]$ | 20 [mm] |
|  | $0[\mathrm{~mm}]$ |  |  |
| Description: | Sets the distance between two zero marks for a linear encoder. This information is used for zero mark monitoring. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p040). When selecting a catalog |  |  |
|  | encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed |  |  |
|  | when removing write protection. |  |  |
| Note: | For distance-coded zero marks, this means the basic distance. |  |  |


| p0425[0...n] | Encoder, rotary zero mark distance / Enc rot dist ZM |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: 4704, 8570 |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 16777215 | 2048 |


| Description: | Sets the distance in pulses between two zero marks for a rotary encoder. This information is used for zero mark <br> monitoring. |
| :--- | :--- |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog <br> encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed <br> when removing write protection. |
| Note: | For distance-coded zero marks, this means the basic distance. |


| p0426[0...n] | Encoder zero mark differential distance / Enc ZM Dif_dist |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | 65535 | Factory setting |
|  | 1 | 1 |  |

Description: Sets the differential distance with distance-coded zero marks [signal periods].
The value corresponds to jump displacement of "zero mark with interference".
Caution: This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.

| p0427[0...n] | Encoder SSI baud rate / Enc SSI baud rate |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: C 2 (4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [kHz] | $\begin{aligned} & \operatorname{Max} \\ & 65535[\mathrm{kHz}] \end{aligned}$ | Factory setting 100 [kHz] |
| Description: | Sets the baud rate for an SSI encoder. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | SSI: Synchronous Serial Interface |  |  |
| p0428[0...n] | Encoder SSI monoflop time / Enc SSI t_monoflop |  |  |
| ENC, SERVO, | Can be changed: C 2 (4) | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC VEC- | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ $\mu \mathrm{s}$ ] | Max 65535 [ $\mu \mathrm{s}$ ] | Factory setting 30 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the minimum delay time between two data transfers of the absolute value for an SSI encoder. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list ( $p 0400$ ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |


| p0429[0...n] | Encoder SSI configuration / Enc SSI config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |  |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting 00000000 bin |  |
|  | - | - |  |  |
| Description: | Sets the configuration for an SSI encoder. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Transfer code | Binary code | Gray code | - |
|  | 02 Transfer absolute value twice | Yes | No | - |
|  | 06 Data line during the monoflop time | High level | Low level | - |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list ( p 0400 ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |  |
| Note: | Re bit 06: |  |  |  |
|  | The quiescent signal level of the data line corresponds to the inverted, set level. |  |  |  |


| p0430[0...n] | Sensor Module configuration / SM config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(4) |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 |  | Dynamic index: EDS, p0140 | Func. diagram: - |  |
|  | P-Group: Encoder U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting 11100000000010000000 000000000000 bin |  |
|  | - |  | - |  |  |
| Description: | Sets the configuration of the Sensor Module. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Burst oversampling | Yes | No | - |
|  |  | Continuous oversampling (reserved) | Yes | No | - |
|  | 19 | Safety position actual value sensing | Yes | No | - |
|  | 20 | Speed calculation mode (only SMC30) | Incremental diff | Flank time meas | - |
|  | 21 | Zero mark tolerance | Yes | No | - |
|  | 22 | Rot pos adapt | Yes | No | - |
|  | 23 | De-select commutation with zero mark | Yes | No | - |
|  | 24 | Commutation with selected zero mark | Yes | No | - |
|  | 25 | Switch off encoder voltage supply during parking | Yes | No | - |
|  | 27 | Extrapolate position values | Yes | No | - |
|  |  | Cubic correction | Yes | No | - |
|  |  | Phase correction | Yes | No | - |
|  |  | Amplitude correction | Yes | No | - |
|  | 31 | Offset correction | Yes | No | - |
| Notice: | A bit-wise configuration is only possible if the corresponding property is also present in r0458. |  |  |  |  |
| Note: | Re bit 17 (burst oversampling): |  |  |  |  |
|  | - if bit = 1, burst oversampling is switched on. |  |  |  |  |
|  | Re bit 18 (continuous oversampling): |  |  |  |  |
|  | - if bit = 1, continuous oversampling is switched on. |  |  |  |  |
|  | Re bit 19 (Safety position actual value sensing): |  |  |  |  |
|  | - if bit = 1, the Safety position actual value is transferred in the cyclic telegram. |  |  |  |  |
|  | Re bit 20 (speed calculation mode): |  |  |  |  |
|  | - if bit = 1, the speed is calculated via incremental difference without extrapolation. |  |  |  |  |
|  | - if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode |  |  |  |  |

Re bit 21 (zero mark tolerance):

- if bit = 1, a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3x100/F3x101 does not appear, but alarm $\mathrm{A} 3 \times 400 / \mathrm{A} 3 \times 401$ does.
Re bit 22 (rotor position adaptation):
- if bit = 1 , the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.
Re bit 23 (de-select commutation with zero mark):
- The bit should only be set for encoders that have not been adjusted.

Re bit 24 (commutation with selected zero mark):

- if bit $=1$, the commutation position is corrected via a selected zero mark.

Re bit 25 (disconnect the encoder power supply on parking):

- if bit $=1$, the encoder power supply is switched off on parking $(0 \mathrm{~V})$.
- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .

Re bit 27 (extrapolate position values):

- if bit $=1$, the extrapolation of the position values is activated.

Re bit 28 (cubic correction);

- if bit = 1 , the cubic correction for track $A / B$ sine is activated.

Re bit 29 (phase correction):

- if bit $=1$, the phase correction for track $A / B$ sine is activated.

Re bit 30 (amplitude correction):

- if bit = 1 , the amplitude correction for track $A / B$ sine is activated.

Re bit 31 (offset correction):

- if bit = 1 , the offset correction for track $A / B$ sine is activated.


Re bit 20 (speed calculation mode):

- if bit = 1 , the speed is calculated via incremental difference without extrapolation.
- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode. Re bit 21 (zero mark tolerance):
- if bit = 1, a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3x100/F3x101 does not appear, but alarm A3x400/A3x401 does
Re bit 22 (rotor position adaptation):
- if bit $=1$, the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.
Re bit 23 (de-select commutation with zero mark):
- The bit should only be set for encoders that have not been adjusted.

Re bit 24 (commutation with selected zero mark):

- if bit = 1, the commutation position is corrected via a selected zero mark.

Re bit 25 (disconnect the encoder power supply on parking):

- if bit $=1$, the encoder power supply is switched off on parking $(0 \mathrm{~V})$.
- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .

Re bit 27 (extrapolate position values):

- if bit $=1$, the extrapolation of the position values is activated.

Re bit 28 (cubic correction);

- if bit $=1$, the cubic correction for track $A / B$ sine is activated.

Re bit 29 (phase correction):

- if bit = 1 , the phase correction for track $A / B$ sine is activated.

Re bit 30 (amplitude correction):

- if bit = 1 , the amplitude correction for track $A / B$ sine is activated.

Re bit 31 (offset correction):

- if bit $=1$, the offset correction for track $A / B$ sine is activated.




| p0436[0...n] | Encoder SSI parity bit / Enc SSI parity bit |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVOI_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 65535 | 0 |

Description: Sets the position and parity of the parity bit in the SSI protocol.
Notice: $\quad$ The bit may only be positioned before ( p 0446 ) or after ( p 0448 ) the absolute value in the SSI protocol.
Note:
Value = dcba
ba: Position of the parity bit in the protocol (0 ... 63).
c: Parity (0: even, 1: uneven).
d : State of the evaluation (0: Off, 1: On).
Example:
p0436 = 1015
--> The evaluation is switched in and the parity bit is at position 15 with even parity.
p0436 = 1115
--> The evaluation is switched in and the parity bit is at position 15 with uneven parity.


|  | 05 | Edge evaluation bit 1 | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 06 | Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors | Yes | No | - |
|  | 07 | Accumulate uncorrected encoder pulses | Yes | No | - |
|  | 11 | Fault handling after PROFIdrive | Yes | No | - |
|  | 12 | Activate additional messages | Yes | No | - |
|  | 13 | Support absolute position for incremental encoder | Yes | No | 4750 |
|  | 25 | Deselect monitoring multiturn representation in Gx_XIST2 | Yes | No | - |
|  | 26 | Deselect track monitoring | Yes | No | - |
|  | 28 | EnDat linear encoder monitoring incremental/absolute | Yes | No | - |
|  | 29 | EnDat encoder initialization with high accuracy | Yes | No | - |
|  | 31 | Analog unipolar track monitoring | Yes | No | - |
| Dependency: | Refer to: p0430, r0459 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |  |
|  | Re bit 00: |  |  |  |  |
|  | When the data logger (trace) is activated, in the case of a fault, data before and after the event are recorded (traced) and saved in files on the non-volatile memory medium. Experts can then evaluate this data. |  |  |  |  |
|  | Re bit 01: |  |  |  |  |
|  | If bit $=0$, the zero mark is evaluated by ANDing tracks $A$ and $B$ and the zero mark. |  |  |  |  |
|  | For bit = 1, the zero mark is evaluated depending on the direction of rotation detected. For a positive direction of rotation, the positive edge of the zero mark is considered and for a negative direction of rotation, the negative edg of the zero mark. |  |  |  |  |
|  | Re bit 02: |  |  |  |  |
|  | If the bit is set, in the event of a deviation less than the tolerance window for the zero mark (p4681, p4682), the pulses per revolution are corrected. If the bit is not set, encoder fault F3x131 is triggered. |  |  |  |  |
|  | Re Bit 04 and Bit 05: |  |  |  |  |
|  | The actual hardware only supports 1 x or 4 x signal evaluation. |  |  |  |  |
|  | Bit 5/4 $=0 / 0$ : Signal evaluation per period, $4 x$. |  |  |  |  |
|  | Bit 5/4 = 1/0: Illegal setting. |  |  |  |  |
|  | Bit $5 / 4=0 / 1$ : Signal evaluation per period, $1 x$. |  |  |  |  |
|  | Bit 5/4 = 1/1: Illegal setting. |  |  |  |  |
|  | Re bit 06: |  |  |  |  |
|  | If the function is active, when $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the speed actual value is internally frozen for a time equiv alent to two current controller clock cycles. The rotor position continues to be integrated. The actual value is then re-enabled after this time has expired. |  |  |  |  |
|  | Re bit 07: |  |  |  |  |
|  | If the bit is set, the encoder pulses which have not been corrected are added to p4688 at the zero mark. |  |  |  |  |
|  | Re bit 11: |  |  |  |  |
|  | If the bit is set, the Sensor Module checks within a certain time grid whether the fault cause is still present. This enables the Sensor Module to switch from the fault state to the operating state and provide valid actual values automatically. The faults are displayed until the user acknowledges them. |  |  |  |  |
|  | Re bit 12: |  |  |  |  |
|  | Additional fault messages can be activated for extended fault diagnostics. |  |  |  |  |
|  | Re bit 13: |  |  |  |  |
|  | When the bit is set, for an incremental encoder with zero mark, the absolute value in Gn_XIST2 can be requested via Gn_STW. 13 . |  |  |  |  |
|  | Re bit 20: |  |  |  |  |
|  | If the bit is set, the bandwidth of the analog filter for SMx10 (resolver) and SMx20 (sin/cos encoder) can be set via p4660. |  |  |  |  |
|  | Re bit 26: |  |  |  |  |
|  | Track monitoring is de-activated for the square-wave encoders when the bit is set, even if the monitoring function is selected in p0405.2. |  |  |  |  |

Re bit 28:
Monitoring of the difference between incremental and absolute position in the case of linear encoders.
Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain speed and, therefore, with high accuracy. If initialization at a higher speed is requested, fault F31151, F32151, or F33151 is output.
Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.


Re bit 06:
If the function is active, when $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the velocity actual value is internally frozen for a time equivalent to two current controller clock cycles. The rotor position continues to be integrated. The actual value is then re-enabled after this time has expired.
Re bit 07:
If the bit is set, the encoder pulses detected as faulty between two zero marks are accumulated ( p 4688 ).
Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain velocity and, therefore, with high accuracy. If initialization at a higher velocity is requested, fault F31151, F32151, or F33151 is output.
Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

| p0438[0...n] | Squarewave encoder filter time / Enc t_filt |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: $\mathrm{C} 2(4)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00[\mu \mathrm{~s}] \end{aligned}$ | Factory setting 0.64 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the filter time for a squarewave encoder. |  |  |
|  | The hardware of the squarewave encoder only supports the following values: |  |  |
|  | 0 : No filtering |  |  |
|  | $0.04 \mu \mathrm{~s}$ |  |  |
|  | $0.64 \mu \mathrm{~s}$ |  |  |
|  | $2.56 \mu \mathrm{~s}$ |  |  |
|  | 10.24 ¢ |  |  |
|  | 20.48 \% |  |  |
| Dependency: | Refer to: r0452 |  |  |
| Notice: | If the filter time is too long, the track signals $A / B / R$ may be suppressed and the appropriate messages output. |  |  |
| Note: | The most suitable filter time depends on the number of pulses and maximum speed of the square-wave encoder. |  |  |
|  | The filter time is automatically corrected to the next value when entering a non-specified value. In this case, no message is output. |  |  |
|  | The effective filter time is displayed in r0452. |  |  |


| p0439[0...n] | Encoder ramp-up time / Enc ramp-up time |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | 65535 [ms] | Factory setting |
|  | $0[m s]$ | 0 [ms] |  |
| Description: | Sets the ramp-up time for the encoder. |  |  |
|  | The encoder supplies stable track signals once this time has elapsed. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list $(p 0400)$. |  |  |



| p0441[0...n] | Encoder commissioning serial number part 1/Enc comm ser_no 1 |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: CALC_MOD_ALL | Access level: 4 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | FFFF FFFF hex | Factory setting |
|  | 0000 hex | 0000 hex |  |
|  | Serial number part 1 of the encoder for the commissioning. |  |  |
| Description: | Refer to: p0440, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464 |  |  |
| Dependency: | Refer to: F07414 |  |  |
|  | A value of zero is displayed if an encoder is not present. |  |  |


| p0442[0...n] | Encoder commissioning serial number part $\mathbf{2} /$ Enc comm ser_no $\mathbf{2}$ |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: CALC_MOD_ALL | Access level: 4 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | FFFF FFFF hex | Factory setting |
|  | 0000 hex | 0000 hex |  |
|  | Serial number part 2 of the encoder for the commissioning. |  |  |
| Description: | Refer to: p0440, p0441, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464 |  |  |
| Dependency: | Refer to: F07414 |  |  |
|  | A value of zero is displayed if an encoder is not present. |  |  |


| p0443[0...n] | Encoder commissioning serial number part 3 / Enc comm ser_no 3 |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: CALC_MOD_ALL | Access level: 4 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Serial number part 3 of the encoder for the commissioning. <br> Refer to: p0440, p0441, p0442, p0444, p0445, r0460, r0461, r0462, r0463, r0464 <br> Refer to: F07414 |  |  |
| Dependency: |  |  |  |
|  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |
| p0444[0...n] | Encoder commissioning serial number part 4 / Enc comm ser_no 4 |  |  |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: CALC_MOD_ALL | Access level: 4 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Serial number part 4 of the encoder for the commissioning. <br> Refer to: p0440, p0441, p0442, p0443, p0445, r0460, r0461, r0462, r0463, r0464 |  |  |
| Dependency: |  |  |  |
|  | Refer to: F07414 |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |
| p0445[0...n] | Encoder commissioning serial number part 5 / Enc comm ser_no 5 |  |  |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: CALC_MOD_ALL | Access level: 4 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Serial number part 5 of the encoder for the commissioning. |  |  |
| Dependency: | Refer to: p0440, p0441, p0442, p0443, p0444, r0460, r0461, r0462, r0463, r0464 |  |  |
|  | Refer to: F07414 |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |
| p0446[0...n] | Encoder SSI number of bits before the absolute value / Enc SSI bit before |  |  |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO IAC VEC | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: |
| TOR, VECTOR_AC, | P-Group: Encoder | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the number of bits before the absolute value in the SSI protocol. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | For example, error bit, alarm bit or parity bit can be positioned at these bits. |  |  |


| p0447[0...n] | Encoder SSI number of bits absolute value / Enc SSI bit val |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 | 65535 | 25 |
| Description: | Sets the number of bits for the absolute value in the SSI protocol. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list ( p 0400 ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| p0448[0...n] | Encoder SSI number of bits after the absolute value / Enc SSI bit after |  |  |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, $\qquad$ | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | Sets the number of bits after the absolute value in the SSI protocol. |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | For example, error bit, alarm bit or parity bit can be positioned at these bits. |  |  |
| p0449[0...n] | Encoder SSI number of bits, filler bits / Enc SSI fill bits |  |  |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 1 |
| Description: | Sets the number of filler bits for double absolute value transfer in the SSI protocol. |  |  |
| Dependency: | Refer to: p0429 |  |  |
| Caution: | This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection. |  |  |
| Note: | This parameter is only of significance for p0429.2 $=1$. |  |  |


| r0451[0...2] | Commutation angle factor / Enc commut_factor |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 4710 |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | - | - |  |
| Description: | Displays the relationship between the electrical and mechanical pole positions. |  |  |
| Index: | $[0]=$ Encoder 1 |  |  |
|  | $[1]=$ Encoder 2 |  |  |
| Note: | [2] = Encoder 3 |  |  |



|  | 03 | Track A/B sq-wave | Yes | No |
| :---: | :---: | :---: | :---: | :---: |
|  | 04 | Track A/B sine | Yes | No |
|  | 05 | Track C/D | Yes | No |
|  | 06 | Hall sensor | Yes | No |
|  | 08 | EnDat encoder | Yes | No |
|  | 09 | SSI encoder | Yes | No |
|  | 10 | DRIVE-CLiQ encoder | Yes | No |
|  | 11 | Digital encoder | Yes | No |
|  | 12 | Equidistant zero mark | Yes | No |
|  | 13 | Irregular zero mark | Yes | No |
|  | 14 | Distance-coded zero mark | Yes | No |
|  | 15 | Commutation with zero mark (not ASM) | Yes | No |
|  | 16 | Acceleration | Yes | No |
|  | 17 | Track A/B analog | Yes | No |
|  | 20 | Voltage level 5 V | Yes | No |
|  | 21 | Voltage level 24 V | Yes | No |
|  |  | Remote sense (only SMC30) | Yes | No |
|  | 23 | Resolver excit. | Yes | No |
| Dependency: | Refer to: p0404 |  |  |  |
| Note: | ZM: Zero mark |  |  |  |
|  | This parameter is only used for diagnostics. |  |  |  |
|  | A value of zero is displayed if an encoder is not present. |  |  |  |
|  | Re bit 20, 21 (voltage level 5 V , voltage level 24 V ): |  |  |  |
|  | The voltage level cannot be detected. Therefore, these bits are always set to 0 . |  |  |  |




| r0456[0...2] | Encoder configuration supported / Enc_config supp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the encoder configuration supported by the Sensor Module. |  |  |
| Index: | $[0]=$ Encoder 1 $[1]=$ Encoder 2 $[2]=$ Encoder 3 |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 00 Linear encoder | Yes | No |
|  | 01 Absolute encoder | Yes | No |


|  | 02 | Multiturn encoder | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 03 | Track A/B sq-wave | Yes | No | - |
|  | 04 | Track A/B sine | Yes | No | - |
|  | 05 | Track C/D | Yes | No | - |
|  | 06 | Hall sensor | Yes | No | - |
|  | 08 | EnDat encoder | Yes | No | - |
|  | 09 | SSI encoder | Yes | No | - |
|  | 10 | DRIVE-CLiQ encoder | Yes | No | - |
|  | 11 | Digital encoder | Yes | No | - |
|  | 12 | Equidistant zero mark | Yes | No | - |
|  | 13 | Irregular zero mark | Yes | No | - |
|  | 14 | Distance-coded zero mark | Yes | No | - |
|  | 15 | Commutation with zero mark (not ASM) | Yes | No | - |
|  | 16 | Acceleration | Yes | No | - |
|  | 17 | Track A/B analog | Yes | No | - |
|  | 20 | Voltage level 5 V | Yes | No | - |
|  | 21 | Voltage level 24 V | Yes | No | - |
|  |  | Remote sense (only SMC30) | Yes | No | - |
|  | 23 | Resolver excit. | Yes | No | - |
| Dependency: | Refe | to: p0404 |  |  |  |
| Note: |  | Zero mark |  |  |  |
|  |  | parameter is only used for diagnostics. |  |  |  |
|  | A va | ue of zero is displayed if an encoder is not $p$ | ent. |  |  |
| r0458 | Sen | sor Module properties / SM prope | ies |  |  |
| ENC | Can | be changed: - C | lated: - | Acce |  |
|  | Data | type: Unsigned32 D | mic index: - | Func |  |
|  | P-G | oup: Encoder U | group: - | Unit |  |
|  | Not | for motor type: - Scald |  | Expe |  |
|  | Min | Ma |  | Facto |  |
|  | - | - |  | - |  |
| Description: | Sets | the Sensor Module configuration. |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Encoder data available | Yes | No | - |
|  | 01 | Motor data available | Yes | No | - |
|  | 02 | Temperature sensor connection available | Yes | No | - |
|  | 03 | Connection for PTC for motor with DRIVECLiQ also available | Yes | No | - |
|  | 04 | Module temperature available | Yes | No | - |
|  | 05 | Absolute encoder p0408/p0421, no power of 2 | Yes | No | - |
|  | 06 | Sensor Module permits parking/unparking | Yes | No | - |
|  | 07 | Hall sensor can be combined with actual value inversion | Yes | No | - |
|  | 08 | Evaluation through several temperature channels possible | Yes | No | - |
|  | 09 | Encoder fault and its associated information available | Yes | No | - |
|  | 10 | Speed diagnostics in the Sensor Module | Yes | No | - |
|  | 11 | Configuring without park state possible | Yes | No | - |
|  | 12 | Extended functions available | Yes | No | - |
|  | 13 | Extended encoder fault handling | Yes | No | - |
|  | 14 | Extended singleturn/multiturn information available | Yes | No | - |
|  | 15 | Valuation figures available | Yes | No | - |
|  | 16 | Pole position identification | Yes | No | - |
|  | 17 | Burst oversampling | Yes | No | - |
|  | 18 | Continuous oversampling | Yes | No | - |
|  | 19 | Safety position actual value sensing | Yes | No | - |


|  | 20 | Extended speed calculation being used (only SMC30) | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 | Zero mark tolerance | Yes | No | - |
|  | 22 | Rot pos adapt | Yes | No | - |
|  | 23 | Commutation with zero mark can be deselected | Yes | No | - |
|  | 24 | Commutation with selected zero mark | Yes | No | - |
|  | 25 | Disconnection of encoder power supply on parking supported | Yes | No | - |
|  | 26 | Parking with temperature evaluation | Yes | No | - |
|  | 27 | SSI position value extrapolation | Yes | No | - |
|  | 28 | Cubic correction | Yes | No | - |
|  | 29 | Phase correction | Yes | No | - |
|  | 30 | Amplitude correction | Yes | No | - |
|  | 31 | Offset correction | Yes | No | - |
| Dependency: | Refer to: p0437, p0600, p0601 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |  |
|  | When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"): |  |  |  |  |
|  | p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445 |  |  |  |  |
|  | Re bit 12: |  |  |  |  |
|  | The extended functions can be configured using p0437. |  |  |  |  |
|  | Re bit 13: |  |  |  |  |
|  | Encoder faults can be acknowledged via Gn_STW.15. |  |  |  |  |
|  | Re bit 14: |  |  |  |  |
|  | Only for internal Siemens use. |  |  |  |  |
|  | Re bit 23: |  |  |  |  |
|  | When the property is set, commutation with zero mark can be de-selected using p0430.23. |  |  |  |  |
|  | Re bit 24: |  |  |  |  |
|  | If the property is set, commutation to the selected zero mark can be carried out. |  |  |  |  |
| r0458 | Sensor Module properties / SM properties |  |  |  |  |
| ENC (Lin_enc) | Can be changed: - |  | lated: - | Access level: 3 |  |
|  | Data type: Unsigned32 |  | amic index: - | Func. diagram: 4704 |  |
|  | P-Group: Encoder |  | s group: - | Unit |  |
|  | Not for motor type: - S |  | ing: - | Expe |  |
|  | Min M |  |  | Fact |  |
|  | - | - |  | - |  |
| Description: | Sets the Sensor Module configuration. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Encoder data available | Yes | No | - |
|  | 01 | Motor data available | Yes | No | - |
|  | 02 | Temperature sensor connection available | Yes | No | - |
|  | 03 | Connection for PTC for motor with DRIVECLiQ also available | Yes | No | - |
|  | 04 | Module temperature available | Yes | No | - |
|  | 05 | Absolute encoder p0408/p0421, no power of 2 | Yes | No | - |
|  | 06 | Sensor Module permits parking/unparking | Yes | No | - |
|  | 07 | Hall sensor can be combined with actual value inversion | Yes | No | - |
|  | 08 | Evaluation through several temperature channels possible | Yes | No | - |
|  | 09 | Encoder fault and its associated information available | Yes | No | - |
|  | 10 | Velocity diagnostics in the Sensor Module | Yes | No | - |
|  | 11 | Configuring without park state possible | Yes | No | - |


|  | 12 | Extended functions available | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13 | Extended encoder fault handling | Yes | No | - |
|  | 14 | Extended singleturn/multiturn information available | Yes | No | - |
|  | 15 | Valuation figures available | Yes | No | - |
|  | 16 | Pole position identification | Yes | No | - |
|  | 17 | Burst oversampling | Yes | No | - |
|  | 18 | Continuous oversampling | Yes | No | - |
|  | 19 | Safety position actual value sensing | Yes | No | - |
|  | 20 | Extended velocity calculation available (only SMC30) | Yes | No | - |
|  | 21 | Zero mark tolerance | Yes | No | - |
|  | 22 | Rot pos adapt | Yes | No | - |
|  | 23 | Commutation with zero mark can be deselected | Yes | No | - |
|  | 24 | Commutation with selected zero mark | Yes | No | - |
|  | 25 | Disconnection of encoder power supply on parking supported | Yes | No | - |
|  | 26 | Parking with temperature evaluation | Yes | No | - |
|  | 27 | SSI position value extrapolation | Yes | No | - |
|  | 28 | Cubic correction | Yes | No | - |
|  | 29 | Phase correction | Yes | No | - |
|  | 30 | Amplitude correction | Yes | No | - |
|  | 31 | Offset correction | Yes | No | - |
| Dependency: | Refer to: p0437, p0600, p0601 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |  |
|  | Re bit 11: |  |  |  |  |
|  | When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"): |  |  |  |  |
|  | p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445 |  |  |  |  |
|  | Re bit 12: |  |  |  |  |
|  | The extended functions can be configured using p0437. |  |  |  |  |
|  | Re bit 13: |  |  |  |  |
|  | Encoder faults can be acknowledged via Gn_STW.15. |  |  |  |  |
|  | Re bit 14: |  |  |  |  |
|  | Only for internal Siemens use. |  |  |  |  |
|  | Re bit 23: |  |  |  |  |
|  | When the property is set, commutation with zero mark can be de-selected using p0430.23. |  |  |  |  |
|  | Re bit 24: |  |  |  |  |
|  | If the property is set, commutation to the selected zero mark can be carried out. |  |  |  |  |



|  | 04 | Module temperature available | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 05 | Absolute encoder p0408/p0421, no power of 2 | Yes | No | - |
|  | 06 | Sensor Module permits parking/unparking | Yes | No | - |
|  | 07 | Hall sensor can be combined with actual value inversion | Yes | No | - |
|  | 08 | Evaluation through several temperature channels possible | Yes | No | - |
|  | 09 | Encoder fault and its associated information available | Yes | No | - |
|  | 10 | Speed diagnostics in the Sensor Module | Yes | No | - |
|  | 11 | Configuring without park state possible | Yes | No | - |
|  | 12 | Extended functions available | Yes | No | - |
|  | 13 | Extended encoder fault handling | Yes | No | - |
|  | 14 | Extended singleturn/multiturn information available | Yes | No | - |
|  | 15 | Valuation figures available | Yes | No | - |
|  | 16 | Pole position identification | Yes | No | - |
|  | 17 | Burst oversampling | Yes | No | - |
|  | 18 | Continuous oversampling | Yes | No | - |
|  | 19 | Safety position actual value sensing | Yes | No | - |
|  | 20 | Extended speed calculation being used (only SMC30) | Yes | No | - |
|  | 21 | Zero mark tolerance | Yes | No | - |
|  | 22 | Rot pos adapt | Yes | No | - |
|  | 23 | Commutation with zero mark can be deselected | Yes | No | - |
|  | 24 | Commutation with selected zero mark | Yes | No | - |
|  | 25 | Disconnection of encoder power supply on parking supported | Yes | No | - |
|  | 26 | Parking with temperature evaluation | Yes | No | - |
|  | 27 | SSI position value extrapolation | Yes | No | - |
|  | 28 | Cubic correction | Yes | No | - |
|  | 29 | Phase correction | Yes | No | - |
|  |  | Amplitude correction | Yes | No | - |
|  | 31 | Offset correction | Yes | No | - |
|  | Refer to: p0437, p0600, p0601 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |  |
|  | Re bit 11: |  |  |  |  |
|  | When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"): |  |  |  |  |
|  | p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445 |  |  |  |  |
|  | Re bit 12: |  |  |  |  |
|  | The extended functions can be configured using p0437. |  |  |  |  |
|  | Re bit 13: |  |  |  |  |
|  | Encoder faults can be acknowledged via Gn_STW.15. |  |  |  |  |
|  | Re bit 14: |  |  |  |  |
|  | Only for internal Siemens use. |  |  |  |  |
|  | Re bit 23: |  |  |  |  |
|  | When the property is set, commutation with zero mark can be de-selected using p0430.23. |  |  |  |  |
|  | Re bit 24: |  |  |  |  |
|  | If the property is set, commutation to the selected zero mark can be carried out. |  |  |  |  |



Re bit 12:
The extended functions can be configured using p0437.
Re bit 13:
Encoder faults can be acknowledged via Gn_STW.15.
Re bit 14:
Only for internal Siemens use.
Re bit 23:
When the property is set, commutation with zero mark can be de-selected using p0430.23.
Re bit 24:
If the property is set, commutation to the selected zero mark can be carried out.

| r0459 | Sensor Module properties extended / SM prop ext |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ENC | Can be changed: - Calcula | ulated: - | Acce |  |
|  | Data type: Unsigned32 Dyn | amic index: - | Func |  |
|  | P-Group: Encoder Un | group: - | Unit |  |
|  | Not for motor type: - Sca | ing: - | Exp |  |
|  | Min Max |  | Facto |  |
|  | - - |  | - |  |
| Description: | Displays the extended properties supported by the Sensor Module. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Data logger | Yes | No | - |
|  | 01 Zero mark edge detection | Yes | No | - |
|  | 02 Correction position actual value XIST1 | Yes | No | - |
|  | 04 Edge evaluation bit 0 | Yes | No | - |
|  | 05 Edge evaluation bit 1 | Yes | No | - |
|  | 06 Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors | Yes | No | - |
|  | 07 Accumulate uncorrected encoder pulses | Yes | No | - |
|  | 09 Function p0426, p0439 supported | Yes | No | - |
|  | 10 Pulse/direction interface | Yes | No | - |
|  | 11 Fault handling after PROFIdrive | Yes | No | - |
|  | 12 Activate additional messages | Yes | No | - |
|  | 13 Absolute position for incremental encoder supported | Yes | No | - |
|  | 14 Spindle functionality | Yes | No | - |
|  | 15 Additional temperature sensor available | Yes | No | - |
|  | 16 Internal encoder temperature available | Yes | No | - |
|  | 25 Deselect monitoring multiturn representation in Gx_XIST2 | Yes | No | - |
|  | 26 Track monitoring de-selection | Yes | No | - |
|  | 28 EnDat linear encoder monitoring incremental/absolute | Yes | No | - |
|  | 29 EnDat encoder initialization with high accuracy | Yes | No | - |
|  | 31 Analog unipolar track monitoring | Yes | No | - |
| Dependency: | Refer to: p0437 |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |
|  | Re bit 09: |  |  |  |
|  | Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module. |  |  |  |


| r0459 | Sensor Module properties extended / SM prop ext |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ENC (Lin_enc) | Can be changed: - C |  | ulated: - | Access level: 3 |  |
|  | Data type: Unsigned32 Dy |  | mic index: - | Func. diagram: - |  |
|  | P-Group: Encoder U |  | group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | ng: - | Expert list: 1 |  |
|  | Min M |  |  | Factory setting |  |
|  |  |  |  |  |  |
| Description: | Displays the extended properties supported by the Sensor Module. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Data logger | Yes | No | - |
|  |  | Zero mark edge detection | Yes | No | - |
|  |  | Correction position actual value XIST1 | Yes | No | - |
|  |  | Edge evaluation bit 0 | Yes | No | - |
|  | 05 | Edge evaluation bit 1 | Yes | No | - |
|  | 06 | Freeze actual velocity for $\mathrm{dn} / \mathrm{dt}$ errors | Yes | No | - |
|  | 07 | Accumulate uncorrected encoder pulses | Yes | No | - |
|  | 09 | Function p0426, p0439 supported | Yes | No | - |
|  | 10 | Pulse/direction interface | Yes | No | - |
|  | 11 | Fault handling after PROFIdrive | Yes | No | - |
|  | 12 | Activate additional messages | Yes | No | - |
|  | 13 | Absolute position for incremental encoder supported | Yes | No | - |
|  | 14 | Spindle functionality | Yes | No | - |
|  | 15 | Additional temperature sensor available | Yes | No | - |
|  | 16 | Internal encoder temperature available | Yes | No | - |
|  | 25 | Deselect monitoring multiturn representation in Gx_XIST2 | Yes | No | - |
|  |  | Track monitoring de-selection | Yes | No | - |
|  |  | EnDat linear encoder monitoring incremental/absolute | Yes | No | - |
|  |  | EnDat encoder initialization with high accuracy |  | No | - |
|  |  | Analog unipolar track monitoring | Yes | No | - |
| Dependency: | Refer to: p0437 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. <br> Re bit 09: |  |  |  |  |
|  | Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module. |  |  |  |  |
| r0459[0...2] | Sensor Module properties extended / SM prop ext |  |  |  |  |
| SERVO, | Can be changed: - C |  | ulated: - | Access level: 3 |  |
| SERVO_AC, <br> SERVO I AC, VEC- | Data type: Unsigned32 D |  | amic index: - | Func. diagram: - |  |
| TOR, VECTOR_AC, | P-Group: Encoder U |  | group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - S |  |  | Expert list: 1 |  |
|  | Min M |  |  | Factory setting |  |
|  |  |  |  |  |  |
| Description: | Displays the extended properties supported by the Sensor Module. |  |  |  |  |
| Index: | $\begin{aligned} & \text { [0] }=\text { Encoder } 1 \\ & \text { [1] }=\text { Encoder } 2 \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Data logger | Yes | No | - |
|  |  | Zero mark edge detection | Yes | No | - |
|  |  | Correction position actual value XIST1 | Yes | No | - |
|  |  | Edge evaluation bit 0 | Yes | No | - |
|  | 05 | Edge evaluation bit 1 | Yes | No | - |


|  | 06 | Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 07 | Accumulate uncorrected encoder pulses | Yes | No | - |
|  | 09 | Function p0426, p0439 supported | Yes | No | - |
|  | 10 | Pulse/direction interface | Yes | No | - |
|  | 11 | Fault handling after PROFIdrive | Yes | No | - |
|  | 12 | Activate additional messages | Yes | No | - |
|  | 13 | Absolute position for incremental encoder supported | Yes | No | - |
|  | 14 | Spindle functionality | Yes | No | - |
|  | 15 | Additional temperature sensor available | Yes | No | - |
|  | 16 | Internal encoder temperature available | Yes | No | - |
|  | 25 | Deselect monitoring multiturn representation in Gx_XIST2 | Yes | No | - |
|  | 26 | Track monitoring de-selection | Yes | No | - |
|  | 28 | EnDat linear encoder monitoring incremental/absolute | Yes | No | - |
|  |  | EnDat encoder initialization with high accuracy | Yes | No | - |
|  |  | Analog unipolar track monitoring | Yes | No | - |
| Dependency: | Refer to: p0437 |  |  |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |  |  |
|  | Re bit 09: |  |  |  |  |
|  | Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module. |  |  |  |  |
| r0459[0...2] | Sensor Module properties extended / SM prop ext |  |  |  |  |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) |  |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Encoder Unt |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - Scalin |  | Scaling: - | Expert list: 1 |  |
|  | Min Max |  | Max | Factory setting |  |
|  |  |  | - |  |
| Description: | Displays the extended properties supported by the Sensor Module. |  |  |  |  |
| Index: | [0] = Encoder 1 |  |  |  |  |
|  | [1] = Encoder 2 |  |  |  |  |
|  | [2] = Encoder 3 |  |  |  |  |
| Bit field: | Bit | Signal name |  | 1 signal | 0 signal | FP |
|  |  | Data logger | Yes | No |  |
|  |  | Zero mark edge detection | Yes | No | - |
|  | 02 | Correction position actual value XIST1 | Yes | No | - |
|  | 04 | Edge evaluation bit 0 | Yes | No | - |
|  | 05 | Edge evaluation bit 1 | Yes | No | - |
|  | 06 | Freeze actual velocity for dn/dt errors | Yes | No | - |
|  | 07 | Accumulate uncorrected encoder pulses | Yes | No | - |
|  | 09 | Function p0426, p0439 supported | Yes | No | - |
|  | 10 | Pulse/direction interface | Yes | No | - |
|  | 11 | Fault handling after PROFIdrive | Yes | No | - |
|  | 12 | Activate additional messages | Yes | No | - |
|  | 13 | Absolute position for incremental encoder supported | Yes | No | - |
|  | 14 | Spindle functionality | Yes | No | - |
|  | 15 | Additional temperature sensor available | Yes | No | - |
|  | 16 | Internal encoder temperature available | Yes | No | - |
|  | 25 | Deselect monitoring multiturn representation in Gx_XIST2 | Yes | No | - |
|  | 26 | Track monitoring de-selection | Yes | No | - |
|  | 28 | EnDat linear encoder monitoring incremental/absolute | Yes | No | - |



| Dependency: | Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464 |  |
| :---: | :---: | :---: |
| r0462 | Encoder serial number part 3 / Enc ser_no 3 |  |
| ENC | Can be changed: - Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - | - |
| Description: | Displays the actual serial number part 3 of the appropriate encoder. |  |
| Dependency: | Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464 |  |
| r0462[0...2] | Encoder serial number part 3 / Enc ser_no 3 |  |
| SERVO, | Can be changed: - Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Encoder Units group: - | Unit selection: - |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - |  |
| Description: |  |  |
| Index: | $\text { [0] = Encoder } 1$ |  |
|  | [1] = Encoder 2 |  |
|  | [2] = Encoder 3 |  |
| Dependency: | Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464 |  |
| r0463 | Encoder serial number part 4 / Enc ser_no 4 |  |
| ENC | Can be changed: - Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - |  |
| Description: | Displays the actual serial number part 4 of the appropriate encoder. |  |
| Dependency: | Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464 |  |
| r0463[0...2] | Encoder serial number part 4 / Enc ser_no 4 |  |
| SERVO, | Can be changed: - Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Encoder Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - |  |
| Description: | Displays the actual serial number part 4 of the appropriate encoder. |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |
| Dependency: | Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464 |  |




| Dependency: | Refer to: p0422, p9514 |  |  |
| :---: | :---: | :---: | :---: |
| r0470 | Redundant coarse value valid bits / Valid bits |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the valid bits of the redundant coarse position value. |  |  |
| Dependency: | Refer to: p9323, p9523 |  |  |
| r0470[0...2] | Redundant coarse value valid bits / Valid bits |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the valid bits of the redundant coarse position value. |  |  |
| Index: | $\text { [0] = Encoder } 1$ |  |  |
|  | $\text { [1] = Encoder } 2$ |  |  |
|  | [2] = Encoder 3 |  |  |
| Dependency: | Refer to: p9323, p9523 |  |  |
| r0471 | Redundant coarse value fine resolution bits / Fine bit |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the number of valid bits for the fine resolution of the redundant coarse position value. |  |  |
| Dependency: | Refer to: p9324, p9524 |  |  |
| r0471[0...2] | Redundant coarse value fine resolution bits / Fine bit |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Displays the number of valid bits for the fine resolution of the redundant coarse position value. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Dependency: | Refer to: p9324, p9524 |  |  |


| r0472 | Redundant coarse position value relevant bits / Relevant bits |  |  |
| :--- | :--- | :--- | :--- |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the number of relevant bits for the redundant coarse position value. |  |  |


| r0472[0...2] | Redundant coarse position value relevant bits / Relevant bits |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | - |  |
|  | - |  |  |
| Description: | Displays the number of relevant bits for the redundant coarse position value. |  |  |
| Index: | $[0]=$ Encoder 1 |  |  |
|  | $[1]=$ Encoder 2 |  |  |


| r0473 | Non safety-relevant measuring steps position value pos1 / nsrPos1 |  |  |
| :--- | :--- | :--- | :--- |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Max |
|  | - | - |  |
| Description: | Displays the non safety-relevant measuring steps of POS1. |  |  |
| Dependency: | Refer to: p0416, p9513 |  |  |


| r0473[0...2] | Non safety-relevant measuring steps position value pos1 / nsrPos1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR VECTOR AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | Displays the non safety-relevant measuring steps of POS1. |  |  |
| Index: | $\begin{aligned} & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Dependency: | Refer to: p0416, p9513 |  |  |
| r0474 | Redundant coarse position value configuration / Red pos config |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the encoder co | dundant coarse pos |  |



| r0477 | CO: Measuring gear, position difference / Meas gear pos diff |  |  |
| :--- | :--- | :--- | :--- |
| ENC | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the position difference before the measuring gear between powering down and powering up. |  |  |
| Dependency: | Refer to: F31501, F32501, F33501 |  |  |
| Note: | The increments are displayed in the format the same as r0483. The position difference should be read in encoder |  |  |
|  |  |  |  |


| r0477[0...2] | CO: Measuring gear, position difference / Meas gear pos diff |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | - | - |  |
|  | Displays the position difference before the measuring gear between powering down and powering up. |  |  |
| Description: | [0] = Encoder 1 |  |  |
| Index: | [1] = Encoder 2 |  |  |
|  | [2] = Encoder 3 |  |  |
| Dependency: | Refer to: F31501, F32501, F33501 |  |  |
| Note: | The increments are displayed in the format the same as r0483. The position difference should be read in encoder |  |  |
|  | increments. |  |  |



These interconnections are updated in the background, unlike interconnections involving other connector outputs (e.g. CO: r0482).

The value is immediately available when non-cyclically reading r0479 (e.g. via the expert list).

| r0479[0...2] | CO: Diagnostics encoder position actual value Gn_XIST1 / Diag Gn_XIST1 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer32 | Dynamic index: - | Func. diagram: 4704 |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Factory setting |  |  |
|  | Min | - | - |
|  | - |  |  |
| Description: | Displays the encoder actual position value Gn_XIST1 according to PROFldrive for diagnostics. |  |  |
|  | In contrast to r0482, the value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign. |  |  |


| Index: | $[0]=$ Encoder 1 |
| :--- | :--- |
|  | $[1]=$ Encoder 2 |
| [2] = Encoder 3 |  |$\quad$| Following ramping-up or after a data set changeover, the new value is present at connector inputs which are inter- |
| :--- |
| connected to connector output r0479 and under certain circumstances take 100 ms to become available. |
| Reason: |
| These interconnections are updated in the background, unlike interconnections involving other connector outputs |
| (e.g. CO: r0482). |
|  |
|  |
|  |



| p0480[0...2] | Cl: Encoder control word Gn_STW signal source / Enc Gn_STW S_src |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I AC, VEC- | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 1580, 4720, 4750 |
| VECTOR I AC | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the encoder control word Gn_STW according to PROFIdrive. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Note: | When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: |  |  |
|  | CI: p0480[0] = r2520[0], CI: p0480[1] = r2520[1] and CI: $\mathrm{p} 0480[2]=r 2520[2]$ |  |  |



|  | 03 | Function 4 active | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 04 | Value 1 | Displayed in r0483 | Not present | - |
|  | 05 | Value 2 | Displayed in r0483 | Not present | - |
|  | 06 | Value 3 | Displayed in r0483 | Not present | - |
|  | 07 | Value 4 | Displayed in r0483 | Not present | - |
|  | 08 | Measuring probe 1 deflected | Yes | No | - |
|  | 09 | Measuring probe 2 deflected | Yes | No | - |
|  | 11 | Encoder fault acknowledge active | Yes | No | 9676 |
|  | 13 | Absolute value cyclically | Displayed in r0483 | No | - |
|  | 14 | Parking encoder active | Yes | No | - |
|  | 15 | Encoder fault | Displayed in r0483 | None | - |
| Notice: | Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions |  |  |  |  |
| Note: | Re bit 14: |  |  |  |  |
|  | Displays the acknowledgement for "activate parking encoder" (Gn_STW. $14=1$ ) or encoder position actual value (Gn_XIST1) invalid. |  |  |  |  |
|  | Re bit 14, 15: |  |  |  |  |
|  | r0481.14 = 1 and r0481.15 = 0 can have one of the following causes: |  |  |  |  |
|  | - the encoder is parked. |  |  |  |  |
|  | - the encoder is de-activated. |  |  |  |  |
|  | - the encoder is being commissioned. |  |  |  |  |
|  | - no parameterized encoder available. |  |  |  |  |
|  | - encoder data set is being changed over. |  |  |  |  |
|  | r0481.14 = 1 and r0481.15 = 1 has the following significance: |  |  |  |  |
|  | An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid. |  |  |  |  |
| r0481 | CO: TM41 encoder emulation status word Gn_ZSW / Enc Gn_ZSW |  |  |  |  |
| TM41 | Can be changed: - |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 9676 |  |
|  | P-Group: Encoder |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the encoder status word Gn_ZSW according to PROFIdrive. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Function 1 active | Yes | No | - |
|  | 01 | Function 2 active | Yes | No | - |
|  | 02 | Function 3 active | Yes | No | - |
|  | 03 | Function 4 active | Yes | No | - |
|  | 04 | Value 1 | Displayed in r0483 | Not present | - |
|  | 05 | Value 2 | Displayed in r0483 | Not present | - |
|  | 06 | Value 3 | Displayed in r0483 | Not present | - |
|  | 07 | Value 4 | Displayed in r0483 | Not present | - |
|  | 08 | Measuring probe 1 deflected | Yes | No | - |
|  | 09 | Measuring probe 2 deflected | Yes | No | - |
|  | 11 | Encoder fault acknowledge active | Yes | No | 9676 |
|  | 13 | Absolute value cyclically | Displayed in r0483 | No | - |
|  | 14 | Parking encoder active | Yes | No | - |
|  | 15 | Encoder fault | Displayed in r0483 | None | - |
| Notice: | Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions |  |  |  |  |
|  |  |  |  |  |  |
| Note: | For p4401 = 0, the following applies: |  |  |  |  |
|  | For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero. |  |  |  |  |
|  | For p4401 = 1, the following applies: |  |  |  |  |
|  | r0481.0 indicates as to whether the zero mark synchronization is active. |  |  |  |  |
|  | r0481.4 indicates whether the zero mark of the incremental encoder was found. |  |  |  |  |
|  | r0481.14 indicates whether the output of track $A / B$ is activated. |  |  |  |  |



| r0482 | CO: TM41 encoder emulation position actual value Gn_XIST1 / Enc Gn_XIST1 |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the encoder actual position value Gn_XIST1 according to PROFIdrive. |  |  |
| r0483 | CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2 |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 4704, 4750 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the encoder actual position value Gn_XIST2 according to PROFIdrive. |  |  |
| Recommend.: | Possible causes of the error codes: |  |  |
|  | Error code 4097 and 4098: Defective Control Unit hardware. |  |  |
|  | Error codes 4099 and 4100: Too many measuring pulses have occurred. |  |  |
| Notice: | The encoder position actual value must be requested using the encoder control word Gn_STW.13. |  |  |
| Note: | - in this value, the measuring gear (p0432, p0433) is only taken into account when the position tracking is activated ( $\mathrm{p} 0411.0=1$ ). |  |  |
|  | - if GxZSW. 15 = 1 (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483): |  |  |
|  | 2: Possible position shift in Gx_XIST1. |  |  |
|  | 3: Encoder parking not possible. |  |  |
|  | 4: Abort, reference mark search. |  |  |
|  | 5: Abort, retrieve reference value. |  |  |
|  | 6: Abort, flying measurement. |  |  |
|  | 7: Abort, retrieve measured value. |  |  |
|  | 8: Abort, absolute value transfer. |  |  |
|  | 3841: Function not supported. |  |  |
|  | 4097: Abort, reference mark search due to an initialization error. |  |  |
|  | 4098: Abort, flying measurement due to an initialization error. |  |  |
|  | 4099: Abort, reference mark search due to a measuring error. |  |  |
|  | 4100: Abort, flying measurement due to a measuring error. |  |  |
| r0483[0...2] | CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2 |  |  |
| SERVO, <br> SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1580, 1680, 4704, 4750 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Displays the encoder actual position value Gn_XIST2 according to PROFIdrive. |  |  |
| Recommend.: | Possible causes of the error codes: |  |  |
|  | Error code 4097 and 4098: Defective Control Unit hardware. |  |  |
|  | Error codes 4099 and 4100: Too many measuring pulses have occurred. |  |  |



| r0484 | CO: Redundant coarse encoder position + CRC / Enc red pos+CRC |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the redundant coarse encoder position including CRC (Cyclic Redundancy Check). |  |  |
|  | Upper 16 bits: |  |  |
|  | CRC over the redundant coarse encoder position. |  |  |
|  | Lower 16 bits: |  |  |
|  | Redundant coarse encoder position. |  |  |
|  | On an SMx Sensor Module, the encoder coarse position count direction is opposite to r0482 (encoder actual value Gn_XIST1). The value contains 2 bit fine resolution. |  |  |
|  | With a DRIVE-CLiQ encoder, the encoder coarse position count direction is the same as r0482. |  |  |
| Dependency: | The values are valid when the safety position actual value sensing is activated (p0430.19 = 1). |  |  |
|  | Refer to: p0430 |  |  |
| Note: | This absolute value does not change, contrary to r0482, when de-selecting the function "parking axis |  |  |


| r0484[0...2] | CO: Redundant coarse encoder position + CRC / Enc red pos+CRC |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | F |
| Description: | Displays the redundant coarse encoder position including CRC (Cyclic Redundancy Check). |  |  |
|  | Upper 16 bits: |  |  |
|  | CRC over the redundant coarse encoder position. |  |  |
|  | Lower 16 bits: |  |  |
|  | Redundant coarse encoder position. |  |  |
|  | On an SMx Sensor Module, the encoder coarse position count direction is opposite to r0482 (encoder actual valu Gn_XIST1). The value contains 2 bit fine resolution. |  |  |
|  | With a DRIVE-CLiQ encoder, the encoder coarse position count direction is the same as r0482. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Dependency: | The values are valid when the safety position actual value sensing is activated (p0430.19 = 1). |  |  |
|  | Refer to: p0430 |  |  |
| Note: | This absolute value does not change, contrary to r0482, when de-selecting the function "parking axis" |  |  |
| r0485 | CO: Measuring gear, encoder raw value incremental / Enc raw val incr |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the raw value of the incremental encoder actual value before the measuring gear. |  |  |
| r0485[0...2] | CO: Measuring gear, encoder raw value incremental / Enc raw val incr |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC, SERVO- I AC VEC | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the raw value of the incremental encoder actual value before the measuring gear. |  |  |
| Index: | $[0]=$ Encoder 1 $[1]=$ Encoder 2 $[2]=$ Encoder 3 |  |  |


| r0486 | CO: Measuring gear, encoder raw value absolute / Enc raw val abs |  |  |
| :--- | :--- | :--- | :--- |
| ENC | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the raw value of the absolute encoder actual value before the measuring gear. |  |  |





|  | 2 : | DI/DO 10 (X122.12/X121.10) |
| :---: | :---: | :---: |
|  | 3: | DI/DO 11 (X122.13/X121.11) |
|  | 4: | DI/DO 13 (X132.10/X131.2) |
|  | 5: | DI/DO 14 (X132.12/X131.4) |
|  | 6 : | DI/DO 15 (X132.13/X131.5) |
|  | 7: | DI/DO 8 (X122.9/X121.7) |
|  | 8: | DI/DO 12 (X132.9/X131.1) |
| Dependency: | Refer to: p0488, p0490, p0728 |  |
| Notice: | To the terminal designation: |  |
|  | The first designation is valid for CU320, the second for CU310. |  |
|  | To select the values: |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual) |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |
|  | The terminal must be set as input (p0728). |  |
|  | Refer to the encoder interface for PROFIdrive. |  |
|  | If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518. |  |



| p0489[0...2] | Measuring probe 2 input terminal / Meas probe 2 inp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Dig IO) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 4740 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 0 |  |



| p0490 | Invert measuring probe or equivalent zero mark / Pr or ZM_equiv inv |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. dia |  |
|  | P-Group: Encoder | Units group: - | Unit sele |  |
|  | Not for motor type: - | Scaling: - | Expert lis |  |
|  | Min | Max | Factory |  |
|  | - | - | 0000000 |  |
| Description: | Setting to invert the digital input signals to connect a measuring probe or an equivalent zero mark. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 08 DI/DO 8 (X122.9/X121.7) | Inverted | Not inverted | - |
|  | 09 DI/DO 9 (X122.10/X121.8) | Inverted | Not inverted | - |
|  | 10 DI/DO 10 (X122.12/X121.10) | Inverted | Not inverted | - |
|  | 11 DI/DO 11 (X122.13/X121.11) | Inverted | Not inverted | - |
|  | $12 \mathrm{DI} / \mathrm{DO} 12$ (X132.9/X131.1) | Inverted | Not inverted | - |
|  | 13 DI/DO 13 (X132.10/X131.2) | Inverted | Not inverted | - |
|  | 14 DI/DO 14 (X132.12/X131.4) | Inverted | Not inverted | - |
|  | 15 DI/DO 15 (X132.13/X131.5) | Inverted | Not inverted | - |
| Dependency: | Refer to: p0488, p0489, p0493, p0495, p0728 |  |  |  |
| Notice: | To select the values: |  |  |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). |  |  |  |
|  | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | The terminal must be set as input. |  |  |  |
|  | When the measuring probe or the equivalent zero mark is inverted, this has no effect on the status displays of the digital inputs (r0721, r0722, r0723). |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| p0491 | Motor encoder fault response ENCODER / Fault resp ENCODER |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access |  |
|  | Data type: Integer16 | Dynamic index: - | Func. dia |  |
|  | P-Group: Encoder | Units group: - | Unit sele |  |
|  | Not for motor type: - | Scaling: - | Expert lis |  |
|  | Min | Max | Factory |  |
|  | 0 | 5 | 0 |  |
| Description: | Sets the behavior for the ENCODER fault response (motor encoder). |  |  |  |
|  | This means, for example, if an encoder fault occurs, encoderless operation can be automatically selected with shutdown behavior that can be selected. |  |  |  |
| Value: | 0: Encoder fault results in OFF2 |  |  |  |
|  | 1: Enc fault results in encoderless oper. and oper. continue |  |  |  |
|  | 2: Encoder fault results in encoderless operation and OFF1 |  |  |  |
|  | 3: Encoder fault results in encoderless operation and OFF3 |  |  |  |
|  | 4: Encoder fault results in an armature short-cct int/DC brak |  |  |  |
|  | 5: Enc fault results in encoderless op, operation continues, |  |  |  |
| Dependency: | The following parameters are relevant for encoderless operation. |  |  |  |
|  | Refer to: p0341, p0342, p1470, p1472, p1517, p1612, p1755 |  |  |  |
|  | Refer to: F07575 |  |  |  |
| Caution: | For a value = 1, 2, 3, 5 the following applies: |  |  |  |
|  | - encoderless operation must have been started. |  |  |  |
|  | - if, for synchronous motors, an encoder fault occurs below the switchover speed p1755, when switching over to encoderless operation, the motor can stall. |  |  |  |
|  | For a value = 1, 5 the following applies: |  |  |  |
|  | - in spite of the motor encoder fault that has occurred, the motor continues to operate. |  |  |  |


| Note: | For a value = 1, 2, 3, the following applies: |
| :---: | :---: |
|  | - for encoderless operation the following condition must be fulfilled: p1800 > $\mathrm{n} /$ / (2 * $\mathrm{p} 0115[0]$ ), $\mathrm{n}=1,2$, etc. |
|  | - Refer to the status signal "encoderless operation due to a fault" (BO: r1407.13). |
|  | - If, when setting r1407.13, a different drive data set is selected (e.g. interconnection from p0820), then the open loop or closed-loop control type p1300 of this data set must match that of the original data set (e.g. p1300 $=21$ ). Encoderless closed-loop controlled operation is kept when changing over. |
|  | For a value $=4$, the following applies: |
|  | - The value can only be set for all motor data sets when p1231 $=3,4$. |
|  | - For synchronous motors, an armature short circuit is initiated on an encoder fault. |
|  | - For induction motors, DC braking is initiated on an encoder fault. DC braking must be commissioned (p1232, p1233, p1234). |


| p0491 | Motor encoder fault response ENCODER / Fault resp ENCODER |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 5 | 0 |
| Description: | Sets the behavior for the ENCODER fault response (motor encoder). |  |  |
|  | This means, for example, if an encoder fault occurs, encoderless operation can be automatically selected with a shutdown behavior that can be selected. |  |  |
| Value: | 0: Encoder fault results in OFF2 |  |  |
|  | 1: Enc fault results in encoderless oper. and oper. continue |  |  |
|  | 2: Encoder fault results in encoderless operation and OFF1 |  |  |
|  | 3: Encoder fault results in encoderless operation and OFF3 |  |  |
|  | 4: Encoder fault results in an armature short-cct int/DC brak |  |  |
|  | 5: Enc fault results in encoderless op, operation continues, |  |  |
| Dependency: | The following parameters are relevant for encoderless operation. |  |  |
|  | Refer to: p0341, p0342, p1470, p1472, p1517, p1612, p1755 |  |  |
|  | Refer to: F07575 |  |  |
| Caution: | For a value = 1, 2, 3, 5 the following applies: |  |  |
|  | - encoderless operation must have been started. |  |  |
|  | - if, for synchronous motors, an encoder fault occurs below the switchover speed p1755, when switching over to encoderless operation, the motor can stall. |  |  |
|  | For a value $=1,5$ the following applies: |  |  |
|  | - in spite of the motor encoder fault that has occurred, the motor continues to operate. |  |  |
| Note: | For a value = 1, 2, 3, 5 the following applies: |  |  |
|  | - Refer to the status signal "encoderless operation due to a fault" (BO: r1407.13). |  |  |
|  | - If, when setting r1407.13, a different drive data set is selected (e.g. interconnection from p0820), then the openloop or closed-loop control type p1300 of this data set must match that of the original data set (e.g. p1300 $=21$ ). Encoderless closed-loop controlled operation is kept when changing over. |  |  |
|  | For a value $=4$, the following applies: |  |  |
|  | - The value can only be set for all motor data sets when p1231 $=3,4$. |  |  |
|  | - For synchronous motors, an armature short circuit is initiated on an encoder fault. |  |  |
|  | - For induction motors, DC braking is initiated on an encoder fault. DC braking must be commissioned (p1232, p1233, p1234). |  |  |
|  | For a value $=5$, the following applies: |  |  |
|  | Same function as for value = 1. However, encoder faults are output as alarm and the message bit "Fault active" (r2139.3) is not set. The encoder fault has to be acknowledged via the encoder interface in order to resume operation with encoder. |  |  |





| p0492 | Maximum speed difference per sampling cycle / n_dif max/samp_cyc |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [rpm] | $\begin{aligned} & \text { Max } \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 0.00 [rpm] |
| Description: | Sets the maximum permissible speed difference within the current controller sampling time. |  |  |
| Dependency: | Refer to: r1408 |  |  |
|  | Refer to: F07902, F31118, A31418, F32118, A32418, F33118, A33418 |  |  |
| Note: | For a value of 0.0 , the speed change monitoring is disabled. |  |  |

The following applies for square-wave encoders:
If the speed difference exceeds the threshold value p0492, depending on p0491, either encoderless closed-loop speed/torque control is selected or the drive is powered down with fault F3x118.
The following applies for other speed encoders:
If the speed difference exceeds threshold value p0492, in order to avoid subsequent faults, the old speed actual value is kept and after time p2178 shut down with fault F07902 (motor stalled).

| p0493 | Zero mark selection, input terminal / ZM_sel inp_term |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 8 | 0 |
| Description: | Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks. |  |  |
|  | The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal. |  |  |
| Value: | 0: No selection via BERO |  |  |
|  | 1: $\quad \mathrm{DI} / \mathrm{DO} 9$ (X122.10/X121.8) |  |  |
|  | 2: DI/DO 10 (X122.12/X121.10) |  |  |
|  | 3: DI/DO 11 (X122.13/X121.11) |  |  |
|  | 4: DI/DO 13 (X132.10/X131.2) |  |  |
|  | 5: DI/DO 14 (X132.12/X131.4) |  |  |
|  | 6: DI/DO 15 (X132.13/X131.5) |  |  |
|  | 7: DI/DO 8 (X122.9/X121.7) |  |  |
|  | 8: DI/DO 12 (X132.9/X131.1) |  |  |
| Dependency: | Refer to: p0490 |  |  |
| Notice: | For Cx32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Note: | Refer to the encoder interface for PROFIdrive. |  |  |
|  | The terminal must be set as input (p0728). |  |  |
|  | For p0493 $=0$ (factory setting) the following applies: |  |  |
|  | - there is no logic operation between the reference mark search and an input signal. |  |  |
|  | For p0493 > 0, the following applies: |  |  |
|  | - the positive edge of the input signal is evaluated. If the negative edge is to be evaluated, signal inversion must be parameterized via p0490. |  |  |
|  | - if a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0580, p0680, p2517, or p2518. |  |  |


| p0493[0...n] | Zero mark selection, input terminal / ZM_sel inp_term |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VECC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 8 | 0 |

Description: Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks.

The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal.
Value:

```
No selection via BERO
DI/DO }9\mathrm{ (X122.10/X121.8)
DI/DO 10 (X122.12/X121.10)
DI/DO }11\mathrm{ (X122.13/X121.11)
```





| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |
| :---: | :---: |
| Dependency: | Refer to: p0490, p0494 |
| Notice: | For Cx32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). For p0494 > 0, the setting in p0494 and p0495 is invalid. <br> To the terminal designation: <br> The first designation is valid for CU320, the second for CU310. |
| Note: | Refer to the encoder interface for PROFIdrive. <br> The terminal must be set as input. <br> For p0495 $=0$ (factory setting), the encoder zero mark is evaluated as zero mark. <br> For p0495 > 0, the following applies: <br> Depending on the direction of motion, the positive or negative edge at the appropriate input is evaluated. <br> - increasing position actual values (r0482) --> the 0/1 edge is evaluated. <br> - decreasing position actual values (r0482) --> the 1/0 edge is evaluated. <br> Only one zero mark is supported. If function 2,3 or 4 is selected, this results in a fault message in Gn_ZSW. <br> The inversion of the inputs via p0490 affects the function "referencing with equivalent zero mark". This is the reason that the edge evaluation is interchanged as a function of the direction of motion. <br> An input can only be assigned to one encoder as measuring probe 1, 2 or equivalent zero mark. Exception: The same encoder can be simultaneously used as measuring probe and equivalent zero mark as both functions cannot be simultaneously requested. |
| p0495[0...2] | Equivalent zero mark, input terminal / ZM_equiv input |
| SERVO (Dig IO) | Can be changed: U, T Calculated: - Access level: 3 <br> Data type: Integer16 Dynamic index: - Func. diagram: 4735 <br> P-Group: Encoder Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 51 0 |
| Descr | Selects the input terminal for connecting an equivalent zero mark (external encoder zero mark). |
| Value: | ```No equivalent zero mark (evaluation of the encoder zero mark) DI/DO }9\mathrm{ (X122.10/X121.8) DI/DO 10 (X122.12/X121.10) DI/DO }11\mathrm{ (X122.13/X121.11) DI/DO 13 (X132.10/X131.2) DI/DO 14 (X132.12/X131.4) DI/DO }15\mathrm{ (X132.13/X131.5) DI/DO }8\mathrm{ (X122.9/X121.7) DI/DO 12 (X132.9/X131.1) DI/DO 0 distributed (X3.2) DI/DO }1\mathrm{ distributed (X3.4)``` |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |
| Dependency: | Refer to: p0490, p0494 |
| Notice: | For Cx32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). For p0494 > 0, the setting in p0494 and p0495 is invalid. <br> To the terminal designation: <br> The first designation is valid for CU320, the second for CU310. |
| Note: | Refer to the encoder interface for PROFIdrive. <br> The terminal must be set as input. <br> For p0495 = 0 (factory setting), the encoder zero mark is evaluated as zero mark. <br> For p0495 > 0, the following applies: <br> Depending on the direction of motion, the positive or negative edge at the appropriate input is evaluated. <br> - increasing position actual values (r0482) --> the 0/1 edge is evaluated. <br> - decreasing position actual values (r0482) --> the $1 / 0$ edge is evaluated. |

Only one zero mark is supported. If function 2,3 or 4 is selected, this results in a fault message in Gn_ZSW. The inversion of the inputs via p0490 affects the function "referencing with equivalent zero mark". This is the reason that the edge evaluation is interchanged as a function of the direction of motion.
An input can only be assigned to one encoder as measuring probe 1, 2 or equivalent zero mark. Exception: The same encoder can be simultaneously used as measuring probe and equivalent zero mark as both functions cannot be simultaneously requested.

| p0496 | Encoder diagnostic signal selection / Enc diag select |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 86 | 0 |
| Description: | Selects the trace signal to be output in r0497, r0498 and r0499 for encoder diagnostics. |  |  |
| Value: | 0 : Inactive |  |  |
|  | 1: r0497: Mechanic |  |  |
|  | 10: r0498: Raw valu | w value, track $B$ |  |
|  | 11: r0498: Fine posi | Fine position Y (-B/2) |  |
|  | 12: r0498: Fine posi |  |  |
|  | 13: r0498: Offset co | set correction Y |  |
|  | 14: r0498: Phase co | plitude correction $Y$ |  |
|  | 15: r0498: Cubic cor | e position X |  |
|  | 16: r0498: oversamp | 9: oversampling channel B |  |
|  | 17: r0498: fan-out, | ut, number |  |
|  | 18: r0498: Oversamp | versampling amount |  |
|  | 20: r0498: Raw valu | w value, track D |  |
|  | 21: r0498: CD positi | D position Y (C/2) |  |
|  | 22: r0498: CD positi | s. Phi - mech. revolution |  |
|  | 23: r0497: Zero mar |  |  |
|  | 24: r0498: Raw valu | ro mark status |  |
|  | 25: r0498: Raw valu | w value, track R |  |
|  | 30: r0497: Absolute |  |  |
|  | 31: r0497: Absolute |  |  |
|  | 32: r0497: Zero mark |  |  |
|  | 33: r0497: Correction | ifference |  |
|  | 40: r0498: Raw temp | perature in $0.1{ }^{\circ} \mathrm{C}$ |  |
|  | 41: r0498: Resistanc | : Temperature in $0.1{ }^{\circ} \mathrm{C}$ |  |
|  | 42: r0497: Resistanc |  |  |
|  | 51: r0497: Absolute | /dt) |  |
|  | 52: r0497: Xact1 cor |  |  |
|  | 60: Analog sensor: r | A, r0499: raw val chann. B |  |
|  | 61: Analog sensor: r | . A,r0499: fine pos chann. B |  |
|  | 62: Analog sensor: | e characteristic, r0499: - |  |
|  | 70: Resolver: r0498: | , r0499: phase |  |
|  | 80: Spindle: r0498: | 9: Sensor S4 (raw) |  |
|  | 81: Spindle: r0498: | 99: - |  |
|  | 85: Spindle: r0498: | 9: Sensor S4 (cal) |  |
|  | 86: Spindle: r0498: | 9: - |  |
| Dependency: | Refer to: r0497, r0498, r0499 |  |  |
| Notice: | The setting option depends on the following properties: |  |  |
|  | Sensor Module type, hardware version, firmware version (Sensor Module and Control Units), order number (last digit). |  |  |
|  | Not all combinations are |  |  |
| Note: | Re p0496 = 1:360 ${ }^{\circ}$ <--> $2^{\wedge} 32$ |  |  |
|  | Re p0496 = 10 (resolver): 2900 mV <--> 26214 dec |  |  |
|  | Re p0496 = 10, 20 (sin/cos 1 Vpp , EnDat): 500 mV <--> 21299 dec |  |  |
|  | Re p0496 = 11 (resolver): 2900 mV <--> 13107 dec , internal processor offset is corrected |  |  |
|  | Rep0496 = 11, 21 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec , internal processor offset is corrected |  |  |

```
Re p0496 = 12: \(180^{\circ}\) fine position <--> 32768 dec
Re p0496 = 13 (resolver): 2900 mV <--> 13107 dec
Re p0496 = 13 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec
Re p0496 = 14: \(1^{\circ}\) <--> 286 dec, 100\% <--> 16384 dec
Re p0496 = 15: 100 \% <--> 16384 dec
Re p0496 = 16: (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec
Re p0496 = 16: (sin/cos 1 Vpp , EnDat) channel A: 500 mV <--> 21299 dec , channel B: 500 mV <--> 21299 dec
Re p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec , number: 1 ... 8
Re p0496 = 17 ( \(\sin / \cos 1 \mathrm{Vpp}\), EnDat): absolute value 500 mV <--> 10650 dec , number: 1 ... 8
Re p0496 = 18 (resolver): angle: signal period <--> 2^16, absolute value: 2900 mV <--> 13107 dec
Re p0496 = 18 ( \(\sin / \cos 1 \mathrm{Vpp}\), EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
Re p0496 = 22: \(180^{\circ}\) <--> 32768 dec
Re p0496 = 23, 24: r0497.31 (r0499.15) set for at least 1 current controller cycle when encoder zero mark detected
Re p0496 \(=24\), 25: 500 mV <--> 21299 dec
Re p0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
Re p0496 = 31: Absolute position, incremental in \(1 / 4\) encoder pulses
Re p0496 = 32: Zero mark position in 1/4 encoder pulses
Re p0496 = 33: counter offset absolute value in \(1 / 4\) encoder pulses
Re p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
Re p0496 = 42: 2500 Ohm <--> 2^32
Re p0496 = 51: 1 rpm <--> 1000 dec
Re p0496 = 52: In 1/4 encoder pulses
Re p0496 \(=60\) : voltage, channel A in mV, voltage, channel B in \(m V\)
Re p0496 = 61: Channel A: encoder periods <--> 2^16, channel B: encoder periods <--> 2^16
Re p0496 = 62: encoder periods <--> 2^16
Re p0496 = 70: r: \(100 \%\) <--> 10000 dec, phase: \(180^{\circ}\) <--> 18000 dec
Re p0496 = 80, 81, 85, 86: 1V <--> 1000 inc
```






```
For \(\mathrm{p} 0500=101\) and when the calculation is initiated, the following parameters are set
- p1520/p1521 = torque at the maximum motor current (p0323)
- p1530/p1531= power at the maximum motor current (p0323) and rated motor speed (p0311)
- p2000 = rated motor speed (p0311)
- p2175 = maximum value
- p2177 = 0.2 s
For \(\mathrm{p} 0500=102\) and when the calculation is initiated, the following parameters are set:
- p1520/p1521 = rated motor torque (r0333)
- p1530/p1531= 2*pi*r0333*p0311 (rotary) or r0333*p0311 (linear)
- p2000 = maximum motor speed (p0322) if p0322 is not equal to 0 , otherwise rated motor speed ( p 0311 )
- p2175 = factory setting
- p2177 = factory setting
```

| p0500 |
| :--- |
| VECTOR, |
| VECTOR_AC, |
| VECTOR_I_AC |
|  |
| Description: |


| Technology application / Tec application |  |  |
| :--- | :--- | :--- |
| Can be changed: C2(1,5), T | Calculated: - | Access level: 2 |
| Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| P-Group: Applications | Units group: - | Unit selection: - |
| Not for motor type: | Scaling: - | Expert list: 1 |
| Min | Max | Factory setting |
| 0 | 2 | 1 |

Sets the technology application.
The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0578.
Value: $\quad 0: \quad$ Standard drive (VECTOR)
1: Pumps and fans
2: $\quad$ Sensorless closed-loop control down to $f=0$ (passive loads)
Dependency: Refer to: p2175, p2177
Note: $\quad$ The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900>0
- when writing p0340 $=1,3,5$
- when writing p0578 $=1$

For $\mathrm{p} 0500=0$ and when the calculation is initiated, the following parameters are set:
p1574 = 10 V (for separately-excited synchronous motors: 20 V )
p1750.2 = 0
p1802 $=4$ (SVM/FLB without overcontrol)
p1803 = $106 \%$
For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:
p1574 $=2 \mathrm{~V}$ (for separately-excited synchronous motors: 4 V )
p1750.2 $=0$
$\mathrm{p} 1802=9$ (edge modulation), if $\mathrm{r} 0192.0=1$
p1802 $=4$, if r0192.0 $=0$
p1803 = $106 \%$
For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set: p1574 $=2 \mathrm{~V}$ (for separately-excited synchronous motors: 4 V )
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
p1802 $=4$ (SVM/FLB without overcontrol)
p1803 = $106 \%$
The setting of p1750 is only relevant for induction motors.
p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ( $\mathrm{p} 0230=3,4$ ) has not been selected.



Notice: If p0532 is changed during quick commissioning ( $\mathrm{p} 0010=1$ ), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ( $\mathrm{p} 0010=3$ ). The maximum speed of the bearing is factored into the limit for the maximum speed p 1082.


| p0532[0...n] | Bearing maximum speed / Bearing n_max |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(1, 3) | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Scaling: - | Unit selection: - |
|  | Not for motor type: FEM | Max | Expert list: 1 |
|  | Min | Factory setting |  |
|  | $0.0[\mathrm{rpm}]$ | 0.0 [rpm] |  |
| Description: | Sets the maximum speed of the bearing. | Refer to: p0301, p0530, p1082, r1082 |  |
| Dependency: | This parameter is pre-assigned in the case of motors from the motor list (p0301) if a bearing version (p0530) is |  |  |
| Caution: | selected. When selecting a catalog motor, this parameter cannot be changed (write protection). The information in |  |  |
|  | p0530 should be observed when removing write protection. |  |  |


| r0565[0..15] | CO: Probe time stamp / Probe time stamp |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Display parameters for MT_ZS_1 to MT_ZS_16 |  |  |
|  | Displays the measuring time for an edge at the digital input for the "central measuring probe evaluation stage 3 " function. |  |  |
|  | The measuring time is specified as 16-bit value with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
|  | Priority: MT1..MT8, oldest...newest time stamp |  |  |




| Note: | If value $=0$ : |  |  |
| :---: | :---: | :---: | :---: |
|  | The automatic calculation ( $\mathrm{p} 0340, \mathrm{p} 0578$ ) also overwrites the parameters of the inhibit list (p0571). If value $=1$ : |  |  |
|  | The automatic calculation (p0340, p0578) does not overwrite the parameters of the inhibit list (p0571). |  |  |
| p0573 | Inhibit automatic reference value calculation / Inhibit calc |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { TM41, VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Applications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters (p0340, p3900). |  |  |
| Value: | $\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$ |  |  |
| Notice: | The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ( $\mathrm{p} 0180=1$ ). This is the case during initial commissioning. |  |  |
|  | Once the motor and control parameters have been calculated (p0340, p3900), the inhibit for the reference value calculation is automatically re-activated. |  |  |
| Note: | If value $=0$ : |  |  |
|  | The automatic calculation (p0340, p3900) overwrites the reference parameters. If value $=1$ : |  |  |
|  | The automatic calculatio |  |  |


| p0578[0...n] | Calculate technology-dependent parameters / Calc tec par |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(5), T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Applications | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 1 | 0 |

Description: This parameter is used to calculate all parameters that depend on the technology of the application (p0500). All of the parameters are calculated that can also be determined using p0340 $=5$.
Value:
0: $\quad$ No calculation
1: Complete calculation
Note: $\quad$ At the end of the calculations, p0578 is automatically set to 0.

| p0580 | Measuring probe, input terminal / MT input terminal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | 8 | Factory setting |
|  | 0 |  | 0 |
| Description: | Sets the input terminal for the measuring probe for speed actual value measurement. |  |  |
| Value: | $0:$ | No meas probe |  |
|  | $1:$ | DI/DO 9 (X122.10/X121.8) |  |
|  | $2:$ | DI/DO 10 (X122.12/X121.10) |  |
|  | $3:$ | DI/DO 11 (X122.13/X121.11) |  |
|  | $4:$ | DI/DO 13 (X132.10/X131.2) |  |
|  | $5:$ | DI/DO 14 (X132.12/X131.4) |  |
|  | $6:$ | DI/DO 15 (X132.13/X131.5) |  |


|  | 7: DI/DO 8 (X122.9/X121.7) |  |  |
| :---: | :---: | :---: | :---: |
|  | 8: DI/DO 12 (X132.9/X |  |  |
| Dependency: | Refer to: p0581, p0728 |  |  |
|  | Refer to: A07498 |  |  |
| Notice: | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
|  | To select the values: |  |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). |  |  |
| Note: | The terminal must be set as input (p0728). |  |  |
|  | If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0680, p2517 or p2518. |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0581 | Measuring probe, edge / MT edge |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the edge to evaluate the measuring probe signal for speed actual value measurement. |  |  |
|  | 0: 0/1 edge |  |  |
|  | 1: 1/0 edge |  |  |
| Dependency: | Refer to: p0580 |  |  |
| p0582 | Measuring probe, pulses per revolution / MT pulses per rev |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 12 | 1 |
| Description: | Sets the number of pulses per revolution (e.g. for disks with holes). |  |  |
| p0583 | Measuring probe, maximum measuring time / MT t_meas max |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.040 [s] | 10.000 [s] | 10.000 [s] |
| Description: | Sets the maximum measuring time for the measuring probe. |  |  |
|  | If a new pulse is not received before the maximum measuring time has expired, then the speed actual value in r0586 is set to zero. This timer is re-started with the next pulse. |  |  |
| Dependency: | Refer to: r0586 |  |  |


| r0586 | CO: Measuring probe, speed actual value / MT n_act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Displays, signals | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p 2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the speed actual value measured using the BERO. |  |  |
| Dependency: | Refer to: p0580, p0583 |  |  |
| Note: | For p0580 = 0 (no measuring probe), a value of zero is displayed here. |  |  |
| r0586 | CO: Measuring probe, velocity actual value / MT v_act |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the velocity actual value measured using the BERO. |  |  |
| Dependency: | Refer to: p0580, p0583 |  |  |
| Note: | For p0580 = 0 (no measuring probe), a value of zero is displayed here. |  |  |
| r0587 | CO: Measuring probe, measuring time measured / MT t_meas measured |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - Calculated: - |  | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time between the last two BERO pulses. |  |  |
|  | The measuring time is specified as 32 -bit value with a resolution of $1 / 48 \mu \mathrm{~s}$. |  |  |
|  | If a new pulse is not received before the maximum measured time in p0583 expires, then r0587 is set to the maxi mum measuring time. |  |  |
| Dependency: | Refer to: p0580 |  |  |
| Note: | For p0580 $=0$ (no measuring probe), a value of zero is displayed here. |  |  |
| r0588 | CO: Measuring probe, pulse counter / MT pulse counter |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the number of measuring pulses that have occurred (been received) up until now. |  |  |
| Dependency: | Refer to: p0580 |  |  |
| Note: | After reaching 4294967295 (2^32-1), the counter starts again at 0. |  |  |




Re p0600 $=20$, 21 :
The BICO interconnection should be executed via connector input p0608 or p0609.
Associated parameters: p0601, p4600 ... p4603, p4610 ... p4613

| p0600[0...n] | Motor temperature sensor for monitoring / Mot temp_sensor |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 21 | 0 |
| Description: | Sets the sensor to monitor the motor temperature. |  |  |
| Value: | 0 : No sensor |  |  |
|  | 1: Temperature sensor via encoder 1 |  |  |
|  | 2: Temperature sensor via encoder 2 |  |  |
|  | 3: Temperature sensor via encoder 3 |  |  |
|  | 10: Temperature sensor via a BICO interconnection |  |  |
|  | 11: Temperature sensor via Motor Module / CU terminals |  |  |
|  | 20: Temperature sensor via a BICO interconnection p0608 |  |  |
|  | 21: Temperature sensor via a BICO interconnection p0609 |  |  |
| Dependency: | Refer to: r0458, p0601, p0603 |  |  |
|  | If, for a selected temperature sensor ( $\mathrm{p} 0600>0$ ), the motor temperature sensor is not connected but another sensor, then the temperature adaptation of the motor resistances must be switched out. Otherwise, in controlled-loop operation, torque errors will occur that will mean that the drive will not be able to be stopped. |  |  |
| Notice: | The parameter is calculated in the drive using p0340 and is inhibited for p0340 $>0$. |  |  |
| Note: | Re p0600 = 0: |  |  |
|  | With induction motors, the motor temperature is calculated using the motor temperature model (see also p0612.1). Re p0600 = 1, 2, 3 : |  |  |
|  | Bimetallic switch (p0601 $=4$ ) and PT100 temperature sensor ( $\mathrm{p} 0601=5$ ) are not supported. |  |  |
|  | Re p0600 = 10: |  |  |
|  | The BICO interconnection should be executed via connector input p0603. |  |  |
|  | Re p0600 = 11: |  |  |
|  | For SINAMICS S120 AC Drive (AC/AC) and using the Control Unit Adapter CUA31, the temperature sensor is connected at the adapter (X210). |  |  |
|  | Re p0600 $=20,21$ : |  |  |
|  | The BICO interconnection should be executed via connector input p0608 or p0609. |  |  |
|  | Associated parameters: p0601, p4600 ... p4603, p4610 ... p4613 |  |  |

p0601 Temperature sensor, sensor type / Temp_sens type
A_INF, B_INF, Can be changed: C2(3), U, T Calculated: - Access level: 2

Data type: Integer16
P-Group: Motor
Not for motor type: -
Min
0

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: $\quad$ Sets the sensor type for the temperature measurement at input X21 (booksize) or X41 (chassis). The measured value is displayed in r0035.

Value:
No sensor PTC alarm \& timer KTY84 Bimetallic NC contact alarm \& timer
Dependency: Refer to: r0035

Note: $\quad$ The measured value display depends on the selected sensor type.
Re p0601 = 0 (no sensor):
--> r0035 = - $200^{\circ} \mathrm{C}$
Re p0601 = 1 (PTC alarm \& timer):
Tripping resistance = 1650 Ohm (lower resistance --> r0035 = -50 ${ }^{\circ} \mathrm{C}$, higher resistance --> r0035 = $250{ }^{\circ} \mathrm{C}$ ).
Re p0601 = 2 (KTY84):
Displays the temperature in ${ }^{\circ} \mathrm{C}$.
Re p0601 $=4$ (bimetallic NC contact alarm \& timer):
r0035 $=-50^{\circ} \mathrm{C}$
--> The tripping resistance is less than 100 Ohm (bimetallic NC contact is closed or has a short-circuit).
r0035 $=250{ }^{\circ} \mathrm{C}$
--> The tripping resistance is greater than 100 Ohm (bimetallic NC contact is open, not connected or has a wire breakage).
When using the following components, a value of 4 is set as the factory setting and can no longer be changed:

- Basic Line Module (BLM) with internal Braking Module.
- Active Line Module (ALM) with line filter Active Interface Module (AIM, p0220[0] = 41 ... 45).

In these cases, in addition to the temperature display, the temperature is also monitored.

| p0601[0...n] | Motor temperature sensor type / Mot_temp_sens type |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 11 | 2 |
| Description: | Sets the sensor type for the motor temperature monitoring. |  |  |
| Value: | 0: No sensor |  |  |
|  | 1: PTC alarm \& timer |  |  |
|  | 2: KTY84 |  |  |
|  | 3: KTY84 and PTC (only | DRIVE-CLiQ): |  |
|  | 4: Bimetallic NC contact | (only for temp_eval via MM) |  |
|  | 5: PT100 |  |  |
|  | 10: Evaluation via several | hannels SME12x |  |
|  | 11: Evaluation via severa | hannels BICO |  |
| Dependency: | The thermal motor model is only calculated for $\mathrm{p} 0612.1=1$. |  |  |
|  | Refer to: r0458, p0600, p0612 |  |  |
| Note: | The temperature sensor for the temperature evaluation is set in p0600. |  |  |
|  | For p0600 $=10$ (temperature sensor via a BICO interconnection), the setting in p0601 has no significance. |  |  |
|  | Information on using temperature sensors is provided in the following literature: |  |  |
|  | - hardware description of the appropriate components |  |  |
|  | - SINAMICS S120 Commissioning Manual |  |  |
|  | Re p0601 = 1 (PTC alarm \& timer): |  |  |
|  | Tripping resistance $=1650$ Ohm. |  |  |
|  | After the tripping resistance has been exceeded, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output. |  |  |
|  | Re p0601 = 3 (KTY84 and PTC (only for motors with DRIVE-CLiQ)): |  |  |
|  | For motors with DRIVE-CLiQ and 2 temperature sensors, the value is automatically set. |  |  |
|  | Re p0601 = 4 (bimetallic NC contact alarm \& timer (only for temperature evaluation via the Motor Module)) |  |  |
|  | Tripping resistance $=100$ Ohm. |  |  |
|  | After tripping, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output. |  |  |
|  | Re p0601 = 5 (PT100): |  |  |
|  | It is only possible to evaluate a PT100 for p0600 = 11 and r0192 bit $15=1$. |  |  |

Re p0601 = 10 (evaluation through several temperature channels (SME12x)):
Not permitted for $p 0600=0,10,11$.
Associated parameters: p4600 ... p4603 (can be switched via EDS)
For r0458.8 = 1, a temperature evaluation is supported through several temperature channels.
Examples:
When evaluating using SME120 or SME125, 4 temperature channels are available ( parameterized using p4600, p4601, p4602, p4603).
When evaluating using CU310 and CUA32, 2 temperature channels are available (encoder interface, parameterization via p4600 / terminal block, parameterization via p4601).
Re p0601 = 11 (evaluation via several temperature channels (BICO)):
Not permitted for p0600 $=0,10,11$.
Associated parameters: p4610 ... p4613 (can be switched via MDS)

| p0602 | Par_circuit power unit number, temperature sensor / PU_No temp_sensor |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR (Parallel), | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| VECTOR_AC (Paral- | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| lel), VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
| (Parallel) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the power unit number to which the temperature sensor is connected. The value corresponds to the Power unit Data Set number (PDS) of the power unit. The number of power unit data sets is defined in p0120.


| p0604[0...n] | Mot_temp_mod 1/KTY alarm threshold / Mod 1/KTY A thresh |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0\left[{ }^{\circ} \mathrm{C}\right]$ | $200.0\left[{ }^{\circ} \mathrm{C}\right]$ | $120.0\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Sets the alarm threshold for monitoring the motor temperature for motor temperature model 1 or KTY. |  |  |
|  | After the alarm threshold is exceeded, alarm A07910 is output and timer (p0606) is started. |  |  |
|  | If the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 |  |  |
|  | is output. |  |  |


| Dependency: | Refer to: p0606, p0612 |
| :--- | :--- |
|  | Refer to: F07011, A07910 |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Infor- <br> mation in p0300 should be carefully observed when removing write protection. |
| Note: | The hysteresis is 2 K. <br> When quick commissioning is exited with p3900 $>0$, then the parameter is reset if a catalog motor has not been <br> selected (refer to p0300). |


| p0604[0...n] | Mot_temp_mod 1/KTY alarm threshold / Mod 1/KTY A thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [} \mathrm{C}]$ | $\begin{aligned} & \text { Max } \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting $130.0\left[^{\circ} \mathrm{C}\right]$ |
| Description: | Sets the alarm threshold for monitoring the motor temperature for motor temperature model 1 or KTY. After the alarm threshold is exceeded, alarm A07910 is output and timer (p0606) is started. If the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output. |  |  |
| Dependency: | Refer to: p0606, p0612 |  |  |
|  | Refer to: F07011, A07910 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The hysteresis is 2 K . |  |  |
|  | When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |


| p0605[0...n] | Mot_temp_mod 1/2 threshold / Threshold |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016, 8017 |
|  | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [ ${ }^{\circ} \mathrm{C}$ ] | 200.0 [ ${ }^{\circ} \mathrm{C}$ ] | 145.0 [ ${ }^{\circ} \mathrm{C}$ ] |
| Description: | Sets the threshold for monitoring the motor temperature for motor temperature model $1 / 2$. |  |  |
|  | Motor temperature model 1 (p0612.0 = 1): alarm threshold |  |  |
|  | - Alarm A07910 is output after the alarm threshold is exceeded. |  |  |
|  | Motor temperature model 2 (p0612.1 = 1): fault threshold |  |  |
|  | - Fault F07911 is output after the fault threshold is exceeded. |  |  |
| Dependency: | Refer to: p0606, p0611, p0612 |  |  |
|  | Refer to: F07011, A07012 |  |  |
| Caution: | When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The hysteresis is 2 K . |  |  |
|  | When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |


| p0606[0...n] | Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 600.000 [s] | 240.000 [s] |
| Description: | Sets the timer for monitoring the motor temperature for motor temperature model 2 or KTY. |  |  |
|  | This timer is started when the temperature alarm threshold (p0604) is exceeded. |  |  |
|  | If the timer has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output. |  |  |
|  | If the temperature fault threshold (p0605) is prematurely exceeded before the timer has expired, then fault F07011 is immediately output. |  |  |
| Dependency: | Refer to: p0604, p0605 |  |  |
|  | Refer to: F07011, A07910 |  |  |
| Note: | With p0606 = 0 s , the timer is de-activated and only the fault threshold is effective. |  |  |
|  | KTY sensor: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded. |  |  |
|  | PTC sensor, bimetallic NC contact: The timer minimum value has no special significance. |  |  |


| p0606[0...n] | Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 600.000 \text { [s] } \end{aligned}$ | Factory setting 0.000 [s] |
| Description: | Sets the timer for monitoring the This timer is started when the If the timer has expired and the output. <br> If the temperature fault thresho is immediately output. | rature for motor temperature m arm threshold ( p 0604 ) is excee old has, in the meantime, not be prematurely exceeded before th | 2 or KTY. <br> llen below, then fault F07011 is has expired, then fault F07011 |
| Dependency: | Refer to: p0604, p0605 |  |  |
|  | Refer to: F07011, A07910 |  |  |
| Note: | With p0606 $=0 \mathrm{~s}$, the timer is de-activated and only the fault threshold is effective. |  |  |
|  | KTY sensor: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded. |  |  |
|  | PTC sensor, bimetallic NC contact: The timer minimum value has no special significance. |  |  |


| p0607[0...n] | Temperature sensor fault timer / Sensor fault time |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Scaling: - | Unit selection: - |
| TOR, VECTOR_AC, | Max | Expert list: 1 |  |
| VECTOR_I_AC | Not for motor type: - | $600.000[\mathrm{~s}]$ | Factory setting |
|  | Min | 0.100 [s] |  |
|  | $0.000[\mathrm{~s}]$ | Sets the timer between the output of alarm and fault for a temperature sensor fault. |  |
| Description: | If there is a sensor fault, this timer is started. |  |  |
|  | If the sensor fault is still present after the timer has expired, a corresponding fault is output. |  |  |
| Notice: | The parameterized time is internally rounded-off to an integer multiple of 48 ms. |  |  |
| Note: | If the motor is an induction motor, the timer is switched off when setting the minimum value and no alarm is output. |  |  |
|  | Temperature monitoring is then based on the thermal model. |  |  |


| p0608[0...3] | CI: Motor temperature signal source 2 / Mot_temp S_src 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(3), T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets signal source 2 to evaluate the motor temperature via a BICO interconnection. |  |  |
| Index: | [0] = Motor temperature channel 1 <br> [1] = Motor temperature channel 2 <br> [2] = Motor temperature channel 3 <br> [3] = Motor temperature channel 4 |  |  |
| Dependency: | Refer to: p0600 |  |  |
| Note: | Temperature sensor KTY: |  |  |
|  | Valid temperature range $-48{ }^{\circ} \mathrm{C} . . .248{ }^{\circ} \mathrm{C}$. |  |  |
|  | Temperature sensor PTC/bimetal: |  |  |
|  | For a value of $-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC (bimetal contact closed). |  |  |
|  | For a value of $250^{\circ} \mathrm{C}$, the following applies: Motor temperature $>=$ nominal response temperature of the PTC (bimetal contact open). |  |  |
|  | Note: |  |  |
|  | When using a Terminal Module 120 (TM120), the following applies: |  |  |
|  | - the sensor type used is set using p4100. |  |  |
|  | - the temperature signal is interconnected using connector output r4105. |  |  |
| p0609[0..3] | CI: Motor temperature signal source 3 / Mot_temp S_src 3 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3)$, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets signal source 3 to evaluate the motor temperature via a BICO interconnection. |  |  |
| Index: | [0] = Motor temperature channel 1 |  |  |
|  | [1] = Motor temperature channel 2 |  |  |
|  | [2] = Motor temperature channel 3 |  |  |
|  | [3] = Motor temperature channel 4 |  |  |
| Dependency: | Refer to: p0600 |  |  |
| Note: | Temperature sensor KTY: |  |  |
|  | Valid temperature range - $48{ }^{\circ} \mathrm{C} \ldots 248{ }^{\circ} \mathrm{C}$. |  |  |
|  | Temperature sensor PTC/bimetal: |  |  |
|  | For a value of $-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC (bimetal contact closed). |  |  |
|  | For a value of $250^{\circ} \mathrm{C}$, the following applies: Motor temperature >= nominal response temperature of the (bimetal contact open). |  |  |
|  | Note: |  |  |
|  | When using a Terminal Module 120 (TM120), the following applies: |  |  |
|  | - the sensor type used is set using p4100. |  |  |
|  | - the temperature signal is interconnected using connector output r4105. |  |  |



Re bit 00:
This bit is only used for permanent-magnet synchronous motors ( $p 0300=2 x x$ ). It is only possible to activate this motor temperature model ( l 2 t ) for a time constant greater than zero ( $\mathrm{p} 0611>0$ ).
Re bit 01:
This bit is used to activate/deactivate the motor temperature model for induction motors.
Re bit 02:
This bit is used to activate/deactivate the motor temperature model for 1FK7 Basic.


| p0615[0...n] | Mot_temp_mod 1 (12t) fault threshold / I2t F thresh |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8017 |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min $0.0\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \operatorname{Max} \\ & 220.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting 180.0 [ ${ }^{\circ} \mathrm{C}$ ] |
| Description: | Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (I2t). - Fault F07911 is output after the fault threshold is exceeded. |  |  |
| Dependency: | The parameter is only used for perman Refer to: r0034, p0611, p0612 Refer to: F07011, A07012 | agnet synchronous motors (p03 | 2 xx ). |
| Caution: | When selecting a catalog motor ( p 0301 ), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. |  |  |
| Note: | The hysteresis is 2 K . |  |  |


| p0616[0...n] | Motor overtemperature alarm threshold 1 / Mot temp alarm 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.0\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting 195.0 [ ${ }^{\circ} \mathrm{C}$ ] |
| Description: | Sets the alarm threshold 1 for monitoring the motor temperature. |  |  |
| Note: | The alarm threshold is not, as | pled to the timer p0606. The hy | is for canceling the faul |


| p0616[0...n] | Motor overtemperature alarm threshold 1 / Mot temp alarm 1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0\left[{ }^{\circ} \mathrm{C}\right]$ | 200.0 [ ${ }^{\circ} \mathrm{C}$ ] | 130.0 [ ${ }^{\circ} \mathrm{C}$ ] |
| Description: | Sets the alarm threshold 1 for monitoring the motor temperature. |  |  |
| Note: | The alarm threshold is not, as for p0604, coupled to the timer p0606. The hysteresis for canceling the fault is 2 K . |  |  |
| p0617[0...n] | Stator thermally relevant iron component / Stat therm iron |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 100.0 [\%] | 40.0 [\%] |
| Description: | Thermally relevant iron component of the motor as a percentage of p0344. |  |  |
| Dependency: | Refer to: p0344 |  |  |
| Note: | The sum of p0617, p0618 and p0619 can be more than $100 \%$. |  |  |
| p0618[0...n] | Stator thermally relevant copper component / Stat therm copper |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 15.0 [\%] |
| Description: | Thermally relevant copper component of the motor as a percentage of p0344. |  |  |
| Dependency: | Refer to: p0344 |  |  |
| Note: | The sum of p0617, p0618 and p0619 can be more than $100 \%$. |  |  |
| p0619[0...n] | Rotor thermally relevant weight / Rotor therm weight |  |  |
| SERVO, | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 100.0 [\%] | 20.0 [\%] |
| Description: | Thermally relevant weight of the motor as a percentage of p0344. |  |  |
| Dependency: | Refer to: p0344 |  |  |
| Note: | The sum of p0617, p0618 and p0619 can be more than $100 \%$. |  |  |


| p0620[0...n] | Thermal adaptation, stator and rotor resistance / Mot therm_adapt R |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.
Value: $\quad 0: \quad$ No thermal adaptation of stator and rotor resistances
1: Resistances adapted to the temperatures of the thermal model 2: Resistances adapted to the measured stator winding temperature
Note: $\quad$ For p0620 = 1, the following applies:
The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.
For p0620 $=2$, the following applies:
The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows:
theta_R = (r0628 + r0625) / (r0627 + r0625) * r0035

| p0620[0...n] | Thermal adaptation, stator and rotor resistance / Mot therm_adapt R |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 1 |

Description: Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.
Value: $\quad 0: \quad$ No thermal adaptation of stator and rotor resistances
1: Resistances adapted to the temperatures of the thermal model
2: Resistances adapted to the measured stator winding temperature
Note:
For p0620 = 1, the following applies
The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.
For p0620 = 2, the following applies:
The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows:
theta_R = (r0628 + r0625) / (r0627 + r0625) * r0035
For separately-excited synchronous motors and p0620 $=1, \mathrm{p} 0620=2$ is internally and automatically used for calculating. There is no thermal model to adapt the damping resistances.

| p0621[0...n] | Identification stator resistance after restart / Rst_ident Restart |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: $\mathrm{C} 2(3), \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
|  | Min | 2 | Factory setting |
|  | 0 | 0 |  |
| Description: | Selects the identification of the stator resistance after booting the Control Unit (only for vector control). |  |  |
|  | The identification is used to measure the actual stator resistance and from the ratio of the result of motor data iden- |  |  |
|  | tification (p0350) to the matching ambient temperature (p0625) the actual mean temperature of the stator winding is |  |  |

p0621 = 1 :
Identification of the stator resistance only when the drive is powered up for the first time (pulse enable) after booting the Control Unit.
p0621 = 2:
Identification of the stator resistance every time the drive is powered up (pulse enable).
Value:
Dependency:

Notice: $\quad$ The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding.
Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.

Note: $\quad$ The measurement is carried out:

- For induction motors
- When vector control is active (see p1300)
- If a temperature sensor (KTY) has not been connected
- When the motor is at a standstill when switched on

When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via 00622 and not via p0346. Quick magnetizing (p1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.

| p0622[0...n] | Motor excitation time for Rs_ident after powering up again /t_excit Rs_id |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $20.000[\mathrm{~s}]$ | $0.000[\mathrm{~s}]$ |

Description: Sets the excitation time of the motor for the stator resistance identification after powering up again (restart).
Dependency: Refer to: p0621, r0623
Note: $\quad$ For p0622 < p0346 the following applies:
If identification is activated, the magnetizing time is influenced by p0622. The speed is enabled after measurement is complete, but not before the time in p0346 has elapsed (see r0056 bit 4). The time taken for measurement also depends on the settling time of the measured current.
For p0622 >= p0346 the following applies:
Parameter p0622 is internally limited to the magnetizing time p0346, so that p0346 represents the maximum possible magnetizing time during identification. The entire measurement period (magnetizing plus measurement settling time plus measuring time) will always be greater than p0346.

## r0623

VECTOR ( $n / M$ ),
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

- [ohm]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [ohm]

Description: Displays the identified stator resistance after the Rs identification after powering up again.
Dependency: Refer to: p0621, p0622


| p0625[0...n] | Motor ambient temperature / Mot T_ambient |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: $21 \_1$ | Unit selection: p0505 |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | $80\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting |
|  | $-40\left[{ }^{\circ} \mathrm{C}\right]$ | $20\left[{ }^{\circ} \mathrm{C}\right]$ |  |
|  | Defines the ambient temperature of the motor for calculating the motor temperature model. |  |  |
| Description: | The parameters for stator and rotor resistance (p0350, p0354) refer to this temperature. |  |  |
| Note: | If the thermal I2t motor model is activated for permanent-magnet synchronous motors (refer to p0611), p0625 is |  |  |
|  | included in the model calculation if a temperature sensor is not being used (see p0601). |  |  |


| p0626[0...n] | Motor overtemperature, stator core / Mot T_over core |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: 21_2 | Unit selection: p0505 |
| TOR, VECTOR_AC, | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
| VECTOR_I_AC | Min | $200[\mathrm{~K}]$ | Factory setting |
|  | $20[\mathrm{~K}]$ | $50[\mathrm{~K}]$ |  |
|  | Defines the rated overtemperature of the stator core referred to the ambient temperature. |  |  |
| Description: | For 1LA5 and 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. |  |  |
| Dependency: | Refer to: p0625 |  |  |
|  | When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been |  |  |
| Note: | selected (refer to p0300). |  |  |


| p0627[0...n] | Motor overtemperature, stator winding / Mot T_over stator |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC, | P-Group: Motor | Units group: 21_2 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min}_{20} \\ & \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 200[\mathrm{~K}] \end{aligned}$ | Factory setting 80 [K] |
| Description: | Defines the rated overtemperature of the stator winding referred to the ambient temperature. |  |  |
| Dependency: | For 1LA5 and 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. Refer to: p0625 |  |  |
| Note: | When quick commissioning is exited with p3900 $>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |
| p0628[0...n] | Motor overtemperature rotor winding / Mot T_over rotor |  |  |
| SERVO, | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| TOR, VECTOR AC, | P-Group: Motor | Units group: 21_2 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min}_{20} \\ & \\ & \hline K] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 200[K] \end{aligned}$ | Factory setting 100 [K] |
| Description: | Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature. |  |  |
| Dependency: | For 1LA5 and 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. |  |  |
| Note: | When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300). |  |  |
| r0630[0...n] | Mot_temp_mod ambient temperature / Mod T_ambient |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, <br> SERVO IAC VEC- | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: REL, FEM | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the ambient temperature of the motor temperature model. |  |  |
| r0631[0...n] | Mot_temp_mod stator iron temperature / Mod T_stator |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| TOR, VECTOR AC, | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: REL, FEM | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - [ $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the stator core temperature of the motor temperature model. |  |  |


| r0632[0...n] | Mot_temp_mod stator winding temperature / Mod T_winding |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: REL, FEM | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the stator winding temperature of the motor temperature model. |  |  |
| r0633[0...n] | Mot_temp_mod rotor temperature / Mod T_rotor |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| TOR, VECTOR AC, | P-Group: Motor | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: REL, FEM | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the rotor temperature of the motor temperature model. |  |  |
| Note: | For motor temperature model 3 (p0612.2 = 1), this parameter is not valid: |  |  |
| p0634[0...n] | Q flux flux constant unsaturated / PSIQ KPSI UNSAT |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min 0.000 [Vsrms] | $\begin{aligned} & \text { Max } \\ & 100.000[\mathrm{Vsrms}] \end{aligned}$ | Factory setting 0.000 [Vsrms] |
| Description: | The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. The parameter weights the unsaturated component of the quadrature axis flux function. |  |  |


| p0635[0...n] | Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[A r m s]$ | 0.00 [Arms] |  |
| Description: | The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. |  |  |
|  | This parameter describes the interdependency of the unsaturated component of the quadrature axis current. |  |  |
| Dependency: | Refer to: p0634 |  |  |


| p0636[0...n] | Q flux direct axis current constant unsaturated / PSIQ KID UNSAT |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[A r m s]$ | 0.00 [Arms] |  |
| Description: | The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. |  |  |
|  | This parameter describes the interdependency of the unsaturated component of the direct axis current. |  |  |
| Dependency: | Refer to: p0634 |  |  |


| p0637[0...n] | Q flux flux gradient saturated / PSIQ Grad SAT |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{mH}]$ | $10000.00[\mathrm{mH}]$ | $0.00[\mathrm{mH}]$ |
| Description: | The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. |  |  |
|  | This parameter describes the gradients of the saturated component over the quadrature axis current. |  |  |
| Dependency: | Refer to: p0634, p0635, p0636 |  |  |


| p0640[0...n] | Current limit / Current limit |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1, 3), U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5722, 6640 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 10000.00 [Arms] | 0.00 [Arms] |
|  | 0.00 [Arms] |  |  |
| Description: | Sets the current limit. |  |  |
| Dependency: | Refer to: r0209, p0323 |  |  |
| Note: | The parameter is part of the quick commissioning (p0010 = 1); this means that it is appropriately pre-assigned when |  |  |
|  | changing p0305, p0323 and p0338. |  |  |
|  | The current limit p0640 is limited to r0209 and p0323. The limit to p0323 is not realized if a value of zero is entered |  |  |
|  | there. |  |  |

The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the Motor Module.
The torque and power limits (p1520, p1521, p1530, p1531) matching the current limit are automatically calculated when exiting the quick commissioning using p3900 > 0 or using the automatic parameterization with p0340 $=3,5$. For VECTOR the following applies ( p 0107 ): p0640 is limited to $4.0 \times$ p0305.
p0640 is pre-assigned for the automatic self commissioning routine (e.g. to $1.5 \times$ p 0305 , with p $0305=r 0207[1]$ ). p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning ( $\mathrm{p} 3900>0$ ).
For SERVO the following applies ( p 0107 ):
p0640 is pre-assigned as follows using the automatic parameterization (p0340 $=1, \mathrm{p} 3900>0$ ) taking into account the limits r0209 and r0323:

- for induction motors: $\mathrm{p} 0640=1.5 \times \mathrm{p} 0305$
- for synchronous motors: p0640 $=$ p0338

| p0641[0...n] | Cl: Current limit, variable / Curr lim var |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6640 |
| VECTOR_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |


| p0642[0...n] | Encoderless operation current reduction / Encoderl op l_red |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(1, 3), U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | 100.00 [\%] | Factory setting |
|  | 0.00 [\%] | 100.00 [\%] |  |
| Description: | Sets the reduction for the current limit in encoderless operation. |  |  |
|  | The value is referred to p0640. |  |  |
| Dependency: | Refer to: r0209, p0323, p0491, p0640, p1300, p1404 |  |  |
| Note: | If the motor is operated both with encoder as well as without encoder (e.g. p0491 is not equal to 0 or p1404 < |  |  |
|  | p1082) then the maximum current can be reduced in encoderless operation. This reduces disturbing saturation- |  |  |
|  | related motor data changes in encoderless operation. |  |  |


| p0643[0...n] | Overvoltage protection for synchronous motors / Overvolt_protect |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the overvoltage protection for synchronous motors in the field-weakening range.

| Value: | $0: \quad$ No measure |
| :--- | :--- | :--- |
| Dependency: | $1: \quad$ Roltage Protection Module (VPM) |
|  | Refer to: p0316, p1082, r1082, p1231, p9601, p980 |
|  | Refer to: F07432, F07906, F07907 |

Notice: $\quad$ When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection.
Note: In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages. The following possibilities exist to protect the drive system from being destroyed due to overvoltage:

- limit the maximum speed ( p 1082 ) without any additional protection.

The maximum speed without protection is calculated as follows:
Rotary motors: p1082 [rpm] <= 11.695 * r0297/p0316 [Nm/A]
Linear motors: p1082 [m/min] <= 73.484 *r0297/0316 [N/A]

- use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801)

When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.

- activating the internal voltage protection (IVP) with p1231 $=3$.

| p0643[0...n] | Overvoltage protection for synchronous motors / Overvolt_protect |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: C2(3) | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 1 | Factory setting |
|  | 0 | 0 |  |
| Description: | Sets the overvoltage protection for synchronous motors in the field-weakening range. |  |  |
| Value: | $0: \quad$ No measure |  |  |
|  | $1: \quad$ Voltage Protection Module (VPM) |  |  |
| Dependency: | Refer to: p0316, p1082, r1082, p1231, p9601, p9801 |  |  |
|  | Refer to: F07432, F07906, F07907 |  |  |
| Notice: | When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection. |  |  |

Note: In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages. The following possibilities exist to protect the drive system from being destroyed due to overvoltage: - limit the maximum speed (p1082) without any additional protection.

The maximum speed without protection is calculated as follows:
Rotary motors: p1082 [rpm] <= 11.695 * r0297/p0316 [Nm/A]
Linear motors: p1082 [m/min] <= 73.484 *r0297/0316 [N/A]

- use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801).

When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.

- activating the internal voltage protection (IVP) with p1231 $=3$.

| p0645[0...n] | Motor kT characteristic kT | T1 |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVŌ_I_AC (Ext M_ctrl, Lin) | Can be changed: C2(1, 3), U, T <br> Data type: FloatingPoint32 <br> P-Group: Motor <br> Not for motor type: ASM, REL, FEM <br> Min <br> 0.00 [N/Arms] | Calculated: - <br> Dynamic index: MDS, p0130 <br> Units group: - <br> Scaling: - <br> Max <br> 200.00 [N/Arms] | Access level: 1 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0.00 [N/Arms] |
| Description: | Sets the constant kT 1 for the kT characteristic.$k T(i q)=k T 1+k T 3^{*} i q^{\wedge} 2+k T 5 * i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$ |  |  |
| Dependency: | Refer to: p0316, p0646, p0647, p0648, p1780 |  |  |
| Note: | The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled: - the function module "expanded torque control" has been activated (r0108 = 1). <br> - the KT characteristic has been activated (p1780.9 = 1) . |  |  |


| p0645[0...n] | Motor kT characteristic kT1 / Mot kT char kT1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl), | Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| M_ctrl), <br> SERVO I AC (Ext | P-Group: Motor | Units group: - | Unit selection: - |
| M_ctrl) | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | Factory setting 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: | Sets the constant kT 1 for the kT characteristic.$k T(i q)=k T 1+k T 3^{*} i q^{\wedge} 2+k T 5^{*} i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$ |  |  |
| Dependency: | Refer to: p0316, p0646, p0647, p0648, p1780 |  |  |
| Note: | For the standard setting, the value in p0316 is effective. |  |  |
|  | The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled: |  |  |

p0646[0...n] Motor kT characteristic kT3 / Mot kT char kT3

SERVO (Ext M_ctrl), Can be changed: C2(1, 3), U, T Calculated: -
SERVO_AC (Ext

M_ctrl),
SERVO_I_AC (Ext
M_ctrl)
Data type: FloatingPoint32
P-Group: Motor
Not for motor type: ASM, REL, FEM
Min

Sets the constant kT 3 for the kT characteristic.
$k T(i q)=k T 1+k T 3{ }^{*} i q^{\wedge} 2+k T 5{ }^{*} i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$
Dependency: Refer to: p0316, p0645, p0647, p0648, p1780

| Description: | Sets the constant kT3 for the kT characteristic. |
| :---: | :---: |
|  | $\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3{ }^{*} \mathrm{iq} \mathrm{q}^{\wedge} 2+\mathrm{kT} 5^{*} \mathrm{iq}{ }^{\wedge} 4+\mathrm{kT7}{ }^{*} \mathrm{iq} \mathrm{q}^{\wedge} 6$ |
| Dependency: | Refer to: p0316, p0645, p0647, p0648, p1780 |

## Access level: 1

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Dynamic index: MDS, p0130
Units group: -
Scaling: -
Max
-

Note: $\quad$ For the standard setting, the value in p0316 is effective.
The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled:

- the function module "expanded torque control" has been activated (r0108 = 1).
- the kT characteristic has been activated (p1780.9 = 1).

| p0647[0...n] | Motor kT characteristic kT5 / Mot kT char kT5 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl), <br> SERVO_AC (Ext <br> M_ctrl), <br> SERVO_I_AC (Ext <br> M_ctrl) | Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Sets the constant kT 5 for the kT characteristic. |  |  |
|  | $\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3{ }^{*} \mathrm{iq} \mathrm{q}^{\wedge} 2+\mathrm{kT} 5^{*} \mathrm{iq}{ }^{\wedge} 4+\mathrm{kT7}{ }^{*} \mathrm{iq} \mathrm{q}^{\wedge} 6$ |  |  |
| Dependency: | Refer to: p0316, p0645, p0646, p0648, p1780 |  |  |
| Note: | For the standard setting, the value in p0316 is effective. |  |  |
|  | The value in p 0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled: - the function module "expanded torque control" has been activated (r0108 = 1). <br> - the kT characteristic has been activated ( $\mathrm{p} 1780.9=1$ ). |  |  |




| p0651[0...n] | Motor operating hours maintenance interval / Mot t_op maint |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Maling: - | Expert list: 1 |
| VECTOR_I_AC | Min | $150000[\mathrm{~h}]$ | Factory setting |
|  | $0[\mathrm{~h}]$ | 0 [h] |  |
| Description: | Sets the service/maintenance intervals in hours for the appropriate motor. |  |  |
|  | An appropriate fault is output when the operating hours set here are reached. |  |  |
| Dependency: | Refer to: p0650 |  |  |
|  | Refer to: A01590 |  |  |
|  | For p0651 $=0$, the operating hours counter is disabled. |  |  |
|  | When setting p0651 to 0, then p0650 is automatically set to 0. |  |  |
|  | The operating hours counter only runs with motor data set 0 and 1 (MDS). |  |  |


| p0652[0...n] | Motor stator resistance, scaling / Mot R_stator scal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10.0[\%]$ | $300.0[\%]$ | 100.0 [\%] |
| Description: | Sets the factor to evaluate the stator resistance. |  |  |
| Dependency: | Refer to: p0350, r0370 |  |  |


| p0653[0...n] | Motor stator leakage inductance, scaling / Mot L_S_leak scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Factory setting } \\ & 100.0 \text { [\%] } \end{aligned}$ |
| Description: | Sets the factor to evaluate the stator leakage induction. |  |  |
| Dependency: | Refer to: p0356, r0377 |  |  |
| p0655[0...n] | Motor magnetizing inductance, d axis saturated scaling / Mot L_m d sat scal |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: <br> Dependency: | Factor to evaluate the magnetizing inductance in the direction of the rotor axis (d axis).Refer to: $\mathrm{p} 0360, \mathrm{r} 0382$ |  |  |


| p0656[0...n] | Motor magnetizing inductance, q axis, saturated scaling / Mot L_m q sat scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: <br> Dependency: | Factor to evaluate the magnetizing inductance quadrature to the rotor axis (q axis). Refer to: p0361, r0383 |  |  |
| p0657[0...n] | Motor damping inductance, d axis scaling / Mot L_damp d scal |  |  |
| VECTOR, <br> VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min $10.0 \text { [\%] }$ | $\begin{aligned} & \text { Max } \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: Dependency: | Factor to evaluate the damping inductance in the direction of the rotor axis (d axis). |  |  |
| p0658[0...n] | Motor damping inductance, q axis scaling / Mot L_damp q scal |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_EQU | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | Factor to evaluate the damping inductance quadrature to the rotor axis (q axis). |  |  |
| Dependency: | Refer to: p0359, r0381 |  |  |
| p0659[0...n] | Motor damping resistance, d axis scaling / Mot R_damp d scal |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | Factor to evaluate the damping resistance in the direction of the rotor axis (d axis). Refer to: p0354, r0374 |  |  |
| Dependency: |  |  |  |
| p0660[0...n] | Motor damping resistance, q axis scaling / Mot R_damp q scal |  |  |
| VECTOR, | Can be changed: C2(3), U, T | Calculated: CALC_MOD_EQU | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 6727 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | Factor to evaluate the damping resistance quadrature to the rotor axis (q axis). |  |  |
| Dependency: | Refer to: p0355, r0375 |  |  |


| p0680[0...7] | Central measuring probe, input terminal / Cen meas inp |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 8 | 0 |
| Description: | Sets the digital input used for the function "central measuring probe evaluation". |  |  |
|  | p0680[0]: Digital input, measuring probe 1 |  |  |
|  | p0680[1]: Digital input, measuring probe 2 |  |  |
|  | ... |  |  |
|  | p0680[7]: Digital input, measuring probe 8 |  |  |
| Value: | 0: No meas probe |  |  |
|  | 1: DI/DO 9 (X122.10/X121.8) |  |  |
|  | 2: DI/DO 10 (X122.12/X12 |  |  |
|  | 3: DI/DO 11 (X122.13/X12 |  |  |
|  | 4: DI/DO 13 (X132.10/X13 |  |  |
|  | 5: DI/DO 14 (X132.12/X13 |  |  |
|  | 6: DI/DO 15 (X132.13/X13 |  |  |
|  | 7: DI/DO 8 (X122.9/X121.7) |  |  |
|  | 8: DI/DO 12 (X132.9/X131 |  |  |
| Dependency: | Refer to: p0728 |  |  |
| Notice: | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. To select the values: |  |  |
|  |  |  |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selec |  | (refer to the Equipm |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |
|  | Prerequisite: The DI/DO must be set as input ( $p 0728 \cdot x=0$ ). |  |  |
|  | If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0580, p2517 or p2518. |  |  |
| p0681 | BI: Central measuring probe, synchronizing signal signal source / Cen meas sync_sig |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S100_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting 0 |
|  |  | - |  |
| Description: | Sets the signal source for the sy The signal is used to synchroniz | signal (SYN) of the n system time betw | measuring probe e nd slave. |
| Notice: | The parameter may be protecte | of p0922 or p2079 a | anged. |





| r0687[0...7] | CO: Central measuring probe, measuring time falling edge / CenMeas t_meas 1/0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, CU_NX_CX, <br> CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - |  | Calculated: - | Acce |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Fun |  |
|  | P-Group: Displays, signals |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | Min |  |  | Max | Facto |  |
|  | - |  |  | - | - |  |
| Description: | Displays the measuring time for a falling edge at the digital input for the "central measuring probe evaluation" function. |  |  |  |  |
|  | The measuring time is specified as 16-bit value with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |  |  |
|  | r0687[0]: Measuring time, falling edge measuring probe 1 |  |  |  |  |
|  | r0687[1]: Measuring time, falling edge measuring probe 2 |  |  |  |  |
|  | r0687[2]: Measuring time, falling edge measuring probe 3 |  |  |  |  |
|  | r0687[3]: Measuring time, falling edge measuring probe 4 |  |  |  |  |
|  | r0687[4]: Measuring time, falling edge measuring probe 5 |  |  |  |  |
|  | r0687[5]: Measuring time, falling edge measuring probe 6 |  |  |  |  |
|  | r0687[6]: Measuring time, falling edge measuring probe 7 |  |  |  |  |
|  | r0687[7]: Measuring time, falling edge measuring probe 8 |  |  |  |  |
| Note: | The parameter is only active for the evaluation procedure p0684 $=0,1$. |  |  |  |  |
|  | For p0684 $=16, \mathrm{r} 0687[0 \ldots 7]=0$ is displayed. |  |  |  |  |
| r0688 | CO: Central measuring probe, status word display / Cen meas ZSW disp |  |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - |  | Calculated: - | Acce |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Fun |  |
|  | P-Group: Displays, signals |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | 硡 | - |  |
| Description: | Displays the status word for the function "central measuring probe evaluation". |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Digital input, measuring probe 1 | High | Low | - |
|  | 01 | Digital input, measuring probe 2 | High | Low | - |
|  | 02 | Digital input, measuring probe 3 | High | Low | - |
|  | 03 | Digital input, measuring probe 4 | High | Low | - |
|  | 04 | Digital input, measuring probe 5 | High | Low | - |
|  | 05 | Digital input, measuring probe 6 | High | Low | - |
|  | 06 | Digital input, measuring probe 7 | High | Low | - |
|  | 07 | Digital input, measuring probe 8 | High | Low | - |
|  | 08 | Sub-sampling, measuring probe 1 | High | Low | - |
|  | 09 | Sub-sampling, measuring probe 2 | High | Low | - |
|  | 10 | Sub-sampling, measuring probe 3 | High | Low | - |
|  | 11 | Sub-sampling, measuring probe 4 | High | Low | - |
|  | 12 | Sub-sampling, measuring probe 5 | High | Low | - |
|  | 13 | Sub-sampling, measuring probe 6 | High | Low | - |
|  | 14 | Sub-sampling, measuring probe 7 | High | Low | - |
|  | 15 | Sub-sampling, measuring probe 8 | High | Low | - |



| p0713[0...7] | BI: Cam function setpoint state / Cam setp |  |  |
| :--- | :--- | :--- | :--- |
| CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| CU_S120_PN | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  |  |
|  | Sets the setpoint for the cam outputs. |  |  |
| Description: | $[0]=$ Bit 0 |  |  |
| Index: | $[1]=$ Bit 1 |  |  |
|  | $[2]=$ Bit 2 |  |  |
|  | $[3]=$ Bit 3 |  |  |
|  | $[4]=$ Bit 4 |  |  |
|  | $[5]=$ Bit 5 |  |  |
|  | $[6]=$ Bit 6 |  |  |
|  | $[7]=$ Bit 7 |  |  |

Note: If the time stamp is not connected, or if both time stamps have the value ' 0 ', then the output state (r716) of the cam sequencer is obtained directly from the setpoint state (p713).

| p0714[0..7] | Cl: Cam function setting time / Cam t_set |  |  |
| :---: | :---: | :---: | :---: |
| CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the setting time for the cam outputs. |  |  |
| Index: | [0] = Cam_0 switching instant for a rising edge |  |  |
|  | [1] = Cam_1 switching instant for a rising edge |  |  |
|  | [2] = Cam_2 switching instant for a rising edge |  |  |
|  | [3] = Cam_3 switching instant for a rising edge |  |  |
|  | [4] = Cam_4 switching instant for a rising edge |  |  |
|  | [5] = Cam_5 switching instant for a rising edge |  |  |
|  | [6] = Cam_6 switching instant for a rising edge |  |  |
|  | [7] = Cam_7 switching instant for a rising edge |  |  |
| Note: | If the setpoint state is not connected, then the output state (r0716) of the cam sequencer is only obtained from the specified switching instants (p0714/p0715). |  |  |
|  | *0x0000 and 0xFFFFF have a special significance "No switching event". The maximum time is $16 \mathrm{~ms}, 0 \mathrm{xFA} 00$. |  |  |


| p0715[0...7] | CI: Cam function reset time / Cam t_reset |  |  |
| :--- | :--- | :--- | :--- |
| CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the reset time for the cam outputs.
Index: [0] = Cam_0 switching instant for a falling edge
[1] = Cam_1 switching instant for a falling edge
[2] = Cam_2 switching instant for a falling edge
[3] = Cam_3 switching instant for a falling edge
[4] = Cam_4 switching instant for a falling edge
[5] = Cam_5 switching instant for a falling edge
[6] = Cam_6 switching instant for a falling edge
[7] = Cam_7 switching instant for a falling edge

Access level: 3
unc. diagram: -

Expert list: 1

0

Note: If the setpoint state is not connected, then the output state (r0716) of the cam sequencer is only obtained from the specified switching instants (p0714/p0715).
*0x0000 and 0xFFFFF have a special significance "No switching event". The maximum time is $16 \mathrm{~ms}, 0 x F A 00$.

| r0716.0... 7 | CO/BO: Cam function output / Cam output |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CU_I_D410, <br> CU_S120_DP, <br> CU_S120_PN | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Terminals <br> Not for motor type: - <br> Min <br> - |  | Calculated: - | Access level: 3 |  |
|  |  |  | Dynamic index: - | Func. diagram: - |  |
|  |  |  | Units group: - | Unit selection: - |  |
|  |  |  | Scaling: - | Expert list: 1 |  |
|  |  |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Display and connector output for the cam outputs. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Cam_0 output signal | High | Low | - |
|  | 01 | Cam_1 output signal | High | Low | - |
|  |  | Cam_2 output signal | High | Low | - |
|  |  | Cam_3 output signal | High | Low | - |
|  |  | Cam_4 output signal | High | Low | - |
|  |  | Cam_5 output signal | High | Low | - |
|  |  | Cam_6 output signal | High | Low | - |
|  |  | Cam_7 output signal | High | Low | - |
| Note: | The cam sequencer is only calculated if the output-side binector (r0716) is connected. |  |  |  |  |
| r0721 | CU digital inputs, terminal actual value / CU DI actual value |  |  |  |  |
| CU_I_D410, | Can be changed: - |  | Calculated: - | Access level: 2 |  |
| $\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130, 2131, 2132, 2133 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |  |
|  | This means that the actual input signal can be checked at terminal DI x or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode ( $\mathrm{p} 0795 \cdot \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 0795 \cdot \mathrm{x}=0$ ). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1/X121.1) | High | Low | - |
|  |  | DI 1 (X122.2/X121.2) | High | Low | - |
|  |  | DI 2 (X122.3/X121.3) | High | Low | - |
|  |  | DI 3 (X122.4/X121.4) | High | Low | - |
|  |  | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  | 14 | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  | 15 | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  | 16 | DI 16 (X122.5/X120.3) | High | Low | - |
|  | 17 | DI 17 (X122.6/X120.4) | High | Low | - |
|  | 18 | DI 18 (-/X120.6) | High | Low | - |
|  | 19 | DI 19 (-/X120.7) | High | Low | - |
|  | 20 | DI 20 (X132.5/X120.9) | High | Low | - |
|  | 21 | DI 21 (X132.6/X120.10) | High | Low | - |
|  | 22 | DI 22 (-/X130.1) | High | Low | - |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |

Note: $\quad$ If a DI/DO is parameterized as output $(p 0728 \cdot x=1)$, then $r 0721 . x=0$ is displayed.
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

| r0721 | CU aigital |
| :--- | :--- |
| CU_I, CU_S120_DP, | Can be c |
| CU_S120_PN, | Data type: |
| CU_S150_DP, |  |
| CU_S150_PN |  |
|  | P-Gr |
|  | Not |
|  | Min |

CU digital inputs, terminal actual value / CU DI actual value

Can be changed: -
Data type: Unsigned32

P-Group: Commands
Not for motor type: -
Min

Calculated: -
Dynamic index: -

Units group: -
Scaling: -
Max

Access level: 2
Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130, 2131, 2132, 2133
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the actual value at the digital inputs.
This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode ( $p 0795 \cdot x=1$ ) to terminal mode ( $p 0795 \cdot x=0$ ).

## Bit field:

| Bit | Signal name |
| :--- | :--- |
| 00 | DI 0 (X122.1/X121.1) |
| 01 | DI 1 (X122.2/X121.2) |
| 02 | DI 2 (X122.3/X121.3) |
| 03 | DI 3 (X122.4/X121.4) |
| 04 | DI 4 (X132.1 / -) |
| 05 | DI 5 (X132.2 /-) |
| 06 | DI 6 (X132.3 / -) |
| 07 | DI 7 (X132.4 / -) |
| 08 | DI/DO 8 (X122.9/X121.7) |
| 09 | DI/DO 9 (X122.10/X121.8) |
| 10 | DI/DO 10 (X122.12/X121.10) |
| 11 | DI/DO 11 (X122.13/X121.11) |
| 12 | DI/DO 12 (X132.9/X131.1) |
| 13 | DI/DO 13 (X132.10/X131.2) |
| 14 | DI/DO 14 (X132.12/X131.4) |
| 15 | DI/DO 15 (X132.13/X131.5) |
| 16 | DI 16 (X122.5/X120.3) |
| 17 | DI 17 (X122.6/X120.4) |
| 20 | DI 20 (X132.5/X120.9) |
| 21 | DI 21 (X132.6/X120.10) |


| $\mathbf{1}$ signal | 0 signal | FP |
| :--- | :--- | :--- |
| High | Low | - |
| High |  | - |
| High |  |  |

Notice:
To the terminal designation:
The first designation is valid for CU320, the second for CU310
Note: If a DI/DO is parameterized as output ( $p 0728 . x=1$ ), then $r 0721 . x=0$ is displayed.
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

## r0721

CU_NX_CX

Description:
CX digital inputs, terminal actual value / CX DI actual value

Can be changed: -
Data type: Unsigned32

P-Group: Commands
Not for motor type: -
Min

Calculated: -
Dynamic index: -

Units group: -
Scaling: -
Max

Access level: 2
Func. diagram: 2220, 2230, 2231

Unit selection: -
Expert list: 1
Factory setting

Displays the actual value at the digital inputs.
This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode ( $p 0795 \cdot x=1$ ) to terminal mode ( $p 0795 \cdot x=0$ ).
Bit field:

| Bit | Signal name | 1 signal | 0 signal | FP |
| :--- | :--- | :--- | :--- | :--- |
| 00 | DI $0($ (X122.1) | High | Low | - |
| 01 | DI $1($ X122.2 | High | Low | - |


|  |  | DI 2 (X122.3) | High | Low | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DI 3 (X122.4) | High | Low | - |
|  |  | DI/DO 8 (X122.9) | High | Low | - |
|  |  | DI/DO 9 (X122.10) | High | Low | - |
|  |  | DI/DO 10 (X122.12) | High | Low | - |
|  |  | DI/DO 11 (X122.13) | High | Low | - |
|  |  | DI 16 (X122.5) | High | Low | - |
|  |  | DI 17 (X122.6) | High | Low | - |
| Note: |  | I/DO is parameterized as outp | . $x=1$ ), then r0721. | yed. |  |
|  |  | Digital Input |  |  |  |
|  | DI/D | O: Bidirectional Digital Input/Ou |  |  |  |
| r0722.0... 22 | CO | BO: CU digital inputs, | CU DI status |  |  |
| CU_I_D410, | Can | be changed: - | Calculated: - | Acce |  |
| $\begin{aligned} & C U \_S \_A C \_D P, \\ & C U \_S \_A C \_P N \end{aligned}$ |  | type: Unsigned32 | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 2030, \\ & 2131, \end{aligned}$ | $\begin{aligned} & 2020, \\ & 20,2130, \end{aligned}$ |
|  |  | oup: Commands | Units group: - | Unit |  |
|  | Not | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Disp | lays the status of the digital inp |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1/X121.1) | High | Low | - |
|  |  | DI 1 (X122.2/X121.2) | High | Low | - |
|  |  | DI 2 (X122.3/X121.3) | High | Low | - |
|  |  | DI 3 (X122.4/X121.4) | High | Low | - |
|  | 08 | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  | 14 | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  |  | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  |  | DI 16 (X122.5/X120.3) | High | Low | - |
|  |  | DI 17 (X122.6/X120.4) | High | Low | - |
|  |  | DI 18 (-/X120.6) | High | Low | - |
|  |  | DI 19 (-/X120.7) | High | Low | - |
|  |  | DI 20 (X132.5/X120.9) | High | Low | - |
|  |  | DI 21 (X132.6/X120.10) | High | Low | - |
|  |  | DI 22 (-/X130.1) | High | Low | - |
| Dependency: | Ref | r to: r0723 |  |  |  |
| Notice: | To | e terminal designation: |  |  |  |
|  | The | first designation is valid for CU3 | second for CU310. |  |  |
| Note: | DI: | Digital Input |  |  |  |
|  | DI/D | O: Bidirectional Digital Input/Ou |  |  |  |


| r0722.0.. 21 C | CO/BO: CU digital inputs, status / CU Dl status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: 1510, 2020, } \\ & \text { 2030, 2031, 2100, 2120, 2130, } \\ & 2131,2132,2133 \end{aligned}$ |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Facto |  |
|  | - | - | - |  |
| Description: Disp | Displays the status of the digital inputs. |  |  |  |
| Bit field: $\quad$ B | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X122.1/X121.1) | High | Low | - |
|  | 01 DI 1 (X122.2/X121.2) | High | Low | - |
|  | 02 DI 2 (X122.3/X121.3) | High | Low | - |
|  | 03 DI 3 (X122.4/X121.4) | High | Low | - |
|  | 04 DI 4 (X132.1 / -) | High | Low | - |
|  | 05 DI 5 (X132.2 / -) | High | Low | - |
|  | 06 DI 6 (X132.3 / -) | High | Low | - |
|  | 07 DI 7 (X132.4 /-) | High | Low | - |
|  | 08 DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  | 14 DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  | 15 DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  | 16 DI 16 (X122.5/X120.3) | High | Low | - |
|  | 17 DI 17 (X122.6/X120.4) | High | Low | - |
|  | 20 DI 20 (X132.5/X120.9) | High | Low | - |
|  | 21 DI 21 (X132.6/X120.10) | High | Low | - |
| Dependency: R | Refer to: r0723 |  |  |  |
| Notice: To | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | DI: Digital Input |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r0722.0..17 C | CO/BO: CX digital inputs, status / CX DI status |  |  |  |
| CU_NX_CX | Can be changed: - <br> Data type: Unsigned32 | Calculated: - | Access level: 1 |  |
|  |  | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 2231 \end{aligned}$ | $2230$ |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  |  | - |  |  |
| Description: D | Displays the status of the digital inputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X122.1) | High | Low | - |
|  | 01 DI 1 (X122.2) | High | Low | - |
|  | 02 DI 2 (X122.3) | High | Low | - |
|  | 03 DI 3 (X122.4) | High | Low | - |
|  | 08 DI/DO 8 (X122.9) | High | Low | - |
|  | 09 DI/DO 9 (X122.10) | High | Low | - |
|  | 10 DI/DO 10 (X122.12) | High | Low | - |
|  | 11 DI/DO 11 (X122.13) | High | Low | - |
|  | 16 DI 16 (X122.5) | High | Low | - |
|  | 17 DI 17 (X122.6) | High | Low | - |


| Dependency: | Refer to: r0723 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Note: | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r0723.0... 22 | CO/BO: CU digital inputs, status inverted / CU Dl status inv |  |  |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: 1510, 2020, } \\ & \text { 2030, 2031, 2100, 2120, 2130, } \\ & 2131,2132,2133 \end{aligned}$ |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the inverted status of the digital inputs. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1/X121.1) | High | Low | - |
|  |  | DI 1 (X122.2/X121.2) | High | Low | - |
|  |  | DI 2 (X122.3/X121.3) | High | Low | - |
|  |  | DI 3 (X122.4/X121.4) | High | Low | - |
|  | 08 | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  |  | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  |  | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  |  | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  |  | DI 16 (X122.5/X120.3) | High | Low | - |
|  |  | DI 17 (X122.6/X120.4) | High | Low | - |
|  |  | DI 18 (-/X120.6) | High | Low | - |
|  |  | DI 19 (-/X120.7) | High | Low | - |
|  |  | DI 20 (X132.5/X120.9) | High | Low | - |
|  |  | DI 21 (X132.6/X120.10) | High | Low | - |
|  |  | DI 22 (-/X130.1) | High | Low | - |
| Dependency: | Refer to: r0722 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r0723.0... 21 | CO/BO: CU digital inputs, status inverted / CU DI status inv |  |  |  |  |
| CU_I, CU_S120_DP, | Can be changed: - |  | Calculated: - | Access level: 1 |  |
| $\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Data type: Unsigned32 |  | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: } 1510,2020, \\ & 2030,2031,2100,2120,2130, \\ & 2131,2132,2133 \end{aligned}$ |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the inverted status of the digital inputs. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1/X121.1) | High | Low | - |
|  | 01 | DI 1 (X122.2/X121.2) | High | Low | - |
|  | 02 | DI 2 (X122.3/X121.3) | High | Low | - |
|  | 03 | DI 3 (X122.4/X121.4) | High | Low | - |
|  | 04 | DI 4 (X132.1 / -) | High | Low | - |
|  | 05 | DI 5 (X132.2 / -) | High | Low | - |


|  | 06 | DI 6 (X132.3 / -) | High | Low |
| :---: | :---: | :---: | :---: | :---: |
|  | 07 | DI 7 (X132.4 / -) | High | Low |
|  | 08 | DI/DO 8 (X122.9/X121.7) | High | Low |
|  | 09 | DI/DO 9 (X122.10/X121.8) | High | Low |
|  | 10 | DI/DO 10 (X122.12/X121.10) | High | Low |
|  | 11 | DI/DO 11 (X122.13/X121.11) | High | Low |
|  | 12 | DI/DO 12 (X132.9/X131.1) | High | Low |
|  | 13 | DI/DO 13 (X132.10/X131.2) | High | Low |
|  | 14 | DI/DO 14 (X132.12/X131.4) | High | Low |
|  | 15 | DI/DO 15 (X132.13/X131.5) | High | Low |
|  | 16 | DI 16 (X122.5/X120.3) | High | Low |
|  | 17 | DI 17 (X122.6/X120.4) | High | Low |
|  | 20 | DI 20 (X132.5/X120.9) | High | Low |
|  | 21 | DI 21 (X132.6/X120.10) | High | Low |
| Dependency: | Refer to: r0722 |  |  |  |
| Notice: | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | DI: Digital Input |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |


| r0723.0... 17 | CO/BO: CX digital inputs, status inverted / CX DI status inv |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CU_NX_CX | Can be changed: - | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 2230, \end{aligned}$ | 2220, |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the inverted status of the digital inputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X122.1) | High | Low | - |
|  | 01 DI 1 (X122.2) | High | Low | - |
|  | 02 DI 2 (X122.3) | High | Low | - |
|  | 03 DI 3 (X122.4) | High | Low | - |
|  | 08 DI/DO 8 (X122.9) | High | Low | - |
|  | 09 DI/DO 9 (X122.10) | High | Low | - |
|  | 10 DI/DO 10 (X122.12) | High | Low | - |
|  | 11 DI/DO 11 (X122.13) | High | Low | - |
|  | 16 DI 16 (X122.5) | High | Low | - |
|  | 17 DI 17 (X122.6) | High | Low | - |
| Dependency: | Refer to: r0722 |  |  |  |
| Note: | DI: Digital Input |  |  |  |
|  | DI/DO: Bidirectional Digital |  |  |  |



|  | 10 | DI/DO 10 (X122.12/X121.10) | Output | Input | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DI/DO 11 (X122.13/X121.11) | Output | Input | - |
|  |  | DI/DO 12 (X132.9/X131.1) | Output | Input | - |
|  |  | DI/DO 13 (X132.10/X131.2) | Output | Input | - |
|  |  | DI/DO 14 (X132.12/X131.4) | Output | Input | - |
|  | 15 | DI/DO 15 (X132.13/X131.5) | Output | Input | - |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p0728 | CX set input or output / CX DI or DO |  |  |  |  |
| CU_NX_CX | Can be changed: $T$ |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1512, 2230, 2231 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the bidirectional digital inputs/outputs as an input or output. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 8 (X122.9) | Output | Input | 2230 |
|  |  | DI/DO 9 (X122.10) | Output | Input | 2230 |
|  |  | DI/DO 10 (X122.12) | Output | Input | 2231 |
|  |  | DI/DO 11 (X122.13) | Output | Input | 2231 |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r0729 | CU digital outputs access authority / CU DO acc_auth |  |  |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 |  | Calculated: - | Access level: 1 |  |
|  |  |  | Dynamic index: - | Func. diagram: 2030, 2031,$2130,2131,2132,2133$ |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the access authority at the digital outputs. |  |  |  |  |
|  | Bit $=1$ : |  |  |  |  |
|  | The control has access authority to the digital output via PROFIBUS or direct access. |  |  |  |  |
|  | Bit $=0$ : |  |  |  |  |
|  | The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  |  | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  |  | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  |  | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  |  | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  |  | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  |  | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  |  | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  |  | DO 16 (-/X130.7, 8) | High | Low | - |
| Dependency: | Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | The DI/DO must be connected as output (p0728). |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| r0729 | CU digital outputs access authority / CU DO acc_auth |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can | be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: 2030, 2031, } \\ & 2130,2131,2132,2133 \end{aligned}$ |  |
|  | P-G | oup: Commands | Units group: - | Unit selection: - |  |
|  |  | for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the access authority at the digital outputs. |  |  |  |  |
|  | Bit = 1: |  |  |  |  |
|  | The control has access authority to the digital output via PROFIBUS or direct access. |  |  |  |  |
|  | Bit $=0$ : |  |  |  |  |
|  | The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  |  | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  |  | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  |  | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  |  | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  |  | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  |  | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  |  | DI/DO 15 (X132.13/X131.5) | High | Low | - |
| Dependency: | Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | The DI/DO must be connected as output (p0728). |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r0729 | CX digital outputs access authority / CX DO acc_auth |  |  |  |  |
| CU_NX_CX | Can be changed: - <br> Data type: Unsigned32 |  | Calculated: - | Access level: 1 |  |
|  |  |  | Dynamic index: - |  | $\begin{aligned} & 2031, \\ & 33 \end{aligned}$ |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Displays the access authority at the digital outputs. |  |  |  |  |
|  | Bit = 1: |  |  |  |  |
|  | The control has access authority to the digital output via PROFIBUS or direct access. |  |  |  |  |
|  | Bit $=0$ : |  |  |  |  |
|  | The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 8 (X122.9) | High | Low | - |
|  |  | DI/DO 9 (X122.10) | High | Low | - |
|  |  | DI/DO 10 (X122.12) | High | Low | - |
|  |  | DI/DO 11 (X122.13) | High | Low | - |
| Dependency: | Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | The DI/DO must be connected as output (p0728). |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| p0738 | BI: CU, signal source for terminal DI/DO 8 / CU S_src DI/DO 8 |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 1 |
| CU_S_AC_DP, CU_S_AC_PN, | Data type: Unsigned32 / Binary | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: } 1510,2030, \\ & 2130 \end{aligned}$ |
| $\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \end{aligned}$ | P-Group: Commands | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7). To the terminal designation: <br> The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: Note: | The parameter may be protected Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/ | of p0922 or p2079 and (p0728.8 = 1). | anged. |
| p0738 | BI: CX signal source for terminal DI/DO 8 / CX S_src DI/DO 8 |  |  |
| CU_NX_CX | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2230 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for termina To the terminal designation: The first designation is valid for C | X122.9 / X121.7) second for CU310. |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0739 | BI: CU, signal source for terminal DI/DO 9 / CU S_src DI/DO 9 |  |  |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 1 |
| CU_S_AC_DP, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2030, 2130 |
| CU S120 DP, | P-Group: Commands | Units group: - | Unit selection: - |
| $\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.9 = 1). |  |  |


| p0739 | BI: CX signal source for terminal DI/DO 9 / CX S_src DI/DO 9 |  |  |
| :---: | :---: | :---: | :---: |
| CU_NX_CX | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2230 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.9 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0740 | BI: CU, signal source for terminal DI/DO 10 / CU S_src DI/DO 10 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2031, 2131 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting 0 |
|  | - | - |  |
| Description: | Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.10 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0740 | BI: CX signal source for terminal DI/DO 10 / CX S_src DI/DO 10 |  |  |
| CU_NX_CX | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 2231 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.10 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p0741 | BI: CU, signal source for terminal DI/DO 11 / CU S_src DI/DO 11 |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 1 |
| CU_S_AC_DP, CU_S_AC_PN, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 1510, 2031, 2131 |
| $\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \end{aligned}$ | P-Group: Commands | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source for terminal DI/DO 11 (X122.13 / X121.11). To the terminal designation: <br> The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: Note: | The parameter may be protected Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/ | of p0922 or p2079 a | anged. |
| p0741 | BI: CX signal source for terminal DI/DO 11 / CX S_src DI/DO 11 |  |  |
| CU_NX_CX | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2231 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for termin To the terminal designation: <br> The first designation is valid for | (X122.13 / X121.11) econd for CU310. |  |
| Notice: <br> Note: | The parameter may be protected Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input | of p0922 or p2079 a | anged. |
| p0742 | BI: CU, signal source for terminal DI/DO 12 / CU S_src DI/DO 12 |  |  |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 1 |
| CU_S_AC_DP, CU S AC PN | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 1510, 2132 |
| CU_S120_DP, | P-Group: Commands | Units group: - | Unit selection: - |
| $\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \end{aligned}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 12 (X132.9 / X131.1). To the terminal designation: <br> The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.12 = 1). DI/DO: Bidirectional Digital Input/Output |  |  |


| p0743 | BI: CU, signal source for terminal DI/DO 13 / CU S_src DI/DO 13 |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2132 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 13 (X132.10 / X131.2). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
|  | Prerequisite: The DI/DO must be set as an output (p0728.13 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0744 | BI: CU, signal source for terminal DI/DO 14 / CU S_src DI/DO 14 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T <br> Data type: Unsigned32 / Binary <br> P-Group: Commands <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 1 <br> Func. diagram: 2133 <br> Unit selection: - <br> Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 14 (X132.12 / X131.4). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice:Note: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
|  | Prerequisite: The DI/DO must be set as an output (p0728.14 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p0745 | BI: CU, signal source for terminal DI/DO 15 / CU S_src DI/DO 15 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Commands <br> Not for motor type: - | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 1510, 2133 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 15 (X132.13 / X131.5you). |  |  |
|  | To the terminal designation: |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p0728.15 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p0746 | BI: CU signal source for terminal DO 16 / CU S_src DO 16 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CU_I_D410, CU_S_AC_DP, CU_S_AC_PN | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary | Calculated: - | Access level: 1 |  |
|  |  | Dynamic index: - | $\begin{aligned} & \text { Func. diagram: 1510, 2030, } \\ & 2130 \end{aligned}$ |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Factory setting <br> 0 |  |
| Description: | Sets the signal source for terminal DO 16 (- / X130.7). <br> To the terminal designation: |  |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |  |
| Note: | DO: Digital Output |  |  |  |
| r0747 | CU, digital outputs status / CU DO status |  |  |  |
| CU_I_D410, CU_S_AC_DP, CU_S_AC_PN | Can be changed: - | Calculated: - | Access level: 1 <br> Func. diagram: 2130, 2131, 2132, 2133 |  |
|  | Data type: Unsigned32 | Dynamic index: - |  |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status of digital outputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 08 DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  | 14 DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  | 15 DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  | 16 DO 16 (-/X130.7, 8) | High | Low | - |
| Notice: | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | Inversion using p0748 has been taken into account. DI/DO: Bidirectional Digital Input/Output |  |  |  |
|  |  |  |  |  |  |  |


| $\overline{\mathbf{r 0 7 4 7}}$ | CU, digital outputs status / CU DO status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 | Calculated: Dynamic index: | Access level: 1 |  |
|  |  |  | Func $2132$ | , 2131, |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Fact |  |
| Description: | Displays the status of digital outputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 08 DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 DI/DO 13 (X132.10/X131.2) | High | Low | - |



| p0748 | CU, invert digital outputs / CU DO inv |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2030, 2031,$2130,2131,2132,2133$ |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting 0000000000000000 bin |  |
|  | - | - |  |  |
| Description: | Setting to invert the signals at the digital outputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 08 DI/DO 8 (X122.9/X121.7) | Inverted | Not inverted | - |
|  | 09 DI/DO 9 (X122.10/X121.8) | Inverted | Not inverted | - |
|  | 10 DI/DO 10 (X122.12/X121.10) | Inverted | Not inverted | - |
|  | 11 DI/DO 11 (X122.13/X121.11) | Inverted | Not inverted | - |
|  | $12 \mathrm{DI} / \mathrm{DO} 12$ (X132.9/X131.1) | Inverted | Not inverted | - |
|  | 13 DI/DO 13 (X132.10/X131.2) | Inverted | Not inverted | - |
|  | 14 DI/DO 14 (X132.12/X131.4) | Inverted | Not inverted | - |
|  | 15 DI/DO 15 (X132.13/X131.5) | Inverted | Not inverted | - |
| Notice: | If telegram 39x is set via p0922 in SINAMICS Integrated, the inversion of the output has no effect. |  |  |  |
|  | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| p0748 | CX invert digital outputs / CX DO inv |  |  |  |
| CU_NX_CX | Can be changed: U, T | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2230, 2231 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | 0000000000000000 bin |  |
| Description: | Setting to invert the signals at the digital outputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 08 DI/DO 8 (X122.9) | Inverted | Not inverted | - |
|  | 09 DI/DO 9 (X122.10) | Inverted | Not inverted | - |
|  | 10 DI/DO 10 (X122.12) | Inverted | Not inverted | - |
|  | 11 DI/DO 11 (X122.13) | Inverted | Not inverted | - |
| Notice: | If telegram 39x is set via p0922 in SINAMICS Integrated, the inversion of the output has no effect. |  |  |  |
|  |  |  |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r0752[0] | CO: CU analog input input voltage/current actual / CU AI U_input act |  |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 1 |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566 |  |
|  | P-Group: Terminals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  |  | Displays the actual input voltage in V when set as voltage input. |  |  |
| Description: | Displays the actual input current in mA when set as current input and with the load resistor switched in. |  |  |  |
| Index: | [0] = AIO (X131.7, 8) |  |  |  |
| Dependency: | The type of analog input AI 0 (voltage or current input) is set using p0756. Refer to: p0756 |  |  |  |


| Note: | AI: Analog Input |  |  |
| :---: | :---: | :---: | :---: |
| p0753[0] | CU analog input smoothing time constant / CU AI T_smooth |  |  |
| CU_I_D410, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
| CU_S_AC_DP, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.0 \text { [ms] } \end{aligned}$ | Factory setting 0.0 [ms] |
| Description: Index: | Sets the smoothing time constant of the 1st-order low pass filter for the analog input.$[0]=\operatorname{AlO}(X 131.7,8)$ |  |  |
| Note: | Al: Analog Input |  |  |
| r0755[0] | CO: CU analog input actual value in percent / CU AI value in \% |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 1840, 9566 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the currently referred input value of the analog input of the CU310-2. |  |  |
| Index: | When interconnected, the signals are referred to the reference quantities p 200 x and p 205 x .$[0]=$ AIO (X131.7, 8) |  |  |
| Note: | Al: Analog Input |  |  |
| p0756[0] | CU analog input type / CU Al type |  |  |
| CU_I_D410, $C U S A C D P$, CU_S_AC_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 2040 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  | $\begin{aligned} & \operatorname{Max} \\ & 5 \end{aligned}$ | Factory setting <br> 4 |
| Description: | Sets the type of analog inputs of the CU310-2. |  |  |
|  | $\mathrm{p} 0756[\mathrm{x}]=0,4$ corresponds to a voltage input (r0752, p0757, p0759 are displayed in V ). |  |  |
|  | $\mathrm{p} 0756[\mathrm{x}]=2,3,5$ corresponds to a current input (r0752, p0757, p0759 are displayed in mA ). |  |  |
|  | In addition, the associated DIP switch S1200 must be set. |  |  |
|  | For a voltage input, S1200.1 must be switched to setting "BL". |  |  |
|  | For a current input, S1200.1 must be switched to the "ON" setting (load resistor $=250$ Ohm is switched in). |  |  |
| Value: | 0 : Unipolar voltage input ( $0 \mathrm{~V} \ldots+10 \mathrm{~V}$ ) |  |  |
|  | 2: Unipolar current input ( $0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ ) |  |  |
|  | 3: Unipolar current input monitored ( +4 mA to +20 mA ) |  |  |
|  | 4: $\quad$ Bipolar voltage input ( $-10 \mathrm{~V} \ldots . .+10 \mathrm{~V}$ ) |  |  |
|  | 5: Bipolar current input ( -20 mA to +20 mA ) |  |  |
| Index: | [ 0 ] = AIO (X131.7, 8) |  |  |
| Warning: | The maximum voltage difference between analog input terminals $\mathrm{Al}+$, Al-, and the ground must not exceed 35 V (X131.3, X131.6). |  |  |
| $!!$ | For operation with the load resistor switched in, the voltage between the differential inputs AI+ and AI- may not exceed 12.50 V or the impressed current of 60 mA ; if this is not carefully observed, the input will be damaged. |  |  |
| Notice: | For use as voltage input, DIP switch S1200 must be set to 0 for the input involved (0). DIP switch S1200 is located on the front panel, below the BOP cover. |  |  |

\begin{tabular}{|c|c|}
\hline Note: \& \begin{tabular}{l}
When changing p0756, the parameters of the scaling characteristic (p0757, p0758, p0759, p0760) are overwritten with the following default values: \\
For \(\mathrm{p} 0756=0,4, \mathrm{p} 0757\) is set to 0.0 V , \(\mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}\) and \(\mathrm{p} 0760=100.0 \%\). \\
For \(\mathrm{p} 0756=2,5, \mathrm{p} 0757\) is set to \(0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}\) and \(\mathrm{p} 0760=100.0 \%\). \\
For \(\mathrm{p} 0756=3, \mathrm{p} 0757\) is set to \(4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}\) and \(\mathrm{p} 0760=100.0 \%\).
\end{tabular} \\
\hline p0757[0] \& CU analog input characteristic value x1 / CU Al char x1 \\
\hline \[
\begin{aligned}
\& \text { CU_I_D410, } \\
\& \text { CU_S_AC_DP, } \\
\& \text { CU_S_AC_PN }
\end{aligned}
\] \& \begin{tabular}{lll} 
Can be changed: U, T \& Calculated: - \& Access level: 2 \\
Data type: FloatingPoint32 \& Dynamic index: - \& Func. diagram: 9566 \\
P-Group: Terminals \& Units group: - \& Unit selection: - \\
Not for motor type: - \& Scaling: - \& Expert list: 1 \\
Min \& Max \& Factory setting \\
-20.000 \& 20.000 \& 0.000
\end{tabular} \\
\hline Description: \& \begin{tabular}{l}
Sets the scaling characteristic for the analog input of the CU310-2. \\
The scaling characteristic for the analog input is defined using 2 points. \\
This parameter specifies the \(x\) coordinate (input voltage in \(V\) or input current in \(m A\) ) of the 1st value pair of the characteristic.
\end{tabular} \\
\hline \begin{tabular}{l}
Index: \\
Dependency:
\end{tabular} \& \begin{tabular}{l}
\[
[0]=\text { AlO (X131.7, 8) }
\] \\
The unit of this parameter ( \(V\) or mA ) depends on the analog input type. Refer to: p0756
\end{tabular} \\
\hline \begin{tabular}{l}
Notice: \\
Note:
\end{tabular} \& This parameter is automatically overwritten when the analog input type (p756) is modified. The parameters for the characteristic do not have a limiting effect. \\
\hline p0758[0] \& CU analog input characteristic value y1 / CU Al char y1 \\
\hline \[
\begin{aligned}
\& \text { CU_I_D410, } \\
\& \text { CU_S_AC_DP, } \\
\& \text { CU_S_AC_PN }
\end{aligned}
\] \& \begin{tabular}{lll} 
Can be changed: U, T \& Calculated: - \& Access level: 2 \\
Data type: FloatingPoint32 \& Dynamic index: - \& Func. diagram: 9566 \\
P-Group: Terminals \& Units group: - \& Unit selection: - \\
Not for motor type: - \& Scaling: - \& Expert list: 1 \\
Min \& Max \& Factory setting \\
\(-1000.00[\%]\) \& \(1000.00[\%]\) \& \(0.00[\%]\)
\end{tabular} \\
\hline Description:

Index:
Notice:

Note: \& | Sets the scaling characteristic for the analog input of the CU310-2. |
| :--- |
| The scaling characteristic for the analog inputs is defined using 2 points. |
| This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic. $[0]=\text { AIO (X131.7, 8) }$ |
| This parameter is automatically overwritten when the analog input type (p756) is modified. |
| The parameters for the characteristic do not have a limiting effect. | <br>

\hline p0759[0] \& CU analog input characteristic value x2 / CU Al char x2 <br>

\hline \[
$$
\begin{aligned}
& \text { CU_I_D410, } \\
& \text { CU_S_AC_DP, } \\
& \text { CU_S_AC_PN }
\end{aligned}
$$

\] \& | Can be changed: U, T | Calculated: - | Access level: 2 |
| :--- | :--- | :--- |
| Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566 |
| P-Group: Terminals | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |
| Min | Max | Factory setting |
| -20.000 | 20.000 | 10.000 | <br>


\hline Description: \& | Sets the scaling characteristic for the analog input of the CU310-2. |
| :--- |
| The scaling characteristic for the analog inputs is defined using 2 points. |
| This parameter specifies the $x$ coordinate (input voltage in $V$ or input current in mA ) of the 2nd value pair of the characteristic. | <br>

\hline Index: \& <br>
\hline Dependency: \& The unit of this parameter ( $V$ or mA ) depends on the analog input type. Refer to: p0756 <br>
\hline Notice: Note: \& This parameter is automatically overwritten when the analog input type ( p 0756 ) is modified. The parameters for the characteristic do not have a limiting effect. <br>
\hline
\end{tabular}



| Index: | [0] = AIO (X131.7, 8) |  |  |
| :---: | :---: | :---: | :---: |
| p0766[0] | CU analog input activate absolute value generation / CU Al absVal act |  |  |
| CU_I_D410, | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
| CU_S_AC_DP, | Data type: Integer16 | Dynamic index: - | Func. diagram: 9566 |
| CU_S_AC_PN | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Activates the absolute value generation of the analog input signal. |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | [0] = Al0 (X131.7, 8) |  |  |
| p0767[0] | BI: CU analog input signal source for inversion / CU Al inv S_src |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9566 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | , | 0 |
| Description: | Sets the signal source to invert the analog input signals. |  |  |
| Index: | [0] = AIO (X131.7, 8) |  |  |
| p0768[0] | CU analog input window to suppress noise / CU Al window |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the noise suppression window for the analog input. Changes less than the window are suppressed. |  |  |
| Index: | [0] = AIO (X131.7, 8) |  |  |
| Note: | AI: Analog Input |  |  |
| p0769[0] | BI: CU analog input enable signal source / CU Al enab S_src |  |  |
| $\begin{aligned} & \text { CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9566 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: Index: | Sets the signal source to enable the analog input.$[0]=\text { AIO (X131.7, 8) }$ |  |  |








|  | 03 | DI 3 (X122.4/X121.4) | Simulation | Terminal eval | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 04 | DI 4 (X132.1 / -) | Simulation | Terminal eval | - |
|  | 05 | DI 5 (X132.2 / -) | Simulation | Terminal eval | - |
|  | 06 | DI 6 (X132.3 / -) | Simulation | Terminal eval | - |
|  | 07 | DI 7 (X132.4 /-) | Simulation | Terminal eval | - |
|  | 08 | DI/DO 8 (X122.9/X121.7) | Simulation | Terminal eval | - |
|  | 09 | DI/DO 9 (X122.10/X121.8) | Simulation | Terminal eval | - |
|  | 10 | DI/DO 10 (X122.12/X121.10) | Simulation | Terminal eval | - |
|  | 11 | DI/DO 11 (X122.13/X121.11) | Simulation | Terminal eval | - |
|  | 12 | DI/DO 12 (X132.9/X131.1) | Simulation | Terminal eval | - |
|  | 13 | DI/DO 13 (X132.10/X131.2) | Simulation | Terminal eval | - |
|  | 14 | DI/DO 14 (X132.12/X131.4) | Simulation | Terminal eval | - |
|  | 15 | DI/DO 15 (X132.13/X131.5) | Simulation | Terminal eval | - |
|  | 16 | DI 16 (X122.5/X120.3) | Simulation | Terminal eval | - |
|  | 17 | DI 17 (X122.6/X120.4) | Simulation | Terminal eval | - |
|  | 20 | DI 20 (X132.5/X120.9) | Simulation | Terminal eval | - |
|  | 21 | DI 21 (X132.6/X120.10) | Simulation | Terminal eval | - |
| Dependency: | The setpoint for the input signals is specified using p0796. Refer to: p0796, p9620 |  |  |  |  |
| Notice: | If a digital input is used as signal source for the function "STO" (BI: p9620) then it is not permissible to select the simulation mode and this is rejected. |  |  |  |  |
|  | To the terminal designation: |  |  |  |  |
|  | The first designation stands for CU320, the second for CU310. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p0795 | CX digital inputs, simulation mode / CX DI simulation |  |  |  |  |
| CU_NX_CX | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2220, 2230, 2231 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | $\begin{aligned} & 00000000000000000000 \\ & 000000000000 \text { bin } \end{aligned}$ |  |
| Description: | Sets the simulation mode for digital inputs. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1) | Simulation | Terminal eval | - |
|  |  | DI 1 (X122.2) | Simulation | Terminal eval | - |
|  |  | DI 2 (X122.3) | Simulation | Terminal eval | - |
|  | 03 | DI 3 (X122.4) | Simulation | Terminal eval | - |
|  |  | DI/DO 8 (X122.9) | Simulation | Terminal eval | - |
|  |  | DI/DO 9 (X122.10) | Simulation | Terminal eval | - |
|  |  | DI/DO 10 (X122.12) | Simulation | Terminal eval | - |
|  |  | DI/DO 11 (X122.13) | Simulation | Terminal eval | - |
|  |  | DI 16 (X122.5) | Simulation | Terminal eval | - |
|  | 17 | DI 17 (X122.6) | Simulation | Terminal eval | - |
| Dependency: | The setpoint for the input signals is specified using p0796. |  |  |  |  |
|  | Refer to: p0796, p9620 |  |  |  |  |
| Notice: | If a digital input is used as signal source for the function "STO" (BI: p9620) then it is not permissible to select the simulation mode and this is rejected. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| p0796 | CU digital inputs simulation mode setpoint / CU DI simul setp |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CU_I_D410, CU_S_AC_DP, CU_S_AC_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130, 2131, 2132, 2133 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting 00000000000000000000 000000000000 bin |  |
|  | - |  | - |  |  |
| Description: | Sets the setpoint for the input signals in the digital input simulation mode. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1/X121.1) | High | Low | - |
|  |  | DI 1 (X122.2/X121.2) | High | Low | - |
|  |  | DI 2 (X122.3/X121.3) | High | Low | - |
|  |  | DI 3 (X122.4/X121.4) | High | Low | - |
|  |  | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  |  | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  |  | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  |  | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  |  | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  |  | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  |  | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  |  | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  |  | DI 16 (X122.5/X120.3) | High | Low | - |
|  |  | DI 17 (X122.6/X120.4) | High | Low | - |
|  |  | DI 18 (-/X120.6) | High | Low | - |
|  |  | DI 19 (-/X120.7) | High | Low | - |
|  |  | DI 20 (X132.5/X120.9) | High | Low | - |
|  |  | DI 21 (X132.6/X120.10) | High | Low | - |
|  |  | DI 22 (-/X130.1) | High | Low | - |
| Dependency: | The simulation of a digital input is selected using p0795. |  |  |  |  |
|  | Refer to: p0795 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| p0796 | CU digital inputs simulation mode setpoint / CU DI simul setp |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CU_I, CU_S120_DP, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Acce |  |
| CU_S120_PN, CU_S150_DP, CU_S150_PN | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130, 2131, 2132, 2133 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Factory setting 00000000000000000000 000000000000 bin |  |
| Description: | Sets the setpoint for the input signals in the digital input simulation mode. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X122.1/X121.1) | High | Low | - |
|  | 01 DI 1 (X122.2/X121.2) | High | Low | - |
|  | 02 DI 2 (X122.3/X121.3) | High | Low | - |
|  | 03 DI 3 (X122.4/X121.4) | High | Low | - |
|  | 04 DI 4 (X132.1/-) | High | Low | - |


|  | 05 | DI 5 (X132.2 / -) | High | Low | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 06 | DI 6 (X132.3 / -) | High | Low | - |
|  | 07 | DI 7 (X132.4 /-) | High | Low | - |
|  | 08 | DI/DO 8 (X122.9/X121.7) | High | Low | - |
|  | 09 | DI/DO 9 (X122.10/X121.8) | High | Low | - |
|  | 10 | DI/DO 10 (X122.12/X121.10) | High | Low | - |
|  | 11 | DI/DO 11 (X122.13/X121.11) | High | Low | - |
|  | 12 | DI/DO 12 (X132.9/X131.1) | High | Low | - |
|  | 13 | DI/DO 13 (X132.10/X131.2) | High | Low | - |
|  | 14 | DI/DO 14 (X132.12/X131.4) | High | Low | - |
|  | 15 | DI/DO 15 (X132.13/X131.5) | High | Low | - |
|  | 16 | DI 16 (X122.5/X120.3) | High | Low | - |
|  | 17 | DI 17 (X122.6/X120.4) | High | Low | - |
|  |  | DI 20 (X132.5/X120.9) | High | Low | - |
|  | 21 | DI 21 (X132.6/X120.10) | High | Low | - |
| Dependency: | The simulation of a digital input is selected using p0795. Refer to: p0795 |  |  |  |  |
|  |  |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p0796 | CX digital inputs, simulation mode, setpoint / CX DI simul setp |  |  |  |  |
| CU_NX_CX | Can be changed: U, T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2020, 2030, 2031 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 00000000000000000000 000000000000 bin |  |
|  |  |  |  |  |  |
| Description: | Sets the setpoint for the input signals in the digital input simulation mode. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X122.1) | High | Low | - |
|  | 01 | DI 1 (X122.2) | High | Low | - |
|  | 02 | DI 2 (X122.3) | High | Low | - |
|  | 03 | DI 3 (X122.4) | High | Low | - |
|  | 08 | DI/DO 8 (X122.9) | High | Low | - |
|  |  | DI/DO 9 (X122.10) | High | Low | - |
|  | 10 | DI/DO 10 (X122.12) | High | Low | - |
|  |  | DI/DO 11 (X122.13) | High | Low | - |
|  |  | DI 16 (X122.5) | High | Low | - |
|  | 17 | DI 17 (X122.6) | High | Low | - |
| Dependency: | The simulation of a digital input is selected using p0795. |  |  |  |  |
|  | Refer to: p0795 |  |  |  |  |
| Notice: | To the terminal designation: |  |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |




| r0807.0 | BO: Master control active / PcCtrl active |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 2 |  |
| S_INF, SERVO, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |  |
| SERVO_AC, SERVO I AC, VEC- | P-Group: Displays, signals | Units group: - | Unit selection: - |  |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |  |
| VECTOR_I_AC |  |  |  |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |
| Description: | Displays what has the master control. |  |  |  |
|  | The drive can be controlled via the BICO interconnection or from external (e.g. the commissioning software). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Master control active | Yes | No | $\begin{aligned} & 5030, \\ & 6031 \end{aligned}$ |
| Dependency: | Refer to: p0806 |  |  |  |
| Notice: | The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device. |  |  |  |
| Note: | Bit $0=0$ : BICO interconnection active |  |  |  |
|  | Bit $0=1$ : Master control for PC/AOP |  |  |  |
|  | The commissioning software (drive control panel) uses the master control, for example. |  |  |  |


| p0809[0...2] | Copy Command Data Set CDS / Copy CDS |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 8560 |
| SERVO_I_AC, VEC- | P-Group: Commands | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Maxing: - | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | 0 | 0 |  |
|  | Copies one Command Data Set (CDS) into another. |  |  |
| Description: | $[0]=$ Source Command Data Set |  |  |
| Index: | [1] = Target Command Data Set |  |  |
|  | [2] = Start copying procedure |  |  |
|  | Procedure: |  |  |
|  | 1. In Index 0, enter which command data set should be copied. |  |  |
|  | 2. In Index 1, enter the command data set that is to be copied into. |  |  |
|  | 3. Start copying: Set index 2 from 0 to 1. |  |  |
|  | p0809[2] is automatically set to 0 when copying is completed. |  |  |


| p0810 | BI: Command data set selection CDS bit 0 / CDS select., bit 0 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 8560 |
| SERVO_I_AC, VEC- | P-Group: Commands | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).
Dependency: Refer to: r0050, p0811, r0836
Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: The Command Data Set selected using the binector inputs is displayed in r0836.
The currently effective command data set is displayed in r0050.
A Command Data Set can be copied using p0809.

| p0811 | Bl: Command data set selection CDS bit 1 / CDS select., bit 1 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 8560 |
| VECTOR_I_AC | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | 0 |  |
| Description: | Sets the signal source to select the Command Data Set bit 1 (CDS bit 1). |  |  |
| Dependency: | Refer to: r0050, p0810, r0836 |  |  |
| Note: | The Command Data Set selected using the binector inputs is displayed in r0836. |  |  |
|  | The currently effective command data set is displayed in r0050. |  |  |
|  | A Command Data Set can be copied using p0809. |  |  |


| p0819[0...2] | Copy Drive Data Set DDS / Copy DDS |  |
| :--- | :--- | :--- |
| SERVO, | Can be changed: C2(15) | Calculated: - |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - |
| SERVO_I_AC, | P-Group: Data sets | Units group: - |
| TM41, VECTOR, | Scaling: - | Func. diagram: 8565 |
| VECTOR_AC, | Not for motor type: - | Unit selection: - |
| VECTOR_I_AC |  | Expert list: 1 |
|  | Min | Factory setting |
|  | 0 | 0 |
| Description: | Copies one Drive Data Set (DDS) into another. |  |
| Index: | [0] = Source Drive Data Set |  |
|  | [1] = Target Drive Data Set |  |
|  | [2] = Start copying procedure |  |
|  | Procedure: |  |
|  | 1. In Index 0, enter which drive data set is to be copied. |  |
|  | 2. In Index 1, enter the drive data set data that is to be copied into. |  |
|  | 3. Start copying: Set index 2 from 0 to 1. |  |
|  | p0819[2] is automatically set to 0 when copying is completed. |  |



| Dependency: <br> Notice: | Refer to: r0051, r0837 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, SERVO_IAC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2 |  |  |
|  | Can be changed: $\mathrm{C} 2(15), \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 8565 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  | Max | Factory setting $0$ |
| Description: <br> Dependency: | Sets the signal source to select the Drive Data Set, bit 2 (DDS, bit 2). |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| $\begin{aligned} & \hline \text { p0823[0...n] } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_IAC, } \\ & \text { TM41, VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3 |  |  |
|  | Can be changed: $\mathrm{C} 2(15)$, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 8565 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling:- | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the Drive Data Set, bit 3 (DDS, bit 3). |  |  |
| Dependency: | Refer to: r0051, r0837 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p0824[0...n] | BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4 |  |  |
| SERVO, <br> SERVO_AC, SERVO_IAC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(15), T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 8565, 8575 |
|  | P-Group: Data sets | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source to select the Drive Data Set, bit 4 (DDS, bit 4). |  |  |
| Dependency: | Refer to: r0051, r0837 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p0826[0...n] | Motor changeover, motor number / Mot_chng mot No. |  |  |
| SERVO, <br> SERVO AC, <br> SERVO_I_AC | Can be changed: C2(3) | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: 8575 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 15 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the freely-assignable motor number for the motor changeover. |  |  |
| Dependency: | Refer to: p0827 |  |  |
| Caution: | When changing over motor data sets with the same motor number (e.g. star-delta changeover) and for a motor with brake, the motor brake remains open during the changeover. |  |  |
| Note: | When the motor data sets are changed over, the following applies: The same motor number signifies the same thermal model. |  |  |
|  |  |  |  |



| r0830.0... 15 | CO/BO: Motor changeover, status word / Mot_chngov ZSW |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min |  | Calculated: - | Access level: 2 |  |
|  |  |  | Dynamic index: - | Func. diagram: 8575 |  |
|  |  |  | Units group: - | Unit selection: - |  |
|  |  |  | Scaling: - | Expert list: 1 |  |
|  |  |  | Max | Factory setting |  |
|  |  |  | - |  |  |
| Description: | Displays the status word of the motor changeover. |  |  |  |  |
|  | These signals can be connected to digital outputs to change over the motor. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Motor selection, bit 0 | High | Low | - |
|  |  | Motor selection, bit 1 | High | Low | - |
|  |  | Motor selection, bit 2 | High | Low | - |
|  |  | Motor selection, bit 3 | High | Low | - |
|  |  | Motor selection, bit 4 | High | Low | - |
|  |  | Motor selection, bit 5 | High | Low | - |
|  |  | Motor selection, bit 6 | High | Low | - |
|  |  | Motor selection, bit 7 | High | Low | - |
|  |  | Motor selection, bit 8 | High | Low | - |
|  |  | Motor selection, bit 9 | High | Low | - |
|  |  | Motor selection, bit 10 | High | Low | - |
|  |  | Motor selection, bit 11 | High | Low | - |
|  |  | Motor selection, bit 12 | High | Low | - |
|  |  | Motor selection, bit 13 | High | Low | - |
|  |  | Motor selection, bit 14 | High | Low | - |
|  |  | Motor selection, bit 15 | High | Low | - |
| Dependency: | Refer to: p0827 |  |  |  |  |
| p0831[0...15] | BI: Motor changeover, contactor feedback / Mot_chg cont fdbk |  |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Binary <br> P-Group: Motor <br> Not for motor type: - |  | Calculated: - | Access level: 3 |  |
|  |  |  | Dynamic index: - | Func. diagram: 8575 |  |
|  |  |  | Units group: - | Unit selection: - |  |
|  |  |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | 0 |  |
| Description: | Sets the signal source for the feedback signal of the contactors when changing over motors. There is a fixed inter-relationship between energizing the contactor and the feedback signal. Example: |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | A changeover is to be made between MDSO (motor 0 ) and MDS1 (motor 1 ). The contactors should be switched using bit 4 (contactor 0 ) and 5 (contactor 1). The changeover should be made with an interconnection of the feedback signal. |  |  |  |  |
|  | Implementation: |  |  |  |  |
|  | MDSO: p0827[0] = 4, interconnect output to switch contactor 0 to r0830.4, p0831[4] = "input, feedback signal, contactor 0" |  |  |  |  |
|  | MDS1: p0827[1] = 5, interconnect output to switch contactor 1 to r0830.5, p0831[5] = "input, feedback signal, contactor $1^{1 "}$ |  |  |  |  |
|  | The following sequence applies when changing over from MDS0 to MDS1: |  |  |  |  |
|  | 1. The status bit r0830.4 is deleted. When the feedback signal (p0831[4]) is connected, the system waits until the feedback signal "contactor open" is displayed. If the feedback signal is not connected, then the system waits for the switch-off interlocking time of 320 ms . |  |  |  |  |
|  | 2. The status bit r0830.5 is set. If the feedback signal ( $\mathrm{p} 0831[5]$ ) is connected, the system waits until the feedback signal "contactor closed" is displayed. If the feedback signal is not connected, then the system waits for the switchon interlocking time of 160 ms . |  |  |  |  |
| Index: | [0] = Feedback signal contactor 0 |  |  |  |  |
|  | [1] = Feedback signal contactor 1 |  |  |  |  |
|  | [2] = Feedback signal contactor 2 |  |  |  |  |

[3] = Feedback signal contactor 3
[4] = Feedback signal contactor 4
[5] = Feedback signal contactor 5
[6] = Feedback signal contactor 6
[7] = Feedback signal contactor 7
[8] = Feedback signal contactor 8
[9] = Feedback signal contactor 9
[10] = Feedback signal contactor 10
[11] = Feedback signal contactor 11
[12] = Feedback signal contactor 12
[13] = Feedback signal contactor 13
[14] = Feedback signal contactor 14
[15] = Feedback signal contactor 15

| r0832.0... 15 | CO | BO: Mot. changeover, c | or feedback sig | vord / M | ZSW |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can | be changed: - | Calculated: - | Acce |  |
| SERVO_AC, |  | type: Unsigned32 | Dynamic index: - | Func |  |
| TOR, VECTOR AC, | P-G | oup: Displays, signals | Units group: - | Unit |  |
| VECTOR_I_AC | Not | for motor type: - | Scaling: - | Exp |  |
|  | Min |  | Max | Facto |  |
|  | - |  | - | - |  |
| Description: | Disp | lays the status word of the conta | dback signals when | a motor. |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Feedback signal contactor 0 | Closed | Opened | - |
|  | 01 | Feedback signal contactor 1 | Closed | Opened | - |
|  | 02 | Feedback signal contactor 2 | Closed | Opened | - |
|  | 03 | Feedback signal contactor 3 | Closed | Opened | - |
|  | 04 | Feedback signal contactor 4 | Closed | Opened | - |
|  | 05 | Feedback signal contactor 5 | Closed | Opened | - |
|  | 06 | Feedback signal contactor 6 | Closed | Opened | - |
|  | 07 | Feedback signal contactor 7 | Closed | Opened | - |
|  | 08 | Feedback signal contactor 8 | Closed | Opened | - |
|  | 09 | Feedback signal contactor 9 | Closed | Opened | - |
|  | 10 | Feedback signal contactor 10 | Closed | Opened | - |
|  | 11 | Feedback signal contactor 11 | Closed | Opened | - |
|  | 12 | Feedback signal contactor 12 | Closed | Opened | - |
|  | 13 | Feedback signal contactor 13 | Closed | Opened | - |
|  | 14 | Feedback signal contactor 14 | Closed | Opened | - |
|  | 15 | Feedback signal contactor 15 | Closed | Opened | - |
| Dependency: | Refe | r to: p0831 |  |  |  |



Note: $\quad$ Re bit 00:
When the bit is set and the motor has to be changed over, then p0827 must be set differently in the appropriate motor data sets.

Re bit 02:
The bit defines whether, for an EDS changeover, the status signal Gn_ZSW. 14 is suppressed (parking encoder active).


| r0835.2 | CO/BO: Data set changeover status word / DDS_ZSW |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ENC, TM41 | Can be changed: - |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 8575 |  |
|  | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the status word for the drive data set changeover. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal No | FP |
|  |  | Internal parameter calculation active | Yes |  |  |
| Note: | Re bit 02: |  |  |  |  |
|  | A data set changeover is delayed by the time required for the internal parameter calculation. |  |  |  |  |
| r0835.0... 11 | CO/BO: Data set changeover status word / DDS_ZSW |  |  |  |  |
| SERVO, | Can be changed: - |  | Calculated: - | Access level: 2 |  |
| SERVO_AC, SERVO- I AC VEC | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 8575 |  |
| TOR, VECTOR AC, | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the status word for the drive data set changeover. |  |  |  |  |
| Bit field: | Bit00 | Signal name | 1 signal | 0 signal | FP |
|  |  | Motor changeover active | Yes | No | 8575 |
|  |  | Encoder changeover active | Yes | No | - |
|  | 02 | Internal parameter calculation active | Yes | No | - |
|  | 04 | Armature short circuit active | Yes | No | - |
|  | 05 | Identification running | Yes | No | - |
|  | 06 | Friction characteristic record running | Yes | No | - |

Note: $\quad$ This parameter is only supplied with up-to-date values if data set changeover has been selected or is running. Re bit 00:

The signal is only influenced when a motor changeover is set via p0827 (unequal bit numbers).
Re bit 01:
The signal is only influenced when an encoder changeover is set via $00187, \mathrm{p} 0188$, or p 0189.
Re bit 02:
A data set changeover is delayed by the time required for the internal parameter calculation.
Re bit 04:
A data set changeover is only carried out when the armature short circuit is not activated.
Re bit 05:
The following applies for SERVO:
A data set changeover is only carried out when pole position identification, encoder adjustment, motor data identification, and rotating measurement are not running.
The following applies for VECTOR:
A data set changeover is only carried out when pole position identification is not running
Re bit 06:
A data set changeover is only carried out when the friction characteristic record is not running.
Re bit 07 (VECTOR only):
A data set changeover is only carried out when rotating measurement is not running.
Re bit 08 (VECTOR only):
A data set changeover is only carried out when motor data identification is not running.
Re bit 10:
A motor changeover is set with p0833.1 = 1. It can only be carried out when the application performs pulse suppression.
Re bit 11:
A motor changeover is set with p0833.0 = 1. The pulses are only enabled when the "Motor changeover feedback" signal is detected.



| r0838[0...3] | Motor/Encoder Data Set selected / MDS/EDS selected |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 8565 |
| TOR, VECTOR_AC, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the selected Motor Data Set (MDS) and the selected Encoder Data Sets (EDS). <br> $[0]=$ Motor Data Set MDS selected <br> [1] = Encoder 1 Encoder Data Set EDS selected <br> [2] = Encoder 2 Encoder Data Set EDS selected <br> [3] = Encoder 3 Encoder Data Set EDS selected |  |  |
| Dependency: | Refer to: r0049, p0186, p0187, p0188, p0189 |  |  |
| Note: | Value 99 means the following: No encoder assigned (not configured). |  |  |
| p0839 | Motor changeover contactor control delay time / Mot_chg ctrl t_del |  |  |
| SERVO, | Can be changed: C 2 (3) | Calculated: - | Access level: 2 |
| SERVO_AC, SERVO I AC, VEC- | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Motor | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 500 [ms] | 0 [ms] |
| Description: | Sets the delay time for the contactor control for the motor changeover. |  |  |
| Note: | The delay time is taken into <br> - for feedback signal, previo time has expired. <br> - for the feedback signal, ne | llowing cases: en". The new motor "Closed". The puls | rolled (energized) after <br> after the delay time has |


| p0840[0...n] | Bl: ON / OFF (OFF1) / ON / OFF (OFF1) |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| S_INF, SERVO, SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2610, 8720, 8820, 8920 |
| SERVO_IAC, VECTOR, VECTOR AC, | P-Group: Commands | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the command "ON/OFF (OFF1)". |  |  |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0). |  |  |
| Recommend.: | When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source. |  |  |
| Dependency: | Refer to: p1055, p1056 |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056. The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056. <br> For binector input p0840 $=0$ signal, the switch-on inhibit is acknowledged. <br> Only the signal source that originally powered up can also power down again. <br> The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For drives with closed-loop speed <br> - BI: p0840 = 0 signal: OFF1 (brakir <br> For drives with closed-loop torqu <br> - BI: p0840 = 0 signal: immediate <br> For drives with closed-loop torqu <br> - BI: p0840 $=0$ signal: No dedica p1227) <br> For drives with closed-loop speed <br> - BI: p0840 = 0/1 signal: ON (pul <br> For active infeeds (Active Line M <br> - BI: p0840 = 0 signal: OFF1 (red contactor open) <br> - BI: p0840 = 0/1 signal: ON (pre <br> For passive infeeds (Basic Line <br> - BI: p0840 $=0$ signal: OFF1 (pre <br> - BI: p0840 = 0/1 signal: ON (pre <br> r0863.1 of a drive can also be se | $300=20,21$ ), the following app e ramp-function generator, then $1300=22,23$ ), the following ap ression ctivated using p1501), the follow response, but pulse cancelation <br> trol, the following applies: enabled) mart Line Module) the following ng the ramp, then pulse suppre <br> ntactor/line contactor close, pul following applies: <br> ontactor/line contactor open) ntactor/line contactor close) gnal source. | suppression) <br> pplies: <br> n standstill is detected ( p 1226 , <br> es: <br> and pre-charging contactor/line <br> an be enabled) |
| p0840 | BI: ON / OFF (OFF1) / ON / OFF (OFF1) |  |  |
| TM41 | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9677 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source for the command "ON/OFF (OFF1)". |  |  |
| Recommend.: | When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source. |  |  |
| Dependency: | Refer to: p1055, p1056 |  |  |



| p0845[0...n] | BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2 |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| S_INF, SERVO, SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 8720, 8820, 8920 |
| SERVO I AC, VECTOR, VECTOR_AC, | P-Group: Commands | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the second signal source for the command "No coast down/coast down (OFF2)". |  |  |
|  | The following signals are AND'ed: |  |  |
|  | - BI: p0844 "No coast-down / coast-down (OFF2) signal source 1" |  |  |
|  | - BI: p0845 "No coast-down / coast-down (OFF2) signal source 2" |  |  |
|  | For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1). |  |  |
|  | BI: p0844 $=0$ signal or BI : $\mathrm{p} 0845=0$ signal |  |  |
|  | - OFF2 (immediate pulse suppression and switch on inhibit) |  |  |
|  | BI : p0844 = 1 signal and BI: p0845 = 1 signal |  |  |
|  | - No OFF2 (enable is possible) |  |  |
| Caution: | When "master control from PC" is | this binector input is effective. |  |

For Active Line Modules, Smart Line Modules and binector input p0844 = 0 signal or p0845 $=0$ signal, the following applies:

- pre-charging contactor/line contactor is additionally opened.

| p0848[0...n] | BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the first signal source for the command "No quick stop/quick stop (OFF3)". |  |  |
|  | The following signals are AND'ed: |  |  |
|  | - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1" |  |  |
|  | - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2" |  |  |
|  | For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). |  |  |
|  | BI: p0848 = 0 signal or BI: p0849 = 0 signal |  |  |
|  | - OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit) |  |  |
|  | $\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal |  |  |
|  | - No OFF3 (enable is possible) |  |  |
| Caution: | When "master control from PC" is | this binector input is ineffective. |  |

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

| p0848 | BI: No Quick Stop / Quick Stop (OFF3) / OFF3 |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9677 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the first signal source for the command "No quick stop/quick stop (OFF3)". |  |  |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 2 (STW1.2). |  |  |
|  | BI: p0848 $=0$ signal |  |  |
|  | - OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit) |  |  |
|  | BI: p0848 = 1 signal |  |  |
|  | - No OFF3 (enable is possible) |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode. |  |  |
| p0849[0...n] | BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 1 |
| Description: | Sets the second signal source for the command "No quick stop/quick stop (OFF3)". |  |  |
|  | The following signals are AND'ed: |  |  |
|  | - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1" |  |  |
|  | - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2" |  |  |
|  | For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). BI: p0848 $=0$ signal or BI: p0849 $=0$ signal |  |  |
|  |  |  |  |
|  | - OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit) |  |  |
|  | BI: p0848 = 1 signal and BI: p0849 $=1$ signal |  |  |
| Caution: | When "master control from PC" is activated, this binector input is effective. |  |  |
| p0852[0...n] | BI: Enable operation/inhibit operation / Operation enable |  |  |
| A_INF, S_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO, <br> SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 8820, 8920 |
| TOR, VECTOR AC, | P-Group: Commands | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3). |  | W1.3). |



| p0854 | BI: Control by PLC/no control by PLC / Master ctrl by PLC |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2501, 8720, 8820, 8920 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "control by PLC/no control by PLC". |  |  |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10). |  |  |
|  | BI: p0854 = 0 signal |  |  |
|  | No control by PLC |  |  |
|  | $\mathrm{BI}: \mathrm{p} 0852=1$ signal |  |  |
|  | Master ctrl by PLC. |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 . |  |  |
|  | If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ( $\mathrm{p} 0922=999$ ). |  |  |
| p0854 | BI: Control by PLC/no control by PLC / Master ctrl by PLC |  |  |
| TM41 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9677, 9678 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "control by PLC/no control by PLC". |  |  |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10). |  |  |
|  | BI: p0854 $=0$ signal |  |  |
|  | No control by PLC |  |  |
|  | BI: $00852=1$ signal |  |  |
|  | Master ctrl by PLC. |  |  |
| Dependency: | Refer to: p1155 |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For the TM41, a response can be initiated using this bit if the control fails. |  |  |
|  | The parameter is only effective in the "SIMOTION" operating mode (p4400 = 0). |  |  |
|  | In the "SINAMICS" operating mode, the setpoints at connector input p4420 are evaluated independently of p0854. |  |  |


| p0855[0...n] | BI: Unconditionally release holding brake / Uncond open brake |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, <br> SERVO_I_AC, VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2701, 2707 |
| TOR, VECTOR_AC, VECTOR I AC | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the command "unconditionally open holding brake". |  |  |
| Dependency: | Refer to: p0858 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | The signal via BI : p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake). |  |  |
| p0856[0...n] | BI: Speed controller enable / n_ctrl enable |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2701, 2707 |
| VECTOR_I_AC | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller. |  |  |
| Dependency: | Refer to: r0898 |  |  |
| Note: | If "enable speed controller" is withdrawn, then an existing brake will be closed. |  |  |
| p0856[0...n] | BI: Velocity controller enable / v_ctrl enable |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2701, 2707 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "enable speed controller" (r0898.12). <br> 0 signal: Set the I component and speed controller output to zero. <br> 1 signal: Enable speed controller. |  |  |
| Dependency: | Refer to: r0898 |  |  |
| Note: | If "enable speed controller" is withdrawn, then an existing brake will be closed. If "speed controller enable" is withdrawn, the pulses are not suppressed. |  |  |



| p0858[0...n] | BI: Unconditionally close holding brake / Uncond close brake |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2701, 2707 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 9719.13 |
| Description: | Sets the signal source for the command "unconditionally close holding brake". |  |  |
| Dependency: | Refer to: p0855 |  |  |
| Note: | The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI : p 0855 (unconditionally open holding brake). |  |  |
|  | For a 1 signal via BI : p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered. |  |  |


| p0858[0...n] | BI: Unconditionally close holding brake / Uncond close brake |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 2701, |
| VECTOR_I_AC |  |  | 2707 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | 0 |  |

Note: The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).
For a 1 signal via BI: p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.

| p0860 | BI: Line cont. fdbk sig / Line contact feedb |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| S_INF, SERVO, SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2634, 8734, 8834, 8934 |
| SERVO_I_AC, VECTOR, VECTOR_AC, | P-Group: Commands | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 863.1 |
| Description: | Sets the signal source for the feedback signal from the line contactor. |  |  |
| Recommend.: | When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used. |  |  |
| Dependency: | Refer to: p0861, r0863 |  |  |
|  | Refer to: F07300 |  |  |
| Notice: | The line contactor monitoring is de-activated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: $00860=r 0863.1$ ). |  |  |
| Note: | The state of the line contactor is monitored depending on signal BO: r0863.1. |  |  |
|  | When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1. |  |  |


| p0861 | Line contactor monitoring time / LineContact t_mon |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 2 |
| S_INF, SERVO, SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2634, 8734, 8834, 8934 |
| SERVO_I_AC, VECTOR, VECTOR_AC, | P-Group: Commands | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | Max 5000 [ms] | Factory setting 100 [ms] |
| Description: | This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output. |  |  |
| Dependency: | Refer to: p0860, r0863 |  | Refer to: F07300 |
| Note: | The monitoring function is disabled for the factory setting of p0860. |  |  |
| p0862 | Power unit ON delay / PU t_on |  |  |
| A_INF, B_INF, | Can be changed: T | Calculated: - | Access level: 3 |
| S_INF, SERVO, SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2610, 8732, 8832, 8932 |
| TOR, VECTOR_AC, | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | Max <br> 65000 [ms] | Factory setting 0 [ms] |
| Description: | Sets the delay time for the control command of the power unit and a line contactor, if used. |  |  |
| Note: | When the infeed units are active, before the line contactor is closed, an offset adjustment of the current measurement is carried out for a duration of 120 ms (p3491). |  |  |


| r0863.0... 2 | CO/BO: Drive coupling status word/control word / CoupleZSW/STW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned16 | Dynamic index: - | Fun |  |
|  | P-Group: Commands | Units group: - |  |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the status and control words of the drive coupling. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |  |
|  | 00 Closed-loop control operation | Yes | No | 2610 6495 8732 8832 8932 9794 |
|  | 01 Energize contactor | Yes | No | $\begin{aligned} & 2610, \\ & 2634, \\ & 8732, \\ & 8734, \\ & 8832, \\ & 8834, \\ & 8932, \\ & 8934 \end{aligned}$ |
|  | 02 Infeed line supply failure | Yes | No | - |
| Dependency: | Refer to: p0864 |  |  |  |
| Note: | Re bit 00: |  |  |  |
|  | Bit 0 signals that the infeed is ready. |  |  |  |
|  | When the operating signal is transfe time when they are simultaneously p To realize this, the following connectior <br> Drive 1: Interconnect BI: p0864 with <br> Drive 2: Interconnect BI: p0864 with <br> Drive 3: Interconnect BI: p0864 with <br> The first drive only transfers the ope Re bit 01: <br> Bit 1 is used to control an external lin Re bit 02: <br> This bit only signals line supply failu | 3O: r0863.0 this allo up. <br> rconnections are req 63.0 of the infeed 63.0 of drive 1 63.0 of drive 2, etc. gnal to the next drive ctor. <br> ive Infeed (A_INF) a | rives to st <br> eached its <br> eed (S_IN | red o |
| p0864 | BI: Infeed operation / INF operation |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Acce |  |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 2610 \end{aligned}$ | 1774, |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | $\operatorname{Max}$ |  |  |
|  |  |  |  |  |
| Description: | Sets the signal source for the operating signal of the infeed (e.g. BO: r0863.0). |  |  |  |
| Dependency: | Refer to: r0863 |  |  |  |
| Note: | The sequence control of a servo/vector drive requires this signal. |  |  |  |
|  | The following applies for an infeed without DRIVE-CLiQ: |  |  |  |
|  | For these infeeds, the "ready" message is available via an output terminal. This signal must be connected to a digital input. The drives supplied from this infeed must use this signal as ready signal (BI: p0864 = digital input). |  |  |  |



|  | 03 | Profile "Generator operation (Vdc controller)" active | Yes | No | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ESR enabled (p0889) | Yes | No | - |
|  |  | ESR trigger active (p0890) | Yes | No | - |
|  |  | ESR OFF ramp OFF1/OFF3 (p0891) | OFF1 | OFF3 | - |
|  |  | ESR response initiated | Yes | No | 3082 |
|  | 13 | ESR response presently running | Yes | No | - |
| Dependency: | Refer to: p0888, p0889, p0890, p0891 |  |  |  |  |
| Note: | ESR: Extended Stop and Retract |  |  |  |  |
| p0888 | ESR configuration / ESR configuration |  |  |  |  |
| SERVO (ESR), <br> SERVO_AC (ESR), <br> SERVO_I_AC (ESR) | Can be changed: U, T |  | Calculated: - A |  |  |
|  | Data type: Unsigned16 D |  | Dynamic index: - | Func. diagram: 3082 |  |
|  | P-Group: - U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | 0 |  | 3 | 0 |  |
| Description: | Setting to configure the "ESR" function. |  |  |  |  |
|  | 0 : No function |  |  |  |  |
|  | 1: Extended stopping (integrated in the drive) |  |  |  |  |
|  | 2: Extended retraction (integrated in the drive) |  |  |  |  |
|  | 3: Generator operation (Vdc controller) |  |  |  |  |
| Dependency: Refer to: p0889, p0891, p0892, p0893, p1240 |  |  |  | Refer to: p0889, p0891, p0892, p0893, p1240 |  |
|  | For p0888 = 3 generator operation (Vdc controller) must be correspondingly configured using p1240. |  |  |  |  |
| Note: | ESR: Extended Stop and Retract |  |  |  |  |
| p0889 | BI: ESR response enable / Response enab |  |  |  |  |
| SERVO (ESR), <br> SERVO_AC (ESR), <br> SERVO_I_AC (ESR) | Can be changed: $\cup, T$ |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 / Binary D |  | Dynamic index: - | Func. diagram: 3082 |  |
|  | P-Group: - U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - - |  |  | 2090.9 |  |
| Description: | Sets the signal source to enable the response for the "ESR" function. |  |  |  |  |
|  | BI: p0889 = 0 signal |  |  |  |  |
|  | The ESR response is locked. A possible trigger event that occurs is ignored. |  |  |  |  |
|  | BI: p0889 = 1 signal |  |  |  |  |
|  | The ESR response is enabled. A possible trigger event that occurs initiates the response. |  |  |  |  |
| Dependency: | Refer to: p0888 |  |  |  |  |
| Note: | ESR: Extended Stop and Retract |  |  |  |  |




Description: Sets the signal source to activate/de-activate a power unit component.

| Dependency: | BI: p0895 $=0$ signal |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | De-activating power unit components |  |  |  |
|  | BI: p0895 = 1 signal |  |  |  |
|  | Activating power unit components |  |  |  |
|  | Refer to: p0125, r0126 |  |  |  |
|  | Refer to: A05054 |  |  |  |
| Caution: | It is not permissible to de-activate drive objects with safety functions enabled. |  |  |  |
| Notice: | For Active Line Modules in the "Chassis" format, the Voltage Sensing Module (VSM, p0145) belonging to the power unit is automatically activated/deactivated. |  |  |  |
| Note: | The power unit is only de-activated when the pulses are suppressed. |  |  |  |
|  | For units connected in parallel, when one of the power units is de-activated, then the enable in p7001 is withdrawn |  |  |  |
| r0896.0 | BO: Parking axis, status word / Parking axis, ZSW |  |  |  |
| SERVO, | Can be changed: - | Calculated: - | Acce |  |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Fun |  |
| TOR, VECTOR AC, | P-Group: Displays, signals | Units group: - | Unit |  |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Facto |  |
|  | - | 倍 | - |  |
| Description: | Displays the status word for the "parking axis" function. |  |  |  |
| Bit field: | $\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { Parking axis activer }\end{array}$ | 1 signal Yes | 0 signal | FP |
|  |  |  |  |  |
| Dependency: | Refer to: 00897 |  |  |  |
| p0897 | BI: Parking axis selection / Parking axis sel |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Displays, signals <br> Not for motor type: - | Calculated: - | Access level: 2 |  |
|  |  | Dynamic index: - | Func. diagram: - |  |
|  |  | Units group: - | Unit selection: - |  |
|  |  | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |  |
| Description: | Sets the signal source to select the "parking axis" function. |  |  |  |
| Dependency: | BI: p0897 = 0 signal |  |  |  |
|  | The function "parking axis" is not selected. |  |  |  |
|  | BI: p0897 = 1 signal |  |  |  |
|  | The function "parking axis" is selected. |  |  |  |
|  | Refer to: r0896 |  |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |  |
| Note: | After it has been selected the "parking axis" function only becomes active when the pulses are suppressed. |  |  |  |


| r0898.0.. 10 | CO/BO: Control word sequence control infeed / STW seq_ctrl INF |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 8820, 8920 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays control word 1 of the infeed. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal FP |
|  | 00 ON/OFF1 | Yes | No |
|  | 01 OC / OFF2 | Yes | No - |
|  | 03 Operation enable | Yes | No |



| r0898.0.. 14 | CO/BO: Control word sequence control / STW seq_ctrl |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - |  | Calculated: - | Access level: 2 |  |
| SERVO_AC, | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 1530, 2501 |  |
| TOR, VECTOR AC, | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the control word of the sequence control. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | ON/OFF1 | Yes | No | - |
|  | 01 | OC / OFF2 | Yes | No | - |
|  | 02 | OC / OFF3 | Yes | No | - |
|  | 03 | Operation enable | Yes | No | - |
|  | 04 | Ramp-function generator enable | Yes | No | - |
|  | 05 | Continue ramp-function generator | Yes | No | - |
|  | 06 | Speed setpoint enable | Yes | No | - |
|  |  | Command open brake | Yes | No | - |
|  | 08 | Jog 1 | Yes | No | - |
|  |  | Jog 2 | Yes | No | - |
|  |  | Master ctrl by PLC | Yes | No | - |
|  |  | Speed controller enable | Yes | No | - |
|  |  | Command close brake | Yes | No | - |
| Note: | OC: Operating condition |  |  |  |  |
| r0898.0... 14 | CO/BO: Control word sequence control / STW seq_ctrl |  |  |  |  |
| SERVO (Lin), | Can be changed: - |  | Calculated: - | Access level: 2 |  |
| SERVO_AC (Lin), | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 1530, 2501 |  |
| SERVO_I_AC (Lin) | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the control word of the sequence control. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | ON/OFF1 | Yes | No | - |
|  | 01 | OC / OFF2 | Yes | No | - |
|  | 02 | OC / OFF3 | Yes | No | - |
|  | 03 | Operation enable | Yes | No | - |
|  | 04 | Ramp-function generator enable | Yes | No | - |
|  | 05 | Continue ramp-function generator | Yes | No | - |
|  | 06 | Velocity setpoint enable | Yes | No | - |
|  | 07 | Command open brake | Yes | No | - |
|  | 08 | Jog 1 | Yes | No | - |
|  | 09 | Jog 2 | Yes | No | - |
|  | 10 | Master ctrl by PLC | Yes | No | - |
|  | 12 | Velocity controller enable | Yes | No | - |
|  | 14 | Command close brake | Yes | No | - |
| Note: | OC: | Operating condition |  |  |  |


| r0898.0... 13 | CO/BO: Control word sequence control / STW seq_ctrl |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM41 | Can be changed: - | Calculated: - | Access |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. dia |  |
|  | P-Group: Displays, signals | Units group: - | Unit sele |  |
|  | Not for motor type: - | Scaling: - | Expert li |  |
|  | Min | Max | Factory |  |
|  | - | - | - |  |
| Description: | Displays the control word of the sequence control. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 ON/OFF1 | Yes | No | - |
|  | 01 OC / OFF2 | Yes | No | - |
|  | 02 OC / OFF3 | Yes | No | - |
|  | 03 Operation enable | Yes | No | - |
|  | 04 Ramp-function generator enable | Yes | No | - |
|  | 05 Start ramp-function generator | Yes | No | - |
|  | 06 Speed setpoint enable | Yes | No | - |
|  | 07 Acknowledge fault | Yes | No | - |
|  | 10 Master ctrl by PLC | Yes | No | - |
|  | 13 Zero mark enable | Yes | No | - |
| Note: | OC: Operating condition |  |  |  |
| r0899.0... 12 | CO/BO: Status word sequence control infeed / ZSW seq_ctrl INF |  |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 8826, 8926 |  |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status word of the infeed sequence control. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Rdy for switch on | Yes | No | - |
|  | 01 Ready | Yes | No | - |
|  | 02 Operation enabled | Yes | No | - |
|  | 04 No OFF2 active | OFF2 inactive | OFF2 active | - |
|  | 06 Sw on inhibit | Yes | No | - |
|  | 08 Power-up active | Yes | No | - |
|  | 09 Control request | Yes | No | - |
|  | 11 Pre-charging compl | Yes | No | - |
|  | 12 Line contactor closed | Yes | No | 8934 |
| Note: | Re bit 12: |  |  |  |
|  | The feedback signal of a line contactor (auxiliary contact) can be interconnected via BI: p0860. |  |  |  |
| r0899.0... 12 | CO/BO: Status word sequence control infeed / ZSW seq_ctrl INF |  |  |  |
| B_INF | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8726 |  |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  |  |  |  |  |
| Description: | Displays the status word of the infeed sequence control. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Rdy for switch on | Yes | No | - |
|  | 01 Ready | Yes | No | - |
|  | 02 Operation enabled | Yes | No | - |


| 04 | No OFF2 active | OFF2 inactive | OFF2 active |
| :--- | :--- | :--- | :--- |
| 06 | Sw on inhibit | Yes | No |
| 09 | Control request | Yes | No |
| 11 | Pre-charging compl | Yes | No |
| 12 | Line contactor closed | Yes | No |
| Re bits 00, 01, 02, 04, 06, 09: |  |  |  |
| For PROFIdrive, these signals are used for status word 1. |  |  |  |

For PROFIdrive, these signals are used for status word 1.

Note: $\quad$| Re bits 00, 01, 02, 04, 06, 09: |  |
| :--- | :--- |
|  | For PROFIdrive, these signals are used for status word 1. |



| r0899.7...9 | CO/BO: Status word sequence control encoder DO / ZSW seq_ctrl encDO |  |  |
| :--- | :--- | :--- | :--- |
| ENC | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Displays the status word for sequence control on the encoder drive object.

| Bit field: | Bit | Signal name | 1 signal | O signal | FP |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 07 | Drive ready | Yes | No |  |

Note: $\quad$ For PROFIdrive, this signal is used for status word ZSW2_ENC.

| r0899.0...15 | CO/BO: Status word sequence control / ZSW seq_ctrl |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530,2503 |
| SERVO_I_AC, VEC- | P-Group: Displays, signals | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the status word of the sequence control. |  |  |
| Bit field: | Bit Signal name | 1 signal | O signal |
|  | 00 Rdy for switch on | Yes | No |
|  | 01 | Ready | No |
|  | 02 | Operation enabled | Yes |




Note:
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
Example:
The telegram for the setpoints should have the following process data (PZD) and assignments:
PZD 1 (r4201), PZD 2 (r4204), PZD 3 (r4250)
The setpoint assignment must be realized as follows:
p0915[0] = 4201-16 bit
p0915[1] = 4204-16 bit
p0915[2] $=4250-16$ bit
p0915[3] $=0$
p0915[29] $=0$

| p0915[0...35] | TM17 PROFIdrive PZD setpoint assignment / TM17 PD PZD setp |  |  |
| :--- | :--- | :--- | :--- |
| TM17 | Can be changed: $T$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4265 | $[0] 4201$ |
|  |  | $[1] 4204$ |  |
|  |  | $[2] 4211$ |  |
|  |  | $[3] 4212$ |  |
|  |  | $[4 \ldots 35] 0$ |  |

Description: Is used to assign the process data received from the master (PZD, setpoints).
Value:
0: ZERO
4201: r4201 (system time for synchronization)
4204: r4204 (control digital output 0 ... 15)
4211: r4211 (edge mode digital input 0 ... 7)
4212: r4212 (edge mode digital input 8 ... 15)
4250: r4250 (set/resetting time digital output 0)
4251: r4251 (set/resetting time digital output 1)
4252: r4252 (set/resetting time digital output 2)
4253: r4253 (set/resetting time digital output 3)
4254: r4254 (set/resetting time digital output 4)
4255: r4255 (set/resetting time digital output 5)
4256: r4256 (set/resetting time digital output 6)
4257: r4257 (set/resetting time digital output 7)
4258: r4258 (set/resetting time digital output 8)
4259: r4259 (set/resetting time digital output 9)
4260: r4260 (set/resetting time digital output 10)
4261: r4261 (set/resetting time digital output 11)
4262: r4262 (set/resetting time digital output 12)
4263: r4263 (set/resetting time digital output 13)

4264: r4264 (set/resetting time digital output 14)
4265: r4265 (set/resetting time digital output 15)
Index:

Note:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
Example:
The telegram for the setpoints should have the following process data (PZD) and assignments:
PZD 1 (r4201), PZD 2 (r4204), PZD 3 (r4250), PZD 4 (r4250)
The setpoint assignment must be realized as follows:
p0915[0] $=4201-16$ bit
p0915[1] = 4204-16 bit
p0915[2] = 4250-32 bit - specified twice one after the other
p0915[3] = 4250-32 bit
p0915[4] = 0
p0915[35] $=0$


Note:

$$
\begin{aligned}
& {[14]=\text { PZD } 15} \\
& {[15]=\text { PZD } 16} \\
& {[16]=\text { PZD } 17} \\
& {[17]=\text { PZD } 18} \\
& {[18]=\text { PZD } 19} \\
& {[19]=\text { PZD } 20} \\
& {[20]=\text { PZD } 21} \\
& {[21]=\text { PZD } 22} \\
& {[22]=\text { PZD } 23} \\
& {[23]=\text { PZD } 24} \\
& {[24]=\text { PZD } 25} \\
& {[25]=\text { PZD } 26} \\
& {[26]=\text { PZD } 27} \\
& {[27]=\text { PZD } 28} \\
& {[28]=\text { PZD } 29} \\
& {[29]=\text { PZD } 30}
\end{aligned}
$$

Example:
The telegram for the actual values should have the following process data (PZD) and assignments:
PZD 1 (r4301), PZD 2 (r4304), PZD 3 (r4350)
The actual value assignment must be implemented as follows:
p0916[0] = 4301-16 bit
p0916[1] $=4304-16$ bit
p0916[2] = 4350-16 bit
p0916[3] = 0
p0916[29] $=0$

| p0916[0...35] | TM17 PROFIdrive PZD actual value assignment / TM17 PD PZD actVal |  |  |
| :--- | :--- | :--- | :--- |
| TM17 | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4365 | $[0] 4301$ |
|  |  | $[1] 4304$ |  |
|  |  | $[2] 4311$ |  |
|  |  | $[3] 4312$ |  |
|  |  | $[4 \ldots 35] 0$ |  |

Description: Is used to assign the process data to be sent to the master (PZD, actual values).
Value:

0: ZERO
4301: r4301 (module synchronization)
4304: r4304 (status digital input 0 ... 15)
4311: r4311 (edge status digital input 0 ... 7 )
4312: r4312 (edge status digital input 8 ... 15)
4350: r4350 (edge times digital input 0)
4351: r4351 (edge times digital input 1)
4352: r4352 (edge times digital input 2)
4353: r4353 (edge times digital input 3)
4354: r4354 (edge times digital input 4)
4355: r4355 (edge times digital input 5)
4356: r4356 (edge times digital input 6)
4357: r4357 (edge times digital input 7)
4358: r4358 (edge times digital input 8)
4359: r4359 (edge times digital input 9)
4360: r4360 (edge times digital input 10)
4361: r4361 (edge times digital input 11)
4362: r4362 (edge times digital input 12)
4363: r4363 (edge times digital input 13)

|  | 4364: r4364 (edge times digital input 14) <br> 4365: r4365 (edge times digital input 15) |  |  |
| :---: | :---: | :---: | :---: |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
|  | [32] = PZD 33 |  |  |
|  | [33] = PZD 34 |  |  |
|  | [34] = PZD 35 |  |  |
|  | [35] = PZD 36 |  |  |
| Note: | Example: |  |  |
|  | The telegram for the actual values should have the following process data (PZD) and assignments: |  |  |
|  | PZD 1 (r4301), PZD 2 (r4304), PZD 3 (r4350), PZD 4 (r4350) |  |  |
|  | The actual value assignment must be implemented as follows: |  |  |
|  | p0916[0] $=4301-16$ bit |  |  |
|  | p0916[1] = 4304-16 bit |  |  |
|  | p0916[2] $=4350-32$ bit - specified twice one after the other |  |  |
|  | p0916[3] $=4350-32$ bit |  |  |
|  | p0916[4] = 0 |  |  |
|  | ... |  |  |
|  | p0916[35] $=0$ |  |  |
| p0918 | PROFIBUS address / PB address |  |  |
| CU_I, CU_I_D410, | Can be changed: T | Calculated: - | Access level: 2 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1520, 2410 |
| CU_S_AC_DP, CU S120 DP, | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_DP | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 126 | 126 |
| Description: | Displays or sets the PROFIBUS address for | PROFIBUS interface | Unit. |




|  | 103: | SIEMENS telegram 103, PZD-7/15 |
| :---: | :---: | :---: |
|  | 105: | SIEMENS telegram 105, PZD-10/10 |
|  | 106: | SIEMENS telegram 106, PZD-11/15 |
|  | 116: | SIEMENS telegram 116, PZD-11/19 |
|  | 118: | SIEMENS telegram 118, PZD-11/19 |
|  | 125: | SIEMENS telegram 125, PZD-14/10 |
|  | 126: | SIEMENS telegram 126, PZD-15/15 |
|  | 136: | SIEMENS telegram 136, PZD-15/19 |
|  | 138: | SIEMENS telegram 138, PZD-15/19 |
|  | 220: | SIEMENS telegram 220, PZD-10/10 |
|  | 999: | Free telegram configuration with BICO |
| Dependency: | Refer | o: p2038 |
|  | Refer | o: F01505, F01506 |
| Note: | For p these | $922=100 \ldots 199$, p2038 is automatically elegrams, the "SIMODRIVE 611 univers |
|  | If a valu ited. | ue is not equal to 999, a telegram is set |
|  | The in | hibited interconnections can only be cha |

p0922 IF1 PROFIdrive telegram selection / IF1 PD Telegr_sel

SERVO (EPOS, Pos ctrl, Spin_diag), SERVO_AC (EPOS, Pos ctrl, Spin_diag)

P-Group: Communication
Not for motor type: -
Min
7

Calculated: -
Dynamic index: -

Units group: -
Scaling: -
Max
999

## Access level: 1

Func. diagram: 1520, 2415, 2416, 2419, 2420, 2421, 2422, 2423

Unit selection: -
Expert list: 1
Factory setting 999

Description: Sets the send and receive telegram.

| Value: | $7:$ | Standard telegram 7, PZD-2/2 |
| :--- | :--- | :--- |
|  | $9:$ | Standard telegram 9, PZD-10/5 |
|  | 110: | SIEMENS telegram 110, PZD-12/7 |
|  | 111: | SIEMENS telegram 111, PZD-12/12 |
|  | 999: | Free telegram configuration with BICO |
| Dependency: | Refer to: p2038 |  |
|  | Refer to: F01505, F01506 |  |

Note: $\quad$ For p0922 = $100 \ldots 199$, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed.
If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.

The inhibited interconnections can only be changed again after setting value 999.

## p0922

SERVO (Pos ctrl, Spin_diag), SERVO AC (Pos ctrl, Spin_diag)

IF1 PROFIdrive telegram selection / IF1 PD Telegr_sel
Can be changed: C2(1), T
Data type: Unsigned16

P-Group: Communications
Not for motor type: -
Min

Calculated: -
Dynamic index: -

Units group: -
Scaling: -
Max
999

Access level: 1
Func. diagram: 1520, 2415,
2416, 2419, 2420, 2421, 2422, 2423

Unit selection: -
Expert list: 1
Factory setting 999

Description:
999: Free telegram configuration with BICO
Value: $\quad$ Rependency: $\quad$ to: p2038
Refer to: F01505, F01506

Note: $\quad$ For p0922 = $100 \ldots 199$, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed.
If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are inhibited.
The inhibited interconnections can only be changed again after setting value 999.





| r0944 | CO: Counter for fault buffer changes / Fault buff change |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays fault buffer changes. This counter is incremented every time the fault buffer changes. |  |  |
| Recommend.: | Used to check whether the fault buffer has been read out consistently. |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109 |  |  |
| r0945[0...63] | Fault code / Fault code |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1750, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the numbers of faults that have occurred. |  |  |
| Dependency: | Refer to: r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122 |  |  |
| Notice: | The properties of the fault buffer should be taken from the corresponding product documentation. |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | Fault buffer structure (general principle): |  |  |
|  | r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> actual fault case, fault 1 |  |  |
|  | . . . |  |  |
|  | r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> actual fault case, fault 8 |  |  |
|  | r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1 |  |  |
|  |  |  |  |
|  | r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8 |  |  |
|  | r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1 |  |  |
|  |  |  |  |
|  | r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8 |  |  |
|  |  |  |  |
| r0946[0..65534] Fault code list / Fault code list |  |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Lists the fault codes stored in the drive unit. |  |  |
|  | The indices can only be accessed with a valid fault code. |  |  |
| Dependency: | The parameter assigned to the fault code is entered in r0951 under the same index. |  |  |


| r0947[0...63] | Fault number / Fault number |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1750, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | This parameter is identical to r0945. |  |  |
| r0948[0...63] | Fault time received in milliseconds / t_fault recv ms |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1750, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ms] | Max <br> - [ms] | Factory setting - [ms] |
| Description: | Displays the system runtime in milliseconds when the fault occurred. |  |  |
| Dependency: | Refer to: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115, r3120, r3122 |  |  |
| Notice: | The time comprises r2130 (days) and r0948 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | The structure of the fault buffer and the assignment of the indices is shown in r0945. |  |  |
|  | When the parameter is read via PROFIdrive, the TimeDifference data type applies. |  |  |
| r0949[0...63] | Fault value / Fault value |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 1750, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays additional information about the fault that occurred (as integer number). |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3115, r3120, r3122 |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | The structure of the fault buffer and the assignment of the indices is shown in r0945. |  |  |
| p0952 | Fault cases, counter / Fault cases qty |  |  |
| All objects | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1710, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | Number of fault situations that have occurred since the last reset. |  |  |
| Dependency: | The fault buffer is deleted (cleared) by setting p0952 to 0. <br> Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136 |  |  |


| r0963 | PROFIBUS baud rate / PB baud rate |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | - |
| Description: | Displays the corresponding value for the PROFIBUS baud rate. |  |  |
| Value: | 0: $\quad 9.6$ kbit/s |  |  |
|  | 1: $\quad 19.2$ kbit/s |  |  |
|  | 2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$ |  |  |
|  | 3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$ |  |  |
|  | 4: $\quad 500 \mathrm{kbit} / \mathrm{s}$ |  |  |
|  | 6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$ |  |  |
|  | 7: $3 \mathrm{Mbit} / \mathrm{s}$ |  |  |
|  | 8: $6 \mathrm{Mbit} / \mathrm{s}$ |  |  |
|  | 9: $12 \mathrm{Mbit} / \mathrm{s}$ |  |  |
|  | 10: $31.25 \mathrm{kbit} / \mathrm{s}$ |  |  |
|  | 11: $45.45 \mathrm{kbit} / \mathrm{s}$ |  |  |
|  | 255: unknown |  |  |
| r0964[0...6] | Device identification / Device ident. |  |  |
| CU_I, CU_I_D410 | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: Index: | Displays the device identification. |  |  |
|  | [0] = Company (Siemens = 42) |  |  |
|  | [1] = Device type |  |  |
|  | [2] = Firmware version |  |  |
|  | [3] = Firmware date (year) |  |  |
|  | [4] = Firmware date (day/month) |  |  |
|  | [5] = Number of drive objects |  |  |
|  | [6] = Firmware patch/hot fix |  |  |
| Note: | Example: |  |  |
|  | r0964[0] = 42 --> SIEMENS |  |  |
|  | r0964[1] = device type, see below |  |  |
|  | $\mathrm{r} 0964[2]=403-->$ first part of the firmware version V04.03 (for second part, refer to index 6) |  |  |
|  | r0964[3] = 2010 --> year 2010 |  |  |
|  | r0964[4] = 1705 --> 17th of May |  |  |
|  | r0964[5] = 2 --> 2 drive objects |  |  |
|  | r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00) |  |  |
|  | Device type: |  |  |
|  | r0964[1] = 5800 --> SINAMICS S120 in SIMOTION D435 |  |  |
|  | r0964[1] = 5801 --> SINAMICS S120 in SIMOTION D445 |  |  |
|  | r0964[1] = 5802 --> SINAMICS S120 in SIMOTION D425 |  |  |
|  | r0964[1] = 5803 --> SINAMICS S120 in SIMOTION D455 |  |  |
|  | r0964[1] = 5850 --> SINAMICS S120 in SINUMERIK NCU710 |  |  |
|  | r0964[1] = 5851 --> SINAMICS S120 in SINUMERIK NCU720 |  |  |
|  | r0964[1] = 5852 --> SINAMICS S120 in SINUMERIK NCU730 |  |  |
|  | r0964[1] = 5853 --> SINAMICS S120 in SINUMERIK NCU730.2 |  |  |
|  | r0964[1] = 5861 --> SINAMICS S120 in SINUMERIK 828D |  |  |


| r0964[0...6] | Device identification / Device ident. |  |  |
| :---: | :---: | :---: | :---: |
| CU_NX_CX | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the device identification. |  |  |
| Index: | [0] = Company (Siemens = 42) |  |  |
|  | [1] = Device type |  |  |
|  | [2] = Firmware version |  |  |
|  | [3] = Firmware date (year) |  |  |
|  | [4] = Firmware date (day/month) |  |  |
|  | [5] = Number of drive objects |  |  |
|  | [6] = Firmware patch/hot fix |  |  |
| Note: | Example: |  |  |
|  | r0964[0] = 42 --> SIEMENS |  |  |
|  | r0964[1] = device type, see below |  |  |
|  | r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6) |  |  |
|  | r0964[3] = 2010 --> year 2010 |  |  |
|  | r0964[4] = 1705 --> 17th of May |  |  |
|  | r0964[5] = 2 --> 2 drive objects |  |  |
|  | r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00) |  |  |
|  | Device type: |  |  |
|  | r0964[1] = 5100 --> SIMOTION CX32 |  |  |
|  | r0964[1] = 5120 --> SINUMERIK NX10 |  |  |
|  | r0964[1] = 5121 --> SINUMERIK NX15 |  |  |
| r0964[0...6] | Device identification / Device ident. |  |  |
| CU_S_AC_DP CU S AC PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the device identification. |  |  |
| Index: | [0] = Company (Siemens = 42) |  |  |
|  | [1] = Device type |  |  |
|  | [2] = Firmware version |  |  |
|  | [3] = Firmware date (year) |  |  |
|  | [4] = Firmware date (day/month) |  |  |
|  | [5] = Number of drive objects |  |  |
|  | [6] = Firmware patch/hot fix |  |  |
| Note: | Example: |  |  |
|  | r0964[0] = 42 --> SIEMENS |  |  |
|  | r0964[1] = device type, see below |  |  |
|  | $\mathrm{r} 0964[2]=403$--> first part of the firmware version V04.03 (for second part, refer to index 6) |  |  |
|  | r0964[3] = 2010 --> year 2010 |  |  |
|  | r0964[4] = 1705 --> 17th of May |  |  |
|  | r0964[5] = 2 --> 2 drive objects |  |  |
|  | r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00) |  |  |
|  | Device type: |  |  |
|  | r0964[1] = 5000 --> SINAMICS S120 CU320(-2 DP) |  |  |

```
r0964[1] = 5001 --> SINAMICS S120 CU320-2 PN
r0964[1] = 5010 --> SINAMICS S120 CU310(-2) DP
r0964[1] = 5011 --> SINAMICS S120 CU310(-2) PN
r0964[1] = 5250 --> SINAMICS S150 CU320(-2 DP)
r0964[1] = 5251 --> SINAMICS S150 CU320-2 PN
```


Note: $\quad$ A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .
Parameter reset has been completed if p0970 and p0010 have been set to 0.

| p0970 | ENCODER reset parameters / ENC par reset |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: C 2 (30) | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Factory settings | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0$ | $\begin{aligned} & \text { Max } \\ & 100 \end{aligned}$ | Factory setting 0 |
| Description: | The parameter is used to initiate the reset of the parameters on the ENCODER drive object. <br> Parameter p0141 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976). |  |  |
| Value: | $0:$ Inactive <br> 1: Start a parameter re <br> 100: Start a BICO interco |  |  |
| Notice: | After the value has been m r3996. Modifications can be | parameter modifica $\text { n r3996 = } 0 .$ | e and the status is shown in |
| Note: | A factory setting run can on At the end of the calculation Parameter reset has been | 010 was first set to natically set to 0 . 0 and p0010 have b |  |

p0970 Reset drive parameters / Drive par reset

| SERVO, | Can be changed: C2(30) | Calculated: - | Access level: 2 |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Factory settings | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 100 | 0 |


| Description: | The parameter is used to initiate the reset of the parameters of an individual drive unit. |
| :---: | :---: |
|  | Parameters p0100, p0205 (only for VECTOR) and the parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit (p0976). |
| Value: | 0 : Inactive |
|  | 1: Start a parameter reset |
|  | 5: Starts a safety parameter reset |
|  | 100: Start a BICO interconnection reset |
| Dependency: | Refer to: F01659 |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |
| Note: | A factory setting run can only be started if p0010 was first set to 30 (parameter reset). |
|  | At the end of the calculations, p0970 is automatically set to 0 . |
|  | Parameter reset has been completed if p0970 and p0010 have been set to 0 . |
|  | For p0970 $=5$ the following applies: |
|  | The password for Safety Integrated must be set. |
|  | When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed. |
|  | Then save the parameters and carry out a POWER ON. |
|  | For p0970 = 1 the following applies: |
|  | If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, a fault F01659 is output with fault value 2. |


| p0970 | TB30 reset parameters / TB30 par reset |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: $\mathrm{C} 2(30)$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Factory settings | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 100 | 0 |
| Description: | The parameter is used to initiate a reset of the parameters on Terminal Board 30 (TB30). |  |  |
|  | The sampling time p4099 is not reset if in so doing a conflict occurs with the basic clock cycle. |  |  |
|  | Parameter p0161 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976). |  |  |
| Value: | 0 : Inactive |  |  |
|  | 1: Start a parameter res |  |  |
|  | 100: Start a BICO interconnection reset |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | A factory setting run can only be started if p0010 was first set to 30 (parameter reset). |  |  |
|  | At the end of the calculations, p0970 is automatically set to 0 . |  |  |
|  | Parameter reset has been completed if p0970 and p0010 have been set to 0 . |  |  |
| p0970 | TM120 reset parameters / TM120 par reset |  |  |
| TM120 | Can be changed: C 2 (30) | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Factory settings | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 100 | 0 |
| Description: Value: | The parameter is used to initiate a reset of the parameters on Terminal Module 120 (TM120). |  |  |
|  | $0:$ Inactive <br> 1: Start a parameter reset <br> 100: Start a BICO interconnection reset |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0010 |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | A factory setting run can only be started if p0010 was first set to 30 (parameter reset). |  |  |
|  | At the end of the calculations, p0970 is automatically set to 0 . |  |  |
| p0970 | TM15 reset paramete | reset |  |
| TM15 | Can be changed: C 2 (30) | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Factory settings | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 100 | 0 |
| Description: | The parameter is used to initiate a reset of the parameters on Terminal Module 15 (TM15). |  |  |
|  | Parameter p0151 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976). |  |  |
| Value: | $0:$ Inactive <br> 1: Start a parameter reset <br> 100: Start a BICO interconnection reset |  |  |
| Dependency: | Refer to: p0010 |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | A factory setting run can only be started if p0010 was first set to 30 (parameter reset). |  |  |
|  |  |  |  |




| Note: | A factory setting run can only be started if p0010 was first set to 30 (parameter reset). <br> At the end of the calculations, p0970 is automatically set to 0 . <br> Parameter reset has been completed if p0970 and p0010 have been set to 0 . <br> For p0970 $=5$ the following applies: <br> The password for Safety Integrated must be set. <br> When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed. <br> Then save the parameters and carry out a POWER ON. |
| :---: | :---: |
| p0971 | Save drive object parameters / Drv_obj par save |
| All objects | Can be changed: U, T Calculated: - Access level: 1 <br> Data type: Unsigned16 Dynamic index: - Func. diagram: - <br> P-Group: Factory settings Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 1 0 |
| Description: Value: | Setting to save the parameter of the particular drive object in the non-volatile memory. <br> 0 : Inactive <br> 1: $\quad$ Save drive object |
| Dependency: <br> Caution: | Refer to: p0977, p1960, p3845, r3996 <br> The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0 ). |
| Notice: | Writing to parameters is inhibited while saving. The progress while saving is displayed in r3996. |
| Note: | Starting from the particular drive object, the following parameters are saved: <br> CU3xx: Device-specific parameters and PROFIBUS device parameters. <br> Other objects: Parameters of the actual object and PROFIBUS device parameters. <br> Prerequisite: <br> In order that the parameter of a drive object, saved with p0971 = 1, is read the next time that the Control Unit is booted, then all parameters must, as a minimum, have first been saved once with p0977 $=1$. |
| p0972 | Drive unit reset / Drv_unit reset |
| CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: U, T Calculated: - Access level: <br> Data type: Unsigned16 Dynamic index: - Func. diagram: - <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> 0 3 0 |
| Description: Value: | Sets the required procedure to execute a hardware reset for the drive unit. <br> 0 : Inactive <br> 1: Hardware-Reset immediate <br> 2: Hardware reset preparation <br> 3: Hardware reset after cyclic communication has failed |
| Danger: | It must be absolutely ensured that the system is in a safe condition. The memory card/device memory of the Control Unit must not be accessed. |
| Note: | If value $=1$ : <br> Reset is immediately executed and communications interrupted. <br> After communications have been established, check the reset operation (refer below). |

If value $=2$ :
Help to check the reset operation.
Firstly, set p0972 = 2 and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
After communications have been established, check the reset operation (refer below).
If value $=3$ :
The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
If cyclic communication is not active, then the reset is immediately executed.
If the cyclic communication is active for both PROFIdrive interfaces, then the reset is executed after completing both cycle communications.
After communications have been established, check the reset operation (refer below).
To check the reset operation:
After the drive unit has been restarted and communications have been established, read p0972 and check the following:
p0972 = 0? --> The reset was successfully executed.
p0972 > 0? --> The reset was not executed.

| r0975[0..10] | Drive object identification / DO identification |  |
| :---: | :---: | :---: |
| All objects | Can be changed: - Calculated: - A | Access level: 2 |
|  | Data type: Unsigned16 Dynamic index: - F | Func. diagram: - |
|  | P-Group: Communications Units group: - U | Unit selection: - |
|  | Not for motor type: - Scaling: - Expler | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - - |  |
| Description: | Displays the identification of the drive object. |  |
| Index: | [0] = Company (Siemens = 42) |  |
|  | [1] = Drive object type |  |
|  | [2] = Firmware version |  |
|  | [3] = Firmware date (year) |  |
|  | [4] = Firmware date (day/month) |  |
|  | [5] = PROFIdrive drive object, type class |  |
|  | [6] = PROFIdrive drive object, sub-type Class 1 |  |
|  | [7] = Drive object number |  |
|  | [8] = Reserved |  |
|  | [9] = Reserved |  |
|  | [10] = Firmware patch/hot fix |  |
| Note: | Example: |  |
|  | r0975[0] = 42 --> SIEMENS |  |
|  | r0975[1] = 11 --> SERVO drive object type |  |
|  | r0975[2] = 102 --> first part, firmware version V01.02 (second part, refer to index 10) |  |
|  | r0975[3] = 2003 --> year 2003 |  |
|  | r0975[4] = 1401 --> 14th of January |  |
|  | r0975[5] = 1 --> PROFIdrive drive object, type class |  |
|  | r0975[6] = 9 --> PROFIdrive drive object sub-type class 1 |  |
|  | r0975[7] = 2 --> drive object number $=2$ |  |
|  | r0975[8] = 0 (reserved) |  |
|  | r0975[9] = 0 (reserved) |  |
|  | r0975[10] = 600 --> second part, firmware version (complete version: V01.02.06.00) |  |




| Note: | [4] = Shift factor G1_XIST2 <br> [5] = Distinguishable revolutions encoder 1 <br> [6...10] = Reserved |  |
| :---: | :---: | :---: |
|  | Information about the individual indices can be taken from the following literature: PROFIdrive Profile Drive Technology |  |
| r0979[0...10] | PROFIdrive encoder format / PD encoder format |  |
| ENC (Lin_enc) | Can be changed: - Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 Dynamic index: - | Func. diagram: 4010, 4704 |
|  | P-Group: Encoder Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - | - |
| Description: | Displays the actual position encoder used according to PROFIdrive. |  |
| Index: | $\begin{aligned} & {[0]=\text { Header }} \\ & {[1]=\text { Type, encoder } 1} \\ & {[2]=\text { Resolution enc } 1} \\ & {[3]=\text { Shift factor G1_XIST1 }} \\ & {[4]=\text { Shift factor G1_XIST2 }} \\ & {[5]=\text { Distinguishable distance encoder } 1} \\ & {[6 \ldots 10]=\text { Reserved }} \end{aligned}$ |  |
| Note: | PROFIdrive Profile Drive Technology |  |
| r0979[0...30] | PROFIdrive encoder format / PD encoder format |  |
| SERVO, | Can be changed: - Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 Dynamic index: - | Func. diagram: 4010, 4704 |
| SERVO_I_AC, VECTOR, VECTOR_AC, | P-Group: Encoder Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - | - |
| Description: | Displays the actual position encoder used according to PROFIdrive. |  |
| Index: |  |  |
| Note: | Information about the individual indices can be taken from the following literature: PROFIdrive Profile Drive Technology |  |


r0981[0...299] List of existing parameters 2 / List avail par 2

| All objects | Can be changed: - | Calculated: - | Access level: 4 |
| :--- | :--- | :--- | :--- |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the parameters that exist for this drive. |  |  |
| Dependency: | Refer to: r0980, ro989 |  |  |

Note: $\quad$ The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.
This list consists solely of the following parameters:
r0980[0...299], r0981[0...299] ... r0989[0...299]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

| r0989[0...299] | List of existing parameters 10 / List avail par 10 |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the parameters that exist for this drive. |  |  |
| Dependency: | Refer to: r0980, r0981 |  |  |
| Note: | The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. |  |  |
|  | This list consists solely of the following parameters: |  |  |
|  | r0980[0...299], r0981[0...299] ... r0989[0...299] |  |  |
|  | The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master). |  |  |


| r0990[0...99] | List of modified parameters 1 / List chang. par 1 |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays those parameters with a value other than the factory setting for this drive. |  |  |
| Dependency: | Refer to: r0991, r0999 |  |  |
| Note: | Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues. |  |  |
|  | This list consists solely of the following parameters: |  |  |
|  | r0990[0...99], r0991[0...99] ... r0999[0...99] |  |  |
|  | The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master). |  |  |


| r0991[0...99] | List of modified parameters 2 / List chang. par 2 |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays those parameters with a value other than the factory setting for this drive. |  |  |
| Dependency: | Refer to: r0990, r0999 |  |  |
| Note: | Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues. |  |  |
|  | This list consists solely of the following parameters: |  |  |
|  | r0990[0...99], r0991[0...99] ... r0999[0...99] |  |  |
|  | The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master). |  |  |


| r0999[0...99] | List of modified parameters 10 / List chang. par 10 |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays those parameters with a value other than the factory setting for this drive. |  |  |
| Dependency: | Refer to: r0990, r0991 |  |  |
| Note: | Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. |  |  |
|  | This list consists solely of the following parameters: |  |  |
|  | The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master). |  |  |
| p1000[0...n] | Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: CDS, p0170 | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 999999 | 0 |
| Description: | Runs the corresponding macro files. |  |  |
|  | The Connector Inputs (CI) for the speed setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected. |  |  |
|  | The selected macro file must be available on the memory card/device memory. |  |  |
|  | Example: |  |  |
|  | p1000 = 6 --> the macro file PM000006.ACX is run. |  |  |
| Dependency: | Refer to: p0015, p0700, p1500, r8572 |  |  |
| Caution: | When executing a specific macro, the corresponding programmed settings are made and become active. |  |  |
| Notice: | No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! |  |  |
| Note: | The macros in the specified directory are displayed in r8572. r8572 is not in the expert list of the commissioning software. |  |  |
|  | Macros available as standard are described in the technical documentation of the particular product.CI: Connector Input |  |  |


| p1000[0...n] | Macro Connector Inputs (CI) for velocity setpoints / Macro Cl v_set |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: CDS, p0170 | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 999999 | 0 |
| Description: | Runs the corresponding macro files. |  |  |
|  | The Connector Inputs (CI) for the velocity setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected. |  |  |
|  | The selected macro file must be available on the memory card/device memory. |  |  |
|  | Example: |  |  |
|  | p1000 = 6 --> the macro file PM000006.ACX is run. |  |  |
| Dependency: | Refer to: p0015, p0700, p1500, r8572 |  |  |
| Caution: | When executing a specific macro, the corresponding programmed settings are made and become active. |  |  |

Notice: $\quad$ No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group!
Note: $\quad$ The macros in the specified directory are displayed in r8572. r8572 is not in the expert list of the commissioning software.
Macros available as standard are described in the technical documentation of the particular product.
CI: Connector Input

| p1001[0...n] | CO: Fixed velocity setpoint 1 / n_set_fixed 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| set, Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1021, 3010 |
| SERVO_I_AC | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| (Extended set, Lin) | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min -1000.000 [m/min] | Max <br> 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets a value for the fixed speed/velocity setpoint 1. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |

p1001[0...n] CO: Fixed speed setpoint 1 / n_set_fixed 1

SERVO (Extended Can be changed: U, T Calculated: -
set), SERVO_AC Data type: FloatingPoint32
(Extended set),
SERVO_I_AC
P-Group: Setpoints
(Extended set), VEC- Not for motor type: -
TOR, VECTOR_AC,
VECTOR_I_AC
Description:

Dependency:
Notice:
-210000.000 [rpm]

Max
210000.000 [rpm]

Sets a value for the fixed speed / velocity setpoint 1.
Refer to: p1020, p1021, p1022, p1023, r1024, r1197

Dynamic index: DDS, p0180
Units group: 3_1
Scaling: p2000

Access level: 2
Func. diagram: 1021, 3010
Unit selection: p0505
Expert list: 1
p1002[0...n]
SERVO (Extended set, Lin), SERVO_AC
(Extended set, Lin),
SERVO_I AC
(Extended set, Lin)

Factory setting
0.000 [rpm]

A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

## CO: Fixed velocity setpoint 2 / n_set_fixed 2

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: FloatingPoint32
P-Group: Setpoints
Not for motor type: Min
-1000.000 [m/min]

Calculated: -
Dynamic index: DDS, p0180
Units group: 4_1
Scaling: p2000
Max
1000.000 [ $\mathrm{m} / \mathrm{min}$ ]

Access level: 2
Func. diagram: 3010
Unit selection: p0505
Expert list: 1
Factory setting
0.000 [m/min]

Description: Sets a value for the fixed speed / velocity setpoint 2.
Dependency: Refer to: p1020, p1021, p1022, p1023, r1024, r1197
Notice: $\quad$ A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
p1002[0...n]

SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VEC- Not for motor type: -
TOR, VECTOR_AC,
VECTOR_I_AC

|  | Min | Max |
| :--- | :--- | :--- |
|  | $-210000.000[\mathrm{rpm}]$ | $210000.000[\mathrm{rpm}]$ |
| Description: | Sets a value for the fixed speed $/$ velocity setpoint 2. |  |
| Dependency: | Refer to: $\mathrm{p} 1020, \mathrm{p} 1021, \mathrm{p} 1022, \mathrm{p} 1023, \mathrm{r} 1024, \mathrm{r} 1197$ |  |

CO: Fixed speed setpoint $2 /$ n_set_fixed 2
Can be changed: U, T Calculated: -
Data type: FloatingPoint32
P-Group: Setpoints

Min
Max
Dynamic index: DDS, p0180
Units group: 3_1
Scaling: p2000
210000.000 [rpm]

Access level: 2
Func. diagram: 3010
Unit selection: p0505
Expert list: 1

Factory setting
0.000 [rpm]

| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| :---: | :---: | :---: | :---: |
| p1003[0...n] | CO: Fixed velocity setpoint 3 / n_set_fixed 3 |  |  |
| SERVO (Extended | Can be changed: U, T | Calculated: - | Access level: 2 |
| set, Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
| (Extended set, Lin), SERVO I AC | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| (Extendèd set, Lin) | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets a value for the fixed speed/velocity setpoint 3. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1003[0...n] | CO: Fixed speed setpoint 3 / n_set_fixed 3 |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> -210000.000 [rpm] | Max <br> 210000.000 [rpm] | Factory setting 0.000 [rpm] |
| Description: | Sets a value for the fixed speed/velocity setpoint 3. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1004[0...n] | CO: Fixed velocity setpoint 4 / n_set_fixed 4 |  |  |
| SERVO (Extended | Can be changed: $U$, $T$ | Calculated: - | Access level: 2 |
| set, Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
| (Extended set, Lin), <br> SERVO I AC | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| (Extended set, Lin) | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [m/min] |
| Description: | Sets a value for the fixed speed/velocity setpoint 4. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1004[0..n] | CO: Fixed speed setpoint 4 / n_set_fixed 4 |  |  |
| SERVO (Extended set), SERVO_AC <br> (Extended set), <br> SERVO_I_AC <br> (Extended set), VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets a value for the fixed speed/velocity setpoint 4. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |





| p1011[0...n] | CO: Fixed velocity setpoint 11 / n_set_fixed 11 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_IAC (Extended set, Lin) | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> -1000.000 [m/min] | $\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets a value for the fixed speed / velocity setpoint 11. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1011[0...n] | CO: Fixed speed setpoint 11 / n_set_fixed 11 |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_IAC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $U, T$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets a value for the fixed speed / velocity setpoint 11. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1012[0...n] | CO: Fixed velocity setpoint 12 / n_set_fixed 12 |  |  |
| SERVO (Extended set, Lin), SERVO_AC <br> (Extended set, Lin), <br> SERVO_IAC <br> (Extended set, Lin) | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets a value for the fixed speed / velocity setpoint 12. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1012[0...n] | CO: Fixed speed setpoint 12 / n_set_fixed 12 |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_IAC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $U$, $T$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3010 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets a value for the fixed speed / velocity setpoint 12. |  |  |
| Dependency: | Refer to: p1020, p1021, p1022, p1023, r1024, r1197 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |




| Note: | If a fixed speed setpoint has no | 1020 ... p1023 = 0, r1197 | $1024=0($ setpoint $=0)$. |
| :---: | :---: | :---: | :---: |
| p1021[0...n] | BI: Fixed velocity setpoint selection Bit 1 / v_set_fixed Bit 1 |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2505 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the fixed velocity setpoint. |  |  |
| Dependency: | Selects the required fixed velocity setpoint using p1020 ... p1023. |  |  |
|  | Displays the number of the actual fixed velocity setpoint in r1197. |  |  |
|  | Sets values for the fixed velocity setpoints 1 ... 15 using p1001 ... p1015. |  |  |
|  | Refer to: p1020, p1022, p1023, r1197 |  |  |
| Note: | If a fixed velocity setpoint has not been selected (p1020 $\ldots$ p1023 $=0, \mathrm{r1197}=0$ ), then r1024 $=0($ setpoint $=0)$ |  |  |
| p1021[0...n] | BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1 |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2505 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for selecting the fixed speed setpoint. |  |  |
| Dependency: | Selects the required fixed speed setpoint using p1020 ... p1023. |  |  |
|  | Displays the number of the actual fixed speed setpoint in r1197. |  |  |
|  | Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015. |  |  |
|  | Refer to: p1020, p1022, p1023, r1197 |  |  |
| Note: | If a fixed speed setpoint has not been selected (p1020 $\ldots$ p1023 $=0, \mathrm{r1197}=0$ ), then r1024 $=0($ setpoint $=0)$. |  |  |
| p1022[0...n] | BI: Fixed velocity setpoint selection Bit 2 / v_set_fixed Bit 2 |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2505 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Sets the signal source to select the fixed velocity setpoint. |  |  |
| Dependency: | Selects the required fixed velocity setpoint using p1020 ... p1023. |  |  |
|  | Displays the number of the actual fixed velocity setpoint in r1197. |  |  |
|  | Sets values for the fixed velocity setpoints 1 ... 15 using p1001 ... p1015. |  |  |
|  | Refer to: p1020, p1021, p1023, r1197 |  |  |
| Note: | If a fixed velocity setpoint has not | ted (p1020 ... p1023 = 0, r1197 | then r1024 $=0($ setpoint $=0)$ |




| Notice: | The following prerequisites must be fulfilled in order to be able to save the setpoint (Bit $03=1$ ) in a non-volatile fashion: |
| :---: | :---: |
|  | - Firmware with V2.3 or higher. |
|  | - Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM). |
| Note: | Re bit 00: |
|  | 0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040. |
|  | 1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1 . |
|  | Re bit 01: |
|  | 0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$ ) . |
|  | 1: With ramp-function generator in the automatic mode. |
|  | For manual operation (0 signal via BI : p 1041 ), the ramp-function generator is always active. |
|  | Re bit 02: |
|  | 0 : Without initial rounding-off |
|  | 1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed). |
|  | The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p1082). It is calculated as follows: |
|  | $r=0.01$ \% * p1082 [1/s] / 0.13^2 [s^2] |
|  | The jerk acts up until the maximum acceleration is reached (a_max $=$ p1082 [1/s]/p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time. |
|  | Re bit 03: |
|  | 0: Non-volatile data save de-activated. |
|  | 1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$ ). |
|  | Re bit 04: |
|  | When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050. |


| p1035[0...n] | BI: Motorized potentiometer setpoint raise / Mop raise |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2505, 3020 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source to continually increase the setpoint for the motorized potentiometer. <br> The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035). |  |  |
| Dependency: | Refer to: p1036 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1035 | BI: Zero marks enable / ZM enable |  |  |
| TM41 | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9677 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to enable the zero marks. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |


| Note: | For TM41, this parameter has no function. |
| :--- | :--- |
|  | The zero mark can only be switched in or switched out using p4401. |


| $\mathbf{p 1 0 3 6 [ 0 . . . n ] ~}$ | BI: Motorized potentiometer lower setpoint / Mop lower |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Extended | Can be changed: T | Calculated: - | Access level: 3 |
| set), SERVO_AC | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2505,3020 |
| (Extended set), | P-Group: Setpoints | Units group: - | Unit selection: - |
| SERVO_I_AC | Scaling: - | Expert list: 1 |  |

TOR, VECTOR_AC,
VECTOR_I_AC

|  | Min | Max | Factory setting |
| :---: | :---: | :---: | :---: |
|  | - | - | 0 |
| Description: | The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036). |  |  |
| Dependency: | Refer to: p1035 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1037[0...n] | Motorized potentiometer maximum velocity / MotP n_max |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [m/min] |
| Description: | Sets the maximum speed/velocity for the motorized potentiometer. |  |  |
| Note: | This parameter is automatically pre-assigned in the commissioning phase. |  |  |
|  | The setpoint output from the motorized potentiometer is limited to this value. |  |  |
| p1037[0...n] | Motorized potentiometer maximum speed / MotP n_max |  |  |
| SERVO (Extended set), SERVO_AC | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| (Extended set), <br> SERVO I AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020 |
| (Extended set), VEC- | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC |  |  |  |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets the maximum speed/velocity for the motorized potentiometer. |  |  |
| Note: | This parameter is automatically pre-assigned in the commissioning phase. |  |  |
|  | The setpoint output from the motorized potentiometer is limited to this value. |  |  |


| $\mathbf{p 1 0 3 8 [ 0 . . . n ] ~}$ | Motorized potentiometer minimum velocity / MotP n_min |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Extended | Can be changed: U, T | Calculated: | Access level: 2 |
| set, Lin), SERVO_AC |  | CALC_MOD_LIM_REF |  |
| (Extended set, Lin), Data type: FloatingPoint32 Dynamic index: DDS, p0180 | Func. diagram: 3020 |  |  |
| SERVO_I_AC | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| (Extended set, Lin) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-1000.000[\mathrm{~m} / \mathrm{min}]$ | $1000.000[\mathrm{~m} / \mathrm{min}]$ | $0.000[\mathrm{~m} / \mathrm{min}]$ |

Note: $\quad$ This parameter is automatically pre-assigned in the commissioning phase.
The setpoint output from the motorized potentiometer is limited to this value.

| p1038[0...n] | Motorized potentiometer minimum speed / MotP n_min |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| (Extended set), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020 |
| (Extended set), VEC- | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets the minimum speed/velocity for the motorized potentiometer. |  |  |
| Note: | This parameter is automatically pre-assigned in the commissioning phase. |  |  |
|  | The setpoint output from the motorized potentiometer is limited to this value. |  |  |


| p1039[0...n] | BI: Motorized potentiometer inversion / MotP inv |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 3020 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer. |  |  |
| Dependency: | Refer to: p1037, p1038 |  |  |
| Note: | The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower". |  |  |
| p1040[0...n] | Motorized potentiometer starting value / Mop start value |  |  |
| SERVO (Extended | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| set, Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020 |
| SERVO_I_AC | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up. |  |  |
| Dependency: | Only effective if p1030.0 $=0$. |  |  |
|  | Refer to: p1030 |  |  |


| p1040[0...n] | Motorized potentiometer starting value / Mop start value |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended | Can be changed: U, T | Calculated: - | Access level: 2 |
| set), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020 |
| (Extended set), <br> SERVO I AC | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
| (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -210000.000 [rpm] | 210000.000 [rpm] | 0.000 [rpm] |
| Description: | Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up. |  |  |


| Dependency: | Only effective if p1030.0 $=0$. <br> Refer to: p1030 |  |  |
| :---: | :---: | :---: | :---: |
| p1041[0...n] | BI: Motorized potentiometer ma | al/automatic / Mop m | uto |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 3020 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source to change over from manual to automatic when using a motorized potentiometer. <br> In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input. |  |  |
| Dependency: <br> Note: | Refer to: p1030, p1035, p1036, p1042 |  |  |
| p1042[0...n] | CI: Motorized potentiometer automatic setpoint / Mop auto setpoint |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 3020 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: Dependency: | Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode. Refer to: p1041 |  |  |
| p1043[0...n] | BI: Motorized potentiometer accept setting value / MotP acc set val |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 3020 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: <br> Dependency: <br> Note: | Sets the signal source to accept the setting <br> Refer to: p1044 <br> The setting value (CI: p1044) becomes effe | value for the motorized potention <br> tive for a $0 / 1$ edge of the setting | mand (BI: p1043). |
| p1044[0...n] | CI: Motorized potentiometer setting value / Mop set val |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 3020 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: <br> Dependency: | Sets the signal source for the setting value for the motorized potentiometer. Refer to: p1043 |  |  |



| r1050 | CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1550, 3020 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. <br> This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint). |  |  |
| Recommend.: | Interconnect the signal with main setpoint (p1070). |  |  |
| Dependency: | Refer to: p1070 |  |  |
| Note: | For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI : p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0) |  |  |
| r1050 | CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG |  |  |
| SERVO (Extended set), SERVO_AC <br> (Extended set), <br> SERVO_I_AC <br> (Extended set), VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1550, 3020 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. <br> This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint). |  |  |
| Recommend.: | Interconnect the signal with main setpoint (p1070). |  |  |
| Dependency: | Refer to: p1070 |  |  |
| Note: | For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0) |  |  |
| p1051[0...n] | CI: Velocity limit RFG positive direction / v_limit RFG pos |  |  |
| SERVO (ESR, | Can be changed: T | Calculated: | Access level: 3 |
| Extended set, Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| Extended set, Lin), | P-Group: Setpoints | Units group: - | Unit selection: - |
| SERVO_I_AC (ESR, | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
| Extended set, Lin) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 1083[0] |
| Description: | Sets the signal source for the velocity limit of the positive direction on the ramp-function generator input. |  |  |


| p1051[0...n] | CI: Speed limit RFG positive direction of rotation / n_limit RFG pos |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (ESR, | Can be changed: T | Calculated: - | Access level: 3 |
| Extended set), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| SERVO_AC (ESR, | P-Group: Setpoints | Units group: - | Unit selection: - |
| Extended set), | Scaling: p2000 | Expert list: 1 |  |
| SERVO_I_AC (ESR, | Not for motor type: - |  |  |
| Extended set), VEC- |  | Factory setting |  |
| TOR, VECTOR_AC, |  | Max | 1083[0] |
| VECTOR_I_AC | Min | - |  |
|  | Sets the signal source for the speed limit of the positive direction on the ramp-function generator input. |  |  |


| p1052[0...n] | Cl: Velocity limit RFG negative direction /v_limit RFG neg |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (ESR, | Can be changed: T | Calculated: - | Access level: 3 |
| Extended set, Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| SERVO_AC (ESR, | P-Group: Setpoints | Units group: - | Unit selection: - |
| Extended set, Lin), | Scaling: p2000 | Expert list: 1 |  |
| SERVO_I_AC (ESR, Not for motor type: - |  |  |  |
| Extended set, Lin) |  | Max | Factory setting |

Description: Sets the signal source for the velocity limit of the negative direction on the ramp-function generator input.

| p1052[0...n] | Cl: Speed limit RFG negative direction of rotation / n_limit RFG neg |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (ESR, | Can be changed: T | Calculated: - | Access level: 3 |
| Extended set), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| SERVO_AC (ESR, | P-Group: Setpoints | Units group: - | Unit selection: - |
| Extended set), | Scaling: p2000 | Expert list: 1 |  |
| SERVO_I_AC (ESR, Not for motor type: - |  |  |  |
| Extended set), VEC- |  | Factory setting |  |
| TOR, VECTOR_AC, |  | Max | 1086[0] |
| VECTOR_I_AC | Min | - |  |
|  | - | Sets the signal source for the speed limit of the negative direction on the ramp-function generator input. |  |


| p1055[0...n] | BI: Jog bit 0 / Jog bit 0 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501, 3030 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for jog 1. |  |  |
| Recommend.: | When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source. |  |  |
| Dependency: | Refer to: p0840, p1058 |  |  |
| Notice: | The drive is enabled for jogging using BI : p 1055 or $\mathrm{BI}: \mathrm{p} 1056$. |  |  |
|  | The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056. |  |  |
|  | Only the signal source that was used to power up can also be used to power down again. |  |  |


| p1056[0...n] | BI: Jog bit 1 / Jog bit 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2501, 3030 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: <br> Recommend.: | Sets the signal source for jog 2. <br> When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source. |  |  |
| Dependency: <br> Notice: | Refer to: p0840, p1059 <br> The drive is enabled for jogging <br> The command "ON/OFF1" can b <br> Only the signal source that was | 55 or BI: p1056. <br> ng BI: p0840 or using BI: p105 <br> up can also be used to powe | again. |
| p1058[0...n] | Jog 1 velocity setpoint |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> -1000.000 [m/min] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 4_1 <br> Scaling: - <br> Max <br> 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] | Access level: 2 <br> Func. diagram: 1550, 3030 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: <br> Dependency: | Sets the speed/velocity for jog 1. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056 |  |  |
| p1058[0...n] | Jog 1 speed setpoint / Jor |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: - | Access level: 2 <br> Func. diagram: 1550, 3030 <br> Unit selection: p0505 <br> Expert list: 1 |
|  | Min $-210000.000 \text { [rpm] }$ | $\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rpm}] \end{aligned}$ | Factory setting 0.000 [rpm] |
| Description: Dependency: | Sets the speed/velocity for jog 1. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056 |  |  |
| p1059[0...n] | Jog 2 velocity setpoint |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> -1000.000 [m/min] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 4_1 <br> Scaling: - <br> Max <br> 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] | Access level: 2 <br> Func. diagram: 1550, 3030 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 0.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: <br> Dependency: | Sets the speed/velocity for jog 2. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056 |  |  |


| p1059[0...n] | Jog 2 speed setpoint / Jog 2 n_s |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended <br> set), SERVO_AC <br> (Extended set), <br> SERVO_I_AC <br> (Extended set), VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: - | Access level: 2 <br> Func. diagram: 1550, 3030 <br> Unit selection: p0505 <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -210000.000[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rpm}] \end{aligned}$ | Factory setting 0.000 [rpm] |
| Description: <br> Dependency: | Sets the speed/velocity for jog 2 . Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056 |  |  |
| p1063[0...n] | Velocity limit setpoint channel / v_limit setp |  |  |
| SERVO (Extended set, Lin), SERVO_AC <br> (Extended set, Lin), <br> SERVO_I_AC <br> (Extended set, Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> 0.000 [ $\mathrm{m} / \mathrm{min}$ ] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 4_1 <br> Scaling: - <br> Max <br> 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] | Access level: 1 <br> Func. diagram: 3040 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: <br> Dependency: | Sets the speed limit/velocity limit effective in the setpoint channel. Refer to: p1082, r1082, p1083, p1085, p1086, p1088 |  |  |
| p1063[0...n] | Speed limit setpoint channel / n_limit setp |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> 0.000 [rpm] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: - <br> Max <br> 210000.000 [rpm] | Access level: 1 <br> Func. diagram: 3040 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 210000.000 [rpm] |
| Description: <br> Dependency: | Sets the speed limit/velocity limit effective in the setpoint channel. Refer to: p1082, r1082, p1083, p1085, p1086, p1088 |  |  |
| p1063[0...n] | Speed limit setpoint channel / n_limit setp |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> 0.000 [rpm] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: - <br> Max <br> 210000.000 [rpm] | Access level: 1 <br> Func. diagram: 3040 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 40000.000 [rpm] |
| Description: <br> Dependency: | Sets the speed limit/velocity limit effective in the setpoint channel. Refer to: p1082, r1082, p1083, p1085, p1086, p1088 |  |  |
| p1070[0...n] | CI: Main setpoint / Main setpoint |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_IAC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 1550, 3030 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 1024[0] |
| Description: | Sets the signal source for the main setpoint. |  |  |


|  | Examples: |  |  |
| :---: | :---: | :---: | :---: |
|  | r1024: Fixed speed setpoint effective |  |  |
|  | r1050: Motor. potentiometer setpoint after the ramp-function generator |  |  |
| Dependency: | Refer to: p1071, r1073, r1078 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1071[0...n] | CI: Main setpoint scaling / Main setp scal |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3030 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting 1 |
|  | - | - |  |
| Description: | Sets the signal source for scaling the main setpoint. |  |  |
| r1073 | CO: Main setpoint effective / Main setpoint eff |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3030 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p 2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the effective main setpoint. |  |  |
|  | The value shown is the main setpoint after scaling. |  |  |
| r1073 | CO: Main setpoint effective / Main setpoint eff |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3030 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting - [rpm] |
|  | - [rpm] | - [rpm] |  |
| Description: | Displays the effective main setpoint. <br> The value shown is the main setpoint after scaling. |  |  |
|  |  |  |  |  |
| p1075[0...n] | CI: Supplementary setpoint / Suppl setp |  |  |
| SERVO (Extended | Can be changed: T | Calculated: - | Access level: 3 |
| set), SERVO_AC | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3030 |
| (Extended set), <br> SERVO I AC | P-Group: Setpoints | Units group: - | Unit selection: - |
| (Extended set), VEC- | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
| TOR, VECTOR_AC, VECTOR_I_AC |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source for the supplementary setpoint. |  |  |
| Dependency: | Refer to: p1076, r1077, r1078 |  |  |


| p1076[0...n] | CI: Supplementary setpoint sca | / Suppl setp scal |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: PERCENT | Access level: 3 <br> Func. diagram: 1550, 3030 <br> Unit selection: - <br> Expert list: 1 |
|  |  | Max | Factory setting 1 |
| Description: | Sets the signal source for scaling the supplementary setpoint. |  |  |
| r1077 | CO: Supplementary setpoint effective / Suppl setpoint eff |  |  |
| SERVO (Extended set, Lin), SERVO_AC <br> (Extended set, Lin), <br> SERVO_I_AC <br> (Extended set, Lin) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> - [m/min] | Calculated: - <br> Dynamic index: - <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> - [m/min] | Access level: 3 <br> Func. diagram: 3030 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting - [m/min] |
| Description: | Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling. |  |  |
| r1077 | CO: Supplementary setpoint effective / Suppl setpoint eff |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 3030 <br> Unit selection: p0505 <br> Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling. |  |  |
| r1078 | CO: Total setpoint effective / Total setpoint eff |  |  |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> - [m/min] | Calculated: - <br> Dynamic index: - <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> - [m/min] | Access level: 3 <br> Func. diagram: 3030 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting - [m/min] |
| Description: | Displays the total effective setpoint. <br> The value indicates the sum of the effective main setpoint and supplementary setpoint. |  |  |
| $\mathbf{r 1 0 7 8}$ | CO: Total setpoint effective / Total setpoint eff |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_IAC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 3030 <br> Unit selection: p0505 <br> Expert list: 1 |
|  | Min - [rpm] | Max - [rpm] | Factory setting <br> - [rpm] |
| Description: | Displays the total effective setpoint. <br> The value indicates the sum of the effective main setpoint and supplementary setpoint. |  |  |




| p1082[0...n] | Maximum speed / n_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(1), T | Calculated: CALC_MOD_ALL | Access level: 1 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020, 3050, 3060, 3070, 3095, 5300 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.000 [rpm] | $\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rpm}] \end{aligned}$ | Factory setting 1500.000 [rpm] |
| Description: | Sets the highest possible speed. |  |  |
| Dependency: | Refer to: p0115, p0322, p0324, p0532 |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | The parameter applies for both motor directions. |  |  |
|  | The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer). |  |  |
|  | Since the parameter is part of quick commissioning (p0010 = 1), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed. |  |  |
|  | The following limits are always effective for p1082: |  |  |
|  | p1082 < = min(p0324, p0532) if p0324>0 and p0532>0 |  |  |
|  | p1082 < p 0322 if p0324 $=0$ or p0532 $=0$ and p0322 > 0 |  |  |
|  | p1082 <= $60 /(10.0$ * p0115[0] * r0313) |  |  |
|  | $\mathrm{p} 1082<=60$ * Maximum power unit pulse frequency / (5.0 * r0313) |  |  |

For the automatic calculation $(p 0340=1)$ the value of the parameter is pre-assigned the maximum motor speed ( p 0322 ). If $\mathrm{p} 0322=0$, the rated motor speed ( p 0311 ) is used as default (pre-assignment) value. For induction motors that are not catalog motors ( $\mathrm{p} 0301=0$ ), the synchronous no-load speed is used as default (pre-assignment) value (p0310 * 60 / r0313).
For synchronous motors, the following additionally applies:
In the automatic calculation ( $\mathrm{p} 0340=1$ ), p 1082 is limited to speeds for which the rated current of the power unit (S1 continuous operation r0207[3]) is not sufficient as field current: p1082 < p0348 / (1-r0207 / r0331), valid for r0207[3]<r0331.
On the other hand, an additional limit is effective, which prevents the EMF from exceeding the maximum DC link voltage (see p0643 and p1231).
The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.
p1082 is also available in the quick commissioning (p0010 = 1); this means that when exiting via p3900 $>0$, the value is not changed.

| p1082[0...n] | Maximum velocity / v_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: C2(1), T | Calculated: CALC_MOD_ALL | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3020, 3050, 3060, 3070, 3095, 5300 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.000 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the highest possible velocity. |  |  |
| Dependency: | Refer to: p0115, p0322, p0324, p0532 |  |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r 3996 . Modifications can be made again when $\mathrm{r} 3996=0$. |  |  |
| Note: | The parameter applies for both motor directions. |  |  |
|  | The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer). |  |  |
|  | Since the parameter is part of quick commissioning ( $\mathrm{p} 0010=1$ ), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed. |  |  |
|  | The following limits are always effective for p1082: |  |  |
|  | p1082 < $=\min (\mathrm{p} 0324, \mathrm{p} 0532)$ if p0324>0 and p0532 > 0 |  |  |
|  | p1082 <= p0322 if p0324 $=0$ or p0532 $=0$ and p0322 > 0 |  |  |
|  | p1082 <= $60 /(10.0$ * p0115[0] * r0313) |  |  |
|  | p1082 <= 60 * Maximum power unit pulse frequency / ( 5.0 * r0313) |  |  |
|  | For the automatic calculation ( $\mathrm{p} 0340=1$ ) the value of the parameter is pre-assigned the maximum motor speed ( p 0322 ). If $\mathrm{p} 0322=0$, the rated motor speed ( p 0311 ) is used as default (pre-assignment) value. For induction motors that are not catalog motors ( $\mathrm{p} 0301=0$ ), the synchronous no-load speed is used as default (pre-assignment) value ( p 0310 * $60 / \mathrm{r} 0313$ ). |  |  |
|  | For synchronous motors, the following additionally applies: |  |  |
|  | In the automatic calculation (p0340 $=1$ ), p 1082 is limited to speeds for which the rated current of the power unit (S1 continuous operation r0207[3]) is not sufficient as field current: p1082 < p0348 / ( 1 - r0207 / r0331), valid for r0207[3]<r0331. |  |  |
|  | On the other hand, an additional limit is effective, which prevents the EMF from exceeding the maximum DC link voltage (see p0643 and p1231). |  |  |
|  | The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186. |  |  |
|  | p 1082 is also available in the quick commissioning ( $\mathrm{p} 0010=1$ ); this means that when exiting via $p 3900>0$, the value is not changed. |  |  |



| p1083[0...n] | CO: Speed limit in positive direction of rotation / n_limit pos |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3050, 3095 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min 0.000 [rpm] | $\begin{aligned} & \text { Max } \\ & 210000.000 \text { [rpm] } \end{aligned}$ | Factory setting 210000.000 [rpm] |
| Description: | Sets the maximum speed for the positive direction. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1083[0...n] | CO: Velocity limit positive direction / v_limit pos |  |  |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3050, 3095 |
|  | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> 0.000 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 1000.000 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the maximum velocity for the positive direction. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1083[0...n] | CO: Speed limit in positive direction of rotation / n_limit pos |  |  |
| VECTOR, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC, VECTOR I AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3050, 6732 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.000 \text { [rpm] } \end{aligned}$ | Factory setting 40000.000 [rpm] |
| Description: | Sets the maximum speed for the positive direction. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| r1084 | CO: Speed limit positive effective / n_limit pos eff |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3050, 3095 |
| TOR, VECTOR_AC, | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\mathrm{rpm}] \end{aligned}$ | Factory setting - [rpm] |
| Description: |  |  |  |
| Dependency: | Refer to: p1082, r1082, p1083, p1085 |  |  |
| r1084 | CO: Velocity limit positive effective / v_limit pos eff |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3050, 3095 |
| SERV | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max - [m/min] | Factory setting - [m/min] |
| Description: | Displays the effective positive velocity limit. Refer to: p1082, r1082, p1083, p1085 |  |  |
| Dependency: |  |  |  |


| p1085[0...n] | Cl : Velocity limit positive direc | v_limit pos |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set, Lin), SERVO_AC (Extended set, Lin), SERVO_I_AC (Extended set, Lin) | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2000 <br> Max | Access level: 3 <br> Func. diagram: 3050 <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 1083[0] |
| Description: | Sets the signal source for the velocity limit of the positive direction. |  |  |
| p1085[0...n] | Cl : Speed limit in positive direction of rotation / n_limit pos |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2000 <br> Max | Access level: 3 <br> Func. diagram: 3050 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 1083[0] |
| Description: | Sets the signal source for the speed limit of the positive direction. |  |  |
| p1086[0...n] | CO: Speed limit in negative direction of rotation / n_limit neg |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> -210000.000 [rpm] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> 0.000 [rpm] | Access level: 2 <br> Func. diagram: 3050, 3095 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> -210000.000 [rpm] |
| Description: Notice: | Sets the speed limit for the negative direction. |  |  |
| p1086[0...n] | CO: Velocity limit negative direction / v_limit neg |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> $-1000.000[\mathrm{~m} / \mathrm{min}]$ | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> 0.000 [ $\mathrm{m} / \mathrm{min}]$ | Access level: 2 <br> Func. diagram: 3050, 3095 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> -1000.000 [m/min] |
| Description: Notice: | Sets the velocity limit for the negative direction. |  |  |
| p1086[0...n] | CO: Speed limit in negative direction of rotation / n_limit neg |  |  |
| VECTOR, <br> VECTOR_AC, VECTOR_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> -210000.000 [rpm] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> 0.000 [rpm] | Access level: 2 <br> Func. diagram: 3050 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> -40000.000 [rpm] |
| Description: Notice: | Sets the speed limit for the negative direction. |  |  |


| r1087 | CO: Speed limit negative effective / n_limit neg eff |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3050, 3095 |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the effective negative speed limit. |  |  |
| Dependency: | Refer to: p1082, r1082, p1086, p1088 |  |  |
| r1087 | CO: Velocity limit negative effective / v_limit neg eff |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3050, 3095 |
| S | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting <br> - [m/min] |
| Description: | Displays the effective negative velocity limit. |  |  |
| Dependency: | Refer to: p1082, r1082, p1086, p1088 |  |  |
| p1088[0...n] | CI: Velocity limit negative direction / n_limit neg |  |  |
| SERVO (Extended | Can be changed: T | Calculated: - | Access level: 3 |
| set, Lin), SERVO_AC | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| SERVO_I_AC | P-Group: Setpoints | Units group: - | Unit selection: - |
| (Extended set, Lin) | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1086[0] |
| Description: | Sets the signal source for the speed/velocity limit of the negative direction. |  |  |



| p1091[O...n] | Skip velocity 1 / v_skip 1 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Extended | Can be changed: U, T | Calculated: - | Access level: 3 |
| set, Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3050 |
| (Extended set, Lin), | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| SERVO_I_AC | Scaling: p2000 | Expert list: 1 |  |
| (Extended set, Lin) | Not for motor type: - | Max | Factory setting |
|  | Min | $1000.000[\mathrm{~m} / \mathrm{min}]$ | 0.000 [m/min] |
|  | 0.000 [m/min] |  |  |
| Description: | Sets skip velocity 1. | Refer to: p1092, p1093, p1094, p1101 |  |
| Dependency: | Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel. |  |  |
| Notice: | The skip (suppression) velocities can be used to prevent the effects of mechanical resonance. |  |  |
| Note: |  |  |  |




For the skip bandwidths, the following hysteresis behavior applies:
For a setpoint velocity coming from below, the following applies: $\mathrm{r} 1170<580[\mathrm{~m} / \mathrm{min}]$ and $580[\mathrm{~m} / \mathrm{min}]<=\mathrm{r} 1114<=620[\mathrm{~m} / \mathrm{min}]-->\mathrm{r} 1119=580[\mathrm{~m} / \mathrm{min}]$ For a setpoint velocity coming from above, the following applies: r1170 > 620 [m/min] and $580[\mathrm{~m} / \mathrm{min}]$ <= r1114 <= $620[\mathrm{~m} / \mathrm{min}]$--> r1119 = $620[\mathrm{~m} / \mathrm{min}]$


| p1106[0...n] | CI: Minimum velocity signal source / v_min s_src |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended | Can be changed: T | Calculated: - | Access level: 3 |
| set, Lin), SERVO_AC | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
| (Extended set, Lin), SERVO I AC | P-Group: Setpoints | Units group: - | Unit selection: - |
| (Extended set, Lin) | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for lowest possible motor velocity. |  |  |
| Dependency: | Refer to: p1080 |  |  |
| Notice: | The effective minimum velocity is formed from p1080 and p1106. |  |  |
| p1106[0...n] | CI: Minimum speed signal source / n_min s_src |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3050 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for lowest possible motor speed. |  |  |
| Dependency: | Refer to: p1080 |  |  |
| Notice: | The effective minimum speed is formed from p1080 and p1106. |  |  |


| p1110[0...n] | BI: Inhibit negative direction / Inhib neg dir |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2505, 3040 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: Dependency: | Sets the signal source to disable the negative direction. Refer to: p1111 |  |  |
| p1111[0...n] | BI: Inhibit positive direction / Inhib pos dir |  |  |
| SERVO (Extended set), SERVO_AC (Extended set), SERVO_I_AC <br> (Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2505, 3040 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: Dependency: | Sets the signal source to disable the positive direction. <br> Refer to: p1110 |  |  |
| $r 1112$ | CO: Velocity setpoint after minimum limiting / v_set aft min_lim |  |  |
| SERVO (Extended <br> set, Lin), SERVO_AC <br> (Extended set, Lin), <br> SERVO_I_AC <br> (Extended set, Lin) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - <br> Min <br> - [m/min] | Calculated: - <br> Dynamic index: - <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> - [m/min] | Access level: 3 <br> Func. diagram: 3050 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> - [m/min] |
| Description: Dependency: | Displays the velocity setpoint after the minimum limiting. Refer to: p1091, p1092, p1093, p1094, p1101 |  |  |
| r1112 | CO: Speed setpoint after minimum limiting / n_set aft min_lim |  |  |
| SERVO (Extended set), SERVO_AC <br> (Extended set), <br> SERVO_I_AC <br> (Extended set), VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Setpoints <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 | Access level: 3 <br> Func. diagram: 3050 <br> Unit selection: p0505 <br> Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: Dependency: | Displays the speed setpoint after the minimum limiting. Refer to: p1091, p1092, p1093, p1094, p1101 |  |  |




| p1120[0...n] | Ramp-function generator ramp-up time / RFG ramp-up time |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: C2(1), U, T | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.000 \text { [s] }$ | Max 999999.000 [s] | Factory setting 10.000 [s] |
| Description: | The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$ ) up to the maximum speed (p1082) in this time. |  |  |
| Dependency: | Refer to: p1082, r1082, p1138 |  |  |
| Note: | The ramp-up time can be scaled via connector input p1138. |  |  |
|  | The parameter is adapted during the rotating measurement (p1960>0). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized. |  |  |
|  | For U/f control and sensorless vector control (see p1300), ramp-up times of 0 s are not expedient. The setting should be based on the startup times (r0345) of the motor. |  |  |
| p1121[0...n] | Ramp-function generator ramp-down time / RFG ramp-down time |  |  |
| SERVO, | Can be changed: C2(1), U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 999999.000[\mathrm{~s}] \end{aligned}$ | Factory setting 10.000 [s] |
| Description: | The ramp-function generator ramps-down the speed setpoint from the maximum speed ( $p 1082$ ) down to standstill (setpoint $=0$ ) in this time. |  |  |
|  | Further, the ramp-down time is always effective for OFF1. |  |  |
| Dependency: | Refer to: p1082, r1082, p1139 |  |  |
| Note: | The ramp-down time can be scaled via connector input p1139. |  |  |
|  | The following applies for SERVO: |  |  |
|  | The ramp-function generator is only available when the function module "extended setpoint channel" is active (r0108.8 = 1). |  |  |


| p1121[0...n] | Ramp-function generator ramp-down time / RFG ramp-down time |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $\mathrm{C} 2(1), \mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3060, 3070 |
| SERVO__AC (Lin) | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 999999.000 [s] | 0.000 [s] |
| Description: | The drive is decelerated from the maximum velocity ( p 1082 ) down to standstill (setpoint $=0$ ) in this time. Further, the ramp-down time is always effective for OFF1. |  |  |
| Dependency: | Refer to: p1082, r1082, p1139 |  |  |
| Note: | The ramp-down time can be scaled via connector input p1139. |  |  |
|  | The following applies for SERVO: |  |  |
|  | The ramp-function generator is only available when the function module "extended setpoint channel" is active (r0108.8 = 1). |  |  |


| p1121[0...n] | Ramp-function generator ramp-down time / RFG ramp-down time |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(1), U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 999999.000[s] \end{aligned}$ | Factory setting 10.000 [s] |
| Description: | The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$ ) in this time. <br> Further, the ramp-down time is always effective for OFF1. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p1082, r1082, p1139 |  |  |
| Note: | For U/f control and sensorless vector control (see p1300), ramp-down times of 0 s are not recommended. The setting should be based on the startup times (r0345) of the motor. |  |  |
| p1122[0...n] | BI: Bypass ramp-function generator / Bypass RFG |  |  |
| SERVO (ESR, <br> Extended set), <br> SERVO_AC (ESR, <br> Extended set), <br> SERVO_I_AC (ESR, <br> Extended set), VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2505 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for bypassing the ramp generator (ramp-up and ramp-down times $=0$ ). |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For VECTOR in encoderless operation, it is not permissible that the ramp-function generator is bypassed. |  |  |
| p1130[0...n] | Ramp-function generator initial rounding-off time / RFG t_start_round |  |  |
| SERVO (ESR, <br> Extended set), SERVO_AC (ESR, Extended set), SERVO_I_AC (ESR, Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 30.000 [s] | 0.000 [s] |
| Description: | Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system. |  |  |
| Note: |  |  |  |  |  |
| p1131[0...n] | Ramp-function generator final rounding-off time / RFG t_end_delay |  |  |
| SERVO (ESR, <br> Extended set), SERVO_AC (ESR, Extended set), SERVO_I_AC (ESR, Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 30.000 [s] | 0.000 [s] |
| Description: | Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system. |  |  |
| Note: |  |  |  |  |  |



| p1136[0...n] | OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (ESR, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| Extended set), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3070 |
| SERVO_AC (ESR, Extended set), | P-Group: Setpoints | Units group: - | Unit selection: - |
| SERVO_I_AC (ESR, | Not for motor type: - | Scaling: - | Expert list: 1 |
| Extended set), VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 30.000 [s] | 0.000 [s] |
| Description: | Sets the initial rounding-off time for OFF3 for the extended ramp generator. |  |  |
| p1137[0...n] | OFF3 final rounding-off time / RFG OFF3 t_end_del |  |  |
| SERVO (ESR, <br> Extended set), SERVO_AC (ESR, Extended set), SERVO_I_AC (ESR, Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 30.000 [s] | 0.000 [s] |
| Description: | Sets the final rounding-off time for OFF3 for the extended ramp generator. |  |  |
| p1138[0...n] | CI: Up ramp scaling / Up ramp scaling |  |  |
| SERVO (ESR, <br> Extended set), <br> SERVO_AC (ESR, <br> Extended set), <br> SERVO_I_AC (ESR, <br> Extended set), VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source for scaling the up ramp. |  |  |
| Dependency: | Refer to: p1120 |  |  |
| Note: | The ramp-up time is set in p1120. |  |  |
| p1139[0...n] | CI: Down ramp scaling / Down ramp scaling |  |  |
| SERVO (ESR, <br> Extended set), <br> SERVO_AC (ESR, <br> Extended set), <br> SERVO_I_AC (ESR, <br> Extended set), VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source for scaling the down ramp. |  |  |
| Dependency: | Refer to: p1121 |  |  |
| Note: | The ramp-down time is set in p1121. |  |  |


| p1140[0...n] | BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4). |  |  |
|  |  |  |  |
|  | BI: p1140 = 0 signal: |  |  |
|  | Inhibits the ramp-function generator (the ramp-function generator output is set to zero). |  |  |
|  | BI: $\mathrm{p} 1140=1$ signal: |  |  |
|  | Ramp-function generator enable. |  |  |
| Dependency: | Refer to: p1141, p1142 |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1140 | BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable |  |  |
| TM41 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9678 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator". |  |  |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4). |  |  |
|  | BI: p1140 = 0 signal: |  |  |
|  | Inhibits the ramp-function generator (the ramp-function generator output is set to zero). |  |  |
|  | BI: p1140 = 1 signal: |  |  |
|  | Ramp-function generator enable. |  |  |
| Dependency: | Refer to: p1141, p1142 |  |  |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode. |  |  |
| p1141[0...n] | BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC, VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2501 |
| TOR, VECTOR_AC, | P-Group: Setpoints | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator". |  |  |



| Note: | When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard: <br> BI: p1142 $=0$ signal |
| :---: | :---: |
| p1142 | BI: Enable setpoint/inhibit setpoint / Setpoint enable |
| TM41 | Can be changed: T Calculated: - Access level: 3 |
|  | Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: 9674, 9678 |
|  | P-Group: Setpoints Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | 1 |
| Description: | Sets the signal source for the command "enable setpoint/inhibit setpoint". |
|  | For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6). |
|  | BI: p1142 $=0$ signal |
|  | Inhibits the setpoint (the ramp-function generator input is set to zero). |
|  | BI: $\mathrm{p} 1142=1$ signal |
|  | Setpoint enable. |
| Dependency: | Refer to: p1140, p1141 |
| Caution: | When "master control from PC" is activated, this binector input is ineffective. |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode. |
| p1143[0...n] | BI: Ramp-function generator, accept setting value / RFG accept set v |
| SERVO (ESR, <br> Extended set), SERVO_AC (ESR, Extended set), SERVO_I_AC (ESR, Extended set), VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T Calculated: - Access level: 3 |
|  | Data type: Unsigned32 / Binary Dynamic index: CDS, p0170 Func. diagram: 3060, 3070 |
|  | P-Group: Setpoints Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  |  |
|  |  |
|  | Min Max Factory setting |
|  | - 0 |
| Description: | Sets the signal source for accepting the setting value of the ramp-function generator. |
| Dependency: | The signal source for the ramp-function generator setting value is set using parameters. Refer to: p1144 |
| Note: | 0/1 signal: |
|  | The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator. |
|  | The setting value of the ramp-function generator is effective. 1/0 signal: |
|  | The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time. |
|  | The input value of the ramp-function generator is effective. |



| p1145[0...n] | Ramp-function generator tracking intensity. / RFG track intens |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3080 |
| VECTOR_I_AC | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | 50.0 | Factory setting |
|  | 0.0 |  |  |
| Description: | Sets the ramp-function generator tracking. |  |  |
|  | The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible |  |  |
|  | drive acceleration. The reference value is the deviation at the speed/velocity controller input that is necessary to |  |  |



| r1149 | CO: Ramp-function generator, acceleration / RFG acceleration |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (ESR, | Can be changed: - | Calculated: - | Access level: 3 |
| Extended set), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3060, 3070 |
| Extended set), | P-Group: Setpoints | Units group: 39_1 | Unit selection: p0505 |
| SERVO_I_AC (ESR, | Not for motor type: - | Scaling: p2007 | Expert list: 1 |
| Extended set), VEC- |  |  |  |
| TOR, VECTOR_AC, VECTOR_I_AC |  |  |  |
|  | Min <br> - [rev/s²] | Max <br> - [rev/s²] | Factory setting - [rev/s²] |
| Description: | Displays the acceleration of the ramp-function generator. |  |  |
| Dependency: | Refer to: p1145 |  |  |
| r1150 | CO: Ramp-function generator velocity setpoint at the output / RFG n_set at outp |  |  |
| SERVO (ESR, | Can be changed: - | Calculated: - | Access level: 3 |
| Extended set, Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1550, 3080 |
| Extended set, Lin), | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
| SERVO_I_AC (ESR, | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
| Extended set, Lin) |  |  |  |
|  | Min | Max | Factory setting |
|  | - [m/min] | - [m/min] | - [m/min] |
| Description: | Displays the setpoint at the output of the ramp-function generator. |  |  |

r1150 CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp
SERVO (ESR,
Extended set),
SERVO_AC (ESR,
Extended set),
SERVO_I_AC (ESR, Not for motor type: -
Calculated: -
Can be changed: -
Data type: FloatingPoint32
P-Group: Setpoints

Extended set), VEC-
TOR, VECTOR_AC,
VECTOR_I_AC

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-[\mathrm{rpm}]$ | $-[\mathrm{rpm}]$ | $-[\mathrm{rpm}]$ |

Description: Displays the setpoint at the output of the ramp-function generator.


| p1152 | BI: Setpoint 2 enable / Setp 2 enab |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC (Extended brk), VECTOR (Extended brk), VECTOR_AC (Extended brk), VECTOR_I_AC (Extended brk) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Commands <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: | Access level: 3 <br> Func. diagram: 2711, 4015 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 899.15 |
| Description: | Sets the signal source for "setpoi |  |  |


| p1155[0...n] | CI: Speed controller speed setpoint 1 / n_ctrl n_set 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3080, 5030, 6031 |
| VECTOR I AC | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for speed setpoint 1 of the speed controller. |  |  |
| Dependency: | The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6. |  |  |
|  | Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189, p1412, p1414, p1417, p1418 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1155[0...n] | CI: Velocity controller, velocity setpoint 1 / v_ctrl v_set 1 |  |  |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3080, 5030, 6031 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for velocity setpoint 1 of the velocity controller. |  |  |
| Dependency: | The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6. |  |  |
|  | Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189, p1412, p1414, p1417, p1418 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1155 | CI: TM41 encoder emulation speed setpoint 1 / Enc_emulat n_set 1 |  |  |
| TM41 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 9674 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for speed setpoint 1 of the encoder emulation. |  |  |
|  | The speed setpoint is processed corresponding to the sequencer of the TM41. |  |  |
| Dependency: | The effectiveness of this setpoint depends on control word 1 (STW1). |  |  |
|  | Refer to: r0898 |  |  |


| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| :---: | :---: | :---: | :---: |
|  | CI: Speed controller speed setpoint 2 / n_ctrl n_set 2 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3080 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 0 |
| Description: | Sets the signal source for speed setpoint 2 of the speed controller. |  |  |
| Dependency: | Refer to: p1155, r1170 |  |  |
| Note: | For OFF1/OFF3, the ramp-function generator ramp is effective. |  |  |
|  | The ramp-function generator is set (SERVO: to the actual value, VECTOR: To the setpoint (r1170)) and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator). |  |  |
|  | When the function module "position control" (r0108.3 = 1 ) is activated, this connector input is interconnected as follows as standard: |  |  |
| p1160[0...n] | CI: Velocity controller, velocity setpoint 2 / v_ctrl v_set 2 |  |  |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 3080 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 0 |
| Description: | Sets the signal source for velocity setpoint 2 of the velocity controller. |  |  |
| Dependency: | Refer to: $\mathrm{p} 1155, \mathrm{r} 1170$ |  |  |
| Note: | For OFF1/OFF3, the ramp-function generator ramp is effective. |  |  |
|  | The ramp-function generator is set to the actual value and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator). |  |  |
|  | For the function module "position control" (r0108.3 = 1), this connector input is interconnected as follows as standard: |  |  |
|  | Cl: p1160 = r2562 |  |  |
| r1169 | CO: Speed controller, speed setpoints 1 and 2 / n_ctrl n_set 1/2 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3080 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | $\begin{aligned} & \text { Max } \\ & -[r p m] \end{aligned}$ | Factory setting - [rpm] |
| Description: | Displays the speed setpoint after the addition of the speed setpoint 1 ( p 1155 ) and speed setpoint 2 (p1160). |  |  |
| Dependency: | Refer to: p1155, p1160 |  |  |
| Note: | The value is only correctly displayed at r0899.2 $=1$ (operation enabled). |  |  |




| p1190 | CI: DSC position deviation XERR / DSC XERR |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 1550, 3090 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the position deviation XERR for DSC (position controller output of the higher-level control). |  |  |
| Dependency: | Clock cycle synchronous operation must be activated for DSC. |  |  |
|  | The position controller gain factor (KPC), the position deviation (XERR) and the speed setpoint (N_SOLL_B) must be included in the setpoint telegram. |  |  |
|  | At least the encoder interface (Gx_XIST1) must be included in the actual value telegram. |  |  |
|  | The position actual value used for the internal position controller can be selected using p1192. |  |  |
|  | Refer to: p1191, p1192 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
|  | The parameter can only be interconnected to a signal source with Integer32 data type. |  |  |
| Note: | DSC: Dynamic Servo Control |  |  |


| p1191 | CI: DSC position controller gain KPC / DSC KPC |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 1550, 3090 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the position controller gain KPC for DSC. |  |  |
| Dependency: | Clock cycle synchronous operation must be activated for DSC. |  |  |
|  | Refer to: p1190 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | DSC: Dynamic Servo Control |  |  |
| p1192[0..n] | DSC enc selection / DSC enc selection |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 3090 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min1 | Max | Factory setting |
|  |  | 3 | 1 |
| Description: Value: | Sets the number of the encoder used for DSC. |  |  |
|  | $\begin{array}{ll}\text { 1: } & \text { Encoder } 1 \text { (motor encoder) } \\ \text { 2: } & \text { Encoder } 2 \\ \text { 3: } & \text { Encoder } 3\end{array}$ |  |  |
| Note: | DSC: Dynamic Servo Control |  |  |
|  | Value 1 corresponds to encoder 1 (motor encoder); the encoder data set is assigned via p0187. |  |  |
|  | Value 2 corresponds to encoder 2; the encoder data set is assigned via p0188. |  |  |
|  | Value 3 corresponds to encoder 3; the encoder data set is assigned via p0189. |  |  |
| p1193[0...n] | DSC encoder adaptation factor / DSC encodAdaptFact |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 3090 |
|  | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$ | Max | Factory setting |
|  |  | 1000000.000 | 1.000 |
| Description: | Sets the factor to adapt the encoder when using either encoder 2 or 3 for DSC. |  |  |
|  | The factor sets the ratio of the pulse difference between the motor encoder and the selected encoder for the same distance moved through. |  |  |
|  | This factor takes into account e.g. gear ratios, differences in the number of encoder pulses. |  |  |
| Dependency: | Refer to: p1192 |  |  |
| Note: | DSC: Dynamic Servo Control |  |  |
|  | Example: |  |  |
|  | Encoder 1: Motor encoder with 2048 pulses/revolution, ballscrew with $10 \mathrm{~mm} /$ revolution pitch |  |  |
|  | Encoder 2: Linear scale with $20 \mu \mathrm{~m}$ grid division as direct measuring system |  |  |
|  | $\mathrm{p} 1193=$ number of pulses, encoder 1 per motor revolution / number of pulses, encoder 2 per motor revolution$\mathrm{p} 1193=2048 /(10 \mathrm{~mm} / 20 \mu \mathrm{~m})=4.096$ |  |  |



| Dependency: | The symmetrizing time constant is only evaluated if the "DSC with spline" function module (r0108.6) is activated. |
| :--- | :--- |
|  | Refer to: p1191, p1192, p1194, p1427 |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | The symmetrizing time constant T_SYMM has the unit $10 \mu \mathrm{~s}$ in the Unsigned16 format. |
|  | DSC: Dynamic Servo Control |


| p1195 | CI: DSC symmetrizing time constant T_SYMM / DSC T_SYMM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (DSC | Can be changed: T | Calculated: - | Access level: 3 |
| spline), SERVO_AC | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 1550,3090 |
| (DSC spline), | P-Group: Setpoints | Units group: - | Unit selection: - |
| SERVO_I_AC (DSC | Not for motor type: - | Scaling: - | Expert list: 1 |
| spline) | Min | - | Factory setting |
|  | - | 0 |  |


| Description: | Sets the signal source for the symmetrizing time constant T_SYMM for DSC with spline. |
| :---: | :---: |
|  | T_SYMM = 0: |
|  | Symmetrization is de-activated. |
|  | T_SYMM > 0: |
|  | The position setpoint is symmetrized with the time constant T_SYMM. |
|  | For active torque precontrol (r1407.20, 21, 22), the speed precontrol value is symmetrized with the sum of the fol lowing time constants: |
|  | T_SYMM + T_SYMM_ADD (p1427) + 0.5 * speed controller clock cycle (p0115[1]) |
|  | Torque pre-control value is not symmetrized. |
| Dependency: | The symmetrizing time constant is only evaluated if the "DSC with spline" function module (r0108.6) is activated. Refer to: p1191, p1192, p1194, p1427 |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | The symmetrizing time constant T_SYMM has the unit $10 \mu \mathrm{~s}$ in the Unsigned16 format. |
|  | DSC: Dynamic Servo Control |


| $\mathbf{r 1 1 9 7}$ | Fixed velocity setpoint number actual / n_set_fixed No act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Extended | Can be changed: - | Calculated: - | Access level: 3 |
| set, Lin), SERVO_AC | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3010 |
| (Extended set, Lin), | P-Group: Setpoints | Units group: - | Unit selection: - |
| SERVO_I_AC | Sot for motor type: - | Scaling: - | Expert list: 1 |
| (Extended set, Lin) | Max | Factory setting |  |

Description: Displays the number of the selected fixed speed/velocity setpoint.
Dependency: Refer to: p1020, p1021, p1022, p1023
Note: If a fixed speed setpoint has not been selected ( $\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$ ), then r1024 $=0($ setpoint $=0)$.
r1197 Fixed speed setpoint number actual / n_set_fixed No act

SERVO (Extende set), SERVO_AC (Extended set), SERVO_I_AC
(Extended set), VEC- Not for motor type:
TOR, VECTOR_AC,
VECTOR_I_AC
Min
-
Displays the number of the selected fixed speed/velocity setpoint.
Refer to: $\mathrm{p} 1020, \mathrm{p} 1021, \mathrm{p} 1022, \mathrm{p} 1023$
If a fixed speed setpoint has not been selected ( $\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$ ), then $\mathrm{r} 1024=0$ (setpoint $=0$ ).


| p1200[0...n] | Flying restart operating mode / FlyRest op_mode |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1690 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 6 | 0 |
| Description: | Sets the operating mode for flying restart. |  |  |
|  | The flying restart allows the drive converter to be powered up while the motor is still rotating. In so doing, the drive converter output frequency is changed until the actual motor speed/velocity is found. The motor then accelerates up to the setpoint at the ramp-function generator setting. |  |  |
| Value: | 0: Flying restart inactive |  |  |
|  | 1: Flying restart always active (start in setpoint direction) |  |  |
|  | 2: FlyRestart active after on, fault, OFF2 (start in setp. dir.) |  |  |
|  | 3: FlyRestart active after fault, OFF2 (start in setp. direction) |  |  |
|  | 4: Flying restart always active (start only in setpoint direction) |  |  |
|  | 5: FlyRestart active after on, fault, OFF2 (start only in setp_dir) |  |  |
|  | 6: FlyRestart active after fault, OFF2 (start only in setp. dir.) |  |  |
| Dependency: | For induction motors, the following applies: |  |  |
|  | A differentiation is made between flying restart for U/f control and for vector control ( p 1300 ). |  |  |
|  | Flying restart, U/f control: p1202, p1203, r1204 |  |  |
|  | Flying restart, vector control: p1202, p1203, r1205 |  |  |
|  | For synchronous motors, the following applies: |  |  |
|  | Flying restart is not possible with U/f control or if, in the case of sensorless vector control, a Voltage Sensing Module (VSM) has not been connected and parameterized. |  |  |
|  | If two VSMs are connected to the Motor Module, then the motor voltage for the flying restart is measured using the second VSM (see p0151[1]). |  |  |
|  | If only one VSM is connected, then this can be used for the flying restart. |  |  |
|  | Refer to: p1201 |  |  |
|  | Refer to: F07330, F07331 |  |  |
| Notice: | The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent. |  |  |
|  | It does not make sense to use "flying restart" together with the "motor holding brake function" (p1215 > 0) because then the flying restart will always be realized with the motor stationary. |  |  |
| Note: | For p1200 = 1, 4, the following applies: |  |  |
|  | Flying restart is active after faults, OFF1, OFF2, OFF3. |  |  |
|  | For p1200 $=2,5$, the following applies: |  |  |
|  | The "power-on" is the first power-on operation after the drive system has been booted. This is practical for motors with a high-inertia load. |  |  |
|  | For p1200 = 1, 2, 3, the following applies: The search is made in both directions. |  |  |
|  | For $\mathrm{p} 1200=4,5,6$, the following applies: The search is only made in the setpoint direction. For a setpoint of zero, a search is not made in the negative direction of rotation. |  |  |
|  | For operation with encoder, the following applies: |  |  |
|  | $\mathrm{p} 1200=1,4$ as well as p1200 $=2,5$ and p1200 $=3,6$ have the same meaning. |  |  |
|  | For U/f control (p1300<20), the following applies: |  |  |
|  | The speed can only be sensed for values above approx. $5 \%$ of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill. |  |  |
|  | If $p 1200$ is changed while commissioning ( $p 0009, p 0010>0$ ), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p 1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300). |  |  |


| p1201[0...n] | BI: Flying restart enable signal source / Fly_res enab S_src |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source to enable the "flying restart" function. |  |  |
| Dependency: | Refer to: p1200 |  |  |
| Note: | Withdrawing the enable signal has the same effect as setting p1200 $=0$. |  |  |
| p1202[0...n] | Flying restart search current / FlyRest I_srch |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $U, T$ | Calculated: - | Access level: 4 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min$10 \text { [\%] }$ |  | Factory setting |
|  |  | 400 [\%] | 100 [\%] |
| Description: | Sets the search current for the "flying restart" function. |  |  |
|  | The value is referred to the motor magnetizing current. |  |  |
| Dependency: | Refer to: r0331 |  |  |
| Caution: | An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion. |  |  |
| Note: | In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the prevailing search current is set dependent upon the frequency on the basis of voltage inputs. |  |  |
|  | Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example). |  |  |
| p1203[0...n] | Flying restart search rate factor / FlyRst v_Srch Fact |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min 10 [\%] | Max | Factory setting |
|  |  | 4000 [\%] | 100 [\%] |
| Description: | Sets the factor for the search speed for flying restart. |  |  |
|  | The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time. |  |  |
| Recommend.: | For encoderless vector control and motor cables longer than 200 m , set the factor p1203 >= $300 \%$. |  |  |
| Caution: | An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion. |  |  |
|  | For vector control, a value that is too low or too high can cause flying restart to become unstable. |  |  |
| Note: | The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart). |  |  |
|  | With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with $\mathrm{U} / \mathrm{f}$ control and low speeds), we recommend that the search rate is reduced (by increasing p1203). |  |  |


| r1204.0... 13 | CO/BO: Flying restart, U/f control status / FlyRest Uf st |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - |  | Calculated: - Access level: 4 |  |  |
|  | Data type: Unsigned16 |  | Dynamic index: - Func. diagram: - |  |  |
|  | P-Group: Functions |  | Units group: - Unit selection: - |  |  |
|  | Not for motor type: PEM, REL |  | Scaling: - Expert list: 1 |  |  |
|  | Min |  | Max F | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the status for checking and monitoring flying restart states in the U/f control mode. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Current impressed | Yes | No | - |
|  | 01 | No current flow | Yes | No | - |
|  | 02 | Voltage input | Yes | No | - |
|  | 03 | Voltage reduced | Yes | No | - |
|  | 04 | Start ramp-function generator | Yes | No | - |
|  | 05 | Wait for execution | Yes | No | - |
|  | 06 | Slope filter act | Yes | No | - |
|  | 07 | Positive gradient | Yes | No | - |
|  | 08 | Current < thresh | Yes | No | - |
|  | 09 | Current minimum | Yes | No | - |
|  | 10 | Search in the positive direction | Yes | No | - |
|  | 11 | Stop after positive direction | Yes | No | - |
|  | 12 | Stop after negative direction | Yes | No | - |
|  | 13 | No result | Yes | No | - |

r1205.0... 15
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Description:
Bit field.

Note:
CO/BO: Flying restart, vector control status / FlyRest vector st

Bit field:

Can be changed: -
Data type: Unsigned16
P-Group: Functions
Not for motor type: PEM, REL Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 4
Func. diagram: Unit selection: -
Expert list: 1 Factory setting Displays the status for checking and monitoring flying restart states in the vector control mode.

| Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: |
| 00 | Speed adaptation circuit record angle | Yes | No | - |
| 01 | Speed adaptation circuit set gain to 0 | Yes | No | - |
| 02 | Isd channel enable | Yes | No | - |
| 03 | Speed control switched out | Yes | No | - |
| 04 | Quadrature arm switched in | Yes | No | - |
| 05 | Special transformation active | Yes | No | - |
| 06 | Speed adaptation circuit set I comp to 0 | Yes | No | - |
| 07 | Current control on | Yes | No | - |
| 08 | Isd_set = 0 A | Yes | No | - |
| 09 | Frequency held | Yes | No | - |
| 10 | Search in the positive direction | Yes | No | - |
| 11 | Search Started | Yes | No | - |
| 12 | Current impressed | Yes | No | - |
| 13 | Search interrupted | Yes | No | - |
| 14 | Speed adaptation circuit deviation $=0$ | Yes | No | - |
| 15 | Speed control activated | Yes | No | - |

Re bit 00 ... 09:
Used to control internal sequences during the flying restart
Depending on the motor type (p0300), the number of active bits differs.
Re bits 10 ... 15:
Are used to monitor the flying restart sequence.
For permanent-magnet synchronous motors (PEM) only bits 10, 11 and 15 are supported.



| Danger: | If the automatic restart is activated ( $\mathrm{p} 1210>1$ ) if there is an ON command (refer to p 0840 ), the drive is powered up |
| :---: | :---: |
|  | as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to p0864) is again available. This automatic power-up sequence can only be interrupted by withdrawing the ON command. |
| Caution: | A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). For p1210 > 1, the infeed is automatically started. |
| Note: | When automatic restart mode is activated, the supply voltage must remain connected (e.g. backed up by UPS). Re p1210 = 1: <br> Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. A minimum time of p1212 +1 s must expire between a successful fault acknowledgement and a fault re-occurring if the signal ON/OFF1 (STW1.0) is at a HIGH signal level. If the signal ON/OFF1 is at a LOW signal level, then the time between a successful fault acknowledgement and a new fault must be at least 1 s . p1211 has no influence on the number of acknowledgment attempts. <br> Re p1210 = 4: <br> An automatic restart is only executed if fault F06200 has occurred. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure. <br> Re p1210 = 6: <br> An automatic restart is carried out if any fault has occurred. |
| p1210 | Automatic restart, mode / AR mode |
| S_INF | Can be changed: U, T Calculated: - Access level: 2 |
|  | Data type: Integer16 Dynamic index: - Func. diagram: - |
|  | P-Group: Functions Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> 0 6 0 |
| Description: | Sets the automatic restart mode (AR). |
| Value: | 0: Inhibit automatic restart <br> 1: Acknowledge all faults without restarting <br> 4: $\quad$ Restart after line supply failure w/o additional start attempts <br> 6: $\quad$ Restart after fault with additional start attempts |
| Dependency: | The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210>1, there is no active ON command, then the automatic restart is interrupted. <br> When using an Advanced Operator Panel (AOP) in the LOCAL Mode, then there is no automatic restart. <br> Refer to: p0840, p0857, p1267 <br> Refer to: F30003 |
| Danger: | If the automatic restart is activated ( $\mathrm{p} 1210>1$ ) if there is an ON command (refer to p 0840 ), the drive is powered up as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to p0864) is again available. This automatic power-up sequence can only be interrupted by withdrawing the ON command. |
| Caution: | A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). For p1210 > 1, the infeed is automatically started. |
| Note: | When automatic restart mode is activated, the supply voltage must remain connected (e.g. backed up by UPS). Re p1210 = 1: <br> Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. A minimum time of p1212 +1 s must expire between a successful fault acknowledgement and a fault re-occurring if the signal ON/OFF1 (STW1.0) is at a HIGH signal level. If the signal ON/OFF1 is at a LOW signal level, then the time between a successful fault acknowledgement and a new fault must be at least 1 s . <br> p1211 has no influence on the number of acknowledgment attempts. <br> Re p1210 = 4: <br> An automatic restart is only executed if fault F06200 has occurred. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure. |

Re p1210 = 6:
An automatic restart is carried out if any fault has occurred


Caution: A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). When faults are present, therefore, the parameter cannot be changed.
For p1210 > 1, the motor is automatically started.
Note: $\quad$ When automatic restart mode is activated, the supply voltage must remain connected (e.g. backed up by UPS).
Re p1210 = 1:
Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.
Re p1210 = 4:
An automatic restart is only carried out if fault F30003 occurred at the Motor Module or a 1 signal is present at binector input p1208[1]. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure.
Re p1210 = 6:
An automatic restart is carried out if any fault has occurred or there is a 1 signal at binector input p1208[0].
Re p1210 = 14:
As for p1210 = 4. However, faults that are present must be manually acknowledged.
Re p1210 = 16:
As for $\mathrm{p} 1210=6$. However, faults that are present must be manually acknowledged.

## p1210

VECTOR,
VECTOR_AC,
VECTOR_I_AC
Automatic restart, mode / AR mode
Data type: Integer16 Dynamic index: -

P-Group: Functions
Units group: -

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the automatic restart mode (AR)

Danger: If the automatic restart is activated ( $\mathrm{p} 1210>1$ ) if there is an ON command (refer to p0840), the drive is powered up as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to p0864) is again available. This automatic power-up sequence can only be interrupted by withdrawing the ON command.

Access level: 2
Func. diagram: -
Unit selection: -

Not for motor type: -
Scaling: -
Min
0
Max
16
Sets the automatic restart mode (AR).
Expert list: 1
Factory setting
0
Description:


Note: A start attempt starts immediately when a fault occurs. The restart attempt is considered to have been completed if the infeed is powered up and an additional delay time of 1 s has expired.

As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgement starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt (i.e. a fault/error has no longer occurred up to the end of the power-up operation) the start counter is again reset to the parameter value after 1 s . If faults re-occur, the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgement also causes the start counter to be decremented.

## p1211 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR AC, VECTOR_I_AC

## Automatic restart, start attempts / AR start attempts

After a complete power failure the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1. If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2 .

Can be changed: $U, T$
Data type: Unsigned16
P-Group: Functions
Not for motor type: Min

0

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
10

## Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Sets the start attempts of the automatic restart function for $\mathrm{p} 1210=4,6$.

Caution: A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Notice: $\quad$ After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1. If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.
Note: A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired.
As long as a fault is present, an acknowledge command is generated in the time intervals of p 1212 / 2 . When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgement starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.

At least one start attempt is always carried out.
After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgement also causes the start counter to be decremented


The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present). Index 1:
The start counter (refer to r 1214 ) is only set back to the starting value p1211 if, after successful restart, the time in $\mathrm{p} 1213[1]$ has expired. The delay time is not effective for fault acknowledgement without automatic restart (p1210 =
1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the power-on command is withdrawn and the fault is acknowledged.
The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.


| r1214.0...15 | CO/BO: Automatic restart, status / AR status |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the status of the automatic restart (AR). |  |  |
| Bit field: | Bit Signal name | 1 signal | Yes |
|  | 00 | Initialization | Yes |


| 04 | Acknowledge alarms | Yes | No |
| :--- | :--- | :--- | :--- |
| 05 | Restart | Yes | No |
| 06 | Delay time running after automatic power- | Yes | No |
|  | up |  |  |
| 07 | Fault | Yes | No |
| 10 | Effective fault | Yes | No |
| 12 | Start count. bit 0 | ON | OFF |
| 13 | Start count. bit 1 | ON | OFF |
| 14 | Start count. bit 2 | ON | OFF |
| 15 | Start count. bit 3 | ON | OFF |

Re bit 00:
State to display the single initialization after POWER ON.
Re bit 01:
State in which the automatic restart function waits for faults (initial state).
Re bit 02:
General display that a fault has been identified and that the restart or acknowledgement has been initiated.
Re bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$ ). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
Re bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$ ).
Re bit 05:
State in which the drive is automatically powered up (only for p1210 $=4,6$ ).
Re bit 06:
State in which the system waits after having been powered up, to the end of the start attempt.
For p1210 = 1, this signal is directly set after the faults have been successfully acknowledged.
Re bit 07:
State which is assumed after a fault occurs within the automatic restart function.
Re bits $12 \ldots 15$ :
Actual state of the start counter (binary coded).


Re bit 00:
State to display the single initialization after POWER ON.
Re bit 01:
State in which the automatic restart function waits for faults (initial state).
Re bit 02:
General display that a fault has been identified and that the restart or acknowledgement has been initiated.
Re bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$ ). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
Re bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$ ).
Re bit 05:
State in which the drive is automatically powered up (only for p1210 $=4,6$ ).
Re bit 06:
State in which the system waits after having been powered up, to the end of the start attempt (to the end of the magnetizing process).
For p1210 = 1, this signal is directly set after the faults have been successfully acknowledged.
Re bit 07:
State which is assumed after a fault occurs within the automatic restart function. This is only reset after acknowledging the fault and withdrawing the power-on command.
Re bit 10:
When the automatic restart function is active, r 1214 bit 7 is displayed, otherwise the effective fault r2139 bit 3 .
Re bits 12 ... 15:
Actual state of the start counter (binary coded).

| p1215 | Motor holding brake configuration / Brake config |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 2701, 2707, 2711 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 0 |
| Description: | Sets the holding brake configuration. |  |  |
| Value: | 0: No motor holding brake available |  |  |
|  | 1: Motor holding brake acc. to sequence control |  |  |
|  | 2: Motor holding brake always open |  |  |
|  | 3: Motor holding brake like sequence control, connection via BICO |  |  |
| Dependency: | Refer to: p1216, p1217, p1226, p1227, p1228, p1278 |  |  |
| Caution: | For the setting p1215 = 0, if a brake is used, it remains closed. If the motor moves, this will destroy the brake. |  |  |
| Notice: | If p1215 was set to 1 or if p 1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855. |  |  |
| Note: | If the configuration is set to "no holding brake present" when booting, then the motor holding brake will be automatically identified. If a motor holding brake is detected, the configuration is set to "motor holding brake as for sequence control". |  |  |
|  | If a motor holding brake is used via the brake connection of the Motor Module integrated in the drive, then it is not permissible that p1215 is set to 3 . |  |  |
|  | if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal. |  |  |
|  | When the function module "extended brake control" is activated (r0108.14 = 1), r1229.1 should be interconnected as control signal. |  |  |
|  | The parameter can only be set to zero when the pulses are inhibited. |  |  |

The parameterization "no motor holding brake available" and "Safe Brake Control" enabled (p1215 $=0, \mathrm{p} 9602=1$, p9802 = 1) is not practical if there is no motor holding brake.
The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ( $\mathrm{p} 1215=3$, p9602 $=1, \mathrm{p} 9802=1$ ) is not practical.

| p1216 | Motor holding brake, opening time / Brake t_open |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2701, 2711 |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Functions | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | $\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$ | Factory setting 100 [ms] |
| Description: | After controlling the holding brake (opens), the speed/velocity setpoint remains at zero for this time. After this, the speed/velocity setpoint is enabled. |  |  |
| Recommend.: | This time should be set longer than the actual opening time of the brake. This ensures that the drive cannot accelerate when the brake is applied. |  |  |
| Dependency: | Refer to: p1215, p1217 |  |  |
| Note: | For a motor with DRIVE-CLiQ and integrated brake, for $00300=10000$, this time is pre-assigned the value saved in the motor. |  |  |
| p1217 | Motor holding brake closing time / Brake t_close |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2701, 2711 |
| TOR, VECTOR AC, | P-Group: Functions | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | $\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$ | Factory setting 100 [ms] |
| Description: | Sets the time to apply the motor holding brake. |  |  |
|  | After OFF1 or OFF3 and the holding brake is controlled (the brake closes), then the drive remains closed-loop controlled for this time stationary with a speed setpoint/velocity setpoint of zero. The pulses are suppressed when the time expires. |  |  |
| Recommend.: | This time should be set longer than the actual closing time of the brake. This ensures that the pulses are only suppressed after the brake has closed. |  |  |
| Dependency: | Refer to: p1215, p1216 |  |  |
| Notice: | If the selected closing time is too short with respect to the actual closing time of the brake, then the load can sag. If the closing time is selected to be too long with respect to the actual closing time of the brake, the control works against the brake and therefore reduces its lifetime. |  |  |
| Note: | For a motor with DRIVE-CLiQ and integrated brake, for $00300=10000$, this time is pre-assigned the value saved in the motor. |  |  |


| p1218[0...1] | BI: Open motor holding brake / Open brake |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC <br> (Extended brk), <br> SERVO_I_AC <br> (Extended brk), VEC- <br> TOR (Extended brk), <br> VECTOR_AC <br> (Extended brk), <br> VECTOR_I_AC <br> (Extended brk) | Can be changed: $T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: 2707 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the signal source for a conditional opening of the motor holding brake.
Dependency: Refer to: p1215

## Factory setting

1

| Note: | [0]: Signal, open brake, AND logic operation, input 1 |
| :--- | :--- |
| [1]: Signal, open brake, AND logic operation, input 2 |  |


| p1219[0..3] | BI: Immediately close m | g brake / Clos |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VECTOR (Extended brk), VECTOR_AC (Extended brk), VECTOR_I_AC (Extended brk) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 2 <br> Func. diagram: 2707 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] 0 <br> [1] 0 <br> [2] 0 <br> [3] 1229.9 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for an uncon Refer to: p1215, p1275 <br> [0]: Signal, immediately close bra <br> [1]: Signal, immediately close bra <br> [2]: Signal, immediately close bra <br> [3]: Signal, immediately close brak <br> These four signals form an OR lo | mmediate) closing <br> via p1275.0 via p1275.1 <br> the factory setting n. | brake. |



| p1222 | BI: Motor holding brake feedback signal brake closed / Brake feedb closed |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VECTOR (Extended brk), VECTOR_AC <br> (Extended brk), VECTOR_I_AC (Extended brk) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: 2711 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | $\operatorname{Max}$ | Factory setting 0 |
| Description: | Sets the signal source for the feedback signal "brake closed". |  |  |
| Dependency: | Refer to: p1223, p1275 |  |  |
| Note: | 1 signal: Brake closed. <br> When braking with 1 feedback si feedback signal (p1223). <br> For r1229.5 = 1, OFF1/OFF3 are whereby OFF2 remains effective | erted feedback sign <br> to prevent the drive | the BICO input for the second <br> a load that drives the motor - |
| p1223 | BI: Motor holding brake feedback signal brake open / Brake feedb open |  |  |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VEC- <br> TOR (Extended brk), <br> VECTOR_AC <br> (Extended brk), <br> VECTOR_I_AC <br> (Extended brk) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: 2711 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | $\operatorname{Max}$ | Factory setting 1 |
| Description: | Sets the signal source for the feedback signal "brake open". <br> For motor holding brakes with feedback signal, the signal "brake open" can be activated using p1275.5 = 1 . |  |  |
| Dependency: Note: | 1 signal: Brake open. <br> When braking with 1 feedback signal, the inverted feedback signal is connected to the BICO input for the second feedback signal (p1222). |  |  |
| p1224[0...3] | BI: Close motor holding brake at standstill / Brk close standst |  |  |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VEC- <br> TOR (Extended brk), <br> VECTOR_AC <br> (Extended brk), <br> VECTOR_I_AC <br> (Extended brk) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: 2704 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: <br> Dependency: | Sets the signal source for close brake at standstill. <br> Refer to: p1275 |  |  |

[2]: Signal, close brake at standstill
[3]: Signal, close brake at standstill
These four signals form an OR logic operation.


| p1226[0...n] | Threshold for zero speed detection / n_standst n_thresh |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 2701, 2704 |
|  | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 20.00 [rpm] |
| Description: | Sets the speed threshold for the standstill identification. |  |  |
|  | Acts on the actual value and setpoint monitoring. |  |  |
|  | When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified. The following applies when the brake control is activated: |  |  |
|  |  |  |  |
|  | When the threshold is undershot, the brake control is started and the system waits for the brake closing time in p 1217 . The pulses are then suppressed. |  |  |
|  | if the brake control is not activated, the following applies: |  |  |
|  | When the threshold is undershot, the pulses are suppressed and the drive coasts down. |  |  |
| Dependency: | Refer to: p1215, p1216, p1217, p1227 |  |  |
| Notice: | For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots. |  |  |
| Note: | Standstill is identified in the following cases: |  |  |
|  | - the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. |  |  |
|  | - the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low. |  |  |
|  |  |  |  |


| $\mathbf{p 1 2 2 6 [ 0 . . . n ] ~}$ | Standstill detection, velocity threshold / v_standst v_thresh |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 2701,2704 |
| SERVO_I_AC (Lin) | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~m} / \mathrm{min}]$ | $1000.00[\mathrm{~m} / \mathrm{min}]$ | $0.20[\mathrm{~m} / \mathrm{min}]$ |
| Description: | Sets the velocity threshold for the standstill identification. |  |  |



| Dependency: | Refer to: $\mathrm{p} 1226, \mathrm{p} 1227$ |
| :--- | :--- |
| Notice: | When the motor holding brake is activated, pulse cancellation is additionally delayed by the brake closing time |
|  | $(\mathrm{p} 1217)$. |


| r1229.1... 11 | CO/BO: Motor holding brake status word / Brake ZSW |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VECTOR (Extended brk), VECTOR_AC <br> (Extended brk), <br> VECTOR_I_AC <br> (Extended brk) | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Functions <br> Not for motor type: - |  | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - |  | Access level: 2 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 |  |
|  | Min |  | Max |  | Fact |  |
| Description: | Displays the status word for the motor holding brake. |  |  |  |  |  |
| Bit field: | Bit | Signal name |  | 1 signal | 0 signal | FP |
|  |  | Command open br |  | Yes | No | 2711 |
|  | 03 | Pulse enable, ext |  | Yes | No | 2711 |
|  | 04 | Brake does not op |  | Yes | No | 2711 |
|  | 05 | Brake does not cl |  | Yes | No | 2711 |
|  | 06 | Brake threshold ex |  | Yes | No | 2707 |
|  | 07 | Brake threshold |  | Yes | No | 2704 |
|  | 08 | Brake monitoring |  | Yes | No | 2704 |
|  | 09 | Pulse enable req ited |  | Yes | No | 2707 |
|  | 10 | Brake OR logic op |  | Yes | No | 2707 |
|  | 11 | Brake AND logic |  | Yes | No | 2707 |


| $\mathbf{p 1 2 3 0 [ 0 . . . n ] ~}$ | BI: Armature short-circuit / DC braking activation / ASC/DCBRK act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 7014,7016, |
| SERVO_I_AC, VEC- |  | 7017 |  |
| TOR, VECTOR_AC, | P-Group: Functions | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Fax |

Description: Sets the signal source to activate the armature short-circuit or DC braking.
Dependency: Refer to: p1231, p1232, p1233, p1234, p1235, p1236, p1237, r1238, r1239, p1345, p1346
Note:
1 signal: Armature short-circuit/DC braking activated.
0 signal: Armature short-circuit/DC braking de-activated.

| p1231[0...n] | Armature short-circuit / DC braking configuration / ASC/DCBRK config |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: 7014,7016, |
| SERVO_I_AC, VEC- |  | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | P-Group: Functions | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Not for motor type: - | Max | Factory setting |
|  | Min | 0 |  |
|  | 0 |  |  |
| Description: | Setting to activate the various types for armature short-circuit / DC braking. |  |  |
| Value: | $0:$ | No function |  |
|  | $1:$ | External armature short-circuit with contactor feedback signal |  |
|  | $2:$ | Ext. armature short circuit without contactor feedback signal |  |


|  | $4: \quad$ Internal armature short-circuit / DC braking |
| :--- | :--- |
| Dependency: | Refer to: p0300, p1230, p1232, p1233, p1234, p1235, p1236, p1237, $\mathrm{r} 1238, \mathrm{r} 1239, \mathrm{p} 1345, \mathrm{p} 1346$ |
| Danger: | Re p1231 = 1, 2: |
|  | - only short-circuit-proof motors may be used, or suitable resistors must be used to short-circuit the motor |
|  | Re p1231 = 3: |
| - when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the |  |
| DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)! |  |
| - it is only permissible to use motors that are short-circuit proof (p0320 < p0323). |  |
| - The Motor Module must be able to conduct $180 \%$ short-circuit current (r0320) of the motor (r0209). |  |
| - the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs |  |
| during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor. |  |
| - if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to |  |
| ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for |  |
| the components. |  |

- if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module.
- if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).
Re p1231 = 4 and synchronous motor:
- when armature short-circuit is active, all of the motor terminals are at half of the DC link potential.
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- The Motor Module must be able to conduct $180 \%$ short-circuit current (r0320) of the motor (r0209).

Note:
Re p1231 = 1, 2 :
The external armature short circuit can only be selected for synchronous motors (p0300). In this case, control bit BO: r1239.0 must be interconnected (e.g. to a digital input) to control the external contactor.
The external armature short circuit cannot be set as a fault response. It can be triggered via binector input p1230. It is also always activated in the case of pulse suppression.
Re p1231 = 3:
Internal voltage protection (using an internal armature short circuit) can only be selected for synchronous motors ( p 0300 ) and Motor Modules in booksize or chassis format. Further, it is not permissible for Safety Integrated to be active on blocksize Motor Modules (i.e. p9501 $=0$ and p9601 $=0$ ). The internal voltage protection prevents the DC link capacitance from being charged if there is no possibility of regenerating the EMF of a motor operated in the field-weakening mode. The Motor Module must support this function (r0192.9 = 1).
a) If the Motor Module does not support the autonomous, internal armature short-circuit (r0192.10 = 0), the armature short-circuit is activated as soon as the activation criterion is fulfilled (refer below):
b) If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module itself decides - using the DC link voltage - as to whether the short-circuit should be activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn. This therefore ensures that the required input voltage for the Control Supply Module is maintained.
For chassis units, the following applies:
The value for the voltage limits is calculated, depending on the voltage class, from EEPROM data of the particular power unit and a factor.
Re p1231 = 4:
The function is activated as soon as the activation criterion is fulfilled.

- the function can be superseded by OFF2
a) For synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}, 4 \mathrm{xx}$ ), the internal armature short-circuit is initiated.
- the Motor Module must support this function (r0192.9 = 1).
b) For induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ), the DC braking is initiated.

Activation criterion (one of the following criteria is fulfilled):

- binector input p1230 $=1$ signal (DC braking activation).
- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

|  | Re p1231 = 5: |
| :--- | :--- |
|  | DC braking can only be set for induction motors. |
|  | DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive |
|  | speed still lies above the speed threshold p1234, then initially, the drive is ramped-down to this threshold, demag- |
|  | netized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched- |
| off. If, at OFF1/OFF3, the drive speed is below p1234, then it is immediately demagnetized and switched into DC |  |


| p1233[0...n] | DC braking time / DCBRK time |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 7017 |
| SERVO_I_AC, VEC- | P-Group: Functions | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
| VECTOR_I_AC | Min | $3600.0[\mathrm{~s}]$ | Fxpert list: 1 |
|  | $0.0[\mathrm{~s}]$ | $1.0[\mathrm{~s}]$ |  |
|  | Sets the DC braking time (as fault response). |  |  |
| Description: | Refer to: p1230, p1231, p1232, p1234, r1239 |  |  |
| Dependency: | The time set is also effective when parameterizing DC braking as fault response. |  |  |
| Note: | If a speed encoder is being used, DC braking is ended as soon as the drive falls below the standstill threshold |  |  |
|  | (p1226). |  |  |


| p1234[0...n] | Speed at the start of DC braking / DCBRK n_start |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 7017 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 210000.00 [rpm] |
| Description: | Sets the starting speed for DC braking. <br> If the actual speed falls below this threshold, then DC braking is activated. |  |  |
| Dependency: | Refer to: p1230, p1231, p1232, p1233, r1239 |  |  |
| Caution: | If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the braking current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill. |  |  |
|  | In the case of operation with an encoder, this speed may not be set too low so as ensure that the oscillation movement induced by the residual flux/remanence of the motor does not cause DC braking to be de-activated again. |  |  |


| p1234[0...n] | DC braking, starting velocity / DCBRK v_start |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 7017 |
| SERVO_I_AC (Lin) | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
|  | Min | $1000.00[\mathrm{~m} / \mathrm{min}]$ | Factory setting |
|  | 0.00 [m/min] | 1000.00 [m/min] |  |
| Description: | Sets the starting velocity for DC braking. |  |  |
|  | If the actual velocity falls below this threshold, then DC braking is activated. |  |  |
| Dependency: | Refer to: p1230, p1231, p1232, p1233, r1239 |  |  |
| Caution: | If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to |  |  |
|  | the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the brak- |  |  |
|  | ing current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, |  |  |
|  | therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill. |  |  |


| p1234[0...n] | Speed at the start of DC braking / DCBRK n_start |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 1 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: 7017 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
|  | Min | Expert list: 1 |  |
|  | 0.00 [rpm] | Factory setting |  |
| Description: | Sets the starting speed for DC braking. | 40000.00 [rpm] |  |
|  | If the actual speed falls below this threshold, then DC braking is activated. |  |  |
| Dependency: | Refer to: p1230, p1231, p1232, p1233, r1239 |  |  |
| Caution: | If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to |  |  |
|  | the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the brak- |  |  |
|  | ing current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, |  |  |
| therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill. |  |  |  |


| p1235[0...n] | BI: External armature short-circuit, contactor feedback signal / ASC ext feedback |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: $T$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Functions | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | - | 0 |

Description: Sets the signal source for the contactor feedback signal for external armature short-circuit.
Dependency:
Notice:
Note: 1 signal: The contactor is closed.
0 signal: The contactor is open.

| p1236[0...n] | Ext. armature short-cct., contactor feedback signal monit. time / ASC ext t_monit |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $U$, $T$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| TOR VECTOR AC, | P-Group: Functions | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | Max 1000 [ms] | Factory setting 200 [ms] |
| Description: | Sets the monitoring time of the contactor feedback signal for the external armature short-circuit configuration. If the contactor feedback signal (p1235) is parameterized, then the appropriate feedback signal (r1239.1) is expected within this monitoring time after either opening or closing the contactor. |  |  |
| Dependency: | Refer to: p1230, p1231, p1235, p1237, r1239 |  |  |
|  | Refer to: A07904, F07905 |  |  |


| p1237[0...n] | External armature short-circuit, delay time when opening / ASC ext t_wait |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Functions | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | $1000[\mathrm{~ms}]$ | $200[\mathrm{~ms}]$ |
|  | $0[\mathrm{~ms}]$ |  |  |

If no contactor feedback signal has been selected (p1235), then the system waits for this time before the pulses are switched in.
Dependency: Refer to: p1230, p1231, p1235, p1236, r1239
Notice: $\quad$ This delay time must be at least long enough so that the contactor contacts reliably open before the pulses are switched in. The delay time must be greater than the contactor response time. The Motor Module can be damaged if the delay time is too short.


a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1).
The internal voltage protection is ready and the Motor Module decides autonomously - using the DC link voltage whether the short-circuit is activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short-circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn.
c) Internal armature short-circuit $(\mathrm{p} 1231=4)$ was selected.

The internal armature short-circuit is ready and is activated as soon as the activation criterion is fulfilled.
Activation criterion (one of the following criteria is fulfilled):

- the signal at BI : p 1230 (armature short-circuit activation) is 1 .
- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Re bit 12, 13:
Only effective for $\mathrm{p} 1231=14$.


| p1240[0...n] | Vdc controller or Vdc monitoring configuration / Vdc_ctrl config |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 6220 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 6 | 1 |
| Description: | Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. |  |  |
| Value: | 0: Inhib Vdc ctrl |  |  |
|  | 1: Vdc_max controlle |  |  |
|  | 2: Vdc_min controller (kinetic buffering) enable |  |  |
|  | 3: Vdc_min controller and Vdc_max controller enable |  |  |
|  | 4: Activates Vdc_max |  |  |
|  | 5: Activates Vdc_min mome |  |  |
|  | 6: Activates Vdc_min monitoring and Vdc_max monitoring |  |  |
| Dependency: | Refer to: p1245 |  |  |
|  | Refer to: A07400, A07401, A07402, F07403, F07404, F07405, F07406 |  |  |
| Warning: | When the Udc max controller is active, the motor can accelerate, e.g. for driving loads or for high DC link voltages caused by other drives that are connected to the common DC link busbar. |  |  |
| Caution: | If several drives are operated from the same DC link busbar, then it is recommended that the Udc control is only activated for the drives with high moments of inertia. If the Udc controls for various drives are simultaneously active, then they can mutually influence one another. In this case, the controller dynamic performance should be reduced or the Udc control of individual drives should be deactivated. |  |  |
|  | Drives with Udc control must be able to brake and accelerate independently of one another. |  |  |
| Notice: Note: | An excessively high value in p1245 can possibly negatively influence the normal operation of the drive. p1240 = 1, 3: |  |  |
|  |  |  |  |
|  | When the DC link voltage limit specified for the Motor Module is reached the following applies: |  |  |
|  | - the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking. |  |  |
|  | - the ramp-down times are automatically increased. |  |  |
|  | p1240 = 2, 3: |  |  |
|  | When the switch-in threshold of the Vdc_min controller is reached ( p 1245 ), the following applies: |  |  |
|  | - the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating. |  |  |
|  | - the motor is braked in order to use its kinetic energy to buffer the DC link. |  |  |
|  | $\mathrm{p} 1240=4,5,6:$ |  |  |
|  | When the threshold in r1242 or r1246 is reached, the DC link voltage monitoring initiates a fault (F07403 or F07404) with a response and therefore reduces additional negative effects on the DC link voltage. |  |  |
|  | If a braking resistor is connected to the DC link, then the Vdc_max control should be disabled. See also p1531. |  |  |
| r1242 | Vdc_max controller switch-in level / Vdc_max on_level |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6220 |
| $\text { VECTOR_I_AC }(\mathrm{n} / \mathrm{M})$ | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [V] | - [V] | - [V] |
| Description: | Displays the switch-in level for the Vdc_max controller. |  |  |
|  | If p1254 $=0$ (automatic sensing of the switch-in level = off), then the following applies: |  |  |
|  | AC/AC device: $\mathrm{r} 1242=1.15{ }^{*}$ sqrt(2) * p0210 |  |  |
|  | DC/AC device: r1242 = 1.15 * p0210 |  |  |




| p1249[0...n] | Vdc_max controller speed threshold / Vdc_max n_thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 10.00 [rpm] |
| Description: | Sets the lower speed threshold for the Vdc_max controller. |  |  |
|  | When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator. |  |  |
| Note: | For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator ( p 1131 ). This is supported using a dynamic setting of the speed controller. |  |  |


| p1250[0...n] | Vdc controller proportional gain / Vdc_ctrl Kp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5650 |
| SERVO_I_AC | P-Group: Functions | Units group: 19_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[A / V]$ | 10.00 [A/V] | [A/V] |
|  | Sets the proportional gain for the DC-link voltage controller (Vdc_min controller, Vdc_max controller). |  |  |
| Depcription: | Refer to: p1240, p1244, p1248 |  |  |



| p1251[0...n] | Vdc controller integral time / Vdc_ctrl Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6220 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | Expert list: 1 |  |
|  | $0[\mathrm{~ms}]$ | Factory setting |  |
| Description: | Sets the integral time for the DC-link voltage controller (Vdc_min controller, Vdc_max controller). |  |  |
| Dependency: | The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor). |  |  |
| Note: | An integral time is normally not required for single axis drives. For multi-axis drives on the other hand, it may be |  |  |
|  | possible to compensate for interference from other axes using the integral time (integral component). |  |  |


| p1252[0...n] | Vdc controller rate time / Vdc_ctrl t_rate |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6220 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 1000 [ms] | 0 [ms] |
| Description: | Sets the rate time constant for the DC-link voltage controller (Vdc_min controller, Vdc_max controller). |  |  |
| Dependency: | The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor). |  |  |
| p1254 | Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 1 |
| Description: | Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. |  |  |
| Value: | 0 : Automatic detection inhibited |  |  |
|  | 1: Automatic detection enabled |  |  |
| p1255[0...n] | Vdc_min controller time threshold / Vdc_min t_thresh |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000.000 \text { [s] } \end{aligned}$ | Factory setting 0.000 [s] |
| Description: | Sets the time threshold for the Vdc_min controller (kinetic buffering). <br> If this value is exceeded a fault is output; the required response can be parameterized. <br> Prerequisite: p1256 = 1 |  |  |
| Dependency: | Refer to: F07406 |  |  |
| Notice: | If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1240=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135. |  |  |
| p1256[0...n] | Vdc_min controller response (kinetic buffering) / Vdc_min response |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_1_AC (n/M) | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the response for the Vdc_min controller (kinetic buffering). |  |  |
| Value: | 0: Buffer Vdc until undervoltage, n<p1257 -> F07405 |  |  |
| Dependency: | Refer to: F07405, F07406 |  |  |


| p1257[0...n] | Vdc_min controller speed threshold / Vdc_min n_thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 50.00 [rpm] |
| Description: | Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized |  |  |
| r1258 | CO: Vdc controller output / Vdc_ctrl output |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6220 |
|  | P-Group: Functions | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the actual output of the Vdc controller (DC link voltage controller) |  |  |
| Note: | The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached. |  |  |
| p1260 | Bypass configuration / Bypass config |  |  |
| VECTOR (Tech_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), <br> VECTOR I AC | P-Group: - | Units group: - | Unit selection: - |
| (Tech_ctri) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the configuration for the bypass function. |  |  |
| Value: | 0: Bypass de-activated <br> 1: Bypass with synchronization and overlap <br> 2: Bypass with synchronization without overlap <br> 3: Bypass without synchronization |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Note: | If the bypass function is selected ( $(\mathrm{p} 1260>0$ ), then when the power unit restarts after POWER OFF, the state of the bypass switch is evaluated. This means that after the ramp-up, it is possible to directly change into the standby mode. This is only possible for p1267 = 1 (bypass using the control signal) and if the control command after the system has been booted is still available ( p 1266 ). This function has a higher priority than the automatic restart function (p1210). |  |  |
|  | The "bypass" function can only be switched off again $(\mathrm{p} 1260=0)$ if the bypass is not active or the bypass function has a fault. |  |  |
|  | The corresponding function should be activated in p3800 for bypass with synchronization. |  |  |


| r1261.0... 9 | CO/BO: Bypass control/status | rd / Bypass ST |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctrl), | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), <br> VECTOR I AC | P-Group: - | Units group: - | Unit selection: - |
| (Tech_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Control and feedback signals of the bypass switch. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 00 Command switch motor - power unit | Close | Open |
|  | 01 Command switch motor - line supply | Close | Open |


|  | 02 | Synchronization requested | Yes | No |
| :--- | :--- | :--- | :--- | :--- |
|  | 03 | Staging status | Active | Not active |
|  | 05 | Feedback signal switch motor - power unit | Closed | Opened |
|  | 06 | Feedback signal switch motor - line supply | Closed | Opened |
|  | 07 | Bypass command (from p1266) | Yes | No |
|  | 08 | Feedback signal synchronization completed | Yes | No |
|  |  | (from p1268) | Yes | No |
| Dependency: | 09 | Staging requested (from p2369) | Refer to: p2369 | Control bits 0 and 1 should be interconnected to the signal outputs via which the switches in the motor feeder |
| Note: | cables should be controlled. These should be selected/dimensioned for switching under load. |  |  |  |


| p1262[0...n] | Bypass dead time / Bypass t_dead |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_REG | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| (Tech_ctrl), <br> VECTOR I AC | P-Group: - | Units group: - | Unit selection: - |
| (Tech_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [s] | 20.000 [s] | 1.000 [s] |
| Description: | Sets the dead time for non-synchronized bypass. |  |  |
| Note: | This parameter is used to define the changeover time of the contactors. It should not be shorter than the de-magne tizing time of the motor (p0347). |  |  |
|  | The total changeover time for the bypass is based on the total of p 1262 plus the OFF time for the relevant switch (p1274[x]). |  |  |


| p1263 | Debypass delay time / Debypass t_del |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR (Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Tech_ctrl) | Min | $300.000[\mathrm{~s}]$ | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $1.000[\mathrm{~s}]$ |  |
|  | Sets the delay time to switch back to converter operation for a non-synchronized bypass. |  |  |


| p1264 | Bypass delay time / Bypass t_del |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR(Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Tech_ctrl) | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $300.000[\mathrm{~s}]$ | $1.000[\mathrm{~s}]$ |
|  | Sets the delay time for switching to line operation for a non-synchronized bypass. |  |  |


| p1265 | Bypass speed threshold / Bypass n_thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), <br> VECTOR I AC | P-Group: - | Units group: 3_1 | Unit selection: p0505 |
| (Tech_ctrl) | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 1480.00 [rpm] |
| Description: | Sets the speed threshold to activate the bypass. |  |  |
| Note: | When selecting p1260 = 3 and p1267.1 = 1, the bypass is automatically activated when this speed is reached. |  |  |




| p1274[0...1] | Bypass switch monitoring time / Switch t_monit |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR(Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Tech_ctrl) | Min | Factory setting |  |
|  | $0[\mathrm{~ms}]$ | 1000 [ms] |  |
|  | Sets the monitoring time for the bypass switch. |  |  |
| Description: | $[0]=$ Switch motor/drive |  |  |
| Index: | $[1]=$ Switch motor/line supply |  |  |
|  | The monitoring is de-activated with $p 1274=0$ ms. |  |  |
| Note: | The changeover time for the bypass $(\mathrm{p} 1262)$ is extended by the value in this parameter. |  |  |


| p1275 | Motor holding brake control word / Brake STW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VECTOR (Extended brk), VECTOR_AC (Extended brk), VECTOR_I_AC (Extended brk) | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Acce <br> Func <br> Unit <br> Expe |  |
|  | Min | Max | Fact 0000 |  |
| Description: | Sets the control word for the motor holding brake. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Inverting BI: 1219[0] <br> 01 Inverting BI: 1219[1] <br> 02 Inverting BI: 1224[0] <br> 03 Inverting BI: 1224[1] <br> 05 Brake with feedback | 1 signal <br> Yes <br> Yes <br> Yes <br> Yes <br> Yes | 0 signal <br> No <br> No <br> No <br> No <br> No | $\begin{aligned} & \text { FP } \\ & 2707 \\ & 2707 \\ & 2704 \\ & 2704 \\ & 2711 \end{aligned}$ |
| p1276 | Motor holding brake, standstill detection, bypass / Brk standst bypass |  |  |  |
| SERVO (Extended brk), SERVO_AC <br> (Extended brk), <br> SERVO_I_AC <br> (Extended brk), VEC- <br> TOR (Extended brk), <br> VECTOR_AC <br> (Extended brk), <br> VECTOR_I_AC <br> (Extended brk) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Acce <br> Func <br> Unit <br> Expe |  |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.000[\mathrm{~s}] \end{aligned}$ | Fact 300.0 |  |
| Description: | Sets the delay time for closing the brake at standstill. <br> After this time has expired, if the "close brake at standstill" or OFF1/OFF3 is present, the brake is closed and the pulses are suppressed. <br> For $\mathrm{p} 1276=300.000 \mathrm{~s}$, the timer is de-activated - this means that the timer output is always zero. |  |  |  |
| p1277 | Motor holding brake, braking threshold delay exceeded / Del thresh exceed. |  |  |  |
| SERVO (Extended brk), SERVO_AC (Extended brk), SERVO_I_AC <br> (Extended brk), VECTOR (Extended brk), VECTOR_AC (Extended brk), VECTOR_I_AC (Extended brk) | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Acce <br> Func <br> Unit <br> Expe |  |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000[s] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.000[\mathrm{~s}] \end{aligned}$ | Fact 0.000 |  |
| Description: Dependency: | Sets the delay time for the signal "braking threshold exceeded" (BO: r1229.6). Refer to: p1220, p1221, r1229 |  |  |  |


| p1278 | Brake control, diagnostics evaluation / Brake diagnostics |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the brake control type (with or without diagnostics evaluation). |  |  |
|  | Example for brake control with diagnostics evaluation. |  |  |
|  | - brake control in the Motor Modules in booksize format |  |  |
|  | - Safe Brake Relay for AC Drive |  |  |
|  | Example for brake control without diagnostics evaluation. |  |  |
|  | - Brake Relay for AC Drive |  |  |
| Value: | 0: Brake control with diagnostics evaluation |  |  |
|  | 1: Brake control wit | luation |  |
| Note: | If the configuration of the motor holding brake ( p 1215 ) is set to "no holding brake present" when booting, then an automatic identification of the motor holding brake will be carried out. If a brake control is detected without diagnostics evaluation (e.g. Brake Relay for AC Drive), then the parameter is set to "brake control without diagnostics evaluation". |  |  |
|  | It is not permissible to parameterize "brake control without diagnostics evaluation" and also enable "safe brake control" $(\mathrm{p} 1278=1, \mathrm{p} 9602=1, \mathrm{p} 9802=1)$. |  |  |


| p1279[0...3] | BI: Motor holding brake, OR/AND logic operation / Brake OR AND |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Extended | Can be changed: T | Calculated: - | Access level: 2 |
| brk), SERVO_AC | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2707 |
| (Extended brk), | P-Group: Functions | Units group: - | Unit selection: - |
| SERVO_I_AC | Scaling: - | Expert list: 1 |  |

TOR (Extended brk),
VECTOR_AC
(Extended brk),
VECTOR_I_AC
(Extended brk)

|  | Min | Max | Factory setting |
| :---: | :---: | :---: | :---: |
|  | - | - | 0 |
| Description: | Sets the signal source for the OR/AND logic operation. |  |  |
| Dependency: | Refer to: r1229 |  |  |
| Note: | [0]: OR logic operation, input 1 --> the result is displayed in r1229.10. |  |  |
|  | [1]: OR logic operation, input 2 --> the result is displayed in r1229.10. |  |  |
|  | [2]: AND logic operation, input 1 --> the result is displayed in r1229.11. |  |  |
|  | [3]: AND logic operation, input 2 --> the result is displayed in r1229.11. |  |  |


| p1280[0...n] | Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1690,6320 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 6 | Factory setting |
|  | 0 | 1 |  |
| Description: | Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode. 1 |  |  |
| Value: | $0: \quad$ Inhib Vdc ctrl |  |  |
|  | $1:$ | Vdc_max controller enable |  |
|  | $2:$ | Vdc_min controller (kinetic buffering) enable |  |
|  | $3:$ | Vdc_min controller and Vdc_max controller enable |  |





| p1288[0...n] | Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.000 \end{aligned}$ | Factory setting 0.500 |
| Description: | Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signa of the Vdc_max controller. |  |  |
| Note: | For values p1288 $=0.0$ to 0.5 , the controller dynamics are automatically adapted internally. |  |  |
| p1289[0...n] | Vdc_max controller speed threshold (U/f) / Vdc_max n_thresh |  |  |
| VECTOR, | Can be changed: $U$, $T$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 10.00 [rpm] |
| Description: | Sets the lower speed threshold for the Vdc_max controller. When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator. |  |  |


| p1290[0...n] | Vdc controller proportional gain (U/f)/Vdc_ctrl Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6320 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 100 |  |
| Description: | Sets the proportional gain for the Vdc controller (DC link voltage controller). |  |  |
| Note: | The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally |  |  |
|  | adapted to the capacitance of the individual Motor Module. The capacitances of the other power units which are <br> connected to the DC link can be taken into account using the dynamic factor (p1287 or p1283). |  |  |


| p1291[0...n] | Vdc controller integral time (U/f) / Vdc_ctrl Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6320 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | $10000[\mathrm{~ms}]$ | 40 [ms] |
| Description: | Sets the integral time for the Vdc controller (DC link voltage controller). |  |  |


| p1292[0...n] | Vdc controller rate time (U/f) / Vdc_ctrl t_rate |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6320 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | $1000[\mathrm{~ms}]$ | 10 [ms] |
| Description: | Sets the rate time constant for the Vdc controller (DC link voltage controller). |  |  |


| p1293[0...n] | Vdc min controller output limit (U/f) / Vdc_min outp_lim |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6320 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ Hz ] | 600.00 [Hz] | 10.00 [Hz] |
| Description: | Sets the output limit for the Vdc min controller (DC link undervoltage controller). |  |  |
| $\overline{\text { p1294 }}$ <br> VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p 0210 . |  |  |
| Value: | 0 : Automatic detection inhibited <br> 1: Automatic detection enabled |  |  |
| p1295[0...n] | Vdc_min controller time threshold (U/f) / Vdc_min t_thresh |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Functions | Calculated: - | Access level: 3 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $\begin{aligned} & \text { Max } \\ & 10000.000[\mathrm{~s}] \end{aligned}$ | Factory setting 0.000 [s] |
| Description: | Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. |  |  |
|  | Prerequisite: p1296 = 1. |  |  |
| Notice: | If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1280 = 3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135. |  |  |
| p1296[0...n] | Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the response for the Vdc_min controller (kinetic buffering). |  |  |
| Value: | 0: Buffer Vdc until undervoltage, n<p1297 -> F07405 <br> 1: Buff. Vdc until undervolt., n<p1297 -> F07405, t>p1295 -> F07406 |  |  |
| Note: | Re p1296 = 1: |  |  |
|  | The quick stop ramp entered in p1135 must not be equal to zero, to prevent overcurrent shutdown if F07406 is triggered. |  |  |


| p1297[0...n] | Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 50.00 [rpm] |
| Description: | Sets the speed threshold for the Vdc-min controller (kinetic buffering). <br> If this value is exceeded a fault is output; the required response can be parameterized |  |  |
| r1298 | CO: Vdc controller output (U/f) / Vdc_ctrl output |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, VECTOR IAC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6320 |
|  | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | $\begin{aligned} & \text { Max } \\ & -[\text { rpm }] \end{aligned}$ | Factory setting - [rpm] |
| Description: | Displays the actual output of the Vdc controller (DC link voltage controller) |  |  |
| p1300[0...n] | Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode |  |  |
| SERVO, | Can be changed: C2(1), T | Calculated: - | Access level: 2 |
| SERVO_AC, SERVO_I_AC | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1590, 1690, 5060, 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  | $\begin{aligned} & \text { Max } \\ & 23 \end{aligned}$ | Factory setting 21 |
| Description: | Sets the open and closed-loop control mode of a drive. |  |  |
| Value: | 20: Speed control (encoderless) <br> 21: Speed control (with encoder) <br> 23: Torque control (with encoder) |  |  |
| Dependency: | Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400). Refer to: p0108, r0108, p0300, p0311, p0400, p1501 |  |  |
| Notice: | General conditions for encoderless operation can be found in the following literature: SINAMICS S120 Function Manual Drive Functions |  |  |
| Note: | The closed-loop torque control can only be changed over in operation (p1300 $=20,21$ ) by selecting the closed-loop speed control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3 . |  |  |
|  | For encoderless operation (p140 - The following condition must be - For motors with a small power | $300=20)$, the following applies: $800>=n /(2$ * $0115[0]), n=1,2$ $W)$ we recommend to set $n>=2$ |  |


| p1300[0...n] | Open-loop/closed-loop control operating mode / Op/cl-Ip ctrl_mode |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: C2(1), T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1590, 1690, |
| SERVO_I_AC (Lin) |  |  | 5060,6300 |
|  |  |  | Unit selection: - |
|  | P-Group: U/f open-loop control | Units group: - | Expert list: 1 |
|  | Not for motor type: - | Scaling: - | Factory setting |
|  | Min | Max | 21 |
| Description: | 20 | 23 |  |


| Value: | 20: Velocity control (encoderless) |
| :---: | :---: |
|  | 21: Velocity control (with encoder) |
|  | 23: Force control (with encoder) |
| Dependency: | Closed-loop velocity or force control (with encoder) cannot be selected if the encoder type is not entered (p0400). Refer to: p0108, r0108, p0300, p0311, p0400, p1501 |
| Notice: | General conditions for encoderless operation can be found in the following literature: |
|  | SINAMICS S120 Function Manual Drive Functions |
| Note: | It is only possible to change over to force control during operation (p1501) if velocity control is selected (p1300 = 20, 21). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3 . |
|  | For encoderless operation (p1404 = 0 or p1300 = 20), the following applies: |
|  | - The following condition must be fulfilled: p1800 >= n / (2 ${ }^{*}$ p0115[0]), $\mathrm{n}=1,2, \ldots$ |
|  | - For motors with a small power rating (<300 W) we recommend to set $\mathrm{n}>=2$. |


| p1300[0...n] | Open-loop/closed-loop | Ig mode / Op/cl- | mode |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(1), T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1690, 6300, $6310,6320$ |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 19 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the U/f control mode of the drive. |  |  |
| Value: | 0: U/f control with linear characteristic |  |  |
|  | 1: U/f control with linear characteristic and FCC |  |  |
|  | 2: U/f control with parabolic characteristic |  |  |
|  | 3: U/f control with parameterizable characteristic |  |  |
|  | 4: U/f control with linear characteristic and ECO |  |  |
|  | 5: U/f control for drives requiring a precise freq. (e.g. textiles) |  |  |
|  | 6: U/f control for drives requiring a precise frequency and FCC |  |  |
|  | 7: U/f control for a parabolic characteristic and ECO |  |  |
|  | 15: Operation with braking resistor |  |  |
|  | 19: U/f control with independent voltage setpoint |  |  |
| Recommend.: | The use of the vector control operating modes is recommended for synchronous motors. |  |  |
| Dependency: | If you are working with reduced supply voltages ( $\mathrm{p} 0212.0=1$ ), only U/f control with independent voltage setpoint ( $\mathrm{p} 1300=19$ ) can be set as the operating mode. |  |  |
|  | p1300 $=15$ (operation with braking resistor), can only be activated or deactivated in quick commissioning (p0010 $=$ 1). This operating mode is only possible for chassis power units (DC/AC Motor Module). |  |  |
| Notice: | Active slip compensation is required in the U/f control types with Eco mode (p1300 = 4, 7). The scaling of the slip compensation ( p 1335 ) should be set so that the slip is completely compensated (generally $100 \%$ ). |  |  |
|  | The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition. |  |  |
| Note: | For the open-loop control modes p1300 = 5 and 6, the slip compensation p1335 and the resonance damping p1338 are internally switched out (disabled) in order to be able to precisely set the output frequency. |  |  |
|  | For the open-loop control modes p1300 = 4 and 7 (Eco mode), the efficiency can be optimized by varying the voltage (when the operating point is constant). |  |  |
|  | During operation (pulses enabled) the open-loop control mode cannot be changed by changing over drive data sets. |  |  |


| p1300[0..n] | Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { VECTOR }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_I_AC }(\mathrm{n} / \mathrm{M}) \end{aligned}$ | Can be changed: C2(1), T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1690, 1700, 6300, 8012 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 23 | 20 |
| Description: | Sets the open and closed-loop control mode of a drive. |  |  |
| Value: | 0: U/f control with linear characteristic |  |  |
|  | 1: U/f control with linear characteristic and FCC |  |  |
|  | 2: U/f control with parabolic characteristic |  |  |
|  | 3: U/f control with parameterizable characteristic |  |  |
|  | 4: U/f control with linear characteristic and ECO |  |  |
|  | 5: U/f control for drives requiring a precise freq. (e.g. textiles) |  |  |
|  | 6: U/f control for drives requiring a precise frequency and FCC |  |  |
|  | 7: U/f control for a parabolic characteristic and ECO |  |  |
|  | 15: Operation with braking resistor |  |  |
|  | 18: I/f control with fixed current |  |  |
|  | 19: U/f control with independent voltage setpoint |  |  |
|  | 20: Speed control (encoderless) |  |  |
|  | 21: Speed control (with encoder) |  |  |
|  | 22: Torque control (encoderless) |  |  |
|  | 23: Torque control (with encoder) |  |  |
| Recommend.: | The use of the vector control operating modes is recommended for synchronous motors. |  |  |
| Dependency: | Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400). |  |  |
|  | Closed-loop speed or torque control can be selected if the closed-loop speed/torque control was selected as operating mode ( p 0108.2 ). |  |  |
|  | Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311). |  |  |
|  | A reluctance motor can only be operated in a U/f control mode (p1300<20). |  |  |
|  | Sensorless control on separately excited synchronous motors is only possible with a VSM module (see p0150, p0151). |  |  |
|  | For chassis power units with reduced line voltage (see r0212 bit 0 ), the drive can only be operated in a control mode ( $\mathrm{p} 1300=20 \ldots 23$ ) and with the DC link voltage control activated. |  |  |
|  | Refer to: p0108, r0108, p0212, p0300, p0311, p0400, p1501 |  |  |
| Notice: | Active slip compensation is required in the U/f control types with Eco mode ( $\mathrm{p} 1300=4,7$ ). The scaling of the slip compensation (p1335) should be set so that the slip is completely compensated (generally 100\%). |  |  |
|  | The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition. |  |  |
| Note: | The closed-loop torque control can only be changed over in operation (p1300 $=20,21$ ) by selecting the closed-loop speed control ( p 1501 ). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3. |  |  |
|  | For the open-loop control modes p1300 $=5$ and 6 (textile sector), slip compensation p1335, resonance damping p1338, and the Imax frequency controller are switched off internally so that the output frequency can be set precisely. The Imax voltage controller remains active. |  |  |
|  | For the open-loop control modes p1300 $=4$ and 7 (Eco mode), the efficiency can be optimized by varying the voltage (when the operating point is constant). |  |  |
|  | Separately-excited synchronous motors can only be operated in modes p1300 $=20,21$ and 23 - or for diagnostic purposes in modes p1300 $=0,3$ and 18 . For I/f control ( $p 1300=18$ ), the current amplitude can be set using p1609. Both for U/f as well as for I/f control only a small load may be applied to the separately-excited synchronous motor because the excitation current is not calculated as a function of the load. |  |  |
|  | During operation (pulses enabled) the open-loop/closed-loop control mode cannot be changed by changing over drive data sets. |  |  |
|  | p1300 is pre-assigned depending on r0108.2 and p0187. |  |  |



| p1310[0...n] | Voltage boost permanent / U_boost perm |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1690, 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 250.0 [\%] | 50.0 [\%] |
| Description: | Defines the voltage boost as a [\%] referred to the rated motor current (p0305). |  |  |
|  | The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present. |  |  |
|  | The magnitude of the boost in Volt at a frequency of zero is defined as follows: |  |  |
|  | Voltage boost [V] = $1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) x p1310 (permanent voltage boost [\%]) / $100 \%$ |  |  |
|  | At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following: |  |  |
|  | - magnetize the induction motor. |  |  |
|  | - hold the load. |  |  |
|  | - compensate for losses in the system. |  |  |
|  | This is the reason that the output voltage can be increased using p1310. |  |  |
|  | The voltage boost can be used for both linear as well as square-law U/f characteristics. |  |  |
| Dependency: | The current limit p0640 limits the boost. |  |  |
|  | For vector control, the permanent voltage boost (p1310) has no effect as the drive converter automatically sets the optimum operating conditions. |  |  |
|  | Refer to: p1300, p1311, p1312, r1315 |  |  |
| Notice: | The voltage boost increases the motor temperature (particularly at zero speed). |  |  |
| Note: | The voltage boost is only effective for U/f control (p1300). |  |  |
|  | The boost values are combined with one another if the permanent voltage boost ( p 1310 ) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)). |  |  |
|  | However, these parameters are assigned the following priorities: p1310 > p1311, p1312 |  |  |


| p1311[0...n] | Voltage boost at acceleration / U_boost accelerate |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1690, 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 250.0 [\%] | 0.0 [\%] |
| Description: | p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load. |  |  |
|  | The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed. |  |  |
|  | The magnitude of the boost in Volt at a frequency of zero is defined as follows: |  |  |
|  | Voltage boost [V] = 1.732 * p0305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) x p1311 (voltage boost when accelerating [\%]) / 100 \% |  |  |
| Dependency: | The current limit p0640 limits the boost. |  |  |
|  | Refer to: p1300, p1310, p1312, r1315 |  |  |
| Notice: | The voltage boost results in a higher motor temperature increase. |  |  |
| Note: | The voltage boost when accelerating can improve the response to small, positive setpoint changes. |  |  |
|  | Assigning priorities for the voltage boosts: refer to p1310 |  |  |
| p1312[0...n] | Voltage boost when starting / U_boost starting |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: U/f open-loop control | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 1690, 6300 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Min$0.0 \text { [\%] }$ | Max | Factory setting |
|  |  | 250.0 [\%] | 0.0 [\%] |
| Description: | Setting for an additional voltage boost when powering-up, however, only for the first acceleration phase. |  |  |
|  | The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed. |  |  |
| Dependency: | The current limit p0640 limits the boost. |  |  |
|  | Refer to: p1300, p1310, p1311, r1315 |  |  |
| Notice: | The voltage boost results in a higher motor temperature increase. |  |  |
| Note: | The voltage boost when accelerating can improve the response to small, positive setpoint changes. |  |  |
|  | Assigning priorities for the voltage boosts: refer to p1310 |  |  |


| r1315 | Voltage boost total / U_boost total |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6300 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the total resulting voltage boost in volt. |  |  |
| Dependency: | Refer to: p1310, p1311, p1312 |  |  |



| p1320[0...n] | U/f control programmable characteristic frequency 1 / Uf char f1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.00[\mathrm{~Hz}]$ | Max $3000.00[\mathrm{~Hz}]$ | Factory setting 0.00 [Hz] |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic. |  |  |
| Dependency: | Selects the freely programmable <br> The following applies to the frequ teristic is used that contains the | ic using p1300 = 3 . s: p1320 <= p1322 <= p1324 <= <br> operating point. | 6. Otherwise, a standard charac- |
| Note: | Linear interpolation is carried ou The voltage boost when accelera | points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 132$ ) is also applied to the freely prog | p1326/p1327. <br> mable U/f characteristic. |


| p1321[0...n] | U/f control programmable characteristic voltage 1 / Uf char U1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [Vrms] } \end{aligned}$ | Max <br> 10000.0 [Vrms] | Factory setting 0.0 [Vrms] |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic. |  |  |
| Dependency: | Selects the freely programmable <br> Refer to: p1310, p1311, p1320, | tic using p1300 $=3$. <br> 3, p1324, p1325, p1326, p1327 |  |
| Note: | Linear interpolation is carried ou The voltage boost when acceler | points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321$ ) is also applied to the freely prog | p1326/p1327. <br> mable U/f characteristic |


| p1322[0...n] | U/f control programmable characteristic frequency $\mathbf{2} /$ Uf char f2 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $3000.00[\mathrm{~Hz}]$ | Factory setting |
|  | $0.00[\mathrm{~Hz}]$ | $0.00[\mathrm{~Hz}]$ |  |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. |  |  |
|  | This parameter specifies the voltage of the second point along the characteristic. |  |  |

p1323[0...n] U/f control programmable characteristic voltage 2 / Uf char U2

VECTOR_AC, Data type: FloatingPoint32
VECTOR_I_AC
P-Group: U/f open-loop control
Not for motor type: -
Min
0.0 [Vrms]

Calculated: CALC_MOD_ALL
Dynamic index: DDS, p0180
Units group: -
Scaling: -
Max
10000.0 [Vrms]

Access level: 3
Func. diagram: 6300
Unit selection: -
Expert list: 1
Factory setting
0.0 [Vrms]

Description: The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.
This parameter specifies the voltage of the second point along the characteristic.

| Dependency: | Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327 |  |  |
| :---: | :---: | :---: | :---: |
| p1324[0...n] | U/f control programmab | eristic frequency 3 / Uf | f3 |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting 0.00 [Hz] |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic. |  |  |
| Dependency: | The following applies to the frequency values: p1320 <= p1322 < p p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point. <br> Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1325, p1326, p1327 |  |  |
| $\begin{aligned} & \hline \mathbf{p 1 3 2 5 [ 0 . . . n ] ~} \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | U/f control programmable characteristic voltage 3 / Uf char U3 |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [Vrms] | 10000.0 [Vrms] | 0.0 [Vrms] |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic. |  |  |
| Dependency: | Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1326, p1327 |  |  |
| p1326[0...n] | U/f control characteristic frequency / Uf char f |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.00[\mathrm{~Hz}]$ | $\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting 0.00 [Hz] |
| Description: | The linear characteristic for the U/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326 / p1327. This parameter specifies the voltage of the upper point along the characteristic. |  |  |
| Dependency: | The U/f control is activated via p1317 = 1 . |  |  |
| Note: | Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327. |  |  |
| p1326[0...n] | U/f control programmable characteristic frequency 4 / Uf char f4 |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6300 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting 0.00 [Hz] |
| Description: | The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the frequency of the fourth point along the characteristic. |  |  |
| Dependency: | Selects the freely programmable characteristic using p1300 $=3$. |  |  |
|  | The following applies for the frequency values: |  |  |
|  | Otherwise, a standard characteristic is used that contains the rated motor operating point. |  |  |
|  | Refer to: p1310, p1311, p1317, p1319, p1320, p1321, p1322, p1323, p1324, p1325, p1327 |  |  |

Note: Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$. For output frequencies above p1326, the characteristic is extrapolated with the gradient between the characteristic points p1324/p1325 and p1326/p1327.
The voltage boost when accelerating ( p 1311 ) is also applied to the freely programmable U/f characteristic.

| p1327[0...n] | U/f control characteristic voltage / Uf char U |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5300 |
| SERVO_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | $10000.0[\mathrm{Vrms}]$ | Factory setting |
|  | $0.0[\mathrm{Vrms}]$ | 0.0 [Vrms] |  |
| Description: | The linear characteristic for the U/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326 / p1327. |  |  |
|  | This parameter specifies the voltage of the upper point along the characteristic. |  |  |
| Dependency: | The U/f control is activated via p1317 = 1. |  |  |
|  | Refer to: p1317, p1319, p1326 |  |  |
| Note: | Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327. |  |  |

p1327[0...n] U/f control programmable characteristic voltage 4 / Uf char U4
VECTOR, Can be changed: U, T Calculated: CALC_MOD_REG Access level: 3
VECTOR_AC, $\quad$ Data type: FloatingPoint32
VECTOR I AC
Dynamic index: DDS, p0180 Func. diagram: 6300

VECTOR_I_AC
P-Group: U/f open-loop control
Not for motor type: -
Min
0.0 [Vrms]
m. 6300

Unit selection: -
Expert list: 1
Factory setting 0.0 [Vrms]

Description: The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.
This parameter specifies the voltage of the fourth point along the characteristic.
Dependency: $\quad$ Selects the freely programmable characteristic using p1300 $=3$.
Refer to: p1310, p1311, p1317, p1319, p1320, p1321, p1322, p1323, p1324, p1325, p1326
Note: $\quad$ Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$.
The voltage boost when accelerating ( p 1311 ) is also applied to the freely programmable U/f characteristic.

| p1330[0...n] | CI: U/f control independent voltage setpoint / Uf U_set independ. |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6300 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the voltage setpoint for U/f control with an independent voltage setpoint (p1300 = 19). |  |  |
| Dependency: | Selects the U/f control with independent voltage setpoint via p1300 = 19. |  |  |
|  | Refer to: p1300 |  |  |


| $\mathbf{p 1 3 3 3 [ 0 . . . n ] ~}$ | U/f control FCC starting frequency / U/f FCC f_start |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | $3000.00[\mathrm{~Hz}]$ | Factory setting |
|  | $0.00[\mathrm{~Hz}]$ | $0.00[\mathrm{~Hz}]$ |  |
| Description: | Sets the starting frequency at which FCC (Flux Current Control) is activated. |  |  |
| Dependency: | The correct operating mode must be set (p1300 =1,6). |  |  |


| Warning: | An excessively low value can result in instability. |  |  |
| :---: | :---: | :---: | :---: |
| Note: | For $\mathrm{p} 1333=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to $6 \%$ of the rated motor frequency. |  |  |
| p1334[0...n] | U/f control slip compensation starting frequency / Slip comp start |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6310 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting 0.00 [Hz] |
| Description: | Sets the starting frequency of the slip compensation. |  |  |
| Note: | For p1334 $=0$, the starting frequency of the slip compensation is automatically set to $6 \%$ of the rated motor frequency. |  |  |
| p1335[0...n] | Slip compensation, scaling / Slip comp scal |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: U/f open-loop control <br> Not for motor type: PEM, REL | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 1690, 6310 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$ | Max | Factory setting |
|  |  | 600.0 [\%] | 0.0 [\%] |
| Description: | Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$ : Slip compensation de-activated. <br> p1335 = 100.0 \%: The slip is completely compensated. |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Prerequisite for a precise slip compensation for p1335 = $100 \%$ are the precise motor parameters (p0350 ... p0360) If the parameters are not precisely known, a precise compensation can be achieved by varying p1335. <br> For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation. |  |  |
|  |  |  |  |
|  |  |  |  |
| Note: | The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors. |  |  |
|  | For synchronous motors, this effect does not occur and the parameter has no effect in this case. |  |  |
|  | For the open-loop control modes p1300 = 5 and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency. |  |  |
|  | If p1335 is changed during commissioning ( p 0009 , $\mathrm{p} 0010>0$ ), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p 1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300). |  |  |


| p1336[0...n] | Slip compensation limit value / Slip comp lim val |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\%]$ | $600.00[\%]$ | 250.00 [\%] |
| Description: | Sets the limit value for slip compensation in [\%] referred to 00330 (motor rated slip). |  |  |


| r1337 | CO: Actual slip compensation / Slip comp act val |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | $-[\%]$ |
|  |  |  |  |
| Description: | Displays the actual compensated slip [\%] referred to r0330 (rated motor slip). |  |  |
| Dependency: | p1335 >0 \%: Slip compensation active. |  |  |
|  | Refer to: p1335 |  |  |


| p1338[0...n] | U/f mode resonance damping gain / Uf Res_damp gain |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 100.00 | 1.00 |

Description: Sets the gain for resonance damping for U/f control. In U/f mode, the resonance damping function dampens oscillations that are frequently experienced by induction motors in certain speed ranges and by synchronous motors above even low speeds.
Dependency: Refer to: p1317, p1339, p1349
Note: Resonance damping is active in the following ranges:

- Active: 3.1 Hz ... p1349
- Build-up (linear): 3.1 ... 4.77 Hz
- Reduction (linear): 0.95 * p1349 ... p1349

Where the value $=1$ and at the oscillation amplitude of the rated current, the rated slip frequency is switched in for induction motors, while a frequency of 10 Hz is switched in for synchronous motors.

| p1338[0...n] | U/f mode resonance damping gain / Uf Res_damp gain |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1690,6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Min | Expert list: 1 |
|  | 0.00 | 100.00 | Factory setting |
|  | Sets the gain for resonance damping for U/f control. | 0.00 |  |
| Description: | Refer to: p1300, p1339, p1349 |  |  |
| Dependency: | The resonance damping function dampens active current oscillations that frequency occur under no-load condi- |  |  |
| Note: | tions. |  |  |
|  | The resonance damping is active in a range from approximately $6 \%$ of the rated motor frequency (p0310). The |  |  |



| Dependency: | Refer to: p1340 |
| :--- | :--- |
| Note: | When p1341 $=0$, the current limiting controller influencing the frequency is de-activated and only the current limiting |


| r1343 | CO: I_max controller frequency output / I_max_ctrl f_outp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1690 |
|  | P-Group: U/f open-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the effective frequency limit. |  |  |
| Dependency: | Refer to: p1340 |  |  |
| $\overline{\text { r1344 }}$ <br> VECTOR, <br> VECTOR_AC, VECTOR_I_AC | I_max controller voltage output / I_max_ctrl U_outp |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1690 |
|  | P-Group: U/f open-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the amount by which the converter output voltage is reduced. <br> Refer to: p1340 |  |  |
| Dependency: |  |  |  |
| p1345[0...n] | DC braking proportional gain / DCBRK Kp |  |  |
| SERVO, SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 100000.000 | $0.000$ |
| Description: | Sets the proportional gain for DC braking (p1230, p1231). |  |  |
| Dependency: | Refer to: p1346 |  |  |
| Note: | Current controller adaptation is not effective for DC braking. |  |  |
| p1345[0...n] | I_max voltage controller proportional gain / I_max_U_ctrl Kp |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1690 |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 100000.000 | 0.000 |
| Description: | Sets the proportional gain for the I_max voltage controller. Refer to: p1340 |  |  |
| Dependency: |  |  |  |
| Note: | The controller settings are also used in the current controller of the DC braking (refer to p1232). |  |  |


| p1346[0...n] | DC braking, integral time / DCBRK Tn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~ms}]$ | $0.030[\mathrm{~ms}]$ |  |
|  |  |  |  |
| Description: | Sets the integral time for DC braking (p1230, p1231). |  |  |
| Dependency: | Refer to: p1345 |  |  |
| Note: | For p1346 $=0$, the following applies: |  |  |
|  | The integral time of DC braking is de-activated. |  |  |


| p1346[0...n] | I_max voltage controller integral time / I_max_U_ctrl Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1690 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $0.030[\mathrm{~s}]$ |  |
|  |  |  |  |
| Description: | Sets the integral time for the I_max voltage controller. |  |  |
| Dependency: | Refer to: p1340 |  |  |
| Note: | The controller settings are also used in the current controller of the DC braking (refer to p1232). |  |  |
|  | For p1346 = 0, the following applies: |  |  |
|  | The integral time of the I_max voltage controller is de-activated. |  |  |


| r1348 | CO: U/f control Eco factor actual value / U/f Eco fac act v |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6300 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$ | $\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the economic factor determined for optimizing motor consumption. <br> Refer to: p1335 |  |  |
| Dependency: |  |  |  |
| Note: | The value is only determined for operating modes with Economic (p1300 $=4,7$ ). |  |  |
| p1349[0...n] | U/f mode resonance damping maximum frequency / Uf res_damp f_max |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting 3000.00 [Hz] |
| Description: | Sets the maximum output frequency for resonance damping for U/f control. Resonance damping is inactive above this output frequency. |  |  |
| Dependency: | Refer to: p1338, p1339 |  |  |
| Note: | Resonance damping is active in <br> - Active: 3.1 Hz ... p1349 <br> - Build-up (linear): 3.1 ... 4.77 Hz <br> - Reduction (linear): 0.95 * p134 | ranges: |  |


| p1349[0...n] | U/f mode resonance damping maximum frequency / Uf res_damp f_max |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Fax | Factory setting |
|  | $0.00[\mathrm{~Hz}]$ | $0.00[\mathrm{~Hz}]$ |  |
| Description: | Sets the maximum output frequency for resonance damping for U/f control. |  |  |
|  | Resonance damping is inactive above this output frequency. |  |  |
| Dependency: | Refer to: p1338, p1339 |  |  |
| Note: | For p1349 $=0$, the changeover limit is automatically set to $95 \%$ of the rated motor frequency - however, to a max. |  |  |
|  | of 45 Hz. |  |  |


| $\mathbf{p 1 3 5 0 [ 0 . . . n ] ~}$ | Soft starting / Soft starting |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 1690 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | 1 | Factory setting |
|  | 0 | 0 |  |
| Description: | Sets whether the voltage is continuously increased during the magnetizing phase (p1350 = 1, On) or whether it |  |  |


| Value: | $0:$ | OFF |
| :--- | :--- | :--- |
|  | $1:$ | ON |

Note: The settings for this parameter have the following advantages and disadvantages:
$0=$ off (jump directly to voltage boost)
Advantage: Flux is established quickly -> torque is quickly available
Disadvantage: The motor can move while it is being magnetized
1 = on (voltage is continually established)
Advantage: The motor is unlikely to rotate
Disadvantage: The flux is established slower -> torque is available later

| p1351[0...n] | CO: Motor holding brake starting frequency / Brake f_start |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6310 |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-300.00[\%]$ | 0.00 [\%] |  |
| Description: | Sets the frequency setting value at the slip compensation output for starting up with motor holding brake. |  |  |
| Dependency: | When setting p1351 > 0, then slip compensation is automatically activated (p1335 = 100 \%). |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | A value of $100 \%$ corresponds to the motor rated slip (r0330). |  |  |


| p1356[0...n] | CI: U/f control, angular setpoint / Uf ang setpoint |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: - |
| VECTOR_I_AC | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the signal source for the differential angular generation for U/f control.

| p1358[0...n] | Angular difference, symmetrizing, actual angle / Sym act angle |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\cup, T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the dead time for the symmetrizing of the actual angle value for the differential angular generation. The selected multiplier refers to the current controller clock cycle (dead time $=$ p1358 * p0115[0]). |  |  |
| r1359 <br> VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | CO: Angular difference / Angular difference |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | Min <br> - [ ${ }^{\circ}$ ] | Max <br> - [ ${ }^{\circ}$ ] | Factory setting - [ ${ }^{\circ}$ ] |
| Description: | Displays the output of the differential angular generation. |  |  |
| Note: | The difference between the setpoint angle, read-in in p1356 and the actual value of the U/f control delayed with p1358 is displayed. |  |  |
| p1360 <br> VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Braking chopper braking resistor cold / Br_chop R cold |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.000 [ohm] | 10.000 [ohm] | 0.000 [ohm] |
| Description: | Sets the braking resistor for the | per. |  |
| Dependency: | Select operation with braking resistor: p1300 = 15 |  |  |
|  | Refer to: p1362, r1363, p1364 |  |  |
|  | Refer to: A06921, F06922 |  |  |
| p1362[0...1] | Braking chopper activation threshold / Br_chop thresh |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: U/f open-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [V] | 1158 [V] | [0] 0 [V] |
|  |  |  | [1] 60 [V] |
| Description: | Sets the activation threshold for the brake chopper. |  |  |
|  | The hysteresis defines the range of the output voltage from zero up to the maximum voltage. |  |  |
| Index: | [0] = Braking chopper threshold <br> [1] = Braking chopper hysteresi |  |  |
| Dependency: | Select operation with braking resistor: p1300 $=15$ |  |  |
|  | Refer to: p1360, r1363, p1364 |  |  |
|  | Refer to: A06921, F06922 |  |  |


| r1363 | CO: Braking chopper output voltage / Br_chop U_output |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_1_AC | P-Group: Displays, signals | Units group: 5_1 | Unit selection: 00505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the actual power unit output voltage (Motor Module) in braking chopper operation. |  |  |
| Dependency: | Select operation with braking resistor: p1300 $=15$ |  |  |
|  | Refer to: p1360, p1362, p1364 |  |  |
|  | Refer to: A06921, F06922 |  |  |


| p1364 | Braking chopper resistor asymmetry / Br_chop R asym |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $U, T$ |  | Calculated: - Access level: 3 |  |  |
|  | Data type: FloatingPoint32 Dy |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: U/f open-loop control Unts |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: PERCENT | Expert list: 1 |  |
|  |  |  | Max | Factory setting |  |
| Description: <br> Dependency: | Sets the percentage value for the asymmetry detection for the braking chopper. <br> Select operation with braking resistor: p1300 $=15$ |  |  |  |  |
|  |  |  |  |  |  |
|  | Refer to: p1360, p1362, r1363 |  |  |  |  |
|  | Refer to: F06922 |  |  |  |  |
| Note: | Zero means no asymmetry detection. |  |  |  |  |
| $\begin{aligned} & \hline \text { p1400[0...n] } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Speed control configuration / n_ctrl config |  |  |  |  |
|  | Can be changed: U, T C |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 D |  | Dynamic index: DDS, p0180 | Func. diagram: 1590, 5490 |  |
|  | P-Group: Closed-loop control Un |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: REL S |  | Scaling: - | Expert list: 1 |  |
|  | Min M |  | Max | Factory setting 00000000000000000000 |  |
|  | - | - |  |  |  |
|  |  |  |  | 001110100000 |  |
| Description: | Sets the configuration for the closed-loop speed control. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal |  |
|  | 03 | Reference model speed setpoint, I component | ON | OFF | 5030 |
|  | 04 | Torque limiting active in motoring/regenerative mode | Yes | No | - |
|  | 05 | $\mathrm{Kp} / \mathrm{Tn}$ adaptation active | Yes | No | - |
|  | 07 | Interpolation speed pre-control active | Yes | No | - |
|  | 08 | Interpolation torque setpoint active | Yes | No | - |
|  | 09 | Damping for encoderless open-loop controlled oper. | Yes | No | - |
|  | 10 | Speed pre-control | For balancing | For setp_filter 2 | - |
|  | 11 | Encoderless oper. speed actual value starting value | Setpoint | 0.0 | - |
|  | 12 | Encoderless operation changeover | Steady-state | When accelerating | - |
|  | 13 | Motoring/regenerative depending on | Speed setpoint | Speed actual value | - |
|  | 16 | I component for limiting | Enable | Hold | - |
|  | 17 | DSC position controller limit active | Yes | No | 3090 |
|  | 18 | Moment of inertia estimator active | Yes | No |  |

Re bit 07:
The interpolator is only effective for clock-cycle synchronous PROFIBUS operation and when the master receives a sign-of-life (STW 2.12 ... STW 2.15). Further, for active Dynamic Servo Control (DSC) an additional dead time of one speed controller clock cycle is obtained.
Re bit 10:
The pre-control signal via connector input p1430 only becomes effective at p1402.4 $=1$ (torque-speed pre-control with encoder) at p1400.10 $=0$ (for setp_filter 2 ).
Re bit 11:
If the motor rotates when the pulses are enabled, then we recommend p1400.11 = 1 (starting value $=$ setpoint) with the matching sign.
If the motor remains stationary (zero speed) when the pulses are enabled, the we recommend p1400.11 = 0 (starting value $=0.0$ ).
Re bit 12:
If a changeover is made from operation with encoder to encoderless operation while accelerating (with the threshold from p1404), then we recommend p1400.12 $=0$.
If the changeover is made from operation with encoder to encoderless at constant speed/velocity (e.g. with a DDS changeover or if there is an encoder fault via p0491) then we recommend p1400.12 $=1$.
Re bit 17:
In order to avoid limit cycles (e.g. as a result of disturbing torques) for DSC with a high Kv factor, the position controller output can be limited using a root function corresponding to the currently available deceleration capability of the drive. In this case, the total moment of inertia (J_tot) must be parameterized precisely (if necessary, determine the moment of inertia p0341, p0342 and p1498 using the motor data identification). If the limiting function responds, then this is indicated in r1407.19
As a result of the absolute value limitation, the dynamic performance of the position controller is above $\mathrm{n}[\mathrm{rpm}]=$ $0.91 \times \mathrm{M} \_\max [\mathrm{Nm}] /\left(\mathrm{Kv}[1000 / \mathrm{min}] \times \mathrm{J} \_\right.$tot[kgm²$\left.]\right)$, no longer linear (M_max, see r1538, r1539). This is the reason that speed precontrol is recommended.
Re bit 18:
Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1).
For operation with encoder, in addition, p1402.4 must be set to 1 .
The result of the moment of inertia estimator is displayed in r1493 when the function is activated.
The function assumes that speed changes are made without load. If a speed change must be realized under load, then during this time, the estimated moment of inertia should be frozen using binector input p1502.

| p1400[0..n] |  | city control, configuration / v_ct | config |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO (Lin), |  | be changed: $U, T$ Cal | ulated: - | Access level: 2 |  |
| SERVO_AC (Lin), |  | type: Unsigned32 Dy | amic index: DDS, p0180 | Func. diagram | 5490 |
|  |  | roup: Closed-loop control U | group: - | Unit selection: |  |
|  |  | for motor type: REL Scaider | ing: - | Expert list: 1 |  |
|  | Min | Max |  | Factory setting |  |
|  | - | - |  | 000000000000 |  |
| Description: |  | the configuration for the closed-loop velocity | control. |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 03 | Reference model velocity setpoint I component | ON | OFF | 5030 |
|  | 04 | Force limiting active in motoring/regenerative mode | Yes | No | - |
|  | 05 | $\mathrm{Kp} / \mathrm{Tn}$ adaptation active | Yes | No | - |
|  | 07 | Interpolation velocity controller pre-control active | Yes | No | - |
|  | 08 | Interpolation force setpoint active | Yes | No | - |
|  | 09 | Damping for encoderless open-loop controlled oper. | Yes | No | - |
|  | 10 | Velocity pre-control | For balancing | For setp_filter 2 | - |
|  | 11 | Encoderless oper. velocity actual value starting value | Setpoint | 0.0 | - |
|  | 12 | Encoderless operation changeover | Steady-state | When accelerating | - |
|  | 13 | Motoring/regenerative depending on | Speed setpoint | Speed actual value | - |


| 16 | I component for limiting | Enable | Hold | - |
| :--- | :--- | :--- | :--- | :--- |
| 17 | DSC position controller limit active | Yes | No | 3090 |
| 18 | Moment of inertia estimator active | Yes | No | - |

Note: Re bit 07:
The interpolator is only effective for clock-cycle synchronous PROFIBUS operation and when the master receives a sign-of-life (STW 2.12 ... STW 2.15). Further, for active Dynamic Servo Control (DSC) an additional dead time of one velocity controller clock cycle is obtained.
Re bit 10:
The pre-control signal via connector input p1430 only becomes effective at p1402.4 $=1$ (force-velocity pre-control with encoder) at p1400.10 $=0$ (for setp_filter 2 ).
Re bit 11:
If the motor rotates when the pulses are enabled, then we recommend p1400.11 = 1 (starting value $=$ setpoint) with the matching sign.
If the motor remains stationary (zero speed) when the pulses are enabled, the we recommend p1400.11 = 0 (starting value $=0.0$ ).
Re bit 12:
If a changeover is made from operation with encoder to encoderless operation while accelerating (with the threshold from p1404), then we recommend p1400.12 $=0$.
If the changeover is made from operation with an encoder to encoderless at constant velocity (e.g. with a DDS changeover or if there is an encoder fault via p0491), then we recommend p1400.12 $=1$.
Re bit 17:
In order to avoid limit cycles (e.g. as a result of disturbing forces) for DSC with a high Kv factor, the position controller output can be limited using a root function corresponding to the currently available deceleration capability of the drive. In this case, the total mass (m_tot) must be parameterized precisely (if necessary, determine the mass p0341, p0342 and p1498 using the motor data identification). If the limiting function responds, then this is indicated in r1407.19.
As a result of the absolute value limitation, the dynamic performance of the position controller above $\mathrm{v}[\mathrm{m} / \mathrm{min}]=5.7$ $x F_{-} \max [\mathrm{N}] /(\mathrm{Kv}[1000 / \mathrm{min}] \times \mathrm{m}$ _tot $[\mathrm{kg}])$, is no longer linear ( $\mathrm{F}_{-}$max, see r 1538 , r 1539$)$. This is the reason that velocity precontrol is recommended.
Re bit 18:
Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1).
For operation with encoder, in addition, p1402.4 must be set to 1 .
The result of the moment of inertia estimator is displayed in r1493 when the function is activated.
The function assumes that velocity changes are made without load. If a velocity change must be realized under load, then during this time, the estimated moment of inertia should be frozen using binector input p1502.


| 19 | Anti-windup for integral component | Yes | No | 6030 |
| :--- | :--- | :--- | :--- | :--- |
| 20 | Acceleration model | ON | OFF | 6030 |

Note:
Re bit 01:
When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.
Re bit 16:
When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
Re bit 19:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced. If the setpoint torque reaches the torque limit, then the integral component is set to the difference between the torque limit and P component.
Re bit 20:
The acceleration model for the speed setpoint is only active for encoderless vector control if p1496 is not zero.

| p1401[0...n] | Flux control configuration / Flux ctrl config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 3 |  |
| VECTOR_AC (n/M), | Data type: Unsigned16 |  | Dynamic index: DDS, p0180 | Func. diagram: 6491 |  |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: REL |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | 0000000000001110 bin |  |
| Description: | Sets the configuration for flux setpoint control |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Flux setpoint soft starting active | Yes | No | $\begin{aligned} & 6722, \\ & 6725 \end{aligned}$ |
|  | 01 | Flux setpoint differentiation active | Yes | No | 6723, |
|  |  |  |  |  | 6726 |
|  | 02 | Flux build-up control active | Yes | No | 6722, |
|  |  |  |  |  | 6723, |
|  |  |  |  |  | 6725, |
|  |  |  |  |  | 6726 |
|  | 03 | Flux characteristic, load-dependent | Yes | No | 6725 |
|  | 04 | Flux controller (ASM with encoder) | Yes | No | - |
|  | 05 | Flux impression (ASM with encoder) | with model chngov | From 30 \% n_rated | - |
|  | 06 | Quick magnetizing | Yes | No | 6722 |
|  | 07 | Pre-control speed limitation | Yes | No | 6640 |
|  | 08 | Speed limiting controller | With M_limits | With I_limits | 6640 |

## Note:

Re bit 00 (only for induction motors)
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p1570 is reached again at the end of the magnetizing time p0346.
Re bit 01 (only for induction motors)
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p 1570 is reached again at the end of the magnetizing time p0346. When quick magnetizing ( $p 1401.6=1$ ) is selected, soft starting is internally de-activated and alarm A07416 is displayed.
The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
Re bit 02 (only for induction motors)
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant. When quick magnetizing ( $p 1401.6=1$ ) is selected and when flux build-up control is de-energized alarm A07416 is displayed. Re bit 03:

The load-dependent calculation of the flux characteristic is only available for separately-excited synchronous motors.
Re bit 04 (only for induction motors with encoder):
The flux controller does not operate in the range of the current model and not in the range of the flux impression (refer to p1750.4)

Re bit 05 (only for induction motors with encoder):
Extremely rugged control operation is possible by directly toggling between the current model and flux impression. We therefore recommend that, in addition, the time-controlled model change is switched in (p1750.4 = 1) or the model changeover limits are significantly increased (p1752 > $0.35^{*}$ p0311; p1753 = $5 \%$ ).
Re bit 06 (not for induction motors):
Magnetizing is performed with maximum current ( 0.9 * r0067). With active identification of the stator resistance (see p0621) quick magnetizing is internally de-activated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
Re bit 07:
if the speed of the drive exceeds the effective speed limit of the speed limiting controller, the torque limit is reduced linearly to zero as the deviation becomes greater. This reduces the integral component of the speed controller and, in turn, the overshoot during load shedding (see also F07901 and p2162).
Re bit 08:
The speed limiting controller sets the speed to maximum by opening the torque limits as far as the current limits (bit $8=0$ ) or taking the torque limits into account (bit $8=1$ ).

| p1402[0...n] | Closed-loop current control and motor model configuration / I_ctrl config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T |  | Calculated: - | Acce |  |
|  | Data type: Unsigned16 |  | Dynamic index: DDS, p0180 | Fun |  |
|  | P-Group: Closed-loop control |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | 0000 |  |
| Description: | Sets the configuration for the closed-loop control and the motor model. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 01 | Park encoder for n_act > p1404 | Yes | No | - |
|  | 02 | Current controller adaptation active | Yes | No | - |
|  | 03 | Stall power limiting motoring | Yes | No | - |
|  | 04 | Torque-speed pre-control with encoder | Yes | No | - |
|  | 05 | Precontrol voltage drop across the resistance | - Yes | No | - |

Note: $\quad$ Re bit 01:
When the bit is set, the encoder is parked as soon as the actual speed is greater than the changeover speed ( p 1404 ). The encoder state is indicated in r0481.14.
Re bit 02:
The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.
Re bit 04:
Only effective for operation with encoder.
When the bit is set, the highest dynamic performance is achieved with $\mathrm{p} 1517=0 \mathrm{~ms}$.

| p1402[0...n] | Closed-loop current control and motor model configuration / I_ctrl config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: T |  | Calculated: - | Access level: 3 |  |
|  |  | type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: - |  |
|  |  | up: Closed-loop control U | Units group: - | Unit selection: - |  |
|  | Not | for motor type: - S | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 00000100 bin |  |
| Description: | Sets | the configuration for the closed-loop contr | rol and the motor model. |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 01 | Park encoder for v_act > p1404 | Yes | No | - |
|  | 02 | Current controller adaptation active | Yes | No | - |
|  | 03 | Stall power limiting motoring | Yes | No | - |
|  | 04 | Force-velocity pre-control with encoder | Yes | No | - |
|  | 05 | Precontrol voltage drop across the resistance | - Yes | No | - |



| p1404[0...n] | Encoderless operation changeover velocity / Encoderl op v_chg |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1590, 5060 |
|  | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | 1000.00 [m/min] | $1000.00[\mathrm{~m} / \mathrm{min}]$ |
| Description: | Sets the velocity to change over between operation with and without an encoder. Above this velocity, the drive system is automatically operated in encoderless mode. |  |  |
|  |  |  |  |
| Notice: | General conditions for encoderless operation can be found in the following literature: SINAMICS S120 Function Manual Drive Functions |  |  |
|  |  |  |  |
| Note: | The changeover velocity applies when changing over between operation with and without an encoder. |  |  |
|  | With p1404>0, the effective changeover velocity is limited to values greater than or equal to p1755 in order to avoid controlled operation. |  |  |
|  | Separate velocity controllers should be set when operating with and without an encoder. <br> - Operation with encoder: p1460 (Kp), p1462 (Tn), p1461, p1463, p1457, p1458 (velocity controller adaptation) |  |  |
|  |  |  |  |
|  | - Operation without encoder: p1470 (Kp), p1472 (Tn) |  |  |
|  | For encoderless operation (p1404 $=0$ or p1300 20 ), the following applies: |  |  |
|  | - The condition must be fulfilled: p1800 >= n / (2 * $0115[0]$ ), $n=1,2, \ldots$ |  |  |
|  | - For motors with a small power rating (<300 W) we recommend to set $\mathrm{n}>=2$. |  |  |


| r1406.8...12 | CO/BO: Control word speed controller / STW n_ctrl |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530,2520 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the control word of the speed controller. |  |  |
| Bit field: | Bit Signal name | 1 signal | Y signal |
|  | 08 Travel to fixed stop active | Yes | No |
|  | 12 | Torque control active | No |

r1406.8... 12 CO/BO: Control word velocity controller / STW v_ctrl
SERVO (Lin), Can be changed: - Calculated: -

P-Group: Closed-loop control
Not for motor type: REL
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Description: Bit field:

Displays the control word of the velocity controller.
$\begin{array}{lll}\text { Bit } & \text { Signal name } & 1 \text { signal } \\ 08 & \text { Travel to fixed stop active } & \text { Yes }\end{array}$
12 Force control active Yes

Access level: 3
Func. diagram: 1530, 2520
Unit selection: -
Expert list: 1
Factory setting

| r1406.4... 15 | CO/BO: Control word speed controller / STW n_ctrl |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - |  | Calculated: - Access level: |  |  |
|  | Data type: Unsigned16 |  | Dynamic index: - Func. |  |  |
|  | P-Group: Closed-loop control |  | Units group: - Unit selection: |  |  |
|  | Not for motor type: REL |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the control word of the speed controller. |  |  |  |  |
| Bit field: | Bit04 | Signal name | 1 signal | 0 signal | FP |
|  |  | Hold speed controller I component | Yes | No | 6040 |
|  |  | Set speed controller I component | Yes | No | 6040 |
|  | 08 | Travel to fixed stop | Yes | No | 8012 |
|  | 11 | Droop enable | Yes | No | 6030 |
|  | 12 | Torque control active | Yes | No | 6060 |
|  | 15 | Set speed adaptation controller I component | - Yes | No | - |


| r1407.0... 22 | CO | BO: Status word speed cont | ler / ZSW n_c |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, |  | be changed: - | Calculated: - | Acce |  |
| SERVO_AC, |  | type: Unsigned32 | Dynamic index: - | Fun | 2522 |
| SERVO__AC |  | oup: Closed-loop control | Units group: - | Unit |  |
|  |  | for motor type: REL | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Disp | ays the status word of the speed cont |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | U/f control active | Yes | No | - |
|  | 01 | Encoderless operation active | Yes | No | - |
|  | 02 | Torque control active | Yes | No | 8010 |
|  | 04 | Speed setpoint from DSC | Yes | No | 2522 |
|  | 05 | Speed controller I component frozen | Yes | No | - |
|  | 06 | Speed controller I component set | Yes | No | - |
|  | 07 | Torque limit reached | Yes | No | 5610 |
|  | 08 | Upper torque limit active | Yes | No | 5610 |
|  | 09 | Lower torque limit active | Yes | No | 5610 |
|  | 11 | Speed setpoint limited | Yes | No | - |
|  | 13 | Encoderless operation due to a fault | Yes | No | - |
|  | 19 | DSC position controller limited | Yes | No | 3090 |
|  | 20 | DSC with spline on | Yes | No | - |
|  | 21 | Speed pre-control for DSC with spline | n Yes | No | - |
|  | 22 | Torque pre-control for DSC with splin | on Yes | No | - |

Note:
Re bit 04:
The following conditions must be fulfilled to set to 1 :

- connector input p1190 and p1191 must be interconnected with a signal source that is not equal to zero.
- it is not permissible that OFF1, OFF3 or STOP2 are active.
- it is not permissible that the motor data identification is active.
- Master control must not be active.

The following conditions can mean that the DSC function is not active in spite of the fact that the bit is set:

- clock-cycle synchronous operation is not selected (r2054 not equal to 4).
- the PROFIBUS is not clock-cycle synchronous (r2064[0] not equal to 1).
- DSC is not switched on at the control side; this means that KPC $=0$ is transferred as the value at Cl : p 1191 .


Note: $\quad$ Re bit 04:
The following conditions must be fulfilled to set to 1 :

- connector input p1190 and p1191 must be interconnected with a signal source that is not equal to zero.
- it is not permissible that OFF1, OFF3 or STOP2 are active.
- it is not permissible that the motor data identification is active.
- Master control must not be active.

The following conditions can mean that the DSC function is not active in spite of the fact that the bit is set:

- clock-cycle synchronous operation is not selected (r2054 not equal to 4).
- the PROFIBUS is not clock-cycle synchronous (r2064[0] not equal to 1).
- DSC is not switched on at the control side; this means that KPC $=0$ is transferred as the value at CI : p 1191 .

| r1407.0... 17 | CO | 30: Status word speed cont | ler / ZSW n_c |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can | be changed: - | Calculated: - | Acce |  |
| VECTOR_AC (n/M), |  | type: Unsigned32 | Dynamic index: - | Func | 2522 |
| VECTOR_1_AC (n/M) |  | oup: Closed-loop control | Units group: - | Unit |  |
|  |  | for motor type: REL | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Disp | ays the status word of the speed contr |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | U/f control active | Yes | No | - |
|  |  | Encoderless operation active | Yes | No | - |
|  | 02 | Torque control active | Yes | No | 6030, |
|  |  |  |  |  | $\begin{aligned} & 6060 \\ & 8010 \end{aligned}$ |
|  | 03 | Speed control active | Yes | No | 6040 |
|  | 05 | Speed controller I component frozen | Yes | No | 6040 |
|  | 06 | Speed controller I component set | Yes | No | 6040 |
|  | 07 | Torque limit reached | Yes | No | 6060 |
|  | 08 | Upper torque limit active | Yes | No | 6060 |
|  | 09 | Lower torque limit active | Yes | No | 6060 |
|  | 10 | Droop enabled | Yes | No | 6030 |


|  | 11 | Speed setpoint limited | Yes | No | 6030 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 | Ramp-function generator set | Yes | No | - |
|  | 13 | Encoderless operation due to a fault | Yes | No | - |
|  | 14 | I/f control active | Yes | No | - |
|  | 15 | Torque limit reached (without pre-control) | Yes | No | 6060 |
|  | 17 | Speed limiting control active | Yes | No | 6640 |
| r1408.0... 9 | CO/BO: Status word current controller / ZSW I_ctrl |  |  |  |  |
| SERVO, | Can be changed: - Cal |  | ulated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned16 |  | mic index: - | Func. diagram: 2530, 5040 |  |
| O_I_AC | P-Group: Closed-loop control |  | group: - | Unit selection: - |  |
|  | Not for motor type: REL Sc |  | ng: - | Expert list: 1 |  |
|  | Min M |  |  | Factory setting |  |
|  | - - |  |  | - |  |
| Description: | Displays the current controller status word. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Cl-loop curr ctrl | Active | Not active | - |
|  |  | Limit Ud | Active | Not active | - |
|  |  | Limit Uq | Active | Not active | - |
|  |  | Positive limiting Iq | Active | Not active | - |
|  |  | Negative limiting Iq | Active | Not active | - |
|  |  | Limit iq_set | Active | Not active | - |
|  |  | Limit id_set | Active | Not active | - |
| Note: | The set current limit is taken into account in upstream torque limiting. Bits 6, 7, and 8 are, therefore, only set in the event of overshoots on account of the current setpoint filter. |  |  |  |  |
| r1408.0...15 | CO/BO: Status word current controller / ZSW I_ctrl |  |  |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - |  | ulated: - | Access level: 3 |  |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: Unsigned16 |  | mic index: - | Func. diagram: 2530 |  |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control |  | group: - | Unit sel |  |
|  | Not for motor type: REL Scals |  | ng: - | Expert |  |
|  | Min M |  |  | Factory setting |  |
|  | - |  |  | - |  |
| Description: | Displays the current controller status word. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Current ctrl act | Active | Not active | - |
|  | 01 | Id control, I component limiting | Active | Not active | 6714 |
|  | 03 | Voltage limiting | Active | Not active | 6714 |
|  | 10 | Speed adaptation, limiting | Active | Not active | - |
|  | 11 | Speed adaptation, speed deviation | Out tolerance | In tolerance | 6719 |
|  | 12 | Motor stalled | Yes | No | $\begin{aligned} & 6719 \\ & 8018 \end{aligned}$ |
|  | 13 | Separately excited synchronous motor is excited | Yes | No | - |
|  | 14 | Current model FEM: magnetizing excitation current limited to 0 | Yes | No | - |
|  | 15 | Excitation current differential exceeded | Yes | No | - |
| Note: | Re bit 11: |  |  |  |  |
|  | For operation with speed encoder, this bit is set as a result of steps/jumps in the speed signal (see p0492) or due to deviations at the adaptation controller output (see p1744). |  |  |  |  |


| p1409[0...n] | Speed control extended configuration / n_ctrl ext config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, SERVO AC, SERVO_IAC | Can be changed: $\mathrm{C} 1(3)$ | Calculated: - | Acce |  |
|  | Data type: Unsigned32 D | Dynamic index: DDS, p0180 | Func |  |
|  | P-Group: - U | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Expe |  |
|  | Min Max | Max |  |  |
|  | - - |  |  |  |
| Description: | Sets the extended configuration for the closed-loop speed control. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Interpolation supplementary torque active | 1 signal Yes | No | FP |
| p1409[0...n] | Velocity control extended configuration / v_ctrl ext config |  |  |  |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: C1(3) | Calculated: - |  | Access level: 2 |
|  | Data type: Unsigned32 | Dynamic index: DDS, p0180 Fu |  | Func. diagram: - |
|  | P-Group: - U | Units group: - Un |  | Unit selection: - |
|  | Not for motor type: - S | Scaling: - | Expert list: 1 |  |
|  | Min Max | Max | Factory setting 0000 bin |  |
|  |  |  |  |  |
| Description: <br> Bit field: | Sets the extended configuration for the closed-loop velocity control. |  |  |  |
|  | Bit Signal name <br> 00 Interpolation supplementary force active | 1 signal Yes | 0 signal <br> No | FP |
| p1412[0...n] | TM41 increm. encoder emulation, speed setpoint filter deadtime / n_set dead time |  |  |  |
| TM41 | Can be changed: $\cup, T$ | Calculated: - | Access level: 3 |  |
|  | Data type: FloatingPoint32 D | Dynamic index: DDS, p0180 | Func. diagram: 9674 |  |
|  | P-Group: Closed-loop control U | Units group: - | Unit selection: - |  |
|  | Not for motor type: REL S | Scaling: - | Expert list: 1 |  |
|  | Min 0.000 [ms] | $\begin{aligned} & \text { Max } \\ & 1.000 \text { [ms] } \end{aligned}$ | Factory setting0.000 [ms] |  |
| Description: <br> Note: | Sets the delay of the speed setpoint for the incremental encoder emulation. |  |  |  |
|  | The parameter is not effective in the SINAMICS operating mode ( $p 4400=1$ ). |  |  |  |
| p1413[0...n] <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Speed actual value filter activation / n_act_filt act |  |  |  |
|  | Can be changed: U, T C | Calculated: - | Acce |  |
|  | Data type: Unsigned16 D | Dynamic index: DDS, p0180 | Func | 5210 |
|  | P-Group: Closed-loop control U | Units group: - | Unit |  |
|  | Not for motor type: REL S | Scaling: - | Expe |  |
|  | Min Max | Max | Fact |  |
|  | - - | - | 0000 |  |
| Description: | Setting for activating/de-activating the speed actual value filter. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 01 General filter activation | Yes | No |  |
| Dependency: | The speed actual value filter is parameterized fr | from p1446. |  |  |


| p1413[0...n] | Velocity actual value filter activation / v_act_filt act |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |  |
| SERVO_AC (Lin), | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |  |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |  |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |
| Description: | Setting for activating/de-activating the velocity actual value filter. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 01 General filter activation | Yes | No | - |
| Dependency: | The velocity actual value filter is | ed from p1446 and higher. |  |  |


| $\mathbf{p 1 4 1 4 [ 0 . . . n ] ~}$ | Speed setpoint filter activation / n_set_filt act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0000 bin |
| Description: | Setting for activating/de-activating the speed setpoint filter. |  |  |
| Recommend.: | If only one filter is required, filter 1 should be activated and filter 2 de-activated, to avoid excessive processing time. |  |  |
| Bit field: | Bit Signal name | 1 signal | $\mathbf{0}$ signal |
|  | $00 ~ A c t i v a t e ~ f i l t e r ~ 1 ~$ | Yes | No |

Dependency: The individual speed setpoint filters are parameterized as of p1415.


| Dependency: | The speed setpoint filter can be parameterized using p1417 and p1418. |  |  |
| :---: | :---: | :---: | :---: |
| Note: | The parameter is not effective in the SINAMICS operating mode (p4400 = 1). |  |  |
| p1415[0...n] | Speed setpoint filter 1 type / n_set_filt 1 typ |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 0 |
| Description: | Sets the type for speed setpoint filter 1. |  |  |
| Value: | 0: Low pass: PT1 |  |  |
|  | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | PT1 low pass: p1416 |  |  |
|  | PT2 low pass: p1417, p1418 |  |  |
|  | General filter: p1417 ... p1420 |  |  |
| p1415[0...n] | Velocity setpoint filter 1 type / v_setp_filt 1 typ |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 2 | 0 |
| Description: Value: | Sets the type for speed setpoint filter 1. |  |  |
|  | 0: Low pass: PT1 |  |  |
|  | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | PT1 low pass: p1416 |  |  |
|  | PT2 low pass: p1417, p1418 |  |  |
|  | General filter: p1417 ... p1420 |  |  |
| $\begin{aligned} & \hline \mathbf{p 1 4 1 6 [ 0 . . . n ] ~} \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Speed setpoint filter 1 time constant / n_set_filt 1 T |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 5000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant for the speed setpoint filter 1 (PT1). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the filter is set as a PT1 low pass. |  |  |
| p1416[0..n] | Velocity setpoint filter 1 time constant / v_set_filt 1 T |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 5000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant for the velocity setpoint filter 1 (PT1). |  |  |


| Dependency: | Refer to: p1414, p1415 |  |  |
| :---: | :---: | :---: | :---: |
| Note: | This parameter is only effective if the filter is set as a PT1 low pass. |  |  |
| p1416[0...n] | Speed setpoint filter 1 time constant / n_set_filt 1 T |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6030 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 5000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant for the speed setpoint filter 1 (PT1). |  |  |


| p1417[0...n] | Speed setpoint filter 1 denominator natural frequency / n_set_filt $\mathbf{1}$ fn_d |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $16000.0[\mathrm{~Hz}]$ | Factory setting |
|  | $0.5[\mathrm{~Hz}]$ | $2000.0[\mathrm{~Hz}]$ |  |
| Description: | Sets the denominator natural frequency for speed setpoint filter 1 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1417[0...n] | Velocity setpoint filter 1 denominator natural frequency / v_set_filt 1 fn_d |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: | Sets the denominator natural frequency for velocity setpoint filter 1 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |
| p1417[0...n] | TM41 Speed setpoint filter 1 denominator natural frequency / n_set_filt 1 fn_d |  |  |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 9674 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: | Sets the denominator natural frequency for the speed setpoint filter 1 (PT2) of the incremental encoder emulation. |  |  |
| Dependency: | Refer to: p1414 |  |  |
| Note: | The parameter is not effective in the SINAMICS operating mode (p4400 = 1). |  |  |
|  | This parameter is only effective if the speed setpoint filter in p1414 is activated. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1418[0...n] | Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for speed setpoint filter 1 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |
| p1418[0...n] | Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_d |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for velocity setpoint filter 1 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter. |  |  |
| p1418[0...n] | TM41 Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d |  |  |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 9674 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1.000 \end{aligned}$ | Factory setting 0.700 |
| Description: | Sets the denominator damping for the speed setpoint filter 1 (PT2) of the incremental encoder emulation. |  |  |
| Dependency: | Refer to: p1414 |  |  |
| Note: | The parameter is not effective in the SINAMICS operating mode (p4400 = 1). |  |  |
|  | This parameter is only effective if the speed setpoint filter in p1414 is activated. |  |  |
| p1419[0...n] | Speed setpoint filter 1 numerator natural frequency / n_set_filt 1 fn_n |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: | Sets the numerator natural frequency for speed setpoint filter 1 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the speed filter is set as a general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1419[0...n] | Velocity setpoint filter 1 numerator natural frequency / v_set_filt $\mathbf{1}$ fn_n |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | 16000.0 [Hz] | Factory setting |
|  | $0.5[\mathrm{~Hz}]$ | $2000.0[\mathrm{~Hz}]$ |  |
| Description: | Sets the numerator natural frequency for velocity setpoint filter 1 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1415 |  |  |
| Note: | This parameter is only effective if the velocity filter is set as a general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1420[0...n] | Speed setpoint filter 1 numerator damping / n_set_filt 1 D_n |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | Expert list: 1 |  |


| p1421[0...n] | Velocity setpoint filter 2 type / v_setp_filt 2 typ |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 0 |
| Description: | Sets the type for speed setpoint filter 2. |  |  |
| Value: | 0: Low pass: PT1 |  |  |
|  | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | PT1 low pass: p1422 |  |  |
|  | PT2 low pass: p1423, p1424 |  |  |
|  | General filter: p1423 ... p1426 |  |  |
| p1422[0...n] | Speed setpoint filter 2 time constant / n_set_filt 2 T |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 5000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant for the speed setpoint filter 2 (PT1). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the speed filter is set as a PT1 low pass. |  |  |
| p1422[0...n] | Velocity setpoint filter 2 time constant / v_set_filt 2 T |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [ms] | 5000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant for the velocity setpoint filter 2 (PT1). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the velocity filter is set as a PT1 low pass. |  |  |
| p1423[0...n] | Speed setpoint filter 2 denominator natural frequency / n_set_filt 2 fn_d |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO__AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.5 \text { [Hz] }$ | $\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting $2000.0[\mathrm{~Hz}]$ |
| Description: | Sets the denominator natural frequency for speed setpoint filter 2 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |


| p1423[0...n] | Velocity setpoint filter $\mathbf{2}$ denominator natural frequency / v_set_filt $\mathbf{2}$ fn_d |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $16000.0[\mathrm{~Hz}]$ | Factory setting |
|  | $0.5[\mathrm{~Hz}]$ | $2000.0[\mathrm{~Hz}]$ |  |
| Description: | Sets the denominator natural frequency for velocity setpoint filter 2 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1424[0...n] | Speed setpoint filter 2 denominator damping / n_set_filt 2 D_d |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for speed setpoint filter 2 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |
| p1424[0...n] | Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_d |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for velocity setpoint filter 2 (PT2, general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter. |  |  |
| p1425[0...n] | Speed setpoint filter 2 numerator natural frequency / n_set_filt 2 fn_n |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: | Sets the numerator natural frequency for speed setpoint filter 2 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the speed filter is set as a general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1425[0...n] | Velocity setpoint filter $\mathbf{2}$ numerator natural frequency / v_set_filt $\mathbf{2}$ fn_n |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $16000.0[\mathrm{~Hz}]$ | Factory setting |
|  | $0.5[\mathrm{~Hz}]$ | $2000.0[\mathrm{~Hz}]$ |  |
| Description: | Sets the numerator natural frequency for velocity setpoint filter 2 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the velocity filter is set as a general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1426[0...n] | Speed setpoint filter 2 numerator damping / n_set_filt 2 D_n |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for speed setpoint filter 2 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the speed filter is set as a general filter. |  |  |
| p1426[0...n] | Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_n |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5020 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for velocity setpoint filter 2 (general filter). |  |  |
| Dependency: | Refer to: p1414, p1421 |  |  |
| Note: | This parameter is only effective if the velocity filter is set as a general filter. |  |  |
| p1427[0...n] | DSC symmetrizing time constant additive T_SYMM_ADD / DSC T_SYMM_ADD |  |  |
| SERVO (DSC spline, Lin), SERVO_AC (DSC spline, Lin), SERVO_I_AC (DSC spline, Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 3090 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 1000.00 [ms] | 0.00 [ms] |
| Description: | Set the additive symmetrizing time constant T_SYMM_ADD for the velocity precontrol value for active force precontrol. |  |  |
| Dependency: | The additive symmetrizing time constant T_SYMM_ADD is only evaluated if the "DSC with spline" function module (r0108.6 = 1) is activated. |  |  |
|  | Refer to: p1190, p1191, p1194, p1195 |  |  |
| Note: | For active force precontrol (r1407.20/.21/.22) and active symmetrizing (T_SYMM >0), the velocity precontrol value is symmetrized with the sum of the following time constants: |  |  |
|  | T_SYMM (see p1195) + T_SYMM_ADD (p1427) + 0.5 * velocity controller sampling time (p0115[1]) |  |  |
|  | With half of the velocity controller sampling time, the velocity actual value generation is taken into account using position differences. |  |  |
|  | DSC: Dynamic Servo Control |  |  |



| p1428[0...n] | Speed pre-control balancing dead time / n_prectrBal t_dead |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 5042, $5210$ |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 | 2.0 | 0.0 |
| Description: | Sets the dead time to symmetrize the speed setpoint for active torque pre-control. |  | 8 * p0115[1]). |
| Dependency: | In conjunction with p1429, this response of closed current con Refer to: p1429, p1511 | emulate the characteristics of | e torque is established (dynamic |


| p1428[0...n] | Velocity pre-control balancing dead time / n_prectrBal t_dead |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 | 2.0 | 0.0 |
| Description: | Sets the dead time to symmetrize the velocity setpoint for active force pre-control. |  |  |
|  | The selected multiplier refers to the velocity controller clock cycle (dead time= p1428*p0115[1]). |  |  |
| Dependency: | In conjunction with p1429, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop). |  |  |
|  | Refer to: p1429, p1511 |  |  |


| p1428[0...n] | Speed pre-control balancing dead time / n_prectrBal t_dead |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6031 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | Expert list: 1 |  |
|  | 0.0 | Factory setting |  |
| Description: | Sets the dead time to symmetrize the speed setpoint for active torque pre-control. | 0.0 |  |
|  | The selected multiplier refers to the speed controller clock cycle (dead time $=$ p1428 * p0115[1]). |  |  |
| Dependency: | In conjunction with p1429, this parameter can emulate the characteristics of how the torque is established (dynamic |  |  |
|  | response of closed current control loop). |  |  |
|  | The parameter is only effective if the acceleration model is supplied using external acceleration signals (p1400.2 = |  |  |
|  | 1). For p1400.2 = 0, a fixed dead time is used. |  |  |
|  | Refer to: p1429, p1511 |  |  |


| p1429[0...n] | Speed pre-control balancing time constant / n_prectr bal T |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC, <br> SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 5042, 5210, 6031 |
| TOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [ms] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000.00 \text { [ms] } \end{aligned}$ | Factory setting 0.00 [ms] |
| Description: | Sets the time constant (PT1) for symmetrizing the speed setpoint for active torque pre-control. |  |  |
| Dependency: | In conjunction with p1428, this parameter can emulate the characteristics of how torque is established (dynamic response of the closed current control loop). |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The parameter is only effective if the acceleration model is supplied using external acceleration signals (p1400.2 = 1). For p1400.2 $=0$, time constant p1442 (or p1452 for sensorless vector control) is used. |  |  |


| p1429[0...n] | Velocity pre-control balancing time constant / n_prectr bal T |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 5042, $5210$ |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 10000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant (PT1) for symmetrizing the velocity setpoint for active force pre-control. |  |  |
| Dependency: | In conjunction with p1428, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop). |  |  |
|  | Refer to: p1428, p1511 |  |  |


| p1430[0...n] | Cl: Speed pre-control / n_prectrl |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 1590, |
| SERVO_I_AC |  |  | 5020 |
|  | P-Group: Closed-loop control | Units group: | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2000 | Max |
|  | Min | - | Fxpert list: 1 |
|  | - | Factory setting |  |
|  | Sets the signal source for speed pre-control channel (speed pre-control or torque pre-control). |  |  |


| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| :--- | :--- |
| Note: | The pre-control signal via connector input p1430 only becomes effective at p1402.4 = 1 (torque-speed pre-control | with encoder) at p1400.10 $=0$ (for setp_filter 2 ).


| p1430[0...n] | CI: Velocity pre-control / v_prectrl |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1550, 1590, |
| SERVO_I_AC (Lin) |  | Units group: - | 5020 |
|  | P-Group: Closed-loop control | Scaling: p2000 | Unit selection: - |
|  | Not for motor type: REL | Max | Expert list: 1 |
|  | Min | Factory setting |  |
|  | - | 0 |  |

VECTOR ( $n / M$ ),
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )

CO: Speed pre-control to motor model / n_prectrl mot_mod
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL Min

- [rpm]

Description: Displays the speed setpoint for pre-controlling the motor model with sensorless vector control.
Note: $\quad$ With p1400 bit $15=0$ or encoderless torque control, the pre-control signal is kept continuously in the range of the voltage model.

| r1432 | CO: Speed pre-control after symmetrizing / n_prectr after sym |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5030 |
| SERVO__AC | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the speed pre-control value after symmetrizing for the torque build-up (emulates the closed current control loop). |  |  |
| Dependency: | Symmetrizing can be paramete | 428 and/or p1429. |  |

## r1432

SERVO (Lin),

Can be changed: - Calculated: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL

## Min

- [m/min]

Dynamic index: -
Units group: 4_1
Scaling: p2000
Max

- [m/min]

Access level: 3
Func. diagram: 5030
Unit selection: p0505
Expert list: 1
Factory setting
[ $\mathrm{m} / \mathrm{min}$ ]

Description: Displays the velocity pre-control value after symmetrizing for the force build-up (emulates the closed current control loop).
Dependency: Symmetrizing can be parameterized with p1428 and/or p1429.

| p1433[0...n] | Speed controller reference model natural frequency / n_ctrl RefMod fn |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.0 [ Hz ] | 8000.0 [Hz] | 0.0 [ Hz ] |
| Description: | Sets the natural frequency of a PT2 element for the reference model of the speed controller. |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled. |  |  |
| Dependency: | Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop speed control ( P ) can be emulated. |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with $\mathrm{p} 1400.3=1$. For sensorless vector control $(\mathrm{p} 1300=20)$ the reference model is disabled in open-loop speed controlled operation (refer to p 1755 ). |  |  |
|  | Refer to: p1434, p1435 |  |  |


| p1433[0...n] | Velocity controller reference model natural frequency / v_ctrl RefMod fn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030,6031 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | $8000.0[\mathrm{~Hz}]$ | Factory setting |
|  | $0.0[\mathrm{~Hz}]$ | $0.0[\mathrm{~Hz}]$ |  |
| Description: | Sets the natural frequency of a PT2 element for the reference model of the velocity controller. |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (veloc- |  |  |
|  | ity actual value) are virtually identical when the I component of the velocity controller is disabled. |  |  |
| Dependency: | Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop velocity control (P) can |  |  |
|  | be emulated. |  |  |


| p1434[0...n] | Speed controller reference model damping / n_ctrl RefMod D |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR (n/M), } \end{aligned}$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 | 5.000 | 1.000 |
| Description: | Sets the damping of a PT2 element for the reference model of the speed controller. |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled. |  |  |
| Dependency: | In conjunction with p1433 and p1435, the characteristics (in time) of the P-controlled speed control loop can be emulated. |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with p1400.3 = 1 . |  |  |
|  | Refer to: p1433, p1435 |  |  |


| p1434[0...n] | Velocity controller reference model damping / v_ctrl RefMod D |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 5.000 | 1.000 |
| Description: | Sets the damping of a PT2 element for the reference model of the velocity controller. |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity actual value) are virtually identical when the I component of the velocity controller is disabled. |  |  |
| Dependency: | Together with p1433 and p1435, the characteristics (in the time domain) of the P-controlled velocity control loop can be emulated. |  |  |
|  | Refer to: p1433, p1435 |  |  |
| p1435[0...n] | Speed controller reference model dead time / n_ctrRefMod t_dead |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$ | Max | Factory setting |
|  |  | 2.00 | 0.00 |
| Description: | Sets the "fractional" dead time for the reference model of the speed controller. |  |  |
|  | This parameter emulates the computing dead time of the proportionally controlled speed control loop. |  |  |
|  | The selected multiplier refers to the speed controller clock cycle (dead time= p1435 * $0115[1]$ ). |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled. |  |  |
| Dependency: | In conjunction with p1433 and p1434, the characteristics (in time) of the P-controlled speed control loop can be emulated. |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with p1400.3 $=1$. |  |  |
|  | Refer to: p0115, p1433, p1434 |  |  |
| p1435[0...n] | Velocity controller reference model dead time / v_ctrRefMod t_dead |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min0.00 | Max | Factory setting |
|  |  | 2.00 | 0.00 |
| Description: | Sets the "fractional" dead time for the reference model of the velocity controller. |  |  |
|  | This parameter emulates the computing dead time of the proportionally controlled velocity control loop. |  |  |
|  | The selected multiplier refers to the velocity controller clock cycle (dead time= p1435 p $0115[1]$ ). |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity actual value) are virtually identical when the I component of the velocity controller is disabled. |  |  |
| Dependency: | Together with p1433 and p1434, the characteristics (in the time domain) of the P-controlled velocity control loop can be emulated. |  |  |
|  | Refer to: p0115, p1433, p1434 |  |  |


| p1435[0...n] | Speed controller reference model dead time / n_ctrRefMod t_dead |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5030, 6031 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 3.00 | 0.00 |
| Description: | Sets the "fractional" dead time for the reference model of the speed controller. |  |  |
|  | This parameter emulates the computing dead time of the proportionally controlled speed control loop. |  |  |
|  | The selected multiplier refers to the speed controller clock cycle (dead time= p1435 * $0115[1]$ ). |  |  |
| Recommend.: | The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled. |  |  |
| Dependency: | In conjunction with p1433 and p1434, the characteristics (in time) of the P-controlled speed control loop can be emulated. |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with p1400.3 $=1$. |  |  |
|  | Refer to: p0115, p1433, p1434 |  |  |
| r1436 | CO: Speed controller reference model speed setpoint output / RefMod n_set outp |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5030, 6031 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  |  |  |  |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the speed setpoint at the output of the reference model. |  |  |
| Dependency: | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with p1400.3 $=1$. |  |  |
| r1436 | CO: Velocity controller, reference model velocity_setpoint output / RefMod v_set outp |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5030, 6031 |
|  | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: Dependency: | Displays the velocity setpoint at the output of the reference model. |  |  |
|  | For VECTOR (r0107) the following applies: |  |  |
|  | The reference model is activated with p1400.3 = 1. |  |  |
| p1437[0...n] | CI: Speed controller, reference model I component input / n_ctrRefMod I_comp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control | Calculated: - | Access level: 3 |
|  |  | Dynamic index: CDS, p0170 | Func. diagram: 6031 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 1436[0] |
| Description: <br> Dependency: | Sets the signal source for speed setpoint for the integral component of the speed controller. |  |  |
|  | The reference model is activated with p1400.3 $=1$. |  |  |
|  | Refer to: p1400 |  |  |



| Dependency: <br> Note: | Refer to: r1438 |  |  |
| :---: | :---: | :---: | :---: |
| p1440[0...n] | CI: Speed controller speed actual value / n_ctrl n_act |  |  |
| VECTOR | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 63[0] |
| Description: | Sets the signal source for the speed actual value of the speed controller. |  |  |
| Dependency: | Refer to: r1443 |  |  |
|  | When using external speed actual values for the speed controller, for a direction of rotation change via p1821 $=1$, then its polarity must also be changed, e.g. for an encoder DO via p0410. Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit. |  |  |
| Caution: | Speed control with encoder (p1300 = 21): |  |  |
| $!$ | For the speed or position signal of the motor model there must always be a motor encoder available (evaluation via SMC/SMI, see p0400). The actual speed of the motor (r0061) and the position data for synchronous motors continue to come from this motor encoder and are not affected by the setting of p1440. |  |  |
|  | Interconnection of p1440: |  |  |
|  | If connector input p1440 is interconnected with an external speed actual value, the identical scaling of the speed should be observed (p2000). |  |  |
| Notice: | Speed control without encoder (p1300 = 20): |  |  |
|  | Dependent upon the transmission path of the external speed signal there will be dead times which have to be taken into account when setting the speed controller parameters (p1470, p1472) and can lead to dynamic losses accordingly. It is for this reason that signal transmission times have to be kept as low as possible. |  |  |
|  | So that the speed controller can also work at standstill, set p1750.2 $=1$ (closed-loop operation from zero speed for passive loads). If you do not make this setting, operation will switch to open-loop speed control in the low speed range, switching the closed-loop speed controller off and rendering the measured actual speed ineffective. |  |  |
| Note: | Speed control with encoder (p1300 = 21): |  |  |
|  | An external speed signal should | respond to the spee | tor encoder (r0061) |


| p1441[0...n] | Actual speed smoothing time /n_act T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4710, 4715 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~ms}]$ | $0.00[\mathrm{~ms}]$ |  |
| Description: | Sets the smoothing time constant (PT1) for the speed actual value. |  |  |
| Dependency: | Refer to: ro063, p1451 |  |  |
| Note: | The speed actual value should be smoothed for encoders with a low pulse number or for resolvers. |  |  |
|  | After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed con- |  |  |
|  | troller settings checked Kp (p1460) and Tn (p1462). |  |  |


| p1441[0...n] | Actual velocity smoothing time / v_act T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4710, 4715 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 50.00 [ms] | 0.00 [ms] |
| Description: | Sets the smoothing time constant (PT1) for the velocity actual value. |  |  |
| Dependency: | Refer to: ro063, p1451 |  |  |

Note: $\quad$ The speed actual value should be smoothed for encoders with a low pulse number or for resolvers. After this parameter has been changed, we recommend that the velocity controller is adapted and/or the velocity controller settings checked Kp (p1460) and Tn (p1462).

| p1441[0...n] | Actual speed smoothing time / n_act T_smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $n / M$ ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4710, 4715 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00 \text { [ms] } \end{aligned}$ | Factory setting 0.00 [ms] |
| Description: | Sets the smoothing time constant (PT1) for the speed actual value. |  |  |
| Dependency: | Refer to: r0063 |  |  |
| Notice: | Smoothing times above 20 ms are only possible if the drive is accelerated or braked with the appropriately long ramp-up/ramp-down times. Otherwise, significant torque errors can occur and there is the danger that the drive is powered down (tripped) with F07902 (motor stalled). |  |  |
| Note: | The speed actual value should be smoothed for encoders with a low pulse number or for resolvers. |  |  |
|  | After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed con troller settings checked Kp ( p 1460 ) and Tn ( p 1462 ). |  |  |
| p1442[0...n] | Speed controller speed actual value smoothing time / n_ctr n_act T_smth |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 32000.00[\mathrm{~ms}] \end{aligned}$ | Factory setting 4.00 [ms] |
| Description: <br> Note: | Sets the smoothing time for the actual speed value of the speed controller for closed-loop control with encoder. The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$ ). |  |  |

## r1443

VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)

Data type: FloatingPoint32
CO: Speed controller speed actual value at actual value input / n_ctrl n_act inp
Can be changed: -
Calculated: - Access level: 3

P-Group: Closed-loop control
Not for motor type: REL
Dynamic index: -
Func. diagram: 6040
Unit group: 3 -
Unit selection: p0505

Min
caling: p2000
Max

- [rpm]
xpert list: 1
Factory setting
- [rpm]

Displays the speed actual value at the speed controller's free-wiring actual value input p1440.

Note: $\quad$ This speed signal is only used by the speed controller and not by the motor model.

| r1444 | Speed controller, speed setpoint steady-state (static) / n_ctrl n_set stat |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index:- | Func. diagram: 5030 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR। $\operatorname{AC}(\mathrm{n} / \mathrm{M})$ | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the sum of all speed setpoints that are present. The following sources are available for the displayed setpoint: - setpoint at the ramp-function generator input (r1119). |  |  |


|  | - speed setpoint 1 (p1155). |  |  |
| :---: | :---: | :---: | :---: |
|  | - speed setpoint 2 (p1160). |  |  |
|  | - speed setpoint for the speed pre-control (p1430). |  |  |
|  | - setpoint from DSC (for DSC active). |  |  |
|  | - setpoint via PC (for master control active). |  |  |
| Dependency: | Refer to: r1119, p1155, p1160, p1430 |  |  |
| r1444 | Velocity controller, velocity setpoint, total / v_ctrl v_set stat |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5030 |
|  | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] |  | Factory setting |
|  |  | - [m/min] | - [m/min] |
| Description: | Displays the sum of all velocity setpoints that are present. |  |  |
|  | The following sources are available for the displayed setpoint: |  |  |
|  | - setpoint at the ramp-function generator input (r1119). |  |  |
|  | - velocity setpoint 1 (p1155). |  |  |
|  | - velocity setpoint 2 (p1160). |  |  |
|  | - velocity setpoint for the velocity pre-control (p1430). |  |  |
|  | - setpoint from DSC (for DSC active). |  |  |
|  | - setpoint via PC (for master control active). |  |  |
| Dependency: | Refer to: r1119, p1155, p1160, p1430 |  |  |
| r1445 | CO: Actual speed smoothed / n_act smooth |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [rpm] | - [rpm] | - [rpm] |
| Description: | Displays the actual smoothed actual speed for speed control. |  |  |
| r1445 <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | CO: Actual velocity smoothed / v_act smooth |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [m/min] | - [m/min] | - [m/min] |
| Description: | Displays the actual smoothed velocity actual value for velocity control. |  |  |
| r1445 <br> VECTOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | CO: Actual speed smoothed / n_act smooth |  |  |
|  | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the actual smoothed | or speed control. |  |


| p1446[0...n] | Speed actual value filter type / n_act_filt type |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 2 | 2 |
| Description: | Sets the type for the general speed actual value filter. |  |  |
| Value: | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | PT2 low pass: p1447, p1448 |  |  |
|  | General filter: p1447 ... p1450 |  |  |
| p1446[0...n] | Velocity actual value filter type / v_act_filt type |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $U, T$ <br> Data type: Integer16 <br> P-Group: Closed-loop control | Calculated: - | Access level: 3 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min1 | Max | Factory setting |
|  |  | 2 | 2 |
| Description: Value: | Sets the type for the general velocity actual value filter. |  |  |
|  | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | PT2 low pass: p1447, p1448 |  |  |
|  | General filter: p1447 ... p1450 |  |  |
| p1447[0...n] | Speed actual value filter denominator natural frequency / n_act_filt fn_d |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control | Calculated: - | Access level: 3 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min$0.5[\mathrm{~Hz}]$ | Max | Factory setting |
|  |  | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: <br> Dependency: <br> Note: | Sets the denominator natural frequency for the speed actual value filter (PT2, general filter). |  |  |
|  | Refer to: p1413, p1446 |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |
| p1447[0...n] <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Velocity actual value filter denominator natural frequency / v_act_filt fn_d |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting 2000.0 [Hz] |
| Description: | Sets the denominator natural frequency for the velocity actual value filter (PT2, general filter). |  |  |
| Dependency: | Refer to: p1413, p1446 |  |  |
| Note: | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |


| p1448[0...n] | Speed actual value filter denominator damping / n_act_filt D_d |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$ | Factory setting 0.700 |
| Description: Dependency: | Sets the denominator damping for the speed actual value filter (PT2, general filter). Refer to: p1413, p1446 |  |  |
| p1448[0...n] <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Velocity actual value filter denominator damping / v_act_filt D_d |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for the velocity actual value filter (PT2, general filter). <br> Refer to: p1413, p1446 |  |  |
| Dependency: |  |  |  |
| $\begin{aligned} & \text { p1449[0...n] } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Speed actual value filter numerator natural frequency / n_act_filt fn_n |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 2000.0 [Hz] |
| Description: | Sets the numerator natural frequency for the speed actual value filter (general filter). |  |  |
| Dependency: | Refer to: p1413, p1446 |  |  |
| Note: | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |
| p1449[0...n] | Velocity actual value filter numerator natural frequency / v_act_filt fn_n |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.5[\mathrm{~Hz}]$ | $\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting 2000.0 [Hz] |
| Description: | Sets the numerator natural frequency for the velocity actual value filter (general filter). |  |  |
| Dependency: | Refer to: p1413, p1446 |  |  |
| Note: | This parameter is only effective if the velocity filter is set as a general filter. |  |  |
|  | The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |
| p1450[0...n] | Speed actual value filter numerator damping / n_act_filt D_n |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$ | Factory setting 0.700 |
| Description: | Sets the numerator damping for the speed actual value filter (general filter). |  |  |


| Dependency: | Refer to: p1413, p1446 |  |  |
| :---: | :---: | :---: | :---: |
| Note: | This parameter is only effective if the speed filter is set as a general filter. |  |  |
| p1450[0...n] | Velocity actual value filter numerator damping / v_act_filt D_n |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for the velocity actual value filter (general filter). |  |  |
| Dependency: | Refer to: p1413, p1446 |  |  |
| Note: | This parameter is only effective if the velocity actual value filter is set as a general filter. |  |  |
| p1451[0...n] | Speed actual value smoothing time sensorless / n_act t_sm SL |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | $\begin{aligned} & \text { Max } \\ & 100 \text { [ms] } \end{aligned}$ | Factory setting 0 [ms] |
| Description: | Sets the smoothing time for the calculated speed actual value in sensorless operation. |  |  |
| Dependency: | Refer to: p1441 |  |  |
| p1451[0...n] | Velocity actual value smoothing time sensorless / v_act t_sm SL |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 [ms] | 100 [ms] | 0 [ms] |
| Description: | Sets the smoothing time for the calculated velocity actual value in sensorless operation. |  |  |
| Dependency: | Refer to: p1441 |  |  |
| p1451[0...n] | Motor model speed actual value smoothing time SLVC / Mot_mod n_act t_sm |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | $\begin{aligned} & \text { Max } \\ & 100[\mathrm{~ms}] \end{aligned}$ | Factory setting 4 [ms] |
| Description: | Sets the smoothing time for the speed actual value calculated by the motor model in sensorless operation. |  |  |
| p1452[0...n] | Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6040 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 32000.00 [ms] | 10.00 [ms] |
| Description: | Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control. |  |  |


| Note: | The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$ ). |  |  |
| :---: | :---: | :---: | :---: |
| r1454 | CO: Speed controller system deviation I component / n_ctrl sys dev Tn |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | Max - [rpm] | Factory setting - [rpm] |
| Description: | When the reference model is inactive ( $\mathrm{p} 1433=0 \mathrm{~Hz}$ ), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064). |  |  |
| r1454 | CO: Velocity controller system deviation I component / v_ctrl sys dev Tn |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040 |
|  | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | When the reference model is inactive ( $\mathrm{p} 1433=0 \mathrm{~Hz}$ ), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064). |  |  |
| r1454 | CO: Speed controller system deviation I component / n_ctrl sys dev Tn |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | $\begin{aligned} & \operatorname{Max} \\ & -[r p m] \end{aligned}$ | Factory setting - [rpm] |
| Description: | When the reference model is inactive ( $\mathrm{p} 1433=0 \mathrm{~Hz}$ ), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064). |  |  |
| p1455[0...n] | CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: <br> Dependency: | Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459 |  |  |


| p1455[0...n] | CI: Velocity controller, P gain adaptation signal / v_ctr adapt_sig Kp |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the source for the adaptation signal to additionally adapt the $P$ gain of the velocity controller. Refer to: p1456, p1457, p1458, p1459 |  |  |
| Dependency: |  |  |  |
| p1455[0...n] | CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. |  |  |
| Dependency: | Refer to: p1456, p1457, p1458, p1459 |  |  |
| p1456[0...n] | Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [\%] | 400.00 [\%] | 0.00 [\%] |
| Description: | Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the speed controller. |  |  |
|  | The values are in \% and refer to the set source of the adaptation signal. |  |  |
| Dependency: | Refer to: p1455, p1457, p1458, p1459 |  |  |
| p1456[0...n] | Velocity controller P gain adaptation, lower starting point / v_ctrl AdaptKpLow |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [\%] | 400.00 [\%] | 0.00 [\%] |
| Description: | Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the velocity controller. |  |  |
|  | The values are in \% and refer to the set source of the adaptation signal. |  |  |
| Dependency: | Refer to: p1455, p1457, p1458, p1459 |  |  |



| p1458[0...n] | Adaptation factor, lower / Adapt_factor lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
| SERVO__AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 200000.0 [\%] | 100.0 [\%] |
| Description: | Sets the adaptation factor before the adaptation range ( $0 \% \ldots \mathrm{p} 1456$ ) to additionally adapt the P gain of the speed/velocity controller. |  |  |
| Dependency: | Refer to: p1455, p1456, p1457, p1459 |  |  |



| p1459[0...n] | Adaptation factor, upper / Adapt_factor upper |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [\%] }$ | Max $200000.0 \text { [\%] }$ | Factory setting 100.0 [\%] |
| Description: | Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity controller. |  |  |
| Dependency: | Refer to: p1455, p1456, p1457, p1458 |  |  |
| p1459[0...n] | Adaptation factor, upper / Adapt_factor upper |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6050 |
| VECTOR__AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 200000.0 [\%] | 100.0 [\%] |
| Description: | Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity controller. |  |  |
| Dependency: | Refer to: p1455, p1456, p1457, p1458 |  |  |
| Note: | If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458. |  |  |


| p1460[0...n] | Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5042 |
|  | P-Group: Closed-loop control | Units group: 17_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [ $\mathrm{Nms} / \mathrm{rad}$ ] | 999999.000 [ $\mathrm{Nms} / \mathrm{rad}$ ] | 0.300 [ $\mathrm{Nms} / \mathrm{rad}$ ] |
| Description: | Sets the P gain of the speed controller before the adaptation speed range ( $0 \ldots \mathrm{p} 1464$ ). |  |  |
|  | This value corresponds to the basic setting of the $P$ gain of the speed controller without adaptation (p1461 $=100$ $\%$ ). |  |  |
| Dependency: | Refer to: p1461, p1464, p1465 |  |  |
| Note: | When automatically calculating the speed controller, only the motor moment of inertia is taken into account ( p 0341 ). For higher load moments of inertia (p0342 > 1 or p1498>0), you are advised to check the speed controller gain. |  |  |


| p1460[0...n] | Velocity controller, P gain adaptation velocity, lower / v_ctrl Kp n lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5042 |
| SERVO__AC (Lin) | P-Group: Closed-loop control | Units group: 24_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.000 [ $\mathrm{Ns} / \mathrm{m}$ ] | Max $999999.000[\mathrm{Ns} / \mathrm{m}]$ | Factory setting 10.000 [ $\mathrm{Ns} / \mathrm{m}$ ] |
| Description: | This value corresponds to the basic setting of the $P$ gain of the velocity controller without adaptation (p1461 = 100 $\%$ ). |  |  |
| Dependency: | Refer to: p1461, p1464, p1465 |  |  |
| Note: | When automatically calculating higher inertias (p0342 > 1 or p | ontroller, only the motor inertia is are advised to check the velocity | n into account (p0341). For troller gain. |


| p1460[0...n] | Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 999999.000 | 0.300 |
| Description: | Sets the P gain of the speed controller before the adaptation speed range (0 ... p1464). |  |  |
|  | This value corresponds to the basic setting of the $P$ gain of the speed controller without adaptation (p1461 = 100 $\%$ ). |  |  |
| Dependency: | For p0528 = 1, the speed controller gain is represented without any dimensions. |  |  |
|  | Refer to: p1461, p1464, p1465 |  |  |


| p1461[0...n] | Speed controller Kp adaptation speed, upper scaling $/ \mathbf{n}$ _ctr Kp $\mathbf{n}$ up scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | 200000.0 [\%] | Fxpert list: 1 |
|  | $0.0[\%]$ | Factory setting |  |
| Description: | Sets the P gain of the speed controller for the upper adaptation speed range (> p1465). |  |  |
|  | The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to |  |  |
|  | p1460). |  |  |
| Dependency: | Refer to: p1460, p1464, p1465 |  |  |

Note: When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p0341). For higher load moments of inertia (p0342 > 1 or p1498 > 0), you are advised to check the speed controller gain.

| p1461[0...n] | Velocity controller Kp adaptation velocity, upper scaling / v_ctr Kp n up scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Maxing: - | Expert list: 1 |


| p1461[0...n] | Speed controller Kp adaptation speed, upper scaling / n_ctr Kp n up scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6050 |
| ECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1460). |  |  |
| Dependency: | Refer to: p1460, p1464, p1465 |  |  |
| Note: | If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters. |  |  |


| p1462[0...n] | Speed controller integral time adaptation speed lower / n_ctrl Tn n lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 5040, 5042, 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | Max <br> 100000.00 [ms] | Factory setting 20.00 [ms] |
| Description: | This value corresponds to the basic setting of the integral time of the speed controller without adaptation (p1461 = $100 \%$ ). |  |  |
| Dependency: | Refer to: p1463, p1464, p1465 |  |  |
| p1462[0...n] | Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5042 |
| S | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.00 \text { [ms] }$ | Max <br> 100000.00 [ms] | Factory setting 20.00 [ms] |
| Description: | Sets the integration time of the velocity controller before the adaptation velocity range (0 .. p1464). |  |  |



Note: If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

| p1464[0...n] | Speed controller adaptation speed, lower / n_ctrl n lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [rpm] | Max <br> 210000.00 [rpm] | Factory setting 0.00 [rpm] |
| Description: | Sets the lower adaptation speed of the speed controller. |  |  |
| Dependency: | Refer to: p1460, p1461, p1462 |  |  |


| p1464[0...n] | Velocity controller adaptation velocity, lower / v_ctrl n lower |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~m} / \mathrm{min}]$ | $0.00[\mathrm{~m} / \mathrm{min}]$ |  |
|  |  |  |  |
| Description: | Sets the lower adaptation velocity of the velocity controller. |  |  |
|  | No adaptation is effective below this velocity. |  |  |
| Dependency: | Refer to: p1460, p1461, p1462, p1463, p1465 |  |  |


| p1464[0...n] | Speed controller adaptation speed, lower / n_ctrl n lower |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6050 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 0.00 [rpm] |
| Description: | Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed. |  |  |
| Dependency: | Refer to: p1460, p1461, p1462, p1463, p1465 |  |  |
| Note: | If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters. |  |  |


| p1465[0...n] | Speed controller adaptation speed, upper / n_ctrl n upper |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 210000.00 [rpm] |
| Description: | Sets the upper adaptation speed of the speed controller. |  | ective. |
| Dependency: | Refer to: p1460, p1461, p1462, |  |  |


| p1465[0...n] | Velocity controller adaptation velocity, upper / v_ctrl n upper |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5050 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $1000.00[\mathrm{~m} / \mathrm{min}]$ | Factory setting |
|  | $0.00[\mathrm{~m} / \mathrm{min}]$ | $1000.00[\mathrm{~m} / \mathrm{min}]$ |  |
| Description: | Sets the upper adaptation velocity of the velocity controller. |  |  |
|  | No adaptation is effective above this velocity. |  |  |
|  | For P gain, p1460 x p1461 is effective. For the integral time, p1462 x p1463 is effective. |  |  |
| Dependency: | Refer to: p1460, p1461, p1462, p1463, p1464 |  |  |


| p1465[0...n] | Speed controller adaptation speed, upper / n_ctrl n upper |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $U, T$ | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6050 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 210000.00 [rpm] |
| Description: | Sets the upper adaptation speed of the speed controller. |  |  |
| Dependency: | Refer to: p1460, p1461, p1462, p1463, p1464 |  |  |
| Note: | If the upper transition point p14 point p 1464 , then the controller be implemented for low speeds | ed controller adaptation is set to is adapted with p1461 or p1463. ing to change the controller param | values than the lower transition means that an adaptation can s. |


| p1466[0...n] | CI: Speed controller P-gain scaling / n_ctrl Kp scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5050 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |


| p1466[0...n] | Cl: Velocity controller P gain scaling/v_ctrl Kp scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5050 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the scaling of the P gain of the velocity controller. |  |  |
|  | This also makes the effective P gain (including adaptations) scalable. |  |  |


| p1466[0...n] | CI: Speed controller P-gain scaling / n_ctrl Kp scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6050 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the scaling of the $P$ gain of the speed controller. This also makes the effective P gain (including adaptations) scalable. |  |  |
|  |  |  |  |
| r1468 | Speed controller P-gain effective / n_ctr Kp eff |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: 17_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [Nms/rad] | Max <br> - [Nms/rad] | Factory setting <br> - [Nms/rad] |
| Description: | Displays the effective P gain of the speed controller. |  |  |
| Note: | For encoderless operation and speeds less than p1755 (open-loop controlled mode) the speed controller is not active and $\mathrm{r} 1468=0$ is displayed. |  |  |


| r1468 | Velocity controller P gain effective / v_ctrl Kp eff |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, $5210$ |
|  | P-Group: Closed-loop control | Units group: 24_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [Ns/m] | Max <br> - [Ns/m] | Factory setting <br> - [Ns/m] |
| Description: | Displays the effective P gain of the velocity controller. |  |  |
| Note: | For encoderless operation and velocities less than p1755 (open-loop controlled mode) the velocity controller is not active and $\mathrm{r} 1468=0$ is displayed. |  |  |

VECTOR (n/M) VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M)

CO: Speed controller P-gain effective / n_ctr Kp eff
Can be changed: - Calculated: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min

Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 3
Func. diagram: 6040
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the effective P gain of the speed controller.
Dependency: $\quad$ For p0528 = 1, the speed controller gain is represented without any dimensions. In this case, connector output signal r1468 is increased by a factor of 100 in order to improve the resolution.

| r1469 | Speed controller integral time effective / n_ctr Tn eff |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, 6040 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[\mathrm{ms}] \end{aligned}$ | Factory setting - [ms] |
| Description: | Displays the effective integral time of the speed controller. |  |  |


| $\mathbf{r 1 4 6 9}$ | Velocity controller integral time effective / v_ctrl Tn eff |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040,5042 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{ms}]$ | $-[\mathrm{ms}]$ | $-[\mathrm{ms}]$ |
| Description: | Displays the effective integral time of the velocity controller. |  |  |


| p1470[0...n] | Speed controller encoderless operation P-gain / n_ctrl SLVC Kp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5210 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: 17_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{Nms} / \mathrm{rad}]$ | $0.300[\mathrm{Nms} / \mathrm{rad}]$ |  |
| Description: | Sets the P gain for encoderless operation for the speed controller. |  |  |
| Note: | When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p0341). |  |  |
|  | For higher load moments of inertia (p0342 > 1 or p1498 >0), you are advised to check the speed controller gain. |  |  |


| p1470[0...n] | Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5210 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: $24 \_2$ | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{Ns} / \mathrm{m}]$ | $10.000[\mathrm{Ns} / \mathrm{m}]$ |  |
| Description: | Sets the P gain for encoderless operation for the velocity controller. |  |  |
| Note: | When automatically calculating the velocity controller, only the motor inertia is taken into account (p0341). For |  |  |
|  | higher inertias $(p 0342>1$ or p1498 >0), you are advised to check the velocity controller gain. |  |  |

p1470[0...n] Speed controller encoderless operation P-gain / n_ctrl SLVC Kp
$\operatorname{VECTOR}(\mathrm{n} / \mathrm{M}) \quad$ Can be changed: $\mathrm{U}, \mathrm{T} \quad$ Calculated: CALC MOD CON Access level: 2

VECTOR_AC (n/M), Data type: FloatingPoint32
VECTOR_I_AC (n/M)
P-Group: Closed-loop control
Not for motor type: REL
Min
$0.000 \quad 999999.000$

Access level: 2
Func. diagram: 6040, 6050
Unit selection: -
Expert list: 1
Factory setting
0.300

Description: Sets the P gain for encoderless operation for the speed controller.
Dependency: For p0528=1, the speed controller gain is represented without any dimensions.
Note:

The product p0341 $\times$ p0342 is taken into account when automatically calculating the speed controller ( $\mathrm{p} 0340=1,3$, 4).

| p1472[0...n] | Speed controller encoderless operation integral time / n_ctrl SLVC Tn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5210 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\mathrm{~ms}]$ | $100000.0[\mathrm{~ms}]$ | 20.0 [ms] |
|  | Set the integral time for encoderless operation for the speed controller. |  |  |


| p1472[0...n] | Velocity controller encoderless operation integral time / v_ctrl SLVC Tn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5210 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\mathrm{~ms}]$ | $100000.0[\mathrm{~ms}]$ | $20.0[\mathrm{~ms}]$ |
| Description: | Set the integral time for encoderless operation for the velocity controller. |  |  |


| p1472[0...n] | Speed controller encoderless operation integral time / n_ctrl SLVC Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6040,6050 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $100000.0[\mathrm{~ms}]$ | Factory setting |
|  | $0.0[\mathrm{~ms}]$ | 20.0 [ms] |  |
| Description: | Set the integral time for encoderless operation for the speed controller. |  |  |
| Note: | The integral component is stopped if the complete controller output or the sum of controller output and torque pre- |  |  |
|  | control reach the torque limit. |  |  |


| 75[0. | CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Ma | Factory setting |
|  |  |  | 0 |
| Description: | Sets the signal source for the torque setting value when starting up with motor holding brake. |  |  |
| Recommend.: | To hold the actual torque when stopping the motor, you are advised to set p1400 bit $1=1$. As a result, the integral component of the speed controller is frozen when changing to the open-loop controlled operating range. |  |  |
| Dependency: | The switching in of the torque setting value for the motor holding brake has a higher priority than the setting of the integrator value using p1477 and p1478. |  |  |
| Note: | The setting of the integral output of the speed controller begins after magnetizing (see p0346, r0056 bit 4) and ends at the end of the brake control opening time p1216. A setting value of zero means that no setting procedure will take place. |  |  |


| p1476[0...n] | BI: Speed controller hold integrator / n_ctrl integ stop |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 5040, 5042, 5210, 6040 |
| TOR (n/M), VECTOR_AC (n/M), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to hold the integrator for the speed controller. |  |  |
| p1476[0...n] | BI: Velocity controller hold integrator / v_ctrl integ stop |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to hold the integrator for the velocity controller. |  |  |
| p1477[0...n] | BI: Speed controller set integrator value / n_ctrl integ set |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 5040, $5042,5210,6040$ |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC (n/M), | P-Group: Closed-loop control | Units group: - | Unit selection: |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source to set the integrator setting value (p1478). |  |  |
| Dependency: | Refer to: p1478, p1479 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller). |  |  |
| p1477[0...n] | BI: Velocity controller set integrator value / v_ctrl integ set |  |  |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  |  |
| Description: | Sets the signal source to set the integrator setting value (p1478). |  |  |
| Dependency: | Refer to: p1478, p1479 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller). |  |  |


| p1478[0...n] | CI: Speed controller integrator setting value / n_ctr integ_setVal |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477. |  |  |
| Dependency: | Refer to: p1477, p1479 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller). |  |  |
| p1478[0...n] | CI: Velocity controller integrator value / v_ctr integ_setVal |  |  |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5040, 5042, $5210$ |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477. |  |  |
| Dependency: | Refer to: p1477, p1479 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller). |  |  |


| p1478[0...n] | CI: Speed controller integrator setting value / n_ctr integ_setVal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 0 |
| Description: | Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p 1477. |  |  |
| Dependency: | The setting value of the speed controller integrator is weighted with the scaling factor of the signal source in p1479. If p 1478 is interconnected to the integral output of the speed controller ( r 1482 ), then after the magnetizing time (r0346) and if the speed controller is enabled, the integral component of the controller is set to the last value before the pulse inhibit. This value is set if no setting command (p1477) is interconnected or, at the instant that the pulses were inhibited, a setting command is available, which is not de-activated up to the next time that the pulses are inhibited. For sensorless vector control, in addition p1400.1 should be set to 1 so that when the drive is stopped, the integral component of the speed controller is not controlled down to zero. |  |  |
|  | In order that when setting the integrator output, only the static torque is detected, we recommend that the accelerating torque is completely pre-controlled (e.g. p1496). |  |  |
|  | If p1478 is interconnected to another output other than r1482, then after magnetizing and speed controller enable, the integral output is set once if the setting command is not interconnected (p1477 = 0) . |  |  |
|  | Refer to: p1477, p1479 |  |  |
| Notice: | The parameter may be protected as a resu | p0922 or p2079 and canno | ged. |


| p1479[0...n] | CI: Speed controller integrator setting value scaling / n_ctrl I_val scal |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { VECTOR ( } \mathrm{n} / \mathrm{M} \text { ), } \\ & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_I_AC }(\mathrm{n} / \mathrm{M}) \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6040 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for scaling the integrator setting value ( p 1478 ) of the speed controller. Refer to: p1477, p1478 |  |  |
| Dependency: |  |  |  |
| r1480 | CO: Speed controller PI torque output / n_ctrl PI-M_output |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, <br> SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1590, 5040, 5042, 5060, 5210, 6060 |
| TOR (n/M), VECTOR_AC (n/M), | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the torque setpoint at the output of the PI speed controller. |  |  |
| r1480 | CO: Velocity controller Pl force output / v_ctrl Pl-F_output |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1590, 5040, 5042, 5060, 5210 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | Max <br> - [N] | Factory setting - [N] |
| Description: | Displays the force setpoint at the output of the PI velocity controller. |  |  |


| $\mathbf{r 1 4 8 1}$ | CO: Speed controller P torque output / n_ctrl P-M_output |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, $5210,6040$ |
| TOR (n/M), VECTOR AC (n/M), | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the torque setpoint at the output of the P speed controller. |  |  |

## $r 1481$

CO: Velocity controller P force output / v_ctrl P-F_output

SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)

Can be changed: -
Data type: FloatingPoint32
Calculated: -
Dynamic index: -

P-Group: Closed-loop control
Not for motor type: REL
Min
$-[N] \quad-[N$
Description: Displays the force setpoint at the output of the $P$ velocity controller.

Access level: 3
Func. diagram: 5040, 5042, 5210
Unit selection: p0505
Expert list: 1
Factory setting

- [N]

| r1482 | CO: Speed controller I torque output / n_ctrl I-M_output |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, <br> 5210, 6030, 6040 |
| TOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min $-[\mathrm{Nm}]$ | Max <br> - [ Nm ] | Factory setting <br> - [Nm] |
| Description: | Displays the torque setpoint at the output of the I speed controller. |  |  |


| $\overline{\mathbf{1 4 8 2}}$ | CO: Velocity controller I force output / v_ctrl I-F_output |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | $\begin{gathered} \operatorname{Max} \\ -[N] \end{gathered}$ | Factory setting <br> - [N] |
| Description: | Displays the force setpoint at the output of the I velocity controller. |  |  |
| p1486[0...n] | CI: Droop compensation torque / Droop M_comp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $T$ | Calculated: - | Access level: 3 |
| VECTOR_AC ( $n / M$ ), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6030 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min |  | Factory setting 0 |
| Description: | Sets the signal source for the compensation torque to be output within the droop calculation. <br> p1486 should be connected with the torque setpoint (corresponding to the selection p1488) of the drive, with which load equalization should take place. |  |  |

p1487[0...n] Droop compensation torque scaling / Droop M_comp scal
$\operatorname{VECTOR}(\mathrm{n} / \mathrm{M})$ Can be changed: $\mathrm{U}, \mathrm{T} \quad$ Calculated: - Access level: 3


Description: Sets the scaling for the compensation torque within the droop calculation.

Access level: 3
Func. diagram: 6030
Unit selection: -
Expert list: 1
Factory setting
100.0 [\%]

| p1488[0...n] | Droop input source / Droop input source |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 6030 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection:- |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | 3 | Factory setting |
| Description: | 0 | Sets the source for droop feedback. | 0 |
|  | With increasing torque, the speed setpoint is reduced (enabled using p1492), so that for mechanically coupled |  |  |
|  | drives a load equalization (load compensation) is obtained. A load difference compensation is also possible, if |  |  |


Note: $\quad$ The parameterized total moment of inertia, taking into account p1497, influences the torque pre-control.
In encoderless operation or when the torque-speed pre-control with encoder (p1402.4 $=1$ ) is activated, then torque-
speed pre-control is activated.

| r1493 |
| :--- |
| SERVO (Lin), |
| SERVO_AC (Lin), |
| SERVO_I_AC (Lin) |


| Can be changed: - | Calculated: - | Access level: 3 |
| :---: | :---: | :---: |
| Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5042, 5210 |
| P-Group: Closed-loop control | Units group: 27_1 | Unit selection: p0100 |
| Not for motor type: REL | Scaling: - | Expert list: 1 |
| $\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{kg}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{kg}] \end{aligned}$ | Factory setting - [kg] |
| Displays the parameterized total weight ( p 0341 * p 0342 ) + p 1498 ) without evaluation by the scaling via p 1497 . Refer to: p1300, p1402, p1404, p1497 |  |  |
| The parameterized total weight, taking into account p1497, influences the force-velocity pre-control in encoderless operation or when activated, force-velocity pre-control with encoder (p1402.4). |  |  |

r1493
VECTOR ( $n / M$ ),

VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ) VECTOR_I_AC (n/M)

CO: Moment of inertia, total / M inertia total
Can be changed: - Calculated: -
Data type: FloatingPoint32 Dynamic index: -
P-Group: Closed-loop control Units group: 25_1
Not for motor type: REL Scaling: -
Min

- [kgm²]

Access level: 3
Func. diagram: 6031
Unit selection: p0100
Expert list: 1
Factory setting

- [kgm²]

Description: $\quad$ Displays the parameterized total moment of inertia ( $(\mathrm{p} 0341$ * p 0342$)+\mathrm{p} 1496)$ without evaluation by the scaling via p1497.

| p1494[0...n] | Speed controller integrator feedback time constant / n_ctr integ_fdbk T |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 1000.00 [ms] | 0.00 [ms] |
| Description: | Sets the time constant of the PT1 filter for integrator feedback. |  |  |
|  | The integrator of the speed controller is re-parameterized to become a PT1 filter through a feedback element (1st Order low pass filter characteristics). |  |  |
|  | The following applies: |  |  |
|  | $\mathrm{p} 1494<0.25$ ( $2 \times \mathrm{p} 0115[1]$ ) --> the PT1 filter is not active - the pure integrator is effective. |  |  |
|  | p1494 >= 0.25 ( $2 \times \mathrm{p} 0115[1]$ ) --> the PT1 filter is active and has replaced the pure integrator. |  |  |
| Note: | Applications: |  |  |
|  | Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps. |  |  |
|  | Also prevents tension/stressing for axes that are mechanically and rigidly coupled with one another (e.g. for synchronous spindles, master - slave axes). |  |  |


| p1494[0...n] | Velocity controller integrator feedback time constant / v_ctr integ_fdbk T |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5040, 5042, 5210 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~ms}] \end{aligned}$ | Factory setting 0.00 [ms] |
| Description: | Sets the time constant of the PT1 filter for integrator feedback. |  |  |
|  | The integrator of the velocity co Order low pass filter characteri The following applies: $\begin{aligned} & \text { p1494 < } 0.25(2 \times \mathrm{p} 0115[1])--> \\ & \mathrm{p} 1494>=0.25(2 \times \mathrm{p} 0115[1])-- \end{aligned}$ | parameterized to become a PT1 <br> is not active - the pure integrat rer is active and has replaced the | through a feedback element (1st <br> ffective. <br> integrator. |
| Note: | Applications: |  |  |
|  | Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps. |  |  |


| p1495[0...n] | CI: Acceleration pre-control / a_prectrl |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6031 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2007 | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | 0 |  |


| p1496[0...n] | Acceleration pre-control scaling / a_prectrl scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 10000.0 [\%] | 0.0 [\%] |
|  | Sets the scaling for the acceleration pre-control of the speed/velocity controller. |  |  |
| Dependency: | When the reference model is activated ( $\mathrm{p} 1400.3=1$ ) and for an internal acceleration pre-control ( $\mathrm{p} 1400.2=0$ ), the acceleration pre-control is switched out (disabled). The reference model (p1400.3 = 1) and external acceleration pre-control ( $p 1400.2=1$ ) can be operated together. |  |  |
|  | Refer to: p0341, p0342 |  |  |
| Warning: | The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 = 0) or the acceleration precontrol (p1496 = 0). |  |  |
|  | The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15) |  |  |

Note: $\quad$ The parameter is set to $100 \%$ by the rotating measurement (refer to p1960).
The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the pre-control mode is not used if there is gearbox backlash.

| p1497[0...n] | CI: Moment of inertia, scaling / M_mom inert scal |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5042, 5210, 6030, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for scaling the moment of inertia. |  |  |
| Notice: | This parameter has no effect when the "moment of inertia estimator" function is active (r0108.10 = 1, p1400.18 = 1) . |  |  |
| p1497[0...n] | CI: Motor weight scaling / Motor weight scal |  |  |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5042, 5210 |
| S | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for scaling the motor weight. |  |  |
| Notice: | This parameter has no effect when the "moment of inertia estimator" function is active (r0108.10 = 1, p1400.18 = 1) . |  |  |


| p1497[0...n] | CI: Moment of inertia, scaling / M_mom inert scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5042, 5210, 6030, 6031 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for scaling the moment of inertia. |  |  |
| p1498[0...n] | Load moment of inertia / Load mom of inert |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5042, 5210 |
| SERVO__AC | P-Group: Closed-loop control | Units group: 25_1 | Unit selection: p0100 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00000 [ $\mathrm{kgm}^{2}$ ] | $100000.00000\left[\mathrm{kgm}^{2}\right]$ | 0.00000 [ $\mathrm{kgm}^{2}$ ] |
| Description: | Sets the load moment of inertia. |  |  |
| Note: | $(\mathrm{p} 0341$ * p0342) + p1498 influence the speed/torque pre-control in encoderless operation. |  |  |




| p1502[0...n] | BI: Freeze moment of inertia estimator / J_estim freeze |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: - |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | 0 |  |
| Description: | Sets the signal source to freeze the estimated moment of inertia. |  |  |
|  | 0 signal: |  |  |
|  | Moment of inertia estimator active |  |  |
|  | 1 signal: |  |  |
|  | Determined moment of inertia frozen. |  |  |
| Dependency: | Refer to: p1300 |  |  |
|  | Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1) and p1400.18 =1. |  |  |


| p1503[0...n] | Cl: Torque setpoint / M_set |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1700,6060 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Max |
|  | Min | - | Fxpert list: 1 |
| Description: | - | Fets the signal source for the torque setpoint for torque control. | 0 |
| Note: | A change is made to closed-loop torque control if, in p1300, closed-loop torque control was selected or if the selec- |  |  |
|  | tion was made using the changeover source in p1501. |  |  |
|  | it is also possible to change over in operation using p1501. |  |  |


| r1508 | CO: Torque setpoint before supplementary torque / M_set bef. M_suppl |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC ( $n / M$ ), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6030, 6060, 6722 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the torque setpoint before entering the supplementary torque. |  |  |
|  | For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503. |  |  |


| r1509 | CO: Torque setpoint before torque limiting / M_set before M_lim |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1590, 5060, 5610 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the total torque setpoint before the torque limiting (total of the controller output, supplementary torque and if required, the pre-control torque, encoderless operation). |  |  |


| r1509 | CO: Force setpoint before force limiting / F_set before F_lim |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1590, 5060, 5610 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting - [N] |
| Description: | Displays the total torque setpoint before the force limiting (total of the controller output, supplementary force and if required, the pre-control force, encoderless operation). |  |  |
| p1511[0...n] | CI: Supplementary torque 1 / M_suppl 1 |  |  |
| SERVO, | Can be changed: $T$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060, 6060 |
| $\begin{aligned} & \text { SERVO_I_A } \\ & \text { TOR (n/M), } \end{aligned}$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC (n/M), | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for supplementary torque 1. |  |  |


| p1511[0...n] | CI: Supplementary force 1 / F_suppl 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060, 6060 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for supplementary force 1. |  |  |
| p1512[0...n] | CI: Supplementary torque 1 scaling / M_suppl 1 scal |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060, 6060 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source for scaling the supplementary torque 1. |  |  |


| p1512[0...n] | Cl: Supplementary force 1 scaling / F_suppl 1 scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060,6060 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the signal source for scaling the supplementary force 1.

Func. diagram: 5060, 6060
Unit selection: -
Expert list: 1

0

| p1513[0...n] | Cl: Supplementary torque 2 / M_suppl $\mathbf{2}$ |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060,6060 |
| SERVO_I_AC, VEC- | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| TOR (n/M), | Scaling: p2003 | Expert list: 1 |  |
| VECTOR_AC (n/M), | Not for motor type: REL |  |  |
| VECTOR_I_AC (n/M) | Max | Factory setting |  |
|  | Min | - | 0 |
| Description: | - | Sets the signal source for supplementary torque 2. |  |


| p1513[0...n] | CI: Supplementary force 2 / F_suppl 2 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - |  |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060,6060 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Max |
|  | Min | - | Expert list: 1 |
|  | - | Factory setting |  |
| Description: | Sets the signal source for supplementary force 2. | 0 |  |



| r1515 | Supplementary force total / F_suppl total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5040,5060 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ | $-[\mathrm{N}]$ |
| Description: | Displays the total supplementary force. |  |  |
|  | The displayed value is the total of supplementary forces 1 and $2(\mathrm{p} 1511, \mathrm{p} 1512, \mathrm{p} 1513, \mathrm{p} 1514)$. |  |  |


| r1516 | CO: Supplementary torque and acceleration torque / M_suppl + M_accel |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index:- | Func. diagram: 6060 |
| CTTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [ Nm ] | Factory setting <br> - [Nm] |
| Description: | Displays the total supplementa The displayed value is the tota p1518[1] + r1515). | the accelerating tor hed supplementary | celerating torque (p1516 = |


| p1517[0...n] | Accelerating torque smoothing time constant / M_accel T_smooth |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\cup, T$ | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5042, 5210, 6060 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC (n/M), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$ | Factory setting 4.00 [ms] |
| Description: | Sets the smoothing time constant of the accelerating torque. |  |  |
| Note: | For servo drives, the following applies: |  |  |
|  | - For p1402.4 = 1, the highest dynamic performance is achieved with p1517 = 0 ms . |  |  |
|  | - In encoderless operation, p1517 should be set $>=0.5 \mathrm{~ms}$; for an induction motor with current displacement rotor p1517 >= 20 ms is recommended. |  |  |
|  | For vector drives, the following applies: |  |  |
|  | The acceleration pre-control | smoothing is set to the max |  |


| p1517[0...n] | Acceleration force smoothing time constant / F_accel T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5042,5210 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $100.00[\mathrm{~ms}]$ | Factory setting |
|  | $0.00[\mathrm{~ms}]$ | 4.00 [ms] |  |
| Description: | Sets the smoothing time constant of the accelerating force. |  |  |
| Note: | For servo drives, the following applies: |  |  |
|  | - For p1402.4 = 1, the highest dynamic performance is achieved with p1517 = 0 ms. |  |  |


| r1518[0..1] | CO: Accelerating torque / M_accel |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5042, 5210 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the accelerating torque to pre-control the speed controller for torque-speed pre-control (p1402.4 = 1) or in encoderless operation. |  |  |
| Index: | [0] = Unsmoothed <br> [1] = Smoothed |  |  |
| Dependency: | Refer to: p0341, p0342, p1300 | , p1497, p1498 |  |



| Dependency: | p1400.4 = 0: upper/lower |  |  |
| :---: | :---: | :---: | :---: |
|  | p1400.4 = 1: motoring / regenerating |  |  |
|  | Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539 |  |  |
| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |  |  |
|  | Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1520[0...n] | CO: Torque limit upper / M_max upper |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC MOD LIM REF | Access level: 2 |
| VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1700, 6630 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $20000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | Sets the fixed, upper torque limit. |  |  |
| Dependency: | Refer to: p1521, p1522, p1523, r1538, r1539 |  |  |
| Danger: | Negative values when setting the upper torque limit (p1520<0) can result in the motor accelerating in an uncontrollable fashion. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The torque limit is limited to $400 \%$ of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640). |  |  |
| p1521[0...n] | CO: Torque limit lower/regenerative / M_max lower/regen |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620, 5630 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -20000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | $0.00[\mathrm{Nm}]$ |
| Description: | Sets the fixed lower torque limit or the torque limit when regenerating. |  |  |
| Dependency: | p1400.4 = 0: upper/lower |  |  |
|  | p1400.4 = 1: motoring / regenerating |  |  |
|  | Refer to: p0500, p1520, p1522, p1523, p1532 |  |  |
| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |  |  |
|  | Positive values when setting the lower torque limit (p1521 > 0) can result in the motor accelerating in an uncontrollable fashion. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1521[0...n] | CO: Force limit lower/regenerative / F_max lower/regen |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620, 5630 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -20000000.00 [N] | 1000000.00 [N] | 0.00 [ N$]$ |
| Description: | Sets the fixed lower or force limit when regenerating. |  |  |


| Dependency: | p1400.4 = 0: upper/lower |  |  |
| :---: | :---: | :---: | :---: |
|  | p1400.4 = 1: motoring / regenerating |  |  |
|  | Refer to: p0500, p1520, p1522, p1523, p1532 |  |  |
| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |  |  |
| $!$ | Positive values when setting the lower torque limit (p1521 > 0) can result in the motor accelerating in an uncontrollable fashion. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1521[0...n] | CO: Torque limit lower / M_max lower |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: | Access level: 2 |
| VECTOR_AC (n/M), |  | CALC_MOD_LIM_REF |  |
| VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620, 5630 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -20000000.00 [ Nm ] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm] |
| Description: | Sets the fixed, lower torque limit. |  |  |
| Dependency: | Refer to: p1520, p1522, p1523, p1532 |  |  |
| Danger: | Positive values when setting the lower torque limit (p1521>0) can result in the motor accelerating in an uncontrollable fashion. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The torque limit is limited to $400 \%$ of the rated motor torque. When automatically calculating the motor/closed-loop control parameters ( p 0340 ), the torque limit is set to match the current limit ( p 0640 ). |  |  |
| p1522[0...n] | CI: Torque limit upper/motoring / M_max upper/mot |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 5620, 5630, 6630 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 1520[0] |
| Description: | Sets the signal source for the upper or torque/force limit when motoring. |  |  |
| Dependency: | p1400.4 = 0: upper/lower |  |  |
|  | p1400.4 = 1: motoring / regenerating |  |  |
|  | Refer to: p1520, p1521, p1523, p1532 |  |  |
| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |  |  |
|  | Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner. |  |  |
| p1522[0...n] | CI: Force limit upper/motoring / F_max upper/mot |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 5620, 5630, 6630 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1520[0] |
| Description: | Sets the signal source for the upper or torque/force limit when motoring. |  |  |


| Dependency: | $\mathrm{p} 1400.4=0:$ upper/lower |
| :--- | :--- |
|  | $\mathrm{p} 1400.4=1:$ motoring / regenerating |
|  | Refer to: $\mathrm{p} 1520, \mathrm{p} 1521, \mathrm{p} 1523, \mathrm{p} 1532$ |$\quad$| For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |
| :--- |
| Danger: |$\quad$| Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled |
| :--- |
| manner. |


| p1522[0...n] | CI: Torque limit upper / M_max upper |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6630 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Max |
|  | Min | - | Expert list: 1 |
|  | - | Factory setting |  |
| Description: | Sets the signal source for the upper torque limit. | 1520[0] |  |
| Dependency: | Refer to: p1520, p1521, p1523 |  |  |
| Danger: | Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled |  |  |
|  | manner. |  |  |


| p1523[0...n] | CI: Torque limit lower/regenerative / M_max lower/regen |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $T$ | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 5620, 5630 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1521[0] |
| Description: | Sets the signal source for the lower or torque/force limit when regenerating. |  |  |
| Dependency: |  |  |  |
|  | p1400.4 = 1: motoring / regenerating |  |  |
|  | Refer to: p1520, p1521, p1522, p1532 |  |  |
| Danger: | For p1400.4 $=0$ (torque limiting, upper/lower) the following applies: |  |  |
|  | Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner. |  |  |


| p1523[0...n] | CI: Force limit lower/regenerative / F_max lower/regen |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 5620, |
| SERVO_I_AC (Lin) |  | Snits group: - | U630 |
|  | P-Group: Closed-loop control | Scaling: p2003 | Unit selection: - |
|  | Not for motor type: REL | - | Expert list: 1 |


| p1523[O...n] | Cl: Torque limit lower / M_max lower |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR (n/M), | Can be changed: T | Calculated: - |  |
| VECTOR_AC (n/M), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1700,6630 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Max |
|  | Min | Expert list: 1 |  |


| p1524[0...n] | CO: Torque limit upper scaling / M_max upper scal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6630 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-2000.0[\%]$ | $2000.0[\%]$ | 100.0 [\%] |
| Description: | Sets the scaling for the upper torque limit. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |


| Note: | This parameter can be freely interconnected. |
| :--- | :--- |
|  | The value has the meaning stated above if it is interconnected from connector input p1528. |


| p1525[0...n] | CO: Torque limit lower/regenerative scaling / M_max low/gen scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620,5630 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Max |
|  | Min | Expert list: 1 |  |
|  | $-2000.0[\%]$ | Factory setting |  |
| Description: | Sets the scaling for the lower torque limit or the torque limit when regenerating. | 100.0 [\%] |  |
| Dependency: | p1400.4 = 0: upper/lower |  |  |
|  | p1400.4 = 1: motoring / regenerating |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | This parameter can be freely interconnected. |  |  |
|  | The value has the meaning stated above if it is interconnected from connector input p1528. |  |  |


| p1525[0...n] | CO: Force limit lower/regenerative scaling / F_max lo/reg scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620,5630 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-2000.0[\%]$ | 100.0 [\%] |  |
| Description: | Sets the scaling for the lower force limit or the force limit when regenerating. |  |  |
| Dependency: | p1400.4 = 0: upper/lower |  |  |
|  | p1400.4 = 1: motoring / regenerating |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | This parameter can be freely interconnected. |  |  |
|  | The value has the meaning stated above if it is interconnected from connector input p1528. |  |  |


| p1525[0...n] | CO: Torque limit lower scaling / M_max lower scal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6630 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 2000.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | Sets the scaling for the lower torque limit. |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | This parameter can be freely interconnected. |  |  |
|  | The value has the meaning stated above if it is interconnected from connector input p1528. |  |  |
| r1526 | CO: Torque limit upper/motoring without offset / M_max up w/o offs |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5620, 5630 |
| S | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the upper torque limit of all torque limits without offset. |  |  |



| $\overline{1527}$ | CO: Torque limit lower without offset / M_max low w/o offs |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (n/M), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6060, 6630, 6640 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the lower torque limit of all torque limits without offset. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529 |  |  |
| p1528[0...n] | Cl : Torque limit upper/motoring scaling / M_max up/mot scal |  |  |
|  | Can be changed: T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 3617, $5620,5630$ |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | $1524[0]$ |
| Description: | Sets the signal source for the scaling of the upper or motoring torque limit in p1522. |  |  |
| Dependency: | p1400.4 = 0: upper/lower |  |  |
| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |  |  |
|  | Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1528[0...n] | CI: Force limit upper/motoring scaling / F_max up/mot scal |  |  |
| SERVO (Lin), | Can be changed: $T$ | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1610, 3617, $5620,5630$ |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting 1524[0] |
| Description: <br> Dependency: | Sets the signal source for the scaling of the p1400.4 = 0: upper/lower p1400.4 = 1: motoring $/$ regenerating | upper or motoring force limit in $p$ |  |
| Danger: | Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1528[0...n] | CI: Torque limit upper scaling / M_max upper scal |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $T$ | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6630 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | $1524[0]$ |


| Danger: | For p1400.4 = 0 (torque limiting, upper/lower) the following applies: |
| :--- | :--- | :--- |
| Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled |  |
| manner. |  |



| p1531[0...n] | Power limit regenerative / P_max gen |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5640 |
|  | P-Group: Closed-loop control | Units group: 14_8 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -100000.00[\mathrm{~kW}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -0.01[\mathrm{~kW}] \end{aligned}$ | Factory setting -0.01 [kW] |
| Description: | Sets the regenerative power limit. |  |  |
| Dependency: | Refer to: p0500, p1530 |  |  |
| p1531[0...n] | Power limit regenerative / P_max gen |  |  |
| VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $U$, $T$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6640 |
|  | P-Group: Closed-loop control | Units group: 14_5 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{~kW}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -0.01[\mathrm{~kW}] \end{aligned}$ | Factory setting -0.01 [kW] |
| Description: | Sets the regenerative power limit. |  |  |
| Dependency: | Refer to: p0500, p1530 |  |  |
| Note: | The power limit is limited to $300 \%$ of the rated motor power. |  |  |
|  | For power units without regenerative feedback into the line supply, the regenerative power limit is pre-set to $30 \%$ of the motoring power limit p1530 and in the ratio rated drive converter power to rated motor power. If a braking resistor is connected to the DC link, then the power limit can be correspondingly increased. |  |  |


| p1532[0...n] | CO: Torque limit offset / M_max offset |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620, 5630, 5650, 7010, 8012 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{Nm}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{Nm}] \end{aligned}$ | Factory setting 0.00 [ Nm ] |
| Description: | Sets the torque offset for the torque limit. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p1532[0...n] | CO: Force offset, force limit / F_max offset |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5620, 5630, 5650, 7010, 8012 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min $-100000.00[\mathrm{~N}]$ | $\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$ | Factory setting 0.00 [N] |
| Description: | Sets the force offset for the force limit. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |


| r1533 | Current limit torque-generating total / Iq_max total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5640,5722, |
| SERVO_I_AC, VEC- |  | 6640 |  |
| TOR (n/M), | Units group: $6 \_2$ | Unit selection: $p 0505$ |  |
| VECTOR_AC (n/M), | P-Group: Displays, signals | Scaling: p2002 | Expert list: 1 |
| VECTOR_I_AC (n/M) | Not for motor type: - | Max | Factory setting |
|  | Min | - [Arms] | - [Arms] |
|  | $-[$ Arms] | Displays the maximum torque/force generating current as a result if all current limits. |  |


| r1533 | Current limit force-generating total / Iq_max total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5640,5722, |
| SERVO_I_AC (Lin) |  | Units group: 6_2 | 6640 |
|  | P-Group: Displays, signals | Scaling: p2002 | Unit selection: p0505 |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | - [Arms] | Factory setting |
|  | - [Arms] | - [Arms] |  |
| Description: | Displays the maximum torque/force generating current as a result if all current limits. |  |  |


| $\overline{\mathbf{1 5 3 4}}$ | CO: Torque limit upper total / M_max upper total |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 5620, 5630, 5640 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the upper torque limit of all torque limits. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532 |  |  |
| $\overline{1534}$ | CO: Force limit upper total / F_max upper total |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 5620, 5630, 5640 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | Max <br> - [N] | Factory setting - [N] |
| Description: | Displays the upper force limit of all force limits. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532 |  |  |
| r1535 | CO: Torque limit lower total / M_max lower total |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 5620, 5630, 5640 |
|  | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the lower torque limit of all torque limits. |  |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532 |  |  |


| r1535 | CO: Force limit lower total / F_max lower total |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - |  |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Access level: 3 |
| SERVO_I_AC (Lin) |  | Func. diagram: 1610,5620, |  |
|  | P-Group: Closed-loop control | Units group: 8_1 | 5630, 5640 |
|  | Not for motor type: REL | Scaling: p2003 | Unit selection: p0505 |
|  | Min | Max | Expert list: 1 |
|  | $-[N]$ | Factory setting |  |
| Description: | Displays the lower force limit of all force limits. | - [N] |  |
| Dependency: | Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532 |  |  |


| r1536[0...1] | Current limit maximum torque-generating current / Isq_max |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6640, 6710 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the maximum limit for the torque-generating current component. Index 0 indicates the signal limited by the Vdc controller. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Limited }} \\ & {[1]=\text { Unlimited }} \end{aligned}$ |  |  |


| r1537[0...1] | Current limit minimum torque-generating current / Isq_min |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6640, 6710 |
| VECTOR__AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the minimum limit for the torque-generating current component. Index 0 indicates the signal limited by the Vdc controller. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Limited }} \\ & {[1]=\text { Unlimited }} \end{aligned}$ |  |  |
| r1538 | CO: Upper effective torque limit / M_max upper eff |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 1700, 5610, 5650, 6060, 6640 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the currently effective upper torque limit. |  |  |
| Note: | The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased. |  |  |
|  | The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960). |  |  |
|  | The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1540). |  |  |
|  |  |  |  |


| r1538 | CO: Upper force limit effective / F_max upper eff |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 5610, 5650 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting - [N] |
| Description: | Displays the currently effective upper force limit. |  |  |
| Note: | The effective, upper force limit is reduced with respect to the selected upper force limit p1520 if the current limit p0640 is reduced. |  |  |
|  | The force limit p1520 can be re-calculated using p0340 $=1,3$ or 5 . |  |  |
| r1539 | CO: Lower effective torque limit / M_max lower eff |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, SERVO_I_AC, VECTOR ( $n / M$ ) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 1700, 5610, 5650, 6060, 6640 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the currently effective lower torque limit. |  |  |
| Note: | The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased. |  |  |
|  | The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960). |  |  |
|  | The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1541). |  |  |
|  | The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5 . |  |  |


| $\overline{\mathbf{1 5 3 9}}$ | CO: Lower force limit effective / F_max lower eff |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1610, 5610, 5650 |
|  | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | Max <br> - [N] | Factory setting - [N] |
| Description: | Displays the currently effective lower force limit. |  |  |
| Note: | The effective lower force limit is reduced with respect to the selected lower force limit p1521 if the current limit p0640 is reduced. |  |  |
|  | The force limit p1520 can be re-calculated using p $0340=1,3$ or 5 . |  |  |


| p1540[0...n] | CI: Torque limit speed controller upper scaling / M_max n-ctr upScal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1700,6060 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |


| p1541[0...n] | CI: Torque limit. speed controller lower scaling / M_max nctr lowScal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 1700, 6060 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output. |  |  |
| p1542[0...n] CI: Travel to fixed stop torque reduction / TfS M_red |  |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5610 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the torque/force reduction when traversing to a fixed stop. This value is converted into a factor and is interconnected to the scaling of the torque/force limits. |  |  |
| Dependency: | Refer to: p1528, p1529, r1543, p1544, p1545 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1542[0...n] | CI: Travel to fixed stop force reduction / TfS F_red |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5610 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the torque/force reduction when traversing to a fixed stop. This value is converted into a factor and is interconnected to the scaling of the torque/force limits. |  |  |
| Dependency: | Refer to: p1528, p1529, r1543, p1544, p1545 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| $r 1543$ | CO: Travel to fixed stop torque scaling / TfS M scal |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [\%] | - [\%] | - [\%] |
| Description: | Displays the internally converted factor to interconnect to the scaling of the torque/force limits. |  |  |
| Dependency: | Refer to: p1528, p1529, p1542, p1544, p1545 |  |  |


| r1543 | CO: Travel to fixed stop force scaling / TfS F scal |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - |  |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | $-[\%]$ |
|  |  |  |  |
| Description: | Displays the internally converted factor to interconnect to the scaling of the torque/force limits. |  |  |
| Dependency: | Refer to: p1528, p1529, p1542, p1544, p1545 |  |  |


| p1544 | Travel to fixed stop evaluation torque reduction / TfS M_red eval |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0 \text { [\%] }$ | $\begin{aligned} & \text { Max } \\ & 65535 \text { [\%] } \end{aligned}$ | Factory setting 100 [\%] |
| Description: | Sets the evaluation for the torque/force reduction when traversing to a fixed stop. |  |  |
| Dependency: | Refer to: p1528, p1529, p1542, r1543, p1545 |  |  |
| Note: | 4000 hex ( 16384 dec ) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter. |  |  |
| p1544 | Travel to fixed stop evaluation force reduction / TfS F_red eval |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5610 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [\%] | Max $65535 \text { [\%] }$ | Factory setting 100 [\%] |
| Description: | Sets the evaluation for the torque/force reduction when traversing to a fixed stop. |  |  |
| Dependency: | Refer to: p1528, p1529, p1542, r1543, p1545 |  |  |
| Note: | 4000 hex ( 16384 dec ) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter. |  |  |
| p1545[0...n] | BI: Activates travel to a fixed stop / TfS activation |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 3617, 8012 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to activate/de-activate the "travel to fixed stop" function <br> 1: Travel to fixed stop is active <br> 0 : Travel to fixed stop is inactive |  |  |
| Dependency: | Refer to: p1542, r1543, p1544 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p1545[0...n] | BI: Activates travel to a fixed stop / TfS activation |  |  |
| $\begin{aligned} & \text { VECTOR (n/M), } \\ & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_I_AC }(\mathrm{n} / \mathrm{M}) \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2520, 3617, 8012 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to activate 1: Travel to fixed stop is active 0 : Travel to fixed stop is inactive | the "travel to fixed stop" function |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | EPOS uses the parameter (refer to p2686). |  |  |
|  | When traveling to fixed stop, the fault F07900 "motor blocked" is suppressed. |  |  |


| p1546 | Speed threshold motoring/regenerating / n_thresh mot/regen |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 20.00 [rpm] |
| Description: | Sets the speed threshold for th <br> For speeds where the absolute <br> - For p1400.13 = 0: Motoring li <br> - For p1400.13 = 1: Regenerat | generative limit. than p1546, then the eshold is compared eed threshold is com | s: <br> ual value). <br> eed setpoint) |


| p1546 | Velocity threshold motoring/regenerative /v_thresh mot/regen |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | $1000.00[\mathrm{~m} / \mathrm{min}]$ | Factory setting |
|  | $0.00[\mathrm{~m} / \mathrm{min}]$ | $0.20[\mathrm{~m} / \mathrm{min}]$ |  |

r1547[0...1] CO: Torque limit for speed controller output / M_max outp n_ctrl

| VECTOR $(n / M)$, | Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- | :--- |
| VECTOR_AC $(n / M)$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6060 |
| VECTOR_I_AC $(n / M)$ | P-Group: Closed-loop control | Units group: $7 \_1$ | Unit selection: $p 0505$ |
|  | Not for motor type: REL | Scaling: $p 2003$ | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Displays the torque limit to limit the speed controller output.
Index: [0] = Upper limit
[1] = Lower limit

| r1548[0...1] | CO: Stall current limit torque-generating maximum / Isq_max stall |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the limit for the torque-generating current component using the stall calculation, the current limit of the Motor Module as well as the parameterization in p0640. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Upper limit }} \\ & {[1]=\text { Lower limit }} \end{aligned}$ |  |  |


| r1549 | CO: Stall power actual value / P_stall |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5640 |
|  | P-Group: Displays, signals | Units group: 14_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min <br> - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the instantaneous stall power. |  |  |
| Dependency: | Refer to: p0326 |  |  |
| Note: | The stall power is influenced by p0326, p0353, p0354 and p0356. |  |  |
| $\overline{\mathrm{r} 1549}$ <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | CO: Stall power actual value / P_stall |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5640 |
|  | P-Group: Displays, signals | Units group: 14_8 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: | Displays the instantaneous stall power. |  |  |
| Dependency: | Refer to: p0326 |  |  |
| Note: | The stall power is influenced by p0326, p0353, p0354 and p0356. |  |  |
| p1550[0...n] | BI: Transfer actual torque as torque offset / Accept act torque |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 9718.23 |
| Description: | For a positive edge, the actual torque (r0079[0]) at this instant in time is used instead of the torque offset from p1532 as long as p1550 remains at 1. |  |  |
| p1550[0...n] | BI: Transfer actual force as force offset / Accept act force |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 9718.23 |
| Description: | For a positive edge, the actual force (r0079[0]) at this instant in time is used instead of the force offset from p1532 as long as p1550 remains at 1. |  |  |


| p1551[0...n] | BI: Torque limit variable/fixed signal source / M_lim var/fixS_src |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 5620,5630, |
| SERVO_I_AC, VEC- |  | 6060,6630 |  |
| TOR $(\mathrm{n} / \mathrm{M})$, |  | Units group: - | Unit selection: - |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | P-Group: Closed-loop control | Scaling: - | Expert list: 1 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | Not for motor type: REL | Max | Factory setting |
|  | Min | - | 1 |
|  | - |  |  |
| Description: | Sets the signal source to change over the torque limits between variable and fixed torque limit. |  |  |



| p1552[0...n] | CI: Torque limit upper scaling without offset / M_max up w/o offs |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits. |  |  |
| Notice: | Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different than the factory setting). |  |  |


| p1552[0...n] | Cl: Force limit upper scaling without offset / F_max up w/o offs |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Max |
|  | Min | - | Factory setting list: 1 |
| Description: | - | Sets the signal source for the scaling of the upper force limiting to limit the velocity controller output without taking <br> into account the current and power limits. |  |
| Notice: | Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different <br> than the factory setting). |  |  |


| p1552[0...n] | Cl: Torque limit upper scaling without offset / M_max up w/o offs |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6060 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking |  |  |


| $\mathbf{p 1 5 5 4}[0 . . . n]$ | CI: Torque limit lower scaling without offset / M_max low w/o offs |  |
| :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - |


| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060 |
| :--- | :--- | :--- | :--- |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Max |
|  | Min | - | Expert list: 1 |
| Description: | - | Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking <br> into account the current and power limits. |  |
| Notice: | Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different <br> than the factory setting). |  |  |


| p1554[0...n] | CI: Force limit lower scaling without offset / F_max low w/o offs |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 5060 |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | 1 |  |


| p1554[0...n] | CI: Torque limit lower scaling without offset / M_max low w/o offs |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6060 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | - | - | 1 |


| p1555[0...n] | CI: Power limit / P_max |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6640 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: r2004 | Max |
|  | Min | - | Fxpert list: 1 |
|  | - | 1 |  |

Dependency: Refer to: p1530, p1531
Note: $\quad$ The resulting motoring power limit is the minimum from p1530 and the signal which is read in.
The resulting regenerative power limit is the maximum from p1531 and the negative signal which is read in.

| p1556[0...n] | Power limit scaling / P_max scal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: $T$ | Calculated: - | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6640 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | $340.28235 E 36$ | Factory setting |
|  | 0.00 | 0.00 |  |
| Description: | Sets the scaling of the signal source for the motoring and negative regenerative power limit. |  |  |
|  | 0 signifies no power limiting. |  |  |


| p1569[0...n] | CI: Supplementary torque 3 / M_suppl 3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $T$ | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 7010 |
| SERVO_I_AC, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 3841[0] |
| Description: | Sets the signal source for supplementary torque 3 . |  |  |
| Dependency: | Refer to: p3842 |  |  |
| Notice: | The signal input is after the torque limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits. |  |  |
| Note: | The signal input is preferably used to enter the friction characteristic. The friction compensation is also effective if the speed controller output reaches its torque limits, but the current limits have still not been reached (this only applies to vector drives). |  |  |


| p1569[0...n] | CI: Supplementary force 3 / F_suppl 3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $T$ | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 7010 |
| SERVO_I_AC (Lin) | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 3841[0] |
| Description: | Sets the signal source for supplementary force 3. |  |  |
| Dependency: | Refer to: p3842 |  |  |
| Notice: | The signal input is after the force limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits. |  |  |
| Note: | The signal input is preferably used to enter the velocity controller output reaches its for applies to vector drives). | friction characteristic. The fric limits, but the current limits ha | ompensation is also effective if not been reached (this only |


| p1570[0...n] | CO: Flux setpoint / Flux setpoint |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6722 |
| VECTOR___AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $50.0[\%]$ | $200.0[\%]$ | $100.0[\%]$ |
| Description: | Sets the flux setpoint referred to rated motor flux. |  |  |

Notice: $\quad$ A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
Note: $\quad$ For p1570 > 100\%, the flux setpoint increases as a function of the load from $100 \%$ (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.

| p1571[0...n] | CI: Supplementary flux setpoint / Suppl flux setp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $T$ | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6725 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the supplementary flux setpoint. |  |  |
| Notice: | Low flux setpoints can cause the drive to stall at higher loads. This is the reason that the flux setpoint should only be adapted for slow load changes. |  |  |
| Note: | The supplementary flux setpoint is limited to +/-50\%. |  |  |
| p1572[0...n] | Supplementary flux setpoint / Suppl flux setp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $U, T$ | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6726 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 100.0 [\%] | 0.0 [\%] |
| Description: | Sets the supplementary flux setpoint for the flux controller. |  |  |
|  | The value is referred to the rated motor flux. |  |  |
| Notice: | The parameter should be set back to 0\% again for normal closed-loop control operation. |  |  |
| Note: | The parameter is used to optimize the flux controller. The current model is not influenced by the setting. |  |  |


| p1573[0...n] | Flux threshold value magnetizing / Flux thresh magnet |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6722 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10.0[\%]$ | $200.0[\%]$ | 100.0 [\%] |
| Description: | Sets the flux threshold value for enabling the speed setpoint and the end of magnetizing (r0056.4). |  |  |
| Note: | The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during |  |  |
|  | magnetizing than the time set in p0346. |  |  |


| p1574[0...n] | Voltage reserve dynamic / U_reserve dyn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, |  | CALC_MOD_LIM_REF |  |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723,6724 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | $150.0[\mathrm{Vrms}]$ | Factory setting |
|  | $0.0[\mathrm{Vrms}]$ | 10.0 [Vrms] |  |
| Description: | Sets a dynamic voltage reserve. |  |  |
| Note: | In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due |  |  |
|  | to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage |  |  |


| p1576[0...n] | Flux boost, adaptation speed, lower / Flux boost n lower |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: ASM, PEM, REL <br> Min <br> 0.00 [rpm] | Calculated: CALC_MOD_ALL <br> Dynamic index: DDS, p0180 <br> Units group: 3_1 <br> Scaling: - <br> Max <br> 210000.00 [rpm] | Access level: 3 <br> Func. diagram: 6725 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting 0.00 [rpm] |
| Description: | Sets the lower adaptation speed of the flux boost. <br> Below this speed, p1570 is set as reference (setpoint) flux. |  |  |
| p1577[0...n] <br> VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC (n/M), VECTOR_I_AC (n/M) | Flux boost adaptation speed <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: ASM, PEM, REL <br> Min <br> 1.0 [\%] | er / Flux boost $\mathbf{n}$ upper <br> Calculated: CALC_MOD_ALL <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 10000.0 [\%] | Access level: 3 <br> Func. diagram: 6725 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 200.0 [\%] |
| Description: Dependency: | Sets the upper adaptation speed of the Above this speed, the rated motor flux The parameter value refers to the low Refer to: p1576 | oost. <br> $\%$ ) is set as reference (setpoint) tation speed of the flux boost. |  |
| p1578[0...n] <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Flux reduction flux decrease <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: PEM, REL, FEM <br> Min <br> 20 [ms] | othing time / Flux red de <br> Calculated: CALC_MOD_REG <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 5000 [ms] | sm <br> Access level: 3 <br> Func. diagram: 5722 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 200 [ms] |
| Description: Dependency: | Sets the smoothing time for the flux setpoint when decreasing the flux due to flux reduction (p1581<100\%). Refer to: p1579, p1581 |  |  |
| p1579[0...n] | Flux reduction flux build-up smoothing time / Flux red up t_sm |  |  |
| SERVO, <br> SERVO_AC, SERVO_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: PEM, REL, FEM <br> Min <br> 0 [ms] | Calculated: CALC_MOD_REG <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 5000 [ms] | Access level: 3 <br> Func. diagram: 5722 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 4 [ms] |
| Description: <br> Dependency: <br> Note: | Sets the smoothing time for the flux se Refer to: p1578, p1581 An excessively long smoothing time ex | for the flux build-up due to flux re the time until the maximum torqu | (p1581 < $100 \%$ ). <br> reached from the no-load phase. |
| p1580[0...n] <br> VECTOR (n/M), VECTOR_AC ( $n / M$ ), VECTOR_I_AC (n/M) | Efficiency optimization / Effic <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: PEM, REL, FEM Min <br> 0 [\%] | y opt. <br> Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 100 [\%] | Access level: 2 <br> Func. diagram: 6722 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 [\%] |
| Description: | Sets the efficiency optimization. |  |  |


| Note: | When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load. For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to $50 \%$ of the rated motor flux. It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp ). <br> Further, the smoothing time of the flux setpoint filter ( p 1582 ) should be increased. |
| :---: | :---: |
| p1581[0...n] | Flux reduction factor / Flux red factor |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T Calculated: - Access level: 2 <br> Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: 5722 <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: PEM, REL, FEM Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $20[\%]$ $100[\%]$ $100[\%]$ |
| Description: | Sets the factor to which the flux is reduced under no-load conditions. <br> For a value of $100 \%$, the flux reduction is switched out. <br> This parameter refers to the flux saved in the field weakening characteristic. <br> By reducing the flux, the losses in induction motors can be reduced under no-load conditions or at low torques. However, the time it takes to reach the maximum torque is extended. |
| Recommend.: | For induction motors with closed rotor slots, we recommend that the integral time of the current controller (p1717) is e.g. increased to three times the value. <br> For stable operation, the maximum field-weakening factor in operation with an encoder must be less than 16 and in operation without an encoder must be less than 4 . Lower field weakening factors are recommended. The field weakening factor is calculated as follows: $\text { (p1082 * } 100 \text { \% * } 600 \mathrm{~V}) /(\mathrm{p} 0348 \text { * p1581 * p0070) }$ <br> In order to reduce losses due to magnetizing and de-magnetizing, we recommend that the smoothing times are adapted for flux decrease ( p 1578 ) and flux build-up ( p 1579 ). <br> In order to reduce the losses as a result of building-up and reducing the torque, we recommend that the torque setpoint is smoothed (current setpoint filter (p1656 ...) or speed actual value filter (p1441)). |
| Dependency: | Refer to: p1578, p1579 |
| Note: | It only makes sense to activate this function if there are low dynamic requirements placed on the speed controller and there are frequent phases with a low load. <br> In order to avoid oscillations, if required, the speed controller parameters should be adapted (decrease Kp (p1460, p1470), increase $\operatorname{Tn}$ (p1462, p1472)). <br> When used without an encoder, flux reduction is not possible for induction motors with closed rotor slots. |


| p1582[0...n] | Flux setpoint smoothing time / Flux setp T_smth |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6722,6724, |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  | 6725 |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Max |
|  | Min | $5000[\mathrm{~ms}]$ | Factory setting |
|  | $4[\mathrm{~ms}]$ | $15[\mathrm{~ms}]$ |  |


| r1583 | Flux setpoint smoothed / Flux setp smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6722, 6723, 6724 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the smoothed flux setpoint. <br> The value is referred to the rated motor flux. |  |  |
|  |  |  |  |
| p1584[0...n] | Field weakening operation, flux setpoint smoothing time / Field weak T_smth |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6722 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | Max <br> 20000 [ms] | Factory setting 0 [ms] |
| Description: | Sets the smoothing time for the flux setpoint in the field-weakening range |  |  |
| Recommend.: | Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation |  |  |
| Note: | Only the flux setpoint rise is smoothed |  |  |
| p1585[0...n] | Flux actual value, smoothing time / Flux actVal T_smth |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 1000 [ms] | 0 [ms] |
| Description: | Sets the smoothing time for the flux actual value. |  |  |
| p1585[0..n] | Flux actual value, smoothing time / Flux actVal T_smth |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6726 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | $\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$ | Factory setting 0 [ms] |
| Description: | Sets the smoothing time for the flux actual value. |  |  |


| p1586[0...n] | Field weakening characteristic, scaling / Field weak scal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $80.0[\%]$ | $100.0[\%]$ |  |
| Description: | Sets the scaling of the pre-control characteristic for the start of field weakening. |  |  |
|  | For values above $100 \%$ and for partial load situations, the field weakening starts at higher speeds. |  |  |

Note: If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations.

If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.

| r1589 | Field-weakening current, pre-control value /I_FieldWeak prectr |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6724 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: $\mathbf{p 0 5 0 5}$ |
|  | Not for motor type: ASM, REL, FEM | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ Arms $]$ | $-[$ Arms $]$ |  |
| Description: | Displays the pre-control value for the field weakening current. |  |  |


| $\mathbf{p 1 5 9 0 [ 0 . . . n ] ~}$ | Flux controller P gain / Flux controller Kp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5722 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Max |
|  | Min | $999999.0[A / V s]$ | Factory setting |
|  | $0.0[A / V s]$ | 10.0 [A/Vs] |  |
| Description: | Sets the proportional gain for the flux controller. |  |  |
| Note: | For synchronous motors, this parameters has no effect. |  |  |
|  | The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. |  |  |
|  | When calculating controller parameters (p0340 =4), this value is re-calculated. |  |  |


| p1590[0...n] | Flux controller P gain / Flux controller Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 | 999999.0 | 10.0 |
| Description: | Sets the proportional gain for the flux controller. |  |  |
| Note: | The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. |  |  |
|  | When calculating controller parameters $(\mathrm{p} 0340=4)$, this value is re-calculated. |  |  |


| p1592[0...n] | Flux controller integral time / Flux controller Tn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5722 |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | 10000 [ms] |  |
| Description: | Sets the integral time for the flux controller. |  |  |
| Note: | For synchronous motors, this parameters has no effect. |  |  |
|  | The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. |  |  |
|  | When calculating controller parameters $(p 0340=4)$, this value is re-calculated. |  |  |


| p1592[0...n] | Flux controller integral time / Flux controller Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  |  |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | $10000[\mathrm{~ms}]$ | $30[\mathrm{~ms}]$ |
| Description: | Sets the integral time for the flux controller. |  |  |
| Note: | The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. |  |  |
|  | When calculating controller parameters (p0340 =4), this value is re-calculated. |  |  |


| r1593[0...1] | CO: Field weakening controller / flux controller output / Field/FI_ctrl outp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ) , | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6723, 6724, 6726 |
|  | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the output of the field weakening controller (synchronous motor) or the output of the flux controller (sepa-rately-excited synchronous motor, induction motor). |  |  |
| Index: | $[0]=\text { PI output }$ [1] = I output |  |  |


| p1594[0...n] | Field-weakening controller, P gain / Field_ctrl Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6724 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 1000.00 | 0.00 |
| Description: | Sets the P gain of the field-weakening controller. |  |  |
| 1596[0...n] | Field weakening controller integral-action time / Field_ctrl Tn |  |  |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723,6724 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |


| $\mathbf{r 1 5 9 7}$ | CO: Field weakening controller output / Field_ctrl outp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6723 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | - [\%] |
| Description: | Displays the output of the field weakening controller. |  |  |
|  | The value is referred to the rated motor flux. |  |  |


| $\mathbf{1 5 9 8}$ | CO: Total flux setpoint / Flux setp total |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714,6723, |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  | $6724,6725,6726,8018$ |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | $-[\%]$ | $-[\%]$ | $-[\%]$ |
|  | Displays the effective flux setpoint. |  |  |
|  | The value is referred to the rated motor flux. |  |  |



| p1600[0...n] | P flux controller, P gain / P flux ctrl Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 | 999999.0 | 10.0 |

Description: Sets the proportional gain of the $P$ flux controller for separately-excited synchronous motors (FEM).
Note: The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters ( $\mathrm{p} 0340=4$ ), this value is re-calculated.

## r1602

VECTOR (n/M),
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),
VECTOR_I_AC (n/M)

CO: P flux controller output / P flux ctrl outp
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control Not for motor type: ASM, PEM, REL Min - [Arms]

Calculated: -
Dynamic index: -
Units group: 6_2
Scaling: p2002
Max

- [Arms]

Access level: 4
Func. diagram: 6726, 6727
Unit selection: p0505
Expert list: 1
Factory setting
[Arms]

Description: Displays the output of the $P$ flux controller for separately-excited synchronous motors (FEM).

| p1603[0...n] | Field-generating current, maximum / Id max |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2, U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 100.0 [\%] | Factory setting |
|  | $0.0[\%]$ | 0.0 [\%] |  |
| Description: | Sets the maximum component of the field-generating current to the permissible maximum current (r0067). |  |  |
| Note: | If value = 0.0\%: |  |  |
|  | For synchronous motors, $90 \%$ is effective and for induction motors, $60 \%$. |  |  |



| p1605[0...n] | Pulse technique pattern configuration / Puls pattrn config |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 2 | 2 |
| Description: | Sets the applied pulse patterns for estimating the continuous rotor position. |  |  |
|  | Remark: |  |  |
|  | See p1750 for the activation of the pulse-pattern technique. |  |  |
| Value: | 1: pm |  |  |
|  | 2: ppmm |  |  |
| Dependency: | Refer to: p1750 |  |  |
| Note: | When commissioning a catalog motor, used. | chnique is automatically selected | ending on the moto |

## r1606

VECTOR (n/M), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M)

CO: Pulse technique pattern actual / Puls pattern act


Can be changed:
Calculated: -
Data type: Integer16
Dynamic index: - Func. diagram: -
P-Group: Closed-loop control
Not for motor type: ASM, REL, FEM
Units group: -
Scaling: -
Unit selection: -

Min
Max
Expert list: 1

0
2
Description: Displays the currently applied pulse patterns for estimating the continuous rotor position.
Value:

| 0: | None |
| :--- | :--- |
| 1: | pm |
| 2: | ppmm |


| Dependency: | Refer to: p1605, p1750 |  |  |
| :---: | :---: | :---: | :---: |
| p1607[0...n] | Pulse technique stimulus / Puls stimulus |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $U, T$ | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{mVs}] \end{aligned}$ | Max $20000.000[\mathrm{mVs}]$ | Factory setting 32.000 [mVs] |
| Description: | Sets the excitation amplitude (voltage-time pulse) for the pulse technique for estimating the continuous rotor position. |  |  |
| Dependency: | Refer to: p1605, p1750 |  |  |
| r1608[0...6] | CO: Pulse technique response / Puls response |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC (n/M), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: ASM, REL, FEM | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[\mathrm{A}] \end{gathered}$ | $\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$ | Factory setting $-[\mathrm{A}]$ |
| Description: | Displays the signal responses to the excitation of the pulse technique. |  |  |
| Index: |  |  |  |
|  | [1] = Phase S |  |  |
|  | [2] = D estimated |  |  |
|  | [3] = Q estimated |  |  |
|  | [4] = D estimated AC |  |  |
|  | $[5]=Q$ estimated AC$[6]=$ Pointer length AC |  |  |
|  |  |  |  |
| Dependency: | Refer to: p1605, p1607, p1750 |  |  |
| p1609[0...n] | I/f operation current setpoint / I/f op I_setp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $n / M$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
|  | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [Arms] | Max <br> 10000.00 [Arms] | Factory setting 0.00 [Arms] |
| Description: | Sets the stator current setpoint for operation of a separately-excited synchronous motor (FEM) in operating mode I/f (p1300 = 18). |  |  |
| p1610[0...n] | Torque setpoint static (SLVC) / M_set static |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC (n/M), VECTOR_I_AC (n/M) | Can be changed: $U$, $T$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1710, 6721, 6722, 6726 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -200.0[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 200.0 \text { [\%] } \end{aligned}$ | Factory setting 50.0 [\%] |
| Description: | Sets the static torque setpoint for sensorless vector control (SLVC). |  |  |
|  | This parameter is entered as a percentage referred to the rated motor torque (r0333). |  |  |
|  | For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed. |  |  |
| Notice: | p1610 should always be set to at least $10 \%$ higher than the maximum steady-state load that can occur. |  |  |

Note: $\quad$ For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).
For p1610 = $100 \%$, a current setpoint is calculated that corresponds to the rated motor torque.
Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.

| p1611[0...n] | Supplementary accelerating torque (SLVC) / M_suppl_accel |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
| VECTOR_AC (n/M), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1710, 6721, 6722, 6726 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$ | Factory setting 30.0 [\%] |
| Description: | Enters the dynamic torque setpoint for the low-speed range for sensorless vector control (SLVC). This parameter is entered as a percentage referred to the rated motor torque (r0333). |  |  |
| Note: | When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled. |  |  |
|  | For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p1496). |  |  |


| p1612[0...n] | Current setpoint, open-loop control, encoderless / I_setCtrEncoderl |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [Arms] | $10000.00[A r m s]$ | 0.00 [Arms] |
|  | Sets the current setpoint for controlled (open-loop) encoderless operation. |  |  |
| Description: | The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or |  |  |
| Note: | torque error in the moment of inertia. |  |  |


| p1612[0...n] | Current setpoint magnetizing open-loop controlled / Id_set ctrl |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [Arms] | 10000.00 [Arms] | 0.00 [Arms] |
| Description: | Sets the magnetizing current setpoint in the open-loop controlled encoderless operation. The value is only valid during the current model orientation. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p1610, p1611 |  |  |
| Note: | The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or torque error in the moment of inertia. |  |  |


| r1614 | EMF maximum / EMF max |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6725 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Displays, signals | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V r m s]$ | $-[V r m s]$ | $-[V r m s]$ |
| Description: | Displays the actual maximum possible electromotive force $(E M F)$ of the separately-excited synchronous motor. |  |  |


| Dependency: | The value is the basis for the flux setpoint. |
| :--- | :--- |
| The maximum possible EMF depends on the following factors: |  |
| - Actual DC link voltage (r0070). |  |
| - Maximum modulation depth (p1803). |  |
| - Field-generating and torque-generating current setpoint. |  |


| p1616[0...n] | Current setpoint smoothing time / I_set T_smooth |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6721, 6722, 6726 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 4 [ms] | 10000 [ms] | 40 [ms] |
| Description: | Sets the smoothing time for the current/torque setpoint in the open-loop-controlled operating range in the case of sensorless vector control. |  |  |
| Note: | This parameter is only effective in the range where current is injected for sensorless vector control. |  |  |
|  | For induction motors, the current setpoint is calculated from p1610 and p1611 and for separately excited synchronous motors the torque setpoint is calculated from p1610 and p1611. |  |  |


| r1617 | CO: Torque setpoint (controlled) / M_setp sv SLVC |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{Nm}]$ | $-[\mathrm{Nm}]$ | $-[N m]$ |

Description: Torque setpoint for sensorless control of the separately excited synchronous motor in the open-loop-controlled operating range (under p1755 * p1756).

| r1618 | Current model controller, pre-control / I_mod_ctrl prectrl |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ [Arms $]$ | - [Arms] |  |
| Description: | Displays the pre-control value of the current model controller. |  |  |
|  | It involves a magnetizing current in the d-direction. |  |  |
|  |  |  |  |
|  |  |  |  |


| p1619[0...n] | Setpoint/actual value tracking threshold / SetAct track thrsh |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: $p 0505$ |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[A r m s]$ | 0.00 [Arms] |  |
| Description: | Threshold for setpoint/actual value tracking of the stator current in the q axis of the current model. |  |  |


| p1620[0...n] | Stator current, minimum / I_stator min |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -10000.00 [Arms] | 10000.00 [Arms] | 0.00 [Arms] |
| Description: | Sets the minimum stator current for separately-excited synchronous motors (FEM). |  |  |
|  | A negative value means that the field-generating stator current (d-axis) has a negative sign. The valid value is internally limited to $50 \%$ of the rated motor current (p0305). |  |  |


| p1621[0...n] | Changeover speed, inner cos phi = $1 / \mathrm{n}$ _chngov cos phi=1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 0.00 [rpm] |
| Description: | If the value that is entered exceeds the rated speed, then a change is made to the inner cos phi $=1$ over the complete speed range. |  |  |

p1622[0...n] Field-generating current setpoint smoothing time constant / Id_setp T_smth
$\operatorname{VECTOR}(n / M)$ Can be changed $U T$ Calculated: - Access level: 3

| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 67 |
| :--- | :--- | :--- | :--- |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.1[\mathrm{~ms}]$ | $200.0[\mathrm{~ms}]$ | $20.0[\mathrm{~ms}]$ |

Description: Sets the smoothing time constant for the setpoint of the field-generating current components.
The current filtered in this way is included in the calculation of the cos phi.

| r1623[0...1] | Field-generating current setpoint (steady-state)/Id_set stationary |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6723,6726, |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  | 6727 |  |
|  | P-Group: Displays, signals | Units group: $6 \_2$ | Unit selection: p 0505 |
|  | Not for motor type: PEM, REL | Scaling: p2002 | Expert list: 1 |


| r1624 | Field-generating current setpoint, total / Id_setp total |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6640, 6721, 6723, 6727 |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the limited field-generating current setpoint (ld_set). |  |  | set when changes are made to the flux setpoint.


| p1625[0...n] | Excitation current setpoint calibration / I_exc_setp cal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10.0[\%]$ | $200.0[\%]$ | $100.0[\%]$ |
| Description: | Gain factor to weight the excitation current setpoint. |  |  |


| r1626 | CO: Excitation current setpoint / I_exc_setp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | $-[\%]$ |
| Description: | Displays the calculated excitation current setpoint. |  |  |
| Dependency: | Refer to: p0390 |  |  |


| r1627 | CO: Current model load angle / I_mod load angle |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - |  |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Access level: 3 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Func. diagram: 6727 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2005 | Unit selection: - |
|  | Min | Max | Expert list: 1 |
|  | $-\left[^{\circ}\right]$ | $-\left[^{\circ}\right]$ | Factory setting |
| Description: | Displays the load angle of the current model. | $-\left[^{\circ}\right]$ |  |


| p1628[0...n] | Current model controller, dynamic factor / I_mod_ctr dyn_fact |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $1[\%]$ | $400[\%]$ | $50[\%]$ |
| Description: | Sets the dynamic response factor for the current model controller. |  |  |


| p1629[0...n] | Current model controller P gain / l_mod_ctrl Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 100000.000 | 0.000 |
| Description: | Sets the proportional gain for the current model controller. |  |  |
|  | This value is automatically pre-set using p3900 or p0340 when commissioning has been completed. |  |  |


| p1630[0...n] | Current model controller integral time / I_mod_ctrl Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~ms}]$ | $10000.00[\mathrm{~ms}]$ | 0.00 [ms] |
| Description: | Sets the integral time for the current model controller. |  |  |
|  | This value is automatically pre-set using p3900 or p0340 when commissioning has been completed. |  |  |


| r1631 | Current model controller, P gain effective / I_mod ctrl Kp eff |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |

r1632 Current model controller integral time effective / I_mod_ctrl Tn eff
VECTOR ( $\mathrm{n} / \mathrm{M}$ ), Can be changed: - Calculated: - Access level: 3

Calculated: - Access level: 3
Dynamic index: - Func. diagram: 6727
Units group: - Unit selection: -

Scaling: -
Max

- [ms]

Description: Displays the effective integral time of the current model controller.

| r1633 | Current model, flux setpoint / I_mod flux setp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | $-[\%]$ |
| Description: | Displays the effective flux setpoint of the current model. |  |  |
|  | The value is referred to the rated motor flux. |  |  |


| r1634 | Current model, flux actual value / I_mod flux act val |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min <br> - [\%] | $\begin{aligned} & \operatorname{Max} \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the effective flux actual value of the current model. The value is referred to the rated motor flux. |  |  |
| r1635 | Current model controller, I component / I_mod_ctrl I comp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the I component of the current model controller. |  |  |
| r1636 | Current model controller output / I_mod_ctrl outp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
|  | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the output of the current model controller. |  |  |


| r1637 | Current model, magnetizing current, d axis / I_mod I_mag d-ax |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: 00505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ Arms $]$ | $-[$ Arms $]$ | - [Arms] |
| Description: | Displays the magnetizing current of the current model in the d-axis. |  |  |


| $\mathbf{r 1 6 3 8}$ | Current model, magnetizing current, q axis / I_mod I_mag q-ax |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: 00505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ Arms $]$ | $-[$ Arms $]$ | $-[$ Arms $]$ |
| Description: | Displays the magnetizing current of the current model in the q-axis. |  |  |


| r1639 | CO: Current model Isq after actual value tracking / I_mod Isq track |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the stator current in the q axis after current actual value tracking. |  |  |
| p1640[0...n] | CI: Excitation current actual value signal source / I_exc_ActVal S_src |  |  |
| VECTOR ( $n / \mathrm{M}$ ), | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 6727 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the excitation current actual value |  |  |


| $\mathbf{1 6 4 1}$ | Excitation current actual va | exc_act val |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: ASM, PEM, REL <br> Min <br> - [\%] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max <br> - [\%] | Access level: 3 <br> Func. diagram: 6727, 8018 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [\%] |
| Description: <br> Dependency: | Displays the excitation current actual value that is read in. Refer to: p0390 |  |  |
| p1642[0...n] | Minimum excitation current / Min I_exc |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: ASM, PEM, REL <br> Min <br> 0.1 [\%] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 50.0 [\%] | Access level: 4 <br> Func. diagram: 6727 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 5.0 [\%] |
| Description: | Sets the minimum excitation current. <br> This means that negative excitation cu | an be avoided. |  |
| p1643[0...n] | Gain factor, minimum excitation current closed-loop control / Min I_exc Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: ASM, PEM, REL <br> Min <br> 0.00 | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 5.00 | Access level: 4 <br> Func. diagram: 6727 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $0.40$ |
| Description: | Sets the gain factor for the minimum excitation current, closed-loop control. This is active if the excitation current is below $75 \%$ of p 1642. |  |  |
| Dependency: | Refer to: p1642 |  |  |


| r1644 | CO: Excitation current monitoring output /I_exc_monit outp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6727 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: $6 \_2$ | Unit selection: 00505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[$ [Arms $]$ | $-[$ Arms $]$ | [Arms] |
| Description: | Displays the output of the excitation current monitoring for separately excited synchronous motors. |  |  |


| p1645[0...6] | BI: Excitation feedback signals signal source / Exc FS S_src |
| :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$ | Can be changed: T $\quad$ Calculated: - |


| VECTOR_AC (n/M), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 6495 |
| :---: | :---: | :---: | :---: |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the individual feedback signals from the excitation. |  |  |
| Index: | [0] = Excitation ready to be powered up |  |  |
|  | [1] = Excitation ready |  |  |
|  | [2] = Excitation operational |  |  |
|  | [3] = Excitation group signal fault |  |  |
|  | [4] = Excitation group signal alarm |  |  |
|  | [5] = Not used |  |  |
|  | [6] = Not used |  |  |
| Dependency: | Refer to: r1649 |  |  |


| p1646 | Excitation monitoring time / Excit t_monit |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6495 |
| AC (n | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 2.0 [s] | 1300.0 [s] | 20.0 [s] |
| Description: | Sets the monitoring time of the excitation. |  |  |
|  | After an ON command, the feedback signal must be received within this monitoring time. |  |  |
| Note: | After the on command for the excitation (r1648.0 = 1), its feedback signal must be available at r1649.1 within this monitoring time (BI: p1645[1]). |  |  |
|  | The same monitoring time is effective after the excitation is enabled for operation (r1648.3 = 1) up to the feedback signal "excitation operational" (r1649.2 = 1, BI: p1645[2]). |  |  |


| p1647 | Excitation switch-off delay time / Exc t_off |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6495 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\mathrm{~s}]$ | $0.8[\mathrm{~s}]$ |  |
| Description: | Sets the switch-off delay time to shut down the excitation equipment. |  |  |
| Note: | The delay time starts if, when powering down, r0863.0 $=0$. |  |  |
|  | $r 1648.0$ and r1648.3 are reset at the end of the delay time. |  |  |




| r1650 | Current setpoint torque-generating before filter / lq_set before filt |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5710 |
| TOR (n/M), | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | - [Arms] | - [Arms] | - [Arms] |
| Description: | Displays the torque generating current setpoint Iqset after the torque limits and the clock cycle interpolation is ahead of the current setpoint filters. |  |  |


| r1650 | Current setpoint force-generating before filter / lq_set before filt |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5710 |
|  | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the force generating current setpoint lqset after the force limits and the clock cycle interpolation is ahead of the current setpoint filters. |  |  |
| r1651 | CO: Torque setpoint, function generator / M_set FG |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR (n/M). } \end{aligned}$ | P-Group: Closed-loop control | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_AC (n/M), | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting <br> - [Nm] |
| Description: | Displays the torque setpoint of the function generator. |  |  |
| r1651 | CO: Force setpoint, function generator / F_set FG |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO__AC | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min $-[N]$ | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting - [N] |
| Description: | Displays the force setpoint of the function generator. |  |  |


| p1653[0...n] | Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6710 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.1[\mathrm{~ms}]$ | $0.0[\mathrm{~ms}]$ | 0.1 [ms] |
| Description: | Sets the minimum smoothing time constant for the setpoint of the torque-generating current components. |  |  |


| p1654[0...n] | Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6710 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.1[\mathrm{~ms}]$ | $4.0[\mathrm{~ms}]$ | 4.8 |
| Description: | Sets the smoothing time constant for the setpoint of the torque-generating current components. |  |  |
| Note: | The smoothing time does not become effective until the field-weakening range is reached. |  |  |


| p1655[0...4] | CI: Current setpoint/Speed actual value filter nat. frequency tuning / I/n_setp_filt f_n |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 1710, 6710 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for tuning the natural frequency of the current setpoint filter 1, 2 and speed actual value filter 5. |  |  |
| Index: | [0] = Filter 1 |  |  |
|  | [1] = Filter 2 |  |  |
|  | [2] = Reserved |  |  |
|  | [3] = Reserved |  |  |
|  | [4] = Filter 5 |  |  |

p1656[0...n] Activates current setpoint filter / I_setp_filt act

| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T |  | Calculated: CALC_MOD_CON | Access level: 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Data type: Unsigned16 |  | Dynamic index: DDS, p0180 | Func. diagram: 5710 |  |
|  | P-Group: Closed-loop control |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0001 bin |  |
| Description: | Setting for activating/de-activating the current setpoint filter. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Filter 1 | Active | Inactive | - |
|  | 01 | Filter 2 | Active | Inactive | - |
|  | 02 | Filter 3 | Active | Inactive | - |
|  | 03 | Filter 4 | Active | Inactive | - |

Dependency: The individual current setpoint filters are parameterized as of p 1657.
Note: If not all of the filters are required, then the filters should be used consecutively starting from filter 1.

| p1656[0...n] | Current setpoint/Speed actual value filter activation / I_setp_filt act |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 4715,6710 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0000 0001 bin |
| Description: | Setting for activating/de-activating the current setpoint filter 1, 2 and speed actual value filter 5. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 00 | Filter 1 | Active |
|  | 01 | Filter 2 | Active |

Dependency: The individual current setpoint/speed actual value filters are parameterized starting at p1657.
Note: If not all of the filters are required, then the filters should be used consecutively starting from filter 1.

| p1657[0...n] | Current setpoint filter 1 type / I_set_filt 1 Typ |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR (n/M), } \end{aligned}$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) |  |  |  |
|  | Min | Max | Factory setting |
|  | 1 | 2 | 1 |
| Description: | Sets the current setpoint filter 1 as low pass (PT2) or as extended general 2nd-order filter. |  |  |
| Value: | 1: Low pass: PT2 |  |  |
| Dependency: | Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661. |  |  |
| Note: | For an extended general 2nd-order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed. |  |  |
|  | The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency |  |  |


| p1658[0...n] | Current setpoint filter 1 denominator natural frequency / I_set_filt 1 fn_n |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 1999.0 [Hz] |
| Description: | Sets the denominator natural frequency for current setpoint filter 1 (PT2, general filter). |  |  |
| Dependency: | Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661. |  |  |


| p1659[0...n] | Current setpoint filter 1 denominator damping / I_set_filt 1 D_n |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC (n/M), <br> VECTOR_I_AC (n/M) | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for current setpoint filter 1. |  |  |
| Dependency: | Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661. |  |  |
| p1660[0...n] | Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn_z |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
| $\begin{aligned} & \text { SERVO_I_A } \\ & \text { TOR (n/M), } \end{aligned}$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.5 [ Hz ] | 16000.0 [Hz] | 1999.0 [Hz] |
| Description: | Sets the numerator natural frequency for current setpoint filter 1 (general filter). |  |  |
| Dependency: | Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661. |  |  |


| p1661[0...n] | Current setpoint filter 1 numerator damping / I_set_filt 1 D_z |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC (n/M) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for current setpoint filter 1. |  |  |
| Dependency: | Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661. |  |  |
| p1662[0...n] | Current setpoint filter 2 type / I_set_filt 2 Typ |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $n / M$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 1 | 2 | 1 |
| Description: | Sets the current setpoint filter 2 as low pass (PT2) or as extended general 2nd-order filter. |  |  |
| Value: | 1: Low pass: PT2 |  |  |
|  | 2: General 2nd-order filter |  |  |
| Dependency: | Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666. |  |  |
| Note: | For an extended general 2nd-order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed. |  |  |
|  | The denominator damping can be determined from the equation for the 3 dB bandwidth: |  |  |
|  | f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency |  |  |
| p1663[0...n] | Current setpoint filter 2 denominator natural frequency / I_set_filt $\mathbf{2}$ fn_n |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, Not for motor type. REL $(\mathrm{M} / \mathrm{M}) \quad$ Expert list. 1 |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.5 [Hz] | 16000.0 [Hz] | 1999.0 [Hz] |
| Description: | Sets the denominator natural frequency for current setpoint filter 2 (PT2, general filter). |  |  |
| Dependency: | Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666. |  |  |
| p1664[0...n] | Current setpoint filter 2 denominator damping / I_set_filt 2 D_n |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710, 6710 |
| TOR (n/M), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Not for motor type: REL | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (n/M) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.001 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for current setpoint filter 2. |  |  |
| Dependency: | Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666. |  |  |



| Dependency: | Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671. |  |  |
| :---: | :---: | :---: | :---: |
| p1670[0...n] | Current setpoint filter 3 numerator natural frequency / I_set_filt 3 fn_z |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.5[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting 1999.0 [Hz] |
| Description: | Sets the numerator natural frequency for current setpoint filter 3 (general filter). |  |  |
| Dependency: | Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671. |  |  |
| p1671[0...n] | Current setpoint filter 3 numerator damping / I_set_filt 3 D_z |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for current setpoint filter 3. |  |  |
| Dependency: | Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671. |  |  |
| p1672[0...n] | Current setpoint filter 4 type / I_set_filt 4 Typ |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 5710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 2 | $1$ |
| Description: | Sets the current setpoint filter 4 as low pass (PT2) or as extended general 2nd-order filter. |  |  |
| Value: | 1: Low pass: PT2 |  |  |
| Dependency: | Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676. |  |  |
| p1673[0...n] | Current setpoint filter 4 denominator natural frequency / I_set_filt 4 fn_n |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.5[\mathrm{~Hz}] \end{aligned}$ | Max $16000.0[\mathrm{~Hz}]$ | Factory setting 1999.0 [Hz] |
| Description: | Sets the denominator natural frequency for current setpoint filter 4 (PT2, general filter). |  |  |
| Dependency: | Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676. |  |  |
| p1674[0...n] | Current setpoint filter 4 denominator damping / I_set_filt 4 D_n |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO-I AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5710 |
| SERVO_-AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$ | Factory setting 0.700 |
| Description: | Sets the denominator damping for current setpoint filter 4. |  |  |





| p1715[0...n] | Current controller P gain / I_ctrl Kp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 5714, 7017 |
|  | P-Group: Closed-loop control | Units group: 18_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [V/A] | 100000.000 [V/A] | 0.000 [V/A] |
| Description: | Sets the proportional gain of the current controller for the lower adaptation current range. <br> This value is automatically pre-set using p3900 or p0340 when commissioning has been completed. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0391, p0392, p0393 |  |  |
| Note: | For p 0393 = $100 \%$, the current controller adaptation is disabled and p1715 is effective over the entire range. |  |  |
| p1715[0...n] | Current controller P gain / I_ctrl Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1710, 6714, 7017 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 100000.000 | 0.000 |
| Description: | Sets the proportional gain of the current controller for the lower adaptation current range. <br> This value is automatically pre-set using p3900 or p0340 when commissioning has been completed. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0391, p0392, p0393 |  |  |
| Note: | For p 0393 = $100 \%$, the current controller adaptation is disabled and p1715 is effective over the entire range. |  |  |
| p1717[0...n] | Current controller integral-action time / I_ctrl Tn |  |  |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, <br> SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1710, 5714, 6714, 7017 |
| TOR (n/M), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 1000.00 [ms] | 2.00 [ms] |
| Description: | Sets the integral-action time of the current controller. |  |  |
| Dependency: | Refer to: p1715 |  |  |
| r1718 | CO: Isq controller output / Isq_ctrl outp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the actual output of the Isq current controller (torque/force generating current, PI controller). The value contains the proportional and integral components of the PI controller. |  |  |


| $\mathbf{r 1 7 1 9}$ | Isq controller integral component / Isq_ctrl I_comp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V r m s]$ | $-[V \mathrm{Vrms}]$ |  |
| Description: | Displays the integral component of the Isq current controller (torque/force-generating current, PI controller). |  |  |


| r1723 | CO: Isd controller output / Isd_ctrl outp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V r m s]$ | $-[V r m s]$ | $-[V \mathrm{~ms}]$ |

Description: Displays the actual output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.

| r1724 | Isd controller integral component / Isd_ctrl I_comp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V \mathrm{rms}]$ | $-[V \mathrm{rms}]$ | $-[V \mathrm{Vms}]$ |
| Description: | Displays the integral component of the Isd current controller (flux-generating current, Pl controller). |  |  |


| r1725 | Isd controller integral component limit / Isd_ctrl I_limit |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR__AC (n/M) | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the limit value for the integral component of the Isd current controller. |  |  |
| p1726[0...n] | Quadrature arm decoupling, scaling / Transv_decpl scal |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6714 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 200.0 [\%] | 75.0 [\%] |
| Description: | Sets the scaling of the quadrature arm decoupling |  |  |
| Note: | This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0 , then the quadrature de-coupling is de-activated. The integral component of the Isd current controller remains effective in the complete speed control range. |  |  |
|  | For the closed-loop control of synchronous motors, this parameter is used to scale the current controller de-coupling. |  |  |


| p1727[0...n] | Quadrature arm decoupling at voltage limit scaling / TrnsvDecplVmaxScal |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6714 |
| ) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 200.0 [\%] | 50.0 [\%] |
| Description: | Sets the scaling of quadrature arm decoupling when the voltage limit is reached. |  |  |
| r1728 | De-coupling voltage, in-line axis / U_dir-axis_decoupl |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR_1_AC (n/M) | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the actual output of the quadrature channel de-coupling for the d axis. |  |  |
| r1729 | De-coupling voltage, quadrature axis / U_quad_decoupl |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6714 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the actual output of the quadrature channel de-coupling for the $q$ axis. |  |  |


| $\mathbf{p 1 7 3 0 [ 0 . . . n ] ~}$ | Isd controller integral component shutdown threshold / Isd_ctr l_compDeac |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $30[\%]$ | $150[\%]$ | 30 [\%] |

Description: $\quad$ Sets the speed threshold for deactivating the integral component of the Isd controller. The d current controller is
only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the
quadrature arm decoupling is effective.

Warning: $\quad$| For settings above $80 \%$, the d current controller is active up to the field weakening limit. When operated at the volt- |
| :--- |
| age limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should |
| be increased. | l

Note: The parameter value is referred to the synchronous rated motor speed.

| p1731[0...n] | Isd controller combination current time component / Isd ctrl iCombi T1 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[m s]$ | $0.00[m s]$ |  |
| Description: | Sets the time constant to calculate the d current DC component difference (combination current) to add to the d cur- |  |  |
|  | rent controller actual value. The additional input is de-activated with p1731 = 0. |  |  |


| r1732 | CO: Direct-axis voltage setpoint / Direct U set |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 6714, 5718 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the direct-axis voltage setpoint Ud. |  |  |
| r1732[0...1] | CO: Direct-axis voltage setpoint / Direct U set |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 6714, 5718 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the direct-axis voltage setpoint Ud. |  |  |
| Index: | [0] = Unsmoothed |  |  |
| r1733 | CO: Quadrature-axis voltage setpoint / Quad U set |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1630, 5714, 5718, 6714, 6719 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the quadrature-axis component of voltage setpoint Uq. |  |  |


| r1733[0..1] | CO: Quadrature-axis voltage setpoint / Quad U set |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - |  |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Access level: 3 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  | Func. diagram: 1630,5714, |  |
|  | P-Group: Closed-loop control | Units group: 5_1 | 5718, 6714,6719 |
|  | Not for motor type: REL | Scaling: p2001 | Unit selection: p0505 |
|  | Min | Max | Expert list: 1 |
|  | $-[V r m s]$ | $-[V r m s]$ | Factory setting |
|  | Displays the quadrature-axis component of voltage setpoint Uq. | - [Vrms] |  |
| Description: | $[0]=$ Unsmoothed |  |  |
| Index: | $[1]=$ Smoothed with p0045 |  |  |
|  |  |  |  |


| $\mathbf{p 1 7 4 0 [ 0 . . . n ] ~}$ | Gain resonance damping for encoderless closed-loop control / Gain res_damp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.025 |
| Description: | Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range |  |  |



| p1749[0...n] | Motor model upper changeover speed / increase changeover speed / Upper / n_chgov |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T C |  | Calculated: - | Access level: 3 |  |
|  | Data type: FloatingPoint32 Dy |  | Dynamic index: DDS, p0180 | Func. diagram: - |  |
|  | P-Group: Closed-loop control U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: PEM, REL Scals |  | Scaling: - | Expert list: 1 |  |
|  |  |  | Max $99.0 \text { [\%] }$ | Factory setting$50.0 \text { [\%] }$ |  |
| Description: | For the separately-excited synchronous motor the following applies: |  |  |  |  |
|  | Sets the upper speed for the transition "n_set -> n_act" in sensorless operation. |  |  |  |  |
|  | This value is entered as a percentage of p1755. |  |  |  |  |
|  | For the encoderless closed-loop control of the induction motor, the following applies: |  |  |  |  |
|  | Depending on the machine data, the drive has calculated a minimum value of the operating frequency for rugged operation. |  |  |  |  |
|  | If the minimum value is greater than the lower changeover limit parameterized with p1755 * (1-2 * p1756), then the difference is displayed using p1749 * p1755. |  |  |  |  |
| Dependency: | Refer to: p1748, p1752, p1755, p1756 |  |  |  |  |
| p1750[0...n] | Motor model configuration / MotMod config |  |  |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR AC (n/M), | Can be changed: U, T Ca |  | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |  |
| VECTOR_I_AC (n/M) |  | type: Unsigned8 Dyn | Dynamic index: DDS, p0180 | Func. diagram: - |  |
|  |  | oup: Closed-loop control Unit | Units group: - | Unit selection: |  |
|  |  | for motor type: REL, FEM Sca | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - | - |  | 00000000 bin |  |
| Description: | Sets the configuration for the motor model. |  |  |  |  |
|  | Bit $0=1$ : Forces open-loop speed-controlled starting (ASM). |  |  |  |  |
|  | Bit 1 = 1: Forces the system to pass through frequency zero, open-loop-controlled (ASM). |  |  |  |  |
|  | Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency (ASM). |  |  |  |  |
|  | Bit 3 = 1: Motor model evaluates the saturation characteristic (ASM). |  |  |  |  |
|  | Bit $4=1$ : Time-controlled change between current and observer models (ASM). |  |  |  |  |
|  | Bit $5=1$ : HF signal injection to estimate the continuous rotor position (PESM). |  |  |  |  |
|  | Bit $6=1$ : If the motor is blocked, sensorless vector control remains speed-controlled (ASM). |  |  |  |  |
|  | Bit 7 = 1: Use rugged switchover limits to switchover the model between open-loop and closed-loop controlled operation (ASM). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Controlled start | Yes | No | - |
|  |  | Controlled through 0 Hz | Yes | No | - |
|  |  | Closed-loop ctrl oper. down to zero freq. for passive loads | Yes | No | - |
|  |  | Motor model Lh_pre = f(PsiEst) | Yes | No | - |
|  |  | Model changeover | Time controlled | Freq. controlled | - |
|  |  | Cl.-loop control mode PESM up to $\mathrm{f}=\mathrm{OHz}$ with HF signal injection | Yes | No | - |
|  |  | Closed-loop control when motor is blocked | Yes | No | - |
|  |  | Use rugged changeover limits | Yes | No | - |
| Caution: | Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking ( $\mathrm{p} 2177>\mathrm{p} 1758$ ) can cause the motor to stall. In this case you should de-activate the function or use closed-loop control throughout the speed range (note the information re bit $2=1$ ). |  |  |  |  |
| Note: | Bit 0 ... 3 only have influence for sensorless vector control, bit 4 only for vector control with encoder. Bit 2 is preassigned depending on p0500. |  |  |  |  |

Re bit $2=1$ :
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
Re bit $2=0$ :
If the model feedback is deactivated ( $\mathrm{p} 1784=0$ ), with bit $2=0$, then bit 3 is also automatically set to 0 .
Re bit $5=1$ :
The selection of HF signal injection is only relevant for permanent-magnet synchronous motors (PESM). Therefore, activation of bit 5 is only possible outside of motor commissioning ( $p 0010=0$ ).
In order to achieve user-friendly configuration of the power unit components in the oversampling mode, when activated for the first time, initially p1810 bit 3 is set, and then an automatic system boot is initiated. This is only possible if all of the axes connected to the CU are switched off (refer to the setting conditions for p0009); otherwise, it is not possible to set the bit.
When deactivating p1750 bit 5, p1810 bit 3 remains unchanged and the system does not boot again.
Therefore, to reverse configure the power unit components from the oversampling mode (after manually deselecting p1750 bit 5) then initially p1810 bit 3 must be manually deleted and then a manual warm restart initiated.
As an alternative to a warm restart: save the parameters and carry out a POWER ON (switch-off/switch-on).
When the function "safety without encoder" (p9306/p9506) is activated, this setting is not permissible and results in monitoring errors.
Re bit $6=1$ :
The following applies for encoderless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.
Re bit $7=1$ :
The following applies for encoderless vector control of induction motors:
If the changeover limits are parameterized too low ( p 1755 , p 1756 ), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is obtained from the minimum of p1758 and 0.5 * r0384.
Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
It must be ensured that p1610, p1611 have been adequately parameterized.


Note:

| 10 | I injection PEM | No | Yes | - |
| :--- | :--- | :--- | :--- | :--- |
| 11 | Speed controller output cannot be set to | Yes | No | - |
|  | zero |  |  |  |
| 12 | Rs adapt waits | Yes | No | - |
| 13 | mot oper | Yes | No | - |
| 14 | Stator frequency sign | Positive | Negative | - |
| 15 | Torque sign | Motor mode | Regenerative mode | - |
| 16 | Pulse injection active PEM | Yes | No | - |
| 17 | Operation with rugged model feedback | Enabled | Inhibited | - |
| 18 | Operation of the current model with current | Enabled | Inhibited | - |
|  | feedback |  | Inactive | - |
| 19 | Current feedback in the current model | Active | Inactive | - |
| 20 | Rugged increase of the changeover limits | Active |  | - |

Displays the status when enabling the rugged model feedback (p1784) for operation with and without encoder.
The feedback is used to increase the parameter ruggedness of the motor model and is effective in the operating range of the two-component closed loop current control.
Re bit 18:
Displays the status when enabling the differential current feedback in the current model for operation with encoder.
The function is automatically enabled with p1784>0 or p1731>0. The feedback is used for a rugged change between the current model and complete machine model with active rugged model feedback and combination current.
Re bit 19:
Displays the currently active stator circuit feedback in current model operation.
Re bit 20:
Displays the currently effective increase of the changeover limits by the value p1749 * p1755.

| p1752[0...n] | Motor model changeover speed operation with encoder / MotMod n_chgov enc |
| :---: | :---: |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: U, T Calculated: CALC_MOD_REG Access level: 3 |
|  | Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: - |
|  | P-Group: Closed-loop control Units group: 3_1 Unit selection: p0505 |
|  | Not for motor type: REL Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> $0.00[\mathrm{rpm}]$ $210000.00[\mathrm{rpm}]$ $210000.00[\mathrm{rpm}]$ |
| Description: | Sets the speed to change over the motor model for operation with encoder. |
| Dependency: | Refer to: p1756 |
| Note: | Induction motor (ASM): |
|  | The motor model is influenced for speeds greater than p1752. |
|  | Synchronous motor (SRM): |
|  | A monitoring function (F07412) is activated for speeds greater than p1752. |
|  | The motor model is additionally influenced when kT adaptation is activated (p1780.3 $=1$ ). |


| p1752[0...n] | Motor model with encoder changeover velocity / MotMod enc v_chgov |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Closed-loop control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~m} / \mathrm{min}]$ | $1000.00[\mathrm{~m} / \mathrm{min}]$ | $1000.00[\mathrm{~m} / \mathrm{min}]$ |
| Description: | Sets the velocity to change over the motor model for operation with encoder. |  |  |
| Dependency: | Refer to: p1756 |  |  |
| Note: | A monitoring function (F07412) is activated for velocities greater than p1752. |  |  |


| p1752[0...n] | Motor model changeover speed operation with encoder / MotMod n_chgov enc |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 210000.00 [rpm] |
| Description: | Sets the speed to change over the motor model for operation with encoder. |  |  |
| Dependency: | In U/f characteristic mode the parameter is of no significance. |  |  |
|  | Using the friction characteristic for operation with encoder: |  |  |
|  | When changing the motor model changeover speed p 1752 , the points along the friction characteristic should be recalculated ( $\mathrm{p} 0340=5$ ) and the friction characteristic recorded again ( p 3845 ). For slight changes, only the associated friction characteristic points must be recorded (see p3844). |  |  |
|  | Refer to: p1756 |  |  |
| p1753[0...n] | Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [\%] }$ | Max $90.0 \text { [\%] }$ | Factory setting $0.0 \text { [\%] }$ |
| Description: | Sets the hysteresis for the changeover speed of the motor model for operation with speed encoder. |  |  |
| Dependency: | Refer to: p1752 |  |  |
| Note: | The value refers to p 1752 . In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1752 * p1753; in the case of all other types of motor, p1752 * (1-p1753) is used. |  |  |
| p1754[0...n] | Flux angle difference smoothing time / Angle diff T_smth |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6733 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.1 \text { [ms] }$ | 10000.0 [ms] | 5.0 [ms] |
| Description: | Sets the smoothing time constant to filter the main flux angle difference from the voltage and current models. The filtered value is included in the calculation of the total flux angle. |  |  |
|  | PESM: Sets the smoothing time constant for the angular difference display between motor model and encoder. |  |  |
| Note: | In the case of a separately excited synchronous motor and sensorless vector control, the parameter must be set to the minimum value to improve motor model changeover. |  |  |
| p1755[0...n] | Motor model changeover speed encoderless operation / MotMod n_chgSnsorl |  |  |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 210000.00 [rpm] |
| Description: | Sets the speed to change over the motor model to encoderless operation. |  |  |
| Dependency: | Refer to: p1749, p1756 |  |  |
| Note: | The changeover speed applies for the changeover between open-loop and closed-loop control mode. |  |  |



| p1756 | Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_REG | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6730, 6731, 6732, 6733 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 95.0 \text { [\%] } \end{aligned}$ | Factory setting $50.0 \text { [\%] }$ |
| Description:Dependency: | Sets the hysteresis for the changeover speed of the motor model for encoderless operation. |  |  |
|  | In U/f characteristic mode the parameter is of no significance. |  |  |
| Note: | The parameter value refers to p1755. |  |  |
|  | In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1755 * p1756; in the case of all other types of motor, p 1755 * ( 1 - p 1756 ) is used. |  |  |
| p1757[0...n] | Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.01 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10.00 \end{aligned}$ | Factory setting 0.70 |
| Description: | Sets the gain of the transient response controller when the motor model changes over from open-loop controlled operation to closed-loop controlled operation. |  |  |
| Note: | Only for ASM and PSM in encoderless operation: <br> The settling range starts at 0.5 * p1755 * p1756. <br> For ASM it ends at p1755 * p1756 or at p1755, if p1759 is at the maximum value. <br> For PSM it always ends at p1755 * p1756. |  |  |
| p1758[0...n] | Motor model changeover delay time closed/open-loop control / MotMod t cl_op |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min 100 [ms] | $\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$ | Factory setting 1000 [ms] |
| Description: | Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation. |  |  |
| Dependency: | Refer to: p1755, p1756 |  |  |
| p1759[0...n] | Motor model changeover delay time open/closed-loop control / MotMod top_cl |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $n / M$ ) | Can be changed: $U$, $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | $\begin{aligned} & \text { Max } \\ & 2000[\mathrm{~ms}] \end{aligned}$ | Factory setting 0 [ms] |
| Description: | Sets the minimum time for exceeding the changeover speed when changing from open-loop controlled operation to closed-loop controlled operation. |  |  |
| Dependency: | Refer to: p1755, p1756 |  |  |


| Note: | When p1759 = 2000 ms , the delay time becomes ineffective and the model changeover is determined by the output frequency only. |  |  |
| :---: | :---: | :---: | :---: |
| p1760[0...n] | Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting |
|  | 0.000 | 100000.000 | 1000.000 |
| Description: | Sets the proportional gain of the controller for speed adaptation with encoder |  |  |
| p1761[0...n] | Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 [ms] | 1000 [ms] | 4 [ ms ] |
| Description: | Sets the integral-action time of the controller for speed adaptation with encoder |  |  |
| r1762[0..1] | Motor model deviation component 1 / MotMod dev comp 1 |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6721, 6730, 6731 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | ( | - | - |
| Description: | Induction motor (ASM): |  |  |
|  | Displays the referred imaginary system deviation for the adaptation circuit of the motor model. |  |  |
|  | Permanent-magnet synchronous motor (PESM): |  |  |
|  | Displays the system deviation for speed adaptation. |  |  |
|  | r1762.0: Angular deviation [rad-el] of the estimated EMF. |  |  |
|  | r1762.1: Angular deviation [rad-el] of the low-level signal response for pulse technique. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Deviation Model1 }} \\ & {[1]=\text { Deviation Model2 }} \end{aligned}$ |  |  |

Motor model deviation component 2 / MotMod dev comp 2

| $\mathbf{r 1 7 6 3}$ |
| :--- |
| VECTOR ( $n / M$ ), |
| VECTOR_AC $(n / M)$, |
| VECTOR_I_AC $(n / M)$ |

Can be changed:
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL, FEM
Min

Description:
Induction motor (ASM):

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
-

Access level: 4
Func. diagram: Unit selection: -

Expert list: 1
Factory setting

Displays the referred real system deviation for the adaptation circuit of the motor model.
Permanent-magnet synchronous motor (PESM):
Not used.

| p1764[0...n] | Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6730 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 100000.000 | 1000.000 |
| Description: | Sets the proportional gain of the controller for speed adaptation without encoder. |  |  |
| r1765 | Motor model, speed adaptation Kp effective / MotM n_ada Kp act |  |  |
| VECTOR (n/M), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: p2001 | Expert list: 1 |


| p1766[0...n] | Motor model voltage model calculation enable / U_mod calc enab |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 90.0 [\%] | 50.0 [\%] |
| Description: | Sets the speed to enable the voltage model to calculate the speed actual value. This value is entered as a percentage referred to p 1752 . |  |  |
| Dependency: | Refer to: p1748, p1752 |  |  |
| p1767[0...n] | Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6730 |
| VECTOR___AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 [ms] | 200 [ms] | 4 [ms] |
| Description: | Sets the integral time of the controller for speed adaptation without encoder |  |  |


| r1768 | Motor model, speed adaptation Vi effective / MotM n_ada Vi act |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL, FEM | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the effective gain of the integral component of the controller for speed adaptation. |  |  |


| $\mathbf{r 1 7 7 0}$ | CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6730 |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL, FEM | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | Max - [rpm] | Factory setting - [rpm] |
| Description: | Displays the P component of th | speed adaptation. |  |


| r1771 | CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index:- | Func. diagram: 6730 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL, FEM | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |


| r1773[0...1] | Motor model slip speed / MotMod slip |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_AC ( $n / M$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL, FEM | Scaling: - | Expert list: 1 |
|  | Min - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays estimated (speed) signals of the motor model. <br> r1773[0]: Displays the estimated (mechanical) slip of the motor model. <br> r1773[1]: Displays the estimated input speed of the motor model. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Slip speed estimated }} \\ & {[1]=\text { Speed estimated }} \end{aligned}$ |  |  |
| p1774[0...n] | Motor model, offset voltage compensation alpha / MotMod offs comp A |  |  |
| VECTOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\operatorname{Min}_{-5.000[V]}$ | Max <br> 5.000 [V] | Factory setting 0.000 [V] |
| Description: | Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit. |  |  |
| Note: | The value is pre-set during the rotating measurement. |  |  |
| p1775[0...n] | Motor model, offset voltage compensation beta / MotMod offs comp B |  |  |
| VECTOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -5.000[\mathrm{~V}] \end{aligned}$ | Max <br> 5.000 [V] | Factory setting 0.000 [V] |
| Description: | Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit. |  |  |
| Note: | The value is pre-set during the rotating measurement. |  |  |


| r1776[0...6] | Motor model status signals / MotMod status sig |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $n / M$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the internal status signals of the motor model: |  |  |
|  | Index 0: Changeover ramp between current and voltage models |  |  |
|  | Index 1: Changeover ramp for model tracking (encoderless induction motors only) |  |  |
|  | Index 2: Changeover ramp for zero frequency range (encoderless induction motors only) |  |  |
|  | Index 3: Transition ramp actual speed from speed setpoint to model value (encoderless FEM) |  |  |
|  | Index 4: Speed controller enable (encoderless FEM) |  |  |
|  | Index 5: Transition ramp between current and voltage models (encoderless FEM) |  |  |
|  | Index 6: Transition ramp for EMF deviation at PLL input (encoderless PESM) |  |  |
| Index: | [0] = Changeover ramp motor model |  |  |
|  | [1] = Changeover ramp model tracking |  |  |
|  | [2] = Changeover ramp zero frequency encoderless ASM |  |  |
|  | [3] = Changeover ramp actual speed encoderless FEM |  |  |
|  | [4] = Enable speed controller encoderless FEM |  |  |
|  | [5] = Changeover ramp motor model encoderless FEM |  |  |
|  | [6] = Changeover ramp motor model encoderless PESM |  |  |
| Note: | Indices 3 through 5 are only relevant in the case of encoderless control of separately excited synchronous motors. |  |  |
| r1778 | Motor model flux angle difference / MotMod ang. diff. |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2005 | Expert list: 1 |
|  | Min$-\left[{ }^{\circ}\right]$ | Max | Factory setting |
|  |  | - [ ${ }^{\circ}$ ] | - [ ${ }^{\circ}$ ] |
| Description: | Induction motor (ASM): |  |  |
|  | Displays the difference between the motor model flux angle and the transformation angle. |  |  |
|  | Permanent-magnet synchronous motor (PESM): |  |  |
|  | Displays the angular difference between motor model and encoder. |  |  |
| Dependency: | A setting for smoothing the display can be made using p1754. |  |  |
| Notice: | The display only makes sense for corrected actual value inversion, encoder pulse number and pole pair number. |  |  |
|  | Example: |  |  |
|  | Moving in encoderless operation at a speed not equal to zero and without load. |  |  |
|  | --> Check the sign of r0061 and r0063. If the sign is not equal, then change p0410.0. |  |  |
|  | --> Check the stationary value of r0061 and r0063. If the value is not equal, change the encoder pulse number ( p 0408 ) or pole pair number ( p 0314 ). |  |  |


| r1778 | Motor model flux angle difference / MotMod ang. diff. |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(n / M)$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(n / M)$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(n / M)$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: p2005 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-\left[{ }^{\circ}\right]$ | $-\left[^{\circ}\right]$ | $-\left[{ }^{\circ}\right]$ |
| Description: | Induction motor (ASM): |  |  |
|  | Displays the difference between the motor model flux angle and the transformation angle. |  |  |



| 08 | Compensation voltage emulation error in <br> the drive converter | Yes | No |
| :--- | :--- | :--- | :--- |
| 09 | $\mathrm{kT}(\mathrm{iq})$ characteristic active | Yes | No |

For the PEM kT adaptation (p1780.3) as well as the compensation of the voltage emulation error (p1780.8) and for the $\mathrm{kT}(\mathrm{iq})$ characteristic ( p 1780.9 ), the function module "Extended torque control" (r0108.1) should be activated.

ASM: Induction motor
PEM: Permanent magnet synchronous motor
The kT adaptation is only active at a speed greater than the changeover speed with encoder ( p 1752 ).
The kT adaptation and the kT characteristic can be simultaneously selected.
Re kT adaptation (p1780.3 = 1):

- the kT adaptation is only active at a speed greater than the changeover speed with encoder ( p 1752 ).
- beforehand, an identification of the voltage emulation error must be started (p1909.14 = 1).
- If the electrical configuration (e.g. Motor Module, cable routing) or the pulse frequency (p1800) changes, then a new identification run must be carried out.
- To identify the voltage emulation error the Motor Module should still be warm.
- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle).
Re kT(iq) characteristic (p1780.9 = 1):
- for the kT (iq) characteristic $\mathrm{kT}(\mathrm{iq})=\mathrm{kT}+\mathrm{kT} 3^{*} \mathrm{iq} q^{\wedge} 2+\mathrm{kT} 5^{*} \mathrm{iq} \wedge 4+\mathrm{kT} 7^{*} \mathrm{iq} \mathrm{q}^{\wedge} 6$ the parameters must first be identified (p1959.6 = 1) (kT: p0316, kT3: p0646, kT5: p0647, kT7: p0647).


| p1784[0...n] | Motor model feedback scaling / MotMod fdbk scal |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\%]$ | $0.0[\%]$ |  |
| Description: | Sets the scaling for model fault feedback. |  |  |
| Note: | Feeding back the measured model fault to the model states increases the control stability and makes the motor |  |  |
|  | model rugged against parameter errors. |  |  |
|  | When feedback is selected (p1784 >0), Lh adaptation is not effective. |  |  |


| p1785[0...n] | Motor model Lh adaptation Kp / MotMod Lh Kp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.100 |
| Description: | Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM). |  |  |


| p1786[0...n] | Motor model Lh adaptation integral time / MotMod Lh Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  |  |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10[\mathrm{~ms}]$ | $10000[\mathrm{~ms}]$ | $100[\mathrm{~ms}]$ |
| Description: | Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM). |  |  |


| r1787[0...n] | Motor model Lh adaptation corrective value / MotMod Lh corr |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $n / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min $-[\mathrm{mH}]$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting - [mH] |
| Description: | Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM). |  |  |
| Dependency: | Refer to: p0826, p1780 |  |  |
| Note: | The adaptation result is reset if the magnetizing inductance of the induction motor is changed ( $\mathrm{p} 0360, \mathrm{r} 0382$ ). This also happens when changing over the data set if a different motor is not being used ( p 0826 ). |  |  |


| r1791 | Motor model Lh adaptation power-on frequency / MotMod Lh f_on |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{Hz}]$ | $-[\mathrm{Hz}]$ |  |
| Description: | Displays the power-on stator frequency/ primary section frequency for the Lh adaptation for the induction motor |  |  |
|  | (ASM). |  |  |


| $\mathbf{r 1 7 9 2}$ | Motor model Lh adaptation power-on slip / MotMod Lh fslip |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $n / M$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [Hz] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting <br> - [Hz] |
| Description: | Displays the power-on slip frequency for the Lh adaptation for the induction motor (ASM). |  |  |
| p1795[0...n] | Motor model kT adaptation smoothing time / MotMod kT T_smth |  |  |
| SERVO (Ext M_ctrl), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| M_ctrl), SERVO I AC (Ext | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| M_ctrl) | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1 \text { [ms] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$ | Factory setting 100 [ms] |
| Description: | Sets the smoothing time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM). |  |  |
| Dependency: | Refer to: p1780, r1797 |  |  |


| p1795[0...n] | Motor model kT adaptation integral time / MotMod kT Tn |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6731 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10[\mathrm{~ms}]$ | $10000[\mathrm{~ms}]$ | 100 [ms] |
| Description: | Sets the integral time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM). |  |  |


| r1797 | Motor model kT adaptation corrective value / MotMod kT corr |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl, | Can be changed: - | Calculated: - | Access level: 3 |
| Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Ext M_ctrl, Lin), <br> SERVO I AC (Ext | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| M_ctrl, Lin) | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [N/Arms] | Max <br> - [N/Arms] | Factory setting - [N/Arms] |
| Description: | Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM). |  |  |
| Dependency: | Refer to: p1780, p1795 |  |  |
| r1797 | Motor model kT adaptation corrective value / MotMod kT corr |  |  |
| SERVO (Ext M_ctrl), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (Ext | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| M_ctrl) ${ }^{\text {a }}$ | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [Nm/A] | Max <br> - [Nm/A] | Factory setting <br> - [Nm/A] |
| Description: | Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM). |  |  |
| Dependency: | Refer to: p1780, p1795 |  |  |


| r1797[0...n] | Motor model kT adaptation corrective value / MotMod kT corr |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6731 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min $-[\mathrm{Nm} / \mathrm{A}]$ | Max <br> - [Nm/A] | Factory setting <br> - [Nm/A] |
| Description: | Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM). |  |  |
| Dependency: | Refer to: p0826, p1780 |  |  |
| Note: | The display of the inactive data sets is only updated when changing over the data set. |  |  |
| p1798[0...n] | Motor model pulse technique speed adaptation Kp / MotMod pulses Kp |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 1000.000 | 1.000 |
| Description: | Sets the proportional gain Kp for speed adaptation with active pulse technique for the estimation of the continuous rotor position. |  |  |
| $\begin{aligned} & \hline \mathbf{p 1 8 0 0} \mathbf{0 . . . n ]} \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Pulse frequency setpoint / Pulse freq setp |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1.000 [kHz] | $32.000[\mathrm{kHz}]$ | 4.000 [kHz] |
| Description: | Sets the pulse frequency for the converter. |  |  |
|  | This parameter is pre-set to the rated converter value when the drive is first commissioned. |  |  |
| Dependency: | The pulse frequency can, depending on the current controller sampling time ( $\mathrm{p} 0115[0]$ ) assume the following values: |  |  |
|  | a) p1800 $=1000 /(\mathrm{p} 0115[0] * \mathrm{n})$ with $\mathrm{n}=2,3,4,5$ |  |  |
|  | b) $\mathrm{p} 1800=1000$ * $\mathrm{n} / \mathrm{p} 0115[0]$ with $\mathrm{n}=1,2,3,4, \ldots$ |  |  |
|  | Example: |  |  |
|  | $\mathrm{p} 0115[0]=125 \mu \mathrm{~s} \mathrm{->} \mathrm{p1800}=1.6,2,2.6,4 \mathrm{kHz}$ (from equation a) |  |  |
|  | $\mathrm{p} 0115[0]=125 \mu \mathrm{~s} \mathrm{->} \mathrm{p1800}=8,16 \mathrm{kHz}$ (from equation b) |  |  |
|  | Possible setting values can be taken from r0114 (if p0009 = p0010 = 0). |  |  |
|  | Refer to: r0110, r0111, p0112, p0113, r0114, p0115, p0230, p1817 |  |  |
| Note: | The maximum possible pulse frequency is also determined by the power unit being used. |  |  |
|  | When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067). |  |  |
|  | If p1800 is changed while commissioning ( $p 0009, p 0010>0$ ), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of $p 1800$ have been changed by a parameter that was set when the drive was commissioned (e.g. p1082). |  |  |
|  | For encoderless operation (p1404 = 0 or p1300 $=20$ ), the following conditions apply: |  |  |
|  | p1800 = $1 /$ ( $2^{*}$ p0115[0]) |  |  |
|  | or |  |  |
|  | p1800 >= n / p0115[0], $\mathrm{n}=1,2, \ldots$ |  |  |
|  | For motors with a low power rating (<300 W) we recommend that p1800 is set acc. to the second condition. |  |  |



| $\begin{aligned} & \hline \text { r1801[0...1] } \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | CO: Pulse frequency / Pulse frequency |  |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min $-[\mathrm{kHz}]$ | Max <br> - [kHz] | Factory setting - [kHz] |
| Description: Index: | Display and connector output for the actual converter switching frequency. <br> [0] = Actual <br> [1] = Modulator minimum value |  |  |
| Note: | The selected pulse frequency The following applies for vec The pulse frequency can also used to avoid overcontrol. In the case of chassis powe range. | e reduced if the drive converter 7): <br> en changing over the modulato <br> of the setpoint pulse frequency | an overload conditio <br> optimized pulse p <br> splayed in the FLB |
| p1802[0...n] | Modulator mode / Modulator mode |  |  |
| VECTOR, VECTOR_AC, | Can be changed: T | Calculated: CALC_MOD_LIM_REF | Access level: 3 |
| VECTOR_I_AC | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 9 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the modulator mode. |  |  |
| Value: | 0: Automatic changeov <br> 1: Flat top modulation <br> 2: Space vector modulatic <br> 3: SVM without overco <br> 4: SVM/FLB without ov <br> 5: SVM with pulse freq <br> 6: SVM/FLB with pulse <br> 7: No edge modulation <br> 8: No edge modulation <br> 9: Edge modulation | tion |  |
| Dependency: | If a sine-wave filter is param late edge modulation (r0192 type (p1802 = 3). <br> Refer to: r0192, p0230, p70 | at filter ( $\mathrm{p} 0230=3,4$ ), or if the space vector modulation withou | unit firmware is not control can be set |
| Notice: | If the pulse patterns are ena current actual value correction | dulation option (p1802 < 3) or ly activated (p1840.0 = 0). | modulation (p1802 |
| Note: | When modulation modes ar depth must be limited using ripple and torque ripple. <br> When changing p1802[x], th p1802 = 7, 8 should be used over to edge modulation. Ab full output voltage of the edg | uld lead to overmodulation (p1802 1803 < $100 \%$ ). The higher the <br> f the other existing indices are perated below 100 Hz or 60 Hz , frequencies, the modulation de not reached. | $0,1,2,5,6)$, the $m$ odulation, the great <br> hanged. <br> is necessary to av emains limited so th |


| p1802[0...n] | Modulator mode / Modulator mode |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { VECTOR (F3E), } \\ & \text { VECTOR_AC (F3E), } \\ & \text { VECTOR_I_AC } \\ & \text { (F3E) } \end{aligned}$ | Can be changed: T | CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 4 |
| Description: | Sets the modulator mode. |  |  |
| Value: | 0: Automatic changeover SVM/FLB |  |  |
|  | 2: Space vector modulation (SVM) |  |  |
|  | 3: SVM without overcontrol |  |  |
|  | 4: SVM/FLB without overcontrol |  |  |
| Dependency: | If a sine-wave filter is parameterized as output filter ( $\mathrm{p} 0230=3,4$ ), then only space vector modulation without overcontrol can be selected as modulation type (p1802 = 3). |  |  |
|  | Refer to: r0192, p0230, p7003 |  |  |
| Notice: | If the pulse patterns are enabled with overmodulation option (p1802 < 3) or edge modulation (p1802>6), then the current actual value correction is automatically activated (p1840.0 = 0). |  |  |
| Note: | When modulation modes are enabled that could lead to overmodulation ( $\mathrm{p} 1802=0,2$ ), the modulation depth must be limited using p1803 (default p1803 < $100 \%$ ). The higher the overmodulation, the greater the current ripple and torque ripple. |  |  |
|  | When changing p1802[x], the values for all of the other existing indices are also changed. |  |  |
| $\begin{aligned} & \text { p1803[0...n] } \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Maximum modulation depth / Modulat depth max |  |  |
|  | Can be changed: $U$, T | CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723 |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 20.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 150.0 \text { [\%] } \end{aligned}$ | Factory setting 100.0 [\%] |
| Description: | Defines the maximum modulation depth. |  |  |
| Note: | $p 1803=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay). |  |  |
|  | If an optimized pulse pattern is enabled (edge modulation), then the modulation depth is limited to below the output frequency of 28 Hz as there is no optimized pulse pattern in this range. |  |  |
| p1803[0...n] | Maximum modulation depth / Modulat depth max |  |  |
| ```VECTOR (F3E), VECTOR_AC (F3E), VECTOR_I_AC (F3E)``` | Can be changed: U, T | Calculated: CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 6723 |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 20.0 [\%] | 150.0 [\%] | 106.0 [\%] |
| Description: | Defines the maximum modulation depth. |  |  |
| Note: | p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay). |  |  |


| p1804[0...n] | Filter time constant smoothed modulation index / T_filt mod_idxSmth |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |


| r1808 | DC link voltage actual value for U_max calculation / Vdc act val U_max |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{V}] \end{aligned}$ | Factory setting - [V] |
| Description: | DC link voltage used to determine the maximum possible output voltage. |  |  |


| r1809 | CO: Modulator mode actual / Modulator mode act |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | 9 | Factory setting |
|  | 1 |  | - |
| Description: | Displays the effective modulator mode. |  |  |
| Value: | $1:$ | Flat top modulation (FLB) |  |
|  | $2:$ | Space vector modulation $(\mathrm{SVM})$ |  |
|  | $3:$ | Edge modulation from $28 \mathrm{~Hz} ; 23: 3$ |  |
|  | $4:$ | Edge modulation from $28 \mathrm{~Hz} ; 19: 1$ |  |
|  | $5:$ | Edge modulation from $60 \mathrm{~Hz} ; 17: 3$ |  |
|  | $6:$ | Edge modulation from $60 \mathrm{~Hz} ; 17: 1$ |  |
|  | $7:$ | Edge modulation from $100 \mathrm{~Hz} ; 9: 2$ |  |
|  | $8:$ | Edge modulation from $100 \mathrm{~Hz} ; 9: 1$ |  |
|  | $9:$ | Optimized pulse pattern |  |





| Dependency: | If bit 2 is set from 1 to $0, \mathrm{p} 1811=0$ is set. |
| :---: | :---: |
| Notice: | Bit $1=0$ can only be set under a pulse inhibit and for r0192.14 $=1$. |
|  | Bit 2 can only be set to 1 subject to the following prerequisites: |
|  | - Pulse inhibit |
|  | - r0192.16 = 1 |
|  | - p1800 < $2 \times 1000 / \mathrm{p} 0115[0]$ |
|  | Bit 12 can only be changed subject to the following prerequisites: |
|  | - preconditions, the same as bit $2=1$ |
|  | - p1810.3 = 0 |
| Note: | Re bit $00=0$ : |
|  | Voltage limitation from the minimum of the DC link voltage (lower ripple in the output current, reduced output voltage). |
|  | Re bit $00=1$ : |
|  | Voltage limitation from averaged DC link voltage (higher output voltage with increased ripple in the output current). |
|  | The selection is only valid if the DC link compensation is not performed in the Control Unit (bit $1=0$ ). |
|  | Re bit $01=0$ : |
|  | DC link voltage compensation in the modulator. |
|  | Re bit 01 = 1: |
|  | DC link voltage compensation in the current control. |
|  | Re bit $02=0$ : |
|  | A gating unit that does not permit wobbulation is used. |
|  | Edge modulation is not possible for a parallel connection with a single-winding system (p7003 = 0). |
|  | Bit 02 cannot be set to 0 if bit $12=1$. |
|  | Re bit $02=1$ : |
|  | A gating unit that permits wobbulation is used. |
|  | For a wobbulation amplitude p1811 $=0$, the maximum possible pulse frequency in $\mathrm{P} 1800=2 \times 1000 / \mathrm{p} 0115$ [0]. |
|  | For a wobbulation amplitude p1811 > 0 , the maximum possible pulse frequency in P1800 $=1000 / \mathrm{p} 0115[0]$. |
|  | If optimized pulse patterns has been activated (p1802>6), then a parameter save is required and switch-off and switch-on again. This is displayed using a fault message (F01040). |
|  | Re bit 03 = 1: |
|  | The actual current value sensing and the determination of the valve ON times takes place with a double current controller clock cycle and phase offset. |
|  | The activation is only possible with r0192.23 = 1 and p1810.12 $=0$ - and takes effect the next time the system is powered up. |
|  | Re bit 08 = 1: |
|  | Above the frequency threshold r1836[0], the pulse frequency is switched to the value in p1800. Below r1836[0] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency (see r0114). |
|  | Re bit 09 = 1: |
|  | Above the frequency threshold r1836[1], the pulse frequency is increased to the next possible value. Below r1836[1] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency. |
|  | If bit 8 is set to 0 , bit 9 is automatically reset. |
|  | Re bit $10=0$ : |
|  | Pulse-locking function activated. |
|  | Re bit 10 = 1 : |
|  | Pulse-dropping function activated. |
|  | Re bit $12=0$ : |
|  | The pulse frequency p1800 can also be synchronously set to the current controller clock cycle (see r0114). |
|  | Bit 12 can only be set from 1 to 0 if the pulse frequency p1800 is set synchronously to the current controller clock cycle. In this case, the gating unit is not switched over. |
|  | Re bit 12 = 1 : |
|  | The pulse frequency p1800 can also be asynchronously set to the current controller clock cycle. In this case, the effects should be observed (see p1800). |
|  | If bit 12 is set to 1 , then the gating unit is automatically switched over ( $\mathrm{p} 1810.2=1$ ). If this is not possible (see above), then bit 12 cannot be set to 1 . |
|  | Bit 12 cannot be set to 1 , if p1810.3 $=1$ is set. |





| p1819 | Phase for PWM generation / Ph for PWM |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -1 | 16 | 0 |
| Description: | Display for "offset clocking". |  |  |
|  | Depending on the particular case, the value is interpreted differently: |  |  |
|  | Case 1: |  |  |
|  | The PWM clock cycle is greater than the current controller clock cycle (p0115[0]) and the ratio between the PWM clock cycle and the current controller clock cycle and is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}$, pulse frequency $=4 \mathrm{kHz}, 2 \mathrm{kHz}$ ). |  |  |
|  | The value displayed refers to: |  |  |
|  | - the phase shift in the current-controller cycles to be applied by the power unit. |  |  |
|  | Case 2: |  |  |
|  | The PWM clock cycle is less than or equal to the current controller clock cycle ( $\mathrm{p} 0115[0]$ ) and the ratio between the current controller clock cycle and the PWM clock cycle is an integer and even multiple of it (e.g. p0115[0] $=125 \mu \mathrm{~s}$, pulse frequency $=8 \mathrm{kHz}, 16 \mathrm{kHz}$ ). |  |  |
|  | The value 1 displayed means that: |  |  |
|  | - the power unit is to apply a phase shift of $180^{\circ}$ (from the PWM cycle). |  |  |
|  | A value of 0 displayed on all power units of the drive line-up means the following: |  |  |
|  | - the general conditions of the "offset clocking" (see p1815) are not fulfilled, i.e. no power unit is clocked with an offset. |  |  |
| Dependency: | Refer to: p0108, r0108, p0115, p1800, p1815, p1816, p1818 |  |  |
| Note: | For reasons of compatibility, the parameter is an adjustable parameter. However, it functions solely as a display parameter. This means that the minimum value -1 no longer has any significance and is only available for reasons of compatibility. |  |  |


| p1819 | Phase for PWM generation / Ph for PWM |  |  |
| :---: | :---: | :---: | :---: |
| S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -1 | 16 | -1 |
| Description: | Display for "offset clocking". |  |  |
|  | Depending on the particular case, the value is interpreted differently: Case 1: |  |  |
|  |  |  |  |
|  | The PWM clock cycle (1/p1800[D]) is greater than the current controller clock cycle ( $\mathrm{p} 115[0]$ ) and the ratio between the PWM clock cycle and the current controller clock cycle and is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}$ ). |  |  |
|  | The value displayed refers to: |  |  |
|  | - the phase shift in the current-controller cycles to be applied by the power unit. |  |  |
|  | Case 2: |  |  |
|  | The PWM clock cycle ( $1 / \mathrm{p} 1800[\mathrm{D}]$ ) is less than or equal to the current controller clock cycle ( $\mathrm{p} 0115[0]$ ) and the ratio between the current controller clock cycle and the PWM clock cycle is an integer and even multiple of it (e.g. $\mathrm{p} 0115[0]=125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=8 \mathrm{kHz}, 16 \mathrm{kHz}$ ). |  |  |
|  | The value 1 displayed means that: |  |  |
|  | - the power unit is to apply a phase shift of $180^{\circ}$ (from the PWM cycle). |  |  |
|  | A value of 0 displayed on all power units of the drive line-up means the following: |  |  |
|  | - the general conditions of the "offset clocking" (see p1815) are not fulfilled, i.e. no power unit is clocked with an offset. |  |  |
| Dependency: | Refer to: p0108, r0108, | , p1816, p1818 |  |

Note: $\quad$ For reasons of compatibility, the parameter is an adjustable parameter. However, it functions solely as a display parameter. This means that factory setting -1 no longer has any significance and is only available for reasons of compatibility.

| p1820[0...n] | Reverse the output phase sequence / Outp_ph_seq rev |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3) | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 6732 |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the phase sequence reversal for the motor. |  |  |
|  | If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that with the same setpoint, the motor direction is reversed without reversing the encoder actual value. |  |  |
|  | When a speed encoder is being used, it may be necessary to also invert the encoder actual value (p0410). |  |  |
| Value: | 0 : OFF |  |  |
| Dependency: | Refer to: p1821 |  |  |
| Caution: | For 12-pulse converters with $30^{\circ}$ offset angle for system 2 , for a direction of rotation reversal, the phase offset changes by $60^{\circ}$ as the sign of the angle offset changes. This can be adapted in p 1810.15 . |  |  |
| Caution: | Changing the direction using p1820 or p1821 is not recognized by the "Safe Direction without encoder". As a consequence, the limit provided by SDI (Safe Direction) from r9733 no longer functions. |  |  |
| Note: | This setting can only be changed when the pulses are inhibited. p1821 can be used to reverse the phase sequence and encoder actual value. |  |  |


| p1821[0...n] | Dir of rot / Dir of rot |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(3) | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: Integer16 | Dynamic index: DDS, p0180 | $\begin{aligned} & \text { Func. diagram: } 4704,4710, \\ & 4711,4715,5730,6730,6731, \\ & 6732 \end{aligned}$ |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | If the parameter is changed, it reverses the direction of rotation of the motor and the encoder actual value without changing the setpoint. |  |  |
| Value: | $\begin{array}{ll} 0: & C W \\ \text { 1: } & \text { CCW } \end{array}$ |  |  |
| Dependency: | Refer to: F07434 |  |  |
| Caution: | Changing the direction using p1820 or p1821 is not recognized by the "Safe Direction without encoder". As a consequence, the limit provided by SDI (Safe Direction) from r9733 no longer functions. |  |  |
| Notice: | An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled. |  |  |
| Note: | For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft. |  |  |
|  | When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]). |  |  |


| p1821[0...n] | Direction / Direction |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: C 2 (3) | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | $\begin{aligned} & \text { Func. diagram: 4704, 4710, } \\ & 4711,4715,5730,6730,6731 \text {, } \\ & 6732 \end{aligned}$ |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | If the parameter is changed, it reverses the direction of rotation of the motor and the encoder actual value without changing the setpoint. |  |  |
| Value: | $\begin{array}{ll} 0: & \text { CW } \\ \text { 1: } & \text { CCW } \end{array}$ |  |  |
| Dependency: | Refer to: F07434 |  |  |
| Caution: | Changing the direction using p1820 or p1821 is not recognized by the "Safe Direction without encoder". As a consequence, the limit provided by SDI (Safe Direction) from r9733 no longer functions. |  |  |
| Notice: | For a drive data set changeover with differently set direction and pulse enable, an appropriate fault is output. |  |  |
| Note: | For operation with the phase sequence U/V/W, the direction is defined when viewing the face side of the motor output shaft. |  |  |
|  | When changing the direction, the rotating field direction of the current controller is reversed. The actual velocity (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]). |  |  |
|  | For VECTOR, the following applies: <br> p1820 can be used to reverse the direction of the motor without reversing the encoder actual value. |  |  |
| p1821[0...n] | Dir of rot / Dir of rot |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(3) | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | $\begin{aligned} & \text { Func. diagram: } 4704,4710, \\ & 4711,4715,5730,6730,6731 \text {, } \\ & 6732 \end{aligned}$ |
|  | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Setting to change the direction of rotation. <br> If the parameter is changed, it reverses the direction of rotation of the motor and the encoder actual value without changing the setpoint. |  |  |
| Value: | $\begin{array}{ll} \text { 0: } & \text { CW } \\ \text { 1: } & \text { CCW } \end{array}$ |  |  |
| Dependency: | Refer to: F07434 |  |  |
| Danger: | When using external speed actual values for the speed controller (see p1440), for a direction of rotation change ( $\mathrm{p} 1821=1$ ), then its polarity must also be changed (e.g. for drive object ENCODER via p0410). Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit. |  |  |
| Caution: | For 12-pulse converters with $30^{\circ}$ offset angle for system 2, for a direction of rotation reversal, the phase offset changes by $60^{\circ}$ as the sign of the angle offset changes. This can be adapted in p 1810.15 . |  |  |
| Caution: | Changing the direction using p1820 or p1821 is not recognized by the "Safe Direction without encoder". As a consequence, the limit provided by SDI (Safe Direction) from r9733 no longer functions. |  |  |
| Notice: | An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled. |  |  |

Note: $\quad$ For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft.

When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2])
p1820 can be used to reverse the direction of the motor without reversing the encoder actual value.


| p1828 | Compensation valve lockout time phase U/Comp t_lock ph U |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | Max <br> 1000000.00 [ $\mu \mathrm{s}$ ] | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the valve lockout time to compensate for phase U. |  |  |
| Notice: | The deadtime compensation is deactivated with p7003 $=2$. |  |  |
| Note: | The value is automatically calculated in the motor data identification routine. |  |  |
|  | For type PM340 power units, the value is limited to $3.98 \mu \mathrm{~s}$. |  |  |
| p1829 | Compensation valve lockout time phase V / Comp t_lock ph V |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 1000000.00 [ $\mu \mathrm{s}$ ] | 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the valve lockout time to compensate for phase V. |  |  |
| Notice: | The deadtime compensation is deactivated with p7003 $=2$. |  |  |
| Note: | For type PM340 power units, the value is limited to $3.98 \mu \mathrm{~s}$. |  |  |


Note: $\quad$ The pulse frequency reduction is not active for U/f control.
A minimum clearance of 10 Hz is kept between the frequency thresholds, which cannot be fallen below when
changing p1835.

| r1837 | Gating unit configuration / Gating unit config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - Ca |  | Calculated: - Access level: 3 |  |  |
|  | Data type: Unsigned32 Dy |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Modulation U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: - | Expert list: 1 |  |
|  | Min M |  | Max | Factory setting |  |
|  | - - - |  |  | - |  |
| Description: | Display for the configuration of the gating unit driver. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Modulation depth for a flying restart | Limited | Not limited | - |
|  | 01 | Modulation depth for Vdc closed-loop control | Limited | Not limited | - |
|  | 02 | Vdc_min controller | Active | Not active | - |
|  | 03 | Motor data identification routine | Active | Not active | - |
|  | 04 | Current offset calculation | Active | Not active | - |
|  | 05 | Simulation mode | Active | Not active | - |
|  | 06 | Reverse the output phase sequence | Active | Not active | - |
|  | 07 | CCW dir of rot | Active | Not active | - |
|  | 08 | Synchronization (bypass) | Active | Not active | - |
|  | 09 | F07801 monitor by application | Active | Not active | - |
|  | 10 | Chassis Drive active | Yes | No | - |
|  | 11 | Short-circuit test active | No | Yes | - |
|  | 12 | FL modulation prohibited | Yes | No | - |
|  | 13 | F3E present | Yes | No | - |
|  | 14 | PS-ASIC3 available (PS-ASIC3+ is not a PS-Asic3) | Yes | No | - |
|  | 15 | Power unit with PS interface | Yes | No | - |
|  | 16 | Current measurement oversampling active | Yes | No | - |
|  | 17 | Actual value averaging temporarily suppressed | Yes | No | - |
|  | 18 | Modulation depth limiting | Yes | No | - |
|  | 19 | Reduced DC link capacitance (without F3E) | Yes | No | - |


| p1840[0...n] | Actual value correction configuration / ActVal_corr conf |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |



| p1845[0...n] | Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 10.00 | Factory setting |
|  | 0.00 | 1.00 |  |
| Description: | Sets the weighting factor for the leakage inductance of the L-R element of the actual value correction. 1 |  |  |
| Dependency: | Refer to: p0391, p0392, p0393 |  |  |
| Note: | The load-dependent adaptation of the leakage inductance of the current actual value correction is defined using |  |  |
|  | p0391 ... p0393. |  |  |


| p1846[0...n] | Actual value correction damping factor / ActV_corr D_factor |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 10.00 | Factory setting |
|  | 0.00 | 1.00 |  |
| Description: | Sets the damping factor for the actual value correction. |  |  |
|  | The factor multiplies the T0/Tsig ratio in the feedback branch of the LR element. |  |  |


| r1848[0...5] | Actual value correction phase currents / ActVal_corr l_ph |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays phase correction currents as well as the drive converter phase currents |  |  |
| Index: | $[0]=$ Harmonics, phase $U$ |  |  |
|  | $[1]=$ Harmonics, phase $V$ |  |  |

$[3]=$ Meas val phase U
$[4]=$ Meas val phase V
$[5]=$ Meas val phase W

| r1849[0...5] | Actual value correction phase voltages / ActVal_corr U_ph |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the phase correction voltages and and the drive converter phase voltages |  |  |
| Index: | [0] = Harmonics, phase U <br> [1] = Harmonics, phase V <br> [2] = Harmonics, phase W <br> [3] = Meas val phase U <br> [4] = Meas val phase V <br> [5] = Meas val phase W |  |  |
| p1900 | Motor data identification and rotating measurement / MotID and rot meas |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1), \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min0 | Max | Factory setting |
|  |  | 2 | 2 |
| Description: | Sets the motor data identification and speed controller optimization. |  |  |
|  | Function inhibited. |  |  |
|  | p1900 $=2$ : |  |  |
|  | Induction motors --> set p1910 $=1$ and p1960 $=0$ |  |  |
|  | Permanent-magnet or separately-excited synchronous motors --> set p1910 = 1, p1990 = 1 and p1960 $=0$ |  |  |
|  | When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution. |  |  |
|  | For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder. |  |  |
| Value: | 0: Inhibited |  |  |
| Dependency: | In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine the drive data set changeover is suppressed. |  |  |
|  | Refer to: p1272, p1300, p1910 |  |  |
|  | Refer to: F07990, A07991 |  |  |
| Notice: | If there is a motor holding brake, it must be open (p1215 = 2). |  |  |
|  | To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977). It is not permissible to activate write protection during the motor identification (p7761). |  |  |
| Note: | The motor and control parameters are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). |  |  |
|  | An appropriate alarm is output when the parameter is set. |  |  |
|  | The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. |  |  |
|  | The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions. |  |  |
|  | p1900 is automatically set to 0 after the motor data identification routine has been completed. |  |  |


| p1900 | Motor data identification and rotating measurement / MotlD and rot meas |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $n / M$ ), <br> VECTOR_AC (n/M), <br> VECTOR_I_AC (n/M) | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 2 |
| Description: | Sets the motor data identification and speed controller optimization. |  |  |
|  | The motor identification should first be performed with the motor stationary (p1900 = 1, 2; also refer to p1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating ( $\mathrm{p} 1900=1,3$; also refer to p 1960 ). |  |  |
|  | Function inhibited. |  |  |
|  | p1900 = 1 |  |  |
|  | Induction motors --> set p1910 = 1 and p1960 = 0, 1, 2 depending on p1300 |  |  |
|  | Permanent-magnet or separately-excited synchronous motors --> set p1910 $=1$, p1990 $=1$ and p1960 $=0,1,2$ depending on p1300 |  |  |
|  | When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution. |  |  |
|  | For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder. |  |  |
|  | With the following power-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds. |  |  |
|  | p1900 $=2$ : |  |  |
|  | Induction motors --> set p1910 $=1$ and p1960 $=0$ |  |  |
|  | Permanent-magnet or separately-excited synchronous motors --> set p1910 $=1, \mathrm{p} 1990=1$ and p1960 $=0$ |  |  |
|  | When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution. |  |  |
|  | For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder. |  |  |
|  | Sets p1960 = 0, 1, 2 depending on p1300 |  |  |
|  | This setting should only be selected if the motor data identification was already carried out at standstill. |  |  |
|  | When the drive enable signals are present, with the next power-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds. |  |  |
| Value: | 0: Inhibited |  |  |
|  | 1: Identify motor data at standstill and with motor rotating |  |  |
|  | 2: Identify motor data at standstill |  |  |
|  | 3: Identify motor data with motor rotating |  |  |
| Dependency: | In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed. |  |  |
|  | Refer to: p1272, p1300, p1910, p1960, p1990 |  |  |
|  | Refer to: A07980, A07981, F07982, F07983, F07984, F07985, F07986, A07987, F07988, F07990, A07991 |  |  |
| Notice: | If there is a motor holding brake, it must be open (p1215=2). |  |  |
|  | To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977). |  |  |
|  | It is not permissible to activate write protection during the motor identification (p7761). |  |  |
|  | p1900 $=3$ : |  |  |
|  | This setting should only be selected if the motor data identification was already carried out at standstill. |  |  |
| Note: | The motor and control parameters are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). |  |  |
|  | An appropriate alarm is output when the parameter is set. |  |  |

> The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.


| $\overline{\mathbf{r 1 9 0 2}}$ | Test pulse evaluation status / Test puls ev stat |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 D | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: - U |  | Unit selection: - |  |
|  | Not for motor type: - S | Scaling: - | Expe |  |
|  | Min | Max | Factory setting |  |
|  | - - | - | - |  |
| Description: | Displays the status of the test pulse evaluation. |  |  |  |
|  | Short-circuit test: |  |  |  |
|  | Bit 0: The short-circuit test was executed without any fault. |  |  |  |
|  | Bit 1: A phase short circuit has been detected. |  |  |  |
|  | Bit 2: A ground fault test was successfully performed. |  |  |  |
|  | Bit 3: A ground fault was detected. |  |  |  |
|  | Bit 4: A test pulse longer than one sampling time has occurred |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Short-circuit test executed | Yes | No | - |
|  | 01 Phase short-circuit detected | Yes | No | - |
|  | 02 Ground fault test successfully performed | Yes | No | - |
|  | 03 Ground fault detected | Yes | No | - |
|  | 04 Identification pulse width greater than the minimum pulse width | Yes | No | - |

Note: If the ground fault test was selected, but not successfully performed, then sufficient current will not be able to be established during the test pulse.





| 14 | De-activate valve interlocking time mea- <br> surement | Yes | No |
| :--- | :--- | :--- | :--- |
| 15 | Determine only stator resistance, valve volt- <br> age fault, dead time | Yes | No |
| 16 | Short motor identification (lower quality) | Yes | No |

The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.
When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.

| $\mathbf{p 1 9 1 0}$ |
| :--- |
| SERVO, |
| SERVOOAC, |
| SERVO_I_AC |


| Motor data identification routine, stationary (standstill) / MotID standstill |  |  |
| :--- | :--- | :--- |
| Can be changed: T | Calculated: - | Access level: 2 |
| Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| P-Group: Motor identification | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |
| Min | Max | Factory setting |
| -3 | 1 | 0 |


| Description: | Setting to control the motor data identification with the motor stationary. |
| :---: | :---: |
| Value: | -3: Accept identified parameters |
|  | -2: Acknowledge encoder inversion actual value (F07993) |
|  | -1: Start motor data identification without acceptance |
|  | 0: Inactive/inhibit |
|  | 1: Start motor data identification with acceptance |
| Recommend.: | For motors with brakes, the brake should be opened before carrying out the stationary motor data identification routine ( $\mathrm{p} 1215=2$ ) as long as this can be done without incurring any danger. The commutation angle and the direction of rotation are also determined. |
| Dependency: | Refer to: p1909, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 Refer to: F07990, A07991, F07993 |
| Caution: | For motors without brake or with the brake open (p1215 = 2), for the stationary (zero speed) measurement, the motor may rotate slightly. |

If there is a motor holding brake, it must be open (p1215 = 2).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note: $\quad$ Motor data identification can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the motor data identification has been completed or de-selected.
After a started motor identification is ended, the parameter is automatically reset to 0 .
A motor data identification that is presently being carried out can be terminated with p1910 $=0$.


| Value: | 0: | Inhibited |
| :---: | :---: | :---: |
|  | 1: | Complete |
|  | 2 : | Complete |
|  | 3: | ID of the |
|  | 4: | ID of the |
|  | 5: | ID of dyna |
|  | 6: | ID of lock |
|  | 7: | ID of stat |
|  | 8: | ID of stator |
|  | 9: | ID of roto |
|  | 10: | ID of stati |
|  | 20: | Voltage v |
|  | 21: | Voltage v |
|  | 22: | Rectangu |
|  | 23: | Triangula |
|  | 24: | Rectangu |
|  | 25: | Triangula |
|  | 26: | Enter volt |
| Dependency: | "Quick commissioning" must be carried out ( $\mathrm{p} 010=1$ ) before executing the motor data identification routine! |  |
|  | In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed. |  |
|  | Refer to: p1272, p1900 |  |
| Caution: | After the motor data identification ( $\mathrm{p} 1910>0$ ) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next power-on command: |  |
|  | - current flows through the motor and a voltage is present at the drive converter output terminals. |  |
|  | - during the identification routine, the motor shaft can rotate through a maximum of half a revolution. |  |
|  | - however, no torque torque is generated. |  |
| Notice: | If there is a motor holding brake, it must be open (p1215 = 2). |  |
|  | To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977). |  |
| Note: | When setting p1910, the following should be observed: |  |
|  | 1. "With acceptance" means: |  |
|  | The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting. |  |
|  | 2. "Without acceptance" means: |  |
|  | The identified parameters are only displayed in the range r1912 ... r1926. The controller settings remain unchanged. |  |
|  |  |  |


| p1911 | Number of phases to be identified / Qty ph to ident |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$ | $\underset{3}{\operatorname{Max}}$ | Factory setting 1 |
| Description: | Sets the number of phases to be identified. |  |  |
| Value: | 1: 1 phase U <br> 2: 2 phases $\mathrm{U}, \mathrm{V}$ <br> 3: 3 phases $\mathrm{U}, \mathrm{V}, \mathrm{W}$ |  |  |
| Note: | When identifying with several phases, the ac | curacy increases and al | takes to make the |


| r1912 | Stator resistance identified / R_stator ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the identified stator resistance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |
| $\begin{aligned} & \hline \mathbf{r 1 9 1 2 [ 0 . . . 2 ] ~} \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Identified stator resistance / R_stator ident |  |  |
|  | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ohm] | Max <br> - [ohm] | Factory setting - [ohm] |
| Description: | Displays the identified stator resistance. |  |  |
| Index: | $[0]=\text { Phase U }$ |  |  |
|  | [1] = Phase V |  |  |
|  | [2] = Phase W |  |  |
| $\begin{aligned} & \hline 1913 \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Rotor time constant identified / T_rotor ident |  |  |
|  | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [ms] | Max <br> - [ms] | Factory setting - [ms] |
| Description: | Displays the identified rotor time constant. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |
| r1913[0...2] | Identified rotor time constant / T_rotor ident |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM | Scaling: - | Expert list: 1 |
|  | Min <br> - [ms] | Max <br> - [ms] | Factory setting - [ms] |
| Description: | Displays the identified rotor time constant. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase W }} \end{aligned}$ |  |  |


| r1914[0...2] | Identified total leakage inductance / L_total_leak ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
|  |  |  |  |
| Description: | Displays the identified total leakage inductance. |  |  |
| Index: | $[0]=$ Phase $U$ |  |  |
|  | $[1]=$ Phase V |  |  |
|  | $[2]=$ Phase W |  |  |


| r1915 | Stator inductance identified / L_stator ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting - [mH] |
| Description: | Displays the identified stator inductance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1913, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |


| r1915[0...2] | Identified nominal stator inductance /L_stator ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |

Description: Displays the nominal stator inductance identified.

## Index:

$[0]=$ Phase $U$
$[1]=$ Phase $V$
$[2]=$ Phase $W$

| r1916[0...2] | Identified stator inductance 1/L_stator 1 ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |

Description: Displays the nominal stator inductance identified for the 1st point of the saturation characteristic.
Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W

| r1917[0...2] | Identified stator inductance 2 / L_stator 2 ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
|  |  |  |  |
| Description: | Displays the nominal stator inductance identified for the 2nd point of the saturation characteristic. |  |  |
| Index: | $[0]=$ Phase $U$ |  |  |
|  | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase $W$ |  |  |


| r1918[0...2] | Identified stator inductance 3 / L_stator 3 ident |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting <br> - [mH] |
| Description: | Displays the nominal stator inductance identified for the 3rd point of the saturation characteristic. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase V }} \\ & {[2]=\text { Phase W }} \end{aligned}$ |  |  |


| r1919[0...2] | Identified stator inductance $4 / L$ stator 4 ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection:- |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
| Description: | Displays the nominal stator inductance identified for the 4th point of the saturation characteristic. |  |  |
| Index: | $[0]=$ Phase $U$ |  |  |
|  | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase $W$ |  |  |

r1920[0...2] Identified dynamic leakage inductance / L_leak dyn ident
VECTOR, Can be changed: - Calculated: - Access level: 4
Can be changed: -
Data type: FloatingPoint32

Calculated: -
Dynamic index: - Func. diagram: -P-Group: Motor identification Not for motor type: Min - [mH] Displays the identified dynamic total leakage inductance.
$\begin{array}{ll}\text { Description: } & \text { Displays the i } \\ \text { Index: } & {[0]=\text { Phase } U}\end{array}$
[1] = Phase V
[2] = Phase W

Access level: 4

Unit selection: -
Expert list: 1
Factory setting

- [mH]
.

| r1921[0...2] | Identified dynamic leakage inductance 1/L_leak 1 dyn id |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
|  | Displays the identified dynamic leakage inductance 1. |  |  |
| Description: | $[0]=$ Phase $U$ |  |  |
| Index: | $[1]=$ Phase V |  |  |
|  | $[2]=$ Phase W |  |  |


| r1922[0...2] | Identified dynamic leakage inductance 2 / L_leak 2 dyn id |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
|  |  |  |  |
| Description: | Displays the identified dynamic leakage inductance 2. |  |  |
| Index: | $[0]=$ Phase $U$ |  |  |
|  | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase W |  |  |


| r1923[0...2] | Identified dynamic leakage inductance 3/L_leak 3 dyn id |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |

Description: Displays the identified dynamic leakage inductance 3.
Index:
$[0]=$ Phase U
[1] $=$ Phase $V$
[2] $=$ Phase W
r1924[0...2] Identified dynamic leakage inductance 4 / L_leak 4 dyn id

VECTOR, VECTOR_AC, VECTOR_I_AC
Can be changed: -
Data type: FloatingPoint32

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

- [mH]

Description:
[0] = Phase U
[1] = Phase V
[2] = Phase W
Index:

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[mH]
rex

| r1925 | Threshold voltage identified / U_threshold ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the identified threshold voltage of the power unit. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1913, r1915, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |


| r1925[0...2] | Identified threshold voltage / U_threshold ident |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the identified IGBT threshold voltage. |  |  |
| Index: | [0] = Phase U |  |  |
|  | $[1]=$ Phase V$[2]=$ Phase W |  |  |


| r1926[0...2] | Identified effective valve lockout time / t_lock_valve id |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mu \mathrm{s}]$ | $-[\mu \mathrm{s}]$ |  |
|  |  |  |  |
| Description: | Displays the identified effective valve lockout time. |  |  |
| Index: | $[0]=$ Phase $U$ |  |  |
|  | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase $W$ |  |  |


| r1927 | Rotor resistance identified / R_rotor ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [ohm] | Max - [ohm] | Factory setting - [ohm] |
| Description: | Displays the identified rotor resistance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |


| r1927[0...2] | Identified rotor resistance / R_rotor ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [ohm] | - [ohm] |  |
| Description: | Displays identified rotor resistance (on separately excited synchronous motors: damping resistance). |  |  |
| Index: | $[0]=$ Phase U |  |  |
|  | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase $W$ |  |  |


| r1929[0...2] | Identified cable resistance / R_cable ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[0 h m]$ | $-[o h m]$ |  |
|  | Displays the identified cable resistance. |  |  |
| Description: | $[0]=$ Phase $U$ |  |  |
| Index: | $[1]=$ Phase $V$ |  |  |
|  | $[2]=$ Phase $W$ |  |  |


| r1932[0..19] | d inductance identified / Ld ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $-[\mathrm{mH}]$ | Max <br> - [mH] | Factory setting - [mH] |
| Description: | Displays the identified (differential) d-inductance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1927, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |
| Note: | The Ld characteristic consists of the value pairs from p1932 and p1933 with the same index. This value corresponds to the value of the total leakage inductance (r0377). |  |  |
|  |  |  |  |


| r1933[0..19] | d inductance identification current / Ld I_ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the identification current of the d inductance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1934, r1935, r1936, r1950, r1951, p1952, p1953 |  |  |
| Note: | The Ld characteristic consists | s from p1932 and | me index. |


| r1934[0...9] | q inductance identified / Lq ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$ | Factory setting $-[\mathrm{mH}]$ |
| Description: | Displays the identified (differential) q-inductance. |  |  |
| Dependency: | Refer to: p1909, p1910, r1932, r1933 |  |  |
| Note: | The Lq characteristic consists of the value pairs from p1934 and p1935 with the same index. This value corresponds to the value of the total leakage inductance (r0377). |  |  |
|  |  |  |  |


| r1934[0...9] | q inductance identified / Lq ident |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
|  |  |  |  |
| Description: | Displays the identified (differential) q-inductance. |  |  |
| Dependency: | Refer to: r1935, p1959, p1960 |  |  |
| Note: | The Lq characteristic consists of the value pairs from p1934 and p1935 with the same index. |  |  |
|  | This value corresponds to the value of the total leakage inductance (r0377). |  |  |



Note: $\quad-$ the Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.

- the torque constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance torque constant is identified ( $\mathrm{p} 1959.7=1$ ), the torque constant is identified with $150 \%$ rated current ( p 0305 ), otherwise with $100 \%$ rated current
- the torque characteristic (r1937[1...10]) is identified in the range between the rated current ( p 0305 ) and the maximum current (p0640) (r1935[11...20]).

| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| :---: | :---: | :---: | :---: |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the identification current for the identification of the q-inductance ( $[0 \ldots .9]$ ) as well as the force constant ([10]) and the force characteristic ([11...20]). |  |  |
| Index: |  |  |  |
|  | [0] = q inductance identification current measuring point 1 <br> [1] $=\mathrm{q}$ inductance identification current measuring point 2 |  |  |
|  | [2] = q inductance identification current measuring point 3 |  |  |
|  | [3] = q inductance identification current measuring point 4 |  |  |
|  | [4] = q inductance identification current measuring point 5 |  |  |
|  | [5] = q inductance identification current measuring point 6 |  |  |
|  | [6] $=\mathrm{q}$ inductance identification current measuring point 7 |  |  |
|  | [7] = q inductance identification current measuring point 8 |  |  |
|  | [8] = q inductance identification current measuring point 9 |  |  |
|  | [9] = q inductance identification current measuring point 10 |  |  |
|  | [10] = Force constant identification current |  |  |
|  | [11] = Force characteristic identification current measuring point 1 |  |  |
|  | [12] = Force characteristic identification current measuring point 2 |  |  |
|  | [13] = Force characteristic identification current measuring point 3 |  |  |
|  | [14] = Force characteristic identification current measuring point 4 |  |  |
|  | [15] = Force characteristic identification current measuring point 5 |  |  |
|  | [16] = Force characteristic identification current measuring point 6 |  |  |
|  | [17] = Force characteristic identification current measuring point 7 |  |  |
|  | [18] = Force characteristic identification current measuring point 8 |  |  |
|  | [19] = Force characteristic identification current measuring point 9 |  |  |
|  | [20] = Force characteristic identification current measuring point 10 |  |  |
| Dependency: | Refer to: p1909, p1910, r1934 |  |  |
| Note: | - the Lq characteristic consists of the value pairs from r1934 and r1935 with the same index. |  |  |
|  | - the force constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance force constant is identified ( $p 1959.7=1$ ), the force constant is identified with $150 \%$ rated current ( $p 0305$ ), otherwise with $100 \%$ rated current. |  |  |

- the force characteristic (r1937[1...10]) is identified in the range between the rated current (p0305) and the maximum current (p0640) (r1935[11...20]).

| r1935[0...9] | q inductance identification current / Lq I_ident |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the identification current to identify the q inductance ([0...9]). |  |  |
| Dependency: | Refer to: r1934, p1959, p1960 |  |  |
| Note: | The Lq characteristic consists | rs from r1934 and | e index. |


| r1936 | Magnetizing inductance identified / L_H ident |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | Factory setting |  |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
| Description: | Displays the identified magnetizing inductance (gamma equivalent circuit diagram). |  |  |
| Dependency: | Refer to: p1909, p1910, r1913, r1915, r1927, p1959, p1960, r1962, r1963 |  |  |
| Note: | This value corresponds to the value of the transformed magnetizing inductance (r0382). |  |  |



- if indices r1937[1..10] are not equal to zero, they show the values of the torque characteristic identified for the current in $\mathrm{r} 1935[11 \ldots 20$ ]. The torque characteristic is identified in the range between rated current ( p 0305 ) and maximum current (p0640).
r1937[0...10] Force constant identified / kT ident

SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)

Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: -
Min

- [N/Arms]

Displays the identified force constant.
[0] = Force constant identified
[1] = Force characteristic identified measuring point 1
[2] = Force characteristic identified measuring point 2
[3] = Force characteristic identified measuring point 3
[4] = Force characteristic identified measuring point 4
[5] = Force characteristic identified measuring point 5
[6] = Force characteristic identified measuring point 6
[7] = Force characteristic identified measuring point 7
[8] = Force characteristic identified measuring point 8

Access level: 3
Func. diagram: -
Unit selection: p0100
Expert list: 1
Factory setting

- [N/Arms]
\(\left.\begin{array}{ll} \& {[9]=Force characteristic identified measuring point 9} <br>

{[10] ~=~ F o r c e ~ c h a r a c t e r i s t i c ~ i d e n t i f i e d ~ m e a s u r i n g ~ p o i n t ~} \& 10\end{array}\right]\)| Refer to: r1938, r1939, p1959, p1960, r1969 |
| :--- |
| Dependency: |
| - the value in r1937[0] corresponds to the force constant ( p 0316 ) and was identified with the current in r1935[10]. If |
| the reluctance force constant is identified (p1959.7 = 1), the force constant is identified with 150\% rated current |
| (p0305), otherwise with $100 \%$ rated current. |

| r1938 | Voltage constant identified / kE ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO__AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the identified voltage constant. |  |  |
| Dependency: | Refer to: r1937, r1939, p1959, p1960, r1969 |  |  |
| Note: | This value corresponds to the voltage constant (p0317). |  |  |


| r1938 | Voltage constant iden | nt |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms s/m] | Max <br> - [Vrms s/m] | Factory setting <br> - [Vrms s/m] |
| Description: | Displays the identified voltage |  |  |
| Dependency: | Refer to: r1937, r1939, p1959 |  |  |
| Note: | This value corresponds to the | nt (p0317). |  |
| r1939 | Reluctance torque con | ified / kT_reluc |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO__AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [mH] | Max - [mH] | Factory setting - [mH] |
| Description: | Displays the identified relucta | tant. |  |
| Dependency: | Refer to: r1937, r1938, p1959 |  |  |
| Note: | This value corresponds to the | que constant (p0328) |  |


| r1939 | Reluctance force constant identified / kT_reluct ident |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $-[\mathrm{mH}]$ | Factory setting |
|  | $-[\mathrm{mH}]$ | $-[\mathrm{mH}]$ |  |
| Description: | Displays the identified reluctance force constant. |  |  |
| Dependency: | Refer to: r1937, r1938, p1959, p1960, r1969 |  |  |
| Note: | This value corresponds to the reluctance force constant $(\mathrm{pO328})$. |  |  |


| r1947 | Optimum load angle identified / phi_load ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - [ ${ }^{\circ}$ ] | - [ ${ }^{\circ}$ ] | - [ ${ }^{\circ}$ ] |
| Description: | Displays the identified, optimum load angle. |  |  |
| Note: | This value corresponds to the optimum load angle (p0327). |  |  |
| r1948 | Magnetizing current identified / I_mag ident |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the identified magnetizing current. |  |  |
| Dependency: | Refer to: r1936, p1959, p1960 |  |  |
| Note: | This value corresponds to the magnetizing current (p0320 / r0331). |  |  |
| r1950[0..19] | Voltage emulation error voltage values / U_error U_values |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mathrm{V}] \end{aligned}$ | Max <br> - [V] | Factory setting $-[V]$ |
| Description: Dependency: | The identified characteristic of the voltage emulation error is displayed r1950[0...19] and r1951[0...19] |  |  |
| r1951[0..19] | Voltage emulation error current values / U_error I_error |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $-[A]$ | $\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$ | Factory setting $-[A]$ |
| Description: | The identified characteristic of the voltage emulation error is displayed r1950[0...19] and r1951[0...19] |  |  |
| Dependency: | Refer to: r1950 |  |  |
| p1952[0...n] | Voltage emulation error final value / U_error final val |  |  |
| SERVO (Ext M_ctrl), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Ext M ctrl) | Data type: FloatingPoint32 | Dynamic index: D | Func. diagram: - |
| SERVO_I_AC (Ext | P-Group: Motor identification | Units group: - | Unit selection: - |
| M_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.000 \text { [V] }$ | $\begin{aligned} & \text { Max } \\ & 100.000 \text { [V] } \end{aligned}$ | Factory setting 0.000 [V] |
| Description: | Sets the final value to compensate the voltage emulation error. Refer to: p1953 |  |  |
| Dependency: |  |  |  |

Note: $\quad$ The voltage emulation error is calculated and compensated for every phase according to the following formula:
u_error $=u 0$ * $\mathrm{i} /(\mathrm{abs}(\mathrm{i})+\mathrm{i} 0)$
u 0 : This is set in p 1952.
i0: This is set in p1953.
i: Phase current to which the emulation error u_error belongs.

| p1953[0...n] | Voltage emulation error current offset / U_error I_offset |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO I AC (Ext | P-Group: Motor identification | Units group: - | Unit selection: - |
| M_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[A] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.000[\mathrm{~A}] \end{aligned}$ | Factory setting 0.000 [A] |
| Description: | Sets the current offset to compensate the voltage emulation error. |  |  |
| Dependency: | Refer to: p1952 |  |  |
| Note: | The voltage emulation error is calculated and compensated for every phase according to the following formula: u_error $=u 0$ * $\mathrm{i} /(\mathrm{abs}(\mathrm{i})+\mathrm{i} 0)$ |  |  |
|  | u 0 : This is set in p1952. |  |  |
|  | i0: This is set in p1953. |  |  |
|  | i: Phase current to which the e | u_error belongs. |  |


| $\mathbf{p 1 9 5 8 [ 0 . . . n ] ~}$ | Rotating measurement ramp-up/ramp-down time / Rot meas t_r up/dn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-1.00[\mathrm{~s}]$ | $999999.00[\mathrm{~s}]$ | -1.00 [s] |


| Description: | Sets the ramp-up/ramp-down time for the rotating measurement. |
| :--- | :--- |
| The following applies for negative values: |  |
| When the function module "extended setpoint channel" is activated ( $\mathrm{r} 0108.8=1$ ), the maximum of the ramp- |  |
| up/ramp-down time of the setpoint channel becomes effective. When this function module is inactive, then no ramp- |  |
| up/ramp-down time is effective. |  |
| The following applies for positive values: |  |
| The selected ramp-up/ramp-down time becomes effective. |  |
| A ramp-up/ramp-down time should not be activated for the motor data identification ( $\mathrm{p} 1958=0$ ) as long as this can |  |
| be safely done without incurring any danger. This means that the identification is complete and more accurate. |  |
| When the ramp-up/ramp-down time is activated, the following steps of the rotating motor data identification are not |  |
| executed: |  |
|  | - p1959.5 (identifying the q inductance) |
| - p1959.7 (identifying the reluctance torque constant) |  |
| Dependency: $\quad$Refer to: p1959, p1960 |  |


| p1958[0...n] | Moving measurement ramp-up/ramp-down time / Mov meas t_r up/dn |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-1.00[\mathrm{~s}]$ | $999999.00[\mathrm{~s}]$ | $-1.00[\mathrm{~s}]$ |
| Description: | Sets the ramp-up/ramp-down time for the moving measurement. |  |  |



Re bit 10:
If the motor holding brake is set just the same as the sequence control ( $\mathrm{p} 1215=1$ or 3 ), the commutation angle and the direction of rotation are not measured. Before carrying out the rotation measurement for motors with brake, the brake should be opened ( $\mathrm{p} 1215=2$ ) - as long as this can be done without incurring any danger.
Re bit 14, 15:
The following applies for bit 14 and $15=0$ :
When the function module "extended setpoint channel" is activated ( $\mathrm{r0108.8}=1$ ), the direction inhibit of the setpoint channel becomes effective. No direction of inhibit is effective if the function module is inactive.
The following applies for minimum bit $14=1$ or bit $15=1$ :
The direction inhibit set in p1959 becomes effective.

| p1959[0...n] | Moving measurement configuration / Mov meas config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T C |  | Calculated: CALC_MOD_ALL Access |  |  |
|  | Data type: Unsigned16 D |  | Dynamic index: MDS, p0130 Func |  |  |
|  | P-Group: Motor identification U |  | Units group: - Unit |  |  |
|  | Not for motor type: REL Sca |  | Scaling: - |  |  |
|  | Min M |  | Max |  |  |
|  | - - |  |  | 0000111011100111 bin |  |
| Description: | Sets the configuration of the moving measurement. |  |  |  |  |
| Recommend.: | A direction inhibit should not be activated for the moving measurement (p1959.14 = 1 and p1959.15 = 1) as long as this can be done without incurring any danger. This means that the identification is complete and more accurate. When the direction inhibit is activated, the reluctance force constant ( p 1959.7 ) is not identified and the angular commutation offset ( $\mathrm{p} 1959.10, \mathrm{p} 0431$ ) is inaccurately determined. The reluctance force constant (p1959.7) is also not identified in encoderless operation. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 01 | Identify the saturation characteristic | Yes | No | - |
|  | 02 | Identify the moment of inertia | Yes | No | - |
|  | 05 | Identify the q inductance | Yes | No | - |
|  | 06 | Identify the force constant | Yes | No | - |
|  | 07 | Identify the reluctance force constant | Yes | No | - |
|  | 08 | Identify the q inductance at the test stand | Yes | No | - |
|  |  | Identify the magnetizing current / magnetizing inductance | Yes | No | - |
|  | 10 | Identify commutation angle and direction | Yes | No | - |
|  | 11 | Identify rotor resistance | Yes | No | - |
|  | 14 | Positive direction permitted | Yes | No | - |
|  | 15 | Negative direction permitted | Yes | No | - |
| Dependency: | Refer to: p1958, p1960 |  |  |  |  |
| Notice: | The step p1959.8 (identify $q$ inductance on the test stand) may only be selected if the drive can be kept at zero speed or at a fixed velocity either using a test stand or other mechanical measures. |  |  |  |  |
|  | During steps p1959.2 (identifying the moment of inertia) and p1959.6 (identifying the force constant) the Vdc_min controller is disabled (p1240). |  |  |  |  |
|  | During step p1959.7 (identifying the reluctance force constant) the Vdc_min controller and Vdc_max controller are disabled (p1240). |  |  |  |  |
| Note: | For an induction motor (ASM), the following bits 1, 2, 5, 8, 9, 10, 14, 15 are effective |  |  |  |  |
|  | For a synchronous motor (SRM), the following bits $2,5,6,7,8,10,14,15$ are effective |  |  |  |  |
|  | Re bit 05: |  |  |  |  |
|  | For "motor holding brake the same as sequence control" (p1215 = 1 or 3 ), the Lq characteristic is only measured up to approximately the rated motor current (p0305) instead of up to the current limit (p0640). Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2 ) - as long as this can be done without incurring any danger. |  |  |  |  |
|  | Re bit 10: |  |  |  |  |
|  | If the motor holding brake is set just the same as the sequence control (p1215=1 or 3), the commutation angle and the direction of rotation are not measured. Before carrying out the rotation measurement for motors with brake, the brake should be opened ( $\mathrm{p} 1215=2$ ) - as long as this can be done without incurring any danger. |  |  |  |  |

Re bit 14, 15:
The following applies for bit 14 and $15=0$ :
When the function module "extended setpoint channel" is activated ( $\mathrm{r0108.8}=1$ ), the direction inhibit of the setpoint channel becomes effective. No direction of inhibit is effective if the function module is inactive.
The following applies for minimum bit $14=1$ or bit $15=1$ :
The direction inhibit set in p 1959 becomes effective.


The identification of the q leakage inductance can only be carried out for unloaded motors or motors with a low load (load approx. 30\% below the rated motor torque). Only then is a current controller adaptation (p0391 ... p0393) parameterized if the q-leakage inductance under no-load conditions is at least $30 \%$ higher than the total leakage inductance (p0356, p0358).
Re bit $12=1$ :
The selection only has an effect on the measurement p1960 = 1, 2. For the shortened measurement, the magnetizing current and moment of inertia are determined with a somewhat lower accuracy.

| p1960 | Rotating measurement selection / Rot meas sel |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -3 | 1 | 0 |
| Description: | Activates the rotating measurement. |  |  |
| Value: | $-3: \quad$ Accept identified parameters |  |  |
|  | $-2: \quad$ Acknowledge encoder inversion actual value (F07993) |  |  |
|  | $-1: \quad$ Start motor data identification without acceptance |  |  |


|  | $\begin{array}{ll}\text { 0: } & \text { Inactive/inhibit } \\ \text { 1: } & \text { Start motor data identification with acceptance }\end{array}$ |
| :---: | :---: |
| Recommend.: | Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2) - as long as this can be done without incurring any danger. The commutation angle and the direction are also determined. |
| Dependency: | Refer to: r1934, r1935, r1936, r1937, r1938, r1939, r1947, r1948, p1958, p1959, r1962, r1963, r1969 |
|  | Refer to: F07990, A07991, F07993 |
| Danger: | For the rotating measurement, the motor is accelerated up to the maximum speed. Only the parameterized current limit ( p 0640 ) and the maximum speed ( p 1082 ) are effective. |
|  | The behavior of the motor can be influenced using the direction inhibit ( p 1959.14 , p 1959.15 ) and the ramp-up/ramp-down time ( p 1958 ). |
| Notice: | If there is a motor holding brake, it must be open (p1215 = 2). |
|  | To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977). |
| Note: | The rotating measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the rotating measurement has been completed or de-selected. |
|  | When the rotating measurement is activated ( $\mathrm{p} 1960=1$ ), it is not possible to save the parameters ( p 0971 , p 0977 ). |


| $\mathbf{p 1 9 6 0}$ |
| :--- |
| SERVO (Lin), |
| SERVO_AC ( |
| SERVO_I_AC |
|  |
| Description: |
| Value: |

Value:
Recommend.:

Notice: $\quad$ If there is a motor holding brake, it must be open (p1215 = 2).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note: The moving measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the moving measurement has been completed or de-selected.
When the moving measurement is activated ( $\mathrm{p} 1960=1$ ), it is not possible to save the parameters ( p 0971 , p 0977 ).

| p1960 | Rotating measurement selection / Rot meas sel |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 0 |
| Description: | Sets the rotating measurement. |  |  |
|  | The rotating measurement is carried out after the next power-on command. |  |  |

The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300). p1300 < 20 (U/f open-loop control):
It is not possible to select rotating measurement or speed controller optimization.
p1300 = 20, 22 (encoderless operation):
Only rotating measurement or speed controller optimization can be selected in the encoderless mode. p1300 = 21, 23 (operation with encoder):
Both versions (encoderless and with encoder) of the rotating measurement and speed controller optimization can be selected.
0: Inhibited
1: Rotating measurement in encoderless operation
2: Rotating measurement with encoder
3: Speed controller optimization in encoderless operation
4: Speed controller optimization with encoder

| Dependency: $\quad$Before the rotating measurement is carried out, the motor data identification routine (p1900, p1910, r3925) should <br> have already been done. <br> In the simulation mode, a value of 1 cannot be written into the parameter. <br> When selecting the rotating measurement, the drive data set changeover is suppressed. <br>  <br> Refer to: p1272, p1300, p1900, p1959 <br> Refer to: A07987 |  |
| :--- | :--- |
| Danger: | For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached dur- <br> ing the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out. |

Notice: If there is a motor holding brake, it must be open (p1215 = 2).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note: When the rotating measurement is activated, it is not possible to save the parameters (p0971, p0977).
Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
The ramp-up and ramp-down times ( $\mathrm{p} 1120, \mathrm{p} 1121$ ) are limited, for the rotating measurement, to 900 s .
For speed controller optimization with encoder ( $p 1960=2,4$ ), the speed controller for encoderless operation is also pre-assigned (p1470, p1472).
Depending on whether the speed controller optimization is carried out with or without encoder, different $\mathrm{Kp} / \mathrm{Tn}$ adaptations of the speed controller are set ( p 1464 , p 1465 ). If the drive should be controlled with as well as without speed encoder, then we recommend the use of two drive data sets ( p 0180 ). These can then be executed with different speed controller adaptations.

| $\mathbf{p 1 9 6 1}$ |
| :--- |
| VECTOR ( $n / M)$, |
| VECTOR_AC $(n / M)$, |
| VECTOR_I_AC $(n / M)$ |

Saturation characteristic speed to determine / Sat_char $\mathbf{n}$ determ
VECTOR ( $n / M$ ),
VECTOR_AC $(n / M)$, VECTOR_I_AC (n/M)

Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: REL Min 26 [\%]

## Calculated: -

Dynamic index: -
Units group: -
Scaling: -
Max
75 [\%]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1 Factory setting 40 [\%]

Description: Sets the speed to determine the saturation characteristic and the encoder test.
The percentage value is referred to p 0310 (rated motor frequency).
Dependency: Refer to: p0310, p1959
Refer to: F07983
Note: The saturation characteristics should be determined at an operating point with the lowest possible load.

| r1962[0...9] | Saturation characteristic magnetizing current identified / Sat_char I_mag |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$ | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331. |  |  |
| Dependency: | Refer to: p1959, p1960, r1963 |  |  |
| Note: | The saturation characteristic consists of the value pairs from p1962 and p1963 with the same index. |  |  |
| r1962[0..4] | Saturation characteristic magnetizing current / Sat_char I_mag |  |  |
| VECTOR (n/M), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min - [\%] | Max - [\%] | Factory setting - [\%] |
| Description: | Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331. |  |  |
| Index: | [0] = Value 1 <br> [1] = Value 2 <br> [2] = Value 3 <br> [3] = Value 4 <br> [4] = Value 5 |  |  |
| Dependency: | Refer to: r0331 |  |  |
| r1963[0...9] | Saturation characteristic stator flux identified / Sat_char flux |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO__AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the stator flux of the identified saturation characteristic. <br> The values are referred to the stator flux at the magnetizing current (r0331). |  |  |
| Dependency: | Refer to: p1959, p1960, r1962 |  |  |
| Note: | The saturation characteristic consists of the value pairs from p1962 and p1963 with the same index. |  |  |
| r1963[0..4] | Saturation characteristic magnetizing inductance / Sat_char L_main |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min - [\%] | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the magnetizing inductances of the identified saturation characteristic. The values are referred to r0382. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Value } 1} \\ & {[1]=\text { Value } 2} \end{aligned}$ |  |  |


|  | $\begin{aligned} & {[2]=\text { Value } 3} \\ & {[3]=\text { Value } 4} \\ & {[4]=\text { Value } 5} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: r0382 |  |  |
| r1964[0...4] | Saturation characteristic rotor flux / Sat_char rot flux |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min - [\%] | Max - [\%] | Factory setting - [\%] |
| Description: | Displays the rotor flux values of After they have been determined | After they have been determined, the values are transferred to p0362 ... p0365. |  |
| Index: | $\begin{aligned} & {[0]=\text { Value } 1} \\ & {[1]=\text { Value } 2} \\ & {[2]=\text { Value } 3} \\ & {[3]=\text { Value } 4} \\ & {[4]=\text { Value } 5} \end{aligned}$ |  |  |
| p1965 | Speed_ctrl_opt speed / n_opt speed |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $10 \text { [\%] }$ | $75 \text { [\%] }$ | $40 \text { [\%] }$ |
| Description: | Sets the speed for the identification of the moment of inertia and the vibration test. |  |  |
|  | Induction motor: |  |  |
|  | The percentage value is referred to p0310 (rated motor frequency). |  |  |
|  | Synchronous motor: |  |  |
|  | The percentage value is referred to the minimum from p 0310 (rated motor frequency) and p 1082 (maximum speed). |  |  |
| Dependency: | Refer to: p0310, p1959 |  |  |
|  | Refer to: F07984, F07985 |  |  |
| Note: | In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by $20 \%$ for the upper speed value. The q leakage inductance (refer to p1959 bit 5) is determined at zero speed and at $50 \%$ of p 1965 - however, with a maximum output frequency of 15 Hz and at a minimum of $10 \%$ of the rated motor speed. |  |  |


| p1967 | Speed_ctrl_opt dynamic factor / n_opt dyn_factor |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR__AC (n/M) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 1 [\%] | $\begin{aligned} & \text { Max } \\ & 400 \text { [\%] } \end{aligned}$ | Factory setting 100 [\%] |
| Description: | Sets the dynamic response factor for speed controller optimization. |  |  |
| Dependency: | Refer to: p1959 |  |  |
|  | Refer to: F07985 |  |  |
| Note: | For a rotating measurement, this parameter can be used to optimize the speed controller. p1967 = $100 \%$--> speed controller optimization according to a symmetric optimum. <br> p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower). |  |  |


| r1968 | Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [\%] | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Displays the dynamic factor which is actually achieved for the vibration test |  |  |
| Dependency: | Refer to: p1959, p1967 |  |  |
|  | Refer to: F07985 |  |  |
| Note: | This dynamic factor only refers to the control mode of the speed controller set in p1960. |  |  |
| r1969 | Moment of inertia identified / M_inertia ident |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| S | P-Group: Motor identification | Units group: 25_1 | Unit selection: p0100 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [kgm²] | Max <br> - $\left[\mathrm{kgm}^{2}\right.$ ] | Factory setting <br> - [kgm ${ }^{2}$ ] |
| Description: | Displays the identified moment of inertia. |  |  |
| Dependency: | IEC drives ( $\mathrm{p} 0100=0$ ): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$ |  |  |
|  | NEMA drives ( $\mathrm{p} 0100=1$ ): unit lb ft^2 |  |  |
|  | Refer to: p0341, p0342, p1498, p1959, p1960 |  |  |


| r1969 | High load inertia identified / High load inert id |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor identification | Units group: 27_1 | Unit selection: $p 0100$ |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | $-[\mathrm{kg}]$ | $-[\mathrm{kg}]$ |  |
| Dependency: | Displays the identified high load inertia. |  |  |
|  | IEC drives $(\mathrm{p} 0100=0):$ unit kg m^2 |  |  |
|  | NEMA drives $(\mathrm{p} 0100=1):$ unit lb ft^2 |  |  |
|  | Refer to: $\mathrm{p} 0341, \mathrm{p} 0342, \mathrm{p} 1498, \mathrm{p} 1959, \mathrm{p} 1960$ |  |  |


| r1969 | Speed_ctrl_opt moment of inertia determined / n_opt M_inert det |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC (n/M) | P-Group: Motor identification | Units group: 25_1 | Unit selection: p0100 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [kgm²] | Max <br> - [kgm $\left.{ }^{2}\right]$ | Factory setting - [kgm ${ }^{2}$ ] |
| Description: | Displays the determined moment of inertia of the drive. <br> After it has been determined, the value is transferred to p0341, p0342. |  |  |
|  |  |  |  |
| Dependency: | IEC drives ( $\mathrm{p} 0100=0$ ): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$ |  |  |
|  | NEMA drives (p0100 = 1) : unit lb ft^2 |  |  |
|  | Refer to: p0341, p0342, p1959 |  |  |
|  | Refer to: F07984 |  |  |


| r1970[0...1] | Speed_ctrl_opt vibration test vibration frequency determined / n_opt f_vibration |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> - [Hz] | $\begin{aligned} & \text { Max } \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: | Displays the vibration frequencies determined by the vibration test. |  |  |
| Index: | [0] = Frequency low <br> [1] = Frequency high |  |  |
| Dependency: | Refer to: p1959 |  |  |
|  | Refer to: F07985 |  |  |
| r1971[0...1] | Speed_ctrl_opt vibration test standard deviation determined / n_opt std. deviat. |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_-AC ( $\mathrm{C} / \mathrm{M}$ ) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $-[H z]$ | $\begin{aligned} & \text { Max } \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: Index: | [0] = Standard deviation of low frequency <br> [1] = Standard deviation of high frequency |  |  |
| Dependency: | Refer to: p1959 |  |  |
|  | Refer to: F07985 |  |  |
| r1972[0...1] | Speed_ctrl_opt vibration test number of periods determined / n_opt period qty |  |  |
| VECTOR ( $\mathrm{n} / \mathrm{M}$ ), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR_AC (n/M), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR_1_AC ( $\mathrm{n} / \mathrm{M}$ ) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the period number determined by the vibration test. |  |  |
| Index: | [0] = No. of periods of the low frequency |  |  |
| Dependency: | Refer to: p1959 |  |  |
|  | Refer to: F07985 |  |  |
| r1973[0...1] | Encoder, pulse number identified / Pulse No. ident |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_I_AC | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Index 0: |  |  |
|  | Rotating motors: Displays the identified encoder pulse number (per revolution). |  |  |
|  | Linear motors: Encoder pulse number per meter. Grid division = 1/p1973 [meter]. |  |  |
|  | Index 1: |  |  |
|  | Rotating motors: No significance. |  |  |
|  | Linear motors: Identified grid division in nm . |  |  |




| p1982[0...n] | PollD selection / PollD selection |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 0 |
| Description: | Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check. |  |  |
| Value: | 0: Pole position identification off |  |  |
|  | 1: Pole position identification for commutatio |  |  |
|  | 2: Pole position identification for plausibility |  |  |
| Recommend.: | Re p1982 = 1: |  |  |
|  | This is used for synchronous motors with motor encoder without absolute data. |  |  |
|  | The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine. |  |  |
|  | Re p1982 = 2: |  |  |
|  | This is used for synchronous motor with motor encoder with absolute data to check this data. |  |  |
| Dependency: | Refer to: p0325, p0329, p1980, p1981, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
| Note: | PolID: Pole position identification |  |  |
| p1982[0...n] | PollD selection / PollD selection |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 0 |
| Description: | Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check. |  |  |
| Value: | 0: Pole position identification off |  |  |
|  | 1: Pole position identifica | tation |  |
|  | 2: Pole position identification for plausibility check |  |  |
| Recommend.: | Re p1982 = 1: |  |  |
|  | This is used for synchronous motors with motor encoder without absolute data. |  |  |
|  | The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine. |  |  |
|  | Re p1982 = 2: |  |  |
|  | This is used for synchronous motor with motor encoder with absolute data to check this data. |  |  |
|  | For VECTOR, the following applies: |  |  |
|  | With p1982 $=2$, each time the pulses are enabled it is checked whether the absolute position supplied from the encoder does not exceed a deviation of 45 degrees to the identified pole wheel position. |  |  |
|  | With separately-excited synchronous motors (p0300 $=5$ ), pole position identification cannot be selected if an encoder with position data is used (e.g. SSI encoder). |  |  |
| Dependency: | Refer to: p0325, p0329, p1980, p1981, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
| Note: | For encoderless operation, the pole position identification routine is selected with p1780.6 |  |  |



| r1986 | PoIID saturation characteristic 2 / PoleID sat_curve 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the pole position characteristic of the elasticity-based pole position identification routine. |  |  |
|  | The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace). |  |  |
| Dependency: | Refer to: p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
| Note: | PoIID: Pole position identification |  |  |
| r1987 | PollD trigger characteristic / PolID trig_char |  |  |
| SERVO, <br> SERVO AC, | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| $\operatorname{TOR}(n / M) \text {, }$ | P-Group: Motor identification | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min - [\%] | $\begin{gathered} \text { Max } \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the trigger characteristic of the pole position identification routine. |  |  |
|  | The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace). |  |  |
|  | The values for trigger characteristic and saturation characteristic are always output in synchronism from a time perspective. |  |  |
| Dependency: | Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1985, r1986, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
| Note: | Polld: Pole position identification |  |  |
|  | The following information and data can be taken from the trigger characteristic. |  |  |
|  | - the value -100\% marks the angle at the start of the measurement. |  |  |
|  | - the value $+100 \%$ marks the commutation angle determined from the pole position identification routin |  |  |
| p1990 | Encoder adjustment, determine angular commutation offset / Enc_adj det an |  |  |
| SERVO, SERVO AC, SERVO_I_AC | Can be changed: U, T Calculated: - |  | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder. The function acts on the active motor data set. |  |  |
|  | When adjusting the encoder, the angular commutation offset is determined and transferred into p0431. Alarm A07971 is output while the angular commutation offset is being determined. p1990 is automatically set to 0 after the angular commutation offset has been determined. |  |  |
|  | p1990 $=0$ : De-activated |  |  |
|  | p1990 = 1: Activated with transfer |  |  |
| Dependency: | Refer to: p0325, p0329, p0431, p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1999 |  |  |
|  | Refer to: A07971 |  |  |
| Danger: | Re recommendation 3: |  |  |
|  | When performing this measurement there is a danger of coming into contact with system parts that are at a high (hazardous) electrical voltage. <br> This measurement may only be performed by authorized service personnel. |  |  |


| Caution: | In order to prevent an incorrect orientation of the electrical pole position (uncontrolled motor movement), the automatically determined angular commutation offset (p0431) should, for reasons of safety, be checked using one of the following recommendations: |
| :---: | :---: |
|  | Recommendation 1: |
|  | Set encoderless operation ( $\mathrm{p} 1300=20$ or $\mathrm{p} 1404=0$ ), de-select pole position identification ( $\mathrm{p} 1982=0$ ), operate under no-load conditions with a speed > p1755, correct the actual value inversion (p0410.0) (e.g. r0061 = r0063), read the angular error in r1778; the result in r1778 should be approximately 0 , for $\|\mathrm{r} 1778\|>2$ degrees, add the value to p0431-taking into account the sign - and enter in p0431. |
|  | Recommendation 2: |
|  | Set the current limit to 0 ( $\mathrm{p} 0640=0$ ), activate travel to fixed stop ( $\mathrm{p} 1545=1$ ), record r0089[0] (phase voltage) and r0093 (electrically scaled pole position) (e.g. trace) while the motor is externally moved; in this case, the rising zero crossover of the phase voltage must coincide with the $360^{\circ}$--> $0^{\circ}$ step (jump) from r0093. |
|  | Recommendation 3: |
|  | Measure the phase voltage $U$ (measure phase $U$ with respect to the virtual star point using 3 resistors) and r0093 (electrically scaled pole position); the rising zero crossover of the phase voltage must coincide with the $360^{\circ}-->0^{\circ}$ step (jump) of r0093. |
|  | Recommendation 4: |
|  | Determine the average value from several results of a pole position identification routine executed as test (p1983) at various electrical angles and add the value to p0431-taking into account the sign and enter into p0431. |
| Notice: | For p1990 = 1 and with the pulses not enabled, the function is only executed the next time that the pulses are enabled. |
| Note: | If fault F07414 is present, the following applies: |
|  | First set p1990 to 1, then acknowledge the fault and then issue the enable signals. |
| p1990 | Encoder adjustment, determine angular commutation offset / Enc_adj det ang |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T Calculated: - Access level: 2 |
|  | Data type: Integer16 Dynamic index: - Func. diagram: - |
|  | P-Group: Motor identification Units group: - Unit selection: - |
|  | Not for motor type: ASM Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | 0 3 0 |
| Description: | This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder. The function acts on the active motor data set. |
|  | Alarm A07971 is output while the angular commutation offset is being determined. p1990 is automatically set to 0 after the angular commutation offset has been determined. |
|  | For p1990 = 1 (encoder adjustment with transfer), the following applies: |
|  | The angular commutation offset is determined and transferred into p0431. |
|  | For p1990 = 2 (encoder adjustment for checking), the following applies: |
|  | The angular commutation offset is determined and is not transferred into p0431. For a deviation of more than $6^{\circ}$ electrical, fault F07413 is output. |
|  | For p1990 = 3 (encoder adjustment in operation), the following applies: |
|  | PollD procedure runs before the zero mark detection. The angular commutation offset is determined and transferred into p0431. A fine adjustment ( p 1905 ) is then optionally possible. |
| Value: | 0: De-activated |
|  | 1: Activated with transfer |
|  | 2: Activated for checking |
|  | 3: Activates encoder adjustment in operation |
| Dependency: | In the simulation mode, the parameter cannot be written into. |
|  | When selecting the encoder adjustment, the changeover of the drive data sets is suppressed. <br> Encoder adjustment is only carried out if the function module for "speed/torque control" is activated (r0108.2 = 1). <br> Refer to: p0325, p0329, p0431, p1272, p1900 |
|  |  |
|  |  |
| Caution: | When the encoder is being adjusted, the motor must be operated without a load - and if a motor holding brake is being used, this must be opened. |





| p2000 | Reference speed reference frequency / n_ref f_ref |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: $T$ | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 6.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 3000.00 [rpm] |
| Description: | Sets the reference quantity for speed and frequency. |  |  |
|  | All speeds or frequencies specified as relative value are referred to this reference quantity. |  |  |
|  | The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |
| Note: | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
| p2000 | Reference velocity, reference frequency / v_ref f_ref |  |  |
| ENC (Lin_enc) | Can be changed: $T$ | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.60 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 600.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 120.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the reference quantity for velocity and frequency. |  |  |
|  | All velocities or frequencies specified as relative value are referred to this reference quantity. |  |  |
|  | The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |
|  | The following applies: Reference frequency (in Hz ) = reference velocity (in ( $\mathrm{m} / \mathrm{min}$ ) / 60) |  |  |
| Note: | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
| p2000 | Reference speed reference frequency / n_ref f_ref |  |  |
| SERVO, <br> SERVO_AC, SERVO_I_AC | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Communications | Calculated: CALC_MOD_ALL | Access level: 2 |
|  |  | Dynamic index: - | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 6.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 3000.00 [rpm] |
| Description: | Sets the reference quantity for speed and frequency. |  |  |
|  | All speeds or frequencies specified as relative value are referred to this reference quantity. |  |  |
|  | The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |
| Dependency: | Refer to: p0500, p2001, p20 |  |  |
| Note: | For the automatic calculation ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. |  |  |
|  | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
|  | Example 1: |  |  |
|  | The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000). |  |  |
|  | Example 2: |  |  |
|  | The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000). |  |  |



| p2000 | Reference speed reference frequency / n_ref f_ref |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 6.00 [rpm] | 210000.00 [rpm] | 3000.00 [rpm] |
| Description: | Sets the reference quantity for speed and frequency. |  |  |
|  | All speeds or frequencies specified as relative value are referred to this reference quantity. |  |  |
|  | The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word). |  |  |
|  | The following applies: Reference frequency (in Hz ) = reference speed (in ((rpm)/60) x pole pair number) |  |  |
| Dependency: | Refer to: p2001, p2002, p2003, r2004 |  |  |
| Note: | For the automatic calculation ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. |  |  |
|  | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
|  | Example 1: |  |  |
|  | The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000). |  |  |
|  | Example 2: |  |  |
|  | The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000). |  |  |

## p2001

A_INF, B_INF,
S_INF, SERVO,
SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC

Description:

Reference voltage / Reference voltage

Can be changed: T
Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -

Calculated: CALC_MOD_ALL
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1

## Min

10 [Vrms]

Max
100000 [Vrms]

Factory setting
1000 [Vrms]

Sets the reference quantity for voltages.
All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC-link voltage.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
Note:
This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.
Note: $\quad$ For the automatic calculation ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
For infeed units, the parameterized device supply voltage ( p 0210 ) is pre-assigned as the reference quantity.
Example:
The actual value of the DC link voltage (r0070) is connected to a test socket (e.g. p0771[0]). The actual voltage value is cyclically converted into a percentage of the reference voltage (p2001) and output according to the parameterized scaling.

| p2002 | Reference current / I_ref |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 3 |
| S_INF, SERVO, SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, | P-Group: Communications | Units group: - | Unit selection: - |
| TM41, VECTOR, VECTOR AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.10 [Arms] | 100000.00 [Arms] | 100.00 [Arms] |
| Description: | Sets the reference quantity for currents. |  |  |
|  | All currents specified as relative v | erred to this reference quantity. |  |
|  | The reference quantity correspon | or 4000 hex (word) or 40000000 | $x$ (double word). |
| Notice: | If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor should be taken into account (e.g. for trace records). |  |  |
|  | Example: |  |  |
|  | p2002 = 100 A |  |  |
|  | Reference quantity 100 A corresponds to $100 \%$ |  |  |
|  | p0305[0] = 100 A |  |  |
|  | Rated motor current 100 A for MDSO in DDSO --> $100 \%$ corresponds to $100 \%$ of the rated motor current p0305[1] = 50 A |  |  |
|  |  |  |  |
|  | Rated motor current 50 A for MDS1 in DDS1 --> 100 \% corresponds to $200 \%$ of the rated motor current |  |  |
| Note: | For the automatic calculation ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. |  |  |
|  | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
|  | For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage ( $\mathrm{p} 2002=\mathrm{r0206} / \mathrm{p} 0210 / 1.73$ ) is pre-assigned as the reference quantity. |  |  |
|  | Example: |  |  |
|  | The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p2002) and output according to the parameterized scaling. |  |  |


| p2003 | Reference torque / M_ref |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: CALC_MOD_ALL | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| $\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { TM41, VECTOR, } \end{aligned}$ | P-Group: Communications | Units group: 7_2 | Unit selection: p0505 |
| VECTOR_AC, VECTOR I AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.01[\mathrm{Nm}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$ | Factory setting 1.00 [ Nm ] |
| Description: | Sets the reference quantity for tor All torques specified as relative valu The reference quantity correspond | rred to this reference quantity. or 4000 hex (word) or 4000000 | (double word). |
| Note: | For the automatic calculation (p03 is not inhibited from being overwri If a BICO interconnection is estab ties are used as internal conversio Example: <br> The actual value of the total torque cally converted into a percentage ing. | $000>0$ ) an appropriate pre-assig $0573=1$. <br> een different physical quantities, <br> connected to a test socket (e.g. ence torque (p2003) and output | nt is only made if the parameter <br> the particular reference quanti- <br> 71[0]). The actual torque is cyclirding to the parameterized scal- |



Note: $\quad$ For the automatic calculation ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 = 1 .
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.




| Dependency: | Refer to: p2030 |  |  |
| :---: | :---: | :---: | :---: |
| Note: | Changes only become effective after POWER ON. |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |
|  | The parameter is set to the factory setting when the protocol is reselected. |  |  |
| p2022 | Field bus int USS PZD no. / Field bus USS PZD |  |  |
| CU_S_AC_DP, | Can be changed: T | Calculated: - | Access level: 2 |
| CU_S120_DP, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S150_DP | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 16 | 2 |
| Description: | Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface. |  |  |
| Dependency: | Refer to: p2030 |  |  |
| Note: | The parameter is not influenced by setting the factory setting. |  |  |
| p2023 | Field bus int USS PKW no. / Field bus USS PKW |  |  |
| $\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 127 | 127 |
| Description: | Sets the number of 16-bit words in the PKW part of the USS telegram for the field bus interface. |  |  |
| Value: | 0: PKW 0 words |  |  |
|  | 3: PKW 3 words |  |  |
|  | 4: PKW 4 words |  |  |
|  | 127: PKW variable |  |  |
| Dependency: | Refer to: p2030 |  |  |
| Note: | The parameter is not influenced by setting the factory setting. |  |  |
| r2029[0...7] | Field bus int error statistics / Field bus error |  |  |
| $\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - - |  |  |
| Description: Index: | Displays the receive errors on the field bus interface (USS). |  |  |
|  | [0] = Number of error-free telegrams |  |  |
|  | [1] = Number of rejected telegrams |  |  |
|  | [2] = Number of framing errors |  |  |
|  | [3] = Number of overrun errors |  |  |
|  | [4] = Number of parity errors |  |  |
|  | [5] = Number of starting character errors |  |  |
|  | [6] = Number of checksum errors |  |  |
|  | [7] = Number of length errors |  |  |


| p2030 | Field bus int protocol selection / Field bus protocol |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CU_S_AC_DP, CU_S120_DP, CU_S150_DP | Can be changed: T <br> Data type: Integer16 <br> P-Group: Communications <br> Not for motor type: - <br> Min <br> 3 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 6 | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 3 |  |
| Description: Value: <br> Note: | Sets the communication protocol for the <br> 3: PROFIBUS <br> 6: USS(RS232) <br> Changes only become effective after $P$ <br> The parameter is not influenced by set | bus interface. <br> ON. <br> e factory setting. |  |  |
| $\begin{aligned} & \hline \text { r2032 } \\ & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Master control, control word <br> Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min | tive / PcCtrl S <br> Calculated: - <br> Dynamic index: - <br> Units group: <br> Scaling: - <br> Max | Acce Func Unit Expe Fact - |  |
| Description: <br> Bit field: | Displays the effective control word 1 (S <br> Bit Signal name <br> 00 ON/OFF1 <br> 01 OC / OFF2 <br> 03 Operation enable <br> 07 Acknowledge fault <br> 10 Master ctrl by PLC | of the drive for the $\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$ | 0 signal <br> No <br> No <br> No <br> No <br> No | FP |
| Notice: <br> Note: | The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device. |  |  |  |
| r2032 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Master control, control word <br> Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min | tive / PcCtrl S <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> - |  |
| Description: <br> Bit field: | Displays the effective control word 1 (S <br> Bit Signal name <br> 00 ON/OFF1 <br> 01 OC / OFF2 <br> 02 OC/OFF3 <br> 03 Operation enable <br> 04 Ramp-function generator enable <br> 05 Start ramp-function generator <br> 06 Speed setpoint enable <br> 07 Acknowledge fault <br> 08 Jog bit 0 <br> 09 Jog bit 1 <br> 10 Master ctrl by PLC | of the drive for the <br> 1 signal <br> Yes | 0 signal <br> No |  |
| Notice: Note: | The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be trans ferred from another automation device. |  |  |  |



Recommend.: $\quad$ Do not change the setting p2037 $=0$.
Note: If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .

| p2038 | IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Communications | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$ | Factory setting 0 |
| Description: | When selecting a telegram via p0922 (p2079), this parameter influences the device-specific assignment of the bits in the control and status words. |  |  |
| Value: | 0: SINAMICS <br> 1: SIMODRIVE 611 unive <br> 2: VIK-NAMUR |  |  |
| Dependency: | Refer to: p0922, p2079 |  |  |
| Notice: | The parameter may be prote | of p0922 or p2079 a | anged. |
| Note: | For p0922 (p2079) = $100 \ldots$ that for these telegrams, the | tomatically set to 1 a 11 universal" interfac | longer be changed. This means and cannot be changed. |



| p2039 | Select debug monitor interface / Debug monit select |  |  |
| :---: | :---: | :---: | :---: |
| CU S AC DP, CUSACPN, CU S120 DP, CU S120 PN, CU_S150_DP, CU_S150_PN | Can be changed: $U, T$ | Calculated: - | Access level: 4 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 |  |
| Description: | Sets the serial interface for the debug monitor. |  |  |
|  | The serial interface for the debug monitor is COM1 (X140) or COM2 (internal). |  |  |
|  | Value = 0: COM2 (internal) |  |  |
|  | Value $=1:$ COM1 (X140), commissioning protocol is de-activated |  |  |
|  | Value = 2: COM2 (internal) |  |  |
|  | Value $=3$ : Reserved |  |  |
| p2040 | COMM INT monitoring time / C INT t_monit |  |  |
| CU_I, CU_I_D410, CU_LINK, CU_NX_CX | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Communications | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | Max <br> 1999999 [ms] | Factory setting 20 [ms] |
| Description: | Sets the monitoring time to monitor the process data received via the internal communications interface If no process data is received within this time, an appropriate message is output. |  |  |
| Dependency: | Refer to: F01910 |  |  |
| Note: | 0 : The monitoring is de-activated. |  |  |
| p2040 | Fieldbus interface monitoring time / Fieldbus t_monit |  |  |
| CU S AC DP, CU_S120_DP, CU_S150_DP | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Communications | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | Max <br> 1999999 [ms] | Factory setting 100 [ms] |
| Description: | Sets the monitoring time to monitor the process data received via the fieldbus interface. If no process data is received within this time, an appropriate message is output. |  |  |
| Dependency: | Refer to: F01910 |  |  |
| Note: | 0 : The monitoring is de-activated. |  |  |
| p2042 | PROFIBUS Ident Number / PB Ident No. |  |  |
| CU_S_AC_DP, <br> CU_S120_DP, <br> CU_S150_DP | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\underset{1}{\operatorname{Max}}$ | Factory setting <br> 0 |
| Description: | Sets the PROFIBUS Ident Number (PNO-ID). |  |  |
|  | SINAMICS can be operated with various identities on PROFIBUS. This allows the use of a PROFIBUS GSD that is independent of the device (e.g. PROFIdrive VIK-NAMUR with Ident Number 3AAO hex). |  |  |
| Value: | 0: SINAMICS <br> 1: VIK-NAMUR |  |  |
| Note: | Every change only becomes | POWER ON. |  |


| r2043.0... 2 | B0: IF1 PROFIdrive PZD state / IF1 PD PZD state |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - Calc | Calculated: - | Acce |  |
|  | Data type: Unsigned8 D | Dynamic index: - | Fun |  |
|  | P-Group: Communications U | Units group: - |  |  |
|  | Not for motor type: - S | Scaling: - | Exp |  |
|  | Min | Max | Fac |  |
|  | - |  |  |  |
| Description: | Displays the PROFIdrive PZD state. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Setpoint failure | Yes | No | - |
|  | 01 Clock cycle synchronous operation active | e Yes | No | - |
|  | 02 Fieldbus oper | Yes | No | - |
| Dependency: | Refer to: p2044 |  |  |  |
| Note: | When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails. |  |  |  |
| p2044 | IF1 PROFIdrive fault delay / IF1 PD fault delay |  |  |  |
| A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 D | Dynamic index: - | Func |  |
|  | P-Group: Communications | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Expert list: 1 |  |
|  |  |  |  |  |
|  | Min Max | Max | Facto |  |
|  | 0 [s] 100 | 100 [s] |  |  |
| Description: | Sets the delay time to initiate fault F01910 after a setpoint failure. |  |  |  |
|  | The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction). |  |  |  |
| Dependency: | Refer to: r2043 |  |  |  |
|  | Refer to: F01910 |  |  |  |
| p2045 | CI: PB/PN clock synchronous controller sign-of-life signal source / PB/PN ctrSoL S_src |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN, ENC, } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_IAC, } \\ & \text { TM41, VECCOR } \\ & \text { (n/M), VECTOR_AC } \\ & \text { (n/M), } \\ & \text { VECTOR_I_AC (n/M) } \end{aligned}$ | Not for motor type: - S | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Facto 0 |  |
| Description: | Connector input for the sign-of-life of the clock | synchronous PRO | FINET con |  |




| r2050[0...19] | CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: 2440, 2468 |
| SERVO_I_AC, TM41 | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Connector output to interconnect PZD (setpoints) with word format received from the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
| Dependency: | Refer to: r2060 |  |  |
| Notice: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer FloatingPoint data types. |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r2050 or r2060. |  |  |
| Note: | IF1: Interface 1 |  |  |
| r2050[0...4] | CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word |  |  |
| ```TB30, TM120, TM150,TM15DI_DO, TM31``` | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Connector output to interconnect PZD (setpoints) with word format received from the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
| Note: | IF1: Interface 1 |  |  |


| r2050[0...31] | CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: 2440, 2468 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: |  | ints) with word form | the PROFIdrive controller. |
| Dependency: | Refer to: r2060 |  |  |
| Notice: Note: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. |  |  |
| p2051[0...9] | CI: IF1 PROFIdrive PZD send word / IF1 PZD send word |  |  |
| A_INF, B_INF, | Can be changed: U, T | Calculated: - | Access level: 3 |
| S_INF | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: Index: | $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \end{aligned}$ |  |  |


|  | [4] = PZD 5 |  |  |
| :---: | :---: | :---: | :---: |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2051[0...24] | CI: IF1 PROFIdrive PZD send word / IF1 PZD send word |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: Index: | Selects the PZD (actual values) with word format to be sent to the PROFIdrive controller. |  |  |
|  | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2051[0...11] | CI: IF1 PROFldrive PZD send word / IF1 PZD send word |  |  |
| ENC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |


|  | [2] = PZD 3 |  |  |
| :---: | :---: | :---: | :---: |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
| Dependency: | Refer to: p2061 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2051[0...27] | CI: IF1 PROFIdrive PZD send word / IF1 PZD send word |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
| Dependency: | Refer to: p2061 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: |  |  |  |


| p2051[0...4] | CI: IF1 PROFIdrive PZD send word / IF1 PZD send word |  |  |
| :---: | :---: | :---: | :---: |
| TB30, TM120, | Can be changed: U, T | Calculated: - | Access level: 3 |
| TM150, TM15DI_DO, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2051[0...31] | CI: IF1 PROFIdrive PZD send word / IF1 PZD send word |  |  |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Dependency: | Refer to: p2061 |  |  |
| Notice: | The parameter may be protected as | of p0922 or p2079 a | nged. |


| Note: | IF1: Interface 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| r2053[0...9] | IF1 PROFldrive diagnostics PZD send word / IF1 diag send word |  |  |  |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Acce |  |
| S_INF | Data type: Unsigned16 | Dynamic index: - | Func. |  |
|  | P-Group: Communications | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Facto |  |
|  | - | - | - |  |
| Description: | Displays the PZD (actual values) with word format sent to the PROFIdrive controller. |  |  |  |
| Index: | [0] = PZD 1 |  |  |  |
|  | [1] = PZD 2 |  |  |  |
|  | [2] = PZD 3 |  |  |  |
|  | [3] = PZD 4 |  |  |  |
|  | [4] = PZD 5 |  |  |  |
|  | [5] = PZD 6 |  |  |  |
|  | [6] = PZD 7 |  |  |  |
|  | [7] = PZD 8 |  |  |  |
|  | [8] = PZD 9 |  |  |  |
|  | [9] = PZD 10 |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Bit 0 | ON | OFF | - |
|  | 01 Bit 1 | ON | OFF | - |
|  | 02 Bit 2 | ON | OFF | - |
|  | 03 Bit 3 | ON | OFF | - |
|  | 04 Bit 4 | ON | OFF | - |
|  | 05 Bit 5 | ON | OFF | - |
|  | 06 Bit 6 | ON | OFF | - |
|  | 07 Bit 7 | ON | OFF | - |
|  | 08 Bit 8 | ON | OFF | - |
|  | 09 Bit 9 | ON | OFF | - |
|  | 10 Bit 10 | ON | OFF | - |
|  | 11 Bit 11 | ON | OFF | - |
|  | 12 Bit 12 | ON | OFF | - |
|  | 13 Bit 13 | ON | OFF | - |
|  | $14 \quad \text { Bit } 14$ | ON | OFF |  |
|  | 15 Bit 15 | ON | OFF | - |
| Note: | IF1: Interface 1 |  |  |  |
| r2053[0...24] | IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word |  |  |  |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Acces |  |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. |  |
| CU_S_AC_PN, | P-Group: Communications | Units group: - | Unit |  |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expe |  |
| CU_S120_PN, CU S150 DP |  |  |  |  |
| CU_S150_PN |  |  |  |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the PZD (actual values) with word format sent to the PROFIdrive controller. |  |  |  |
| Index: | [0] = PZD 1 |  |  |  |
|  | [1] = PZD 2 |  |  |  |
|  | [2] = PZD 3 |  |  |  |
|  | [3] = PZD 4 |  |  |  |
|  | [4] = PZD 5 |  |  |  |
|  | $\text { [5] = PZD } 6$ |  |  |  |
|  | $\text { [6] = PZD } 7$ |  |  |  |
|  | [7] = PZD 8 |  |  |  |



|  | 03 | Bit 3 | ON | OFF | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  | 11 | Bit 11 | ON | OFF | - |
|  |  | Bit 12 | ON | OFF | - |
|  |  | Bit 13 | ON | OFF | - |
|  | 14 | Bit 14 | ON | OFF | - |
|  |  | Bit 15 | ON | OFF | - |
| Dependency: | Refer to: p2051, p2061 |  |  |  |  |
| Note: | IF1: Interface 1 |  |  |  |  |
| r2053[0...27] | IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word |  |  |  |  |
| SERVO, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 2450, 2470 |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Displays the PZD (actual values) with word format sent to the PROFIdrive controller. |  |  |  |  |
| Index: | [0] = PZD 1 |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
|  | [5] = PZD 6 |  |  |  |  |
|  | [6] = PZD 7 |  |  |  |  |
|  | [7] = PZD 8 |  |  |  |  |
|  | [8] = PZD 9 |  |  |  |  |
|  | [9] = PZD 10 |  |  |  |  |
|  | [10] = PZD 11 |  |  |  |  |
|  | [11] = PZD 12 |  |  |  |  |
|  | [12] = PZD 13 |  |  |  |  |
|  | [13] = PZD 14 |  |  |  |  |
|  | [14] = PZD 15 |  |  |  |  |
|  | [15] = PZD 16 |  |  |  |  |
|  | [16] = PZD 17 |  |  |  |  |
|  | [17] = PZD 18 |  |  |  |  |
|  | [18] = PZD 19 |  |  |  |  |
|  | [19] = PZD 20 |  |  |  |  |
|  | [20] = PZD 21 |  |  |  |  |
|  | [21] = PZD 22 |  |  |  |  |
|  | [22] = PZD 23 |  |  |  |  |
|  | [23] = PZD 24 |  |  |  |  |
|  | [24] = PZD 25 |  |  |  |  |
|  | [25] = PZD 26 |  |  |  |  |
|  | [26] = PZD 27 |  |  |  |  |
|  | [27] = PZD 28 |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |


|  | 07 | Bit 7 | ON | OFF | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  |  | Bit 10 | ON | OFF | - |
|  |  | Bit 11 | ON | OFF | - |
|  | 12 | Bit 12 | ON | OFF | - |
|  | 13 | Bit 13 | ON | OFF | - |
|  | 14 | Bit 14 | ON | OFF | - |
|  |  | Bit 15 | ON | OFF | - |
| Dependency: | Refer to: p2051, p2061 |  |  |  |  |
| Note: | IF1: Interface 1 |  |  |  |  |
| r2053[0...4] | IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word |  |  |  |  |
| TB30, TM120, TM150, TM15DI_DO, TM31 | Can be changed: - |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: <br> Index: | Displays the PZD (actual values) with word format sent to the PROFIdrive controller. |  |  |  |  |
|  | [0] = PZD 1 |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Bit 0 | ON | OFF | - |
|  |  | Bit 1 | ON | OFF | - |
|  |  | Bit 2 | ON | OFF | - |
|  |  | Bit 3 | ON | OFF | - |
|  |  | Bit 4 | ON | OFF | - |
|  |  | Bit 5 | ON | OFF | - |
|  |  | Bit 6 | ON | OFF | - |
|  |  | Bit 7 | ON | OFF | - |
|  |  | Bit 8 | ON | OFF | - |
|  |  | Bit 9 | ON | OFF | - |
|  |  | Bit 10 | ON | OFF | - |
|  |  | Bit 11 | ON | OFF | - |
|  |  | Bit 12 | ON | OFF | - |
|  |  | Bit 13 | ON | OFF | - |
|  |  | Bit 14 | ON | OFF | - |
|  |  | Bit 15 | ON | OFF | - |
| Note: | IF1: Interface 1 |  |  |  |  |
| r2053[0...31] | IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word |  |  |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 2450, 2470 |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Displays the PZD (actual values) with word format sent to the PROFIdrive controller. |  |  |  |  |
| Index: | [0] = PZD 1 |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
|  | [5] = PZD 6 |  |  |  |  |


6: Cyclic communications but no setpoints (stop/no clock cycle)
255: Cyclic communication

| r2054 | PROFIBUS status / PB status |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Integer16 | Dynamic index: - | Func. diagram: 2410 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | - |
| Description: | Status display for the PROFIBUS interface. |  |  |
| Value: | 0: OFF |  |  |
|  | 1: No connection (search for baud ra |  |  |
|  | 2: Connection OK (baud rate found) |  |  |
|  | 3: Cyclic connection with master (data exchange) |  |  |
|  | 4: Cyclic data OK |  |  |
| Note: | Re r2054 = 3: |  |  |
|  | In state 3 (the LED flashes green), a cyclic connection has been established to the PROFIBUS master; however, one of the following prerequisites is missing for cyclic operation: |  |  |
|  | - No setpoints are being received as the PROFIBUS master is in the STOP condition. |  |  |
|  | Only for clock-cycle synchronous operation, the following applies: |  |  |
|  | - The drive is not in synchronism as the global control (GC) has an error. |  |  |
|  | Re r2054 = 4: |  |  |
|  | In the status 4 (LED green), the cyclic connection to the PROFIBUS master has been established and setpoints are being received. The clock cycle synchronization is OK, the global control (GC) is error-free. |  |  |
|  | This state does not provide any statement regarding the quality of the clock cycle synchronous sign-of-life characters on the drive objects. |  |  |


| r2055[0...2] | PROFIBUS diagnostics standard / PB diag standard |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2410 |
| CU_S120_PN, | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_DP | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Diagnostics display for the PROFIBUS interface. |  |  |
| Index: | $[0]=$ Master bus address |  |  |
|  | $[1]=$ Master input total length bytes |  |  |
|  | $[2]=$ Master output total length bytes |  |  |


| r2057 | PROFIBUS address switch diagnostics / PB addr_sw diag |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S120_DP, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2410 |
| CU_S150_DP, | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_PN | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the setting of the PROFIBUS address switch "DP ADDRESS" on the Control Unit. |  |  |
| Dependency: | Refer to: p0918 |  |  |



|  | [2] = PZD $3+4$ |  |  |
| :---: | :---: | :---: | :---: |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [ 9 ] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |
|  | [15] = PZD $16+17$ |  |  |
|  | [16] = PZD $17+18$ |  |  |
|  | [17] = PZD $18+19$ |  |  |
|  | [18] = PZD $19+20$ |  |  |
|  | Refer to: r2050 |  |  |
| Notice: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r2050 or r2060. |  |  |
|  | A maximum of 4 indices of the "trace" function can be used. |  |  |
| Note: | IF1: Interface 1 |  |  |
| r2060[0..30] | CO: IF1 PROFldrive PZD receive double word / IF1 PZD recv DW |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 2440, 2468 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Connector output to interconnect PZD (setpoints) with double word format received from the PROFIdrive controller. |  |  |
|  | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] = PZD $3+4$ |  |  |
|  | [3] $=$ PZD $4+5$ |  |  |
|  | [4] $=$ PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [ 6 ] $=$ PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [9] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |
|  | [15] = PZD $16+17$ |  |  |
|  | [16] = PZD $17+18$ |  |  |
|  | [17] = PZD $18+19$ |  |  |
|  | [18] = PZD $19+20$ |  |  |
|  | [19] = PZD $20+21$ |  |  |
|  | [20] = PZD $21+22$ |  |  |
|  | [21] = PZD $22+23$ |  |  |
|  | [22] = PZD $23+24$ |  |  |
|  | [23] = PZD $24+25$ |  |  |
|  | [24] = PZD $25+26$ |  |  |
|  | [25] = PZD $26+27$ |  |  |
|  | [26] = PZD $27+28$ |  |  |
|  | [27] = PZD $28+29$ |  |  |


| Dependency: <br> Notice: | $\begin{aligned} & {[28]=\text { PZD } 29+30} \\ & {[29]=\text { PZD } 30+31} \\ & {[30]=\text { PZD } 31+32} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | Refer to: r2050 |  |  |
|  | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r2050 or r2060. |  |  |
|  | A maximum of 4 indices of the "trace" function can be used. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2061[0...10] | CI: IF1 PROFldrive PZD send double word / IF1 PZD send DW |  |  |
| ENC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with double word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] = PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | $[8]=$ PZD $9+10$$[9]=$ PZD $10+11$ |  |  |
|  |  |  |  |
|  | [10] = PZD $11+12$ |  |  |
| Dependency: | Refer to: p2051 |  |  |
| Notice: | A BICO interconnection for a single PZD can only take place either on r2051 or r2061. |  |  |
|  | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | IF1: Interface 1 |  |  |
| p2061[0...26] | CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Selects the PZD (actual values) with double word format to be sent to the PROFIdrive controller. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] = PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD 5 + 6 |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] $=$ PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [9] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |


|  | [15] = PZD $16+17$ |
| :---: | :---: |
|  | $[16]=$ PZD $17+18$ |
|  | [17] = PZD 18 + 19 |
|  | [18] = PZD 19 + 20 |
|  | [19] = PZD $20+21$ |
|  | [20] = PZD $21+22$ |
|  | [21] $=$ PZD $22+23$ |
|  | [22] P PZD $23+24$ |
|  | [23] = PZD $24+25$ |
|  | [24] $=$ PZD $25+26$ |
|  | [25] = PZD $26+27$ |
|  | [26] = PZD $27+28$ |
| Dependency: | Refer to: p2051 |
| Notice: | A BICO interconnection for a single PZD can only take place either on r2051 or r2061. |
|  | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | IF1: Interface 1 |


| p2061[0...30] | CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 2470 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000 H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) with double word format to be sent to the PROFIdrive controller. |  |  |
| Index: |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | [3] $=$ PZD $4+5$ |  |  |
|  | [4] $=$ PZD $5+6$ |  |  |
|  | [5] = PZD 6 + 7 |  |  |
|  | $[6]=$ PZD $7+8$ |  |  |
|  | $[7]=$ PZD $8+9$ |  |  |
|  | [8] $=$ PZD $9+10$ |  |  |
|  | [9] = PZD 10 + 11 |  |  |
|  | [10] = PZD 11-12 |  |  |
|  | [11] = PZD 12 + 13 |  |  |
|  | [12] P PZD $13+14$ |  |  |
|  | [13] = PZD 14-15 |  |  |
|  | [14] $=$ PZD 15 + 16 |  |  |
|  | [15] = PZD 16 + 17 |  |  |
|  | [16] = PZD 17 + 18 |  |  |
|  | [17] = PZD 18 + 19 |  |  |
|  | [18] = PZD 19 + 20 |  |  |
|  | [19] = PZD $20+21$ |  |  |
|  | [20] = PZD $21+22$ |  |  |
|  | [21] = PZD $22+23$ |  |  |
|  | [22] $=$ PZD $23+24$ |  |  |
|  | [23] P PZD $24+25$ |  |  |
|  | [24] = PZD $25+26$ |  |  |
|  | [25] P PZD $26+27$ |  |  |
|  | [26] $=$ PZD $27+28$ |  |  |
|  | [27] $=$ PZD $28+29$ |  |  |
|  | [28] = PZD $29+30$ |  |  |
|  | [29] = PZD $30+31$ |  |  |
|  | [30] = PZD $31+32$ |  |  |
| Dependency: | Refer to: p2051 |  |  |
| Notice: | A BICO interconnection for a single PZD can only take place either on r2051 or r2061. |  |  |
|  | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: |  |  |  |


| r2063[0...10] | IF1 PROFldrive diagnostics PZD send double word / IF1 diag send DW |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ENC |  |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2450, 2470 |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the PZD (actual values) with double word format sent to the PROFIdrive controller. |  |  |  |  |
| Index: | [0] = PZD $1+2$ |  |  |  |  |
|  | [1] $=$ PZD $2+3$ |  |  |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |  |  |
|  | [3] $=$ PZD $4+5$ |  |  |  |  |
|  | [4] $=$ PZD $5+6$ |  |  |  |  |
|  | $[5]=$ PZD $6+7$ |  |  |  |  |
|  | [ 6 ] PZD $7+8$ |  |  |  |  |
|  | $[7]=$ PZD $8+9$ |  |  |  |  |
|  | [8] $=$ PZD $9+10$ |  |  |  |  |
|  | [9] = PZD 10 + 11 |  |  |  |  |
|  | [10] = PZD $11+12$ |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  | 11 | Bit 11 | ON | OFF | - |
|  | 12 | Bit 12 | ON | OFF | - |
|  | 13 | Bit 13 | ON | OFF | - |
|  | 14 | Bit 14 | ON | OFF | - |
|  | 15 | Bit 15 | ON | OFF | - |
|  | 16 | Bit 16 | ON | OFF | - |
|  | 17 | Bit 17 | ON | OFF | - |
|  | 18 | Bit 18 | ON | OFF | - |
|  | 19 | Bit 19 | ON | OFF | - |
|  | 20 | Bit 20 | ON | OFF | - |
|  | 21 | Bit 21 | ON | OFF | - |
|  | 22 | Bit 22 | ON | OFF | - |
|  | 23 | Bit 23 | ON | OFF | - |
|  | 24 | Bit 24 | ON | OFF | - |
|  | 25 | Bit 25 | ON | OFF | - |
|  | 26 | Bit 26 | ON | OFF | - |
|  | 27 | Bit 27 | ON | OFF | - |
|  | 28 | Bit 28 | ON | OFF | - |
|  | 29 | Bit 29 | ON | OFF | - |
|  | 30 | Bit 30 | ON | OFF | - |
|  | 31 | Bit 31 | ON | OFF | - |
| Notice: | A maximum of 4 indices of the "trace" function can be used. |  |  |  |  |
| Note: | IF1: Interface 1 |  |  |  |  |


| r2063[0...26] | IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Acce |  |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func | 2470 |
| SERVO__AC, TM4 | P-Group: Communications | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the PZD (actual values) with double word format sent to the PROFIdrive controller. |  |  |  |
| Index: | [0] = PZD $1+2$ |  |  |  |
|  | [1] = PZD $2+3$ |  |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |  |
|  | [3] $=$ PZD $4+5$ |  |  |  |
|  | [4] = PZD $5+6$ |  |  |  |
|  | [5] = PZD $6+7$ |  |  |  |
|  | [6] = PZD $7+8$ |  |  |  |
|  | [7] = PZD $8+9$ |  |  |  |
|  | [8] = PZD $9+10$ |  |  |  |
|  | [ 9 ] = PZD $10+11$ |  |  |  |
|  | [10] = PZD $11+12$ |  |  |  |
|  | [11] = PZD $12+13$ |  |  |  |
|  | [12] = PZD $13+14$ |  |  |  |
|  | [13] = PZD $14+15$ |  |  |  |
|  | [14] = PZD $15+16$ |  |  |  |
|  | [15] = PZD $16+17$ |  |  |  |
|  | [16] = PZD $17+18$ |  |  |  |
|  | [17] = PZD $18+19$ |  |  |  |
|  | [18] = PZD $19+20$ |  |  |  |
|  | [19] = PZD $20+21$ |  |  |  |
|  | [20] = PZD $21+22$ |  |  |  |
|  | [21] = PZD $22+23$ |  |  |  |
|  | [22] = PZD $23+24$ |  |  |  |
|  | [23] = PZD $24+25$ |  |  |  |
|  | [24] = PZD $25+26$ |  |  |  |
|  | [25] = PZD $26+27$ |  |  |  |
|  | [26] = PZD $27+28$ |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Bit 0 | ON | OFF | - |
|  | 01 Bit 1 | ON | OFF | - |
|  | 02 Bit 2 | ON | OFF | - |
|  | 03 Bit 3 | ON | OFF | - |
|  | 04 Bit 4 | ON | OFF | - |
|  | 05 Bit 5 | ON | OFF | - |
|  | 06 Bit 6 | ON | OFF | - |
|  | 07 Bit 7 | ON | OFF | - |
|  | 08 Bit 8 | ON | OFF | - |
|  | 09 Bit 9 | ON | OFF | - |
|  | 10 Bit 10 | ON | OFF | - |
|  | 11 Bit 11 | ON | OFF | - |
|  | 12 Bit 12 | ON | OFF | - |
|  | 13 Bit 13 | ON | OFF | - |
|  | 14 Bit 14 | ON | OFF | - |
|  | 15 Bit 15 | ON | OFF | - |
|  | 16 Bit 16 | ON | OFF | - |
|  | 17 Bit 17 | ON | OFF | - |
|  | 18 Bit 18 | ON | OFF | - |
|  | 19 Bit 19 | ON | OFF | - |
|  | 20 Bit 20 | ON | OFF | - |
|  | 21 Bit 21 | ON | OFF | - |
|  | 22 Bit 22 | ON | OFF | - |
|  | 23 Bit 23 | ON | OFF | - |


|  | 24 | Bit 24 | ON | OFF | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | Bit 25 | ON | OFF | - |
|  | 26 | Bit 26 | ON | OFF | - |
|  | 27 | Bit 27 | ON | OFF | - |
|  | 28 | Bit 28 | ON | OFF | - |
|  | 29 | Bit 29 | ON | OFF | - |
|  | 30 | Bit 30 | ON | OFF | - |
|  | 31 | Bit 31 | ON | OFF | - |
| Notice: | A maximum of 4 indices of the "trace" function can be used. IF1: Interface 1 |  |  |  |  |
| Note: |  |  |  |  |  |
| r2063[0...30] | IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW |  |  |  |  |
| VECTOR, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| VECTOR_AC, | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2450, 2470 |  |
| VECTOR_1_AC | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the PZD (actual values) with double word format sent to the PROFIdrive controller. |  |  |  |  |
| Index: | [0] = PZD $1+2$ |  |  |  |  |
|  | [1] = PZD $2+3$ |  |  |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |  |  |
|  | [3] = PZD $4+5$ |  |  |  |  |
|  | [4] = PZD $5+6$ |  |  |  |  |
|  | [5] = PZD $6+7$ |  |  |  |  |
|  | [6] = PZD $7+8$ |  |  |  |  |
|  | [7] = PZD $8+9$ |  |  |  |  |
|  | [8] = PZD $9+10$ |  |  |  |  |
|  | [9] = PZD $10+11$ |  |  |  |  |
|  | [10] = PZD $11+12$ |  |  |  |  |
|  | [11] = PZD $12+13$ |  |  |  |  |
|  | [12] = PZD $13+14$ |  |  |  |  |
|  | [13] = PZD $14+15$ |  |  |  |  |
|  | [14] = PZD $15+16$ |  |  |  |  |
|  | [15] = PZD $16+17$ |  |  |  |  |
|  | [16] = PZD $17+18$ |  |  |  |  |
|  | [17] = PZD $18+19$ |  |  |  |  |
|  | [18] = PZD 19 + 20 |  |  |  |  |
|  | [19] = PZD $20+21$ |  |  |  |  |
|  | [20] = PZD $21+22$ |  |  |  |  |
|  | [21] = PZD $22+23$ |  |  |  |  |
|  | [22] = PZD $23+24$ |  |  |  |  |
|  | [23] = PZD $24+25$ |  |  |  |  |
|  | [24] = PZD $25+26$ |  |  |  |  |
|  | [25] = PZD $26+27$ |  |  |  |  |
|  | [26] = PZD $27+28$ |  |  |  |  |
|  | [27] = PZD $28+29$ |  |  |  |  |
|  | [28] = PZD $29+30$ |  |  |  |  |
|  | [29] = PZD $30+31$ |  |  |  |  |
|  | [30] = PZD $31+32$ |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |


| 09 | Bit 9 | ON | OFF |
| :--- | :--- | :--- | :--- |
| 10 | Bit 10 | ON | OFF |
| 11 | Bit 11 | ON | OFF |
| 12 | Bit 12 | ON |  |
| 13 | Bit 13 | ON | OFF |
| 14 | Bit 14 | ON | OFF |
| 15 | Bit 15 | ON | OFF |
| 16 | Bit 16 | ON | OFF |
| 17 | Bit 17 | ON | OFF |
| 18 | Bit 18 | ON | OFF |
| 19 | Bit 19 | ON | OFF |
| 20 | Bit 20 | ON | OFF |
| 21 | Bit 21 | ON | OFF |
| 22 | Bit 22 | ON | OFF |
| 23 | Bit 23 | ON | OFF |
| 24 | Bit 24 | ON | OFF |
| 25 | Bit 25 | ON | OFF |
| 26 | Bit 26 | ON | OFF |
| 27 | Bit 27 | ON | OFF |
| 28 | Bit 28 | ON | OFF |
| 29 | Bit 29 | ON | OFF |
| 30 | Bit 30 | ON | OFF |
| 31 | Bit 31 | ON | OFF |

Notice: A maximum of 4 indices of the "trace" function can be used.
Note: IF1: Interface 1



|  | [4] = PZD 5 |  |  |
| :---: | :---: | :---: | :---: |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-125: Bus address of the sender |  |  |
|  | 65535: not assigned |  |  |
| r2074[0...19] | IF1 PROFldrive diagnostics bus address PZD receive / IF1diag addr recv |  |  |
| CU_I, CU_I_D410, CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PROFIBUS address of the sender from which the process data (PZD) is received. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-125: Bus address of the sender |  |  |
|  | 65535: not assigned |  |  |
| r2074[0...3] IF1 PROFldrive diagnostics bus address PZD receive / IF1diag addr recv |  |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PROFIBUS address of the sender from which the process data (PZD) is received. |  |  |


| Index: | [0] = PZD 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-125: Bus address of the sender |  |  |
|  | 65535: not assigned |  |  |
| r2074[0..4] | IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv |  |  |
| TB30, TM120, TM150,TM15DI_DO, TM31 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PROFIBUS address of the sender from which the process data (PZD) is received. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | $[1]=$ PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-125: Bus address of the sender |  |  |
|  | 65535: not assigned |  |  |
| r2074[0...31] | IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the PROFIBUS address of the sender from which the process data (PZD) is received. |  |  |
|  | $[0]=$ PZD 1 - |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | $[21]=$ PZD 22$[22]=$ PZD 23 |  |  |
|  |  |  |  |


|  | [23] = PZD 24 |  |  |
| :---: | :---: | :---: | :---: |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-125: Bus address of the sender |  |  |
|  | 65535: not assigned |  |  |
| r2075[0...9] | IF1 PROFldrive diagnostics telegram offset PZD receive / IF1 diag offs recv |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2075[0...19] IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv |  |  |  |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - |  |  |
| Description: | Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |


|  | [6] = PZD 7 |  |  |
| :---: | :---: | :---: | :---: |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2075[0...3] IF1 PROFldrive diagnostics telegram offset PZD receive / IF1 diag offs recv |  |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2075[0..4] IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv |  |  |  |
| $\begin{aligned} & \text { TB30, TM120, } \\ & \text { TM150, TM15DI_DO, } \\ & \text { TM31 } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the PZD byte offse | ve receive telegram |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |


| r2075[0...31] | IF1 PROFldrive diagnostics telegram offset PZD receive / IF1 diag offs recv |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [ 9 ] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2076[0...9] IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |


|  | [5] = PZD 6 |  |  |
| :---: | :---: | :---: | :---: |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2076[0...24] | IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |


| r2076[0...11] | IF1 PROFldrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2076[0...27] IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |


| Note: | $\begin{aligned} & {[25]=\text { PZD } 26} \\ & {[26]=\text { PZD } 27} \\ & {[27]=\text { PZD } 28} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2076[0...4] | IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |
| TB30, TM120, TM150,TM15DI_DO, TM31 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: Index: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
|  | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
| Note: | IF1: Interface 1 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 65535: not assigned |  |  |
| r2076[0...31] | IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the PZD byte offset in the PROFIdrive send telegram (controller input). |  |  |
|  | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | $[6]=$ PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [ 9 ] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | $[22]=$ PZD 23$[23]=$ PZD 24 |  |  |
|  |  |  |  |


| Note: | IF1: Interface 1 |
| :--- | :--- |
|  | Value range: |
|  | $0-242:$ Byte offset |
|  | $65535:$ not assigned |


| r2077[0...15] | PROFIBUS diagnostics peer-to-peer data transfer addresses / PB diag peer addr |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Expert list: 1 |  |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  | Max | Factory setting |
| CU_S150_PN |  | - | - |
|  | Min |  |  |
| Description: | Displays the addresses of the slaves (peers) where peer-to-peer data transfer has been configured via PROFIBUS. |  |  |








| Index: | $\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: p2088, r2089 |  |  |
| Notice: | The parameter may be protected | of p0922 or p2079 | anged. |
| p2081[0...15] | BI: Binector-connector | status word 2 |  |
| A_INF, B_INF, CU_I, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| CU_I_D410, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2472 |
|  | P-Group: Communications | Units group: - |  |
| $\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S12_PN, } \\ & \text { CU_S10_ODP, } \\ & \text { CU_S150_PN, ENC, } \\ & \text { S_INF, SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, TB30, } \\ & \text { TM120, TM150, } \\ & \text { TM15DI_DO, TM31, } \\ & \text { TM41, VECCTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Selects bits to be sent to the PR <br> The individual bits are combined | troller. <br> us word 2. |  |
| Index: | $\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$ |  |  |
| Dependency: | Refer to: p2088, r2089 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | For clock synchronous operation, bit 12 to 15 to transfer the sign-of-life are reserved in status word 2 - and may not be freely interconnected. |  |  |



| p2083[0...15] | BI: Binector-connector converter status word 4 / Bin/con ZSW4 |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2472 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects bits to be sent to the PROF | troller. |  |
|  | The individual bits are combined | status word 4. |  |
| Index: | [0] = Bit 0 |  |  |
|  | [1] = Bit 1 |  |  |
|  | [2] = Bit 2 |  |  |
|  | [3] = Bit 3 |  |  |
|  | [4] = Bit 4 |  |  |
|  | [5] = Bit 5 |  |  |
|  | [6] = Bit 6 |  |  |
|  | [7] = Bit 7 |  |  |
|  | [8] = Bit 8 |  |  |
|  | [9] = Bit 9 |  |  |
|  | [10] = Bit 10 |  |  |
|  | [11] = Bit 11 |  |  |
|  | [12] = Bit 12 |  |  |
|  | [13] = Bit 13 |  |  |
|  | [14] = Bit 14 |  |  |
|  | [15] = Bit 15 |  |  |
| Dependency: | Refer to: p2088, r2089 |  |  |



| p2088[0...4] | Invert binector-connector converter status word / Bin/con ZSW inv |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 2472 |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not | for motor type: - | Scaling: - | Expert list: 1 |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | Min |  | Max | Factory |  |
|  | - |  | - | 000000 |  |
| Description: | Sett | ing to invert the individu | of the binector conn |  |  |
| Index: | [0] = | Status word 1 |  |  |  |
|  | [1] $=$ | Status word 2 |  |  |  |
|  | [2] $=$ | Free status word 3 |  |  |  |
|  | [3] $=$ | Free status word 4 |  |  |  |
|  |  | Free status word 5 |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Bit 0 | Inverted | Not inverted | - |
|  | 01 | Bit 1 | Inverted | Not inverted | - |
|  | 02 | Bit 2 | Inverted | Not inverted | - |
|  | 03 | Bit 3 | Inverted | Not inverted | - |
|  | 04 | Bit 4 | Inverted | Not inverted | - |
|  | 05 | Bit 5 | Inverted | Not inverted | - |
|  | 06 | Bit 6 | Inverted | Not inverted | - |
|  | 07 | Bit 7 | Inverted | Not inverted | - |
|  | 08 | Bit 8 | Inverted | Not inverted | - |
|  | 09 | Bit 9 | Inverted | Not inverted | - |
|  | 10 | Bit 10 | Inverted | Not inverted | - |
|  | 11 | Bit 11 | Inverted | Not inverted | - |
|  | 12 | Bit 12 | Inverted | Not inverted | - |
|  | 13 | Bit 13 | Inverted | Not inverted | - |
|  | 14 | Bit 14 | Inverted | Not inverted | - |
|  | 15 | Bit 15 | Inverted | Not inverted | - |
| Dependency: | Refe | to: p2080, p2081, p20 |  |  |  |






\begin{tabular}{|c|c|c|c|c|c|}
\hline r2094.0... 15 \& \multicolumn{5}{|l|}{BO: Connector-binector converter binector output / Con/bin outp} \\
\hline \multirow[t]{18}{*}{\begin{tabular}{l}
A_INF, B_INF, CU_I, \\
CU_I_D410, \\
CU_NX_CX, \\
CU_S_AC_DP, \\
CU_S_AC_PN, \\
CU_S120_DP, \\
CU_S120_PN, \\
CU_S150_DP, \\
CU_S150_PN, ENC, \\
S_INF, SERVO, \\
SERVO_AC, \\
SERVO_I_AC, TB30, \\
TM120, TM150, \\
TM15DI_DO, TM31, \\
TM41, VECTOR, \\
VECTOR_AC, \\
VECTOR_I_AC
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow[t]{16}{*}{\begin{tabular}{l}
Can be changed: - \\
Data type: Unsigned16 \\
P-Group: Communications \\
Not for motor type: -
\end{tabular}}} \& Calculated: - \& \multicolumn{2}{|l|}{\multirow[t]{16}{*}{\begin{tabular}{l}
Access level: 3 \\
Func. diagram: 2468 \\
Unit selection: - \\
Expert list: 1
\end{tabular}}} \\
\hline \& \& \& Dynamic index: - \& \& \\
\hline \& \& \& Units group: - \& \& \\
\hline \& \& \& \multirow[t]{13}{*}{Scaling: -} \& \& \\
\hline \& \& \& \& \& \\
\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Not for motor type: -

Min}} \& Max \& Fact \& <br>
\hline \& \& \& - \& - \& <br>
\hline Description: \& Bine \& ctor output for bit-serial \& nection of a PZD wo \& om the PR \& <br>
\hline \& The \& PZD is selected via p20 \& \& \& <br>
\hline Bit field: \& \& Signal name \& 1 signal \& 0 signal \& FP <br>
\hline \& \& Bit 0 \& ON \& OFF \& <br>
\hline \& \& Bit 1 \& ON \& OFF \& <br>
\hline \& \& Bit 2 \& ON \& OFF \& <br>
\hline \& \& Bit 3 \& ON \& OFF \& <br>
\hline \& \& Bit 4 \& ON \& OFF \& <br>
\hline \& \& Bit 5 \& ON \& OFF \& <br>
\hline \& \& Bit 6 \& ON \& OFF \& - <br>
\hline \& \& Bit 7 \& ON \& OFF \& <br>
\hline \& \& Bit 8 \& ON \& OFF \& - <br>
\hline \& 09 \& Bit 9 \& ON \& OFF \& <br>
\hline \& 10 \& Bit 10 \& ON \& OFF \& <br>
\hline \& 11 \& Bit 11 \& ON \& OFF \& - <br>
\hline \& 12 \& Bit 12 \& ON \& OFF \& - <br>
\hline \& \& Bit 13 \& ON \& OFF \& - <br>
\hline \& 14 \& Bit 14 \& ON \& OFF \& - <br>
\hline \& \& Bit 15 \& ON \& OFF \& - <br>
\hline Dependency: \& Refe \& r to: p2099 \& \& \& <br>
\hline
\end{tabular}




| p2099[0...1] | CI: Connector-binector converter signal source / Con/bin S_src |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, <br> CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TB30, <br> TM120, TM150, <br> TM15DI_DO, TM31, <br> TM41, VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Integer16 <br> P-Group: Communications <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2468 <br> Unit selection: - <br> Expert list: 1 |
|  |  | Max | Factory setting $0$ |
| Description: | Sets the signal source for the connector-binector converter. <br> A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection). |  |  |
| Dependency: <br> Note: | Refer to: r2094, r2095 <br> From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters: <br> Connector input p2099[0] to binector output in r2094.0... 15 <br> Connector input p2099[1] to binector output in r2095.0... 15 |  |  |
| p2100[0...19] | Setting the fault number for fault response / F_no F response |  |  |
| All objects | Can be changed: $U, T$ <br> Data type: Unsigned16 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 65535 | Access level: 3 <br> Func. diagram: 1750, 8075 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: <br> Dependency: | Selects the faults for which the fault response should be changed The fault is selected and the required response is set under the same index. Refer to: p2101 |  |  |
| Notice: | For the following cases, it is not possible to re-parameterize the fault response to a fault: <br> - if there is no existing fault number. <br> - the message type is not "fault" (F). |  |  |
| Note: | Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved. |  |  |
| p2101[0...19] | Setting the fault response / Fault response |  |  |
| A_INF, B_INF, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| S_INF |  | Dynamic index:- | Func. diagram: 1750, 8075 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$ | Factory setting <br> 0 |
| Description: | Sets the fault response for the selected fault. |  |  |



Re value = 1 (OFF1):
Braking along the ramp-function generator down ramp followed by a pulse inhibit.
Re value $=2$ (OFF2):
Internal/external pulse inhibit.
Re value $=3$ (OFF3):
Braking along the OFF3 down ramp followed by a pulse inhibit.
Re value $=5$ (STOP2):
n_set = 0
Re value $=6$ (armature short-circuit, internal/DC braking):
The value can only be set for all motor data sets when p1231 $=3,4$.
a) For synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}, 4 \mathrm{xx}$ ), an internal armature short-circuit is executed.
b) For induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ), a DC braking is initiated.

Re value $=7$ (ENCODER (p0491)):
The fault response set in p0491 is executed if applicable.
Note:
IASC: Internal Armature Short Circuit
DCBRK: DC braking


| p2103 | BI: 1. Acknowledge faults / 1. Acknowledge |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_LINK, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| CU_NX_CX, CU S AC DP, | P-Group: Messages | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, <br> CU S150 DP, |  |  |  |
|  |  |  |  |
| CU_S150_PN, ENC, |  |  |  |
| HUB, TB30, TM120, |  |  |  |
| TM15, TM150,TM15DI_DO, TM17, |  |  |  |
|  |  |  |  |
| TM31, TM54F_MA, |  |  |  |
| TM54F_SL |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the first signal source to acknowledge faults. |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | A fault acknowledgement is triggered with a $0 / 1$ signal. |  |  |
| p2104[0...n] | BI: 2. Acknowledge faults / 2. Acknowledge |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { TM41, VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 2546, 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the second signal source to acknowledge faults. |  |  |
| Note: | A fault acknowledgement is triggered with a 0/1 signal. |  |  |
| p2104 | BI: 2. Acknowledge faults / 2. Acknowledge |  |  |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_LINK, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| CU S AC DP, | P-Group: Messages | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  |  |  |
| CU_S150_PN, ENC, |  |  |  |
| HUB, TB30, TM120, |  |  |  |
| TM15, TM150, |  |  |  |
| TM15DI_DO, TM17, |  |  |  |
| TM31, TM54F_MA, |  |  |  |
| TM54F_SL |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the second signal source to acknowledge faults. |  |  |
| Note: | A fault acknowledgement is triggered with a $0 / 1$ signal. |  |  |






| p2112 | BI: External alarm 1 / External alarm 1 |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, TB30, TM120, <br> TM15, TM150, <br> TM15DI_DO, TM17, <br> TM31, TM54F_MA, <br> TM54F_SL | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | Max | Factory setting 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for external alarm 1. <br> Refer to: A07850 <br> An external alarm is triggered with a $1 / 0$ signal. |  |  |
| r2114[0...1] | System runtime total / Sys runtime tot |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: Index: | After r2114[0] has reached a value of 86.400 .000 ms ( 24 hours) this value is reset and r 2114 [1] is incremented.$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$ |  |  |
| Dependency: <br> Note: | The time in r2114 is used to display the times for faults and alarms. <br> When the electronic power supply is switched out, the counter values are saved. <br> After the drive unit is powered up, the counter continues to run with the last value that was saved. |  |  |
| p2116[0...n] | BI: External alarm 2 / External alarm 2 |  |  |
| A_INF, B_INF, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, <br> TM41, VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2546 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 1 |
| Description: | Sets the signal source for external alarm 2. |  |  |
| Dependency: | Refer to: A07851 |  |  |
| Note: | An external alarm is triggered with a $1 / 0$ signal. |  |  |


| p2116 | BI: External alarm 2 / External alarm 2 |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, TB30, TM120, <br> TM15, TM150, <br> TM15DI_DO, TM17, <br> TM31, TM54F_MA, <br> TM54F_SL | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | $\operatorname{Max}$ | Factory setting 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for external alarm 2. <br> Refer to: A07851 <br> An external alarm is triggered with a $1 / 0$ signal. |  |  |
| p2117[0...n] | BI: External alarm 3 / External alarm 3 |  |  |
| A_INF, B_INF, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, <br> TM41, VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2546 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for external alarm 3. <br> Refer to: A07852 <br> An external alarm is triggered with a $1 / 0$ signal. |  |  |
| p2117 | BI: External alarm 3 / External alarm 3 |  |  |
| CU_I, CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, TB30, TM120, <br> TM15, TM150, <br> TM15DI_DO, TM17, <br> TM31, TM54F_MA, <br> TM54F_SL | Can be changed: U, T <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for external alarm 3. <br> Refer to: A07852 <br> An external alarm is triggered with a $1 / 0$ signal. |  |  |



| r2121 | CO: Counter, alarm buffer changes / Alrm buff changed |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | F |
| Description: | This counter is incremented every time the alarm buffer changes. Refer to: r2110, r2122, r2123, r2124, r2125 |  |  |
| Dependency: |  |  |  |
| r2122[0...63] | Alarm code / Alarm code |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1750, 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | , | Factory seting |
| Description: | Displays the number of alarms that have occurred. |  |  |
| Dependency: | Refer to: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123 |  |  |
| Notice: | The properties of the alarm buffer should be taken from the corresponding product documentation. |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | Alarm buffer structure (general principle): |  |  |
|  | r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest) |  |  |
|  | r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest) |  |  |
|  |  |  |  |
|  | When the alarm buffer is full, the alarms that have gone are entered into the alarm history: r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest) |  |  |
|  | r2122[63], r2124[63], r2123[63], r2125[63] --> alarm 56 (the oldest) |  |  |
| r2123[0..63] | Alarm time received in milliseconds / t_alarm recv ms |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1750, 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [ms] | Max <br> - [ms] | Factory setting - [ms] |
| Description: | Displays the system runtime in milliseconds when the alarm occurred. |  |  |
| Dependency: | Refer to: r2110, r2114, r2122, r2124, r2125, r2134, r2145, r2146, r3121, r3123 |  |  |
| Notice: | The time comprises r2145 (days) and r2123 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | The structure of the alarm buffer and the assignment of the indices is shown in r2122. |  |  |
| r2124[0...63] | Alarm value / Alarm value |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 1750, 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays additional information about the active alarm (as integer number). |  |  |

Dependency: Refer to: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123

Note: The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r2122.

| r2125[0...63] | Alarm time removed in milliseconds / t_alarm res ms |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1750, 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ms] | Max <br> - [ms] | Factory setting - [ms] |
| Description: | Displays the system runtime in milliseconds when the alarm was cleared. |  |  |
| Dependency: | Refer to: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146, r3121, r3123 |  |  |
| Notice: | The time comprises r2146 (days) and r2125 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
|  | The structure of the alarm buffer and the assignment of the indices is shown in r2122. |  |  |



| p2127[0...19] | Sets acknowledgement mode / Acknowledge mode |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 1750, 8075 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 3 | 1 |
| Description: | Sets the acknowledge mode for selected fault. |  |  |
| Value: | 1: Acknowledgment only using POWER ON |  |  |
|  | 2: Ack IMMEDIATELY after the fault cause has been removed |  |  |
|  | 3: Acknowledgement only for PULSE INHIBIT |  |  |
| Dependency: | Selects the faults and sets the required acknowledge mode realized under the same index |  |  |
|  | Refer to: p2126 |  |  |
| Notice: | It is not possible to re-parameterize the acknowledge mode of a fault in the following cases: |  |  |
|  | - if there is no existing fault number. |  |  |
|  | - the message type is not "fault" (F). |  |  |
| Note: | Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved. |  |  |
|  | The acknowledge mode can only be changed for faults with the appropriate identification. |  |  |

## Example:

F12345 and acknowledge mode = IMMEDIATELY (POWER ON)
--> The acknowledge mode can be changed from IMMEDIATELY to POWER ON.

| p2128[0...15] | Selecting fault/alarm code for trigger / Message trigger |  |  |
| :--- | :--- | :--- | :--- |
| All objects | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1750,8070 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | Selects faults or alarms which can be used as trigger. |  |  |
| Dependency: | Refer to: r2129 |  |  |



| r2130[0...63] | Fault time received in days / t_fault recv days |  |  |
| :--- | :--- | :--- | :--- |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: | Func. diagram: 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the system runtime in days when the fault occurred. |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2133, r2136, r3115, r3120, r3122 |  |  |
| Notice: | The time comprises r2130 (days) and r0948 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |


| r2131 | CO: Actual fault code / Actual fault code |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the code of the oldest active fault. |  |  |
| Dependency: | Refer to: r3131, r3132 |  |  |
| Note: | 0 : No fault present. |  |  |
| r2132 | CO: Actual alarm code / Actual alarm code |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the code of the last alarm that occurred. |  |  |
| Note: | 0 : No alarm present. |  |  |
| r2133[0...63] | Fault value for float values / Fault val float |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8060 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays additional information about the fault that occurred for float values. |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2136, r3115 |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |
| r2134[0...63] | Alarm value for float values / Alarm value float |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays additional information about the active alarm for float values. |  |  |
| Dependency: | Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123 |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r 2139 ). |  |  |
| r2135.0... 15 | CO/BO: Status word faults/alarms 2 I ZSW fault/alarm 2 |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 2548 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Displays the second status word of faults and alarms. |  |  |


| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | Fault encoder 1 | Yes | No | - |
|  | 01 | Fault encoder 2 | Yes | No | - |
|  | 02 | Fault encoder 3 | Yes | No | - |
|  | 12 | Fault motor overtemperature | Yes | No | - |
|  | 13 | Fault power unit thermal overload | Yes | No | - |
|  | 14 | Alarm motor overtemperature | Yes | No | - |
|  | 15 | Alarm power unit thermal overload | Yes | No | - |
| r2136[0...63] | Fault time removed in days / t_flt resolv. days |  |  |  |  |
| All objects | Can be changed: - |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 8060 |  |
|  | P-Group: Messages |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the system runtime in days when the fault was removed. |  |  |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2130, r2133, r3115, r3120, r3122 |  |  |  |  |
| Notice: | The time comprises r2136 (days) and r2109 (milliseconds). |  |  |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |  |  |  |  |
| r2138.7... 15 | CO/BO: Control word faults/alarms / STW fault/alarm |  |  |  |  |
| All objects | Can be changed: - |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 1530, 2546 |  |
|  | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the control word of the faults and alarms. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Acknowledge fault | Yes | No | - |
|  |  | External alarm 1 (A07850) effective | Yes | No | - |
|  |  | External alarm 2 (A07851) effective | Yes | No | - |
|  |  | External alarm 3 (A07852) effective | Yes | No | - |
|  |  | External fault 1 (F07860) effective | Yes | No | - |
|  |  | External fault 2 (F07861) effective | Yes | No | - |
|  | 15 | External fault 3 (F07862) effective | Yes | No | - |
| Dependency: | Refer to: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112 |  |  |  |  |
| r2139.0... 12 | CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1 |  |  |  |  |
| All objects | Can be changed: - |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 1530, 2548 |  |
|  | P-Group: Displays, signals |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the first status word of faults and alarms. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Being acknowledged | Yes | No | - |
|  | 01 | Acknowledgment required | Yes | No | - |
|  | 03 | Fault present | Yes | No | - |
|  | 05 | Safety message present | Yes | No | - |
|  | 06 | Internal message 1 present | Yes | No | - |
|  | 07 | Alarm present | Yes | No | - |
|  | 08 | Internal message 2 present | Yes | No | - |


| 11 | Alarm class bit 0 | High |
| :--- | :--- | :--- |
| 12 | Alarm class bit 1 | High |

12 Alarm class bit 1 High Low
Re bit 03, 05, 07:
These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present"/"alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).
Re bit 06, 08:
These status bits are used for internal diagnostic purposes only.
Re bit 11, 12:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.

| p2140[0...n] | Hysteresis speed 2 / n_hysteresis 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [rpm] | 300.00 [rpm] | 90.00 [rpm] |
| Description: | Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act| < = speed threshold value 2" (BO: r2197.1) |  |  |
|  |  |  |  |
|  | "\|n_act| > speed threshold value 2" (BO: r2197.2) |  |  |
| Dependency: | Refer to: p2155, r2197 |  |  |
| p2140[0...n] <br> SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Hysteresis velocity 2 / v_hysteresis 2 |  |  |
|  | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC MOD LIM REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | 10.00 [ $\mathrm{m} / \mathrm{min}$ ] | 0.90 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the hysteresis velocity (bandwidth) for the following signals: "\|n_act| < = velocity threshold value 2" (BO: r2197.1) |  |  |
|  |  |  |  |
|  | "\|n_act| > velocity threshold | 197.2) |  |
| Dependency: | Refer to: p2155, r2197 |  |  |


| p2141[0...n] | Speed threshold 1 / n_thresh val 1 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: | CALC_MOD_LIM_REF |


| p2141[0...n] | Velocity threshold value 1 / v_thresh val 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 1000.00 [m/min] | Factory setting 0.05 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: Dependency: | Sets the velocity threshold value for the signal "f or $n$ comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199 |  |  |
| p2142[0...n] | Hysteresis speed 1 / n_hysteresis 1 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| VECTOR I AC | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 300.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 2.00 [rpm] |
| Description: | Sets the hysteresis speed (bandwidth) for the signal "f or $\mathrm{n} / \mathrm{v}$ comparison value reached or exceeded" (BO: r2199.1). |  |  |
| Dependency: | Refer to: p2141, r2199 |  |  |
| p2142[0...n] | Hysteresis velocity 1 / v_hysteresis 1 |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \text { Max } \\ & 10.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.02 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the hysteresis velocity (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1). |  |  |
| Dependency: | Refer to: p2141, r2199 |  |  |
| p2144[0...n] | BI: Motor stall monitoring enable (negated) / Mot stall enab neg |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, <br> SERVO I AC VEC- | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 8012 |
| TOR, VECTOR_AC, | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | 促 | 0 |
| Description: | Sets the signal source for the negated enable ( $0=$ enable) of the motor stall monitoring. |  |  |
| Dependency: | Refer to: p2163, p2164, p2166, r2197, r2198 |  |  |
|  | Refer to: F07900 |  |  |
| Note: | When interconnecting the enable signal with r2197.7 then the stall signal is suppressed if there is no speed setpoint - actual value deviation. |  |  |


| r2145[0...63] | Alarm time received in days / t_alarm recv days |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the system runtime in days when the alarm occurred. |  |  |
| Dependency: | Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2146, r3121, r3123 |  |  |
| Notice: | The time comprises r2145 (days) and r2123 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r 2139 ). |  |  |
| r2146[0...63] | Alarm time removed in days / t_alarm res days |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 8065 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the system runtime in days when the alarm was cleared. |  |  |
| Dependency: | Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2145, r3121, r3123 |  |  |
| Notice: | The time comprises r2146 (days) and r2125 (milliseconds). |  |  |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r 2139 ). |  |  |
| p2147 | Delete fault buffer of all drive objects / Del fault buffer |  |  |
| CU_I, CU_ID410, CU NX CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $U, T$ | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 8060 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | , | 0 |
| Description: | Setting to delete the fault buffer of all existing drive objects. |  |  |
| Value: | $\begin{array}{ll}0: & \text { Inactive } \\ \text { 1: } & \text { Start to delete the fault buffer of all drive objects }\end{array}$ |  |  |
|  |  |  |  |
| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136 |  |  |
| Note: | p 2147 is automatically set to 0 after execution. |  |  |
| p2148[0...n] | BI: RFG active / RFG active |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: $U, T$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_I_AC, VECTOR VECTOR AC | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 8011 |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Sets the signal source for the signal "ramp-function generator active" for the following signals/messages <br> "Speed setpoint - actual value deviation within tolerance t_on" (BO: r2199.4) <br> "Ramp-up/ramp-down completed" (BO: r2199.5) |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |

Note: $\quad$ The binector input is automatically pre-assigned to r1199.2.
The following applies for SERVO:
The pre-assignment using the automatic calculation of the motor/control parameters in the drive $(p 0340=1,3,5)$ is only realized if, at the instant of the calculation, the "setpoint channel" function module is active (r0108.8 = 1). If the calculation in p0340 is not selected when downloading parameters, then the parameter is not preassigned.

| p2149[0...n] | Monitoring configuration / Monit config |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 8010, 8013 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - - |  | 0000000000000000 bin |
| Description: | Sets the configuration for messages and monitoring functions. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal FP |
|  | 00 Enable alarm A07903 | Yes | No 8010 |
|  | 01 Load monitoring only in the 1st quadrant | $t$ Yes | No 8013 |
|  | 03 n_act > p2155 own hysteresis | Yes | No 8010 |
|  | 15 Automatic parameterization carried out $(p 0340=1, p 3900>0)$ | Yes | No |
| Dependency: | Refer to: r2197 |  |  |
|  | Refer to: A07903 |  |  |
| Note: | Re bit 00: |  |  |
|  | Alarm A07903 is output when the bit is set with $\mathrm{r} 2197.7=0$ ( $\mathrm{n} \_$set <> n_act). Re bit 01: |  |  |

When the bit is set, load monitoring is only carried out in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190).
Re bit 03:
When the bit is set, r2197 bit 1 and bit 2 are determined via separate hystereses.
Re bit 15:
The bit indicates whether the automatic parameterization ( $p 0340=1, p 3900>0$ ) for the parameters of the extended monitoring functions was carried out. If the bit is not set (e.g. when the configuration is activated (p0108.15)), the parameterization is automatically carried out during booting even if r3925.0 is already 1.

| p2149[0...n] | Monitoring configuration / Monit config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 8010, 8013 |  |
|  | P-Group: Messages | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting 0000000000000001 bin |  |
|  | - | - |  |  |
| Description: | Sets the configuration for messages and monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Enable alarm A07903 | Yes | No | 8010 |
|  | 01 Load monitoring only in the 1st quadrant | $t$ Yes | No | 8013 |
|  | 03 n_act > p2155 own hysteresis | Yes | No | 8010 |
|  | 15 Automatic parameterization carried out $(\mathrm{p} 0340=1, \mathrm{p} 3900>0)$ | Yes | No | - |
| Dependency: | Refer to: r2197 |  |  |  |
|  | Refer to: A07903 |  |  |  |
| Note: | Re bit 00: |  |  |  |
|  | Alarm A07903 is output when the bit is set with $\mathrm{r} 2197.7=0$ (n_set <> n_act). |  |  |  |
|  | Re bit 01: |  |  |  |
|  | When the bit is set, load monitoring is only carried out in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190). |  |  |  |

Re bit 03:
When the bit is set, r2197 bit 1 and bit 2 are determined via separate hystereses.
Re bit 15:
The bit indicates whether the automatic parameterization ( $\mathrm{p} 0340=1, p 3900>0$ ) for the parameters of the extended monitoring functions was carried out. If the bit is not set (e.g. when the configuration is activated (p0108.15)), the parameterization is automatically carried out during booting even if r3925.0 is already 1.

| p2150[0...n] | Hysteresis speed 3 / n_hysteresis 3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| VECTOR I AC | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 300.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 2.00 [rpm] |
| Description: | Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act| < speed threshold value 3" (BO: r2199.0) |  |  |
| Dependency: | Refer to: p2161, r2197, r2199 |  |  |
| p2150[0...n] | Hysteresis velocity 3 / v_hysteresis 3 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 3.00 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 0.02 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the hysteresis velocity (bandwidth) fo "\|n_act < speed threshold value 3" (BO: r2 "n_set > = 0" (BO: r2198.5) "n_act > = 0" (BO: r2197.3) | 俍 following signals: |  |
| Dependency: | Refer to: p2161, r2197, r2199 |  |  |
| p2151[0...n] | CI: Speed setpoint for messages/signals / n_set for msg |  |  |
| SERVO, | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 | Calculated: - | Access level: 3 |
| SERVO_AC, |  | Dynamic index: CDS, p0170 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 1438[0] |
| Description: | Sets the signal source for the speed setpo "Speed setpoint - actual value deviation wit "Ramp-up/ramp-down completed" (BO: r2 "\|n_set| < p2161" (BO: r2198.4) "n_set > 0" (BO: r2198.5) | for the following messages: in tolerance t_off" (BO: r2197.7) 9.5) |  |
| Dependency: | Refer to: r2197, r2198, r2199 |  |  |



| p2154[0...n] | CI: Speed setpoint 2 / n_set 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: CDS, p0170 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for speed setpoint 2. |  |  |
|  | The sum of p2151 and p2154 is used for the following messages/signals: |  |  |
|  | "Speed setpoint - actual value deviation within tolerance t_off" (r2197.7) |  |  |
|  | "Speed setpoint - actual value deviation within tolerance t_on" (r2199.4) |  |  |
|  | "Ramp-up/ramp-down completed" (r2199.5) |  |  |
| Dependency: | Refer to: p2151, r2197, r2199 |  |  |
| p2154[0...n] | Cl: Velocity setpoint 2 / v_set 2 |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Messages | Calculated: - | Access level: 3 |
|  |  | Dynamic index: CDS, p0170 | Func. diagram: 8010 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source for the velocity setpoint 2. |  |  |
|  | The sum of p2151 and p2154 is used for the following messages/signals: |  |  |
|  | "Velocity setpoint - actual value deviation within tolerance t_off" (r2197.7) |  |  |
|  | "Velocity setpoint - actual value deviation within tolerance t_on" (r2199.4) |  |  |
|  | "Ramp-up/ramp-down completed" (r2199.5) |  |  |
| Dependency: | Refer to: p2151, r2197, r2199 |  |  |
| p2155[0...n] | Speed threshold 2 / n_thresh val 2 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | Max | Factory setting |
|  |  | 210000.00 [rpm] | 900.00 [rpm] |
| Description: | Sets the speed threshold value for the following messages: "\|n act| < = speed threshold value 2" (BO: r2197.1) |  |  |
|  |  |  |  |
|  | "\|n_act| > speed threshold value 2" (BO: r2197.2) |  |  |
| Dependency: | Refer to: p2140, r2197 |  |  |
| $\begin{aligned} & \hline \mathbf{p 2 1 5 5 [ 0 . . . n ] ~} \\ & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Velocity threshold value 2 / v_thresh val 2 |  |  |
|  | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | 1000.00 [m/min] | 9.00 [m/min] |
| Description: | Sets the velocity threshold value for the fol "\|v_act| < = velocity threshold value 2" (BO "|v_act| > velocity threshold value 2" (BO: | $\begin{aligned} & \text { wing messages: } \\ & \text { 2197.1) } \\ & 197.2) \end{aligned}$ |  |


| Dependency: | Refer to: p2140, r2197 |  |  |
| :---: | :---: | :---: | :---: |
| p2156[0...n] | On delay, compariso | hed / t_on cmpr val rchd |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| TOR, VECTOR AC, | P-Group: Messages | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0[\mathrm{~ms}] \end{aligned}$ | Max <br> 10000.0 [ms] | Factory setting 0.0 [ms] |
| Description: <br> Dependency: | Sets the switch-in delay tim Refer to: p2141, p2142, r21 | omparison value reached" (BO: |  |
| p2161[0...n] | Speed threshold 3 / |  |  |
| SERVO, SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_IAC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| VECTOR_I_AC | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 5.00 [rpm] |
| Description: <br> Dependency: | Sets the speed threshold va <br> Refer to: p2150, r2199 | "\|n_act| < speed threshold valu | BO: r2199.0). |
| p2161[0...n] | Velocity threshold va | esh val 3 |  |
| SERVO (Lin), <br> SERVO_AC (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.05 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: <br> Dependency: | Sets the velocity threshold <br> Refer to: p2150, r2199 | al "\|v_act| < velocity threshold | " (BO: r2199.0). |
| p2162[0...n] | Hysteresis speed $\mathbf{n}$ | Hyst n_act>n_max |  |
| SERVO, <br> SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| VECTOR_I_AC | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$ | Max 60000.00 [rpm] | Factory setting 0.00 [rpm] |
| Description: | Sets the hysteresis speed (bab | signal "n_act > n_max" (BO: r2 |  |
| Dependency: | Refer to: r1084, r1087, r219 |  |  |
| Notice: | For p0322 = 0, the following | < 0.1 * p0311 |  |
|  | For p0322 > 0, the following | < 1.02 * p0322-p1082 |  |
|  | If one of the conditions is vio ing mode. | ppropriately and automatically | ed when exiting the com |
| Note: | For a negative speed limit ( (r1084) above the limit value If significant overshoot occu increase the dynamic respo only be increased by more ciently greater than the speed | esis is effective below the limit <br> m speed range (e.g. due to load controller (if possible). If this is rated speed when the maximum | and for a positive speed <br> dding), you are advised ficient, the hysteresis p2 (p0322) of the motor is |



| p2164[0...n] | Hysteresis velocity 4 / v_hysteresis 4 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 10.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 0.02 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the hysteresis velocity (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" message (BO: r2197.7). |  |  |
| Dependency: | Refer to: p2163, p2166, r2197 |  |  |
| p2166[0...n] | Off delay n_act = n_set / t_del_off n_i=n_so |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| TOR, VECTOR AC, | P-Group: Messages | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [ms] | 10000.0 [ms] | 200.0 [ms] |
| Description: | Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7). |  |  |
| Dependency: | Refer to: p2163, p2164, r2197 |  |  |
| p2166[0...n] | Off delay v_act = v_set / t_del_off n_i=n_so |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [ms] | 10000.0 [ms] | 200.0 [ms] |
| Description: | Sets the switch-off delay time for the "velocity setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7). |  |  |
| Dependency: | Refer to: p2163, p2164, r2197 |  |  |
| p2167[0...n] | Switch-on delay n_act = n_set / t_on n_act=n_set |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
| TOR, VECTOR_AC, | P-Group: Messages | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [ms] | 10000.0 [ms] | 200.0 [ms] |
| Description: | Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4). |  |  |


| p2167[0...n] | On delay v_act = v_set / t_on n_act=n_set |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8010 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [ms] }$ | $\begin{aligned} & \text { Max } \\ & 10000.0 \text { [ms] } \end{aligned}$ | Factory setting 200.0 [ms] |
| Description: | Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance $t$ _on" signal/message (BO: r2199.4). |  |  |
| r2169 | CO: Actual speed smoothed signals / n_act smth message |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1750, 8010, 8012, 8013 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the smoothed actual speed for messages/signals. |  |  |
| Dependency: | Refer to: p2153 |  |  |
| r2169 | CO: Actual velocity smoothed signals / v_act smth message |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1750, 8010, 8012, 8013 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max - [m/min] | Factory setting - [m/min] |
| Description: | Displays the smoothed actual velocity for messages/signals. |  |  |
| Dependency: | Refer to: p2153 |  |  |
| p2174[0...n] | Torque threshold value 1 / M_thresh val 1 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | 20000000.00 [ Nm] | 5.13 [ Nm ] |
| Description: Dependency: | Sets the torque threshold value for the signal "Torque setpoint < torque threshold value 1" (BO: r2198.10). Refer to: p2195, r2198 |  |  |
| p2174[0...n] | Force threshold value 1 / F_thresh val 1 |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
| S | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ N ] | 20000000.00 [N] | 1000.00 [N] |
| Description: | Sets the force threshold value for the signal "force setpoint < force threshold value 1" (BO: r2198.10). Refer to: p2195, r2198 |  |  |
| Dependency: |  |  |  |


| p2174[0...n] | Torque threshold value 1 / M_thresh val 1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | $20000000.00[\mathrm{Nm}]$ | 5.13 [ Nm ] |
| Description: | Sets the torque threshold value for the messages: |  |  |
|  | "Torque setpoint < torque threshold value 1 and n_set reached" (BO: r2198.9) |  |  |
|  | "Torque setpoint < torque threshold value 1" (BO: r2198.10) |  |  |
|  | "Torque setpoint > torque threshold value 1" (BO: r2198.13) |  |  |
| Dependency: | Refer to: p2195, r2198 |  |  |
| p2175[0...n] | Motor blocked speed threshold / Mot lock n_thresh |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: U, T | Calculated: $\quad$ Access level: 3CALC_MOD_LIM_REF |  |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 120.00 [rpm] |
| Description: | Sets the speed threshold for the message "Motor blocked" (BO: r2198.6). |  |  |
| Dependency: | Refer to: p0500, p2177, r2198 |  |  |
| p2175[0...n] | Motor blocked, velocity threshold / Mot lock v_thresh |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 1.20 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the velocity threshold for the message "Motor blocked" (BO: r2198.6). |  |  |
| Dependency: | Refer to: p0500, p2177, r2198 |  |  |
| p2175[0...n] | Motor blocked speed threshold / Mot lock n_thresh |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 120.00 [rpm] |
| Description: | Sets the speed threshold for the message "Motor blocked" (BO: r2198.6). |  |  |
| Dependency: | Refer to: p0500, p2177, r2198 |  |  |
| Note: | The following applies for sensorless vector control: |  |  |
|  | At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected. |  |  |


| p2177[0...n] | Motor blocked delay time / Mot lock t_del |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 65.000 \text { [s] } \end{aligned}$ | Factory setting 1.000 [s] |
| Description: <br> Dependency: | Sets the delay time for the message "Motor blocked" (BO: r2198.6). |  |  |
| p2177[0...n] | Motor blocked delay time / Mot lock t_del |  |  |
| VECTOR, <br> VECTOR_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.000 \text { [s] }$ | Max $65.000 \text { [s] }$ | Factory setting 1.000 [s] |
| Description: | Sets the delay time for the message "Motor blocked" (BO: r2198.6). |  |  |
| Dependency: | Refer to: p0500, p2175, r2198 |  |  |
| Note: | The following applies for sensorless vector control: |  |  |
|  | At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly ( $\mathrm{p} 2177<\mathrm{p} 1758$ ) before time p2177 has elapsed in order to detect the locked state reliably. |  |  |


| p2178[0...n] | Motor stalled delay time / Mot stall t_del |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: CALC_MOD_REG | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000[\mathrm{~s}]$ | $10.000[\mathrm{~s}]$ | $0.010[\mathrm{~s}]$ |
| Description: | Sets the delay time for the message "Motor stalled" (BO: r2198.7). |  |  |
| Dependency: | Refer to: r 2198 |  |  |

p2181[0...n] Load monitoring response / Load monit resp

SERVO_AC (Ext
msg), SERVO_I_AC
(Ext msg), VECTOR
(Ext msg),
VECTOR_AC (Ext
msg),
VECTOR_I_AC (Ext
msg )
Data type: Integer16
Calculated: -

P-Group: Messages
Not for motor type: -
Dynamic index: DDS, p0180
Units group: -
Access level: 3
Func. diagram: 8013
Unit selection: -
Expert list: 1

## Factory setting

0

Description: Sets the response when evaluating the load monitoring.
Value:

| $0:$ | Load monitoring disabled |
| :--- | :--- |
| 1: | A07920 for torque/speed too low |
| $2:$ | A07921 for torque/speed too high |


|  | 3: A07922 for torque/speed out of tolerance |  |  |
| :---: | :---: | :---: | :---: |
|  | 4: F07923 for torque/speed |  |  |
|  | 5: F07924 for torque/speed too h |  |  |
|  | 6: F07925 for torque/speed out of tolerance |  |  |
| Dependency: | Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198 |  |  |
|  | Refer to: A07920, A07921, A07922, F07923, F07924, F07925 |  |  |
| Note: | The response to the faults F07923 ... F07925 can be set. F07926 is evaluated only if p2181 is not zero. |  |  |
| p2182[0...n] | Load monitoring velocity threshold 1 / n_thresh 1 |  |  |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | 1000.00 [m/min] | 0.05 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Sets the speed/torque envelope curve for load monitoring. |  |  |
|  | The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: |  |  |
|  | p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower) |  |  |
|  | p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower) |  |  |
|  | p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower) |  |  |
| Dependency: | The following applies: p2182 < $2183<$ p2184 |  |  |
|  | Refer to: p2183, p2184, p2185, p2186 |  |  |
|  | Refer to: A07926 |  |  |
| p2182[0...n] | Load monitoring speed threshold value 1 / n_thresh 1 |  |  |
| SERVO (Ext msg), <br> SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 210000.00 [rpm] | 150.00 [rpm] |
| Description: | Sets the speed/torque envelope curve for load monitoring. |  |  |
|  | The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower) |  |  |
|  | p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower) |  |  |
|  | p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower) |  |  |
| Dependency: | The following applies: p2182 < $2183<$ p2184 |  |  |
|  | Refer to: p2183, p2184, p2185, p2186 |  |  |
|  | Refer to: A07926 |  |  |
| p2183[0...n] | Load monitoring velocity threshold 2 / n_thresh 2 |  |  |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | 1000.00 [m/min] | 0.05 [m/min] |
| Description: | Sets the speed/torque envel | d monitoring. |  |

The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower) p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower) p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)
Dependency: The following applies: p2182 < p2183 < p2184
Refer to: p2182, p2184, p2187, p2188
Refer to: A07926
p2183[0...n] Load monitoring speed threshold value $2 / n+$ thresh 2

SERVO (Ext msg), Can be changed: U, T
SERVO_AC (Ext
msg), SERVO_I_AC
(Ext msg), VECTOR
(Ext msg),
VECTOR_AC (Ext
msg),
VECTOR_I_AC (Ext
msg)


Sets the speed/torque envelope curve for load monitoring.
The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:
p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)
p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)
p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)

Refer to: p2182, p2184, p2187, p2188
Refer to: A07926

| p2184[0...n] | Load monitoring velocity threshold 3 / n_thresh 3 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Ext msg, | Can be changed: U, T | Calculated: - | Access level: 3 |
| Lin), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
| (Ext msg, Lin), | P-Group: Messages | Units group: 4_1 | Unit selection: p0505 |
| SERVO_I_AC (Ext | Scaling: - | Expert list: 1 |  |
| msg, Lin) | Not for motor type: - | Max | Factory setting |
|  | Min | 0.00 [m/min] | 0.05 [m/min] |
|  | Sets the speed/torque envelope curve for load monitoring. |  |  |
| Description: | The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: |  |  |
|  | p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower) |  |  |
|  | p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower) |  |  |
|  | p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower) |  |  |
| Dependency: | The following applies: p2182 <p2183 < p2184 |  |  |
|  | Refer to: p2182, p2183, p2189, p2190 |  |  |



| p2186[0...n] | Load monitoring force threshold 1, lower / M_thresh 1 lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg , Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [N] | 100000.00 [N] | 0.00 [ N ] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2186 < p2185 |  |  |
|  | Refer to: p2182, p2185 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |
| p2186[0...n] | Load monitoring torque threshold 1, lower / M_thresh 1 lower |  |  |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), VECTOR_AC (Ext msg ), VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | 20000000.00 [ Nm ] | 0.00 [ Nm ] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2186 < p2185 |  |  |
|  | Refer to: p2182, p2185 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |
| p2187[0...n] | Load monitoring force threshold 2, upper / M_thresh 2 upper |  |  |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext $\mathrm{msg}, \mathrm{Lin}$ ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ N ] | 100000.00 [ N$]$ | 100000.00 [N] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2187 > p2188 |  |  |
|  | Refer to: p2183, p2188 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The upper envelope curve is defined by p2185, p2187 and p2189. |  |  |


| p2187[0...n] | Load monitoring torque threshold 2, upper / M_thresh 2 upper |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | 20000000.00 [ Nm ] | $10000000.00[\mathrm{Nm}]$ |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2187 > p2188 |  |  |
|  | Refer to: p2183, p2188 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The upper envelope curve is defined by p2185, p2187 and p2189. |  |  |
| p2188[0...n] | Load monitoring force threshold 2, lower / M_thresh 2 lower |  |  |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [N] | 100000.00 [N] | 0.00 [ N ] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2188 < p2187 |  |  |
|  | Refer to: p2183, p2187 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |
| p2188[0...n] | Load monitoring torque threshold 2, lower / M_thresh 2 lower |  |  |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | 20000000.00 [ Nm ] | 0.00 [ Nm ] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2188 < p2187 |  |  |
|  | Refer to: p2183, p2187 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |


| p2189[0...n] | Load monitoring force threshold 3, upper / M_thresh 3 upper |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [N] | 100000.00 [N] | 100000.00 [N] |
| Description: Dependency: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
|  | The following applies: p2189 > p2190 |  |  |
|  | Refer to: p2184, p2190 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The upper envelope curve is defined by p2185, p2187 and p2189. |  |  |
| p2189[0...n] | Load monitoring torque threshold 3, upper / M_thresh 3 upper |  |  |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | $20000000.00[\mathrm{Nm}]$ | $10000000.00[\mathrm{Nm}]$ |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2189 > p2190 |  |  |
|  | Refer to: p2184, p2190 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The upper envelope curve is defined by p2185, p2187 and p2189. |  |  |
| p2190[0...n] | Load monitoring force threshold 3, lower / M_thresh 3 lower |  |  |
| SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg , Lin) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ N$]$ | 100000.00 [N] | $0.00[\mathrm{~N}]$ |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2190 < p2189 |  |  |
|  | Refer to: p2184, p2189 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |


| p2190[0...n] | Load monitoring torque threshold 3, lower / M_thresh 3 lower |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [ Nm ] | 20000000.00 [ Nm ] | 0.00 [ Nm ] |
| Description: | Sets the speed/torque / velocity/force envelope curve for the load monitoring. |  |  |
| Dependency: | The following applies: p2190 < p2189 |  |  |
|  | Refer to: p2184, p2189 |  |  |
|  | Refer to: A07926 |  |  |
| Note: | The lower envelope curve is defined by p2186, p2188 and p2190. |  |  |
| p2192[0...n] | Load monitoring delay time / Load monit t_del |  |  |
| SERVO (Ext msg), SERVO_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR (Ext msg), <br> VECTOR_AC (Ext msg ), <br> VECTOR_I_AC (Ext msg ) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [s] | 65.00 [s] | 10.00 [s] |
| Description: | Sets the delay time to evaluate the load monitoring. |  |  |
| p2194[0...n] | Torque threshold value 2 / M_thresh val 2 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00 \text { [\%] }$ | $100.00 \text { [\%] }$ | $90.00 \text { [\%] }$ |
| Description: | Sets the torque threshold value for the message "Torque utilization < torque threshold value 2" (BO: r2199.11). The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired. |  |  |
| Dependency: | Refer to: r0033, p2195, r2199 |  |  |
| p2194[0...n] | Force threshold value 2 / F_thresh val 2 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$ | Factory setting 90.00 [\%] |
| Description: | Sets the force threshold value for the signal "force utilization < force threshold value 2" (BO: r2199.11). |  |  |


|  | The message "force setpoint < p2174" (BO: r2198.10) and "force utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired. <br> Refer to: r0033, p2195, r2199 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| p2195[0...n] | Torque utilization switch-off delay / M_util t_off |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> 0.0 [ms] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - $\begin{aligned} & \operatorname{Max} \\ & 1000.0[\mathrm{~ms}] \end{aligned}$ | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 800.0 |  |
| Description: Dependency: | Sets the switch-off delay time for the negated signal "run-up completed". <br> The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired. |  |  |  |
| p2195[0...n] | Force utilization switch-off delay / F_util t_off |  |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> 0.0 [ms] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max $1000.0 \text { [ms] }$ | Acc <br> Fun <br> Unit <br> Exp <br> Fac <br> 800 |  |
| Description: | Sets the switch-off delay time for the negated signal "run-up completed". <br> The message "force setpoint < p2174" (BO: r2198.10) and "force utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired. |  |  |  |
| Dependency: |  |  |  |  |
| p2196[0...n] | Torque utilization scaling / M_util scal |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(1, 3), U, T <br> Data type: FloatingPoint32 <br> P-Group: Motor <br> Not for motor type: - <br> Min <br> 0.00 [\%] | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - $\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$ | Acc <br> Fun <br> Unit <br> Exp <br> Fac <br> 100 |  |
| Description: | Sets the scaling factor for torque utilization (r0033). |  |  |  |
| r2197.1... 13 | CO/BO: Status word monitoring 1 / ZSW monitor 1 |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: Dynamic index: Units group: Scaling: Max | Acce <br> Func <br> Unit <br> Expe <br> Fact | $2534$ |
| Description: | Displays the first status word for monitoring functions. |  |  |  |
| Bit field: | Bit Signal name <br> 01 \|n_act| <= speed threshold value 2 p2155 <br> 02 \|n_act|> speed threshold value 2 p2155 <br> 03 n_act >= 0 <br> 06 \|n_act|> n_max <br> 07 Speed setp - act val deviation in tolerance t_off <br> 13 \|n_act| > n_max (F07901) | 1 signal <br> 5 Yes <br> Yes <br> Yes <br> Yes <br> Ce Yes <br> Yes | 0 signal <br> No <br> No <br> No <br> No <br> No <br> No | FP <br> 8010 <br> 8010 <br> 8011 <br> 8010 <br> 8011 |


| Note: | Re bit 01, 02: |  |  |
| :---: | :---: | :---: | :---: |
|  | The threshold value is set in p2155 and the hysteresis in p2140. |  |  |
|  | Re bit 03: |  |  |
|  | The hysteresis is set in p2150. |  |  |
|  | Re bit 06: |  |  |
|  | The hysteresis is set in p2162. |  |  |
|  | Re bit 07: |  |  |
|  | The threshold value is set in p2163 and the hysteresis is set in p2164. |  |  |
|  | Re bit 13: |  |  |
|  | Only for internal Siemens use. |  |  |
| r2197.1... 13 | CO/BO: Status word monitoring 1 / ZSW monitor 1 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned16 Dynamic index: - | Func. diagram: 1530, 2534 |  |
|  | P-Group: Messages Units group: - | Unit selection: - |  |
|  | Not for motor type: - Scaling: - | Expert list: 1 |  |
|  | Min Max | Factory setting |  |
|  | - | - |  |
| Description: | Displays the first status word for monitoring functions. |  |  |
| Bit field: | Bit Signal name 1 signal | 0 signal | FP |
|  | 01 \|v_act| < = velocity threshold value 2 p2155 Yes | No | 8010 |
|  | 02 \|v_act| > velocity threshold value 2 p2155 Yes | No | 8010 |
|  | 03 v_act >=0 Yes | No | 8011 |
|  | 06 \|v_act| > v_max Yes | No | 8010 |
|  | 07 Velocity setpoint - actual value deviation in Yes tolerance t_off | No | 8011 |
|  | 13 \|v_act| > v_max (F07901) Yes | No | - |
| Note: | Re bit 01, 02: |  |  |
|  | The threshold value is set in p2155 and the hysteresis in p2140. |  |  |
|  | Re bit 03: |  |  |
|  | The hysteresis is set in p2150. |  |  |
|  | Re bit 06: |  |  |
|  | The hysteresis is set in p2162. |  |  |
|  | Re bit 07: |  |  |
|  | The threshold value is set in p2163 and the hysteresis is set in p2164. |  |  |
|  | Re bit 13: |  |  |
|  | Only for internal Siemens use. |  |  |


Note: $\quad$ Re bit 10: $\quad$ The torque threshold value 1 is set in p 2174.0 . $\quad$ Re bit 12: $\quad$ This bit is reset after the fault cause disappears, even if the fault itself is still present.

| r2198.4... 12 | CO/BO: Status word monitoring 2 / ZSW monitor 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |  |
| SERVO_AC (Lin), | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 2536 |  |
| SERVO_I_AC (Lin) | P-Group: Messages | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the second status word for monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 04 \|n_set| < p2161 | Yes | No | 8011 |
|  | 05 v_set > 0 | Yes | No | 8011 |
|  | 06 Motor blocked | Yes | No | 8012 |
|  | 10 Force setpoint < force threshold value 1 | Yes | No | 8012 |
|  | 11 Load monitoring signals an alarm | Yes | No | 8013 |
|  | 12 Load monitoring signals a fault condition | Y Yes | No | 8013 |
| Note: | Re bit 10: |  |  |  |
|  | The force threshold value 1 is set in p2174. |  |  |  |

r2198.4... 12 CO/BO: Status word monitoring 2 / ZSW monitor 2

VECTOR,
VECTOR_AC,

VECTOR_I_AC

Description:

## Bit field:

Note:

Can be changed: -
Data type: Unsigned16
P-Group: Messages
Not for motor type: -
Min

-     - 

Displays the second status word for monitoring functions.

| Bit | Signal name | 1 signal |
| :--- | :--- | :--- |
| 04 | $\mid$ n_set $\mid<$ p2161 | Yes |
| 05 | n_set >0 | Yes |
| 06 | Motor blocked | Yes |
| 07 | Motor stalled | Yes |
| 10 | \|M_set $<$ torque threshold value 1 | Yes |
| 11 | Load monitoring signals an alarm | Yes |
| 12 | Load monitoring signals a fault condition | Yes |

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
ax

## Access level: 2

Func. diagram: 1530, 2536
Unit selection: -
Expert list: 1
Factory setting

| 0 signal | FP |
| :--- | :--- |
| No | 8011 |
| No | 8011 |
| No | 8012 |
| No | 8012 |
| No | 8012 |
| No | 8013 |
| No | 8013 |

Re bit 10:
The torque threshold value 1 is set in p2174.
Re bit 12:
This bit is reset after the fault cause disappears, even if the fault itself is still present.

| r2199.0...11 | CO/BO: Status word monitoring $\mathbf{3}$ / ZSW monitor 3 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1530, 2537 |
| SERVO_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the third status word for monitoring functions. |  |  |



| 05 | Ramp-up/ramp-down completed | Yes | No | 8010 |
| :--- | :--- | :--- | :--- | :--- |
| 06 | Current below the zero current threshold | Yes | No | - |
| 07 | Speed deviation model/external in tolerance | Yes | No | 8012 |
| 11 | Torque utilization < torque threshold value 2 | Yes | No | 8012 |
| 12 | Excitation current outside the tolerance | Yes | No | 8018 |
|  | range |  |  |  |

## Note:

Re bit 00:
The speed threshold value 3 is set in p2161.
Re bit 01:
The comparison value is set in p2141. We recommend setting the hysteresis (p2142) for canceling the bit to a value lower than that in p2141. Otherwise, the bit is not reset

Re bit 11:
The torque threshold value 2 is set in p2194.

| p2200[0...n] | BI: Technology controlle | Tec_ctrl enable |  |
| :---: | :---: | :---: | :---: |
| SERVO (Tech_ctrl), | Can be changed: $T$ | Calculated: - | Access level: 2 |
| SERVO_AC | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 7958 |
| (Tech_ctrl), <br> SERVO I AC | P-Group: Technology | Units group: - | Unit selection: - |
| (Tech_ctrl), VECTOR (Tech ctrl), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_ĀC |  |  |  |
| (Tech_ctrl), |  |  |  |
| VECTOR_I_AC |  |  |  |


|  | Min | Max | Factory setting |
| :--- | :--- | :--- | :--- |
| Description: | - | - | 0 |




| p2205[0...n] | CO: Technology controller, fixed value 5 / Tec_ctr fix val 5 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Tech_ctrl), | Can be changed: $\cup, T$ | Calculated: - | Access level: 2 |
| SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7950 |
| (Tech_ctrl), <br> SERVO I AC | P-Group: Technology | Units group: 9_1 | Unit selection: p0595 |
| (Tech_ctrl), VECTOR (Tech_ctrl), | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
| VECTOR_ĀC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -200.00 [\%] | 200.00 [\%] | 50.00 [\%] |
| Description: | Sets the value for fixed value 5 of the technology controller. |  |  |
| Dependency: | Refer to: p2220, p2221, p2222, p2223, r2224, r2229 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p2206[0...n] | CO: Technology controller, fixed value 6 / Tec_ctr fix val 6 |  |  |
| SERVO (Tech_ctrl) SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7950 |
|  | P-Group: Technology | Units group: 9_1 | Unit selection: p0595 |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -200.00 [\%] | 200.00 [\%] | 60.00 [\%] |
| Description: | Sets the value for fixed value 6 of the technology controller. |  |  |
| Dependency: | Refer to: p2220, p2221, p2222, p2223, r2224, r2229 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| p2207[0...n] | CO: Technology controller, fixed value 7 / Tec_ctr fix val 7 |  |  |
| SERVO (Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7950 |
| $\begin{aligned} & \text { (Tech_ctrl), } \\ & \text { SERVO_I_AC } \end{aligned}$ | P-Group: Technology | Units group: 9_1 | Unit selection: p0595 |
| TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -200.00 [\%] | 200.00 [\%] | 70.00 [\%] |
| Description: | Sets the value for fixed value 7 of the technology controller. |  |  |
| Dependency: | Refer to: p2220, p2221, p2222, p2223, r2224, r2229 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |



| p2211[0...n] | CO: Technology controller, fixed value 11 / Tec_ctr fix val 11 |  |  |
| :---: | :---: | :---: | :---: |
| ```SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VEC- TOR (Tech_ctrl), VECTOR_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)``` | Can be changed: $\cup, T$ <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 9_1 <br> Scaling: PERCENT | Access level: 2 <br> Func. diagram: 7950 <br> Unit selection: p0595 <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Factory setting 110.00 [\%] |
| Description: <br> Dependency: <br> Notice: | Sets the value for fixed value 11 of the technology controller. |  | s on the effective data set. |
| p2212[0...n] | CO: Technology controller, fixed value 12 / Tec_ctr fix val 12 |  |  |
| ```SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VEC- TOR (Tech_ctrl), VECTOR_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)``` | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 9_1 <br> Scaling: PERCENT | Access level: 2 <br> Func. diagram: 7950 <br> Unit selection: p0595 <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Factory setting 120.00 [\%] |
| Description: <br> Dependency: <br> Notice: | Sets the value for fixed value 12 of the technology controller. <br> Refer to: p2220, p2221, p2222, p2223, r2224, r2229 |  |  |
| p2213[0...n] | CO: Technology controller, fixed value 13 / Tec_ctr fix val 13 |  |  |
| SERVO (Tech_ctrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - $\begin{aligned} & \text { Min } \\ & -200.00[\%] \end{aligned}$ | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: 9_1 <br> Scaling: PERCENT $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Access level: 2 <br> Func. diagram: 7950 <br> Unit selection: p0595 <br> Expert list: 1 <br> Factory setting $130.00 \text { [\%] }$ |
| Description: <br> Dependency: <br> Notice: | Sets the value for fixed value 13 of the technology controller. Refer to: p2220, p2221, p2222, p2223, r2224, r2229 |  |  |






Re bit 03:
0: Non-volatile data save de-activated.

1. The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for $\mathrm{p} 2230.0=1$ ).

Re bit 04:
When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r2250.

| r2231 | Technology controller motorized potentiometer setpoint memory / Tec_ctrl mop mem |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Tech_ctrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7954 |
|  | P-Group: Technology | Units group: 9_1 | Unit selection: p0595 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - [\%] | - [\%] | - [\%] |
| Description: | Displays the setpoint memory for the motorized potentiometer of the technology controller. For p2230.0 = 1, the last setpoint that was saved is entered after ON. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p2230 |  |  |
| p2235[0...n] | BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise |  |  |
| ```SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VEC- TOR (Tech_ctrl), VECTOR_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)``` | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 7954 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to continually increase the setpoint for the motorized potentiometer of the technology controller. |  |  |
|  | The setpoint change (CO: r2250) depends on the set ramp-up time (p2247) and the duration of the signal that is present (BI: p2235). |  |  |
| Dependency: | Refer to: p2236 |  |  |




r2250

CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG

SERVO (Tech ctrl)

Can be changed: -
Calculated: -
Data type: FloatingPoint32
P-Group: Technology
Not for motor type: -

Dynamic index: -
Units group: 9_1
Scaling: PERCENT

Access level: 2
Func. diagram: 7954
Unit selection: p0595
Expert list: 1
(Tech_ctrl), VEC-
TOR (Tech_ctrl),
VECTOR_AC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)

|  | Min | Max | Factory setting |
| :--- | :--- | :--- | :--- |
|  | $-[\%]$ | $-[\%]$ | $-[\%]$ |


| p2252 | Technology controller configuration / Tec_ctrl config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO (Tech_ctrl), | Can be changed: U, T |  | Calculated: - | Access level: 3 |  |
| SERVO_AC | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |  |
| SERVO_I_AC | P-Group: Modulation |  | Units group: - | Unit selection: - |  |
| (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
| VECTOR_AC |  |  |  |  |  |
| VECTOR_I_AC <br> (Tech_ctrl) |  |  |  |  |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0111 |  |
| Description: | Sets the configuration of the technology controller. |  |  |  |  |
| Bit field: | $\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$ | Signal name <br> Ramp-up/down time independent of setpoint sign | 1 signal | 0 signal | FP |
|  |  |  | - Yes | No | - |
|  |  | Integrator independ | Yes | No | - |
|  |  | Output signal witho | Yes | No | - |
|  | 03 | Act val lim | Yes | No | - |




| p2258 | Technology controller ramp-down time / Tec_ctrl t_ramp-dn |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Tech_ctrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 2 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 |
|  | Min $0.00 \text { [s] }$ | $\begin{aligned} & \operatorname{Max} \\ & 650.00 \text { [s] } \end{aligned}$ | Factory setting 1.00 [s] |
| Description: <br> Dependency: <br> Note: | Sets the ramp-down time of the technology controller. <br> Refer to: p2252, p2257 <br> The ramp-down time is referred to $100 \%$. |  |  |
| r2260 | CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG |  |  |
| SERVO (Tech_ctrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - <br> Min <br> - [\%] | Calculated: - <br> Dynamic index: - <br> Units group: 9_1 <br> Scaling: PERCENT <br> Max <br> - [\%] | Access level: 2 <br> Func. diagram: 7958 <br> Unit selection: p0595 <br> Expert list: 1 <br> Factory setting - [\%] |
| Description: | Sets the setpoint after the ramp-function generator of the technology controller. |  |  |
| p2261 <br> SERVO (Tech_ctrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_I_AC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Technology controlle <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - <br> Min <br> 0.000 [s] | ter time constan <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - $\begin{aligned} & \operatorname{Max} \\ & 60.000 \text { [s] } \end{aligned}$ | set T <br> Access level: 3 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0.000 [s] |
| Description: | Sets the time constant for the setpoint filter (PT1) of the technology controller. |  |  |



| p2264[0...n] | CI: Technology controller actual value / Tec_ctrl act val |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Tech_crrl), <br> SERVO_AC <br> (Tech_ctrl), <br> SERVO_IAC <br> (Tech_ctrl), VEC- <br> TOR (Tech_ctrl), <br> VECTOR AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: $U, T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: PERCENT | Access level: 2 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting <br> 0 |
| Description: | Sets the signal source for the actual value of the technology controller. |  |  |









| p2292 | CO: Technology controller minimum limiting / Tec_ctrl min_lim |  |  |
| :---: | :---: | :---: | :---: |
| ```SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VEC- TOR (Tech_ctrl), VECTOR_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)``` | Can be changed: $\cup, T$ <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT | Access level: 2 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Factory setting $0.00 \text { [\%] }$ |
| Description: <br> Dependency: <br> Caution: | The maximum limit must always be greater than the minimum limit ( $\mathrm{p} 2291>\mathrm{p} 2292$ ) |  |  |
| p2293 | Technology controller ramp-up/ramp-down time / Tec_ctr ramp up/dn |  |  |
| $\begin{aligned} & \text { SERVO (Tech_ctrl), } \\ & \text { SERVO_AC } \\ & \text { (Tech_ctrl), } \\ & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), VEC- } \\ & \text { TOR (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 |
|  | Min $0.00 \text { [s] }$ | $\begin{aligned} & \text { Max } \\ & 100.00 \text { [s] } \end{aligned}$ | Factory setting 1.00 [s] |
| Description: <br> Dependency: <br> Note: | Sets the ramping time for the output signal of the technology controller. <br> Refer to: p2291, p2292 <br> The time refers to the set maximum and minimum limits (p2291, p2292). |  |  |
| r2294 | CO: Technology controller output signal / Tec_ctrl outp_sig |  |  |
| $\begin{aligned} & \text { SERVO (Tech_ctrl), } \\ & \text { SERVO_AC } \\ & \text { (Tech_ctrl), } \\ & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), VEC- } \\ & \text { TOR (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl) } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Technology <br> Not for motor type: - <br> Min <br> - [\%] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max <br> - [\%] | Access level: 2 <br> Func. diagram: 7958 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [\%] |
| Description: <br> Dependency: | Displays the output signal of the technology controller. <br> Refer to: p2295 |  |  |




If value $=0$ :
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor). If value = 1:

The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).

p2369 BI: Closed-loop cascade control, control word / Csc_ctrl STW

| VECTOR (Tech_ctrl), Can be changed: U, T | Calculated: - | Access level: 3 |  |
| :--- | :--- | :--- | :--- |
| VECTOR_AC | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Tech_ctrl) | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the signal source for the selection of the "Switch-in motor" function.
When the function is selected, monitoring of the switches is de-activated with the "bypass" function. This means that the power unit can be connected to other motors via an external control without switch monitoring responding.

| p2502[0...n] | LR encoder assignment / Encoder assignment |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: C2(25) | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: 4010 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Pos ctrl) | Min | Max | Factory setting |
|  | 0 | 1 |  |
| Description: | Sets the assigned encoder. |  |  |
|  | The actual value preprocessing and the closed-loop position control are carried out using the assigned encoder. |  |  |



p2506[0...n] LR length unit LU per load revolution / LU per load rev
ctrl), SERVO_AC Data type: Unsigned32
(APC, Pos ctrl), SERVO_I_AC(APC), P-Group: Closed loop position control

Dynamic index: DDS, p0180

VECTOR (Pos ctrl),
VECTOR_AC (Pos
ctrl)

|  | $\begin{aligned} & \operatorname{Min}_{1} \\ & 1[U] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 2147483647 \text { [LU] } \end{aligned}$ | Factory setting 10000 [LU] |
| :---: | :---: | :---: | :---: |
| Description: | Sets the neutral length units LU per load revolution. |  |  |
|  | Therefore, for a rotary encoder, a reference is established between the physical arrangement and the neutral length units LU used in the drive. |  |  |
|  | Example: |  |  |
|  | Rotary encoder, ballscrew with $10 \mathrm{~mm} /$ revolution, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$ ). |  |  |
|  | --> p2506 $=10000$ |  |  |

Note: The position controller can only process position setpoints in the interpolator clock cycle (IPO clock cycle) in integer length units (LU, Length Unit). This is the reason that speed setpoints that are not a multiple integer of 1 LU per IPO clock cycle can only be realized as an average. The result speed setpoint steps are especially noticeable for a high loop gain or when the pre-control is active. Increasing p2506 counteracts this behavior.
p2507[0...n] SERVO AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC
(Pos ctrl)

Description:
Value:

Dependency
Caution:


Note:

```
LR absolute encoder adjustment status / Abs_enc_adj stat
Can be changed: U,T
Data type: Integer16
P-Group: Closed loop position control
Not for motor type: -
Min
0
```

Access level: 1
Func. diagram: 4010
Unit selection: -
Expert list: 1
Factory setting
1

0

Activating the adjustment and display of the status of the adjustment for absolute encoders.
0: Error occurred while adjusting
1: Absolute encoder not adjusted
2: Absolute encoder not adjusted and encoder adjustment initiated
Absolute encoder adjusted
Refer to: p2525, p2598, p2599
For rotating absolute encoders, when adjusting, a range is set up symmetrically around zero with half of the encoder range, within which the position must be re-established after powering down/powering up. In this range, it is only permissible that the encoder overflows.
After the adjustment has been completed, it must be guaranteed that the range is not exited. The reason for this is that outside the range, there is no clear reference any longer between the encoder actual value and mechanical system.
If the reference point (CI: p2598) lies in this range, then the position actual value is set when adjusting to the reference point. Otherwise, adjustment is canceled with F07443.
There is no overflow for linear absolute encoders. This means that after the adjustment, the position can be reestablished in the complete traversing range after powering down/powering up. When adjusting, the position actual value is set to the reference point.
The encoder adjustment is initiated with p2507 = 2. The status is displayed using the other values.
In order to permanently save the determined position offset (p2525) it must be saved in a non-volatile fashion (p0971, p0977).
This adjustment can only be initiated for an absolute encoder.
p2508[0...3]
SERVO (Pos ctrl), SERVO AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC
(Pos ctrl)

## Description:

Index:

BI: LR activate reference mark search / Ref_mark act
Can be changed: $T$
Data type: Unsigned32 / Binary
P-Group: Closed loop position control
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 1
Func. diagram: 4010
Unit selection: -
Expert list: 1
Factory setting 0

Sets the signal source for the function "activate reference mark search".
[ 0 ] $=$ Cl-loop pos ctrl
[1] = Encoder 1
[2] $=$ Encoder 2
[3] = Encoder 3
Dependency: Refer to: p0490, p0495, p2502, p2509, r2684
Refer to: A07495
Notice: When activating the function "set position actual value" while the function "reference mark search" is activated, then the function "reference mark search" is automatically de-activated.
Note: When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2508[0] = r2684.0
The function can only be activated using a $0 / 1$ signal if no reference function is active (r2526.2).
If "reference mark search" and "measuring probe evaluation" are simultaneously activated, then no function is activated and the actual function is interrupted.


| p2510[0..3] | BI: LR selecting measuring probe evaluation / MT_eval select |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3615, 4010 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the measuring probe. |  |  |
|  | 1 signal = measuring probe 2 is activated for BI : $\mathrm{p} 2509=0 / 1$ edge . |  |  |
|  | 0 signal = measuring probe 1 is activated for BI : $\mathrm{p} 2509=0 / 1$ edge . |  |  |
| Index: | $[0]=\text { Cl-loop pos ctrl }$ |  |  |
|  | $\text { [1] = Encoder } 1$ |  |  |
|  | [2] = Encoder 2 |  |  |
|  | [3] = Encoder 3 |  |  |
| Dependency: | Refer to: p2502, p2509, p2511 |  |  |
| Note: | When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2509[0] = r2684.1 |  |  |
|  | The measuring probe is selected at the 0/1 signal transition at r2684.1 (flying referencing active). |  |  |

## p2511[0...3]

SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl)

## BI: LR measuring probe evaluation edge / MT_eval edge

Can be changed: $T$
Data type: Unsigned32 / Binary
P-Group: Closed loop position control
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 1
Func. diagram: 3615, 4010
Unit selection: -
Expert list: 1
Factory setting 0

Description: Sets the signal source for the edge evaluation of the measuring probe.
1 signal = falling edge of the measuring probe (p2510) is activated for BI : p2509 = 0/1 edge.
0 signal = rising edge of the measuring probe (p2510) is activated for BI : p2509 = 0/1 edge.

| Index: | $[0]=$ Cl-loop pos ctrl |
| :--- | :--- |
|  | $[1]=$ Encoder 1 |
|  | $[2]=$ Encoder 2 |
|  | $[3]=$ Encoder 3 |
| Dependency: $\quad$ | Refer to: p2502, p2509, p2510 |


| p2512[0...3] | BI: LR pos. actual value preprocessing activate corr. value (edge) / |
| :--- | :--- |
|  | ActVal_prepCorrAct |

SERVO (Pos ctrl)
SERVO AC (Pos
ctrl), VECTOR (Pos ctrl), VECTOR_AC
(Pos ctrl)
Can be changed: T
Data type: Unsigned32 / Binary
P-Group: Closed loop position control
Not for motor type: -
Min Max

Access level: 1
Func. diagram: 4010, 4015
Unit selection: -
Expert list: 1
Factory setting 0

Description: Sets the signal source for the function "activate position actual value preprocessing, corrective value (edge)". $0 / 1$ signal: The corrective value available through Cl : p2513 is activated.
Index: $\quad[0]=$ Cl-loop pos ctrl
[1] = Encoder 1
[2] = Encoder 2
[3] = Encoder 3
Dependency: Refer to: p2502, p2513, r2684
Note: When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2512[0] = r2684.7


| p2514[0..3] | BI: LR activate position actual value setting / s_act setting act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: $T$ | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4010 |
| ctrI), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Pos ctrl) | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the signal source to activate the function "set position actual value".
Index:
[ 0 ] $=$ Cl-loop pos ctrl
[1] = Encoder 1
[2] = Encoder 2
[3] = Encoder 3



| Value: | 0 : | No meas probe |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1: | DI/DO 9 (X122.10/X121.8) |  |  |
|  | 2 : | DI/DO 10 (X122.12/X121.10) |  |  |
|  | 3 : | DI/DO 11 (X122.13/X121.11) |  |  |
|  | 4: | DI/DO 13 (X132.10/X131.2) |  |  |
|  | 5: | DI/DO 14 (X132.12/X131.4) |  |  |
|  | 6 : | DI/DO 15 (X132.13/X131.5) |  |  |
|  | 7: | DI/DO 8 (X122.9/X121.7) |  |  |
|  | 8: | DI/DO 12 (X132.9/X131.1) |  |  |
|  | 11: | DI/DO 9 cyclic |  |  |
|  | 12: | DI/DO 10 cyclic |  |  |
|  | 13: | DI/DO 11 cyclic |  |  |
|  | 14: | DI/DO 13 cyclic |  |  |
|  | 15: | DI/DO 14 cyclic |  |  |
|  | 16: | DI/DO 15 cyclic |  |  |
|  | 17: | DI/DO 8 cyclic |  |  |
|  | 18: | DI/DO 12 cyclic |  |  |
| Index: | [0] = Encoder 1 |  |  |  |
|  | [1] = Encoder 2 |  |  |  |
|  | [2] = Encoder 3 |  |  |  |
| Dependency: | Refer to: p0490, p0728, p2509, p2510, p2511 |  |  |  |
| Notice: | To select the values: |  |  |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). |  |  |  |
|  | To the terminal designation: |  |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |
|  | The terminal must be set as input (p0728). |  |  |  |
|  | If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0580 or p0680. |  |  |  |
|  | Direct measurement via p2517 has a higher priority than measurements via p0488. |  |  |  |
|  | For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock cycle. |  |  |  |
| p2518[0...2] | LR direct measuring probe 2 / Direct MT 2 |  |  |  |
| SERVO (Dig IO, Pos ctrl) | Can | changed: U, T | Calculated: - | Access level: 3 |
|  | Data | ype: Integer16 | Dynamic index: - | Func. diagram: 4010 |
|  | P-Gr | up: Closed loop position control | Units group: - | Unit selection: - |
|  | Not | motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 51 | 0 |
| Description: | Sets the input terminal for direct measuring probe 2. |  |  |  |
|  | The direct measuring probe can either be parameterized as a non-cyclic (value $1 \ldots 6$ ) or a cyclic (value $11 \ldots$ 16) measuring probe. |  |  |  |
|  | After it has been activated via BI: p2509 = 0/1 signal, the non-cyclic measuring probe measures once and can be used with EPOS. |  |  |  |
|  | After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS. |  |  |  |
|  | In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control word and encoder status word. |  |  |  |
| Value: | 0 : | No meas probe |  |  |
|  | 1: | DI/DO 9 (X122.10/X121.8) |  |  |
|  | 2 : | DI/DO 10 (X122.12/X121.10) |  |  |
|  | 3: | DI/DO 11 (X122.13/X121.11) |  |  |
|  | 4: | DI/DO 13 (X132.10/X131.2) |  |  |
|  | 5: | DI/DO 14 (X132.12/X131.4) |  |  |
|  | 6: | DI/DO 15 (X132.13/X131.5) |  |  |
|  | 7: | DI/DO 8 (X122.9/X121.7) |  |  |
|  | 8: | DI/DO 12 (X132.9/X131.1) |  |  |


|  |  | DI/DO 9 cyclic |
| :---: | :---: | :---: |
|  | 12: | DI/DO 10 cyclic |
|  | 13: | DI/DO 11 cyclic |
|  | 14: | DI/DO 13 cyclic |
|  | 15: | DI/DO 14 cyclic |
|  | 16: | DI/DO 15 cyclic |
|  | 17: | DI/DO 8 cyclic |
|  | 18: | DI/DO 12 cyclic |
|  |  | DI/DO 0 distributed (X3.2) |
|  | 51: | DI/DO 1 distributed (X3.4) |
| Index: | [0] <br> [1] <br> [2] | ncoder 1 <br> ncoder 2 <br> ncoder 3 |
| Dependency: | Ref | o: p0490, p0728, p2509, p2 |
| Notice: | To | ct the values: |
|  | For | 32, NX10 and NX15, only D |
|  | To | terminal designation: |
|  | The | t designation is valid for C |
| Note: | DI/D | Bidirectional Digital Input/O |
|  | The | minal must be set as input |
|  |  | ameter change is rejected, p0488, p0489, p0493, p04 |
|  | Dire | measurement via p2518 ha |
|  |  | direct measuring probe ev ycle. |

p2518[0...2] LR direct measuring probe 2 / Direct MT 2

SERVO (Pos ctrl) SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl)

## Description:

Access level: 3
Func. diagram: 4010
Unit selection: -
Expert list: 1
Factory setting
0

Sets the input terminal for direct measuring probe 2.
The direct measuring probe can either be parameterized as a non-cyclic (value $1 \ldots 6$ ) or a cyclic (value 11 ... 16) measuring probe.
After it has been activated via $\mathrm{BI}: \mathrm{p} 2509=0 / 1$ signal, the non-cyclic measuring probe measures once and can be used with EPOS.

After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS.

In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control word and encoder status word
Value:

$$
\begin{array}{ll}
\text { 0: } & \text { No meas probe } \\
\text { 1: } & \text { DI/DO 9 (X122.10/X121.8) } \\
\text { 2: } & \text { DI/DO 10 (X122.12/X121.10) } \\
\text { 3: } & \text { DI/DO 11 (X122.13/X121.11) } \\
\text { 4: } & \text { DI/DO 13 (X132.10/X131.2) } \\
\text { 5: } & \text { DI/DO 14 (X132.12/X131.4) } \\
\text { 6: } & \text { DI/DO 15 (X132.13/X131.5) } \\
\text { 7: } & \text { DI/DO 8 (X122.9/X121.7) } \\
\text { 8: } & \text { DI/DO 12 (X132.9/X131.1) } \\
\text { 11: } & \text { DI/DO 9 cyclic } \\
\text { 12: } & \text { DI/DO 10 cyclic } \\
\text { 13: } & \text { DI/DO 11 cyclic } \\
\text { 14: } & \text { DI/DO 13 cyclic } \\
\text { 15: } & \text { DI/DO 14 cyclic } \\
\text { 16: } & \text { DI/DO 15 cyclic }
\end{array}
$$

|  | 17: DI/DO 8 cyclic <br> 18: DI/DO 12 cyclic |  |  |
| :---: | :---: | :---: | :---: |
| Index: | [0] $=$ Encoder 1 [1] $=$ Encoder 2 [2] $=$ Encoder 3 |  |  |
| Dependency: | Refer to: p0490, p0728, p2509, p2510 |  |  |
| Notice: | To select the values: |  |  |
|  | For Cx32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). |  |  |
|  | The first designation is valid for CU320, the second for CU310. |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |
|  | The terminal must be set as input (p0728). |  |  |
|  | If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0580 or p0680. |  |  |
|  | Direct measurement via p2518 has a higher priority than measurements via p0489. |  |  |
|  | For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock cycle. |  |  |
| p2519[0...n] | LR position actual value preprocessing config. DDS changeover / s_act config DDS |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 5 | 1 |
| Description: | Sets the behavior of the position actual value preprocessing for the position controller for a DDS changeover. Re p2519 = 1: |  |  |
|  |  |  |  |
|  | In the following cases, for a DDS changeover, the actual position actual value becomes invalid and the reference point is reset: |  |  |
|  | - the EDS effective for the closed-loop position control changes. |  |  |
|  | - the encoder assignment changes (p2502). |  |  |
|  | - the mechanical relationships change (p2503 ... p2506). |  |  |
|  | - the direction of rotation changes (p1821). |  |  |
|  | For absolute encoders, the status of the adjustment (p2507) is also reset if the same absolute encoder remains selected for the closed-loop position control, but the mechanical relationships or the direction of rotation have changed. |  |  |
|  | In the operation state, in addition, a fault (F07494) is generated. |  |  |
| Notice: | The remaining setting values are intended for expanded functionality. |  |  |
| Note: | The behavior for a DDS changeover is determined using the value of p2519 in the target data set. |  |  |
| r2520[0...2] | CO: LR Position actual value preprocessing, encoder control word / ActVal_prep STW |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 4010 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the encoder control word generated by the position actual value preprocessing. |  |  |
| Index: | $[0]=$ Encoder 1 $[1]=$ Encoder 2 $[2]=$ Encoder 3 |  |  |


| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | Request function 1 | Yes | No | - |
|  | 01 | Request function 2 | Yes | No | - |
|  | 02 | Request function 3 | Yes | No | - |
|  | 03 | Request function 4 | Yes | No | - |
|  | 04 | Request command bit 0 | Yes | No | - |
|  | 05 | Request command bit 1 | Yes | No | - |
|  | 06 | Request command bit 2 | Yes | No | - |
|  | 07 | Flying measurement mode/search for reference mark | Flying measurement | Reference marks | - |
|  | 13 | Request absolute value cyclic | Yes | No | - |
|  | 14 | Request parking encoder | Yes | No | - |
|  | 15 | Request acknowledge encoder fault | Yes | No | - |
| Dependency: | Refer to: p0480 |  |  |  |  |
| Note: | When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: |  |  |  |  |


| r2521[0...3] | CO: LR position actual value / s_act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Integer32 | Dynamic index: - | Func. diagram: 401 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Pos ctrl) | Min | Max | Factory setting |
|  | $-[L U]$ | $-[L U]$ | $-[L U]$ |

Description: Displays the actual position actual value determined by the position actual value preprocessing.
Index: $\quad[0]=$ Cl-loop pos ctrl
[1] = Encoder 1
[2] = Encoder 2
[3] = Encoder 3
Dependency: Refer to: p2502, r2526
Note: $\quad r 2526.0=1$--> The position actual value in r2521[0] for the position control is valid.
r2527.0 = 1 --> The position actual value in r2521[1] for encoder 1 is valid.
r2528.0 = 1 --> The position actual value in r2521[2] for encoder 2 is valid.
r2529.0 = 1 --> The position actual value in r2521[3] for encoder 3 is valid.

## r2522[0...3] CO: LR velocity actual value / v_act

| SERVO (Pos ctrl), | Can be changed: - | Calculated: - | Access level: 1 |
| :--- | :--- | :--- | :--- |
| SERVO_AC (Pos | Data type: Integer32 | Dynamic index: - | Func. diagram: 4010 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Pos ctrl) | Min | Max | Factory setting |
|  | $-[1000 \mathrm{LU} / \mathrm{min}]$ | $-[1000 \mathrm{LU} / \mathrm{min}]$ | $-[1000 \mathrm{LU} / \mathrm{min}]$ |

Description: Displays the velocity actual value determined by the position actual value preprocessing
Index:
$[0]=$ Cl-loop pos ctrl
$[1]=$ Encoder 1
$[2]=$ Encoder 2
$[3]=$ Encoder 3
Refer to: p2502, r2526
r2526.0 $=1$--> The velocity actual value in r2522[0] for the position control is valid.
$r 2527.0=1$--> The velocity actual value in r2522[1] for encoder 1 is valid.
r2528.0 $=1$--> The velocity actual value in $r 2522[2]$ for encoder 2 is valid.
r2529.0 $=1$--> The velocity actual value in $r 2522[3]$ for encoder 3 is valid.


r2528.0... 2
SERVO (Pos ctrl),
SERVO AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl)

Description: Bit field:

CO/BO: LR actual value sensing status word encoder 2 / ActValSensZSW enc2
Can be changed: -
Calculated: -
Dynamic index: -
Units group:
Scaling: -
Max

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Displays the status word of the position actual value sensing for encoder 2

| Bit | Signal name | 1 signal | 0 signal | FP |
| :--- | :--- | :--- | :--- | :--- |
| 00 | Position actual value valid | Yes | No | - |
| 01 | Referencing active | Yes | No | - |
| 02 | Measured value valid | Yes | No | - |



| p2533[0...n] | LR position setpoint filter, time constant / s_set_filt T |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Scaling: - | Expert list: 1 |  |
| (Pos ctrl) | Not for motor type: - | Max | Factory setting |
|  | Min | 0.00 [ms] |  |
|  | 0.00 [ms] |  |  |
| Description: | Sets the time constant for the position setpoint filter (PT1). |  |  |
| Note: | The effective Kv factor (position loop gain) is reduced with the filter. This allows a softer control behavior with |  |  |
|  | improved tolerance with respect to noise/disturbances. |  |  |
|  | Applications: |  |  |
|  | - reduces the pre-control dynamic response. |  |  |
|  | - jerk limiting. |  |  |


| p2534[0...n] | LR velocity pre-control factor / v_prectrl fact |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin, Pos | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
| ctrl), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015, 4025 |
| (Lin, | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Factory setting $0.00 \text { [\%] }$ |
| Description: | Setting to activate and weight the velocity pre-control value. Value = $0 \%$--> The pre-control is de-activated. |  |  |
| Dependency: | Refer to: p2535, p2536, r2563 |  |  |
| Note: | When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the velocity control loop, the pre-control factor is $100 \%$. |  |  |


| p2534[0...n] | LR speed pre-control factor / n_prectrl fact |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015,4025 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Max |
| (Pos ctrl) | Min | 200.00 [\%] | Factory setting |
|  | 0.00 [\%] | 0.00 [\%] |  |
| Description: | Setting to activate and weight the speed pre-control value. 1 |  |  |
|  | Value =0 \% --> The pre-control is de-activated. |  |  |
| Dependency: | Refer to: p2535, p2536, r2563 |  |  |
| Note: | When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the speed |  |  |
|  | control loop, the pre-control factor is 100\%. |  |  |


| p2535[0...n] | LR velocity pre-control balancing filter dead time / v_prectrFlt t_dead |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin, Pos | Can be changed: U, T | Calculated: - | Access level: 1 |
| ctrl), SERVO_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
| (Lin, Pos ctrl) | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 2.00 | Factory setting |
|  | 0.00 | 0.00 |  |
| Description: | Sets the "fractional" dead time to emulate the timing behavior of the velocity control loop. 1 |  |  |
|  | The selected multiplier refers to the position controller clock cycle (deadtime= p2535 * p0115[4]). |  |  |
| Dependency: | Refer to: p0115, p2536 |  |  |


| Notice: | When velocity pre-control is active (p2534>0 \%), the following applies: |  |  |
| :---: | :---: | :---: | :---: |
|  | In addition to the set dead time (p2535), internally two position controller clock cycles are effective. |  |  |
|  | When velocity pre-control is inactive (p2534 = 0 \%) , the following applies: |  |  |
|  | No dead time is effective (p2535 and internal). |  |  |
| Note: | Together with p2536, the timing behavior of the velocity control loop can be emulated. |  |  |
| p2535[0...n] | LR speed pre-control balancing filter dead time / n_prectrFit t_dead |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 2.00 | 0.00 |
| Description: | Sets the "fractional" dead time to emulate the timing behavior of the speed control loop. <br> The selected multiplier refers to the position controller clock cycle (deadtime= p2535 * p0115[4]). |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0115, p2536 |  |  |
| Notice: | When speed pre-control is active (p2534 > 0 \%), the following applies: |  |  |
|  | In addition to the set dead time (p2535), internally two position controller clock cycles are effective. |  |  |
|  | When speed pre-control is inactive (p2534 = 0 \%), the following applies: |  |  |
|  | No dead time is effective (p2535 and internal). |  |  |
| Note: | Together with p2536, the timing behavior of the closed-loop control loop can be emulated. |  |  |
| p2536[0...n] | LR velocity pre-control, balancing filter PT1 / v_prectrl filt PT1 |  |  |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 100.00 [ms] | 0.00 [ms] |
| Description: | Sets a PT1 filter to emulate the timing behavior of the velocity control loop. |  |  |
| Dependency: | Refer to: p2535 |  |  |
| Notice: | When velocity pre-control is inactive (p2534 = $0 \%$ ), the following applies: If a PT1 filter has been set, it is not effective. |  |  |
|  |  |  |  |
| Note: | Together with p2535, the timing behavior of the velocity control loop can be emulated. |  |  |
| p2536[0...n] | LR speed pre-control, symmetrizing filter PT1 / n_prectrl filt PT1 |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 100.00 [ms] | 0.00 [ms] |
| Description: | Sets a PT1 filter to emulate the timing behavior of the closed-speed control loop. |  |  |
| Dependency: | Refer to: p2535 |  |  |
| Notice: | When speed pre-control is inactive (p2534 = 0 \%), the following applies: If a PT1 filter has been set, it is not effective. |  |  |
|  |  |  |  |
| Note: | Together with p2535, the timing behavior of the closed-loop control loop can be emulated. |  |  |


| p2537 | CI: LR position controller adaptation / Adaptation |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: | Sets the signal source for the adaptation of the proportional gain of the position controller. <br> Refer to: p2538 |  |  |
| Dependency: |  |  |  |
| p2538[0...n] | LR proportional gain / Kp |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [1000/min] | 300.000 [1000/min] | 1.000 [1000/min] |
| Description: | Sets the proportional gain (P gain, position loop gain, Kv factor) of the position controller. |  |  |
| Dependency: | Refer to: p2537, p2539, p2555, r2557, r2558 |  |  |
| Note: | The proportional gain is used define at which traversing velocity which following error is obtained (without pre-control) |  |  |
|  | Low proportional gain: |  |  |
|  | Slow response to a setpoint - actual value difference, the following error becomes large. |  |  |
|  | High proportional gain: |  |  |
|  | Fast response to the setpoint - actual value difference, the following error becomes small. |  |  |


| p2539[0...n] | LR integral time / Tn |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), | Can be changed: $\cup, T$ | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
| ctrl), VECTOR (Pos ctrl), VECTOR AC | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| (Pos ctrl) - | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | Max <br> 100000.00 [ms] | Factory setting 0.00 [ms] |
| Description: | Setting to activate the integral time of the position controller. |  |  |
|  | Value $=0 \mathrm{~ms} \mathrm{-->} \mathrm{The} \mathrm{I} \mathrm{component} \mathrm{of} \mathrm{the} \mathrm{position} \mathrm{controller} \mathrm{is} \mathrm{de-activated}$. |  |  |
| Dependency: | Refer to: p2538, r2559 |  |  |
| p2540 | CO: LR position controller output, velocity limit / LR_outp limit |  |  |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [m/min] | 1000.000 [m/min] | 1000.000 [m/min] |
| Description: | Sets the velocity limit of the position controller output. |  |  |
| Dependency: | Refer to: p2541 |  |  |


| p2540 | CO: LR position controller output, speed limit / LR_outp limit |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos (trl), VECTOR_AC (Pos ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> 0.000 [rpm] | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> 210000.000 [rpm] | Access level: 3 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 210000.000 [rpm] |
| Description: <br> Dependency: | Sets the speed limit of the position contro Refer to: p2541 | output. |  |
| p2541 <br> SERVO (Lin, Pos <br> ctrl), SERVO_AC <br> (Lin, Pos ctrl) | CI: LR position controller output <br> Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min | velocity limit s <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2000 <br> Max | / LR_outp lim S_src <br> Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 2540[0] |
| Description: <br> Dependency: | Sets the signal source for the position co Refer to: p2540 | ler output limit. |  |
| p2541 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | CI: LR position controller output <br> Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min | speed limit sig <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2000 <br> Max | LR_outp lim S_src <br> Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 2540[0] |
| Description: <br> Dependency: | Sets the signal source for the position controller output limit. <br> Refer to: p2540 |  |  |
| p2542 | LR standstill window / Standstill window |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos (trl), VECTOR_AC (Pos ctrl) | Can be changed: $U, T$ <br> Data type: Unsigned32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> 0 [LU] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 2147483647 [LU] | Access level: 1 <br> Func. diagram: 4020 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 200 [LU] |
| Description: | Sets the standstill window for the standstill monitoring function. <br> After the standstill monitoring time expires, it is cyclically checked whether the difference between the setpoint and actual position is located within the standstill window and, if required, an appropriate fault is output. <br> Value $=0$--> The standstill monitoring is de-activated. |  |  |
| Dependency: | Refer to: p2543, p2544 <br> Refer to: F07450 |  |  |
| Note: | The following applies for the setting of the Standstill window (p2542) >= positioning wis | andstill and positioni <br> dow (p2544) |  |



| p2546[0...n] | LR dynamic following error monitoring tolerance / s_delta_monit tol |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: 4025 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [LU] | 2147483647 [LU] | 1000 [LU] |
| Description: | Sets the tolerance for the dynamic following error monitoring. <br> If the dynamic following error (r2563) exceeds the selected tolerance, then an appropriate fault is output. <br> Value $=0$--> The dynamic following error monitoring is de-activated. |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: r2563, r2684 |  |  |
|  | Refer to: F07452 |  |  |
| Note: | The tolerance bandwidth is intended to prevent the dynamic following error monitoring incorrectly responding due to operational control sequences (e.g. during load surges). |  |  |
| p2547 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | LR cam switching position 1 / Cam position 1 |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 4025 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -2147483648 [LU] | 2147483647 [LU] | 0 [LU] |
| Description: | Sets the cam switching position 1. |  |  |
| Dependency: | Refer to: p2548, r2683 |  |  |
| Caution: | Only after the axis has been referenced "true" position reference. | it be guaranteed that the cam s | ing signals when output have a |
| Note: | Position actual value <= cam switching position 1 --> r2683.8 = 1 signal |  |  |
|  | Position actual value > cam switching position 1 --> r2683.8 $=0$ signal |  |  |
| p2548 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | LR cam switching position 2 / Cam position 2 |  |  |
|  | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 4025 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -2147483648 [LU] | 2147483647 [LU] | 0 [LU] |
| Description: | Sets the cam switching position 2. |  |  |
| Dependency: | Refer to: p2547, r2683 |  |  |
| Caution: | Only after the axis has been referenced "true" position reference. | it be guaranteed that the cam s | ng signals when output have a |
| Note: | Position actual value <= cam switching position 2 --> r2683.9 = 1 signal <br> Position actual value > cam switching position 2 --> r2683.9 $=0$ signal |  |  |
|  |  |  |  |


| p2549 | Bl: LR enable 1 / Enable 1 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4015 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Scaling: - | Expert list: 1 |  |
| (Pos ctrl) | Not for motor type: - | Max | Factory setting |
|  | Min | 899.2 |  |
| Description: | - | Sets the signal source for the position controller enable 1. |  |
| Dependency: | Refer to: r0899, p2550 |  |  |
| Note: | The position controller is enabled by the following AND logic operation: |  |  |
|  | - BI: p2549 |  |  |


| p2550 | BI: LR enable 2 / Enable 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the position controller enable 2. |  |  |
| Dependency: | Refer to: p2549 |  |  |
| Note: | The position controller is enabled by the following AND logic operation: |  |  |
|  | - BI: p2549 |  |  |
|  | - BI: p2550 |  |  |
|  | When the function module "position control" or "basic positioner" is activated, the following BICO interconnection is established: |  |  |
|  | - BI: p2550 = 1 |  |  |
| $\overline{\mathbf{p 2 5 5 1}}$ | BI: LR setpoint signal present / Sig s_set pres |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4020 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the "setpoint present" signal. |  |  |
|  | BI: p2551 = 1 signal: |  |  |
|  | The end of the positioning operation on the setpoint side is signaled and the positioning and standstill monitoring activated. |  |  |
|  | BI: p2551 = 0 signal: |  |  |
|  | The start of a positioning operation or tracking mode on the setpoint side is signaled and the positioning and standstill monitoring de-activated. |  |  |
| Dependency: | Refer to: p2554, r2683 |  |  |
| Note: | When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2551 = r2683.2 |  |  |


| p2552 | BI: LR signal travel to fixed stop active / Signal TfS act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: $T$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4025 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the signal "travel to fixed stop active". BI: p2552 = 1 signal: |  |  |
|  |  |  |  |
|  | The activity associated with travel to fixed stop is signaled and the detection of the fixed stop is started via the maximum following error (p2634). |  |  |
| Dependency: <br> Note: | Refer to: r2683 |  |  |
|  | When the function module "basic positioner" (r0108.4 = 1 ) is activated, the following BICO interconnection is established: BI: p2552 = r2683.14 |  |  |
| p2553 | BI: LR signal fixed stop reached / Signal fixed stop |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: $T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Closed loop position control <br> Not for motor type: - | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 4025 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Sets the signal source for the signal "fixed stop reached". BI: p2553 = 1 signal: |  |  |
|  |  |  |  |
|  | When the fixed stop is reached, this is signaled and the fixed stop monitoring window is activated. |  |  |
| Dependency: <br> Note: | Refer to: r2683When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection |  |  |
|  | When the function module "basic positioner" (r0108.4 = 1 ) is activated, the following BICO interconnection is established: BI: p2553 = r2683.12 |  |  |
| p2554 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | BI: LR signal traversing command active / Sig trav_cmnd act |  |  |
|  | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4020 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 0 |
| Description: | Sets the signal source for the signal "traversing command active". BI: p2554 = 1 signal: |  |  |
|  |  |  |  |
|  | It is signaled that positioning is active and therefore the positioning monitoring is not activated with the signal "setpoint present" (p2551). |  |  |
| Dependency: | Refer to: p2551, r2684 |  |  |
| Note: | When the function module "basic positioner" (r0108.4 = 1 ) is activated, the following BICO interconnection is established: BI: p2554 = r2684.15 |  |  |


| p2555 | CI: LR LU/revolution LU/mm / LU | rev LU/mm |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: 4015 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $2524[0]$ |
| Description: <br> Dependency: <br> Note: | Sets the signal source for the reference of the mm for linear encoders. <br> Refer to: p0404, r2524 <br> The signal value is used to convert the leng | Sets the signal source for the reference of the internal length units LU to motor revolution for rotary encoders and to mm for linear encoders. |  |
| r2556 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | CO: LR position setpoint after s <br> Can be changed: - <br> Data type: Integer32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [LU] | point smoothin <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [LU] | er interp <br> Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [LU] |
| Description: | Displays the position setpoint after the setpoint smoothing. |  |  |
| r2557 <br> SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | CO: LR position controller input <br> Can be changed: - <br> Data type: Integer32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [LU] | system deviatio <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [LU] | ys dev <br> Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [LU] |
| Description: | Displays the difference between the position setpoint and the position actual value at the position controller input. |  |  |
| r2558 | CO: LR position controller output, P component / LR_outp P comp |  |  |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [m/min] | Calculated: - <br> Dynamic index: - <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> - [m/min] | Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting - [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | Displays the P component at the output of the position controller for the velocity setpoint. |  |  |
| r2558 | CO: LR position controller output, P component / LR_outp P comp |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [rpm] | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> - [rpm] | Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting - [rpm] |
| Description: | Displays the P component at the output of the position controller for the speed setpoint. |  |  |


| r2559 | CO: LR position controller output, I component / LR_outp I comp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: - | Calculated: | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting <br> - [m/min] |
| Description: | Displays the I component at the output of the position controller for the velocity setpoint. |  |  |
| r2559 | CO: LR position controller output, I component / LR_outp I comp |  |  |
| SERVO (Pos ctrl), SERVO AC (Pos ctrl), VECTOR (Pos (trl), VECTOR_AC (Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | $\begin{aligned} & \text { Max } \\ & -[\text { rpm }] \end{aligned}$ | Factory setting <br> - [rpm] |
| Description: | Displays the I component at the output of the position controller for the speed setpoint. |  |  |
| r2560 | CO: LR velocity setpoint / v_set |  |  |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting <br> - [m/min] |
| Description: | Displays the velocity setpoint after limiting (CI: p2541). |  |  |
| r2560 | CO: LR speed setpoint / n_set |  |  |
| SERVO (Pos ctri), | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
| ctrl), VECTOR_AC | P-Group: Closed loop position control | Units group: 3_1 | Unit selection: p0505 |
| (Pos ctrl) - | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [rpm] | $\begin{aligned} & \text { Max } \\ & -[\text { rpm }] \end{aligned}$ | Factory setting - [rpm] |
| Description: | Displays the speed setpoint after limiting (CI: p2541). |  |  |

## r2561

SERVO (Lin, Pos
ctrl), SERVO_AC
(Lin, Pos ctrl)

Description:

| CO: LR velocity pre-control value / v_prectrl val |  |  |
| :--- | :--- | :--- |
| Can be changed: - | Calculated: - | Access level: 1 |
| Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
| P-Group: Closed loop position control | Units group: $4 \_1$ | Unit selection: 00505 |
| Not for motor type: - | Scaling: p2000 | Expert list: 1 |
| Min | Max | Factory setting |
| $-[\mathrm{m} / \mathrm{min}]$ | $-[\mathrm{m} / \mathrm{min}]$ | $-[\mathrm{m} / \mathrm{min}]$ |
| Displays the velocity setpoint due to the pre-control. |  |  |


| r2561 | CO: LR speed pre-control valu | _prectrl val |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos (trl), VECTOR_AC (Pos ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [rpm] | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> - [rpm] | Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting - [rpm] |
| Description: | Displays the speed setpoint due to the | ntrol. |  |
| r2562 | CO: LR velocity setpoint, to | set total |  |
| SERVO (Lin, Pos ctrl), SERVO AC (Lin, Pos ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [m/min] | Calculated: - <br> Dynamic index: - <br> Units group: 4_1 <br> Scaling: p2000 <br> Max <br> - [m/min] | Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> - [m/min] |
| Description: | Displays the total velocity setpoint. <br> This value is obtained from the sum of | locity pre-control | ler output. |
| Dependency: | Refer to: r2560, r2561 |  |  |
| r2562 | CO: LR total speed setpoint / | et total |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos (ctr), VECTOR_AC (Pos ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [rpm] | Calculated: - <br> Dynamic index: - <br> Units group: 3_1 <br> Scaling: p2000 <br> Max <br> - [rpm] | Access level: 1 <br> Func. diagram: 4015 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> - [rpm] |
| Description: Dependency: | Displays the total speed setpoint This value is obtained from the sum of Refer to: r2560, r2561 | eed pre-control a | r output. |
| r2563 | CO: LR following error dynam | model / Follow |  |
| SERVO (Pos ctrl), SERVO AC (Pos ctrl), VECTOR (Pos (trl), VECTOR_AC (Pos ctrl) | Can be changed: - <br> Data type: Integer32 <br> P-Group: Closed loop position control <br> Not for motor type: - <br> Min <br> - [LU] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [LU] | Access level: 1 <br> Func. diagram: 4025 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [LU] |
| Description: | Displays the dynamic following error. This value is the deviation, corrected by position actual value. | velocity-dependent | en the position setpoin |
| Note: | For p2534 >= $100 \%$ (pre-control activa The dynamic following error (r2563) cor For $0 \%$ < p2534 < $100 \%$ (pre-control The dynamic following error (r2563) is the calculated from the position setpoint via system deviation for a P controller. | he following applies: onds to the system d ted) or p2534 = $0 \%$ viation between the 1 model. This comp | at the position controller ctivated) the following a n actual value and a value m-related velocity-dep |


| r2564 | CO: LR force pre-control value / F_prectrl val |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [N] | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting - [N] |
| Description: | Displays the force pre-control value. |  |  |
| Dependency: | Refer to: p1511, p1512 |  |  |
| Note: | The force pre-control value is the derivation over time of the velocity pre-control value and is referred to a high inertia mass of 1000.0 kg . When using the pre-control, then this should be evaluated corresponding to the actual mass. |  |  |
| r2564 | CO: LR torque pre-control value / M_prectrl val |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Displays the torque pre-control value. |  |  |
| Dependency: | Refer to: p1511, p1512 |  |  |
| Note: | The torque pre-control value is the derivation over time of the speed pre-control value and is referred to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2 \mathrm{PI}$. When using the pre-control, then this should be evaluated corresponding to the actual moment of inertia. |  |  |
| r2565 | CO: LR following error actual / Following err act |  |  |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: - <br> Data type: Integer32 <br> P-Group: Closed loop position control <br> Not for motor type: | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 4015 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Min <br> - [LU] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{LU}] \end{aligned}$ | Factory setting - [LU] |
| Description: | Displays the actual following error. |  |  |
|  | This value is the deviation between the position setpoint - after fine interpolation - and the position actual value. |  |  |
| Notice: | When speed pre-control is active (p2534 > 0 \%), the following applies: |  |  |
|  | To calculate this value, the position setpoint is delayed by two position controller clock cycles. |  |  |
|  | When speed pre-control is inactive (p2534 = $0 \%$ ), the following applies: |  |  |
|  | To calculate this value, the position setpoint is delayed by two position controller clock cycles. |  |  |
| r2566 | LR velocity input pre-control / v inp prectrl |  |  |
| SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl) | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the velocity at the input of the pre-control channel. |  |  |
| Note: | This display parameter is used for diagnostics even when the pre-control is inactive (p2534 = 0\%). |  |  |

r2566
SERVO (Pos ctrl),
SERVO_AC (Pos
ctrl), VECTOR (Pos
ctrl), VECTOR_AC
(Pos ctrl)

LR speed input pre-control / n inp prectrl

Data type: FloatingPoint32
P-Group: Closed loop position control
Not for motor type: -
Min

- [rpm]

Calculated: -
Dynamic index: -
Units group: 3_1
Scaling: p2000
Max

- [rpm]

Access level: 1
Func. diagram: 4015
Unit selection: p0505
Expert list: 1
Factory setting

- [rpm]

Description: Displays the speed at the input of the pre-control channel.
Note: $\quad$ This display parameter is used for diagnostics even when the pre-control is inactive ( $\mathrm{p} 2534=0 \%$ ).

| p2567[0...n] | LR force pre-control mass / F_prectrl mass |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin, Pos ctrl), SERVO AC (Lin, Pos ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
|  | P-Group: Closed loop position control | Units group: 27_1 | Unit selection: p0100 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.000000[\mathrm{~kg}] \end{aligned}$ | Max <br> 10000.000000 [kg] | Factory setting 1.000000 [kg] |
| Description: | Sets the mass for the force pre-control. |  |  |
| Dependency: | Refer to: p2534, r2564 |  |  |
| Note: | When calculating the force pre-control value (r2654), the derivation over time of the speed pre-control value is multiplied by p2567. |  |  |
|  | For reasons associated with the compatibility to earlier firmware releases, the factory setting for $\mathrm{p} 2567=1 \mathrm{~kg}$. This means that CO: r2564 remains, as standard, the derivation over time of the velocity pre-control value and refers, as before, to a weight of 1 kg . For force pre-control, the mass can now be directly entered into p2567 (instead of subsequently evaluating the pre-control value. |  |  |


| p2567[0...n] | LR torque pre-control moment of inertia / M_prectr M_inertia |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Pos | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 4015 |
| ctrl), VECTOR (Pos <br> ctrl), VECTOR_AC | P-Group: Closed loop position control | Units group: 25_1 | Unit selection: p0100 |
| (Pos ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.000000\left[\mathrm{kgm}^{2}\right]$ | 100000.000000 [ $\mathrm{kgm}^{2}$ ] | $0.159155\left[\mathrm{kgm}^{2}\right]$ |
| Description: | Sets the moment of inertia for the torque pre-control. |  |  |
| Dependency: | Refer to: p2534, r2564 |  |  |
| Note: | When calculating the torque pre-control value (r2654), the time derivation of the speed pre-control value is multiplied by 2 PI * p2567. |  |  |
|  | For reasons associated with the compatibility to earlier firmware versions, the factory setting for p2567=1 kgm^2/2 PI . This means that CO: r2564 remains as standard the derivation over time of the speed pre-control value and is referred, as before, to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2 \mathrm{PI}$. For torque pre-control, the moment of inertia can now be directly entered into p2567 (instead of subsequently evaluating the pre-control value. |  |  |

## p2568

SERVO (EPOS),
SERVO_AC (EPOS)
VECTOR (EPOS),
VECTOR AC
(EPOS)

## BI: EPOS STOP cam activation / STOP cam act

Can be changed: $T$
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Sets the signal source to activate the function "STOP cam". BI: p2568 = 1 signal
--> The evaluation of the STOP cam minus (BI: p2569) and STOP cam plus ( BI : p 2570 ) is active.

| Dependency: <br> Note: | Refer to: p2569, p2570 <br> The traversing range can also be limited using software limit switches. |
| :---: | :---: |
| p2569 | BI: EPOS STOP cam minus / STOP cam minus |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | Can be changed: T Calculated: - Access level: 1 <br> Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: 3630 <br> P-Group: Basic positioner Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> - - 1 |
| Description: <br> Recommend.: | Sets the signal source for the STOP cam in the negative direction of travel. <br> Set the OFF3 ramp-down time (p1135), so that the axis, after reaching the STOP cam at the maximum velocity, does not move through a higher braking travel than is actually available. <br> Sets message 07491 as alarm (A07491): <br> Set the maximum deceleration ( p 2573 ), so that the axis, after reaching the STOP cam at the maximum velocity, does not move through a higher braking travel than is actually available. |
| Dependency: | Refer to: p1135, p2568, p2570, p2573, r2684 <br> Refer to: F07491 |
|  | The STOP cams are low active. <br> Sets message 07491 as fault (F07491): <br> For a 0 signal, the axis is stopped with the OFF3 ramp-down time ( p 1135 ), status signal r2684.13 is set to 1 , saved and the appropriate fault is output. After the fault has been acknowledged, only motion moving away from the STOP cam is permitted. <br> For a $0 / 1$ signal and valid travel direction, when the stop cam is exited, this is detected and the status signal r2684.13 is set to 0 . <br> Sets message 07491 as alarm (A07491): <br> For a 0 signal, the axis is stopped with the maximum deceleration ( p 2573 ), status signal r2684.13 is set to 1 , saved and the appropriate alarm is output. Only motion away from the STOP cam is permitted. <br> For a $0 / 1$ signal and valid travel direction, when the stop cam is exited, this is detected and the status signal r2684.13 is set to 0 and the alarm is deleted. |
| p2570 <br> SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | BI: EPOS STOP cam plus / STOP cam plus   <br> Can be changed: T Calculated: - Access level: 1 <br> Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: 3630 <br> P-Group: Basic positioner Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> - - 1 |
| Description: <br> Recommend.: | Sets the signal source for the STOP cam in the positive direction of travel. <br> Set the OFF3 ramp-down time (p1135), so that the axis, after reaching the STOP cam at the maximum velocity, does not move through a higher braking travel than is actually available. <br> Sets message 07492 as alarm (A07492): <br> Set the maximum deceleration (p2573), so that the axis, after reaching the STOP cam at the maximum velocity, does not move through a higher braking travel than is actually available. |
| Dependency: | Refer to: p1135, p2568, p2569, p2573, r2684 <br> Refer to: F07492 |



| p2573 | EPOS maximum deceleration / -a_max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3630 |
| VECTOR AC | P-Group: Basic positioner | Units group: - | Unit selection: - |
| (EPOS) ${ }^{-}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting |
|  | 1 [1000 LU/s ${ }^{2}$ ] | 2000000 [1000 LU/s²] | 100 [1000 LU/s ${ }^{2}$ ] |
| Description: | Sets the maximum deceleration for the function module "basic positioner" (r0108.4). |  |  |
| Dependency: | Refer to: p2620, p2645 |  |  |
| Note: | The maximum deceleration appears to exhibit jumps (without jerk). "Traversing blocks" operating mode: |  |  |
|  |  |  |  |
|  | The programmed deceleration override (p2620) acts on the maximum deceleration. |  |  |
|  | "Direct setpoint input/MDI" mode: |  |  |
|  | The deceleration override is effective (p2645, 4000 hex = $100 \%$ ). |  |  |
|  | "Jog" and "search for reference" modes |  |  |
|  | No deceleration override is effective. The axis breaks with the maximum deceleration. |  |  |

## p2574

SERVO (EPOS),
SERVO_AC (EPOS), VECTOR (EPOS),
VECTOR AC
(EPOS)

Description:
Dependency:
Note:

## EPOS jerk limiting / Jerk lim

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Unsigned32
P-Group: Basic positioner
Not for motor type: -

## Min

 1 [1000 LU/s ${ }^{3}$ ]Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
$100000000\left[1000 \mathrm{LU} / \mathrm{s}^{3}\right]$

Access level: 1
Func. diagram: 3635
Unit selection: -
Expert list: 1
Factory setting
10000 [1000 LU/s ${ }^{3}$ ]

Sets the jerk limiting
Refer to: p2572, p2573, p2575
The jerk limiting is internally converted into a jerk time as follows:
Jerk time $\operatorname{Tr}=\max (\mathrm{p} 2572, \mathrm{p} 2573) / \mathrm{p} 2574$
The jerk time is internally limited to 1000 ms and is rounded-off to an integer multiple of the sampling time positioning ( $\mathrm{p} 0115[5]$ ).
The jerk time is valid for the acceleration and deceleration phases also for unequal maximum acceleration (p2572) and maximum deceleration (p2573).
For unequal maximum acceleration and maximum deceleration, the motion is not optimal from a time perspective as the jerk limit cannot be used for the lower of the two values.
If, in the traversing profile, the acceleration time without jerk limiting is less than the jerk time Tr , then the motion with jerk limiting is not optimum from a time perspective.
For traversing motion with a direct transition between acceleration and deceleration (i.e. jerk time is greater than the constant velocity phase), jerk can increase up to twice the parameterized jerk.
CONTINUE_FLYING with direction reversal acts internally just like a CONTINUE_WITH_STOP without the "position reached" being set. Without jerk limiting, this behavior can hardly be noticed as, when reversing, the position setpoint is only kept at zero for one interpolator clock cycle.
For block change enable CONTINUE_WITH_STOP, jerk limiting results in a longer delay time.

| p2575 | BI: EPOS jerk limiting activation / Jerk limit act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3635 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Min | Max | Factory setting |
|  | - | 0 |  |
| Description: | Sets the signal source to activate the jerk limiting. |  |  |


|  | Activating/de-activating: <br> - using BI: p2575 = 1 signal or 0 signal. <br> - using the command JERK in the traversing block (only for BI: p2575 = 0 signal). |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: p 2574 |  |  |
| Note: | A change of the signal state at the binector input is only accepted at zero speed. |  |  |
| p2576 | EPOS modulo correction, | range / Modul |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3635 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 [LU] | 2147482647 [LU] | 360000 [LU] |
| Description: | Sets the modulo range for axes with modulo correction. |  |  |
| Dependency: | Refer to: p2577 |  |  |
| p2577 | BI: EPOS modulo correction activation / Modulo corr act |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3630, 3635 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to activate modulo correction. |  |  |
| Dependency: | Refer to: p2576 |  |  |
| Note: | When the signal state changes at the binector input, this only becomes effective in the "ready for switching on" state. |  |  |
|  | Selecting modulo correction: |  |  |
|  | The actual position setpoint in the modulo range is corrected. The position actual value differs from the position se point by the following error and can also leave the modulo range. |  |  |
|  | De-selecting modulo correction: |  |  |
|  | It is based on the actual position actual value. |  |  |
| p2578 | CI: EPOS software limit switch minus signal source / SW limSw Min S_src |  |  |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 3630 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 2580[0] |
| Description: | Sets the signal source for the software limit switch minus. |  |  |
| Dependency: | Refer to: p2579, p2580, p2581, p2582 |  |  |
|  | Refer to: A07469, A07477, A07479, F07481 |  |  |
| Notice: | A change to the software limit switch becomes immediately effective. |  |  |
| Note: | The following applies for the setting of the software limit switch: |  |  |
|  | Software limit switch minus < software limit switch plus |  |  |





| p2588 | EPOS jog 2 traversing distance / Jog 2 distance |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: U, T | Calculated: - |  |
| SERVO_AC(EPOS), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3610 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Min | Fax | Factory setting |
|  | $0[L U]$ | 1000 [LU] |  |
|  |  |  |  |
| Description: | Sets the traversing distance for incremental jog 2. |  |  |
| Dependency: | Refer to: p2586, p2590, p2591 |  |  |
| Note: | Incremental jog 2 is started with BI: p2591 = 1 signal and BI: p2590 = $0 / 1$ signal. |  |  |
|  | With BI: p2590 $=0$ signal, incremental jogging is interrupted. |  |  |


| p2589 |
| :--- |
| SERVO (EPOS), |
| SERVO_AC(EPOS), |
| VECTOR (EPOS), |
| VECTOR_AC |
| (EPOS) |

Description: $\quad$ Sets the signal source for jog 1.
Dependency: When jogging, the axis is accelerated or braked with the maximum acceleration/deceleration (p2572/p2573). BI: p2591 = 0 signal
The axis endlessly moves with the setpoint velocity, jog 1 (p2585).
BI: p2591 = 1 signal
The axis traverses through a parameterized distance (p2585) with the setpoint velocity, jog 1 ( p 2587 ).
Refer to: p2572, p2573, p2585, p2587, p2591
Notice: $\quad$ The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

| p2590 | BI: EPOS jog 2 signal source / Jog 2 S_src |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3610,3625 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Min | Max | Factory setting |
|  | - | - | 0 |

Description: Sets the signal source for jog 2.

BI: EPOS jog 1 signal source / Jog 1 S_src
Can be changed: $T \quad$ Calculated: -
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Max Factory setting

Access level: 1
Func. diagram: 3610, 3625
Unit selection: -
Expert list: 1
Factory setting 0

| Dependency: | When jogging, the axis is accelerated or braked with the maximum acceleration/deceleration (p2572/p2573). BI: p2591 = 0 signal <br> The axis endlessly moves with the setpoint velocity, jog 2 (p2586). <br> BI: p2591 = 1 signal <br> The axis traverses through a parameterized distance (p2586) with the setpoint velocity, jog 2 (p2588). <br> Refer to: p2572, p2573, p2586, p2588, p2591 |
| :---: | :---: |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| p2591 | BI: EPOS jogging incremental / Jog incr |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: $T$ Calculated: - Access level: 1 <br> Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: 3610 <br> P-Group: Basic positioner Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> - - 0 |
| Description: Dependency: | Sets the signal source for jogging incremental. <br> Refer to: p2585, p2586, p2587, p2588, p2589, p2590 |
| p2593 | CI: EPOS LU/revolution LU/mm / LU/rev LU/mm |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: $T$ Calculated: - Access level: 3 <br> Data type: Unsigned32 / FloatingPoint32 Dynamic index: - Func. diagram: 3630 <br> P-Group: Basic positioner Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> - - $2524[0]$ |
| Description: | Sets the signal source for the reference of the internal length units LU to motor revolution for rotary encoders and to mm for linear encoders. |
| Dependency: | Refer to: p0404, r2524, p2594 |
| Note: | The signal value is used to convert the length unit to the speed or velocity setpoint. |
| p2594[0...2] | CI: EPOS Maximum velocity externally limited / v_Max ext lim |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: $T$ Calculated: - Access level: 3 <br> Data type: Unsigned32 / FloatingPoint32 Dynamic index: - Func. diagram: 3630 <br> P-Group: Basic positioner Units group: - Unit selection: - <br> Not for motor type: - Scaling: p2000 Expert list: 1 <br> Min Max Factory setting <br> - - 0 |
| Description: Index: | Sets the signal source for the externally limited maximum velocity. <br> [0] = Setpoint limit absolute <br> [1] = Setpoint limiting positive <br> [2] = Setpoint limiting negative |
| Dependency: | Refer to: r2524, p2571, p2593 |
| Warning: | In order that the externally limited velocity can be effective for the EPOS operating modes, connector input p2593 must be correctly interconnected. |



| Note: | Referencing is activated as follows: <br> - Select the referencing type (BI: p2597) <br> - Start referencing (BI: p2595 = 0/1 signal) |
| :---: | :---: |
| p2598[0...3] | CI: EPOS reference point coordinate, signal source / Ref_pt coord S |
| SERVO (EPOS, Pos ctrl), SERVO_AC (EPOS, Pos ctrl), VECTOR (EPOS, Pos ctrl), VECTOR_AC (EPOS, Pos ctrl) | Can be changed: T Calculated: - Access level: 1 <br> Data type: Unsigned32 / Integer32 Dynamic index: - Func. diagram: 3612,3614 <br> P-Group: Closed loop position control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br>    <br> Min Max $[0] 2599[0]$ <br> - - $[1] 0$ <br>   $[2] 0$ <br>   $[3] 0$ |
| Description: | Sets the signal source for the reference point coordinate. <br> This value is used as reference for the following referencing operations: <br> - search for reference <br> - set reference point <br> - flying referencing <br> - absolute value adjustment |
| Index: | $\begin{aligned} & \text { [0] }=\text { Cl-loop pos ctrl } \\ & \text { [1] }=\text { Encoder } 1 \\ & \text { [2] }=\text { Encoder } 2 \\ & {[3]=\text { Encoder } 3} \end{aligned}$ |
| Dependency: | Refer to: p2502, p2507, p2595, p2596, p2597, p2599 |
| Note: | When the function module "basic positioner" (r0108.4 = 1) is activated, the following applies: <br> Incremental measuring system: <br> After the reference point is reached, the drive accepts the actual axis position from the position received via the connector input CI: p2598[0]. <br> Absolute encoder: <br> When adjusting the encoder, the position received via the connector input is set as the actual axis position. The position offset to the actual encoder value is displayed in p2525. |

p2599
SERVO (Pos ctrl),
SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl)

CO: EPOS reference point coordinate value / Ref_pt coord val

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Integer32
P-Group: Closed loop position control
Not for motor type: -
Min
-2147482648 [LU]

## Calculated: -

Dynamic index: -
Units group: -
Scaling: -
Max
2147482647 [LU]

Access level: 1
Func. diagram: 3612
Unit selection: -
Expert list: 1
Factory setting
0 [LU]

Description: Sets the position value for the reference point coordinate.
This value is set as the actual axis position after referencing or adjustment.
Dependency: Refer to: p2507, p2525, p2595, p2596, p2597, p2598



| Dependency: | Refer to: p2595, p2597, p2604, p2605, p2607 |  |  |
| :---: | :---: | :---: | :---: |
|  | Refer to: F07458 |  |  |
| Note: | When using a reversing cam, the maximum distance must be set appropriately long. |  |  |
| p2607 | EPOS search for reference, reference cam present / Ref_cam pres |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: $\cup, T$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 3612 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 1 |
| Description: | Sets whether or not a reference cam is present for the search for reference. |  |  |
|  | Value = 1: Reference cam present. |  |  |
|  | Value = 0: No reference cam present. |  |  |
| Dependency: | Refer to: p2595, p2597, p2604, p2605, p2606 |  |  |
| p2608 | EPOS search for reference, approach velocity, zero mark / v_appr ref_ZM |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Basic positioner <br> Not for motor type: - | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 3612 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Not for motor type: - | Max | Factory setting 300 [1000 LU/min] |
|  | 1 [1000 LU/min] | 40000000 [1000 LU/min] |  |
| Description: | Sets the approach velocity after detecting the reference cam to search for the zero mark for the the search for reference. |  |  |
| Dependency: | If there is no reference cam ( $\mathrm{p} 2607=0$ ), the search for reference immediately starts with the axis traversing to the zero mark. |  |  |
|  | Refer to: p2595, p2597, p2604, p2607, p2609, p2610 |  |  |
| Caution: | If the reference cam is not adjusted so that at each search for reference the same zero mark for synchronization is detected, then an "incorrect" axis reference point is obtained. |  |  |
| $\square$ | After the reference cam has been left, the search for the zero mark is activated with a time delay due to internal factors. This is the reason that the reference cam should be adjusted in this center between two zero marks and the approach velocity should be adapted to the distance between two zero marks. |  |  |
| Note: | The velocity override is not effective when traversing to the zero mark. |  |  |
| p2609 | EPOS search for reference, max. distance ref. cam and zero mark / Max s ref_cam ZM |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3612 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [LU] | 2147482647 [LU] | 20000 [LU] |
| Description: | Sets the maximum distance after leaving the reference cam when traversing to the zero mark. |  |  |
| Dependency: | Refer to: p2595, p2597, p2604, p2607, p2608, p2610 |  |  |
|  | Refer to: F07459 |  |  |


| p2610 | EPOS search for ref., tol. bandwidth for distance to zero mark / Tol_band to ZM |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3612 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [LU] | 2147482647 [LU] | 2147482647 [LU] |
| Description: | Sets the tolerance bandwidth for the distance to the zero mark |  |  |
|  | The zero mark is evaluated within the maximum distance between the reference cam and zero mark (p2609) minus the tolerance bandwidth for the distance to the zero mark (p2610). |  |  |
| Dependency: | Refer to: p2609 |  |  |
| p2611 | EPOS search for reference, approach velocity, reference point / v_appr ref_pt |  |  |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3612 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 [1000 LU/min] | 40000000 [1000 LU/min] | 300 [1000 LU/min] |
| Description: | Sets the approach velocity after detecting the zero mark to approach the reference point. |  |  |
| Dependency: | Refer to: p2595, p2597, p2604, p2607, p2609, p2610 |  |  |
| Note: | When traversing to the reference point, the velocity override is not effective. |  |  |
| p2612 | BI: EPOS search for reference, reference cam / Ref_cam |  |  |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3612 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the reference cam. |  |  |
| Dependency: | Refer to: p2607 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| p2613 | BI: EPOS search for reference reversing cam minus / Rev minus |  |  |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), VECTOR (EPOS) | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3612 |
| VECTOR AC | P-Group: Basic positioner | Units group: - | Unit selection: - |
| (EPOS) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 1 |
| Description: | Sets the signal source for the reversing cam in the negative direction of travel. 1 signal: Reversing cam not reached. |  |  |
|  |  |  |  |
|  | 0 signal: Reversing cam reached. |  |  |
| Dependency: | Refer to: p2614 |  |  |
| Note: | If, during the search for reference from the reversing cam minus and plus, a 0 signal is detected, then the axis remains stationary (at standstill). |  |  |


| p2614 | BI: EPOS search for reference reversing cam plus / Rev plus |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 1 <br> Func. diagram: 3612 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for the reversing cam in the negative direction of travel. <br> 1 signal: Reversing cam not reached. <br> 0 signal: Reversing cam reached. |  |  |
| $\overline{\text { p2615 }}$ <br> SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | EPOS maximum number <br> Can be changed: C2(17) <br> Data type: Unsigned8 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min <br> 1 | sing blocks / Trav <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 64 | max <br> Access level: 1 <br> Func. diagram: 3616 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 64 |
| Description: Dependency: | Sets the maximum number of traversing blocks that are available. <br> Refer to: p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623, p2624 |  |  |
| p2616[0...n] <br> SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | EPOS traversing block, <br> Can be changed: U, T <br> Data type: Integer16 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min <br> -1 | nber / Trav_blk, blk <br> Calculated: - <br> Dynamic index: p2615 <br> Units group: - <br> Scaling: - <br> Max <br> 63 | Access level: 1 <br> Func. diagram: 3616 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting -1 |
| Description: Dependency: | Sets a block number. <br> -1: Invalid block number. These 0 ... 63: Valid block number. <br> The number of indices depends Refer to: p2615, p2617, p2618, | taken into account. p2621, p2622, p2623, |  |
| p2617[0...n] <br> SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | EPOS traversing block <br> Can be changed: U, T <br> Data type: Integer32 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min <br> -2147482648 [LU] | Trav_block pos <br> Calculated: - <br> Dynamic index: p2615 <br> Units group: - <br> Scaling: - <br> Max <br> 2147482647 [LU] | Access level: 1 <br> Func. diagram: 3616 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 [LU] |
| Description: Dependency: | Sets the target position for the traversing block. <br> The number of indices depends on p2615. <br> Refer to: p2615, p2616, p2618, p2619, p2620, p2621, p2622, p2623, p2624 |  |  |
| Note: | The target position is approached in either relative or absolute terms depending on p2623. |  |  |


| p2618[0...n] | EPOS traversing block velocity / Trav_block v |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Integer32 | Dynamic index: p2615 | Func. diagram: 3616 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Max | Factory setting |  |
|  | Min | $40000000[1000 \mathrm{LU} / \mathrm{min}]$ | $600[1000 \mathrm{LU} / \mathrm{min}]$ |
|  | $1[1000$ LU/min $]$ |  |  |
| Description: | Sets the velocity for the traversing block. |  |  |
| Dependency: | The number of indices depends on p2615. |  |  |
|  | Refer to: p2615, p2616, p2617, p2619, p2620, p2621, p2622, p2623, p2624, p2646 |  |  |
| Note: | The velocity can be influenced using the velocity override (p2646). |  |  |

p2619[0...n] EPOS traversing block acceleration override / Trav_block a_over

SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS),
VECTOR AC (EPOS)

Can be changed: $U, T$
Data type: FloatingPoint32
P-Group: Basic positioner
Not for motor type: Min 1.0 [\%]

Calculated: -
Dynamic index: p2615
Units group: -
Scaling: -
Max
100.0 [\%]

Access level: 1
Func. diagram: 3616
Unit selection: -
Expert list: 1
Factory setting
100.0 [\%]

Description: Sets the acceleration override for the traversing block. The override refers to the maximum acceleration (p2572).
Dependency: The number of indices depends on p2615.
Refer to: p2572, p2615, p2616, p2617, p2618, p2620, p2621, p2622, p2623, p2624

| p2620[0...n] | EPOS traversing deceleration override / Trav_block -a_over |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: FloatingPoint32 | Dynamic index: p2615 | Func. diagram: 3616 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Max |
| (EPOS) | Min | 100.0 [\%] | Factory setting |
|  | 1.0 [\%] | 100.0 [\%] |  |
| Description: | Sets the deceleration override for the traversing block. |  |  |
|  | The override refers to the maximum deceleration (p2573). |  |  |
| Dependency: | The number of indices depends on p2615. |  |  |
|  | Refer to: p2573, p2615, p2616, p2617, p2618, p2619, p2621, p2622, p2623, p2624 |  |  |
|  | lf, when calculating the traversing profile, it is identified that the target position of the next block with the pro- |  |  |

p2621[0...n] EPOS traversing block task / Trav_block task

SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS)

Can be changed: U, T Calculated: -
Data type: Integer16
P-Group: Basic positioner Not for motor type: Min Max
19

Description: Sets the required task for the traversing block.
Value:

POSITIONING
FIXED STOP
ENDLESS_POS
ENDLESS_NEG
WAITING

## Access level: 1

Func. diagram: 3616
Unit selection: -
Expert list: 1
Factory setting
1

Dynamic index: p2615
Units group: -
Scaling: -

9 1

|  | 6: GOTO |  |  |
| :---: | :---: | :---: | :---: |
|  | 7: SET_O |  |  |
|  | 8: RESET_O |  |  |
|  | 9: JERK |  |  |
| Dependency: | The number of indices depends on p2615. |  |  |
|  | Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2622, p2623, p2624 |  |  |
| p2622[0...n] | EPOS traversing block task parameter / Trav_blck task_par |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Integer32 | Dynamic index: p2615 | Func. diagram: 3616 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -2147483648 | 2147483647 | 0 |
| Description: <br> Dependency: | Sets additional information/data of the appropriate task for the traversing block. |  |  |
|  | The number of indices depends on p2615. |  |  |
|  | Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2623, p2624 |  |  |
| Note: | The following should be set depending on the task: |  |  |
|  | FIXED STOP: Clamping torque and clamping force (rotary 0...65536 [0.01 Nm], linear 0... 65536 [N]) |  |  |
|  | WAIT: Delay time [ms] |  |  |
|  | GOTO: Block number |  |  |
|  | SET_O: 1, 2 or 3 - set direct output 1, 2 or 3 (both) |  |  |
|  | RESET_O: 1, 2 or 3 - reset direct output 1, 2 or 3 (both) |  |  |
|  | JERK: 0 - de-activate, 1 - activate |  |  |
| p2623[0...n] | EPOS traversing block, task mode / Trav_block mode |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: p2615 | Func. diagram: 3515, 3616 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 65535 | 0 |
| Description: | Sets the influence of the task for the traversing block. |  |  |
|  | Value $=0000$ cccc bbbb aaaa |  |  |
|  | cccc: Positioning mode |  |  |
|  | cccc = 0000 --> ABSOLUTE |  |  |
|  | cccc $=0001$--> RELATIVE |  |  |
|  | cccc $=0010$--> ABS_POS (only for a rotary axis with modulo correction) |  |  |
|  | cccc = 0011 --> ABS_NEG (only for a rotary axis with modulo correction) |  |  |
|  | bbbb: Progression condition |  |  |
|  | bbbb = 0000 --> END |  |  |
|  | bbbb = 0001 --> CONTINUE WITH STOP |  |  |
|  | $\mathrm{bbbb}=0010-\mathrm{P}$ CONTINUE FLYING |  |  |
|  | bbbb = 0011 --> CONTINUE EXTERNAL |  |  |
|  | bbbb = 0100 --> CONTINUE EXTERNAL WAIT |  |  |
|  | bbbb = 0101 --> CONTINUE EXTERNAL ALARM |  |  |
|  | aaaa: IDs |  |  |
|  | aaaa $=000 x-->$ show/hide block ( $x=0$ : show, $x=1$ : hide) |  |  |
| Dependency: | The number of indices depends on p2615. |  |  |
|  | Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2624 |  |  |


| p2624 | EPOS traversing block, sorting / Trav_block sort |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 3616 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Sets the traversing blocks for sorting corresponding to their block number. Procedure: Set p2624 = 0 --> 1 . |  |  |
| Dependency: | Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623 |  |  |
| Note: | After sorting, the traversing blocks are written at the beginning of the memory in increasing sequence without any gaps. |  |  |
| p2625 | BI: EPOS traversing block selection, bit 0 / Trav_blk sel bit 0 |  |  |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 0. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2626, p2627, p2628, p2629, p2630 |  |  |
| p2626 | BI: EPOS traversing block selection, bit 1 / Trav_blk sel bit 1 |  |  |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 1. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2625, p2627, p2628, p2629, p2630 |  |  |
| p2627 | BI: EPOS traversing block selection, bit 2 / Trav_blk sel bit 2 |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 2. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2625, p2626, p2628, p2629, p2630 |  |  |


| p2628 | BI: EPOS traversing block selection, bit 3 / Trav_blk sel bit 3 |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 3. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2625, p2626, p2627, p2629, p2630 |  |  |
| p2629 | BI: EPOS traversing block selection, bit 4 / Trav_blk sel bit 4 |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 4. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2625, p2626, p2627, p2628, p2630 |  |  |


| p2630 | BI: EPOS traversing block selection, bit 5 / Trav_blk sel bit 5 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3640 |
| VECTOR (EPOS), <br> VECTOR AC | P-Group: Basic positioner | Units group: - | Unit selection: - |
| (EPOS) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to select the traversing block, bit 5. |  |  |
| Dependency: | Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. |  |  |
|  | Refer to: p2625, p2626, p2627, p2628, p2629 |  |  |


| p2631 | BI: EPOS activate traversing task (0-> 1) / Trav_task act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), VECTOR (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3625 |
| VECTOR_AC | P-Group: Basic positioner | Units group: - | Unit selection: - |
| (EPOS) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for "activating traversing task". |  |  |
|  | BI: p2631 = 0/1 signal |  |  |
|  | The traversing task, selected using BI: p2625 ... p2630, is started. |  |  |
| Dependency: | Refer to: p2625, p2626, p2627, p2628, p2629, p2630, p2640, p2641 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |

Note: $\quad$ To start a traversing block, the axis must be referenced ( $\mathrm{r} 2684.11=1$ ). The status signal r2684.12 $=0 / 1$ signal is used for acknowledgement. A traversing task can be influenced using the following signals: - intermediate stop via BI: p2640. - reject traversing task via BI: p2641.

| p2632 | EPOS external block change evaluation / Ext BlckChg eval |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 1 |
| SERVO_AC (EPOS), | Data type: Integer16 | Dynamic index: - | Func. diagram: 3615,3616 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Max | Factory setting |  |
|  | Min | 1 | 0 |

Description: Sets the mode to evaluate "external block change".
Value: $\quad 0: \quad$ External block change via the measuring probe

1: External block change via BI: p2633
Dependency: Refer to: p2623, p2633, r2677, r2678
Note: In the mode "external block change via measuring probe ( $\mathrm{p} 2632=0$ ), the following applies: When starting a traversing block with the block change enable CONTINUE_EXTERNAL, CONTINUE_EXTERNAL_WAIT and CONTINUE_EXTERNAL_ALARM an activated "flying referencing" is interrupted. After ending the block, "flying referencing" must be re-activated via BI: p2595 = 0/1 signal.

## p2633

SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS)

BI: EPOS external block change (0 -> 1) / Ext BlckChg (0->1)
Can be changed: $T \quad$ Calculated: -
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min

Sets the signal source for "external block change".
BI: p2633 = 0/1 signal
Dependency: $\quad$ The evaluation of the signal is only active p2632 = 1 .
Refer to: p2623, p2632, p2640, p2641, r2677, r2678
Notice: $\quad$ The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:

A 0/1 edge initiates a flying block change in the subsequent traversing block.
When the external block change is identified, the actual position is saved in r2678.
A traversing task can be influenced using the following signals:

- intermediate stop via BI: p2640.
- reject traversing task via BI: p2641.

| p2634[0...n] | EPOS fixed stop maximum following error / Following err max |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: U, T | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: 3617,4025 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Max |
| (Pos ctrl) | Min | 2147482647 [LU] | Factory setting |
|  | 0 [LU] | 1000 [LU] |  |
| Description: | Sets the following error to detect the "fixed stop reached" state (r2526.4). |  |  |
| Dependency: | Refer to: r2526, p2621, r2675 |  |  |
| Note: | The state "fixed stop reached" is detected if the following error exceeds the theoretically calculated following error |  |  |


| p2635 | EPOS fixed stop monitoring window / Fixed stop monit |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR (Pos ctrl), VECTOR_AC (Pos ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 3617, 4025 |
|  | P-Group: Closed loop position control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [LU] | 2147482647 [LU] | 100 [LU] |
| Description: <br> Dependency: | Sets the monitoring window of the actual position after the fixed stop is reached. |  |  |
|  |  |  |  |
|  | Refer to: F07484 |  |  |
| Note: | If, after the fixed stop is reached, the end stop shifts in either the positive or negative direction by more than the value set here, then BO: 22526.5 is set to 1 and an appropriate message is output. |  |  |
| p2637 | BI: EPOS fixed stop reached / Fixed stop reached |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: $T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Basic positioner | Calculated: - | Access level: 1 |
|  |  | Dynamic index: - | Func. diagram: 3616, 3617 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 2526.4 |
| Description: | Sets the signal source for the feedback signal "fixed stop reached". |  |  |
|  | BI: $\mathrm{p} 2637=1$ signal |  |  |
|  | Fixed stop is reached. |  |  |
|  | BI: p2637 $=0$ signal |  |  |
|  | Fixed stop is not reached. |  |  |
| Dependency: | Refer to: r2526, p2634 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | The identification of "fixed stop reached" is, for the factory setting, dependent on the signal BO: r2526.4 (fixed stop reached). This signal is influenced via p2634 (EPOS fixed stop, maximum following error). |  |  |
| p2638 | BI: EPOS fixed stop outside the monitoring window / Fixed stop outside |  |  |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3617 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | 2526.5 |
| Description: | Sets the signal source for the feedback signal "fixed stop outside the monitoring window". |  |  |
|  |  |  |  |
|  | Fixed stop is located outside the monitoring window. |  |  |
|  | BI: p2638 = 0 signal |  |  |
|  | Fixed stop is inside the monitoring window. |  |  |
| Dependency: | Refer to: r2526, p2635 |  |  |
| Note: | The identification of "fixed stop outside the monitoring window" is, for the factory setting, dependent on signal BO: r2526.5 (fixed stop outside window). This signal is influenced via p2635 (EPOS fixed stop monitoring window). |  |  |



| p2641 | BI: EPOS reject traversing task (0 signal) / Trav_task reject |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3616, 3620, 3625 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for "do not reject traversing task/reject traversing task". |  |  |
|  | BI: p2641 = 1 signal |  |  |
|  | Do not reject traversing task. |  |  |
|  | BI: p2641 = 0 signal |  |  |
|  | Reject traversing task. |  |  |
| Dependency: | Refer to: p2631, p2640, p2647, p2649 |  |  |
| Caution: | For BI: p2649 = 1 signal, the following applies: |  |  |
|  | Motion starts without any explicit control signal. |  |  |
| Notice:Note: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
|  | This signal is only effective in the modes "traversing blocks" and "direct setpoint input/MDI". |  |  |
|  | When activating reject traversing tasks, then the axis brakes with the maximum deceleration (p2573). |  |  |
| p2642 | CI: EPOS direct setpoint input/MDI position setpoint / MDI s_set |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 3618 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 2690[0] |
| Description: | Sets the signal source for the position setpoint in the mode "direct setpoint input/MDI". |  |  |
| Dependency: | Refer to: p2648, p2649, p2650, p2690 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Depending on p2649, the position setpoint is either transferred continuously or edge-triggered. |  |  |
|  | The position setpoint input is interpreted as length unit [LU]. |  |  |
| p2643 | CI: EPOS direct setpoint input/MDI velocity setpoint / MDI v_set |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 3618 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 2691[0] |
| Description: | Sets the signal source for the velocity setpoint in the "direct setpoint input/MDI mode". |  |  |
| Dependency: | Refer to: p2649, p2650, p2691 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Depending on p2649, the velocity setpoint is either transferred continuously or edge-triggered. The velocity setpoint input is interpreted as [1000 LU/min]. |  |  |


| p2644 | CI: EPOS direct setpoint input/MDI acceleration override / MDI a_over |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 3618 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 2692[0] |
| Description: | Sets the signal source for the acceleration override in the operating mode "direct setpoint input/MDI". |  |  |
| Dependency: | Refer to: p2649, p2650, p2692 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Depending on p2649, the acceleration override is either transferred continuously or edge-triggered. |  |  |
|  | The signal value 4000 hex (16384 dec) corresponds to $100 \%$. |  |  |
| p2645 | CI: EPOS direct setpoint input/MDI deceleration override / MDI -a_over |  |  |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 3618 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 2693[0] |
| Description: | Sets the signal source for the deceleration override in the operating mode "direct setpoint input/MDI". |  |  |
| Dependency: | Refer to: p2649, p2650, p2693 |  |  |
| Notice: | If, when calculating the traversing profile, it is identified that the target position with the programmed deceleration override cannot be reached without reversing the direction, then when accepting the dynamic values, the larger deceleration override is accepted and becomes effective. |  |  |
|  | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | Depending on p2649, the deceleration override is either transferred continuously or edge-triggered. The signal value 4000 hex ( 16384 dec ) corresponds to $100 \%$. |  |  |
|  |  |  |  |


| p2646 | CI: EPOS velocity override / v_over |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 3630 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 1 |
| Description: | Sets the signal source for the velocity override. |  |  |
|  | This velocity override is effective in the following operating modes "direct setpoint input/MDI", "traversing blocks", "jogging" and "search for reference" (when approaching the reference cam). |  |  |
| Dependency: | Refer to: p2571, p2585, p2586, p2605, p2618, p2643, r2681 |  |  |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| Note: | The effective override (r2681) can differ from the specified override due to limits (e.g. maximum velocity). |  |  |
| p2647 | BI: EPOS direct setpoint input/MDI selection / MDI selection |  |  |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3620, 3625, 3640 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Sets the signal source for selecting the op | ng mode "direct set |  |


| Dependency: | Refer to: p2640, p2641, p2642, p2643, p2644, p2645, p2646, p2648, p2649, p2650, p2651, p2652, p2653 |
| :--- | :--- |
| Note: | In this mode, using BI: p2653 it is possible to make a flying changeover between setting-up and positioning. |
|  | In this mode, even if the axis is not referenced $(r 2684.11=0)$ relative positioning is possible. |



|  | BI: p2650 = 0/1 signal and BI: p2649 = 0 signal |
| :--- | :--- |
| Values are accepted, edge-triggered (refer to parameter under dependency). |  |
| Dependency: | Refer to: p2640, p2641, p2642, p2643, p2644, p2645, p2648, p2649, p2651, p2652, r2684 |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | The status signal r2684.12 = 0/1 signal is used for acknowledgement. |
|  | The operating mode "direct setpoint input/MDI" can be influenced via the following signals: |
|  | - intermediate stop via BI: p2640. |
|  | - reject traversing task via BI: p2641. |

## p2651

SERVO (EPOS),

SERVO_AC (EPOS),
VECTOR (EPOS),
VECTOR_AC (EPOS)

Description:
Dependency:
Note:

BI: EPOS direct setpoint input/MDI direction selection, positive / MDI dir_sel pos
Can be changed: T
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min

## Calculated: -

Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 1
Func. diagram: 3620
Unit selection: -
Expert list: 1
Factory setting
0

Sets the signal source for the positive direction selection in the operating mode "direct setpoint input/MDI".
Refer to: p2576, p2648, p2649, p2650, p2652, p2653, p2654
The following applies for "setting-up":

- the traversing direction can be entered using this binector input.
- if both directions (p2651, p2652) are selected, then the axis remains stationary (zero speed).
- if both directions (p2651, p2652) are de-selected, then the axis remains stationary (zero speed).

The following applies for "positioning":
Using binector inputs p2651 and p2652, when the modulo correction ( BI : p2577 = 1 signal) is activated and for absolute positioning ( BI : p2648 = 1 signal), the traversing direction is specified as follows:
BI: p2651 / BI: p2652
0 signal / 0 signal: Absolute positioning through the shortest distance.
1 signal / 0 signal: Absolute positioning in the positive direction.
0 signal / 1 signal: Absolute positioning in the negative direction.
1 signal / 1 signal: Absolute positioning through the shortest distance.

## p2652

SERVO (EPOS), SERVO_AC (EPOS) VECTOR (EPOS), VECTOR_AC (EPOS)

## Description:

BI: EPOS direct setpoint input/MDI direction selection, negative / MDI dir_sel neg Can be changed: T
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group:
Scaling: -
Max

Access level: 1
Func. diagram: 3620
Unit selection: -
Expert list: 1
Factory setting

## 0

Sets the signal source for the negative direction selection in the operating mode "direct setpoint input/MDI".

Note:

The following applies for "setting-up":

- the traversing direction can be entered using this binector input.
- if both directions (p2651, p2652) are selected, then the axis remains stationary (zero speed).
- if both directions (p2651, p2652) are de-selected, then the axis remains stationary (zero speed).

The following applies for "positioning":
Using binector inputs p2651 and p2652, when the modulo correction ( BI : p2577 = 1 signal) is activated and for absolute positioning (BI: p2648 = 1 signal), the traversing direction is specified as follows:
BI: p2651 / BI: p2652
0 signal / 0 signal: Absolute positioning through the shortest distance.
1 signal / 0 signal: Absolute positioning in the positive direction.
0 signal / 1 signal: Absolute positioning in the negative direction.
1 signal / 1 signal: Absolute positioning through the shortest distance.

| p2653 | BI: EPOS direct setpoint input/MDI setting-up selection / MDI setting-up sel |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3620 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for setting-up in the operating mode "direct setpoint input/MDI". |  |  |
|  | $\mathrm{BI}: \mathrm{p} 2653=1$ signal |  |  |
|  | Setting-up selected. |  |  |
|  | BI: p2653 = 0 signal |  |  |
|  | Positioning selected. |  |  |
| Dependency: Note: | Refer to: p2651, p2652 |  |  |
|  | In the operating mode "direct setpoint input/MDI", it is possible to make a flying changeover between setting-up and positioning. |  |  |
|  | For "setup" (BI: p2653 = 1 signal), the following applies: |  |  |
|  | A traversing direction must be selected via binector inputs p2651 and p2652. |  |  |
| p2654 | CI: EPOS direct setpoint input/MDI mode adaptation / MDI mode adapt |  |  |
| $\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { VECTOR_AC } \\ & \text { (EPOS) } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 3620 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to interconnect the MDI mode to the operating mode "direct setpoint input MDI" via PROFIBUS telegram 110. |  |  |
|  | CI: p2654 = 0 |  |  |
|  | The binector inputs listed below are evaluated. |  |  |
|  | CI: p2654 > 0 |  |  |
|  | The following binector inputs are not evaluated: |  |  |
|  | - BI: p2648 (positioning type) |  |  |
|  | - BI: p2651 (direction selection, positive) |  |  |
|  | - BI: p2652 (direction selection, negative) |  |  |
|  | In this case, the following definitions apply: |  |  |
|  | Signal via CI: 2654 = xx0x hex -> absolute |  |  |
|  | Signal via CI: p2654 = xx1x hex -> relative |  |  |
|  | Signal via CI: p2654 = xx2x hex -> abs_pos (only for modulo correction) |  |  |
|  | Signal via CI: p2654 = xx3x hex -> abs_neg (only for modulo correction) |  |  |
| Dependency: | Refer to: p2648, p2651, p2652 |  |  |


| p2655[0..1] | BI: EPOS select tracking mode / Sel tracking mode |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: T | Calculated: - |  |
| SERVO_AC (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3635 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Max | Factory setting |  |
|  | - | - | $[0] 1$ |
|  |  | $[1] 2526.7$ |  |
| Description: | Sets the signal source to select tracking mode. |  |  |


|  | BI: $\mathrm{p} 2655[0]$ or $\mathrm{BI}: \mathrm{p} 2655[1]=1$ signal |
| :--- | :--- |
|  | Tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal). |
|  | BI: $\mathrm{p} 2655[0]$ and $\mathrm{BI}: \mathrm{p} 2655[1]=0$ signal |
|  | No tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal). |
| Dependency: | Refer to: p2656 |
| Notice: | The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |
| Note: | For the following events, independent of the signal that is present, tracking mode is selected: |
|  | - after booting. |
|  | - after a 0/1 signal at BI: p2658 (EPOS position actual value, valid feedback signal). |
|  | - while a fault is present. |


| p2656 | BI: EPOS enable basic positioner / EPOS enable |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (EPOS), | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC (EPOS), | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3635 |
| VECTOR (EPOS), | P-Group: Basic positioner | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (EPOS) | Min | Factory setting |  |
|  | - | 2526.3 |  |
| Description: | Sets the signal source to enable the basic positioner. |  |  |
|  | BI: p2656 = 1 signal |  |  |
|  | The basic positioner is enabled. |  |  |
|  | BI: p2656 = 0 signal |  |  |
| Dependency: | The basic positioner is not enabled. | Refer to: r2526, p2655 |  |


| p2657 | CI: EPOS position actual value/position setting value / Pos act/set value |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), <br> SERVO_AC (EPOS), <br> VECTOR (EPOS), <br> VECTOR_AC <br> (EPOS) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 3610, 3616, 3620, 3635 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 2521[0] |
| Description: | Sets the signal source for the position actual value/position setting value. |  |  |
| Dependency: | Refer to: r2521, p2658 |  |  |
| Note: | In the tracking mode, the position setpoint is taken from this connector input. |  |  |
| p2658 | BI: EPOS pos. actual value valid, feedback signal / Pos valid feedback |  |  |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 3635 |
|  | P-Group: Basic positioner | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 2526.0 |
| Description: | Sets the signal source for the feedback signal "position actual value is valid". |  |  |
|  |  |  |  |
|  | The position actual value received via Cl : p 2657 is valid. |  |  |
|  | BI: p2658 = 0 signal |  |  |
|  | The position actual value received via Cl : p 2657 is invalid. |  |  |
| Dependency: | Refer to: r2526, p2657 |  |  |
| Note: | While a 0 signal is present, the position setpoint (p2665) is held at the value of 0 . |  |  |


| p2659 | BI: EPOS referencing active feedback signal / Ref act fdbk |  |
| :---: | :---: | :---: |
| SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | Can be changed: T Calculated: - <br> Data type: Unsigned32 / Binary Dynamic index: - <br> P-Group: Basic positioner Units group: - <br> Not for motor type: - Scaling: - <br> Min Max | Access level: 3 <br> Func. diagram: 3612 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $2526.1$ |
| Description: | Sets the signal source for the feedback signal "referencing active". <br> BI: p2659 = 1 signal <br> Referencing is active. <br> BI: p2659 = 0 signal <br> Referencing is not active. <br> Refer to: r2526 |  |
| p2660 <br> SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | CI: EPOS measured value referencing / Meas val ref | Access level: 3 <br> Func. diagram: 3612, 3614 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 2523[0] |
| Description: <br> Dependency: | Sets the signal source for the measured value for the function "referencing". <br> Refer to: r2523 |  |
| p2661 <br> SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | BI: EPOS measured value valid, feedback signal / MeasVal | lid fdbk <br> Access level: 3 <br> Func. diagram: 3612, 3614, 3615 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 2526.2 |
| Description: Dependency: | Sets the signal source for the feedback signal "measured value valid". <br> BI: p2661 = 1 signal <br> The measured value received via Cl : p2660 is valid. <br> BI: p2661 $=0$ signal <br> The measured value received via CI: p2660 is invalid. <br> Refer to: r2526, p2660 |  |
| p2662 <br> SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | BI: EPOS adjustment value valid feedback signal / Adj val valid | id FS <br> Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $2526.9$ |
| Description: | Sets the signal source for the feedback signal "adjustment value valid". <br> BI: p2662 = 1 signal <br> The adjustment value received via Cl : p 2660 is valid. <br> BI: p2662 $=0$ signal <br> The adjustment value received via Cl : p2660 is not valid. |  |





| r2676 | CO: EPOS actual ta | Task para ac |  |
| :---: | :---: | :---: | :---: |
| SERVO (EPOS), <br> SERVO_AC (EPOS), VECTOR (EPOS), <br> VECTOR_AC (EPOS) | Can be changed: - <br> Data type: Integer32 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 1 <br> Func. diagram: 3616 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: <br> Dependency: <br> Note: | The following is displayed depending on the task: <br> FIXED STOP: Clamping torque ( $0 \ldots 65536$ [ 0.01 Nm ) or <br> WAIT: Delay time [ms] <br> GOTO: Block number <br> SET_O: 1, 2, 3 --> direct output 1, 2 or 3 (both) is set <br> RESET_O: 1, 2, 3 --> direct output 1, 2 or 3 (both) is set <br> JERK: 0 --> de-activate, 1 --> activate |  |  |
| $\overline{\text { r2677 }}$ <br> SERVO (EPOS), SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | CO: EPOS actual tas <br> Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min | k mode act <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 1 <br> Func. diagram: 3616 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: <br> Dependency: | Displays the task mode pre Refer to: p2623 | sed. |  |
| r2678 <br> SERVO (EPOS), <br> SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | CO: EPOS external b <br> Can be changed: - <br> Data type: Integer32 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min <br> - [LU] | actual position <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [LU] | g s_act <br> Access level: 1 <br> Func. diagram: 3615, 3616, 3620 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [LU] |
| Description: | Displays the actual position <br> - external block change via <br> - external block change via <br> - activate traversing task ( <br> Refer to: p2631, p2632, p | events: $\begin{aligned} & (\mathrm{p} 2632=0, \mathrm{BI}: \text { p26 } \\ & =1, \mathrm{BI}: \text { p2633 }=0 / \end{aligned}$ <br> nal). |  |
| r2680 <br> SERVO (EPOS), <br> SERVO_AC (EPOS), VECTOR (EPOS), VECTOR_AC (EPOS) | CO: EPOS clearance <br> Can be changed: - <br> Data type: Integer32 <br> P-Group: Basic positioner <br> Not for motor type: - <br> Min <br> - [LU] | am and zero m <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [LU] | ce cam/ZM <br> Access level: 1 <br> Func. diagram: 3612 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [LU] |
| Description: | Displays the clearance determined between the reference cam and zero mark in the search for reference. |  |  |



Note: $\quad$ Re bit 02,04,05,06,07: $\quad$ This signals designate the state after jerk limiting. $\quad$| Re bit 08,09: |
| :--- |
| These signals are generated in the "closed-loop position control" function module. |

r2683.0... 14 CO/BO: EPOS status word 1 / POS_ZSW1


| r2684.0...15 | CO/BO: EPOS status word 2 / POS_ZSW2 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Pos ctrl), | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC (Pos | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 3646 |
| ctrl), VECTOR (Pos | P-Group: Closed loop position control | Units group: - | Unit selection: - |
| ctrl), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Pos ctrl) | Max | Factory setting |  |
|  | Min | - | - |
| Description: | - | Displays status word 2 for the basic positioner (EPOS). |  |
| Bit field: | Bit Signal name | 1 signal | Active |
|  | 00 | Search for reference active | Active |
|  | 01 | Flying referencing active | Active |
|  | 02 | Referencing active | Yes |






| r2700 | CO: Reference velocity/reference frequency actual / v_ref/f_ref act |
| :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: - Calculated: - Access level: 2 |
|  | Data type: FloatingPoint32 Dynamic index: - Func. diagram: - |
|  | P-Group: - Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | - - - |
| Description: | Display and connector output for the actual reference quantity for velocity and frequency. |
|  | All velocities or frequencies specified as relative value are referred to this reference quantity. |
|  | The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |
|  | The following applies: Reference frequency (in Hz ) = reference velocity (in $\mathrm{m} / \mathrm{min}$ ) / 60 |
| Dependency: | Refer to: p2000 |
| Note: | This parameter represents the numerical value of the reference quantity in the currently selected units and is only available for interconnection with Drive Control Chart (DCC). |
|  | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |
|  | Example 1: |
|  | The signal of an analog input (e.g. r4055[0]) is connected to a velocity setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute velocity setpoint using the reference velocity (p2000). |
|  | Example 2: |
|  | The setpoint from PROFIBUS (r2050[1]) is connected to a velocity setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute velocity setpoint via reference velocity (p2000). |

r2701
A_INF, B_INF,
S INF, SERVO,
SERVO_AC, SERVO_IAC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC

## Description:

Dependency:
Note:

CO: Reference voltage / Reference voltage
Can be changed: -
Data type: FloatingPoint32
P-Group: -
Not for motor type: -

## Min

M
Connector output of the reference quantity for voltages p2001 All voltages specified as relative value are referred to this reference quantity. The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). This parameter has the unit Vrms. Refer to: p2001 This BICO parameter provides the numerical value of the reference quantity p2001 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.

## r2702

A_INF, B_INF
S INF, SERVO,
SERVO_AC, SERVO_IAC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC

CO: Reference current / Reference current
Can be changed: -
Data type: FloatingPoint32
P-Group: -
Not for motor type: -

Min

Description: Connector output of the reference quantity for currents p2002.

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1

## Factory setting

|  | All currents specified as relative value are referred to this reference quantity. |
| :--- | :--- |
| The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |
| This parameter has the unit Arms. |  |
| Dependency: | Refer to: p2002 |
| Note: | This BICO parameter provides the numerical value of the reference quantity p2002 as a connector output for inter- <br> connection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector <br> output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication. |


| r2703 | CO: Reference torque / Reference torque |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, <br> TM41, VECTOR | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
| Description: | Connector output of the refe All torques specified as rela tity. <br> The reference quantity corre The unit of this parameter is | 2003 for torque (r01 $8.12=0$ ) or forces ( or 4000 hex (word) unit selected for p 2 | $\mathrm{e}(\mathrm{r0108.12}=1) \text {. }$ <br> referred to this ref <br> $x$ (double word). |
| Dependency: | p0505, r0108.12 |  |  |
| Note: | This BICO parameter provides the numerical value of the reference quantity p2003 in the currently selected unit as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication. |  |  |
| r2703 | CO: Reference force actual / Ref force cur |  |  |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | Displays the actual referenc All forces specified as relativ The reference quantity corre | ees. or to this reference 4000 hex (word) | (double word). |
| Dependency: | p0505, r0108.12 |  |  |
| Note: | This BICO parameter represents the numerical value of the reference quantity in the currently selected units and is only available for interconnection with Drive Control Chart (DCC). It is not suitable for interconnecting for cyclic communication. |  |  |
|  | If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. |  |  |
|  | Example: |  |  |
|  | The actual value of the total force ( $\mathrm{rOO79}[0]$ ) is connected to a test socket (e.g. p0771[0]). The actual force is cyclically converted into a percentage of the reference force (p2003) and output according to the parameterized scaling. |  |  |


| r2704 | CO: Reference power / Reference power |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { TM41,VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | F |
| Description: | Connector output of the reference quantity for powers p2004. |  |  |
|  | All power ratings specified as relative value are referred to this reference quantity. |  |  |
|  | The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word). |  |  |
|  | The unit of this parameter is the same as the unit selected for p2004. |  |  |
| Dependency: | This value is calculated as voltage x current for the infeed and as torque x speed for closed-loop controls. Refer to: r2004 |  |  |
| Note: | This BICO parameter provides the numerical value of the reference quantity p2004 in the currently selected unit as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication. |  |  |
|  | The reference power is calculated as follows: |  |  |
|  | - 2 * Pi * reference speed/ 60 * reference torque (motor) |  |  |
|  | - reference voltage * reference current * root(3) (infeed) |  |  |

r2705
A_INF, B_INF,
S_INF, SERVO,
SERVO_AC,
SERVO_IAC,
TM41, VECTOR,
VECTOR_AC,
VECTOR_I_AC

## CO: Reference angle / Reference angle

A_INF, B_INF
S_INF, SERVO,
SERVO_AC, TM41, VECTOR VECTOR_AC VECTOR_I_AC

## Description:

Min
Connector output of the reference quantity for angles p2005.
All angles specified as relative value are referred to this reference quantity.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
This parameter has the unit degree.
Refer to: p2005
This BICO parameter provides the numerical value of the reference quantity p2005 as a connector output for inter-
connection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector
output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.


The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). This parameter has the unit degree Celsius. put for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.

| r2707 | CO: Reference acceleration / Ref accel |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: - | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  |  |  |  |  |
|  | Min | Max | Factory |  |
|  | - | - | - |  |
| Description: | Connector output of the reference quantity for accelerations p2007. |  |  |  |
|  | All acceleration rates specified as relative value are referred to this reference quantity. |  |  |  |
|  | The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |  |
|  | The unit of this parameter is the same as the unit selected for p2007. |  |  |  |
| Dependency: | r0108.12, p0505 |  |  |  |
|  | Refer to: p2007 |  |  |  |
| Note: | This BICO parameter provides the numerical value of the reference quantity p2007 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value in the currently selected unit can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication. |  |  |  |
| p2720[0...n] | Load gear configuration / Load gear config |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(1,4)$ | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: - |  |
|  | P-Group: Encoder | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | 0000 bin |  |
| Description: | Sets the configuration for position tracking of a load gear. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Load gear, activate position tracking | Yes | No | - |
|  | 01 Axis type | Linear axis | Rotary axis | - |
|  | 02 Load gear, reset position | Yes | No | - |

Note: $\quad$ For the following events, the non-volatile, saved position values are automatically reset:

- when an encoder replacement has been identified.
- when changing the configuration of the Encoder Data Set (EDS).
- when adjusting the absolute encoder again

| p2721[0...n] | Load gear, rotary absolute encoder, revolutions, virtual / Abs rot rev |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: $\mathrm{C} 2(1,4)$ | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | 4194303 | Factory setting |
|  | 0 | 0 |  |
| Description: | Sets the number of rotations that can be resolved for a rotary absolute encoder with activated position tracking of |  |  |
|  | the load gear. |  |  |
| Dependency: | This parameter is only of significance for an absolute encoder $(p 0404.1=1)$ with activated position tracking of the |  |  |
|  | load gear $(p 2720.0=1)$. |  |  |


| Note: | The resolution that is set must be able to be represented using r2723. <br> For rotary axes/modulo axes, the following applies: <br> This parameter is pre-set with p0421 and can be changed. <br> For linear axes, the following applies: <br> This parameter is pre-assigned with p0421, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed. |
| :---: | :---: |
| p2722[0...n] | Load gear, position tracking tolerance window / Pos track tol |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(1,4) Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: - <br> P-Group: Encoder Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0.00 4294967300.00 0.00 |
| Description: | Sets a tolerance window for position tracking. <br> After the system is powered up, the difference between the saved position and the actual position is determined, and depending on this, the following is initiated: <br> Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value. <br> Difference outside the tolerance window --> An appropriate message is output. |
| Dependenc | Refer to: F07449 |
|  | Rotation, e.g. through a complete encoder range is not detected. |
| Note: | The value is entered in integer (complete) encoder pulses. <br> For p2720.0 = 1, the value is automatically pre-assigned quarter of the encoder range. <br> Example: <br> Quarter of the encoder range $=(p 0408$ * p 0421$) / 4$ <br> It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa). |


| r2723[0...n] | CO: Load gear absolute value / Load gear abs_val |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: 4010,4704 |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the absolute value after the load gear. |  |  |
| Notice: | The encoder position actual value must be requested using the encoder control word Gn_STW. 13. |  |  |
| Note: | The increments are displayed in the format the same as r0483. |  |  |


| r2724[0...n] | CO: Load gear position difference / Load gear pos diff |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 1 |
| SERVO_AC, | Data type: Integer32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Min | - | Factory setting |
|  | - | - |  |
| Description: | Displays the position difference before the load gear between powering down and powering up. 1 |  |  |
| Note: | The increments are displayed in the same format as for r0483/r2723. |  |  |
|  | If the measuring gear of the motor encoder is not activated, the position difference should be read in encoder incre- |  |  |
|  | ments. |  |  |



| Dependency: | Refer to: r2817 |
| :--- | :--- |
| Note: | [0]: OR logic operation, input $1-->$ the result is displayed in r2817.0. |
|  | [1]: OR logic operation, input 2 --> the result is displayed in r2817.0. |


| r2817.0 | CO/BO: OR logic operation result / OR result |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2634 |
| SERVO_I_AC, VEC- | P-Group: Functions | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the result of the OR logic operation. |  |  |
| Bit field: | Bit Signal name | 1 signal | Yes |
|  | 00 OR logic operation result |  | No signal |
| Dependency: | Refer to: p2816 |  | No |


| p2900 | CO: Fixed value 1 [\%] / Fixed value 1 [\%] |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Dyn. grid | Can be changed: U, T | Calculated: - | Access level: 3 |
| support, Line transf) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1021 |
|  | P-Group: Free function blocks | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-10000.00[\%]$ | 0.00 [\%] |  |
| Description: | Sets a fixed percentage. |  |  |
| Dependency: | Refer to: p2901, p2930 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The value can be used to interconnect a scaling function (e.g. scaling of the main setpoint) |  |  |


| p2900[0...n] | CO: Fixed value 1 [\%] / Fixed value 1 [\%] |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1021 |
| SERVO_I_AC, VEC- | P-Group: Free function blocks | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | -10000.00 [\%] |  | 0.00 [\%] |
|  | Sets a fixed percentage. |  |  |
| Description: | Refer to: p2901, p2930 |  |  |
| Dependency: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Notice: | The value can be used to interconnect a scaling function (e.g. scaling of the main setpoint) |  |  |

p2901
A_INF (Dyn. grid
support, Line transf)
Can be changed: U, T
Data type: FloatingPoint32
P-Group: Free function blocks
Not for motor type: -
Min
-10000.00 [\%]
Description:
Sets a fixed percentage.
Dependency:
Notice: $\quad$ A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
Note:

Calculated: -
Dynamic index: -
Units group: -
Scaling: PERCENT
Max
10000.00 [\%]

Access level: 3
Func. diagram: 1021
Unit selection: -
Expert list: 1
Factory setting
0.00 [\%]

| p2901[0...n] | CO: Fixed value 2 [\%] / Fixed value 2 [\%] |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1021 |
| SERVO_IAC, VEC- | P-Group: Free function blocks | Units group: - | Unit selection: - |
| TOR, VECCOR_AC, | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | $10000.00[\%]$ | $0.00[\%]$ |
|  | $-10000.00[\%]$ |  |  |
| Description: | Sets a fixed percentage. |  |  |
| Dependency: | Refer to: p2900, p2930 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint) |  |  |

r2902[0...14] CO: Fixed values [\%] / Fixed values [\%]

SERVO,
SERVO_AC,
SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Can be changed: -
Data type: FloatingPoint32
P-Group: Free function blocks
Not for motor type: -
Min

- [\%]
$-[\%]$ - [\%]
Signal sources for frequently used percentage values.
[ 0 ] = Fixed value +0 \%
[1] = Fixed value +5 \%
[2] = Fixed value $+10 \%$
[3] = Fixed value $+20 \%$
[4] = Fixed value $+50 \%$
[5] = Fixed value +100 \%
[6] = Fixed value +150 \%
[7] = Fixed value $+200 \%$
[8] = Fixed value -5 \%
[9] = Fixed value - 10 \%
[10] = Fixed value -20 \%
[11] = Fixed value -50 \%
[12] = Fixed value -100 \%
[13] = Fixed value - 150 \%
[14] = Fixed value -200 \%
Dependency: Refer to: p2900, p2901, p2930
Note: The signal sources can, for example, be used to interconnect scalings.
Description:

Access level: 1
Func. diagram: 1021
Unit selection: -
Expert list: 1
Factory setting

- [\%]

| p2930[0...n] | CO: Fixed value $\mathbf{M}[\mathbf{N m}] /$ Fixed value $\mathbf{M}[\mathbf{N m}]$ |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1021 |
| SERVO_I_AC, VEC- | P-Group: Free function blocks | Units group: 7_1 | Unit selection: p0505 |
| TOR, , TECTOR_AC, | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | $100000.00[\mathrm{Nm}]$ | $0.00[\mathrm{Nm}]$ |
|  | $-100000.00[\mathrm{Nm}]$ |  |  |
| Description: | Sets a fixed value for torque. |  |  |
| Dependency: | Refer to: p2900, p2901 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The value can, for example, be used to interconnect a supplementary torque. |  |  |


| p2930[0...n] | CO: Fixed value F [N] / Fixed value F [N] |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 1021 |
|  | P-Group: Free function blocks | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -100000.00[\mathrm{~N}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100000.00[\mathrm{~N}] \end{aligned}$ | Factory setting 0.00 [ N ] |
| Description: | Sets a fixed value for force. |  |  |
| Dependency: | Refer to: p2900, p2901 |  |  |
| Notice: | A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |  |  |
| Note: | The value can, for example, be used to interconnect a supplementary force. |  |  |
| p3016 | Motld torque constant identified / kT ident |  |  |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: 28_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$ | Factory setting 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: | Torque constant for the synchronous motor determined by the motor data identification. <br> This torque constant can be changed after the identification and accepted in p0316 with p1910/p1960 $=-3$. |  |  |
| Dependency: | Refer to: p0316, r0334, r1937, p1960 |  |  |
| p3016 | Motld force constant identified / kT ident |  |  |
| SERVO (Lin), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
|  | P-Group: Motor identification | Units group: 29_1 | Unit selection: p0100 |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [N/Arms] | Max 1000.00 [N/Arms] | Factory setting 0.00 [N/Arms] |
| Description: | Force constant for a synchronous linear motor determined by the motor data identification. <br> This force constant can be changed after the identification and is accepted in p0316 with p1910/p1960 = -3. |  |  |
| Dependency: | Refer to: p0316, r0334, r1937, p1960 |  |  |
| p3017 | Motld voltage constant identified / kE ident |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, REL, FEM | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [Vrms] } \end{aligned}$ | Max <br> 10000.0 [Vrms] | Factory setting 0.0 [Vrms] |
| Description: | Voltage constant for a synchronous motor determined by the motor data identification. <br> This voltage constant can be changed after the identification and accepted in p0317 with p1910/p1960 = -3. Units for rotating synchronous motors: Vrms/(1000 rpm), phase-to-phase |  |  |
| Dependency: | Refer to: p0317, r1938, p1960 |  |  |


| p3017 | Motld voltage constant ide | / kE ident |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM <br> Min <br> 0.0 [Vrms s/m] | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 1000.0 [Vrms s/m] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.0 [Vrms s/m] |
| Description: Dependency: | Voltage constant for a synchronous linear motor determined by the motor data identification. This voltage constant can be changed after the identification and accepted in p0317 with p1910/p1960 $=-3$. Units for linear synchronous motors: Vrms s/m, phase |  |  |
| p3020 | Motld magnetizing current identified / I_mag ident |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: REL, FEM <br> Min <br> 0.000 [Arms] | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 5000.000 [Arms] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0.000 [Arms] |
| Description: Dependency: | Magnetizing current for an induction motor determined by the motor data identification. <br> This magnetizing current can be changed after the identification and accepted in p0320 with p1910/p1960 $=-3$. Refer to: p0320, r0331, p1910, r1948, p1960 |  |  |
| p3027 | Motld optimum load angle identified / phi_load opt ident |  |  |
| SERVO, SERVO AC, SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM <br> Min <br> $\left.0.0{ }^{\circ}{ }^{\circ}\right]$ | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 135.0 [ ${ }^{\circ}$ ] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $\left.0.0{ }^{\circ}{ }^{\circ}\right]$ |
| Description: Dependency: | Optimum load angle for a synchronous motor determined by the motor data identification. <br> This optimum load angle can be changed after the identification and accepted in p0327 with p1910/p1960 $=-3$. <br> Refer to: p0327, r1947, p1960 |  |  |
| p3028 | Motld reluctance torque constant identified / kT_reluct ident |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM <br> Min <br> $-1000.00[\mathrm{mH}]$ | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> $1000.00[\mathrm{mH}]$ | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $0.00[\mathrm{mH}]$ |
| Description: | Reluctance torque constant for a synchronous motor determined by the motor data identification. <br> This reluctance torque constant can be changed after the identification and accepted in p0328 with p1910/p1960 $=$ -3. |  |  |
| Dependency: | Refer to: p0328, r1939, p1960 |  |  |




| p3045 | Motld f | t |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM Min <br> -340.28235E36 [N/Arms] | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 340.28235E36 [N/Arms] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [N/Arms] |
| Description: Dependency: | Coefficient kT1 for the force characteristic for a synchronous linear motor determined by the motor data identification. |  |  |
| $\begin{aligned} & \text { p3045 } \\ & \text { SERVO (Ext M_ctrl), } \\ & \text { SERVO_AC (Ext } \\ & \text { M_ctrl), } \\ & \text { SERVO_I_AC (Ext } \\ & \text { M_ctrl) } \end{aligned}$ | Motld torque characteristic <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM Min <br> -340.28235E36 [Nm/A] | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 340.28235E36 [Nm/A] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ $\mathrm{Nm} / \mathrm{A}$ ] |
| Description: Dependency: | Coefficient kT1 for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0645 with p1910/p1960 = -3. |  |  |
| p3046 | Motld force characteristic kT3 identified / kT3 ident |  |  |
| SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin) | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM Min | Calculated: CALC_MOD_ALL <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Dependency: | Coefficient kT3 for the force characteristic for a synchronous linear motor determined by the motor data identification. <br> This coefficient can be changed after the identification and accepted in p0646 with p1910/p1960 = - 3 . |  |  |
| p3046 | Motld torque characteristic kT3 identified / kT3 ident |  |  |
| SERVO (Ext M_ctrl), SERVO_AC (Ext <br> M_ctrl), <br> SERVO_I_AC (Ext <br> M_ctrl) | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Motor identification <br> Not for motor type: ASM, REL, FEM Min | Calculated: CALC_MOD_ALL Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Dependency: | Coefficient kT3 for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0646 with p1910/p1960 = -3. |  |  |



| p3049[0...n] | Motld Speed at start of field weakening identified / ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $U, T$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO__AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [rpm] | Max <br> 210000.00000 [rpm] | Factory setting 0.00000 [rpm] |
| Description: | Speed at the start of field weakening determined by the motor data identification. |  |  |
| Dependency: | Refer to: p0348, p1910, p1960 |  |  |


| p3049[0...n] | Motld Speed at start of field weakening identified / v_Fieldweak ident |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC (Lin) | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00000[\mathrm{~m} / \mathrm{min}]$ | $1000.00000[\mathrm{~m} / \mathrm{min}]$ | $0.00000[\mathrm{~m} / \mathrm{min}]$ |
| Description: | Velocity at the start of field weakening determined by the motor data identification. |  |  |
|  | This start velocity can be changed after the identification and accepted in p0348 with p1910/p1960 =-3. |  |  |
| Dependency: | Refer to: p0348, p1910, p1960 |  |  |


| p3050[0...n] | Motorld stator resistance identified / R_stator ident |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00000[0 h m]$ | 0.00000 [ohm] |  |
| Description: | Stator resistance determined by the motor data identification. |  |  |
|  | This stator resistance can be changed after the identification and accepted in p0350 with p1910/p1960 = -3. |  |  |
| Dependency: | Refer to: p0350, p1910, r1912 |  |  |


| p3054[0...n] | Motld rotor resistance identified / R_rotor ident |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: 16_1 | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00000 [ohm] | Max <br> 300.00000 [ohm] | Factory setting 0.00000 [ohm] |
| Description: | Rotor resistance for an induction motor determined by the motor data identification. |  |  |
| Dependency: | Refer to: p0354, p0625, p1910, |  |  |
| Note: | The parameter is not used for sy | motors (p0300 = 2xx). |  |


| p3056[0...n] | Motld stator leakage inductance identified / L_stator leak |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.00000[\mathrm{mH}]$ | $\begin{aligned} & \text { Max } \\ & 1000.00000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.00000 [mH] |
| Description: | Stator leakage inductance determined by the motor data identification. <br> This stator leakage inductance can be changed after the identification and accepted in p0356 with p1910/p1960 = 3. |  |  |
| Dependency: | Refer to: p0356, p1910, r1932 |  |  |
| p3058[0...n] | Motld rotor leakage inductance identified / L_rotor leak |  |  |
| SERVO, | Can be changed: $U, T$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: 15_1 | Unit selection: 00349 |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min $0.00000[\mathrm{mH}]$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{mH}] \end{aligned}$ | Factory setting $0.00000[\mathrm{mH}]$ |
| Description: | Rotor leakage induction for an induction motor determined by the motor data identification. This rotor leakage inductance can be changed after the identification and accepted in p0358 with p1910/p1960 $=-3$. |  |  |
| Dependency: | Refer to: p0358, p1910, r1932 |  |  |
| p3060[0...n] | Motld magnetizing inductance identified / Motld Lh ident |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: 15_1 | Unit selection: p0349 |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000.00000[\mathrm{mH}] \end{aligned}$ | Factory setting $0.00000[\mathrm{mH}]$ |
| Description: | Magnetizing inductance for an induction motor determined by the motor data identification. This magnetizing inductance can be changed after the identification and accepted in p0360 with p1910/p1960 $=-3$. |  |  |
| Dependency: | Refer to: p0360, p1910, r1936, p1960 |  |  |
| p3070 | Motld voltage emulation error final value identified / U_err final ident |  |  |
| SERVO (Ext M_ctrl), | Can be changed: $U$, $T$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (Ext | P-Group: Motor identification | Units group: - | Unit selection: - |
| M_ctrl) ${ }^{\text {- }}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~V}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.000[\text { [V] } \end{aligned}$ | Factory setting 0.000 [V] |
| Description: | Final value of the voltage emulation error determined by the motor data identification. <br> This final value can be changed after the identification and accepted in p 1952 with $\mathrm{p} 1910 / \mathrm{p} 1960=-3$. <br> Refer to: p1910, p1952, p1953, p3071 |  |  |
| Dependency: |  |  |  |


| p3071 | Motld voltage emulation error current offset identified / U_error I_offset |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext M_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| M_ctrl), <br> SERVO I AC (Ext | P-Group: Motor identification | Units group: - | Unit selection: - |
| M_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.000[\mathrm{~A}]$ | $\begin{aligned} & \text { Max } \\ & 100.000[A] \end{aligned}$ | Factory setting 0.000 [A] |
| Description: | Current offset of the voltage emulation error determined by the motor data identification. This current offset can be changed after the identification and accepted in p1953 with p1910/p1960 $=-3$. |  |  |
| Dependency: | Refer to: p1910, p1952, p1953, p3070 |  |  |
| p3080 | Motld flux controller P gain identified / Flux ctrl Kp ident |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~A} / \mathrm{Vs}] \end{aligned}$ | Max $999999.0 \text { [A/Vs] }$ | Factory setting 0.0 [A/Vs] |
| Description: | $P$ gain of the flux controller for an induction motor determined by the motor data identification. <br> This P gain can be changed after the identification and accepted in p1590 with p1910/p1960 $=-3$. |  |  |
| Dependency: | Refer to: p1590, p1910 |  |  |
| p3081 | Motld flux controller integral time identified / Flux ctrl Tn ident |  |  |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | Max <br> 10000 [ms] | Factory setting 0 [ms] |
| Description: | Integral time of the flux controller for an induction motor determined by the motor data identification. <br> This integral time can be changed after the identification and accepted in p1592 with p1910/p1960 = -3. |  |  |
| Dependency: | Refer to: p1592, p1910 |  |  |
| p3082 | Motld current controller P gain identified / I_ctrl Kp ident |  |  |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_ALL | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO__AC | P-Group: Motor identification | Units group: 18_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [V/A] | 100000.000 [V/A] | 0.000 [V/A] |
| Description: | P gain of the current controller determined by the motor data identification. |  |  |
| Dependency: | Refer to: p1715, p1910 |  |  |



| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3091, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
| :---: | :---: | :---: | :---: |
|  | Refer to: F07995 |  |  |
| Note: | PollD el: pole position identification, elasticity-based |  |  |
| p3091[0...n] | PollD elasticity-based ramp time / PollD el t_ramp |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T Data type: FloatingPoint32 <br> P-Group: Motor identification | Calculated: CALC_MOD_CON | Access level: 3 |
|  |  | Dynamic index: MDS, p0130 | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min$0.0 \text { [ms] }$ | Max | Factory setting |
|  |  | 1000.0 [ms] | 250.0 [ms] |
| Description: | Sets the ramp time for the current increase when executing the elasticity-based pole position identification. The current is ramped up in order to reduce the mechanical load on the machine. |  |  |
| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3092, p3093, p3094, p3095, p3096, r3097 |  |  |
|  | Refer to: F07995 |  |  |
| Note: | PollD el: pole position identification, elasticity-based |  |  |
| $\begin{aligned} & \text { p3092[0...n] } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | PollD elasticity-based wait time / PollD el t_wait |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [ms] | 1000.0 [ms] | 100.0 [ms] |
| Description: | Sets the wait time between two measurements when executing the elasticity-based pole position identification. The wait time between two measurements is necessary in order to avoid mechanical resonance effects. |  |  |
| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3093, p3094, p3095, p3096, r3097 |  |  |
|  | Refer to: F07995 |  |  |
| Note: | PollD el: pole position identification, elasticity-based |  |  |
| $\begin{aligned} & \text { p3093[0...n] } \\ & \text { SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | PollD elasticity-based measurement number / PollD el meas |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 6 | 56 | 12 |
| Description: | Sets the number of measuring operations when executing the elasticity-based pole position identification. When the value is increased, the result is more accurate, however, the identification takes longer. |  |  |
| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3094, p3095, p3096, r3097 |  |  |
|  | Refer to: F07995 |  |  |
| Note: | PollD el: pole position identification, elasticity-based |  |  |


| p3094[0...n] | PollD elasticity-based deflection expected / PolID el defl exp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
| SERVO_I_AC | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> $0.0000\left[{ }^{\circ}\right]$ | $\begin{aligned} & \text { Max } \\ & 90.0000\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting $0.0030\left[{ }^{\circ}\right]$ |
| Description: | Sets the expected deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095 |  |  |
| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3095, p3096, r3097 |  |  |
|  | Refer to: F07995 |  |  |
| Note: | Polld el: pole position identification, elasticity-based |  |  |
| p3094[0...n] | PoIID elasticity-based deflection expected / PolID el defl exp |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.0000 [mm] | $\begin{aligned} & \text { Max } \\ & 90.0000[\mathrm{~mm}] \end{aligned}$ | Factory setting 0.0030 [mm] |
| Description: | Sets the expected deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095 |  |  |
| Dependency: | Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3095, p3096, r3097 |  |  |
|  | Refer to: F07995 |  |  |
| Note: | PollD el: pole position identification, elasticity-based |  |  |
| p3095[0...n] | PolID elasticity-based deflection permissible / PoIID el defl exp |  |  |
| SERVO, | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> $0.0000\left[^{\circ}\right]$ | $\begin{aligned} & \text { Max } \\ & 90.0000\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting $\left.1.0000{ }^{[ }{ }^{\circ}\right]$ |
| Description: | Sets the permissible deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095 |  |  |
| Dependency: | ```Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3094, p3096, r3097``` |  |  |
|  | Refer to: F07995 |  |  |
| Note: | Polld el: pole position identification, elasticity-based |  |  |
| p3095[0...n] | PolID elasticity-based deflection permissible / PoIID el defl exp |  |  |
| SERVO (Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 3 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: MDS, p0130 | Func. diagram: - |
|  | P-Group: Motor identification | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.0000 [mm] | $\begin{aligned} & \text { Max } \\ & 90.0000[\mathrm{~mm}] \end{aligned}$ | Factory setting 1.0000 [mm] |
| Description: | Sets the permissible deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095 |  |  |




| r3102[0...1] | RTC read UTC time / RTC read UTC |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 |
| Description: | Displays the actual UTC time in the drive system. <br> p3102[0]: Milliseconds <br> p3102[1]: Days |  |  |
| p3103 | RTC synchronization source / RTC sync_source |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T <br> Data type: Integer16 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$ | Factory setting 0 |
| Description: Value: | Sets the synchronization source/ <br> 0: PROFIBUS <br> 1: PROFINET <br> 2: PPI <br> 3: PROFINET PTP |  |  |
| p3104 | BI: RTC real time synchronization PING / RTC PING |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T <br> Data type: Unsigned32 / Binary <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: <br> Notice: | Sets the signal source for the PING event to set the UTC time. <br> The parameter may be protected as a result of p0922 or p2079 and cannot be changed. |  |  |
| r3107[0...3] | RTC synchronizing time / RTC t_sync |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting |
| Description: | Displays the last synchronizing event in the drive system. |  |  |

```
3107[0, 1]: synchronizing event after synchronization
r3107[0]: milliseconds
r3107[1]: days
3107[2, 3]: synchronizing event before synchronization
r3107[2]: milliseconds
r3107[3]: days
```

| r3108[0...1] | RTC last synchronization deviation / RTC sync_dev |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  | Max | Factory setting |
| CU_S150_DP, |  | - | - |
| CU_S150_PN | Min |  |  |
|  | - | Displays the absolute value of the last synchronization deviation that was determined. |  |
| Description: | r3108[0]: Milliseconds | r3108[1]: Days |  |


| p3109 | RTC real time synchronization, tolerance window / RTC sync tol |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 1000 [ms] | 100 [ms] |
| Description: | Sets the tolerance window for time synchronization. |  |  |
|  | When this tolerance window is exceeded, an appropriate alarm is output. |  |  |
| Dependency: | Refer to: A01099 |  |  |


| p3110 | External fault 3, power-up delay / Ext fault $\mathbf{3} \mathbf{t}$ _on |  |  |
| :--- | :--- | :--- | :--- |
| All objects | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2546 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | 0 [ms] |  |
| Description: | Sets the delay time for external fault 3. |  |  |
| Dependency: | Refer to: p2108, p3111, p3112 |  |  |
|  | Refer to: F07862 |  |  |


| p3111[0...n] | BI: External fault 3, enable / Ext fault 3 enab |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 1 |
| Description: | Sets the signal source for the enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation: <br> - BI: p2108 negated <br> - BI: p3111 <br> - BI: p3112 negated |  |  |
| Dependency: | Refer to: p2108, p3110, p3112 <br> Refer to: F07862 |  |  |
| p3111 | BI: External fault 3, enable / Ext fault 3 enab |  |  |
| CU_I, CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> HUB, TB30, TM120, <br> TM15, TM150, <br> TM15DI_DO, TM17, <br> TM31, TM54F_MA, TM54F_SL | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2546 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | $\operatorname{Max}$ | Factory setting 1 |
| Description: | Sets the signal source for the enable signal of external fault 3. <br> External fault 3 is initiated by the following AND logic operation: <br> - BI: p2108 negated <br> - BI: p3111 <br> - BI: p3112 negated |  |  |
| Dependency: | Refer to: p2108, p3110, p3112 <br> Refer to: F07862 |  |  |
| p3112[0...n] | BI: External fault 3 enable negated / Ext flt 3 enab neg |  |  |
| A_INF, B_INF, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, <br> TM41, VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T <br> Data type: Unsigned32 / Binary <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: | Sets the signal source for the negated enable signal of external fault 3. |  |  |




| p3117 | Change safety message type / Ch. Sl mess type |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: C 1 (1) <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Acce <br> Func <br> Unit <br> Expe |  |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Fact <br> 0 |  |
| Description: | Sets the re-parameterization of all safety messages for faults and alarms. The relevant message type during changeover is selected by the firmware. <br> 0 : Safety messages are not re-parameterized <br> 1: Safety messages are re-parameterized |  |  |  |
| Note: | A change only becomes effective after a PO | NER ON. |  |  |
| r3120[0...63] | Component number fault / Comp_num flt |  |  |  |
| All objects | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Facto |  |
| Description: <br> Dependency: <br> Note: | Displays the component number of the fault which has occurred. <br> Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122 <br> Value $=0$ : Assignment to a component not possible. <br> The buffer parameters are cyclically updated in the background (refer to status signal in r2139). <br> The structure of the fault buffer and the assignment of the indices is shown in r0945. |  |  |  |
| r3121[0...63] | Component number alarm / Comp_num alarm |  |  |  |
| All objects | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Factory |  |
| Description: <br> Dependency: <br> Note: | Displays the component number of the alarm which has occurred. <br> Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3123 <br> Value $=0$ : Assignment to a component not possible. <br> The buffer parameters are cyclically updated in the background (refer to status signal in r2139). <br> The structure of the alarm buffer and the assignment of the indices is shown in r2122. |  |  |  |
| r3122[0...63] | Diagnostic attribute fault / Diag_attr fault |  |  |  |
| All objects | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Facto |  |
| Description: <br> Bit field: | Displays the diagnostic attribute of the fault <br> Bit Signal name <br> 00 Hardware replacement recommended | which has occurred. $1 \text { signal }$ Yes | 0 signal <br> No | FP |


| Dependency: | Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120 |
| :--- | :--- |
| Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |
|  | The structure of the fault buffer and the assignment of the indices is shown in r0945. |


| r3123[0...63] | Diagnostic attribute alarm / Diag_attr alarm |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 | Dynamic index: - | Fun |  |
|  | P-Group: Messages | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - |  |  |
| Description: | Displays the diagnostic attribute of the alarm which has occurred. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Hardware replacement recommended | 1 signal Yes | 0 signal No | FP |
| Dependency: <br> Note: | Refer to: r2110, r2122, r2123, r2124, r2125, The buffer parameters are cyclically updated The structure of the alarm buffer and the ass | r2134, r2145, r2146, in the background signment of the indice | signal in l r2122. |  |
| r3131 | CO: Actual flt value / Actual flt value |  |  |  |
| All objects | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Integer32 | Dynamic index: - | Fun |  |
|  | P-Group: Messages | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - |  |  |
| Description: | Displays the fault value of the oldest active fault. |  |  |  |
| Dependency: | Refer to: r2131, r3132 |  |  |  |


| r3132 | CO: Actual component number / Act comp_no. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| All objects | Can be changed: - Cal | Calculated: - Acce |  |  |
|  | Data type: Integer32 D | Dynamic index: - Func |  |  |
|  | P-Group: Messages U | Units group: - Unit |  |  |
|  | Not for motor type: - S | Scaling: - Exper |  |  |
|  | Min M | Max | Factory setting |  |
|  | Mi | - | - |  |
| Description: | Displays the component number of the oldest fault that is still active. |  |  |  |
| Dependency: | Refer to: r2131, r3131 |  |  |  |
| p3135 | Suppress active fault / Supp act flt |  |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { TM41,VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Can be changed: $U, T$ | Calculated: - | Access level: 4 |  |
|  | Data type: Unsigned32 D | Dynamic index: - | Func. diagram: 8060 |  |
|  | P-Group: Messages U | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S | Scaling: - | Expert list: 1 |  |
|  |  |  |  |  |
|  | Min M | Max | Fact |  |
|  | - - | - | 0000 |  |
| Description: | Sets the suppression of r2139.3 "Fault present" for certain fault responses. |  |  |  |
| Bit field: | Signal name | 1 signal | 0 signal | FP |
|  | 08 Suppression of fault response ENCODER | R ON | OFF | - |
|  | 10 Suppression of fault response NONE | ON | OFF | - |
| Dependency: | Refer to: p0491, r2139 |  |  |  |

Note: $\quad$ Depending on the suppression of a fault reaction in this parameter, r2139.1 "Acknowledgement required" is set when at least one fault occurs.
Re bit 08:
The suppression is only effective if p0491 = 1 .

| p3201[0...n] | Excitation current outside the tolerance threshold value / I_exc n Tol thresh |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Scaling: - |
|  | Not for motor type: ASM, PEM, REL | Max | Expert list: 1 |
|  | Min | Factory setting |  |


| p3202[0...n] | Excitation current outside the tolerance hysteresis / I_exc n Tol hyst |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.1[\%]$ | $100.0[\%]$ | $10.0[\%]$ |

Description: Sets the hysteresis for the "excitation current outside tolerance" message for the excitation current monitoring.

Dependency: Refer to: p3201, p3203
Refer to: F07913
Note: $\quad$ The monitoring function is only carried out for separately-excited synchronized motors $(\mathrm{p} 0300=5)$.

| p3203[0...n] | Excitation current outside the tolerance delay time / I_exc n Tol t_del |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 10.0 \text { [s] } \end{aligned}$ | Factory setting 1.0 [s] |
| Description: | Sets the delay time for the "excitation current outside tolerance" message for the excitation current monitoring. |  |  |
| Dependency: | Refer to: p3201, p3202 |  |  |
|  | Refer to: F07913 |  |  |
| Note: | The monitoring function is only carried out for separately-excited synchronized motors ( $\mathrm{p} 0300=5$ ). |  |  |
| p3204[0...n] | Flux outside the tolerance threshold value / Flux n tol thresh |  |  |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min $0.1 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 10.0 [\%] |
| Description: | Sets the threshold value for the "flux outside the tolerance" message for the flux monitoring. |  |  |



| p3208[0...n] | Zero current signal hysteresis / I_0_sig hyst |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Messages | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.01 [Arms] | $\begin{aligned} & \text { Max } \\ & 10000.00[\text { Arms }] \end{aligned}$ | Factory setting 1.00 [Arms] |
| Description: | Sets the hysteresis for the zero current signal for the zero current monitoring. |  |  |
| Dependency: | Refer to: p3207, p3209 |  |  |
| Note: | The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5). |  |  |
|  | The monitoring is only carried out for speeds less than the speed threshold value in p2161 (r2199.0 = 1). |  |  |


| p3209[0...n] | Zero current signal delay time /l_O_sig t_del |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: ASM, PEM, REL | Scaling: - | Max |
|  | Min | $10.00[\mathrm{~s}]$ | Factory setting |
|  | $0.00[\mathrm{~s}]$ | $0.02[\mathrm{~s}]$ |  |
|  | Sets the delay time for the zero current signal for the zero current monitoring. |  |  |
| Description: | Refer to: p3207, p3208 |  |  |
| Dependency: | The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5). |  |  |
| Note: | The monitoring is only carried out for speeds less than the speed threshold in p2161 (r2199.0 = 1). |  |  |


| p3233[0...n] | Torque actual value filter, time constant / M_act_filt T |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Ext msg), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (Ext | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8013 |
| (Ext msg), VECTOR | P-Group: Messages | Units group: - | Unit selection: - |
| (Ext msg), | Not for motor type: - | Scaling: - | Expert list: 1 |
| ```VECTOR_AC (Ext msg), VECTOR_I_AC (Ext msg)``` |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 1000000 [ms] | 0 [ms] |
| Description: | Sets the time constant for the PT1 element to smooth the torque actual value. |  |  |
|  | The smoothed torque actual value is compared with the threshold values and is only used for messages and signals. |  |  |


| p3235 | Phase failure signal motor monitoring time /Ph_fail t_monit |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Messages | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Min | 2000 [ms] | Factory setting |
|  | 0 [ms] | 320 [ms] |  |
|  | Sets the monitoring time for phase failure detection of the motor. 1 |  |  |
| Description: | After the value has been modified, no further parameter modifications can be made and the status is shown in |  |  |
| Notice: | r3996. Modifications can be made again when $3996=0$. |  |  |

Note: $\quad$ Monitoring is only effective for blocksize and booksize power units.
For p3235 $=0$ the function is deactivated.
For VECTOR, the following applies:
The monitoring is automatically de-activated during the flying restart operation for a motor that is still rotating.

| p3236[0...n] | Speed threshold 7 / n_thresh val 7 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | Max <br> 3000.00 [rpm] | Factory setting 100.00 [rpm] |
| Description: <br> Dependency: | Sets the speed threshold value for the signal "speed deviation model/external" (BO: r2199.7). Refer to: r1443, r2169, r2199, p3237 |  |  |


| p3237[0...n] | Hysteresis speed 7 / n_hysteresis 7 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, | Can be changed: U, T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 3 |
| VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: 3_1 | Unit selection: 00505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [rpm] | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [rpm] } \end{aligned}$ | Factory setting 2.00 [rpm] |
| Description: <br> Dependency: | Sets the hysteresis speed for the signal "speed deviation model/external" (BO: r2199.7).Refer to: $2199, \mathrm{p} 3236$ |  |  |


| p3238[0...n] | OFF delay n_act_motor model = n_act external / t_del n_a = n_ext |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 8012 |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [s] } \end{aligned}$ | Factory setting 3.0 [s] |
| Description: | Sets the OFF delay for the The smoothed actual speed (threshold value p3236). | viation model/external in toleran del r2169 is compared with the | ( O : 199.7). <br> measured externally r1443 |
| Dependency: | Refer to: p3236, p3237 |  |  |


| p3290 | Variable signaling function start / Var sig start |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 5301 |  |
| SERVO_I_A | P-Group: - | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | 0010 bin |  |
| Description: | Settings for start/stop and the comparison type for the variable signaling function. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Activate function | Active | Not active | - |
|  | 01 Comparison with sign | With sign | Without sign | - |


| p3291 | CI: Variable signaling function signal source / Var sig S_src |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the variable signaling function. |  |  |
| Dependency: | Refer to: p3292, p3293 |  |  |
| Note: | Re p3291 = 1: (internal Siemens): |  |  |
|  | In this case, the signal source is defined via the memory address (p3292) and the data type (p3293). |  |  |
|  | As the memory address can be different for each version, it must always be redetermined. |  |  |
|  | Procedure: |  |  |
|  | - Set the memory address and data type (p3292, p3293). |  |  |
|  | - Establish the BICO interconnection (p3291 = 1). |  |  |
| p3292 | Variable signaling function signal source address / Var sig S_src addr |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: | Sets the address of the signal source for the variable signaling function. |  |  |
| Dependency: | Refer to: p3291 |  |  |
| Caution: | If an incorrect address and data type are set, then this can cause the software to crash. |  |  |
| Note: | This parameter should only be set for p3291 = 1 . |  |  |
| p3293 | Variable signaling function signal source data type / Var sig S_src type |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 7 | 0 |
| Description: | Sets the data type of the signal source for the variable signaling function. |  |  |
| Value: | 0: Unknown |  |  |
|  | 1: U8, Unsigned8 |  |  |
|  | 2: I8, Signed8 |  |  |
|  | 3: U16, Unsigned16 |  |  |
|  | 4: I16, Signed16 |  |  |
|  | 5: U32, Unsigned32 |  |  |
|  | 6: I32, Signed32 |  |  |
|  | 7: Float, FloatingPoint32 |  |  |
| Dependency: | Refer to: p3291 |  |  |
| Caution: | If an incorrect address and data type are set, then this can cause the software to crash. |  |  |
| Note: | This parameter should only be set for p3291 = 1. |  |  |


| r3294 | BO: Variable signaling function output signal / Var sig outp_sig |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Display and binector output of the output signal for the variable signaling function. |  |  |
| Dependency: | Refer to: p3290, p3291, p3295, p3296, p3297, p3298 |  |  |
| p3295 | Variable signaling function threshold value / Var sig thresh_val |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | -340.28235E36 | 340.28235E36 | 0.000 |
| Description: | Sets the threshold value for the variable signaling function. |  |  |
| p3296 | Variable signaling function hysteresis / Var sig hyst |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 340.28235E36 | 0.000 |
| Description: | Sets the hysteresis for the variable signaling function. |  |  |
| p3297 | Variable signaling function pickup delay / Var sig t_pickup |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 5301 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [ms] | 10000 [ms] | 0 [ms] |
| Description: | Sets the pickup delay for the variable signaling function. |  |  |
| Notice: | Values that do not comply with the following condition are treated just like value 0 : Pickup delay (p3297) >= sampling time (p3299) |  |  |
| Note: | For a value of 0 , the pickup delay is disabled. |  |  |
|  | The output signal is set if the condition for the 1 signal is fulfilled for longer than the selected time. |  |  |


| p3298 | Variable signaling function dropout delay / Var sig t_dropout |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 5301 |
| SERVO_I_AC | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0[\mathrm{~ms}]$ | 0 [ms] |  |
|  | Sets the dropout delay for the variable signaling function. |  |  |
| Description: | Values that do not comply with the following condition are treated just like value 0: |  |  |
| Notice: | Dropout delay $(\mathrm{p} 3298)>=$ sampling time (p3299) |  |  |


| Note: | For a value of 0 , the dropout delay is disabled. |
| :--- | :--- | :--- | :--- |
|  | The output signal is reset if the condition for the 0 signal is fulfiled for longer than the selected time. |


| p3321[0...n] | Fluid flow machine speed point 1 / Fluid_mach n1 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $U$, $T$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.00 \end{aligned}$ | Factory setting 0.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
|  | This parameter specifies the speed ( n ) of point 1 as a [\%]. |  |  |
|  | The characteristic comprises the following value pairs: |  |  |
|  | Power (P) / speed ( n ) |  |  |
|  | p3320 / p3321 --> point 1 (P1/n1) |  |  |
|  | p3322 / p3323 --> point 2 (P2 / n2) |  |  |
|  | p3324 / p3325 --> point 3 (P3/n3) |  |  |


|  | p3326 / p3327 --> point $4(\mathrm{P} 4 / \mathrm{n} 4)$ |
| :--- | :--- |
|  | p3328 / p3329 --> point $5(\mathrm{P} 5 / \mathrm{n} 5)$ |
| Dependency: $\quad$ | Refer to: r0041, p3320, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329 |
| Note: | The reference value for power and speed is the rated power/rated speed. |
|  | The energy saved is displayed in r0041. |


| p3322[0...n] | Fluid flow machine power point 2 / Fluid_mach P2 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 100.00 | Factory setting |
|  | 0.00 | 50.00 |  |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=\mathrm{f}(\mathrm{n})$ with 5 points along the |  |  |
|  | characteristic is required. |  |  |
|  | This parameter specifies the power (P) of point 2 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
|  | The energy saved is displayed in r0041. |  |  |


| p3323[0...n] | Fluid flow machine speed point 2 / Fluid_mach n2 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00 \end{aligned}$ | Factory setting 25.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
|  | This parameter specifies the speed ( n ) of point 2 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3324, p3325, p3326, p3327, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
| The energy saved is displayed in r0041. |  |  |  |


| p3324[0...n] | Fluid flow machine power point $3 /$ Fluid_mach P3 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection:- |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 100.00 | Factory setting |
|  | 0.00 | 77.00 |  |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the |  |  |
|  | characteristic is required. |  |  |
|  | This parameter specifies the power $(P)$ of point 3 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
|  | The energy saved is displayed in r0041. |  |  |


| p3325[0...n] | Fluid flow machine speed point 3 / Fluid_mach n3 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.00 \end{aligned}$ | Factory setting 50.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
|  | This parameter specifies the speed ( n ) of point 3 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
|  | The energy saved is displayed in r0041. |  |  |
| p3326[0...n] | Fluid flow machine power point 4 / Fluid_mach P4 |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 100.00 | 92.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
|  | This parameter specifies the power ( P ) of point 4 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
|  | The energy saved is displayed in r0041. |  |  |


| p3327[0...n] | Fluid flow machine speed point 4 / Fluid_mach n4 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$ | Max $100.00$ | Factory setting 75.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
|  | This parameter specifies the speed ( n ) of point 4 as a [\%]. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
|  | The energy saved is displayed in r0041. |  |  |


| p3328[0...n] | Fluid flow machine power point $5 /$ Fluid_mach P5 |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 100.00 | 100.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the |  |  |
|  | characteristic is required. |  |  |
|  | This parameter specifies the power $(P)$ of point 5 as a [\%]. |  |  |

Dependency: Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329

Note: $\quad$ The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

| p3329[0...n] | Fluid flow machine speed point 5 / Fluid_mach n5 |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_1_ | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.00 \end{aligned}$ | Factory setting 100.00 |
| Description: | For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. |  |  |
| Dependency: | Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328 |  |  |
| Note: | The reference value for power and speed is the rated power/rated speed. |  |  |
| The energy saved is displayed in r0041. |  |  |  |


| p3400 | Infeed configuration word / INF config_word |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T | Calculated: - | Acce |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func |  |
|  | P-Group: Closed-loop control | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Facto |  |
|  | - | - | 0000 |  |
| Description: | Sets the configuration word of the infeed. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Smart Mode | ON | OFF | - |
|  | 01 Flat-Top Mode | ON | OFF | - |
|  | 03 Vdc controller | ON | OFF | - |
|  | 05 Line supply voltage sensing with VSM | ON | OFF | - |
| Dependency: | Refer to: p0210 |  |  |  |
| Note: | Re bit 00: |  |  |  |
|  | In the Smart Mode, the DC link voltage is not controlled - however, infeed can still regenerate. The magnitude of the DC link voltage depends on the actual line supply voltage and the DC link load. |  |  |  |
|  | For drive units belonging to the 400 V voltage class, for a drive unit supply voltage ( p 0210 ) greater than 415 V , the infeed is always operated in the Smart Mode. This means that the 660 V limit can be maintained for the steadystate DC link voltage ( p 0280 ) up to a line supply voltage of 480 V . |  |  |  |
|  | Re bit 01: |  |  |  |
|  | If the Flat Top Mode is de-activated, switching losses are higher. This means that the full power is no longer continuously available. |  |  |  |
|  | For p3400.0 = 1 or $\mathrm{p} 1810.15=1$, this bit is not effective. |  |  |  |
|  | Re bit 03: |  |  |  |
|  | If the Vdc controller is switched out, overvoltage or undervoltage conditions occur in the DC link if no other voltageregulating component is located in the DC link. |  |  |  |
|  | For p3400.0 = 1, this bit is not effective. |  |  |  |
|  | Re bit 05: |  |  |  |
|  | If a VSM is detected when commissioning the system, this bit is automatically set. |  |  |  |
|  | When the bit is set, the line supply voltage input of the VSM must be connected (connected at the line side of the line reactor). |  |  |  |
|  | The bit must be set in the case of chassis power units. |  |  |  |
|  | VSM: Voltage Sensing Module |  |  |  |



| 06 | Generator mode inhibited | Yes | No |
| :--- | :--- | :--- | :--- |
| 07 | DC link undervoltage alarm threshold | Yes | No |
|  | undershot |  |  |

Note:
Re bit 00:
Smart Mode is activated with p3400.0.
Re bit 01:
The DC link voltage closed-loop control is activated with parameters p3400.3 and p3513.
Re bit 02:
When phase failure is detected the bit is set and alarm A06205 is output.
The bit is reset for the following events:

- the infeed had reached the normal operating state again after a phase failure has been bypassed/buffered (p3402
$=9$ ).
- the pulse enable is withdrawn due to a fault or powering down with OFF1/OFF2.

Re bit 03:
The present current limit is displayed in r0067.
Re bit 04:
An active current setting r0078 >= 0 means infeed operation in motor mode; an active current setting r0078<0 means regenerative operation in generator mode.
Re bit 05:
The motor mode inhibit is activated with p3532.
Re bit 06:
The generator mode inhibit is activated with p3533.
Re bit 07:
The alarm threshold is dependent on r0296 and the setting in p0279.

| r3405.7 | CO/BO: Infeed status word / Inf ZSW |  |  |
| :---: | :---: | :---: | :---: |
| B_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the status word of the infeed. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 07 DC link undervoltage alarm threshold undershot | Yes | No |


| r3405.1... 8 | CO/BO: Status word DC | rol / UDC ZSW |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctrl), | Can be changed: - | Calculated: - | Access level: 2 |  |
| VECTOR_AC | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |  |
| (Tech_ctrl), | P-Group: Closed-loop control | Units group: - | Unit selection: - |  |
| (Tech_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status word for DC | control. |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 01 Vdc-ctrl active | Yes | No | - |
|  | 08 Vdc controller selected | Yes | No | - |
| Note: | Re bit 01: |  |  |  |
|  | DC-link voltage control is disab | ed with p3513. |  |  |
|  | Re bit $08=1$ : |  |  |  |
|  | DC-link voltage control is select |  |  |  |


| p3409 | Infeed line frequency setting / INF f_line_mode |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 1 |
| Description: | Sets the mode to detect the line supply frequency. |  |  |
| Value: | 0 : Line supply frequency setting $50 / 60 \mathrm{~Hz}$ off <br> 1: Line supply frequency setting $50 / 60 \mathrm{~Hz}$ on |  |  |
| Dependency: | Refer to: p0211, p0284, p0285 |  |  |
|  | Refer to: A06350, A06351, F06500 |  |  |
| Note: | For p3409 = 1, the following applies: |  |  |
|  | After operation has been enabled, the rated line supply frequency ( p 0211 ) is automatically set to a value of 50 Hz or 60 Hz corresponding to the currently measured frequency. This means that the parameter value of p0211 is, under certain circumstances, changed. |  |  |
|  | For p3409 = 0, the following applies: |  |  |
|  | The system does not change parameter p0211. |  |  |
| p3410 | Infeed identification method / INF Ident_type |  |  |
| A_INF, S_INF | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 5 | 5 |
| Description: | Sets the line and DC link parameter identification routine for the infeed module. |  |  |
| Value: | 0 : Identification (Id) off |  |  |
|  | 1: Activate identification (Id) |  |  |
|  | 2: Set controller settings |  |  |
|  | 3: Save identification and controller settings |  |  |
|  | 4: Save identification and controller settings with L adaptation |  |  |
|  | 5: Reset, save Id and controller setting with L adaptation |  |  |
| Dependency: | Refer to: r3411, r3412, r3414, p3415, p3416, p3417, p3421, p3422, p3424, p3555, p3560, p3614 |  |  |
|  | Refer to: A06400 |  |  |
| Notice: | For p3410 $=1,3,4,5$, alarm A06400 is output and designates that the selected identification will take place the next time that the pulses are enabled. |  |  |
| Note: | When p3410 = 1 an identification run for the total inductance and DC link capacitance is initiated when the pulses are next enabled. The results are displayed in r3411 and r3412. If a Voltage Sensing Module (VSM) is connected, then the line inductance (r3414) is also measured. The infeed then goes into the ready for switching on state. |  |  |
|  | For p3410 $=2$, the data ( $\mathrm{r} 3411, \mathrm{r} 3412$ and r 3414 ) determined during the identification run ( $\mathrm{p} 3410=1$ ) are transferred into p3421, p3422 and p3424. The control loop parameters are suitably scaled to achieve a rugged controller setting ( p 3425 ); the fast controller response ( $\mathrm{p} 3555[2]$ ) and the current actual value smoothing (p3614) are pre-set. Calculations for the controller are then repeated. The user must save the new parameters in a non-volatile fashion in order to permanently select the new controller setting. |  |  |
|  | When p3410 $=3$ an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification ( $\mathrm{r} 3411, \mathrm{r} 3412, \mathrm{r} 3414$ ) are used, as described under $\mathrm{p} 3410=$ 2 for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters. |  |  |

When p3410 $=4$ an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification ( $\mathrm{r} 3411, \mathrm{r} 3412, \mathrm{r} 3414$ ) are used, as described under $\mathrm{p} 3410=$ 2 for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. The line inductance identification is then repeated, if $p 3415[1]>p 3514[0]$. If the inductance measured the second time is lower than the first, the parameters are written to the current controller adaptation (p3620, p3622). All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters.
For p3410 $=5$, the same measurements and write operations are always carried out as for p3410 $=4$. However, for the first identification run, initially the controller setting is reset by setting p3421 $=$ p0223 + p0225, p3424 $=$ p0225, $\mathrm{p} 3422=\mathrm{p} 0227$ and $\mathrm{p} 3425[]=.100 \%$. Further, before the measurements are carried out, a brief identification run is executed to coarsely set the controller.
p3410 is automatically set to 0 after an identification run has been completed.





| p3440 | Smart Mode configuration / Smart Mode config |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: T | Calculated: - |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0001 bin |







| r3468[0...5] | CO: Infeed voltage alpha/beta / INF U a/b |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V]$ | $-[V]$ | $-[V]$ |

Description: Displays the line supply voltage at the input terminals of the line filter in alpha/beta components.
Index:
$[0]=$ Alpha
$[1]=$ Beta
$[2]=$ Alpha
[2] $=$ Alpha
$[3]=$ Beta


| Note: | With respect to the line supply, the sum of the reactive currents of the power unit (p0076) and line filter (r3471) are effective. <br> The reactive current requirement of the line filter is taken into account when calculating the power factor (r0038). The amount of the reactive current depends on the capacitance ( p 0221 ) of the line filter that is automatically parameterized when a line filter is selected ( p 0220 ). <br> If the line phases are reversed and the line voltage therefore has a negative orientation ( $\mathrm{r} 0066<0$ ), it should be noted that the sign of the reactive current is reversed. |
| :---: | :---: |
| p3472[0...4] | Line supply PLL line supply voltage smoothing time / Line PLL |
| A_INF, S_INF | Can be changed: U, T Calculated: - Access level: 4 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $1.0[\mathrm{~ms}]$ $30000.0[\mathrm{~ms}]$ $[0] 200.0[\mathrm{~ms}]$ <br>   $[1] 100.0[\mathrm{~ms}]$ <br>   $[2] 5000.0[\mathrm{~ms}]$ <br>   $[3] 8.0[\mathrm{~ms}]$ <br>   $[4] 8.0[\mathrm{~ms}]$ |
| Description: Index: | Sets the smoothing time of the line supply voltage for the line supply PLL. <br> [0] = Encoderless operation line supply voltage smoothing time <br> [1] = VSM operation line supply voltage smoothing time <br> [2] = Detection line supply undervoltage smoothing time <br> [3] = Detection line supply overvoltage smoothing time <br> [4] = Detection line supply voltage step smoothing time |
| Dependency: Note: | Refer to: p3400 <br> For the pre-control of the line supply voltage, a smoothed value of the line supply voltage is used in the closed-loop control. <br> p3472[0]: Sets the PT1 time constant to smooth the line supply voltage for operation without VSM (p3400.5 = 0). <br> p3472[1]: Sets the PT1 time constant to smooth the line supply voltage for operation with VSM (p3400.5 = 1). <br> p3472[2]: Sets the smoothing time constant to slowly detect a line supply undervoltage (F06100). <br> p3472[3]: Sets the smoothing time constant to quickly detect line supply undervoltages for phase failure (A06205). <br> p3472[4]: Sets the smoothing time constant to quickly adapt the line supply pre-control for line supply voltage steps (p0286). |
| p3480 | Infeed modulation depth limit / INF mod_depth lim |
| A_INF | Can be changed: U, T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8940 <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $50.0[\%]$ $110.0[\%]$ $97.0[\%]$ |
| Description: | Sets the maximum steady-state modulation depth. <br> When this limit is reached, the DC link voltage is boosted to maintain the control margin. This means that the control reserve is maintained. |
| Dependency: | Refer to: p3481, r3485 |


| p3481 | Infeed standby controller dynamic response / INF res_ctrl dyn |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8940 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.0[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.0[\mathrm{~ms}] \end{aligned}$ | Factory setting 7.5 [ms] |
| Description: | Sets the dynamic response of the reserve controller for the modulation depth. As the smoothing time increases, the response of the DC link voltage tracking becomes slower. |  |  |
| Dependency: | Refer to: p3480, r3485 |  |  |
| r3485 | Infeed standby controller output / INF res_ctrl outp |  |  |
| A_INF | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: 8940 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting $-[V]$ |
| Description: | Displays the reserve controller output for the modulation depth. |  |  |
|  | The DC link voltage is increased by this voltage value - the summed setpoint for the DC link voltage is output in r0088. |  |  |
|  | The summed setpoint is limited to the maximum steady-stage DC link voltage ( p 0280 ). |  |  |
| Dependency: | Refer to: p3480, p3481 |  |  |
| p3490 | Infeed delay time OFF1 command / INF t_del OFF1 |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: T <br> Data type: FloatingPoint32 | Calculated: - | Access level: 2 |
|  |  | Dynamic index: - | Func. diagram: 8732, 8832, 8932 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0.0 [ms] | Max <br> 1000000.0 [ms] | Factory setting 0.0 [ms] |
| Description: | Sets the delay time for the ON/OFF1 command of the infeed. <br> After ON/OFF1 = 0 the infeed remains in operation for the specified time |  |  |
| Dependency: | Refer to: p0840 |  |  |
| Notice: | The ON/OFF1 command of the infeed can be interrupted. |  |  |
| Note: | This parameter is only relevant if a Motor Module and the infeed are controlled by the same OFF command. In this case, the delay time and the stop ramp time of the motor can be coordinated with one another. |  |  |
| p3491 | Infeed l-offset measurement monitoring time / INF I_offs t_monit |  |  |
| A_INF, S_INF | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Commands | Calculated: - | Access level: 4 |
|  |  | Dynamic index: - | Func. diagram: 8832, 8932 |
|  |  | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0 [ms] | Max <br> 65000 [ms] | Factory setting 2000 [ms] |
| Description: | Sets the monitoring time for the current-offset measurement of the power unit. |  |  |
|  | The time is started with the normal end of the measurement. If the measurement is invalid and if no valid measurement can be taken within the monitoring period (phase currents too high), an appropriate message is generated. |  |  |
| Note: | Set this parameter to 0 to allow | the delay when runn |  |


| p3492 | Infeed, line supply undervoltage delay time / INF U_line t_del |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 [s] | 300 [s] | 0 [s] |
| Description: | Sets the delay time for shutdown due to a line supply undervoltage condition (A06100). |  |  |
|  | After the fault occurs, the power unit is only tripped (shut down) after this delay has expired. If the fault is removed during this design time, then the power unit is not tripped (shut down). |  |  |
| Dependency: | Refer to: p0283 |  |  |
|  | Refer to: F06100 |  |  |
| Note: | The degree of ruggedness of the infeed with respect to fluctuations in the line supply voltage can be increased by parameterizing this delay value. |  |  |
|  | However, the following should be noted: |  |  |
|  | - the infeed power decreases proportionally (linearly) with the line supply voltage. |  |  |
|  | - when other components are connected, for low line supply voltage, operating faults or damage can occur. In this case, the specifications of the connected electrical components should always be carefully observed. |  |  |
| p3508 | Infeed step-up factor maximum / Step-up factor max |  |  |
| A _INF | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1.60 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3.00 \end{aligned}$ | Factory setting 1.60 |
| Description: | Sets the maximum permissible step-up factor for the power unit used in conjunction with the line filter parameterized in p0220[0]. |  |  |
| Dependency: | Refer to: p0210, p0220, p3510 |  |  |
| Note: | The maximum step-up factor determines the maximum ratio between the DC link voltage setpoint (p3510) and the unit supply voltage (p0210). |  |  |
|  | The input of the DC link voltage setpoint ( p 3510 ) is limited corresponding to the permissible step-up factor ( p 3508 ): p3510 <= p0210 *p3508. |  |  |
|  | Pre-setting values: |  |  |
|  | 380 ... 480 V booksize units without Active Interface Module: 1.60 |  |  |
|  | 380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2.00 |  |  |
|  | 380 ... 480 V chassis units: 2.00 |  |  |
|  | $500 . .690 \mathrm{~V}$ chassis units: 2.00 |  |  |
|  | Maximum values: |  |  |
|  | 380 ... 480 V booksize units without Active Interface Module: 1.60 |  |  |
|  | 380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2.00 |  |  |
|  | 380 ... 480 V chassis units: 2.00 |  |  |
|  | $500 . .690 \mathrm{~V}$ chassis units: 2.00 |  |  |
|  | When the filter setting ( p 0220 ) is changed, then the setting of the maximum step-up factor ( p 3508 ) is also automatically adapted. |  |  |


| p3510 | Infeed DC link voltage setpoint / INF Vdc setp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| (Tech_ctrl), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 8940 |
| (Tech ctrl), | P-Group: Closed-loop control | Units group: 5_2 | Unit selection: p0505 |
| SERVO_I_AC | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 100.00[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1600.00[\mathrm{~V}] \end{aligned}$ | Factory setting $600.00 \text { [V] }$ |
| Description: | Sets the setpoint for the DC link voltage. |  |  |
| Dependency: | Refer to: p0210, p0280, p3400, p3508, p3511 |  |  |
|  | Before increasing the voltage limit for pulsed operation of a controlled booksize infeed with line supply voltages p0210 $>415 \mathrm{~V}$ it should be checked whether the motors connected to the DC link are specified for the higher motor voltages. <br> The warning information associated with p 0210 must be carefully observed. |  |  |
| Note: | When the Smart Mode is activated ( $\mathrm{p} 3400.0=1$ ) the DC link voltage is not regulated, i.e. the value entered here is in this case not effective. |  |  |
|  | The permissible range of the DC link voltage depends on the parameterized unit supply voltage ( p 0210 ) and the permissible, maximum continuous DC link voltage ( p 0280 ). |  |  |
|  | In voltage-controlled operation ( $\mathrm{p} 3400.0=0$ ) the following applies: |  |  |
|  | p3510 >= 1.42 * p0210 and |  |  |
|  | p3510 < p 3508 * p0210 and |  |  |
|  | p3510 < p 0280 . |  |  |
|  | In the Smart Mode (p3400.0 = 1) the following applies: |  |  |
|  | The setpoint p3510 for the DC link voltage control is inactive. In order to permit an adapted display, deviating from voltage-controlled operation, the lower limit p3510 is >= 1.2 * p0210. |  |  |


| p3510 | DC link voltage setpoint / Vdc setp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR(Tech_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 5_2 | Unit selection: p0505 |
| (Tech_ctrl) | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 100.00[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1600.00[\mathrm{~V}] \end{aligned}$ | Factory setting 600.00 [V] |
| Description: | Sets the setpoint for the DC-link voltage on the motor side. |  |  |
| p3511 | CI: Infeed DC link voltage supplementary setpoint / INF Vdc Z_set |  |  |
| A_INF, SERVO | Can be changed: $T$ | Calculated: - | Access level: 3 |
| (Tech_crrl), | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 8940 |
| (Tech ctrl), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| SERVO_I_AC | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the supplementary setpoint for the DC link voltage. Refer to: p3510 |  |  |
| Dependency: |  |  |  |




Note: Closed-loop control of the DC link voltage is improved by pre-controlling the power required for the other modules. A non-scaled quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling (p3521).

| p3520[0...3] | CI: DC link pre-control power / Vdc pre-ctrl P |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctr), <br> VECTOR I AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| (Tech_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for power pre-control. |  |  |
| Dependency: | Refer to: p3521 |  |  |
| Note: | Closed-loop control of the DC link voltage is improved by pre-controlling the power required for the other modules. |  |  |
|  | A non-scaled quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling (p3521). |  |  |


| p3521[0...3] | Infeed pre-control power scaling / INF prectrl P scal |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| (Tech_ctrl), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech ctrl), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| SERVO_I_AC | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -100000.00000 [\%] | 100000.00000 [\%] | 100.00000 [\%] |
| Description: <br> Dependency: | Sets the scaling factor for the power pre-control. |  |  |

p3521[0...3] DC link pre-control power scaling / Vdc prectrl P scal

| VECTOR(Tech_crrl), Can be changed: U, T | Calculated: - | Access level: 2 |  |
| :--- | :--- | :--- | :--- |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| VECTOR_AC | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
| (Tech_ctrl) | Min | Max | Factory setting |
|  | $-100000.00000[\%]$ | $100000.00000[\%]$ | $100.00000[\%]$ |

Description: Sets the scaling factor for the power pre-contro
Dependency: Refer to: p3520

| p3523[0...3] | Infeed pre-control power smoothing / INF pre-ctrl P sm |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Tech_ctrl), | Can be changed: U, T | Calculated: - | Access level: 2 |
| SERVO_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Tech_ctrl), | P-Group: - | Units group: - | Unit selection: - |
| SERVO_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (Tech_ctrl) | Max | Factory setting |  |
|  | Min | $1000[\mathrm{~ms}]$ | $0[\mathrm{~ms}]$ |
|  | $0[\mathrm{~ms}]$ |  |  |
| Description: | Sets the filter time for power pre-control. |  |  |
| Dependency: | Refer to: p3520 |  |  |


| p3523[0...3] | DC link pre-control power smod | ing / Vdc pre- |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctr), <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: - <br> Not for motor type: - <br> Min <br> 0 [ms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 1000 [ms] | Access level: 2 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 [ms] |
| Description: <br> Dependency: | Sets the filter time for power pre-control. <br> Refer to: p3520 |  |  |
| $\begin{aligned} & \overline{\text { p3528 }} \\ & \text { A_INF } \end{aligned}$ | CI: Infeed current limit motoring <br> Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: - <br> Not for motor type: - <br> Min | scaling / INF I_lim <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max | Access level: 3 <br> Func. diagram: 8940 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for the scaling of the <br> Refer to: p3530 <br> The following applies for the effective curr | urrent limit when mot <br> limit: p3530 x bico_p | limit the line active current. |
| p3529 | CI: Infeed current limit regenerative scaling / INF I_lim gen scal |  |  |
| A_INF | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max | Access level: 3 <br> Func. diagram: 8940 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 1 |
| Description: <br> Dependency: <br> Note: | Sets the signal source for the scaling of the Refer to: p3530 <br> The following applies for the effective curr | urrent limit when gen <br> limit: p3531 x bico_p | to limit the line active current. |
| p3530 | Infeed current limit motoring / | I_limit mot |  |
| A_INF | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> 1.00 [Arms] | Calculated: - <br> Dynamic index: - <br> Units group: 6_2 <br> Scaling: - <br> Max <br> 100000.00 [Arms] | Access level: 3 <br> Func. diagram: 8940 <br> Unit selection: p0505 <br> Expert list: 1 <br> Factory setting <br> 10000.00 [Arms] |
| Description: | Sets the motoring limit for the active line current. <br> The currently effective current limit is displayed in r0067[0]. |  |  |
| Dependency: Caution: | If this limit is selected lower than the maximum current permissible for the power unit (r0067), the infeed can no longer provide its full controlled power. <br> Operating faults of the infeed can occur due to the resulting DC link undervoltage. |  |  |
| Notice: | For self-commutated infeeds, the DC link nected load than can be supplied by the li If the $D C$ link voltage decreases down to the required active power - flows, uncontrolled This is the reason that, for physical reason tained. | tage decreases if mor because of the power rectified value, then th to the rectifier circuit the value in p3530 ca | $n$ from the DC link by the concurrent or a limit in p3530. rent - necessary to cover the ent limit that is always main- |



Notice: $\quad$ The DC link voltage will increase if generator mode is inhibited even though power is being regenerated into the DC link.

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: The inhibit only becomes active after operation has been enabled and the Vdc has been ramped up $(r 0863.0=1)$.

| r3534 | Infeed line filter maximum current / INF filter l_max |  |  |
| :--- | :--- | :--- | :--- |
| A_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - [Arms] | Factory setting |
|  | - [Arms] | - [Arms] |  |
| Description: | Displays the maximum permissible current for the line filter set using p0220[0]. |  |  |
| Dependency: | Refer to: p0220 |  |  |
| Note: | The currently effective maximum current for the power unit is displayed in r0067. |  |  |
|  | The value in r0067 is obtained as minimum of the current limits in r0209, p3530 ... r3534. |  |  |


| r3554 | Infeed Vdc controller integral component / INF Vdc_ctr I_comp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO | Can be changed: - | Calculated: - | Access level: 2 |
| (Tech_ctrl), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8940 |
| (Tech_ctrl), | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
| SERVO_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
| (Tech_ctrl) |  |  |  |
|  | Min | Max | Factory setting |
|  | - [Arms] | - [Arms] | - [Arms] |
| Description: | Displays the integral action component of the DC link voltage controller (Vdc controller). |  |  |


| r3554 | Vdc controller integral component / Vdc_ctrl l_comp |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Tech_ctri) <br> VECTOR_AC <br> (Tech_ctrl), <br> VECTOR_I_AC <br> (Tech_ctrl) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the integral action component of the DC link voltage controller (Vdc controller). |  |  |
| p3555[0..5] | Infeed Vdc controller integral component fast intervention / Vdc_ctr l-compFast |  |  |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.00 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$ | Factory setting [0] 2.00 [\%] |
|  |  |  | [1] 102.00 [\%] |
|  |  |  | [2] 0.00 [\%] |
|  |  |  | [3] 5.00 [\%] |
|  |  |  | [4] 100.00 [\%] |
|  |  |  | [5] 0.00 [\%] |
| Description: | Sets the fast Vdc controller intervention for a step-like decrease of the DC link voltage due to a high motor load of the infeed. |  |  |
|  | The Vdc controller fast intervention is de-activated for p3555[5] = 0 \% or p3560<100\% or p0225 > 0.5 * p0223. |  |  |
|  | For a line supply and DC link identification (p3410 >= 2) the level of the fast controller intervention (p3555[2]) is automatically adapted to the line supply inductance. |  |  |


| Recommend.: | Precise system knowhow is required when correctly changing this parameter! |
| :---: | :---: |
|  | - generally, the fast controller intervention is used to improve the control behavior for high-speed load changes. The function can therefore always be de-activated with $\mathrm{p} 3555[5]=0 \%$ if no peak load duty cycles are required in the application. |
|  | - using p3555[0], the calculation of the modulation depth is determined in the case of high system deviations also when the controller intervention is de-activated. This is the reason that p 3555 [0] should generally not be changed. |
| Index: | [0] = Intervention threshold 1: Vdc deviation from the setpoint |
|  | [1] = Intervention threshold 2: Vdc difference to the rectified value |
|  | [2] = Fast intervention automatic scaling |
|  | [3] = Fast intervention pre-control |
|  | [4] = Fast intervention timeout |
|  | [5] = Fast intervention manual scaling |
| Note: | p3555[0]: |
|  | Vdc system deviation as a percentage of the setpoint of the DC link voltage (first condition to initiate fast controller intervention). The threshold is also used to internally change over the modulation depth calculation for high system deviations and should therefore generally not be changed! |
|  | p3555[1]: |
|  | Vdc threshold as a percentage of the rectified value of the actual line supply voltage (second condition to initiate the fast controller intervention). Both threshold conditions must be fulfilled to initiate the controller intervention. p3555[2]: |
|  | Percentage overall level of the fast intervention (scaling factor). For a line supply identification with p3410>=2, the factor is automatically adapted or, for weak line supplies with a high inductance, set to 0 . |
|  | p3555[3]: |
|  | Percentage correction of the pre-control for a fast voltage dip (dead time compensation). |
|  | p3555[4]: |
|  | Percentage minimum time between two controller interventions ( $100 \%$ corresponds to 100 ms ). If high load change frequencies occur with the application, the minimum time between two controller interventions can be reduced using p3555[4]. |
|  | p3555[5]: |
|  | Percentage overall level of the fast intervention (scaling factor). With p3555[5] = 0, the fast controller intervention is inhibited. For weak line supplies with a high inductance, it makes sense to de-activate the fast intervention. |



| p3562 | Infeed,Vdc controller integral time / INF Vdc_ctrl Tn |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, SERVO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| (Tech_ctrl), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8940 |
| SERVO_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| SERVO_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.10 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 100000.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets the scaled integral time for the DC link voltage controller (Vdc). |  |  |
| Note: | A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422). |  |  |
| p3562 | Vdc controller integral time / Vdc_ctrl Tn |  |  |
| VECTOR (Tech_ctrl), | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| VECTOR I AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| (Tech_ctrl) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.10 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100000.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$ |
| Description: | Sets the scaled integral time for the DC link voltage controller (Vdc). |  |  |
| Note: | A value of $100 \%$ corresponds to the basic setting derived from the loop control parameter (p3422). |  |  |
| p3564 | Infeed Vdc monitor, time constant / INF Vdc monit T |  |  |
| A_INF | Can be changed: T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.0 [ms] | $\begin{aligned} & \text { Max } \\ & 100.0[\mathrm{~ms}] \end{aligned}$ | Factory setting 0.2 [ms] |
| Description: | Sets the filter time constant for the DC link voltage monitor (Vdc). |  |  |
| p3566 | Infeed Vdc ramp duration / INF Vdc t_ramp |  |  |
| A_INF | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8932 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 40 [ms] | $\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$ | Factory setting 100 [ms] |
| Description: | Sets the ramp time for the DC link voltage (Vdc) when powering up and powering down. Powering up (pulses enabled, r0898.3 = 1): |  |  |
|  | During this time, the DC link voltage is increased from the rectifier value after pre-charging to the voltage setpoint ( $\mathrm{p} 3510, \mathrm{p} 3511$ ). The voltage setpoint is increased, when necessary, so that the modulation depth reserve ( p 3481 ) is maintained. The reactive current is set to the value 0 while ramping. |  |  |
|  | Powering down (inhibit pulses, r0898.3 = 0): |  |  |
|  | During this time, the DC link voltage is reduced to the rectified value (sqrt(2) * line supply voltage). The reactive current value is set to the value 0 when the ramp starts. |  |  |



| Dependency: | Refer to: p3570, p3571, p3572 |
| :--- | :--- |
| Note: | For a master infeed and a slave infeed, the active current setpoint can be entered without using a multiplexer. If the | multiplexer for the master/slave is not required, then it can also be used for another function.


| p3574[0...3] | Master/slave DC link voltage monitoring / Vdc monitoring |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Master/Slave) | Can be changed: C2(1), T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -60[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 60[\mathrm{~V}] \end{aligned}$ | Factory setting [0] 20 [V] |
|  |  |  | [1] -20 [V] |
|  |  |  | [2] 5 [V] |
|  |  |  | [3]-5 [V] |
| Description: | Sets the upper and lower limit values and hysteresis values for the DC link voltage monitoring. |  |  |
|  | The values are entered as absolute values and refer to the DC link voltage setpoint (p3510). |  |  |
|  | For a slave infeed, if the limits are violated, then the closed-loop voltage control is automatically switched in. |  |  |
| Index: | [0] = Vdc upper limit value <br> [1] = Vdc lower limit value <br> [2] = Vdc upper hysteresis value <br> [3] = Vdc lower hysteresis value |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: r0088, p0210, p3510, r3575 |  |  |


| r3575.0... | BO: Master/slave DC link voltage monitoring status / Vdc monit status |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Mas- | Can be changed: - | Calculated: - | Access level: 3 |
| ter/Slave) | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the status of the DC link voltage monitoring for the master/slave. |  |  |
| Bit field: | Bit Signal name | 1 signal | Yes |
|  | 00 Upper limit value reached | Yes | No |
|  | 01 Lower limit value reached | Yes | No |
| Dependency: | 02 Upper/lower limit value reached |  | No |


| p3576[0..5] | Master/slave current distribution factor, multiplexer input / I_dist_factor inp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Master/Slave) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets up to 6 factors to be multiplied by the active current setpoint for the current controller. |  |  |
|  | For a master slave infeed configuration, the value reduced in this way can be distributed to the slave axes. The overall gain from the perspective of the voltage controller remains the same. |  |  |
| Index: | [0] = Value 0 |  |  |
|  |  |  |  |
|  | $\text { [2] = Value } 2$ |  |  |
|  |  |  |  |
|  | $\text { [4] = Value } 4$ |  |  |
|  | [5] = Value 5 |  |  |
| Dependency: | Refer to: p3577, r3578, p3579 |  |  |


| Note: | If the multiplexer for the master/slave is not required, then it can also be used for another function. |  |  |
| :---: | :---: | :---: | :---: |
| p3577 | CI: Master/slave current distribu | n factor, multip | ion / I_dist_factor sel |
| A_INF (Master/Slave) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source to select the required input value for the multiplexer. |  |  |
|  |  |  |  |
|  | Fault F06321 is output for other values. |  |  |
| Dependency: | Refer to: p3576, r3578, p3579 |  |  |
|  | Refer to: F06321 |  |  |
| Note: | If the multiplexer for the master/slave is not required, then it can also be used for another function. |  |  |
| r3578 | CO: Master/slave current distribution factor, multiplexer output/ I_dist_factor outp |  |  |
| A_INF (Master/Slave) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [\%] | $\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$ | Factory setting - [\%] |
| Description: | Display and connector output for the multiplexer output value. |  |  |
|  | The signal value is used as standard for the current distribution factor for the infeed master slave operation. |  |  |
| Dependency: | Refer to: p3576, p3577, p3579 |  |  |
| Note: | If the multiplexer for the master/slave is not required, then it can also be used for another function. |  |  |
| p3579 | CI: Master/Slave current distribution factor / I_dist_factor |  |  |
| A_INF (Master/Slave) | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: 8948 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  | Max | Factory setting 3578[0] |
| Description: | Sets the factor to be multiplied by the active current setpoint for the current controller. |  |  |
|  | For a master slave infeed configuration, the value reduced in this way can be distributed to the slave axes. The overall gain from the perspective of the voltage controller remains the same. |  |  |
| Dependency: | Refer to: p3576, p3577, r3578 |  |  |
| r3602 | Infeed control status / INF ctrl state |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 |  |  |
| Description: | Displays the status of the closed-loop infeed control. |  |  |
| Value: | 0 : Initialization running |  |  |
|  | 1: Pulse enable missing |  |  |
|  | 2: Ramp-up, DC link voltage |  |  |
|  | 3: Ramp-up reactive current |  |  |
|  | 4: Shutdown running |  |  |



| p3611 | CI: Infeed reactive current supplementary setpoint / INF I_reactv Z_set |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 8946 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the supplementary setpoint of the reactive current. |  |  |
| p3612 | CI: Infeed reactive power, precontrol / INF P_react prectr |  |  |
| A_INF (Dyn. grid support) | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: r2004 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the precontrol of the reactive power. Refer to: p3520 |  |  |
| Dependency: |  |  |  |
| p3614[0..1] | Infeed current actual value filter smoothing time / INF I_act t_sm |  |  |
| A_INF | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8950 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [ms] | 2.000 [ms] | 0.000 [ms] |
| Description: Index: | Sets the time constant for the PT1 filtering of the active current actual value and reactive current actual value. <br> [0] = Current actual value smoothing with dead time <br> [1] = Current actual value smoothing without dead time |  |  |
| Note: | The current actual value filter is de-activated with $\mathrm{p} 3614[0,1]=0$. |  |  |
|  | Re index 0 : |  |  |
|  | The PT1 filter with a clock cycle dead time can be used to stabilize the closed-loop current control for extremely weak line supplies (with higher relative short-circuit voltage uk). |  |  |
|  | For an automatic controller setting with p3410 >= 2 , the current actual value filter is automatically pre-set. Re index 1: |  |  |
|  | The PT1 filter without dead time can be used to optimize the closed-loop current control (e.g. in conjunction with fre quency wobbulation). |  |  |
| p3615 | Infeed current controller P gain | NF I_ctrl Kp |  |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8946 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [\%] | 1000.00 [\%] | 100.00 [\%] |
| Description: | Sets the scaled P gain for closed-loop current control of the infeed. |  |  |
| Note: | A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422). |  |  |


| p3617 | Infeed current controller integral time / INF I_ctrl Tn |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8946 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.10 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100000.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$ |
| Description: | Sets the scaled integral time for the infeed current controller. |  |  |
| Note: | A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422). |  |  |
| r3618 | Infeed active current controller, integral component / INF I_act_ctrl Tn |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8946 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the integral component of the active current controller. |  |  |
| r3619 | Infeed reactive current controller integral component / INF I_reactv_ctrTn |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8946 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the integral action component of the reactive current controller. |  |  |
| p3620 | Infeed current controller adaptation lower application threshold / INF I_adptLowThrsh |  |  |
| A_INF | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100.00 \text { [\%] } \end{aligned}$ | Factory setting 40.00 [\%] |
| Description: | Sets the switch-in threshold for the current controller adaptation. |  |  |
|  | The value refers to the maximum power unit current (r0209). From the starting threshold onwards, the inductance value ( p 3421 ) used for current control is reduced linearly as a function of the current value. The inductance value for the maximum power unit current is therefore p3421 * p3622. |  |  |
| Dependency: | Refer to: p3410, p3415, p3622 |  |  |
| Note: | The parameter can be set automatically using the line supply identification (p3410 $=4,5$ ) (also refer to p3622). Pre requisite for a reliable measurement of p3622 is that the current magnitude for run 2 (p3415[1]) is at least 10 \% higher than the current magnitude for run 1 of the line supply identification. Otherwise, the measurement result is rejected. |  |  |
|  | In the case of a correct measurement, p3620 is set to 80\% of the current magnitude for run 1 (p3415[0]). |  |  |
|  | For chassis power units, it is generally not necessary to adapt p3620 and p3622 to the characteristics of the line supply. However, when required, the current controller adaptation can be optimized by selecting suitable current magnitudes for p3415. |  |  |
|  | For booksize power units, p3620 and p3622 are automatically adapted with the then valid default setting of the line identification p3415. |  |  |


| p3622 | Infeed current controller adaptation reduction factor / INF I_adapt factor |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.01 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$ | Factory setting 85.00 [\%] |
| Description: | Sets the inductance of the line reactor at the maximum power unit current (r0209) as a percentage of the inductance ( p 3421 ) at the application threshold ( p 3620 ). |  |  |
| Dependency: | Refer to: p3410, p3415, p3620 |  |  |
| Note: | The parameter for a line supply identification (p3410 $=4,5$ ) automatically optimized, if the following applies: $\mathrm{p} 3415[1]$ - p3415[0] > 10\%. Otherwise, the measurement result is rejected. |  |  |
|  | For chassis power units, it is generally not necessary to adapt p3620 and p3622 to the characteristics of the line supply. However, when required, the current controller adaptation can be optimized by selecting suitable current magnitudes for p3415. |  |  |
|  | For booksize power units, p3620 and p3622 are automatically adapted with the then valid default setting of the line identification p3415. |  |  |


| p3624[0...1] | Infeed harmonics controller order / INF harm_ctr order |  |  |
| :--- | :--- | :--- | :--- |
| A_INF | Can be changed: $T$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 5 | 13 | $[0] 5$ |
|  |  |  | $[1] 7$ |


| Description: | Sets the Order of the line harmonics for the current harmonics controller. |
| :--- | :--- |
| p3624[0]: Order of the line harmonics for the first harmonics controller. |  |
| p3624[1]: Order of the line harmonics for the second harmonics controller. |  |
| Dependency: $\quad$ Refer to: p3625, r3626 |  |
| Note: $\quad$ Harmonics in the line supply voltage can cause harmonics in the converter current. These types of current harmon- |  |
| ics can be reduced by activating additional controller modules. |  |
| Example: |  |
| For a 50 Hz line supply harmonics at 250 Hz in the phase currents can be reduced by activating a harmonic control- |  |
| ler with Order $5(\mathrm{p} 3624[0]=5)$. |  |


| p3625[0..1] | Infeed harmonics controller scaling / INF harm_ctrl scal |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [\%] | 300.0 [\%] | 100.0 [\%] |
| Description: | Sets the gain of the harmonics controller. |  |  |
|  | p3625[0]: Gain of the first harmonics controller |  |  |
|  | p3625[1]: Gain of the second harmonics controller |  |  |
|  | $0 \%$ : Controller is de-activated |  |  |
|  | 100 \%: Controller is activated with default gain setting |  |  |
| Dependency: | Refer to: p3624, r3626 |  |  |
| Note: | The harmonics controller corrects the power unit voltages so that the line-side current harmonics are reduced. |  |  |
|  | The order of |  | ler, is defined usin |


| r3626[0...1] | Infeed harmonics control output / INF harm_ctrl outp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the output voltages of the harmonics controller. |  |  |
|  | r3626[0]: RMS value of the 5th harmonic of the controller output voltage |  |  |
|  | r3626[1]: RMS value of the 7th harmonic of the controller output voltage |  |  |
|  | The harmonics controller corrects the power unit voltages so that the line-side current harmonics are reduced. |  |  |
| Dependency: | Refer to: p3624, p3625 |  |  |
| r3632 | Infeed input voltage Vsd (active component) / INF U_inp Usd |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 8946, 8950 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Displays the voltage Usd (active component) at the 3-phase line supply input of the power unit. |  |  |
| r3633 | Infeed input voltage Usq (reactive component) / INF U_inp Usq |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1774, 8946, 8950 |
|  | P-Group: Closed-loop control | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting <br> - [Vrms] |
| Description: | Displays the voltage Usq (reactive component) at the 3-phase line supply input of the power unit. |  |  |
| r3635 | CO: Infeed input voltage angle / INF U_inp angle |  |  |
| A_INF | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8950 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $\text { - [ }{ }^{\circ} \text { ] }$ | Max $-\left[{ }^{\circ}\right]$ | Factory setting - [ ${ }^{\circ}$ ] |
| Description: | Displays the angle of the input voltage (relative to the line angle). |  |  |
| r3637[0...1] | CO: Negative phase-sequence system control current setpoint / Neg_seq_ctrl I_set |  |  |
| A_INF (Dyn. grid support, Line transf) | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min - [Arms] | Max - [Arms] | Factory setting - [Arms] |
| Description: Index: | Display and connector output for the current setpoint for the negative phase-sequence system control.$\begin{aligned} & {[0]=\text { Active }} \\ & {[1]=\text { Reactive }} \end{aligned}$ |  |  |


| r3638[0...3] | CO: Negative phase-sequence system control current actual value / Neg_seq ctr l_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support, Line transf) | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Display and connector output for the current actual values for the negative phase-sequence system control. The setpoint for the positive phase-sequence system current is compensated in the displayed negative-phase sequence system current. |  |  |
|  | The setpoint for the negative phase-sequence system current is compensated in the displayed positive-phase sequence system current. |  |  |
| Index: | $[0]=$ Negative phase-sequence system component active current <br> [1] = Negative phase-sequence system component reactive current <br> [2] = Positive phase-sequence system component active current <br> [3] = Positive phase-sequence system component reactive current |  |  |
| Note: | The total active current actual value in the positive phase-sequence system coordinates is displayed in r0078. The total reactive current actual value in the positive phase-sequence system coordinates is displayed in r0076. |  |  |
| p3639 | Negative phase-sequence system control integral time / Neg_seq_ctrl_Tn |  |  |
| A_INF (Dyn. grid | Can be changed: U, T | Calculated: - | Access level: 4 |
| support, Line transf) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 300.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets the integral time of the negative phase-sequence system current control. |  |  |
| Note: | The value $100 \%$ corresponds to the integral time, which is active for the regular positive phase-sequence system current controller (p3617). |  |  |


| p3640 | Negative phase-sequence system control operating mode / Neg_SeqCtr op_mode |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support, Line transf) | Can be changed: T C | Calculated: - Acce |  |  |
|  | Data type: Unsigned16 Dy | Dynamic index: - | Func |  |
|  | P-Group: Closed-loop control U | Units group: - | Unit |  |
|  | Not for motor type: - Scals | Scaling: - | Exp |  |
|  | Min M | Max | Fac |  |
|  | - - | - | 0000 |  |
| Description: | Sets the operating mode of the negative phase- | e-sequence system |  |  |
|  | The negative phase-sequence system control con current (supplementary setpoint p3641). | controls the negati | uence sy |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Negative phase-sequence system current | nt Yes | No | - |



Example:
1000 V line supply voltage, voltage scaling, $10: 1$
--> voltage at the VSM input is 100 V
--> p3660 = 10 * $100 \%=1000$ \%

| p3660[0...n] | VSM input line supply voltage, voltage scaler / VSM inp U_scaler |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 100000.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: Note: | Sets the voltage scaler for the Voltage Sensing Module (VSM). |  |  |
|  | When the 690 V input is used (X522) without voltage scaler, 0 \% should be entered. |  |  |
|  | When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by $100 \%$ should be entered. |  |  |
|  | Example: |  |  |
|  | 1000 V line supply voltage, voltage scaling, 10:1 |  |  |
|  | --> voltage at the VSM input is 100 V |  |  |
|  | --> p3660 = 10 * $100 \%=1000 \%$ |  |  |
| r3661 | CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2 |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 8850, 8950, 9880 |
|  | P-Group: Closed-loop control | Units group: 5_3 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [V] | - [V] | - [V] |
| Description: | Displays the input voltage between phases L1 and L2 for the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: r0025, r0072, p3660 |  |  |
| Note: | X521.1 or X522.1: Connection of L1 |  |  |
|  | X521.2 or X522.2: Connection of L2 |  |  |
|  | X521.3 or X522.3: Connection of L3 |  |  |
|  | The absolute voltage value (3-ph. AC) resulting from the phase voltages is displayed unsmoothed in r0072[1] and smoothed in r0025[1]. |  |  |

r3661[0...n] CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2
VECTOR, Can be changed: - Calculated: - Access level: 3

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min

- [V]

Dynamic index: p0150
Units group: 5_3
Scaling: p2001
Max

- [V]

Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- [V]

Description: Displays the input voltage between phases L1 and L2 for the Voltage Sensing Module (VSM).
Dependency: Refer to: p3660
Note: $\quad$ X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2
X521.3 or X522.3: Connection of L3



| r3666[0...n] | CO: VSM temperature KTY / VSM temp KTY |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9886 |
| VECTOR_I_AC | P-Group: Closed-loop control | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the temperature actual value of a KTY84 temperature sensor connected to the Voltage Sensing Module (VSM). |  |  |
|  | Prerequisite: |  |  |
|  | A KTY84 sensor is connected and p3665 is set to 2 . |  |  |
| Dependency: | Refer to: p3665 |  |  |
| Note: | For sensor type PTC (p3665 = 1), the following applies: |  |  |
|  | - below the nominal response temperature, r3666 $=-50^{\circ} \mathrm{C}$. |  |  |
|  | - above the nominal response temperature, r3666 $=199.9^{\circ} \mathrm{C}$. |  |  |


| p3667 | VSM line filter overtemperature alarm threshold / VSMfilt_T A_thresh |
| :---: | :---: |
| A_INF, S_INF | Can be changed: T Calculated: - Access level: 4 |
|  | Data type: FloatingPoint32 Dynamic index: - Func. diagram: 9886 |
|  | P-Group: - Units group: 21_1 Unit selection: p0505 |
|  | Not for motor type: - Scaling: p2006 Expert list: 1 |
|  | Min Max Factory setting <br> $0\left[{ }^{\circ} \mathrm{C}\right]$ $301\left[{ }^{\circ} \mathrm{C}\right]$ $150\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Sets the alarm threshold for the KTY temperature sensor of the Voltage Sensing Module (VSM) to monitor the line filter temperature. |
|  | Prerequisite: |
|  | A KTY84 sensor is connected and p3665 is set to 2 . |
| Dependency: | Refer to: p3665 |
|  | Refer to: A34211 |


| p3667[0...n] | VSM line filter overtemperature alarm threshold / VSMfilt_T A_thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9886 |
|  | P-Group: - | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $0.00\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \text { Max } \\ & 301.00\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting 150.00 [ ${ }^{\circ} \mathrm{C}$ ] |
| Description: | Sets the alarm threshold for the KTY temperature sensor of the Voltage Sensing Module (VSM) to monitor the line filter temperature. |  |  |
|  | Prerequisite: |  |  |
|  | A KTY84 sensor is connected and p3665 is set to 2. |  |  |
| Dependency: | Refer to: p3665 |  |  |
|  | Re |  |  |

p3668 VSM line filter overtemperature shutdown threshold / VSM filt_T F_thres
A_INF, S_INF Can be changed: T Calculated: - Access level: 4
Data type: FloatingPoint32 Dynamic index: - Func. diagram: 9886
P-Group: - Units group: 21_1 Unit selection: p0505
Not for motor type: - Scaling: p2006 Expert list: 1
Min Max $\quad$ Factory setting
$0\left[{ }^{\circ} \mathrm{C}\right]$
301 [ $\left.{ }^{\circ} \mathrm{C}\right]$

Description: Sets the shutdown threshold for the KTY temperature sensor of the VSM to monitor the line filter temperature.


| p3670[0...n] | VSM 10 V input CT gain / VSM CT_gain |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $0.000[\mathrm{~A}]$ | $\begin{aligned} & \text { Max } \\ & 1000.000 \text { [A] } \end{aligned}$ | Factory setting 1.000 [A] |
| Description: | Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM). <br> The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V]. <br> Example: <br> CT with 1 V per 200 A . $\text { --> p3670 = } 200$ |  |  |
| Dependency: | Refer to: r3671, r3672 |  |  |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. |  |  |
| r3671 | CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [A] | $\begin{gathered} \text { Max } \\ -[A] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. |  |  |
| r3671[0...n] | CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[A] \end{gathered}$ | Factory setting $-[\mathrm{A}]$ |
| Description: | Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. |  |  |
| r3672 | CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -[A] \end{gathered}$ | Factory setting <br> - [A] |
| Description: | Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM. |  |  |


| r3672[0...n] | CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \text { Min } \\ -[A] \end{gathered}$ | Max <br> - [A] | Factory setting $-[A]$ |
| Description: | Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM. |  |  |
| r3673 | CO: VSM 10 V input 1 actual value / VSM inp 1 U_act |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$ | Max <br> - [V] | Factory setting $-[V]$ |
| Description: <br> Dependency: | Displays the actual value of the Refer to: p 3670 10 V inp | sured at the 10 V input 1 of | e Sensing Modules (VSM). |
| Note: | 10 V input 1: Terminals X520.1 and X520.2 |  |  |
| r3673[0...n] | CO: VSM 10 V input 1 actual value / VSM inp 1 U_act |  |  |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$ | Max <br> - [V] | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Modules (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | 10 V input 1: Terminals X520.1 and X520.2 |  |  |
| r3674 | CO: VSM 10 V input 2 actual value / VSM inp 2 U_act |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{gathered} \text { Min } \\ -[V] \end{gathered}$ | Max <br> - [V] | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | 10 V input 2: Terminals X520.3 and X520.4 |  |  |


| r3674[0...n] | CO: VSM 10 V input 2 actual value / VSM inp 2 U_act |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: 9880 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM). |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | 10 V input 2: Terminals X520.3 and X520.4 |  |  |
| p3676 | VSM line filter capacitance alarm threshold / VSMfilt C A_thresh |  |  |
| A_INF, S_INF | Can be changed: T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [\%] | 100.00 [\%] | $0.00 \text { [\%] }$ |
| Description: | Sets the alarm threshold for the change of the capacitance of the line filter. |  |  |
|  | The monitoring of the filter capacitance is de-activated with p3676 $=0.00 \%$. |  |  |
| Dependency: | Refer to: p3670 |  |  |
|  | Refer to: A06250 |  |  |
| Notice: | The following must be ensured before activating monitoring (e.g. p3676 = $10 \%$ ): |  |  |
|  | Filter capacitance (p0221) $=3 \times$ measured filter capacitance (r3677[0...2] |  |  |
|  | Otherwise, to establish this ratio, p3670 must be appropriately set. |  |  |
|  | Example: |  |  |
|  | The filter capacitance is specified with p0221 $=39 \mu \mathrm{~F}$. In order that the measured capacitance is 3 x so high, p3670 $=6.7 \mathrm{~A}$ must be set in the gain factor. |  |  |
|  | $\mathrm{p} 0221[0]=39 \mu \mathrm{~F}$ |  |  |
|  | $\mathrm{r} 3677[0 \ldots 2]=3 \times 39=117 \mu \mathrm{~F}$ |  |  |
|  | --> p3670 = 6.7 A |  |  |
| Note: | Prerequisites for monitoring the filter capacitance: |  |  |
|  | The phase currents must be measured at two capacitors of the line filter. To do this, CTs should be connected the 10 V inputs of the VSM. |  |  |
| r3677[0...2] | CO: VSM line filter capacitance / VSM filt C |  |  |
| A_INF, S_INF | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\mu \mathrm{F}] \end{aligned}$ | Max <br> - $[\mu \mathrm{F}]$ | Factory setting - [ $\mu \mathrm{F}$ ] |
| Description: | Displays the capacitance of the line filter (for a star circuit configuration). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$ |  |  |
| Dependency: | Refer to: p3676 |  |  |
| Note: | Prerequisite: |  |  |
|  | The monitoring of the filter capacitance is activated. |  |  |


| p3678[0..1] | Filter monitoring threshold values / Filter monit thr |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: C2(1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7991 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [\%] | 10000.00 [\%] | [0] 0.00 [\%] |
|  |  |  | [1] 0.00 [\%] |
| Description: | Sets the threshold values for filter monitoring. |  |  |
|  | The voltage threshold value is referred to p0210. |  |  |
|  | The current threshold value is referred to the nominal filter current. |  |  |
|  | Nominal filter current $=2 \times \mathrm{PI} \times \mathrm{p} 0211 \times 3 \times \mathrm{p} 0221[0] \times \mathrm{p} 0210 \times \mathrm{sqrt}(2) / \mathrm{sqrt}(3)$ |  |  |
| Index: | [0] = Voltage threshold value <br> [1] = Current threshold value |  |  |
| Dependency: | Refer to: r3671, r3672, r7310, r7311 |  |  |
|  | Refer to: F06855 |  |  |
| Note: | The filter monitoring function is de-activated with p3678 $=0.00$. |  |  |
|  | Recommended setting for activation: |  |  |
|  | Voltage threshold value: 5.0 \% |  |  |
|  | Current threshold value: 500 \% |  |  |
| p3679[0..1] | Transformer filter monitoring times / Filter monit times |  |  |
| A_INF (Line transf) |  | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7991 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$ |  | Factory setting |
|  |  | 40.00 [ms] | [0] 20.00 [ms] |
|  |  |  | [1] 0.50 [ms] |
| Description: | Sets the times for filter monitoring. |  |  |
|  | Index 0: |  |  |
|  | Smoothing time for the alpha and beta components of the filter voltage. |  |  |
|  |  |  |  |
|  | If the set current threshold value is exceeded at least for the time set, a corresponding fault is output. |  |  |
| Index: | [0] = Voltage threshold value |  |  |
| Dependency: | Refer to: F06855 |  |  |
| p3680 | BI: Braking Module internal inhibit / BM int inhib |  |  |
| B_INF | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to inhibit the internal Braking Module. |  |  |
|  | BI: p3680 = 1 signal: |  |  |
|  | The Braking Module is inhibited. |  |  |
|  | BI: p3680 = 0 signal: |  |  |
|  | The Braking Module is enabled. |  |  |
| Dependency: | Refer to: A06904 |  |  |


|  | When the Braking Module is inhibited, no energy can be dissipated in the braking resistor. |
| :---: | :---: |
| p3681 | BI: Activating Braking Module internal DC link fast discharge / BM intDCdischg act |
| B_INF | Can be changed: $T$ Calculated: - Access level: 3 |
|  | Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: - |
|  | P-Group: - Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting |
|  | 0 |
| Description: | Sets the signal source to activate the DC link fast discharge for an internal braking module. When the following conditions apply, the DC link fast discharge is started later with delay time ( p 3682 ): - BI: p3681 = 1 signal. |
|  |  |
|  | - an external line contactor is opened via r0863.1 "energize contactor". |
|  | The DC link fast discharge is interrupted when the following conditions apply: - BI: p3681 = 0 signal. |
|  |  |
|  | - ON command for the infeed. |
| Recommend.: | The DC link fast discharge should be activated if there is an external line contactor and is correctly interconnected (r0863.1, p0860). If the DC link fast discharge is not activated together with an external line contactor, then faults could occur when pre-charging (e.g. F300027). |
| Dependency: | Refer to: p3682 |
|  | Refer to: F30027 |
| Notice: | The parameter is only effective for Basic Line Modules with the internal Braking Module (this is valid for Basic Line Modules with a power rating of less than 100 kW ). |
| p3682 | Braking Module internal DC link fast discharge delay time / BM int DC dischg t |
| B_INF | Can be changed: $\mathrm{C} 1(3), \mathrm{T}$ Calculated: - Access level: 3 |
|  | Data type: Unsigned32 Dynamic index: - Func. diagram: - |
|  | P-Group: Communications Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> $500[\mathrm{~ms}]$ $4294967295[\mathrm{~ms}]$ 1000 [ms] |
| Description: | Sets the delay time for switching in the DC link fast discharge for an internal Braking Module. Refer to: p3681 |
| Dependency: |  |
| Notice: | The parameter is only effective for Basic Line Modules with the internal Braking Module (this is valid for Basic Line Modules with a power rating of less than 100 kW ). |
| p3683 | Braking Module internal activation threshold brake chopper / BM int act thresh |
| B_INF | Can be changed: C2(1) Calculated: - Access level: 3 |
|  | Data type: FloatingPoint32 Dynamic index: - Func. diagram: - |
|  | P-Group: Converter Units group: - Unit selection: - |
|  | Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> $110.00[\mathrm{~V}]$ 780.00 [V] 760.00 [V] |
| Description: | Sets the activation threshold for the braking chopper. |
| Note: | The activation threshold is only effective if the "Device supply voltage reduced" function ( $\mathrm{p} 0212.0=1$ ) has been activated! |


| r3685 | BO: Digital Braking Module: Pre-alarm I2t shutdown / Dig BM A I2t shutd |  |  |
| :---: | :---: | :---: | :---: |
| B_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | The binector output uses a 1 signal to indicate that $80 \%$ of the highest permissible 12 value has been reached in the Braking Module. |  |  |
| Dependency: | Refer to: A06905 |  |  |
| r3686 | BO: Digital Braking Module Fault / Dig BM Fault |  |  |
| B_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: <br> Dependency: | The binector output uses a 1 signal to indicate an overcurrent fault or an I2t shutdown in the Braking Module. <br> Refer to: F06906 |  |  |
| r3687 | BO: Digital Braking Module pre-alarm overtemperature / Dig BM A overtemp |  |  |
| B_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays a fault due to the excessively high temperature. 1 signal: |  |  |
|  | The connected temperature sensor (X21.1, X21.2) signals an overtemperature. |  |  |
| Recommend.: | Measure the braking resistor temperature using the temperature sensor. |  |  |
| r3688 | BO: Braking Module internal overtemperature shutdown / BM int temp shutd |  |  |
| B_INF | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the shutdown due to the excessively high temperature. 1 signal: |  |  |
|  | The connected temperature sensor (X21.1, X21.2) signals an overtemperature. The highest permissible temperature at the connected temperature sensor has been exceeded and results in a shutdown. |  |  |
| Dependency: | Refer to: F06908 |  |  |



| p3702[0...n] | APC load speed/motor speed weighting / APC n_load/mot wt |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| SERVO_I_AC (APC) | P-Group: Setpoints | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 1 |
|  | Min | 1.000 | Factory setting |
|  | 0.000 | 1.000 |  |
| Description: | Sets the weighting factor to form the speed actual value from the load speed and motor speed. |  |  |
|  | p3700.8 =1 must be set to activate weighting. |  |  |
| Dependency: | Refer to: p3700, p3701 |  |  |
| Note: | 1.0: only corresponds to the load speed. |  |  |
|  | $0.0:$ only corresponds to the motor speed. |  |  |
|  | $0.5:$ corresponds to the average value from the load speed and motor speed. |  |  |


| p3704[0...n] | APC filter activation / APC filter act |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
| SERVO_I_AC (APC) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0000000000000000 bin |
| Description: | Setting to activate the filter for APC (Advanced Positioning Control). |  |  |
| Bit field: | Bit | Signal name | 1 signal |
|  | 00 | Activate filter 1.1 | Yes |
|  | 04 | Activate filter 2.1 | Yes |
|  | 05 | Activate filter 2.2 | Yes |

p3705[0...n] APC filter type / APC filter type

SERVO (APC),
SERVO_AC (APC), SERVO_I_AC (APC)
changed: $U, T$
Data type: Unsigned16
P-Group: Closed-loop control
Not for motor type: REL
Min

Sets the filter type for the filter for APC (Advanced Positioning Control).
Description: Bit field:

| Bit | Signal name | 1 signal |
| :--- | :--- | :--- |
| 00 | Filter 1.1 type | A. Filter 2nd ord. |
| 04 | Filter 2.1 type | A. Filter 2nd ord. |
| 05 | Filter 2.2 type | A. Filter 2nd ord. |
| 08 | Filter 3.1 type | A. Filter 2nd ord. |
| 09 | Filter 3.2 type | A. Filter 2nd ord. |


| O signal | FP |
| :--- | :--- |
| Low pass (PT2) | - |


| p3706[0...n] | APC sub-sampling, filter 2.x / APC sub-samp. 2.x |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
| SERVO_I_AC (APC) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 64 | 1 |
| Description: | Sets the factor for the sub-sampling in the branch of filter 2.1 and 2.2 for APC (Advanced Positioning Control). |  |  |
| Note: | The values are integer multiples of the speed controller clock cycle (p0115[1]). |  |  |


| p3707[0...n] | APC sub-sampling, filt | 3 |  |
| :---: | :---: | :---: | :---: |
| SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned16 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 1 | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 64 | Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 1 |
| Description: <br> Note: | Sets the factor for the sub-sampling in the branch of filter 3.1 and 3.2 for APC (Advanced Positioning Control). The values are integer multiples of the speed controller clock cycle (p0115[1]). |  |  |
| p3708 | APC velocity actual value smoothing time encoder 2 / APC v_act t_sm 2 |  |  |
| SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.00 [ms] | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 50.00 [ ms ] | Access level: 3 <br> Func. diagram: 4711 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ms] |
| Description: Note: | Sets the smoothing time constant (PT1) for the velocity actual value of encoder 2 with APC (Advanced Positioning Control). |  |  |
| p3708[0...n] | APC speed actual value smoothing time encoder 2 / APC n_act t_sm 2 |  |  |
| SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.00 [ms] | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 50.00 [ms] | Access level: 3 <br> Func. diagram: 4711 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ms] |
| Description: | Sets the smoothing time constant (PT1) for the speed actual value of encoder 2 with APC (Advanced Positioning Control). |  |  |
| p3709[0... | APC velocity actual value smoothing time encoder 3 / APC v_act t_sm 3 |  |  |
| SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.00 [ms] | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 50.00 [ms] | Access level: 3 <br> Func. diagram: 4711 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ms] |
| Description: Note: | Sets the smoothing time constant (PT1) for the velocity actual value of encoder 3 with APC (Advanced Positioning Control). |  |  |
| p3709[0...n] | APC speed actual value smoothing time encoder 3 / APC n_act t_sm 3 |  |  |
| SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.00 [ms] | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 50.00 [ ms ] | Access level: 3 <br> Func. diagram: 4711 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ms] |
| Description: | Sets the smoothing time constant (PT1) for the speed actual value of encoder 3 with APC (Advanced Positioning Control). |  |  |

Note: $\quad$ The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.


| p3722[0...n] | APC filter 2.1 denominator damping / APC Filt 2.1 D_d |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.050 | 10.000 | 0.700 |
| Description: <br> Dependency: | Sets the denominator damping for filter 2.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control) Refer to: p3704, p3705 |  |  |
| p3723[0...n] | APC filter 2.1 numerator natural frequency / APC Filt 2.1 fn_n |  |  |
| SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.5[\mathrm{~Hz}]$ | $\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting 2000.0 [Hz] |
| Description: <br> Dependency: | Sets the numerator natural frequency for filter 2.1 (general 2nd Order filter) for APC (Advanced Positioning Control). |  |  |
| p3724[0...n] | APC filter 2.1 numerator damping / APC Filt 2.1 D_n |  |  |
| $\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 | 10.000 | 0.700 |
| Description: | Sets the numerator damping for filter 2.1 (general 2nd Order filter) for APC (Advanced Positioning Control). |  |  |
| Dependency: | Refer to: p3704, p3705 |  |  |
| p3726[0...n] | APC filter 2.2 denominator natural frequency / APC Filt 2.2 fn_d |  |  |
| $\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min $0.5[\mathrm{~Hz}]$ | $\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting 2000.0 [Hz] |
| Description: | Sets the denominator natural frequency for filter 2.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). |  |  |
| Dependency: | Refer to: p3704, p3705 |  |  |
| p3727[0...n] | APC filter 2.2 denominator damping / APC Filt 2.2 D_d |  |  |
| SERVO (APC), | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.050 | 10.000 | 0.700 |
| Description: | Sets the denominator damping for filter 2.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). |  |  |
| Dependency: | Refer to: p3704, p3705 |  |  |



| p3734[0...n] | APC filter 3.1 numerator damping / APC Filt 3.1 D_n |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.000 | Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 10.000 | Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 0.700 |
| Description: Dependency: | Sets the numerator damping for filter 3.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705 |  |  |
| p3736[0...n] <br> SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | APC filter 3.2 denomin <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> $0.5[\mathrm{~Hz}]$ | l frequency / APC Filt 3 <br> Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max $16000.0[\mathrm{~Hz}]$ | d <br> Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $2000.0[\mathrm{~Hz}]$ |
| Description: Dependency: | Sets the denominator natural frequency for filter 3.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). |  |  |
| p3737[0...n] <br> SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | APC filter 3.2 denomin <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.050 | ing / APC Filt 3.2 D_d <br> Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 10.000 | Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: <br> Expert list: 1 <br> Factory setting $0.700$ |
| Description: Dependency: | Sets the denominator damping for filter 3.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705 |  |  |
| p3738[0...n] <br> SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | APC filter 3.2 numerator <br> Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> $0.5[\mathrm{~Hz}]$ | frequency / APC Filt 3.2 <br> Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 16000.0 [Hz] | Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $2000.0 \text { [Hz] }$ |
| Description: Dependency: | Sets the numerator natural frequency for filter 3.2 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705 |  |  |
| p3739[0...n] <br> SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | APC filter 3.2 numerator <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.000 | / APC Filt 3.2 D_n <br> Calculated: - <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 10.000 | Access level: 3 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $0.700$ |
| Description: <br> Dependency: | Sets the numerator damping for filter 3.2 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705 |  |  |


| p3750[0...n] | CI: APC acceleration sensor in | input |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$ | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min | Calculated: - <br> Dynamic index: CDS, p0170 <br> Units group: - <br> Scaling: p2007 <br> Max | Access level: 2 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: <br> Dependency: | Sets the signal source for the actual value of the acceleration sensor for APC (Advanced Positioning Control). Refer to: p3700 |  |  |
| p3751[0...n] <br> SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | APC acceleration sensor high p <br> Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> 0.00 [ms] | ss time constant / APC ac <br> Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 10000.00 [ms] | I DT1 T <br> Access level: 2 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 100.00 [ms] |
| Description: <br> Dependency: | Sets the time constant of the high pass filter for the acceleration sensor for APC (Advanced Positioning Control). Refer to: p3700, p3750 |  |  |
| $\overline{p 3760[0 \ldots n]}$ <br> SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin) | APC load velocity controller 1 P <br> Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> -100.000 | ain / APC v_load ctr1 Kp <br> Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 100.000 | Access level: 2 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.000 |
| Description | Sets the proportional gain of the load velocity controller 1 for APC (Advanced Positioning Control). <br> The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 2.1 and 2.2 |  |  |
| p3760[0...n] | APC load speed controller 1 P gain / APC n_load ctr1 Kp |  |  |
| $\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$ | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> -100.000 | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 100.000 | Access level: 2 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $0.000$ |
| Description: | Sets the proportional gain of the load speed controller 1 for APC (Advanced Positioning Control). <br> The gain acts on the difference between the speed setpoint and load speed in the branch for filter 2.1 and 2.2. |  |  |
| p3761[0...n] | APC load velocity controller 1 rate time / APC v_load ctr1 Tv |  |  |
| SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: REL <br> Min <br> -500.00 [ms] | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 500.00 [ms] | Access level: 2 <br> Func. diagram: 7012 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0.00 [ms] |
| Description: | Sets the rate time of the load velocity controller 1 for APC (Advanced Positioning Control). The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2. |  |  |


| p3761[0...n] | APC load speed controller 1 rate time / APC n_load ctr1 Tv |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (APC), <br> SERVO_AC (APC), <br> SERVO_I_AC (APC) | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -500.00 [ms] | 500.00 [ms] | 0.00 [ms] |
| Description: | Sets the rate time of the load speed controller 1 for APC (Advanced Positioning Control). The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2. |  |  |
|  |  |  |  |
| $\overline{\mathrm{p} 3765[0 \ldots \mathrm{n}]}$ <br> SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin) | APC load velocity controller 2 P gain / APC v_load ctr2 Kp |  |  |
|  | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -100.000 | 100.000 | 0.000 |
| Description: | Sets the proportional gain of the load velocity controller 2 for APC (Advanced Positioning Control). |  |  |
|  | The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 3.1 and 3.2. |  |  |


| p3765[0...n] | APC load speed controller 2 P gain / APC n_load ctr2 Kp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
| SERVO_I_AC (APC) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -100.000 | 100.000 | 0.000 |
| Description: | Sets the proportional gain of the load speed controller 2 for APC (Advanced Positioning Control). |  |  |
|  | The gain acts on the difference between the speed setpoint and load speed in the branch for filter 3.1 and 3.2. |  |  |


| p3766[0...n] | APC load velocity controller 2 rate time / APC v_load ctr2 Tv |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC, Lin), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (APC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
| Lin), SERVO_I_AC | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| (APC, Lin) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | 500.00 [ms] | Factory setting |
|  | -500.00 [ms] | 0.00 [ms] |  |
| Description: | Sets the rate time of the load velocity controller 2 for APC (Advanced Positioning Control). |  |  |
|  | The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2. |  |  |


| p3766[0...n] | APC load speed controller 2 rate time / APC n_load ctr2 Tv |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (APC), | Can be changed: U, T | Calculated: CALC_MOD_CON | Access level: 2 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7012 |
| SERVO_I_AC (APC) | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-500.00[m s]$ | $500.00[\mathrm{~ms}]$ | 0.00 [ms] |
| Description: | Sets the rate time of the load speed controller 2 for APC (Advanced Positioning Control). |  |  |
|  | The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2. |  |  |


| r3770 | CO: APC load velocity / APC v_load |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (APC, Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (APC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7012 |
| Lin), SERVO_I_AC (APC, Lin) | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p 2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the load velocity for APC (Advanced Positioning Control). Refer to: r3771 |  |  |
| Dependency: |  |  |  |
| r3770 | CO: APC load speed / APC n_load |  |  |
| SERVO (APC), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7012 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the load speed for APC (Advanced Positioning Control). |  |  |
| Dependency: | Refer to: r3771 |  |  |
| r3771[0...1] | CO: APC velocity actual value / APC v_act |  |  |
| SERVO (APC, Lin), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (APC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7012 |
| (APC, Lin) | P-Group: Setpoints | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [m/min] | Max <br> - [m/min] | Factory setting - [m/min] |
| Description: | Displays the load/motor velo Displays the velocity actual Index 0: <br> Displays the smoothed load Index 1: <br> Displays the load/motor velo | weighted with p3702 | ced Positioning Control) |
| Index: | [0] = Smoothed load speed actual value <br> [1] = Weighted load/motor speed actual value |  |  |
| Dependency: | Refer to: p1441, r3770 |  |  |
| r3771[0...1] | CO: APC speed actual value / APC n_act |  |  |
| SERVO (APC), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (APC), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7012 |
|  | P-Group: Setpoints | Units group: 3_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the speed actual va Index 0: <br> Displays the smoothed load Index 1: | dvanced Positioning |  |
| Index: | [0] = Smoothed load speed actual value |  |  |
| Dependency: | Refer to: p1441, r3770 |  |  |





For p3800 = 1, the following applies:
The INTERNAL voltage actual values are used for synchronization. The effects that a (sine-wave) filter - that is connected between the Motor Module and motor - has on the voltage actual values are taken into account (theoretically) by appropriately selecting p0230.
VSM: Voltage Sensing Module

| p3801[0...n] | Sync-line-drive, drive object number / Sync DO_No |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection:- |
|  | Not for motor type: - | Mcaling: - | Expert list: 1 |


| p3802[0...n] | Bl: Sync-line-drive enable / Sync enable |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: Unsigned32 / Binary | Dynamic index: CDS, p0170 | Func. diagram: 7020 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | - | Factory setting |
|  | - | 0 |  |
| Description: | Sets the signal source to switch in/switch out for the line-drive synchronization. 1 |  |  |
|  | BI: p3802 =1 signal: |  |  |
|  | The line-drive synchronization is switched in. |  |  |
| Dependency: | Refer to: p3800, p3801 |  |  |


| r3803.0 | CO/BO: Sync-line-drive control word / Sync STW |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - |  |
| VECTOR_AC, | Data type: Unsigned32 | Dynamic index: - | Access level: 2 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Func. diagram: - |
|  | Not for motor type: - | Scaling: - | Unit selection: - |
|  | Min | Max | Expert list: 1 |
|  | - | - | Factory setting |
| Description: | Displays the control word for the line-drive synchronization. | - |  |
| Bit field: | Bit Signal name | Yes |  |
|  | 00 Sync-line-drive selected |  | No signal |
| Note: | Re bit $00:$ |  |  |
|  | For a 1 signal, p3800 $>0$ is set. |  |  |


| r3804 | CO: Sync-line-drive target frequency / Sync f_target |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3030, 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [Hz] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: | Displays the target frequency for the line-drive synchronization. Refer to: A07941 |  |  |
| Dependency: |  |  |  |
| r3805 | CO: Sync-line-drive frequency difference / Sync f_diff |  |  |
| VECTOR, <br> VECTOR AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min - [Hz] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting - [Hz] |
| Description: | Displays the frequency difference between the measured target frequency and output frequency of the gating unit of the closed-loop control for line-drive synchronization. |  |  |
| p3806[0...n] | Sync-line-drive frequency difference threshold value / Sync f_diff thresh |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | CALC_MOD_LIM_REF |  |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1.00[\mathrm{~Hz}] \end{aligned}$ | Factory setting $0.10[\mathrm{~Hz}]$ |
| Description: | Sets the threshold value of the frequency difference to activate the closed-loop phase control for line-drive synchronization. <br> The closed-loop phase control is activated (r3819.6 = 1) , if the frequency difference is less that the threshold value. |  |  |
|  |  |  |  |
| r3808 <br> VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | CO: Sync-line-drive phase difference / Sync phase diff |  |  |
|  | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | $\begin{gathered} \text { Min } \\ -\left[{ }^{\circ}\right] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -\left[^{\circ}\right] \end{gathered}$ | Factory setting $\text { - [ } \left.{ }^{\circ}\right]$ |
| Description: | Displays the phase differenc control for line-drive synchro | measured target phase and phas | ge gating unit of the closed-loop |
| p3809[0...n] | Sync-line-drive phase setpoint / Sync phase setp |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -180.00\left[{ }^{\circ}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 179.90\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting $0.00\left[^{\circ}\right]$ |
| Description: | Sets the phase setpoint for the line-drive synchronization. |  |  |


| p3811[0...n] | Sync-line-drive frequency limiting / Sync f_lim |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\mathrm{~Hz}]$ | $1.00[\mathrm{~Hz}]$ | $0.20[\mathrm{~Hz}]$ |
|  |  |  |  |


| r3812 | CO: Sync-line-drive correction frequency / Sync f_corr |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 3080,7020 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\mathrm{Hz}]$ | $-[\mathrm{Hz}]$ |  |
|  |  |  |  |


| p3813[0...n] | Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 1.00\left[{ }^{\circ}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & \left.20.00{ }^{[ }\right] \end{aligned}$ | Factory setting $2.00\left[^{\circ}\right]$ |
| Description: | Sets the threshold value of the phase synchronism for the line-drive synchronization. |  |  |
| Note: | Synchronism is reached (r38 (p3813) and voltage measu | AND logic operation of the resu is fulfilled. | $m$ the phase measuremen |


| r3814 | CO: Sync-line-drive voltage difference / Sync U_diff |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7020 |
| VECTOR_I_AC | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | $-[V r m s]$ | Factory setting |
|  | $-[V r m s]$ | $-[V r m s]$ |  |
|  |  |  |  |
| Description: | Displays the voltage difference between the measured target voltage and output voltage of the gating unit of the |  |  |
|  | closed-loop control for line-drive synchronization. |  |  |


| p3815[0...n] | Sync-line-drive voltage difference threshold value / Sync U_diff thresh |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| VECTOR_I_AC | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7020 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00 \text { [\%] } \end{aligned}$ | Factory setting 10.00 [\%] |
| Description: | Sets the threshold value of the voltage difference for the line-drive synchronization. |  |  |

Note: $\quad$ Synchronism is reached $(r 3819.2=1)$, if the AND logic operation of the results from the phase measurement (p3813) and voltage measurement (p3815) is fulfilled.
For voltage manipulated quantity margin (reserve) of the drive converter, the amplitude difference (r3814) between the setpoint and actual value is controlled (corrected) to zero.


| p3821[0...n] | Friction characteristic, value n1 / Friction n1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: $T$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00 \text { [rpm] } \end{aligned}$ | Factory setting 30.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3831, p3845 |  |  |
| p3821[0...n] | Friction characteristic, value v1 / Friction v1 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 21000.00 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 3.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3831, p3845 |  |  |
| p3822[0...n] | Friction characteristic, value n2 / Friction n2 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR }(\mathrm{n} / \mathrm{M}) \text {, } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 60.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3832, p3845 |  |  |
| p3822[0...n] | Friction characteristic, value v2 / Friction v2 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \text { Max } \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 6.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  | cteristic. |
| Dependency: | Refer to: p3832, p3845 |  |  |


| p3823[0...n] | Friction characteristic, value n3 / Friction n3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 120.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3833, p3845 |  |  |
| p3823[0...n] | Friction characteristic, value v3 / Friction v3 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 12.00 [m/min] |
| Description: | The friction characteristic is defined by 10 value pairs. <br> This parameter specifies the v coordinate of the 4th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3833, p3845 |  |  |
| p3824[0...n] | Friction characteristic, value n4 / Friction n4 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR }(\mathrm{n} / \mathrm{M}) \text {, } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 150.00 [rpm] |
| Description: | This parameter specifies the n coordinate of the 5th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3834, p3845 |  |  |
| p3824[0...n] | Friction characteristic, value v4 / Friction v4 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 15.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is This parameter specifies the | The friction characteristic is defined by 10 value pairs. | cteristic. |
| Dependency: | Refer to: p3834, p3845 |  |  |


| p3825[0...n] | Friction characteristic, value n5 / Friction n5 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: $T$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC (n/M), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 300.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3835, p3845 |  |  |
| p3825[0...n] | Friction characteristic, value v5 / Friction v5 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 21000.00 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 30.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3835, p3845 |  |  |
| p3826[0...n] | Friction characteristic, value n6 / Friction n6 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| $\begin{aligned} & \text { SERVO_I_AC, VEC- } \\ & \text { TOR (n/M), } \end{aligned}$ | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 600.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3836, p3845 |  |  |
| p3826[0...n] | Friction characteristic, value v6 / Friction v6 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 21000.00 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 60.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is This parameter specifies the | The friction characteristic is defined by 10 value pairs. | cteristic. |
| Dependency: | Refer to: p3836, p3845 |  |  |


| p3827[0...n] | Friction characteristic, value n7 / Friction n7 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| TOR (n/M), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | Max <br> 210000.00 [rpm] | Factory setting 1200.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3837, p3845 |  |  |
| p3827[0...n] | Friction characteristic, value v7 / Friction v7 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | Max <br> 21000.00 [ $\mathrm{m} / \mathrm{min}$ ] | Factory setting 120.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3837, p3845 |  |  |
| p3828[0...n] | Friction characteristic, value n8 / Friction n8 |  |  |
| SERVO, <br> SERVO_AC, | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VECTOR ( $n / \mathrm{M}$ ) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC (n/M), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min 0.00 [rpm] | Max <br> 210000.00 [rpm] | Factory setting 1500.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3838, p3845 |  |  |
| p3828[0...n] | Friction characteristic, value v8 / Friction v8 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ $\mathrm{m} / \mathrm{min}$ ] | $\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 150.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. <br> This parameter specifies the v coordinate of the 9th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3838, p3845 |  |  |


| p3829[0...n] | Friction characteristic, value n9 / Friction n9 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, | Can be changed: $T$ | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC, VEC- | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: 3_1 | Unit selection: p0505 |
| VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [rpm] | Max <br> 210000.00 [rpm] | Factory setting 3000.00 [rpm] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
| Dependency: | Refer to: p3839, p3845 |  |  |
| p3829[0...n] | Friction characteristic, value v9 / Friction v9 |  |  |
| SERVO (Lin), SERVO_AC (Lin), | Can be changed: T | Calculated: <br> CALC_MOD_LIM_REF | Access level: 2 |
| SERVO_I_AC (Lin) | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 4_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$ | Factory setting 300.00 [ $\mathrm{m} / \mathrm{min}$ ] |
| Description: | The friction characteristic is defined by 10 value pairs. <br> This parameter specifies the v coordinate of the 10th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3839, p3845 |  |  |
| p3830[0...n] | Friction characteristic, value M0 / Friction M0 |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| TOR (n/M), | P-Group: Functions | Units group: 7_1 | Unit selection: p0505 |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$ | Factory setting 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. <br> This parameter specifies the $M$ coordinate of the 1st value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3820, p3845 |  |  |
| p3830[0...n] | Friction characteristic, value F0 / Friction F0 |  |  |
| SERVO (Lin), | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
| SERVO__AC (Lin) | P-Group: Functions | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000000.00[\mathrm{~N}] \end{aligned}$ | Factory setting 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. <br> This parameter specifies the F coordinate of the 1st value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3820, p3845 |  |  |


| p3831[0...n] | Friction characteristic, value M1 / Friction M1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $n / M$ ), <br> VECTOR_AC ( $n / M$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 2 nd value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3821, p3845 |  |  |
| p3831[0...n] | Friction characteristic, value F1 / Friction F1 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$ | Max | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 2nd value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3821, p3845 |  |  |
| p3832[0...n] | Friction characteristic, value M2 / Friction M2 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: REL | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 7_1 | Unit selection: p0505 |
|  |  | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | $\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$ | Max | Factory setting |
|  |  | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 3rd value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3822, p3845 |  |  |
| p3832[0...n] | Friction characteristic, value F2 / Friction F2 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Functions | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{~N}] \end{aligned}$ | Max | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 3rd value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3822, p3845 |  |  |


| p3833[0...n] | Friction characteristic, value M3 / Friction M3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 4th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3823, p3845 |  |  |
| p3833[0...n] | Friction characteristic, value F3 / Friction F3 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Functions | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$ |  | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 4th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3823, p3845 |  |  |
| p3834[0...n] | Friction characteristic, value M4 / Friction M4 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: REL | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 7_1 | Unit selection: p0505 |
|  |  | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 5th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3824, p3845 |  |  |
| p3834[0...n] | Friction characteristic, value F4 / Friction F4 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min -1000000.00 [N] | Max $1000000.00[\mathrm{~N}]$ | Factory setting 0.00 [N] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 5th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3824, p3845 |  |  |


| p3835[0...n] | Friction characteristic, value M5 / Friction M5 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $n / M$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | 1000000.00 [ Nm ] | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 6 th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3825, p3845 |  |  |
| p3835[0...n] | Friction characteristic, value F5 / Friction F5 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T <br> Data type: FloatingPoint32 | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min$-1000000.00[N]$ | Max | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 6th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3825, p3845 |  |  |
| p3836[0...n] | Friction characteristic, value M6 / Friction M6 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: REL | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 7_1 | Unit selection: p0505 |
|  |  | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$ | Max | Factory setting |
|  |  | 1000000.00 [ Nm ] | $0.00[\mathrm{Nm}]$ |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 7 th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3826, p3845 |  |  |
| p3836[0...n] | Friction characteristic, value F6 / Friction F6 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Functions | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min$-1000000.00[N]$ | Max | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 7th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3826, p3845 |  |  |


| p3837[0...n] | Friction characteristic, value M7 / Friction M7 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 7_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 8th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3827, p3845 |  |  |
| p3837[0...n] | Friction characteristic, value F7 / Friction F7 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T <br> Data type: FloatingPoint32 <br> P-Group: Functions | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$ |  | Factory setting |
|  |  | 1000000.00 [N] | 0.00 [ N ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 8th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3827, p3845 |  |  |
| p3838[0...n] | Friction characteristic, value M8 / Friction M8 |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), <br> VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ ) | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Functions <br> Not for motor type: REL | Calculated: - | Access level: 2 |
|  |  | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  |  | Units group: 7_1 | Unit selection: p0505 |
|  |  | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -1000000.00 [Nm] | $1000000.00[\mathrm{Nm}]$ | 0.00 [ Nm ] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the M coordinate of the 9th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3828, p3845 |  |  |
| p3838[0...n] | Friction characteristic, value F8 / Friction F8 |  |  |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min -1000000.00 [N] | Max $1000000.00[\mathrm{~N}]$ | Factory setting 0.00 [N] |
| Description: | The friction characteristic is defined by 10 value pairs. |  |  |
|  | This parameter specifies the F coordinate of the 9th value pair of the friction characteristic. |  |  |
| Dependency: | Refer to: p3828, p3845 |  |  |



| r3840.0...9 | CO/BO: Friction characteristic, status word / Friction ZSW |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: - | Calculated: - | Access level: 2 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 7010 |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Displays the state of the friction characteristic. |  |  |
| Bit field: | Bit | Signal name | 1 signal |
|  | 00 | Friction characteristic OK | Yes |
|  | 01 | Friction characteristic record activated | Yes |

Note: | Re bit $9:$ |
| :--- |
| For closed-control of an induction motors with encoder, the switchover between the current and observer model is |
| displayed (see also r1751 bit 19), if p3844 is $>0$. |
| For bit $9=0$ (observer model active) the frictional torque is calculated from the characteristic values from the char- |
| acteristic point entered into p3844. |
| For bit $9=1$ (current model active) the frictional torque is calculated from the characteristic values below the char- |
| acteristic point entered into p3844. |

| r3841 | CO: Friction characteristic output / Frict outp |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7010 |
| SERVO_I_AC, VEC- | P-Group: Functions | Units group: $7 \_1$ | Unit selection: $p 0505$ |
| TOR $(\mathrm{n} / \mathrm{M})$, | Scaling: p 2003 | Expert list: 1 |  |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Not for motor type: REL |  |  |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ |  |  |  |
|  | Min | $-[\mathrm{Nm}]$ | Factory setting |
|  | $-[\mathrm{Nm}]$ | $-[\mathrm{Nm}]$ |  |
| Description: | Displays the torque of the friction characteristic dependent on the speed. |  |  |
| Dependency: | Refer to: $\mathrm{p} 1569, \mathrm{p} 3842$ |  |  |


| r3841 | CO: Friction characteristic output / Frict outp |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Lin), | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC (Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7010 |
| SERVO_I_AC (Lin) | P-Group: Functions | Units group: 8_1 | Unit selection: p0505 |
|  | Not for motor type: REL | Scaling: p2003 | Expert list: 1 |
|  | Min $-[\mathrm{N}]$ | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting $-[\mathrm{N}]$ |
| Description: | Displays the force of the friction characteristic dependent on the velocity. |  |  |
| Dependency: | Refer to: p1569, p3842 |  |  |
| 13842 | Friction characteristic activation / Frict act |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: 7010 |
| TOR ( $\mathrm{n} / \mathrm{M}$ ), | P-Group: Functions | Units group: - | Unit selection: - |
| VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC (n/M) | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min <br> 0 | $\operatorname{Max}$ $1$ | Factory setting 0 |

Description: Setting to activate and de-activate the friction characteristic.

| Value: | $0: \quad$ Friction characteristic de-activated |
| :--- | :--- | :--- |
|  | $1: \quad$ Friction characteristic activated |
| Dependency: | Refer to: $p 1569, r 3841$, p3845 |


| p3843[0...n] | Friction characteristic smoothing time frictional torque diff. / Frict T_smooth dM |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: FloatingPoint32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Max |
|  | Min | $10000.00[\mathrm{~ms}]$ | Fxpert list: 1 |
|  | $0.00[\mathrm{~ms}]$ | $0.00[\mathrm{~ms}]$ |  |
| Description: | Sets the smoothing time constant $(P T 1)$ for the frictional torque difference, which is entered when changing over the |  |  |
|  | status bit r3840 bit 9. |  |  |
| Dependency: | Refer to: p 3844 |  |  |


| p3844[0...n] | Friction characteristic number changeover point upper / Frict chngov pt up |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR $(\mathrm{n} / \mathrm{M})$, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC $(\mathrm{n} / \mathrm{M})$, | Data type: Unsigned8 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$ | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: PEM, REL, FEM | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 0 |

Description: Selects the upper changeover point of the friction characteristic for the frictional torque input controlled by the motor model of the induction motor.
The speed of this changeover point is preassigned when automatically calculating with the changeover speed p 1752 . The changeover point located below is preassigned with the changeover speed p1752 * ( $1-\mathrm{p} 1753$ ).
Example: p3844 $=3$ means that the speed value for the change to the monitor model ( $p 3823=p 1752$ ) is entered into p3823 (friction characteristic value n3).
Depending on the display of r3840 bit 9, the frictional torque is calculated from the friction characteristic values, which are associated with these changeover points. For the changeover of the motor model, with hysteresis, the frictional torque smoothed with p3843 changes between these two states.
Dependency: As part of the automatic calculation (p0340), p3844 is only activated for closed loop control (p1300 = 21, 23) of induction motors with encoder.
Refer to: p3843
Notice: If the changeover point defined using p3844 does not match the changeover speed p1752, then internally, the model-controlled friction torque input is automatically deactivated (same as for p3844 = 0).
Note: $\quad$ For p3844 $=0$, the model-controlled frictional torque changeover is deactivated. The frictional torque is then calculated the same as for the encoderless control by interpolating between the points along the friction characteristic.

| p3845 | Friction characteristic record activation / Frict rec act |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: T | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 7010 |
|  | P-Group: Functions | Units group: - | Unit selection: - |
|  | Not for motor type: REL | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 0 |
| Description: | Setting for the friction characteristic record. |  |  |
|  | After the next power-on command, the friction characteristic is automatically recorded. |  |  |
| Value: | 0: Friction characteristic record de-activated |  |  |
|  | 1: Friction char record activated for all directions |  |  |
|  | 2: Friction char record activated for positive direction |  |  |
|  | 3: Friction char record activated for negative direction |  |  |
| Dependency: | When selecting the friction characteristic measurement, the drive data set changeover is suppressed. |  |  |
|  | For linear drives (refer to r0108 bit 12) it is not permissible to carry out the friction characteristic measurement for mechanical systems that limit travel. |  |  |
|  | For drives with a mechanical system that limit the distance moved, it must be ensured that during recording, the friction characteristic is not reached. If this is not the case, then it is not permissible that the measurement is carried out. |  |  |

Notice: $\quad$ To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:
When the friction characteristic record is active, it is not possible to save the parameters ( $\mathrm{p} 0971, \mathrm{p} 0977$ ).
When the friction characteristic record is active (p3845 > 0), it is not possible to change p3820 ... p3829, p3830 ... p3839 and p3842.
When recording the friction characteristic, in addition to the friction, the motor losses are also determined (e.g. iron losses, eddy current losses and re-magnetizing losses). A differentiation is not made between these individual loss components. We recommend that a motor temperature sensor is used because torque deviations can also be emulated/mapped on the characteristic due to the thermal influence.




| p3865[0..7] | BI: Braking Module pre-warning I*t shutdown / BM I*t shutdown |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Brk Mod ext), <br> B_INF (Brk Mod ext), <br> S_INF (Brk Mod ext) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9951 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the message "pre-alarm I*t shutdown" of the Braking Module. |  |  |
|  | BI: p3865[0...7] = 1 signal --> no pre-alarm, I*t shutdown |  |  |
|  | BI: p3865[0...7] = 0 signal --> pre-alarm I*t shutdown (A06901) |  |  |
| Dependency: | Refer to: A06901 |  |  |
| Note: | For the Braking Module, this message is output via the following terminal: |  |  |
|  | - X21.4 for the "Booksize" format |  |  |
|  | This function is not supported for the "chassis" format. |  |  |


| p3866[0...7] | BI: Braking Module fault / BM fault |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Brk Mod ext), B_INF (Brk Mod ext), S_INF (Brk Mod ext) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9951 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the "Fault" message of the Braking Module. |  |  |
|  | BI: $\mathrm{p} 3866[0 \ldots 7]=1$ signal --> No fault |  |  |
|  | BI: p3866[0...7] = 0 signal --> fault (A06900) |  |  |
|  | For a 0 signal, an acknowledgement via BO: r3861 is automatically carried out at certain time intervals. |  |  |
| Dependency: | Refer to: A06900 |  |  |
| Note: | For the Braking Module, this message is output via the following terminal: |  |  |
|  | - X21.4 for the "Booksize" format |  |  |
|  | - X21.5 for the "Chassis" format |  |  |


| p3870 | Long stator configuration / Long stator config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, SERVO AC, SERVO_I_AC | Can be changed: $U, T$ <br> Data type: Unsigned16 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max | Acce Func Unit Expe Fact 0000 |  |
| Description: <br> Bit field: | Sets the configuration when operating a lo <br> Bit Signal name <br> 00 Activate long stator help functions <br> 01 Suppress Gx_ZSW. 14 | stator motor. <br> 1 signal <br> Active <br> Active | 0 signal Inactive Inactive | FP |
| Dependency: <br> Notice: | Refer to: p3871, p3872, p3873, p3874, r3875, p3876, p3878, p3879 <br> The following restrictions apply to this function: <br> - it is not permissible to change over the drive data set. <br> - the encoder/drive may not be parked using a PROFIBUS telegram. <br> - a maximum of 4 drives may be connected to the Control Unit. <br> - it is not permissible to commutate with the zero mark (p0404). |  |  |  |
| Note: | Re bit 00: <br> All of the help functions for long stator mot <br> Re bit 01: <br> When the bit is set, bit 14 (parking encode whether the encoder is parked or not. | can be enabled/d ctive) is set to 0 in | this bit. <br> tatus word | endent of |
| p3871 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC | BI: Set long stator signal sourc <br> Can be changed: T <br> Data type: Unsigned32 / Binary <br> P-Group: - <br> Not for motor type: - <br> Min | commutation a <br> Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max | 72) / Set <br> Acces <br> Func. <br> Unit <br> Expe <br> Facto <br> 0 | ang |
| Description: <br> Dependency: <br> Danger: | Setting an incorrect commutation angle can result in instability in the closed-loop control and in turn injure personnel or cause damage to the machine! |  |  |  |
|  | Setting takes place for a $0 / 1$ signal edge. |  |  |  |
| p3872 | CI: Long stator signal source commutation angle / S_src com_angle |  |  |  |
| SERVO, SERVO_AC, SERVO_I_AC | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: p2005 <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 3878 |  |
| Description: | Sets the signal source for the commutation angle. This angle is set for a $0 / 1$ signal edge via BI : p 3871 . |  |  |  |
| Dependency: | Refer to: p3870, p3871, p3873, r3875, p3876, p3878, p3879 |  |  |  |
| Danger: | Setting an incorrect commutation angle can result in instability in the closed-loop control and in turn injure personnel or cause damage to the machine! |  |  |  |


| p3873 | BI: Long stator sig. source changeover to cl.-loop ctrl w/ enc. / S_src ctrl w/ enc |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Acce |  |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Fun |  |
|  | P-Group: Functions | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Fac |  |
|  | - | - | 0 |  |
| Description: | Sets the signal source to change over to closed-loop control with encoder. |  |  |  |
| Dependency: | Refer to: p3870, p3871, p3872, p3874, r3875, p3876, p3878, p3879 |  |  |  |
| Danger: | Setting an incorrect commutation angle can result in instability in the closed-loop control and in turn injure personnel or cause damage to the machine! |  |  |  |
| Note: | BI: p3873 = 1 signal --> closed-loop control with encoder |  |  |  |
|  | BI: p3873 = 0 signal --> encoderless closed-loop control |  |  |  |
|  | For a 0/1 edge, the commutation angle is set from Cl : p3874. |  |  |  |
| p3874 | CI: Long stator signal source com S_src com_ang enc | CI: Long stator signal source commutation angle oper. with encoder / |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: - | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: p2005 | Exp |  |
|  | Min | Max | Fact |  |
|  | - | - | 3879 |  |
| Description: | Sets the signal source for the commutation angle for operation with encoder. |  |  |  |
| Dependency: | Refer to: p3870, p3871, p3872, p3873, r3875, p3876, p3878, p3879 |  |  |  |
| Note: | This angle is set for a $0 / 1$ signal edge via BI: p 3873 . |  |  |  |
| r3875.0... 1 | CO/BO: Long stator status word / Long stator ZSW |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: - | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - |  |  |  |
| Description: | Displays the status word for long stator motors. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Sensor Module is unparked | Yes | No | - |
|  | 01 Closed-loop speed control with encoder requested | Active | Inactive | - |
| Dependency: | Refer to: p3870, p3871, p3872, p3873, p3874, p3876, p3878, p3879 |  |  |  |
| Note: | The display is updated with a sampling time of 1 ms . |  |  |  |
|  | Re bit $00=1$ : |  |  |  |
|  | The encoder is parked. Contrary to r0481.14, parking is also displayed here if the suppression of the parking bit is active in r0481.14 (p3870.1 = 1). |  |  |  |
|  | Re bit $01=1$ : |  |  |  |
|  | The long-stator functions requested closed-loop speed control with encoder. In r1407.2, it is indicated as to whether an encoder is actually used for the closed-loop control. |  |  |  |


| r3875.0... 1 | CO/BO: Long stator status word / Long stator ZSW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Lin), <br> SERVO_AC (Lin), <br> SERVO_I_AC (Lin) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 D | Dynamic index: - | Func |  |
|  | P-Group: - U | Units group: - | Unit |  |
|  | Not for motor type: - S | Scaling: - | Expe |  |
|  | Min M | Max | Facto |  |
|  | - - | - | - |  |
| Description: | Displays the status word for long stator motors. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Sensor Module is unparked <br> 01 Closed-loop velocity control with encoder requested | 1 signal | 0 signal | FP |
|  |  | Yes | No | - |
|  |  | r Active | Inactive | - |
| Dependency: Note: | Refer to: p3870, p3871, p3872, p3873, p3874, p3876, p3878, p3879 |  |  |  |
|  | The display is updated with a sampling time of 1 ms . |  |  |  |
|  | Re bit $00=1$ : |  |  |  |
|  | The encoder is parked. Contrary to r0481.14, parking is also displayed here if the suppression of the parking bit is active in r0481.14 (p3870.1 = 1). |  |  |  |
|  | Re bit 01 = 1: |  |  |  |
|  | The long-stator functions requested closed-loop velocity control with encoder. In r1407.2, it is indicated as to whether an encoder is actually used for the closed-loop control. |  |  |  |
| p3876 | BI: Unpark long stator signal source 1 encoder / S_src 1 enc unpark |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: T C | Calculated: - | Acce |  |
|  | Data type: Unsigned32 / Binary D | Dynamic index: - | Func |  |
|  | P-Group: - | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min M | Max | Facto |  |
|  | - - |  | 0 |  |
| Description: | Sets the signal source 1 to unpark the encoder. |  |  |  |
| Dependency: | Refer to: p3870, p3871, p3872, p3873, p3874, r3875, p3878, p3879 |  |  |  |
| Note: | BI: p3876 = 1 signal --> encoder is unparked |  |  |  |
|  | BI: p3876 = 0 signal --> encoder is parked |  |  |  |


| p3878 | CO: Long stator commutation angle 1 / Com_angle 1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -180\left[^{\circ}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 180\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting 0 [ ${ }^{\circ}$ ] |
| Description: | Sets the commutation angle 1 for long stator motors. <br> Refer to: p3870, p3871, p3872, p3873, p3874, r3875, p3876, p3879 |  |  |
| Dependency: |  |  |  |
| p3879 | CO: Long stator commutation angle 2 / Com_angle 2 |  |  |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -180\left[^{\circ}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 180\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting 0 [ ${ }^{\circ}$ ] |
| Description: | Sets the commutation angle 2 for long stator motors. |  |  |
| Dependency: | Refer to: p3870, p3871, p3872, p3873, p3874, r3875, p3876, p3878 |  |  |



| p3900 | Completion of quick commissioning / Compl quick_comm |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(1) | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 0 |
| Description: | Exits quick commissioning ( $\mathrm{p} 0010=1$ ) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning. |  |  |
|  | p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 = 1) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning. |  |  |
|  | The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1). |  |  |
|  | p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 and the calculations corresponding to p0340 $=1$. |  |  |
|  | p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to p0340 $=1$. |  |  |
| Value: | 0: $\quad$ No quick parameterization |  |  |
|  | 1: Quick parameterization after parameter reset |  |  |
|  | 2: Quick parameterizati | O and motor parame |  |
|  | 3: Quick parameterizati | ameters (only) |  |
| Notice: | After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. |  |  |
| Note: | When the calculations have been completed, p3900 and p0010 are automatically reset to a value of 0 . |  |  |
|  | When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten. |  |  |
|  | If a catalog motor has not been selected (see p0300), then the following parameters are reset with p3900 > 0 in order to restore the situation that applied when commissioning the drive for the first time: |  |  |
|  | induction motors p0320, p0352, p0353, p0362 ... p0369, p0391 ... p0393, p0604, p0605, p0626 ... p0628 |  |  |
|  | synchronous motor p0326, p0327, p0352, p0353, p0391 ... p0393, p0604, p0605. |  |  |


| p3901[0...n] | Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc_offs |  |  |
| :--- | :--- | :--- | :--- |
| B_INF, VECTOR, | Can be changed: C1, C2(1), T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR_I_AC | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | $40.0[\mathrm{~V}]$ | Factory setting |
|  | $-40.0[\mathrm{~V}]$ | $0.0[\mathrm{~V}]$ |  |
| Description: | Differential voltage for calibrating the offset for DC-link voltage measurement. |  |  |
| Dependency: | Refer to: r0192, p0212 |  |  |
| Caution: | Incorrect use of the calibration can have a negative impact on the closed-loop control. The parameter influences the |  |  |
|  | upper and lower voltage detection. |  |  |

Parameter entries are directly saved in the DRIVE-CLiQ component involved.
The parameter is only effective in the case of booksize power units if r0192 bit 22 and p0212 bit 0 are set.

| r3925[0...n] | Identification final display / Ident final_disp |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - C |  | ulated: CALC_MOD_ALL | Access level: 3 |  |
|  | Data type: Unsigned32 D |  | Dynamic index: DDS, p0180 | Func. diagram: - |  |
|  | P-Group: Motor U |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - S |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  |  | - |  |
| Description: | Displays the commissioning steps that have been carried out. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Motor/control parameters calculated (p0340 $=1, p 3900>0)$ | Yes | No | - |
|  | 02 | Motor data identification carried out at standstill (p1910 = 1) | Yes | No | - |
|  | 03 | Rotating measurement carried out (p1960 $=$ 1, 2) | Yes | No | - |
|  | 04 | Motor encoder adjustment carried out (p1960 = 1, p1990 = 1,3) | Yes | No | - |
|  | 05 | Motor encoder manually adjusted | Yes | No | - |
|  | 15 | Motor equivalent circuit diagram parameters changed | Changed | Not changed | - |

Note: The individual bits are only set if the appropriate action has been initiated and successfully completed.
When motor rating plate parameters are changed, the final display is reset.
When setting the individual bits, all of the most significant bits are reset.

| r3925[0...n] | Identification final display / Ident final_disp |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: CALC_MOD_ALL | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 | Dynamic index: DDS, p0180 | Func. diagram: - |
| VECTOR_I_AC | P-Group: Motor | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Displays the commissioning steps that have been carried out.

## Bit field:

Note: The individual bits are only set if the appropriate action has been initiated and successfully completed.
When motor rating plate parameters are changed, the final display is reset.
When setting the individual bits, all of the most significant bits are reset.

| r3927[0...n] | Motor data identification induction motor data determined / MotID ASM dat det |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC | Can be changed: - Ca |  | Calculated: CALC_MOD_ALL Acce |  |  |
|  | Data type: Unsigned32 Dy |  | Dynamic index: DDS, p0180 Fun |  |  |
|  | P-Group: Motor identification Un |  | Units group: - Unit |  |  |
|  | Not for motor type: - Scalic |  | Scaling: - |  |  |
|  | Min M |  | Max Fact |  |  |
|  | - - |  | - - |  |  |
| Description: | Displays the data of an induction motor determined and accepted from the stationary motor data identification or rotating measurement. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | p0350 accepted | Yes | No | - |
|  |  | p0354 accepted | Yes | No | - |
|  |  | p0356 accepted | Yes | No | - |
|  |  | p0358 accepted | Yes | No | - |
|  |  | p0360 accepted | Yes | No | - |
|  |  | p0320 accepted | Yes | No | - |
|  |  | p0410 accepted | Yes | No | - |
|  |  | p1715 accepted | Yes | No | - |
|  |  | p1717 accepted | Yes | No | - |
|  |  | p1590 accepted | Yes | No | - |
|  |  | p1592 accepted | Yes | No | - |
|  |  | p0341 accepted | Yes | No | - |
|  |  | p0348 accepted | Yes | No | - |
|  |  | p1752 accepted | Yes | No | - |
| Dependency: | Refer to: r3925 |  |  |  |  |
| r3927[0...n] | Motor data identification control word / MotID STW |  |  |  |  |
| VECTOR, | Can be changed: - C |  | Calculated: CALC_MOD_ALL Acce |  |  |
| VECTOR_AC, | Data type: Unsigned32 Dy |  | Dynamic index: DDS, p0180 |  |  |
| VECTOR_1_AC | P-Group: Motor identification U |  | Units group: - Unit |  |  |
|  | Not for motor type: - Scalic |  | Scaling: - Expe |  |  |
|  | Min M |  | Max | Factory setting |  |
|  | - |  | Max |  |  |
| Description: | Successfully completed component of the last motor data identification carried out. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Stator inductance estimate no measurement | Yes | No | - |
|  | 01 | Cl.-loop current control w/ dead-beat controller | Yes | No | - |
|  | 02 | Rotor time constant estimate no measurement | Yes | No | - |
|  | 03 | Leakage inductance estimate no measurement | Yes | No | - |
|  | 04 | Activates the identification dynamic leakage inductance | Yes | No | - |
|  | 05 | Determine Tr and Lsig evaluation in the time range | Yes | No | - |
|  | 06 | Activate vibration damping | Yes | No | - |
|  | 07 | De-activate vibration detection | Yes | No | - |
|  | 11 | De-activate pulse measurement Lq Ld | Yes | No | - |
|  | 12 | De-activate rotor resistance Rr measurement | Yes | No | - |
|  | 14 | De-activate valve interlocking time measurement | Yes | No | - |
|  | 15 | Determine only stator resistance, valve voltage fault, dead time | Yes | No | - |
|  | 16 | Short motor identification (lower quality) | Yes | No | - |





| Value: | 0: $\quad$ Change master control for STW1.0 $=0$ <br> 1: Change master control in operation |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Danger: | Whe up to | changing the mas nother setpoint. | , the drive can ma | behavior - e.g. it c |
| r3986 | Parameter count / Parameter No. |  |  |  |
| All objects | Can be changed: - |  | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: - |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | - |  | - | - |
| Description: | Displays the number of parameters for this drive unit. |  |  |  |
|  | The number comprises the device-specific and the drive-specific parameters. |  |  |  |
| Dependency: | Refer to: r0980, r0981, r0989 |  |  |  |
| r3988[0...1] | Boot state / Boot_state |  |  |  |
| CU_I, CU_I_D410 | Can be changed: - |  | Calculated: - | Access level: 3 |
|  | Data type: Integer16 |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: - |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 10800 | - |
| Description: | Index 0: |  |  |  |
|  | Displays the boot state. |  |  |  |
|  | Index 1: |  |  |  |
|  | Displays the partial boot state |  |  |  |
| Value: |  | 0: Not active |  |  |
|  | 1: | Fatal fault |  |  |
|  | 10: | Fault |  |  |
|  | 20: | Reset all parame |  |  |
|  | 30: | Drive object mod |  |  |
|  | 40: | Download using | vare |  |
|  | 50: | Parameter down | oning software |  |
|  | 90: | Reset Control Un | bjects |  |
|  | 100: | Start initialization |  |  |
|  | 101: | Wait for topology |  |  |
|  | 110: | Instantiate Contr |  |  |
|  | 111: | Insert drive objec |  |  |
|  | 112: | Remove drive ob |  |  |
|  | 113: | Change drive obj |  |  |
|  | 114: | Change compon |  |  |
|  | 115: | Parameter down | oning software |  |
|  | 117: | Remove compon |  |  |
|  | 150: | Wait until actual |  |  |
|  | 160: | Evaluate topolog |  |  |
|  | 170: | Instantiate Contr |  |  |
|  | 180: | Initialization YDB | mation |  |
|  | 190: | FW update for C |  |  |
|  | 200: | First commission |  |  |
|  | 210: | Create drive pac |  |  |
|  | 250: | Wait for topology |  |  |
|  | 325: | Wait for input of |  |  |
|  | 350: | Determine drive |  |  |
|  | 360: | Write into topolog | eters |  |
|  | 370: | Wait until p0009 |  |  |




| r3998 | First infeed commissioning / First inf_comm |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: - | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | 0 | 65535 | - |  |
| Description: | Displays whether the infeed must be commissioned for the first time. |  |  |  |
|  | $0=$ Yes |  |  |  |
|  | $2=\mathrm{No}$ |  |  |  |
| r3998[0...n] | First drive commissioning / First drv_comm |  |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: DDS, p0180 | Func. diagram: - |  |
| TOR, VECTOR AC, | P-Group: - | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | 0 | 65535 | - |  |
| Description: | Displays whether the drive still has to be commissioned for the first time. |  |  |  |
|  | $0=$ Yes |  |  |  |
|  | $2=$ No |  |  |  |
| $\overline{\mathbf{r 4 0 2 1}}$ | Digital inputs terminal actual value / Dl actual value |  |  |  |
| SERVO (Dig IO) | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2201 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | Facting |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI/DO 0 distributed (X3.2) | High | Low | 2201 |
|  | 01 DI/DO 1 distributed (X3.4) |  |  | 2201 |
| Note: | If a DI/DO is parameterized as output ( $p 4028 . x=1$ ), then $r 4021 . x=0$ is displayed. |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r4021 | TB30 digital inputs terminal actual value / TB30 DI act value |  |  |  |
| TB30 | Can be changed: - | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9100 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - |  |  |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |
|  | This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ prior to switching from the simulation mode ( $p 4095 \cdot x=1$ ) to the terminal mode ( $p 4095 \cdot x=0$ ). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X481.1) | High | Low | - |
|  | 01 DI 1 (X481.2) | High | Low | - |
|  | 02 DI 2 (X481.3) | High | Low | - |
|  | 03 DI 3 (X481.4) | High | Low | - |
| Note: | DI: Digital Input |  |  |  |


| r4021 | TM15DI/DO digital inputs, terminal actual value / TM15D DI act val |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15DI_DO |  |  | Calculated: - | Access level: 2 |  |
|  |  | type: Unsigned32 | Dynamic index: - | Func. diagram: 9400, 9401, 9402 |  |
|  |  | roup: Commands | Units group: - | Unit selection: - |  |
|  |  | for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |  |
|  | This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simu lation mode ( $p 4095 \cdot x=1$ ) to terminal mode ( $p 4095 \cdot x=0$ ). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | $\text { DI/DO } 0 \text { (X520.2) }$ | High | Low | - |
|  |  | $\text { DI/DO } 1 \text { (X520.3) }$ | High | Low | - |
|  | 02 | DI/DO 2 (X520.4) | High | Low | - |
|  |  | DI/DO 3 (X520.5) | High | Low | - |
|  | 04 | DI/DO 4 (X520.6) | High | Low | - |
|  | 05 | DI/DO 5 (X520.7) | High | Low | - |
|  | 06 | DI/DO 6 (X520.8) | High | Low | - |
|  | 07 | DI/DO 7 (X520.9) | High | Low | - |
|  | 08 | DI/DO 8 (X521.2) | High | Low | - |
|  | 09 | DI/DO 9 (X521.3) | High | Low | - |
|  | 10 | DI/DO 10 (X521.4) | High | Low | - |
|  | 11 | DI/DO 11 (X521.5) | High | Low | - |
|  | 12 | DI/DO 12 (X521.6) | High | Low | - |
|  |  | $\text { DI/DO } 13 \text { (X521.7) }$ | High | Low | - |
|  | 14 | $\text { DI/DO } 14 \text { (X521.8) }$ | High | Low | - |
|  | 15 | DI/DO 15 (X521.9) | High | Low | - |
|  | 16 | DI/DO 16 (X522.2) | High | Low | - |
|  | 17 | DI/DO 17 (X522.3) | High | Low | - |
|  |  | DI/DO 18 (X522.4) | High | Low | - |
|  |  | DI/DO 19 (X522.5) | High | Low | - |
|  |  | DI/DO 20 (X522.6) | High | Low | - |
|  |  | DI/DO 21 (X522.7) | High | Low | - |
|  |  | DI/DO 22 (X522.8) | High | Low | - |
|  | 23 | DI/DO 23 (X522.9) | High | Low | - |
| Note: | If a DI/DO is parameterized as output ( $p 4028 . x=1$ ), then $r 4021 . x=0$ is displayed. |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4021 | TM31 digital inputs terminal actual value / TM31 DI act value |  |  |  |  |
| TM31 | Can be changed: - |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1840, 9550, 9552, 9560, 9562 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | Factory |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |  |
|  | This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simu lation mode ( $p 4095 \cdot x=1$ ) to terminal mode ( $p 4095 \cdot x=0$ ). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X520.1) | High | Low | - |
|  |  | DI 1 (X520.2) | High | Low | - |
|  | 02 | DI 2 (X520.3) | High | Low | - |
|  | 03 | DI 3 (X520.4) | High | Low | - |
|  | 04 | DI 4 (X530.1) | High | Low | - |
|  | 05 | DI 5 (X530.2) | High | Low | - |


| 06 | DI $6($ X530.3 | High | High |
| :--- | :--- | :--- | :--- |
| 07 | DI $7($ X530.4) | High | Low |
| 08 | DI/DO 8 (X541.2) | High | Low |
| 09 | DI/DO 9 (X541.3) | High | Low |
| 10 | DI/DO 10 (X541.4) | High | Low |
| 11 | DI/DO 11 (X541.5) | Low |  |

Note: If a DI/DO is parameterized as output $(p 4028 \cdot x=1)$, then $r 4021 \cdot x=0$ is displayed.
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

| r4021 | TM41 digital inputs terminal actual value / TM41 DI act val |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM41 | Can be changed: - |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  |  | Factory setting |  |
| Description: | Displays the actual value at the digital inputs. |  |  |  |  |
|  | This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simu lation mode ( $\mathrm{p} 4095 . \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=0$ ). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X522.1) | High | Low | 9660 |
|  |  | DI 1 (X522.2) | High | Low | 9660 |
|  | 02 | DI 2 (X522.3) | High | Low | 9660 |
|  |  | DI 3 (X522.4) | High | Low | 9660 |
|  |  | DI/DO 0 (X521.1) | High | Low | 9661 |
|  |  | DI/DO 1 (X521.2) | High | Low | 9661 |
|  |  | DI/DO 2 (X521.3) | High | Low | 9662 |
|  | 11 | DI/DO 3 (X521.4) | High | Low | 9662 |

Note: If a DI/DO is parameterized as output $(p 4028 . x=1)$, then $r 4021 . x=0$ is displayed.
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

| r4022.0... 1 | CO/BO: Digital inputs status / DI status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Dig IO) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 | Dynamic index: - | Fun |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the status of the digital inputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI/DO 0 distributed (X3.2) | High | Low | 2201 |
|  | 01 DI/DO 1 distributed (X3.4) | High | Low | 2201 |
| Dependency: | Refer to: r4023 |  |  |  |
| Note: | If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . x=1$ ), then $r 4021 . x=0$ is displayed. |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |


| r4022.0..3 | CO/BO: TB30 digital inputs, status / TB30 DI status |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TB30 | Can be changed: - |  |  | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1790, 9100 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the status of the digital inputs of the Terminal Board 30 (TB30). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X481.1) | High | Low | - |
|  |  | DI 1 (X481.2) | High | Low | - |
|  |  | DI 2 (X481.3) | High | Low | - |
|  |  | DI 3 (X481.4) | High | Low | - |
| Dependency: | Refer to: r4023 |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
| r4022.0... 23 | CO/BO: TM15DI/DO digital inputs, status / TM15D Dl status |  |  |  |  |
| TM15DI_DO | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1781, 9400, 9401, 9402 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the status of the digital inputs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | High | Low | - |
|  |  | DI/DO 1 (X520.3) | High | Low | - |
|  | 02 | DI/DO 2 (X520.4) | High | Low | - |
|  | 03 | DI/DO 3 (X520.5) | High | Low | - |
|  | 04 | DI/DO 4 (X520.6) | High | Low | - |
|  | 05 | DI/DO 5 (X520.7) | High | Low | - |
|  | 06 | DI/DO 6 (X520.8) | High | Low | - |
|  | 07 | DI/DO 7 (X520.9) | High | Low | - |
|  | 08 | DI/DO 8 (X521.2) | High | Low | - |
|  | 09 | DI/DO 9 (X521.3) | High | Low | - |
|  |  | DI/DO 10 (X521.4) | High | Low | - |
|  | 11 | DI/DO 11 (X521.5) | High | Low | - |
|  | 12 | DI/DO 12 (X521.6) | High | Low | - |
|  | 13 | DI/DO 13 (X521.7) | High | Low | - |
|  | 14 | DI/DO 14 (X521.8) | High | Low | - |
|  | 15 | DI/DO 15 (X521.9) | High | Low | - |
|  | 16 | DI/DO 16 (X522.2) | High | Low | - |
|  | 17 | DI/DO 17 (X522.3) | High | Low | - |
|  | 18 | DI/DO 18 (X522.4) | High | Low | - |
|  | 19 | DI/DO 19 (X522.5) | High | Low | - |
|  |  | DI/DO 20 (X522.6) | High | Low | - |
|  |  | DI/DO 21 (X522.7) | High | Low | - |
|  |  | DI/DO 22 (X522.8) | High | Low | - |
|  |  | DI/DO 23 (X522.9) | High | Low | - |
| Dependency: | Refer to: r4023, r4024, r4025 |  |  |  |  |
| Notice: | For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferred. DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| Note: |  |  |  |  |  |


| r4022.0... 11 | CO/BO: TM31 digital inputs, status / TM31 DI status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM31 | Can be changed: - <br> Data type: Unsigned32 | Calculated: - <br> Dynamic index: | Access level: 1 |  |
|  |  |  | Func. diagram: 1840, 9550, 9552, 9560, 9562 |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the status of the digital inputs of Terminal Module 31 (TM31). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X520.1) | High | Low | - |
|  | 01 DI 1 (X520.2) | High | Low | - |
|  | 02 DI 2 (X520.3) | High | Low | - |
|  | 03 DI 3 (X520.4) | High | Low | - |
|  | 04 DI 4 (X530.1) | High | Low | - |
|  | 05 DI 5 (X530.2) | High | Low | - |
|  | 06 DI 6 (X530.3) | High | Low | - |
|  | 07 DI 7 (X530.4) | High | Low | - |
|  | 08 DI/DO 8 (X541.2) | High | Low | - |
|  | 09 DI/DO 9 (X541.3) | High | Low | - |
|  | 10 DI/DO 10 (X541.4) | High | Low | - |
|  | 11 DI/DO 11 (X541.5) | High | Low | - |
| Dependency: | Refer to: r4023 |  |  |  |
| Note: | DI: Digital Input |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r4022.0... 11 | CO/BO: TM41 digital inputs, status / TM41 DI status |  |  |  |
| TM41 | Can be changed: - <br> Data type: Unsigned32 | Calculated: - | Access level: 1 |  |
|  |  | Dynamic index: - | Func. diagram: 1842, 9660, 9661, 9662 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status of the digital inputs of Terminal Module 41 (TM41). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X522.1) | High | Low | 9660 |
|  | 01 DI 1 (X522.2) | High | Low | 9660 |
|  | 02 DI 2 (X522.3) | High | Low | 9660 |
|  | 03 DI 3 (X522.4) | High | Low | 9660 |
|  | 08 DI/DO 0 (X521.1) | High | Low | 9661 |
|  | 09 DI/DO 1 (X521.2) | High | Low | 9661 |
|  | 10 DI/DO 2 (X521.3) | High | Low | 9662 |
|  | 11 DI/DO 3 (X521.4) | High | Low | 9662 |
| Dependency: | Refer to: r4023 |  |  |  |
| Note: | DI: Digital Input |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |


| r4023.0... 1 | BO: Digital inputs status inverted / DI status inv |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Dig IO) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - |  |  |
| Description: | Displays the inverted status of the digital inputs. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI/DO 0 distributed (X3.2) | High | Low | 2201 |
|  | 01 DI/DO 1 distributed (X3.4) | High | Low | 2201 |
| Dependency: | Refer to: r4022 |  |  |  |
| Note: | If a DI/DO is parameterized as output ( $p 4028 . x=1$ ), then r4021.x $=0$ is displayed. |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r4023.0..3 | BO: TB30 digital inputs, status inverted / TB30 DI status inv |  |  |  |
| TB30 | Can be changed: - | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1790, 9100 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  |  | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the inverted status of the digital inputs of the Terminal Board 30 (TB30). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI 0 (X481.1) | High | Low | - |
|  | 01 DI 1 (X481.2) | High | Low | - |
|  | 02 DI 2 (X481.3) | High | Low | - |
|  | 03 DI 3 (X481.4) | High | Low | - |
| Dependency: | Refer to: r4022 |  |  |  |
| Note: | DI: Digital Input |  |  |  |
| r4023.0... 23 | CO/BO: TM15DI/DO digital inputs, status inverted / TM15D DI stat inv |  |  |  |
| TM15DI_DO | Can be changed: - | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 1781, 9400, 9401, 9402 |  |
|  | P-Group: Commands | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the inverted status of the digital inputs of Terminal Module 15 (TM15). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DI/DO 0 (X520.2) | High | Low | - |
|  | 01 DI/DO 1 (X520.3) | High | Low | - |
|  | 02 DI/DO 2 (X520.4) | High | Low | - |
|  | 03 DI/DO 3 (X520.5) | High | Low | - |
|  | 04 DI/DO 4 (X520.6) | High | Low | - |
|  | 05 DI/DO 5 (X520.7) | High | Low | - |
|  | $06 \text { DI/DO } 6 \text { (X520.8) }$ | High | Low | - |
|  | 07 DI/DO 7 (X520.9) | High | Low | - |
|  | 08 DI/DO 8 (X521.2) | High | Low | - |
|  | 09 DI/DO 9 (X521.3) | High | Low | - |
|  | 10 DI/DO 10 (X521.4) | High | Low | - |
|  | 11 DI/DO 11 (X521.5) | High | Low | - |
|  | $12 \mathrm{DI} / \mathrm{DO} 12$ (X521.6) | High | Low | - |


|  | 13 | DI/DO 13 (X521.7) | High | Low | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14 | DI/DO 14 (X521.8) | High | Low | - |
|  | 15 | DI/DO 15 (X521.9) | High | Low | - |
|  | 16 | DI/DO 16 (X522.2) | High | Low | - |
|  | 17 | DI/DO 17 (X522.3) | High | Low | - |
|  | 18 | DI/DO 18 (X522.4) | High | Low | - |
|  | 19 | DI/DO 19 (X522.5) | High | Low | - |
|  |  | DI/DO 20 (X522.6) | High | Low | - |
|  |  | DI/DO 21 (X522.7) | High | Low | - |
|  |  | DI/DO 22 (X522.8) | High | Low | - |
|  | 23 | DI/DO 23 (X522.9) | High | Low | - |
| Dependency: | Refer to: r4022, r4024, r4025 |  |  |  |  |
| Notice: | For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferred. |  |  |  |  |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4023.0... 11 | CO/BO: TM31 digital inputs, status inverted / TM31 DI status inv |  |  |  |  |
| TM31 | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1840, 9550, 9552, 9560, 9562 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the inverted status of the digital inputs of Terminal Module 31 (TM31). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X520.1) | High | Low | - |
|  |  | DI 1 (X520.2) | High | Low | - |
|  |  | DI 2 (X520.3) | High | Low | - |
|  |  | DI 3 (X520.4) | High | Low | - |
|  |  | DI 4 (X530.1) | High | Low | - |
|  |  | DI 5 (X530.2) | High | Low | - |
|  |  | DI 6 (X530.3) | High | Low | - |
|  |  | DI 7 (X530.4) | High | Low | - |
|  |  | DI/DO 8 (X541.2) | High | Low | - |
|  |  | DI/DO 9 (X541.3) | High | Low | - |
|  |  | DI/DO 10 (X541.4) | High | Low | - |
|  |  | DI/DO 11 (X541.5) | High | Low | - |
| Dependency: | Refer to: r4022 |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4023.0.. 11 | BO: TM41 digital inputs, status inverted / TM41 DI status inv |  |  |  |  |
| TM41 | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1842, 9660, 9661, 9662 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays the inverted status of the digital inputs of Terminal Module 41 (TM41). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X522.1) | High | Low | 9660 |
|  | 01 | DI 1 (X522.2) | High | Low | 9660 |
|  | 02 | DI 2 (X522.3) | High | Low | 9660 |
|  | 03 | DI 3 (X522.4) | High | Low | 9660 |
|  | 08 | DI/DO 0 (X521.1) | High | Low | 9661 |
|  | 09 | DI/DO 1 (X521.2) | High | Low | 9661 |


|  |  | $\begin{aligned} & \text { DI/DO } 2 \text { (X521.3) } \\ & \text { DI/DO } 3 \text { (X521.4) } \end{aligned}$ | High High | Low <br> Low | $\begin{aligned} & 9662 \\ & 9662 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dependency: | Refer to: r4022 |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4024 | CO: TM15DI/DO digital inputs $16 . .23$ status / TM15D DI 16-23 St |  |  |  |  |
| TM15DI_DO | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 9402 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the status of digital inputs $16 . .23$ of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 16 (X522.2) | ON | OFF | - |
|  |  | DI/DO 17 (X522.3) | ON | OFF | - |
|  |  | DI/DO 18 (X522.4) | ON | OFF | - |
|  |  | DI/DO 19 (X522.5) | ON | OFF | - |
|  |  | DI/DO 20 (X522.6) | ON | OFF | - |
|  |  | DI/DO 21 (X522.7) | ON | OFF | - |
|  |  | DI/DO 22 (X522.8) | ON | OFF | - |
|  |  | DI/DO 23 (X522.9) | ON | OFF | - |
| Dependency: | Refer to: r4022, r4023, r4025 |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
| r4025 | CO: TM15DI/DO digital inputs $16 . .23$ status inverted / TM15D DI 16-23 inv |  |  |  |  |
| TM15DI_DO | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 9402 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the inverted status of digital inputs $16 \ldots 23$ of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 16 (X522.2) | ON | OFF | - |
|  |  | DI/DO 17 (X522.3) | ON | OFF | - |
|  |  | DI/DO 18 (X522.4) | ON | OFF | - |
|  |  | DI/DO 19 (X522.5) | ON | OFF | - |
|  |  | DI/DO 20 (X522.6) | ON | OFF | - |
|  |  | DI/DO 21 (X522.7) | ON | OFF | - |
|  |  | DI/DO 22 (X522.8) | ON | OFF | - |
|  |  | DI/DO 23 (X522.9) | ON | OFF | - |
| Dependency: | Refer to: r4022, r4023, r4024 |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |
| p4028 | Set input or output / DI or DO |  |  |  |  |
| SERVO (Dig IO) | Can be changed: T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2201 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | $0000$ |  |
| Description: | Sets the bidirectional digital inputs/outputs as an input or output. |  |  |  |  |



|  | 06 | DI/DO 6 (X520.8) | Output | Input | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 07 | DI/DO 7 (X520.9) | Output | Input | - |
|  | 08 | DI/DO 8 (X521.2) | Output | Input | - |
|  | 09 | DI/DO 9 (X521.3) | Output | Input | - |
|  | 10 | DI/DO 10 (X521.4) | Output | Input | - |
|  | 11 | DI/DO 11 (X521.5) | Output | Input | - |
|  | 12 | DI/DO 12 (X521.6) | Output | Input | - |
|  | 13 | DI/DO 13 (X521.7) | Output | Input | - |
|  | 14 | DI/DO 14 (X521.8) | Output | Input | - |
|  | 15 | DI/DO 15 (X521.9) | Output | Input | - |
|  | 16 | DI/DO 16 (X522.2) | Output | Input | - |
|  | 17 | DI/DO 17 (X522.3) | Output | Input | - |
|  | 18 | DI/DO 18 (X522.4) | Output | Input | - |
|  | 19 | DI/DO 19 (X522.5) | Output | Input | - |
|  | 20 | DI/DO 20 (X522.6) | Output | Input | - |
|  | 21 | DI/DO 21 (X522.7) | Output | Input | - |
|  |  | DI/DO 22 (X522.8) | Output | Input | - |
|  | 23 | DI/DO 23 (X522.9) | Output | Input | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4028 | TM17 set input or output / TM17 DI or DO |  |  |  |  |
| TM17 | Can be changed: T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1782 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the bidirectional digital inputs/outputs on the Terminal Module 17 (TM17) as input or output. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | Output | Input | - |
|  | 01 | DI/DO 1 (X520.3) | Output | Input | - |
|  | 02 | DI/DO 2 (X520.5) | Output | Input | - |
|  | 03 | DI/DO 3 (X520.6) | Output | Input | - |
|  | 04 | DI/DO 4 (X520.8) | Output | Input | - |
|  | 05 | DI/DO 5 (X520.9) | Output | Input | - |
|  | 06 | DI/DO 6 (X521.2) | Output | Input | - |
|  | 07 | DI/DO 7 (X521.3) | Output | Input | - |
|  | 08 | DI/DO 8 (X521.8) | Output | Input | - |
|  | 09 | DI/DO 9 (X521.9) | Output | Input | - |
|  | 10 | DI/DO 10 (X522.2) | Output | Input | - |
|  |  | DI/DO 11 (X522.3) | Output | Input | - |
|  |  | DI/DO 12 (X522.5) | Output | Input | - |
|  |  | DI/DO 13 (X522.6) | Output | Input | - |
|  |  | DI/DO 14 (X522.8) | Output | Input | - |
|  | 15 | DI/DO 15 (X522.9) | Output | Input | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4028 | TM31 set input or output / TM31 DI or DO |  |  |  |  |
| TM31 | Can be changed: T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1840, 9560, 9562 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the bidirectional digital inputs/outputs as input or output on the Terminal Module 31 (TM31). |  |  |  |  |


| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DI/DO 8 (X541.2) | Output | Input | - |
|  |  | DI/DO 9 (X541.3) | Output | Input | - |
|  |  | DI/DO 10 (X541.4) | Output | Input | - |
|  | 11 | DI/DO 11 (X541.5) | Output | Input | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4028 | TM41 set input or output / TM41 DI or DO |  |  |  |  |
| TM41 | Can be changed: T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1842, 9661, 9662 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the bidirectional digital inputs/outputs on the Terminal Module 41 (TM41) as input or output. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X521.1) | Output | Input | 9661 |
|  |  | DI/DO 1 (X521.2) | Output | Input | 9661 |
|  |  | DI/DO 2 (X521.3) | Output | Input | 9662 |
|  |  | DI/DO 3 (X521.4) | Output | Input | 9662 |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4030 | BI: TB30 signal source for terminal DO 0 / TB30 S_src DO 0 |  |  |  |  |
| TB30 | Can be changed: U, T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 / Binary |  | Dynamic index: - | Func. diagram: 1790, 9102 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0 |  |
| Description: | Sets the signal source for digital output DO 0 (X481.5) of the Terminal Board 30 (TB30). |  |  |  |  |
| Note: | DO: Digital Output |  |  |  |  |
| p4030 | BI: TM15DI/DO signal source for terminal DI/DO 0 / TM15D S_src DI/DO0 |  |  |  |  |
| TM15DI_DO | Can be changed: U, T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 / Binary |  | Dynamic index: - | Func. diagram: 1781, 9400 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  |  | - 0 |  |
| Description: <br> Note: | Sets the signal source for terminal DI/DO 0 (X520.2) of Terminal Module 15 (TM15). |  |  |  |  |
|  | Prerequisite: The DI/DO must be set as an output (p4028.0 = 1). |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4030 | BI: TM31 signal source for terminal DO 0 / TM31 S_src DO 0 |  |  |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 / Binary |  | Dynamic index: - | Func. diagram: 1840, 9556 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting 0 |  |
|  |  |  |  |  |  |
| Description: | Sets the signal source for the digital output DO 0 (X542.1, X542.2, X542.3) of Terminal Module 31 (TM31). Digital output 0 of TM31 is a relay output. |  |  |  |  |



| p4032 | BI: TM15DI/DO signal source for terminal DI/DO 2 / TM15D S_src DI/DO2 |  |  |
| :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 2 (X520.4) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.2 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4033 | BI: TB30 signal source for terminal DO 3 / TB30 S_src DO 3 |  |  |
| TB30 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 1790, 9102 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DO 3 (X481.8) of the Terminal Board 30 (TB30). |  |  |
| Note: | DO: Digital Output |  |  |
| p4033 | BI: TM15DI/DO signal source for terminal DI/DO 3 / TM15D S_src DI/DO3 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 3 (X520.5) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.3 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4034 | BI: TM15DI/DO signal source for terminal DI/DO 4 / TM15D S_src DI/DO4 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 4 (X520.6) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.4 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4035 | BI: TM15DI/DO signal source for terminal DI/DO 5 / TM15D S_src DI/DO5 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Sets the signal source for terminal DI/DO 5 (X520.7) of Terminal Module 15 (TM15). |  |  |


| Note: | Prerequisite: The DI/DO must be set as an output (p4028.5 = 1). DI/DO: Bidirectional Digital Input/Output |  |  |
| :---: | :---: | :---: | :---: |
| p4036 | BI: TM15DI/DO signal so | terminal DI/DO | src DI/DO6 |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 6 (X520.8) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.6 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4037 | BI: TM15DI/DO signal source for terminal DI/DO 7 / TM15D S_src DI/DO7 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 7 (X520.9) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.7 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4038 | BI: Signal source for terminal DI/DO 0 distributed / S_src DI/DO 0 dec |  |  |
| SERVO (Dig IO) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2201 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the distributed terminal DI/DO 0 (X3.2). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.0 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4038 | BI: TM15DI/DO signal source for terminal DI/DO 8 / TM15D S_src DI/DO8 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 8 (X521.2) of terminal module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.8 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4038 | BI: TM31 signal source for terminal DI/DO 8 / TM31 S_src DI/DO8 |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 1840, 9560 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 8 (X541.2) of Terminal Module 31 (TM31). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.8 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4038 | BI: TM41 signal source for terminal DI/DO 0 / TM41 S_src DI/DO 0 |  |  |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9661 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 0 (X521.1) of Terminal Module 41 (TM41). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.8 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4039 | BI: Signal source for terminal DI/DO 1 distributed / S_src DI/DO 1 dec |  |  |
| SERVO (Dig IO) | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2201 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the distributed terminal DI/DO 1 (X3.4). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.1 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4039 | BI: TM15DI/DO signal source for terminal DI/DO 9/TM15D S_src DI/DO9 |  |  |
| :--- | :--- | :--- | :--- |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | 0 |  |
| Description: | Sets the signal source for terminal DI/DO 9 (X521.3) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.9 $=1$ ). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4039 | BI: TM31 signal source for terminal DI/DO 9 / TM31 S_src DI/DO9 |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9560 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 9 (X541.3) of Terminal Module 31 (TM31). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.9 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4039 | BI: TM41 signal source for terminal DI/DO 1 / TM41 S_src DI/DO 1 |  |  |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9661 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 1 (X541.2) of Terminal Module 41 (TM41). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.9 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4040 | BI: TM15DI/DO signal source for terminal DI/D0 10 / TM15D S_srcDI/DO10 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 10 (X521.4) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.10 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4040 | BI: TM31 signal source for terminal DI/DO 10 / TM31 S_srcDI/DO10 |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9562 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Sets the signal source for terminal DI/DO 10 (X541.4) of Terminal Module 31 (TM31). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.10 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4040 | BI: TM41 signal source for terminal DI/DO 2 / TM41 S_src DI/DO 2 |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9662 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 2 (X521.3) of Terminal Module 41 (TM41). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.10 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4041 | BI: TM15DI/DO signal source for terminal DI/D0 11 / TM15D S_srcDI/D011 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 11 (X521.5) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.11 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4041 | BI: TM31 signal source for terminal DI/DO 11 / TM31 S_src DI/DO11 |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 1840, 9562 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 11 (X541.5) of Terminal Module 31 (TM31). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.11 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4041 | BI: TM41 signal source for terminal DI/DO 3 / TM41 S_src DI/DO 3 |  |  |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9662 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 3 (X521.4) of Terminal Module 41 (TM41). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.11 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4042 | BI: TM15DI/DO signal source for terminal DI/DO 12 / TM15D S_srcDI/DO12 |  |  |
| :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 12 (X521.6) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.12 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4043 | BI: TM15DI/DO signal source for terminal DI/DO 13 / TM15D S_srcDI/DO13 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 13 (X521.7) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.13 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4044 | BI: TM15DI/DO signal source for terminal DI/D0 14 / TM15D S_srcDI/DO14 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 14 (X521.8) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.14 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4045 | BI: TM15DI/DO signal source for terminal DI/DO 15 / TM15D S_srcDI/DO15 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9401 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 15 (X521.9) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.15 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |



| r4047 | TM15DI/DO digital outputs, status / TM15D DO status |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: - <br> Data type: Unsigned32 |  | Calculated: - | Access level: 1 |  |
|  |  |  | Dynamic index: - | Func. diagram: 9400, 9401, 9402 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - |  |  |
| Description: | Displays the status of the digital outputs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | High | Low | - |
|  |  | DIIDO 1 (X520.3) | High | Low | - |
|  |  | DIIDO 2 (X520.4) | High | Low | - |
|  |  | DI/DO 3 (X520.5) | High | Low | - |
|  |  | DIIDO 4 (X520.6) | High | Low | - |
|  |  | DI/DO 5 (X520.7) | High | Low | - |
|  |  | DIIDO 6 (X520.8) | High | Low | - |
|  |  | DI/DO 7 (X520.9) | High | Low | - |
|  |  | DIIDO 8 (X521.2) | High | Low | - |
|  |  | DI/DO 9 (X521.3) | High | Low | - |
|  |  | DI/DO 10 (X521.4) | High | Low | - |
|  |  | DI/DO 11 (X521.5) | High | Low | - |
|  |  | DI/DO 12 (X521.6) | High | Low | - |
|  |  | DI/DO 13 (X521.7) | High | Low | - |
|  |  | DI/DO 14 (X521.8) | High | Low | - |
|  |  | DI/DO 15 (X521.9) | High | Low | - |
|  |  | DI/DO 16 (X522.2) | High | Low | - |
|  |  | DI/DO 17 (X522.3) | High | Low | - |
|  |  | DI/DO 18 (X522.4) | High | Low | - |
|  |  | DI/DO 19 (X522.5) | High | Low | - |
|  |  | DI/DO 20 (X522.6) | High | Low | - |
|  |  | DI/DO 21 (X522.7) | High | Low | - |
|  |  | DI/DO 22 (X522.8) | High | Low | - |
|  |  | DI/DO 23 (X522.9) | High | Low | - |
| Note: | Inve The DI/D | sion using p4048 ha setting of the DI/DO O: Bidirectional Digit | ccount. <br> tput is of no significa |  |  |
| r4047 | TM31 digital outputs status / TM31 DO status |  |  |  |  |
| TM31 | Can be changed: - |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 9556, 9560, 9562 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  | - | - |  |
| Description: | Displays the status of the digital outputs of Terminal Module 31 (TM31). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DO 0 (X542.1-3) | High | Low | - |
|  |  | DO 1 (X542.4-6) | High | Low | - |
|  | 08 | DI/DO 8 (X541.2) | High | Low | - |
|  | 09 | DIIDO 9 (X541.3) | High | Low | - |
|  |  | DI/DO 10 (X541.4) | High | Low | - |
|  | 11 | DI/DO 11 (X541.5) | High | Low | - |


| Note: | Inversion using p4048 has been taken into account. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | The setting of the DI/DO as either input or output is of no significance (p4028). |  |  |  |  |
|  | DO: Digital Output |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4047 | TM41 digital outputs status / TM41 DO status |  |  |  |  |
| TM41 |  | be changed: - | Calculated: - | Access |  |
|  |  | type: Unsigned32 | Dynamic index: - | Func. di |  |
|  |  | roup: Commands | Units group: - | Unit sele |  |
|  |  | for motor type: - | Scaling: - | Expert li |  |
|  | Min |  | Max | Factory |  |
|  | - |  | - |  |  |
| Description: | Displays the status of the digital outputs of Terminal Module 41 (TM41). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X521.1) | High | Low | 9661 |
|  |  | DI/DO 1 (X521.2) | High | Low | 9661 |
|  |  | DI/DO 2 (X521.3) | High | Low | 9662 |
|  |  | DI/DO 3 (X521.4) | High | Low | 9662 |
| Note: | Inversion using p4048 has been taken into account. |  |  |  |  |
|  | The setting of the DI/DO as either input or output is of no significance (p4028). |  |  |  |  |
|  | DO: Digital Output |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4048 | Inv | ert digital outputs / D |  |  |  |
| SERVO (Dig IO) | Can be changed: U, T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2201 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000 bin |  |
| Description: | Setting to invert the signals at the digital outputs. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 distributed (X3.2) | Inverted | Not inverted | 2201 |
|  |  | DI/DO 1 distributed (X3.4) | Inverted | Not inverted | 2201 |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4048 | TB30 invert digital outputs / TB30 DO inv |  |  |  |  |
| TB30 | Can be changed: U, T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 9102 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000 bin |  |
| Description: | Setting to invert the signals at the digital outputs of the Terminal Board 30 (TB30). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DO 0 (X481.5) | Inverted | Not inverted | - |
|  | 01 | DO 1 (X481.6) | Inverted | Not inverted | - |
|  | 02 | DO 2 (X481.7) | Inverted | Not inverted | - |
|  | 03 | DO 3 (X481.8) | Inverted | Not inverted | - |
| Note: | DO: Digital Output |  |  |  |  |


| p4048 | TM15 invert digital inputs/outputs / TM15 DI/DO inv |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15 | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - |  |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 00000000000000000000000000000000 bin |  |
| Description: | Setting to invert the signals at the digital inputs/outputs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | Inverted | Not inverted | - |
|  |  | DIIDO 1 (X520.3) | Inverted | Not inverted | - |
|  |  | DI/DO 2 (X520.4) | Inverted | Not inverted | - |
|  |  | DI/DO 3 (X520.5) | Inverted | Not inverted | - |
|  |  | DI/DO 4 (X520.6) | Inverted | Not inverted | - |
|  |  | DI/DO 5 (X520.7) | Inverted | Not inverted | - |
|  |  | DIIDO 6 (X520.8) | Inverted | Not inverted | - |
|  |  | DI/DO 7 (X520.9) | Inverted | Not inverted | - |
|  |  | DIIDO 8 (X521.2) | Inverted | Not inverted | - |
|  |  | DI/DO 9 (X521.3) | Inverted | Not inverted | - |
|  |  | DI/DO 10 (X522.4) | Inverted | Not inverted | - |
|  |  | DI/DO 11 (X521.5) | Inverted | Not inverted | - |
|  |  | DI/DO 12 (X521.6) | Inverted | Not inverted | - |
|  |  | DI/DO 13 (X521.7) | Inverted | Not inverted | - |
|  |  | DI/DO 14 (X521.8) | Inverted | Not inverted | - |
|  |  | DI/DO 15 (X521.9) | Inverted | Not inverted | - |
|  |  | DI/DO 16 (X522.2) | Inverted | Not inverted | - |
|  |  | DI/DO 17 (X522.3) | Inverted | Not inverted | - |
|  |  | DI/DO 18 (X522.4) | Inverted | Not inverted | - |
|  |  | DI/DO 19 (X522.5) | Inverted | Not inverted | - |
|  |  | DI/DO 20 (X522.6) | Inverted | Not inverted | - |
|  |  | DI/DO 21 (X522.7) | Inverted | Not inverted | - |
|  |  | DI/DO 22 (X522.8) | Inverted | Not inverted | - |
|  |  | DI/DO 23 (X522.9) | Inverted | Not inverted | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4048 | TM15DI/DO invert digital outputs / TM15D DO inv |  |  |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 9400, 9401, 9402 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 00000000000000000000 |  |
| Description: | Setting to invert the signals at the digital outputs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | Inverted | Not inverted | - |
|  |  | DI/DO 1 (X520.3) | Inverted | Not inverted | - |
|  | 02 | DI/DO 2 (X520.4) | Inverted | Not inverted | - |
|  | 03 | DI/DO 3 (X520.5) | Inverted | Not inverted | - |
|  | 04 | DI/DO 4 (X520.6) | Inverted | Not inverted | - |
|  | 05 | DI/DO 5 (X520.7) | Inverted | Not inverted | - |
|  | 06 | DI/DO 6 (X520.8) | Inverted | Not inverted | - |
|  | 07 | DI/DO 7 (X520.9) | Inverted | Not inverted | - |
|  | 08 | DI/DO 8 (X521.2) | Inverted | Not inverted | - |
|  | 09 | DI/DO 9 (X521.3) | Inverted | Not inverted | - |
|  | 10 | DI/DO 10 (X521.4) | Inverted | Not inverted | - |


| 11 | DII/DO 11 (X521.5) | Inverted | Not inverted |
| :--- | :--- | :--- | :--- |
| 12 | DIIDO 12 (X521.6) | Inverted | Not inverted |
| 13 | DIIDO 13 (X521.7) | Inverted | Not inverted |
| 14 | DIIDO 14 (X521.8) | Inverted | Not inverted |
| 15 | DI/DO 15 (X521.9) | Inverted | Not inverted |
| 16 | DI/DO 16 (X522.2) | Inverted | Not inverted |
| 17 | DI/DO 17 (X522.3) | Inverted | Not inverted |
| 18 | DI/DO 18 (X522.4) | Inverted | Not inverted |
| 19 | DIIDO 19 (X522.5) | Inverted | Not inverted |
| 20 | DIIDO 20 (X522.6) | Inverted | Not inverted |
| 21 | DIIDO 21 (X522.7) | Inverted | Not inverted |
| 22 | DI/DO 22 (X522.8) | Inverted | Not inverted |
| 23 | DI/DO 23 (X522.9) | Inverted | Not inverted |

Note: DI/DO: Bidirectional Digital Input/Output

| p4048 | TM17 invert digital inputs/outputs / TM17 DI/DO inv |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM17 | Can be changed: U, T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Setting to invert the signals at the digital inputs/outputs of Terminal Module 17 (TM17). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | Inverted | Not inverted | - |
|  |  | DI/DO 1 (X520.3) | Inverted | Not inverted | - |
|  |  | DI/DO 2 (X520.5) | Inverted | Not inverted | - |
|  |  | DI/DO 3 (X520.6) | Inverted | Not inverted | - |
|  |  | DI/DO 4 (X520.8) | Inverted | Not inverted | - |
|  | 05 | DI/DO 5 (X520.9) | Inverted | Not inverted | - |
|  | 06 | DI/DO 6 (X521.2) | Inverted | Not inverted | - |
|  |  | DI/DO 7 (X521.3) | Inverted | Not inverted | - |
|  | 08 | DI/DO 8 (X521.8) | Inverted | Not inverted | - |
|  |  | DI/DO 9 (X521.9) | Inverted | Not inverted | - |
|  |  | DI/DO 10 (X522.2) | Inverted | Not inverted | - |
|  |  | DI/DO 11 (X522.3) | Inverted | Not inverted | - |
|  |  | DI/DO 12 (X522.5) | Inverted | Not inverted | - |
|  |  | DI/DO 13 (X522.6) | Inverted | Not inverted | - |
|  |  | DI/DO 14 (X522.8) | Inverted | Not inverted | - |
|  |  | DI/DO 15 (X522.9) | Inverted | Not inverted | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4048 | TM31 invert digital outputs / TM31 DO inv |  |  |  |  |
| TM31 | Can be changed: U, T |  | Calculated: - | Access level: 1 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 9556, 9560, 9562 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  |  |  |  | 0000000 |  |
| Description: | Setting to invert the signals at the digital outputs of Terminal Module 31 (TM31). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DO 0 (X542.1-3) | Inverted | Not inverted | - |
|  | 01 | DO 1 (X542.4-6) | Inverted | Not inverted | - |
|  | 08 | DI/DO 8 (X541.2) | Inverted | Not inverted | - |
|  | 09 | DI/DO 9 (X541.3) | Inverted | Not inverted | - |
|  | 10 | DI/DO 10 (X541.4) | Inverted | Not inverted | - |
|  | 11 | DI/DO 11 (X541.5) | Inverted | Not inverted | - |


| Note: | DO: Digital Output |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| p4048 | TM41 invert digital outputs / TM41 DO inv |  |  |  |  |
| TM41 | Can | be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access |  |
|  | Dat | type: Unsigned32 | Dynamic index: - | Func. di |  |
|  | P-G | roup: Commands | Units group: - | Unit sele |  |
|  |  | for motor type: - | Scaling: - | Expert li |  |
|  | Min |  | Max | Factory |  |
|  | - |  | - | 0000000 |  |
| Description: | Setting to invert the signals at the digital outputs of Terminal Module 41 (TM41). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X521.1) | Inverted | Not inverted | 9661 |
|  |  | DI/DO 1 (X521.2) | Inverted | Not inverted | 9661 |
|  |  | DI/DO 2 (X521.3) | Inverted | Not inverted | 9662 |
|  |  | DI/DO 3 (X521.4) | Inverted | Not inverted | 9662 |
| Note: | DO: Digital Output |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4049 | TM15 digital inputs/outputs, set the mode / TM15 DI/DO mode |  |  |  |  |
| TM15 | Can be changed: $T$ |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | $000000000000 \text { bin }$ |  |
| Description: | Sets the mode of the DI/DOs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DI/DO 0 (X520.2) | I/O with time | I/O | - |
|  | 01 | DI/DO 1 (X520.3) | I/O with time | I/O | - |
|  | 02 | DI/DO 2 (X520.4) | I/O with time | I/O | - |
|  | 03 | DI/DO 3 (X520.5) | I/O with time | I/O | - |
|  | 04 | DI/DO 4 (X520.6) | I/O with time | I/O | - |
|  | 05 | DI/DO 5 (X520.7) | I/O with time | I/O | - |
|  | 06 | DI/DO 6 (X520.8) | I/O with time | 1/O | - |
|  | 07 | DI/DO 7 (X520.9) | I/O with time | 1/O | - |
|  | 08 | DI/DO 8 (X521.2) | I/O with time | I/O | - |
|  | 09 | DI/DO 9 (X521.3) | I/O with time | I/O | - |
|  | 10 | DI/DO 10 (X522.4) | I/O with time | 1/O | - |
|  | 11 | DI/DO 11 (X521.5) | I/O with time | I/O | - |
|  | 12 | DI/DO 12 (X521.6) | I/O with time | I/O | - |
|  | 13 | DI/DO 13 (X521.7) | I/O with time | I/O | - |
|  | 14 | DI/DO 14 (X521.8) | I/O with time | I/O | - |
|  | 15 | DI/DO 15 (X521.9) | I/O with time | I/O | - |
|  | 16 | DI/DO 16 (X522.2) | I/O with time | I/O | - |
|  | 17 | DI/DO 17 (X522.3) | I/O with time | I/O | - |
|  | 18 | DI/DO 18 (X522.4) | I/O with time | I/O | - |
|  | 19 | DI/DO 19 (X522.5) | I/O with time | I/O | - |
|  | 20 | DI/DO 20 (X522.6) | I/O with time | I/O | - |
|  | 21 | DI/DO 21 (X522.7) | I/O with time | I/O | - |
|  | 22 | DI/DO 22 (X522.8) | I/O with time | I/O | - |
|  | 23 | DI/DO 23 (X522.9) | I/O with time | 1/O | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| p4049 | TM17 digital inputs/outputs, set the mode / TM17 DI/DO mode |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM17 | Can be changed: T | Calculated: - | Acce |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fac |  |
|  | - | - | 0000 | bin |
| Description: | Sets the mode of the DI/DO of Terminal Module 17 (TM17). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DIIDO 0 (X520.2) | I/O with time | I/O | - |
|  | 01 DIIDO 1 (X520.3) | I/O with time | I/O | - |
|  | 02 DIIDO 2 (X520.5) | I/O with time | I/O | - |
|  | 03 DI/DO 3 (X520.6) | I/O with time | I/O | - |
|  | 04 DI/DO 4 (X520.8) | I/O with time | I/O | - |
|  | 05 DIIDO 5 (X520.9) | I/O with time | I/O | - |
|  | 06 DI/DO 6 (X521.2) | I/O with time | I/O | - |
|  | 07 DI/DO 7 (X521.3) | I/O with time | I/O | - |
|  | 08 DI/DO 8 (X521.8) | I/O with time | I/O | - |
|  | 09 DI/DO 9 (X521.9) | I/O with time | I/O | - |
|  | 10 DI/DO 10 (X522.2) | I/O with time | I/O | - |
|  | 11 DI/DO 11 (X522.3) | I/O with time | I/O | - |
|  | 12 DI/DO 12 (X522.5) | I/O with time | I/O | - |
|  | 13 DI/DO 13 (X522.6) | I/O with time | I/O | - |
|  | 14 DI/DO 14 (X522.8) | I/O with time | I/O | - |
|  | 15 DI/DO 15 (X522.9) | I/O with time | I/O | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |
| r4052[0...1] | CO: TB30 analog inputs, actual input voltage / TB30 AI U_inp act |  |  |  |
| TB30 | Can be changed: - <br> Data type: FloatingPoint32 | Calculated: - | Access level: 1 |  |
|  |  | Dynamic index: - | Func. diagram: 9104 |  |
|  | P-Group: Terminals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min - [V] | Max | Factory setting |  |
| Description: | Displays the actual input voltage at the analog inputs for Terminal Board 30 (TB30). |  |  |  |
|  | Note: |  |  |  |
|  | For p4056[x] = 3 (unipolar current input monitored ( $+4 \mathrm{~mA} . . .+20 \mathrm{~mA}$ ) ) the following applies: |  |  |  |
|  | A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output. |  |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(\text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |  |
| Note: | Al: Analog Input |  |  |  |
| r4052[0...1] | CO: TM31 analog inputs, current input voltage/current / TM31 AI U/I_inp |  |  |  |
| TM31 | Can be changed: - | Calculated: - | Access level: 1 |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |  |
|  | P-Group: Terminals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  |  | - | - |  |
| Description: | Displays the actual input voltage in V when set as voltage input. |  |  |  |
|  | Displays the actual input current in mA when set as current input and with the load resistor switched in. |  |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |  |



| r4055[0...1] | CO: TB30 analog inputs, actual value in percent / TB30 Al value in \% |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1790, 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the currently referred input value of the analog inputs of Terminal Board 30 (TB30). When interconnected, the signals are referred to the reference quantities p200x and p205x. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |
| Note: | AI: Analog Input |  |  |


| r4055[0..1] | CO: TM31 analog inputs, actual value in percent / TM31 Al value in \% |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1840, 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min <br> - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the currently referred input value of the analog inputs of Terminal Module 31 (TM31). |  |  |
|  | When interconnected, the signals are referred to the reference quantities p200x and p205x. |  |  |
| Index: | $\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$ |  |  |
| Note: | AI: Analog Input |  |  |


| r4055[0] | CO: TM41 analog inputs, actual value in percent / TM41 Al value in $\%$ |  |  |
| :--- | :--- | :--- | :--- |
| TM41 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ |  |
| Description: | Displays the currently referred input value of the analog inputs of Terminal Module 41 (TM41). |  |  |
|  | When interconnected, the signals are referred to the reference quantities p200x and p205x. |  |  |
| Index: | $[0]=$ Al $0(X 523.1 / X 523.2)$ |  |  |
| Note: | AI: Analog Input |  |  |





| p4058[0..1] | TM31 analog inputs, characteristic value y1 / TM31 Al char y1 |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31). The scaling characteristic for the analog inputs is defined using 2 points. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Al } 0(\text { X521.1/X521.2, S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |
| Notice: | This parameter is automatically overwritten when the analog input type (p4056) is modified. |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4058[0] | TM41 analog input, characteristic value y1 / TM41 Al char y1 |  |  |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41). <br> The scaling characteristic for the analog inputs is defined using 2 points. |  |  |
| Index: | This parameter specifies the $y$ coordinate (percentage) of the 1 st value pair of the characteristic. [0] = AI 0 (X523.1/X523.2) |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4059[0...1] | TB30 analog inputs, characteristic value x2 / TB30 Al char x2 |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -11.000[\mathrm{~V}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 11.000 \text { [V] } \end{aligned}$ | Factory setting 10.000 [V] |
| Description: | Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30). <br> The scaling characteristic for the analog inputs is defined using 2 points. <br> This parameter specifies the $x$ coordinate (input voltage in $V$ ) of the $2 n d$ value pair of the characteristic. |  |  |
| Index: | This parameter specifies the x coordinate (input voltage in V ) of the 2 nd value pair of the characteristic.$\begin{aligned} & {[0]=\text { AI } 0 \text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4059[0..1] | TM31 analog inputs, characteristic value x2 / TM31 Al char x2 |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -20.000 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$ | Factory setting 10.000 |
| Description: | Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31). The scaling characteristic for the analog inputs is defined using 2 points. |  |  |



| p4060[0] | TM41 analog input, characteristic value y2 / TM41 Al char y2 |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41). <br> The scaling characteristic for the analog inputs is defined using 2 points. |  |  |
| Index: | This parameter specifies the $y$ coordinate (percentage) of the 2 nd value pair of the characteristic. [ 0 ] = AI 0 (X523.1/X523.2) |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4061[0...1] | TM31 analog inputs, wire breakage monitoring response threshold / TM31 WireBrkThresh |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~mA}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00[\mathrm{~mA}] \end{aligned}$ | Factory setting 2.00 [mA] |
| Description: Index: | $\begin{aligned} & {[0]=\mathrm{AI} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |
| Dependency: | For the following analog input type, the wire breakage monitoring is active: $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ )) <br> Refer to: r4056, p4056 |  |  |
| p4062[0...1] | TM31 analog inputs, wire breakage monitoring delay time / TM31 wirebrk t_del |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0 [ms] | $\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$ | Factory setting 100 [ms] |
| Description: Index: | Sets the delay time for wire-breakage monitoring of the analog inputs on Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |
| p4063[0...1] | TB30 analog inputs offset / TB30 Al offset |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -20.000[\mathrm{~V}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.000[\mathrm{~V}] \end{aligned}$ | Factory setting 0.000 [V] |
| Description: | Sets the offset for the analog inputs of Terminal Board 30 (TB30). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |


| p4063[0..1] | TM31 analog inputs offset / TM31 Al offset |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting |
|  | -20.000 | 20.000 | 0.000 |
| Description: | Sets the offset for the analog inputs of Terminal Module 31 (TM31). |  |  |
|  | The offset is added to the input signal before the scaling characteristic. |  |  |
| Index: | [0] = AI 0 (X521.1/X521.2, S5.0) |  |  |
|  | [1] = Al 1 (X521.3/X521.4, S5.1) |  |  |
| p4063[0] | TM41 analog input, offset / TM41 Al offset |  |  |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | $-20.000[\mathrm{~V}]$ | 20.000 [V] | $0.000[\mathrm{~V}]$ |
| Description: | Sets the offset for the analog input of Terminal Module 41 (TM41). |  |  |
|  | The offset is added to the input signal before the scaling characteristic. |  |  |
| Index: | [0] = AI 0 (X523.1/X523.2) |  |  |
| p4066[0..1] | TB30 analog inputs, activate absolute value generation / TB30 Al absVal act |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  | $0$ |
| Description: | Activates the absolute value generation for the analog input signals of the Terminal Board 30 (TB30). |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | [0] = Al 0 (X482.1/X482.2) |  |  |
| p4066[0...1] | TM31 analog inputs, activate absolute value generation / TM31 Al absVal act |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Activates the absolute value generation for the analog input signals of Terminal Module 31 (TM31). |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | $\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |


| p4066[0] | TM41 analog input, activate absolute value generation / TM41 Al absVal act |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Activates the absolute value generation of the analog input signal of Terminal Module 41 (TM41). |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | [0] = Al 0 (X523.1/X523.2) |  |  |
| p4067[0...1] | BI: TB30 analog inputs invert signal source / TB30 AI inv S_src |  |  |
| TB30 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to invert the analog input signals of the Terminal Board 30 (TB30). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(\text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |
| p4067[0...1] | BI: TM31 analog inputs invert signal source / TM31 Al inv S_src |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Sets the signal source to invert the analog inputs signals of Terminal Module 31 (TM31). |  |  |
| Index: | $[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)$ |  |  |
| p4067[0] | BI: TM41 analog input invert signal source / TM41 AI inv S_src |  |  |
| TM41 | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: Index: | Sets the signal source to invert the analog input signal of Terminal Module 41 (TM41).$[0]=\text { Al } 0(X 523.1 / X 523.2)$ |  |  |
| p4068[0...1] | TB30 analog inputs, noise suppression window / TB30 Al window |  |  |
| TB30 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00 \text { [\%] } \end{aligned}$ | Factory setting $0.00 \text { [\%] }$ |
| Description: | Sets the noise suppression window of the analog inputs for Terminal Board 30 (TB30). |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Index: | $[0]=\mathrm{Al} 0 \text { (X482.1/X482.2) }$ |  |  |
|  | [1] = Al 1 (X482.3/X482.4) |  |  |
| Note: | Al: Analog Input |  |  |
| p4068[0..1] | TM31 analog inputs, window to suppress noise / TM31 Al window |  |  |
| TM31 | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the noise suppression window of the analog inputs for Terminal Module31 (TM31). Changes less than the window are suppressed. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |
| Note: | Al: Analog Input |  |  |
| p4068[0] | TM41 analog input, window to suppress noise / TM41 Al window |  |  |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the noise suppression window of the analog input for Terminal Module 41 (TM41). Changes less than the window are suppressed. |  |  |
| Index: | $[0]=\mathrm{Al} 0$ (X523.1/X523.2) |  |  |
| Note: | Al: Analog Input |  |  |
| p4069[0...1] | BI: TB30 analog inputs, signal source for enable / TB30 AI enable |  |  |
| TB30 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: Index: | Sets the signal source for enabling the analog inputs of the Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$ |  |  |
| p4069[0...1] | BI: TM31 analog inputs, signal source for enable / TM31 AI enable |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting 1 |
| Description: Index: | Sets the signal source for the enable signal of the analog inputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |


| p4069[0] | BI: TM41 analog input, signal source for enable / TM41 Al enable |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 1 |
| Description: Index: | Sets the signal source for the enable signal of the analog input of Terminal Module 41 (TM41).$\text { [0] = AI } 0 \text { (X523.1/X523.2) }$ |  |  |
| p4071[0...1] | CI: TB30 analog outputs, signal source / TB30 AO S_src |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 1790, 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the analog outputs of the Terminal Board 30 (TB30). |  |  |
| Index: | $[0]=$ AO 0 (X482.5/X482.6) |  |  |
|  | [1] = AO 1 (X482.7/X482.8) |  |  |
| Note: | AO: Analog Output |  |  |
| p4071[0...1] | CI: TM31 analog outputs, signal source / TM31 AO S_src |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 1840, 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Sets the signal source for the analog outputs of Terminal Module 31 (TM31). |  |  |
| Index: | $\text { [0] = AO } 0 \text { (X522.1, X522.2, X522.3) }$ |  |  |
| Note: | AO: Analog Output |  |  |
| r4072[0...1] | TB30 analog outputs, output value currently referred / TB30 AO outp_val |  |  |
| TB30 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Displays the actual referred output value of the analog outputs of the Terminal Board 30 (TB30). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AO } 0 \text { (X482.5/X482.6) }} \\ & {[1] \text { = AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$ |  |  |


| r4072[0...1] | TM31 analog outputs, output value currently referred / TM31 AO outp_val |  |  |
| :--- | :--- | :--- | :--- |
| TM31 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ |  |
|  |  |  |  |
| Description: | Displays the actual referred output value of the analog outputs of Terminal Module 31 (TM31). |  |  |
| Index: | $[0]=$ AO $0($ (S522.1, X522.2, X522.3) |  |  |
|  | $[1]=$ AO $1($ X522.4, X522.5, X522.6) |  |  |


| p4073[0...1] | TB30 analog outputs, smoothing time constant / TB30 AO T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\mathrm{~ms}]$ | $1000.0[\mathrm{~ms}]$ | $0.0[\mathrm{~ms}]$ |

Description: Sets the smoothing time constant of the 1st order low pass filter for the analog outputs of the Terminal Board 30 (TB30).
Index: $\quad[0]=A O O(X 482.5 / X 482.6)$
[1] = AO 1 (X482.7/X482.8)

| p4073[0...1] | TM31 analog outputs, smoothing time constant / TM31 AO T_smooth |  |  |
| :--- | :--- | :--- | :--- |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.0[\mathrm{~ms}]$ | 0.0 [ms $]$ |  |
|  |  |  |  |
| Description: | Sets the smoothing time constant of the 1st-order low pass filter for the analog outputs of Terminal Module 31 |  |  |
|  | (TM31). |  |  |
| Index: | $[0]=$ AO $0($ (X522.1, X522.2, X522.3) |  |  |
|  | $[1]=$ AO 1 (X522.4, X522.5, X522.6) |  |  |

r4074[0...1] TB30 analog outputs, actual output voltage / TB30 AO U_outp

Can be changed: -
Data type: FloatingPoint32
P-Group: Terminals
Not for motor type: -
Min

- [V]

Calculated: -
Dynamic index: -
Units group:
Scaling: -
Max

- [V]

Access level: 1
Func. diagram: 9106
Unit selection: -
Expert list: 1
Factory setting

- [V]

Description: Displays the actual output voltage at the analog outputs of the Terminal Board 30 (TB30).
Index:
[0] = AO 0 (X482.5/X482.6)
[1] = AO 1 (X482.7/X482.8)

| r4074[0...1] | TM31 analog outputs, current output voltage/current / TM31 AO U/I_outp |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the actual output voltage in V when set as voltage output. |  |  |
|  | Displays the actual output voltage in mA when set as current output. |  |  |
| Index: | $[0]=$ AO $0(X 522.1, \mathrm{X} 522.2, \mathrm{X} 522.3)$$[1]=$ AO 1 (X522.4, X522.5, X522.6) |  |  |
| Dependency: | The type of the analog output AO x (voltage or current output) is set using p4076. Refer to: r4076, p4076 |  |  |
|  |  |  |  |
| Note: | AO: Analog Output |  |  |
| p4075[0..1] | TB30 analog outputs, activate absolute value generation / TB30 AO absVal act |  |  |
| TB30 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Activates the absolute value generation for the analog outputs of the Terminal Board 30 (TB30). |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | [0] = AO 0 (X482.5/X482.6) |  |  |
|  | [1] = AO 1 (X482.7/X482.8) |  |  |
| p4075[0...1] | TM31 analog outputs, activate absolute value generation / TM31 AO absVal act |  |  |
| TM31 | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Activates the absolute value generation for the analog outputs of Terminal Module 31 (TM31). |  |  |
| Value: | 0 : $\quad$ No absolute value generation <br> 1: Absolute value generation switched in |  |  |
| Index: | [0] = AO 0 (X522.1, X522.2, X522.3) |  |  |
| r4076[0...1] | TB30 analog outputs, type / TB30 AO type |  |  |
| TB30 | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 4 | 4 | - |
| Description: | Displays the type of analog outputs of the Terminal Board 30 (TB30). |  |  |
| Value: | 4: Voltage output (-10 V ... +10 V) |  |  |
| Index: | [0] = AO 0 (X482.5/X482.6) |  |  |


| p4076[0..1] | TM31 analog outputs, type / TM31 AO type |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 4 | 4 |
| Description: | Sets the type of analog outputs of Terminal Module 31 (TM31). |  |  |
|  | $\mathrm{p} 4076[\mathrm{x}]=1,4$ correspond to a voltage output (p4074, p4078, p4080, p4083 are displayed in V ). |  |  |
|  | $\mathrm{p} 4076[\mathrm{x}]=0,2,3$ correspond to a current output ( p 4074 , p 4078 , p4080, p 4083 are displayed in mA ). |  |  |
| Value: | 0: Current output ( $0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ ) |  |  |
|  | 1: Voltage output ( $0 \mathrm{~V} \ldots+10 \mathrm{~V}$ ) |  |  |
|  | 2: Current output ( $+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ ) |  |  |
|  | 3: Current output (-20 mA ... +20 mA ) |  |  |
|  | 4: Voltage output (-10 V ... +10 V) |  |  |
| Index: | $\text { [0] = AO } 0 \text { (X522.1, X522.2, X522.3) }$ |  |  |
|  | $[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }$ |  |  |
| Dependency: | Refer to: p4077, p4078, |  |  |
| Note: | When changing p4076, the parameters of the scaling characteristic (p4077, p4078, p4079, p4080) are overwritten with the following default values: |  |  |
|  | For p4076 $=0,3, \mathrm{p} 4077$ is set to $0.0 \%$, p4078 to $0.0 \mathrm{~mA}, \mathrm{p} 4079$ to $100.0 \%$ and p4080 to 20.0 mA . |  |  |
|  | For p4076 $=1,4$, p4077 is set to $0.0 \%$, p4078 to 0.0 V , p4079 to $100.0 \%$ and p4080 to 10.0 V . |  |  |
|  | For p4076 = 2, p4077 is set to $0.0 \%$, p4078 to 4.0 mA , p4079 to $100.0 \%$ and p4080 to 20.0 mA . |  |  |


| p4077[0...1] | TB30 analog outputs, characteristic value x1/ TB30 AO char x1 |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting |
|  | -1000.00 [\%] | 1000.00 [\%] | 0.00 [\%] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30). |  |  |
|  | The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
|  | This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic. |  |  |
| Index: | [0] = AO 0 (X482.5/X482.6) |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4077[0...1] | TM31 analog outputs, characteristic value x1 / TM31 AO char x1 |  |  |
| TM31 | Can be changed: $U, T$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$ | Factory setting 0.00 [\%] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31). |  |  |
|  | The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
|  | This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$ |  |  |
| Dependency: | Refer to: r4076, p4076 |  |  |
| Notice: | This parameter is automatically overwritten when changing p4076 (type of analog outputs). |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |


| p4078[0...1] | TB30 analog outputs, characteristic value y1 / TB30 AO char y1 |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -11.000 [V] | 11.000 [V] | 0.000 [V] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30). <br> The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
|  |  |  |  |
|  | This parameter specifies the y coordinate (output voltage in V ) of the 1st value pair of the characteristic. |  |  |
| Index: | [ 0 ] = AO 0 (X482.5/X482.6) |  |  |
|  | [1] = AO 1 (X482.7/X482.8) |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4078[0...1] | TM31 analog outputs, characteristic value y1 / TM31 AO char y1 |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -20.000 [V] | 20.000 [V] | 0.000 [V] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31). |  |  |
|  | The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
|  | This parameter specifies the $y$ coordinate (output voltage in V or output current in mA ) of the 1st value pair of the characteristic. |  |  |
| Index: | $\text { [0] = AO } 0 \text { (X522.1, X522.2, X522.3) }$ |  |  |
| Dependency: | The unit of this parameter ( V or mA ) depends on the analog output type. |  |  |
|  | Refer to: r4076, p4076 |  |  |
| Notice: | This parameter is automatically overwritten when changing p4076 (type of analog outputs). |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4079[0..1] | TB30 analog outputs, characteristic value x2 / TB30 AO char x2 |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -1000.00 [\%] | 1000.00 [\%] | 100.00 [\%] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30). |  |  |
|  | The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
|  | This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic. |  |  |
| Index: | $\text { [0] = AO } 0 \text { (X482.5/X482.6) }$ |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |


| p4079[0...1] | TM31 analog outputs, characteristic value x2 / TM31 AO char x2 |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31). The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r4076, p4076 |  |  |
| Notice: | This parameter is automatically overwritten when changing p4076 (type of analog outputs). |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4080[0...1] | TB30 analog outputs, characteristic value y2 / TB30 AO char y2 |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -11.000[\mathrm{~V}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 11.000[\mathrm{~V}] \end{aligned}$ | Factory setting 10.000 [V] |
| Description: | Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30). <br> The scaling characteristic for the analog outputs is defined using 2 points. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { AO } 0 \text { (X482.5/X482.6) }} \\ & \text { [1] = AO } 1 \text { (X482.7/X482.8) } \end{aligned}$ |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |
| p4080[0...1] | TM31 analog outputs, characteristic value y2 / TM31 AO char y2 |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -20.000[\mathrm{~V}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 20.000[V] \end{aligned}$ | Factory setting 10.000 [V] |
| Description: | Sets the scaling characteris The scaling characteristic fo This parameter specifies the characteristic. | outputs of Terminal uts is defined using utput voltage in V or | mA ) of the 2 nd value |
| Index: | $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$ |  |  |
| Dependency: | The unit of this parameter ( V or mA ) depends on the analog output type. |  |  |
| Notice: | This parameter is automatically overwritten when changing p4076 (type of analog outputs). |  |  |
| Note: | The parameters for the characteristic do not have a limiting effect. |  |  |


| p4082[0...1] | BI: TB30 analog outputs invert signal source / TB30 AO inv S_src |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for inverting the analog output signals of the Terminal Board 30 (TB30). |  |  |
| Index: | [0] = AO 0 (X482.5/X482.6) |  |  |
|  | [1] = AO 1 (X482.7/X482.8) |  |  |
| p4082[0...1] | BI: TM31 analog outputs invert signal source / TM31 AO inv S_src |  |  |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to invert the analog output signals of Terminal Module 31 (TM31). |  |  |
| Index: | $[0]=\mathrm{AO} 0(\mathrm{X} 522.1, \mathrm{X} 522.2, \mathrm{X} 522.3)$ |  |  |
| p4083[0...1] | TB30 analog outputs, offset / TB30 AO offset |  |  |
| TB30 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9106 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -10.000 | 10.000 | 0.000 |
| Description: | Sets the offset for the analog outputs of Terminal Board 30 (TB30). |  |  |
|  | The offset is added to the output signal after the scaling characteristic. |  |  |
| Index: | [0] = AO 0 (X482.5/X482.6) |  |  |
|  | [1] = AO 1 (X482.7/X482.8) |  |  |
| p4083[0..1] | TM31 analog outputs, offset / TM31 AO offset |  |  |
| TM31 | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9572 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | Sets the offset for the analog outputs of Terminal Module 31 (TM31). |  |  |
| Description: |  |  |  |
|  | The offset is added to the output signal after the scaling characteristic. |  |  |
| Index: | [0] = AO 0 (X522.1, X522.2, X522.3) |  |  |
|  | [1] = AO 1 (X522.4, X522.5, X522.6) |  |  |
| Dependency: | The unit of this parameter ( V or mA ) depends on the analog input type. |  |  |
|  | Refer to: r4076, p4076 |  |  |
| Note: | This means, for example, the offset of a downstream isolating amplifier can be compensated. |  |  |


| p4086 | BI: TM15DI/DO signal source for terminal DI/DO 16 / TM15D S_srcDI/DO16 |  |  |
| :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 16 (X522.2) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.16 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4087 | BI: TM15DI/DO signal source for terminal DI/DO 17 / TM15D S_srcDI/D017 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 17 (X522.3) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.17 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4088 | BI: TM15DI/DO signal source for terminal DI/DO 18 / TM15D S_srcDI/D018 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 18 (X522.4) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.18=1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4089 | BI: TM15DI/DO signal source for terminal DI/DO 19 / TM15D S_srcDI/DO19 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 19 (X522.5) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.19 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| p4090 | BI: TM15DI/DO signal source for terminal DI/DO 20 / TM15D S_srcDI/DO20 |  |  |
| :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 20 (X522.6) of Terminal Module 15 (TM15). |  |  |
| Note: |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4091 | BI: TM15DI/DO signal source for terminal DI/DO 21 / TM15D S_srcDI/DO21 |  |  |
| TM15DI_DO | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 21 (X522.7) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.21 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4092 | BI: TM15DI/DO signal source for terminal DI/DO 22 / TM15D S_srcDI/DO22 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 22 (X522.8) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.22 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |
| p4093 | BI: TM15DI/DO signal source for terminal DI/DO 23 / TM15D S_srcDI/DO23 |  |  |
| TM15DI_DO | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 9402 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for terminal DI/DO 23 (X522.9) of Terminal Module 15 (TM15). |  |  |
| Note: | Prerequisite: The DI/DO must be set as an output (p4028.23 = 1). |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |


| r4094.0.. 23 | BO: TM15 digital inputs status inverted raw data internal / TM15 DI st raw dat |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: - |  | Calculated: - | Access le |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. dia |  |
|  | P-Group: Commands |  | Units group: - | Unit selec |  |
|  | Not for motor type: - |  | Scaling: - | Expert lis |  |
|  | Min |  | Max | Factory se |  |
|  | - |  | - | - |  |
| Description: | Displays the inverted status of the raw data of the digital inputs of the Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | High | Low | - |
|  |  | DI/DO 1 (X520.3) | High | Low | - |
|  |  | DI/DO 2 (X520.4) | High | Low | - |
|  |  | DI/DO 3 (X520.5) | High | Low | - |
|  | 04 | DI/DO 4 (X520.6) | High | Low | - |
|  | 05 | DI/DO 5 (X520.7) | High | Low | - |
|  | 06 | DI/DO 6 (X520.8) | High | Low | - |
|  | 07 | DI/DO 7 (X520.9) | High | Low | - |
|  | 08 | DI/DO 8 (X521.2) | High | Low | - |
|  | 09 | DI/DO 9 (X521.3) | High | Low | - |
|  | 10 | DI/DO 10 (X521.4) | High | Low | - |
|  | 11 | DI/DO 11 (X521.5) | High | Low | - |
|  | 12 | DI/DO 12 (X521.6) | High | Low | - |
|  | 13 | DI/DO 13 (X521.7) | High | Low | - |
|  | 14 | DI/DO 14 (X521.8) | High | Low | - |
|  | 15 | DI/DO 15 (X521.9) | High | Low | - |
|  | 16 | DI/DO 16 (X522.2) | High | Low | - |
|  |  | DI/DO 17 (X522.3) | High | Low | - |
|  |  | DI/DO 18 (X522.4) | High | Low | - |
|  |  | DI/DO 19 (X522.5) | High | Low | - |
|  |  | DI/DO 20 (X522.6) | High | Low | - |
|  |  | DI/DO 21 (X522.7) | High | Low | - |
|  |  | DI/DO 22 (X522.8) | High | Low | - |
|  |  | DI/DO 23 (X522.9) | High | Low | - |
| Notice: | The raw data of the digital inputs is directly displayed (e.g. without any debounce). |  |  |  |  |
| Note: | Should only used for internal Siemens purposes (alternative r4022, r4023). |  |  |  |  |
| p4095 | TB30 digital inputs, simulation mode / TB30 Dl sim_mode |  |  |  |  |
| TB30 | Can be changed: U, T |  | Calculated: - | Access le |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diag | 9100 |
|  | P-Group: Commands |  | Units group: - | Unit selec |  |
|  | Not for motor type: - |  | Scaling: - | Expert list |  |
|  | Min |  | Max | Factory se |  |
|  | - |  | - | 0000 bin |  |
| Description: | Sets the simulation mode for the digital inputs of the Terminal Board 30 (TB30). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X481.1) | Simulation | Terminal eval | - |
|  |  | DI 1 (X481.2) | Simulation | Terminal eval | - |
|  |  | DI 2 (X481.3) | Simulation | Terminal eval | - |
|  |  | DI 3 (X481.4) | Simulation | Terminal eval | - |
| Dependency: | The setpoint for the input signals is specified using p4096. |  |  |  |  |
| Warning: | A drive that is moved by simulating the inputs of a Terminal Board is brought to a standstill while the Terminal Module is being activated or de-activated. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input |  |  |  |  |


| p4095 | TM15DI/DO digital inputs, simulation mode / TM15D DI sim_mode |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15DI_DO | Can be changed: U, T |  | Calculated: - | Access le |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diag 9402 | 9401, |
|  | P-Group: Terminals |  | Units group: - | Unit selec |  |
|  | Not for motor type: - |  | Scaling: - | Expert list |  |
|  | Min |  | Max | Factory |  |
|  | - |  | - | $\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$ |  |
| Description: | Sets the simulation mode for the digital inputs of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | Simulation | Terminal eval | - |
|  |  | DI/DO 1 (X520.3) | Simulation | Terminal eval | - |
|  |  | DI/DO 2 (X520.4) | Simulation | Terminal eval | - |
|  |  | DI/DO 3 (X520.5) | Simulation | Terminal eval | - |
|  |  | $\text { DI/DO } 4 \text { (X520.6) }$ | Simulation | Terminal eval | - |
|  |  | $\text { DI/DO } 5 \text { (X520.7) }$ | Simulation | Terminal eval | - |
|  |  | $\text { DI/DO } 6 \text { (X520.8) }$ | Simulation | Terminal eval | - |
|  |  | DI/DO 7 (X520.9) | Simulation | Terminal eval | - |
|  |  | DI/DO 8 (X521.2) | Simulation | Terminal eval | - |
|  |  | DI/DO 9 (X521.3) | Simulation | Terminal eval | - |
|  |  | DI/DO 10 (X521.4) | Simulation | Terminal eval | - |
|  |  | DI/DO 11 (X521.5) | Simulation | Terminal eval | - |
|  |  | DI/DO 12 (X521.6) | Simulation | Terminal eval | - |
|  |  | DI/DO 13 (X521.7) | Simulation | Terminal eval | - |
|  |  | DI/DO 14 (X521.8) | Simulation | Terminal eval | - |
|  |  | DI/DO 15 (X521.9) | Simulation | Terminal eval | - |
|  |  | DI/DO 16 (X522.2) | Simulation | Terminal eval | - |
|  |  | DI/DO 17 (X522.3) | Simulation | Terminal eval | - |
|  |  | DI/DO 18 (X522.4) | Simulation | Terminal eval | - |
|  |  | DI/DO 19 (X522.5) | Simulation | Terminal eval | - |
|  |  | DI/DO 20 (X522.6) | Simulation | Terminal eval | - |
|  |  | DI/DO 21 (X522.7) | Simulation | Terminal eval | - |
|  |  | DI/DO 22 (X522.8) | Simulation | Terminal eval | - |
|  |  | DI/DO 23 (X522.9) | Simulation | Terminal eval | - |
| Dependency: | The setpoint for the input signals is specified using p4096. |  |  |  |  |
| Warning: | A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or de-activated. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4095 | TM31 digital inputs, simulation mode / TM31 DI sim_mode |  |  |  |  |
| TM31 | Can be changed: U, T |  | Calculated: - | Access le |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diag $9552,9560$ | $9550$ |
|  | P-Group: Terminals |  | Units group: - | Unit selec |  |
|  | Not for motor type: - |  | Scaling: - | Expert list |  |
|  | Min |  | Max | Factory se <br> 00000000 |  |
| Description: | Sets the simulation mode for the digital inputs of Terminal Module 31 (TM31). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X520.1) | Simulation | Terminal eval | - |
|  |  | DI 1 (X520.2) | Simulation | Terminal eval | - |
|  | 02 | DI 2 (X520.3) | Simulation | Terminal eval | - |


|  | 03 | DI 3 (X520.4) | Simulation | Terminal eval | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 04 | DI 4 (X530.1) | Simulation | Terminal eval | - |
|  | 05 | DI 5 (X530.2) | Simulation | Terminal eval | - |
|  | 06 | DI 6 (X530.3) | Simulation | Terminal eval | - |
|  | 07 | DI 7 (X530.4) | Simulation | Terminal eval | - |
|  | 08 | DI/DO 8 (X541.2) | Simulation | Terminal eval | - |
|  | 09 | DI/DO 9 (X541.3) | Simulation | Terminal eval | - |
|  | 10 | DI/DO 10 (X541.4) | Simulation | Terminal eval | - |
|  | 11 | DI/DO 11 (X541.5) | Simulation | Terminal eval | - |
| Dependency: | The setpoint for the input signals is specified using p4096. |  |  |  |  |
| Warning: | A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or de-activated. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4095 | TM41 digital inputs, simulation mode / TM41 DI sim_mode |  |  |  |  |
| TM41 | Can be changed: U, T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Terminals |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the simulation mode for the digital inputs of Terminal Module 41 (TM41). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X522.1) | Simulation | Terminal eval | 9660 |
|  |  | DI 1 (X522.2) | Simulation | Terminal eval | 9660 |
|  |  | DI 2 (X522.3) | Simulation | Terminal eval | 9660 |
|  |  | DI 3 (X522.4) | Simulation | Terminal eval | 9660 |
|  |  | DI/DO 0 (X521.1) | Simulation | Terminal eval | 9661 |
|  |  | DI/DO 1 (X521.2) | Simulation | Terminal eval | 9661 |
|  |  | DI/DO 2 (X521.3) | Simulation | Terminal eval | 9662 |
|  | 11 | DI/DO 3 (X521.4) | Simulation | Terminal eval | 9662 |
| Dependency: | The setpoint for the input signals is specified using p4096. |  |  |  |  |
|  | Refer to: p4096 |  |  |  |  |
| Warning: | A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or de-activated. |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| p4096 | TB30 digital inputs, simulation mode setpoint / TB30 DI sim setpt |  |  |  |  |
| TB30 | Can be changed: U, T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 1790, 9100 |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000 bin |  |
| Description: Sets the setpoint for the in |  |  | simulation mode of the | uts of the Termin | (TB3 |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 0 (X481.1) | High | Low | - |
|  | 01 | DI 1 (X481.2) | High | Low | - |



| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | DI 0 (X520.1) | High | Low | - |
|  | 01 | DI 1 (X520.2) | High | Low | - |
|  | 02 | DI 2 (X520.3) | High | Low | - |
|  | 03 | DI 3 (X520.4) | High | Low | - |
|  | 04 | DI 4 (X530.1) | High | Low | - |
|  | 05 | DI 5 (X530.2) | High | Low | - |
|  | 06 | DI 6 (X530.3) | High | Low | - |
|  | 07 | DI 7 (X530.4) | High | Low | - |
|  |  | DI/DO 8 (X541.2) | High | Low | - |
|  |  | DI/DO 9 (X541.3) | High | Low | - |
|  |  | DI/DO 10 (X541.4) | High | Low | - |
|  | 11 | DI/DO 11 (X541.5) | High | Low | - |
| Dependency: | The simulation of a digital input is selected using p4095. |  |  |  |  |
|  | Refer to: p4095 |  |  |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |  |  |  |  |
|  | DI: Digital Input |  |  |  |  |
|  | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| p4096 | TM41 digital inputs, simulation mode setpoint / TM41 DI sim setp |  |  |
| :--- | :--- | :--- | :--- |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 000000000000000 bin |

Description: Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 41 (TM41). Bit field:

| Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: |
| 00 | DI 0 (X522.1) | High | Low | 9660 |
| 01 | DI 1 (X522.2) | High | Low | 9660 |
| 02 | DI 2 (X522.3) | High | Low | 9660 |
| 03 | DI 3 (X522.4) | High | Low | 9660 |
| 08 | DI/DO 0 (X521.1) | High | Low | 9661 |
| 09 | DI/DO 1 (X521.2) | High | Low | 9661 |
| 10 | DI/DO 2 (X521.3) | High | Low | 9662 |
| 11 | DI/DO 3 (X521.4) | High | Low | 9662 |

Dependency: The simulation of a digital input is selected using p4095. Refer to: p4095
Note: $\quad$ This parameter is not saved when data is backed-up (p0971, p0977).
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

| p4097[0...1] | TB30 analog inputs simulation mode / TB30 Al sim_mode |  |  |
| :--- | :--- | :--- | :--- |
| TB30 | Can be changed: U, $T$ | Calculated: - | Access level: 2 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: 9104 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Max |
|  | Min | 1 | Factory setting |
|  | 0 | 0 |  |



| p4098[0...1] | TM31 analog inputs simulation mode setpoint / TM31 Al sim setp |  |  |
| :---: | :---: | :---: | :---: |
| TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ |  | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9566, 9568 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -20.000 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$ | Factory setting 0.000 |
| Description: Index: | Sets the setpoint for the input value in simulation mode of the analog inputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$ |  |  |
| Dependency: | The simulation of an analog input is selected using p4097. <br> If Al x is parameterized as voltage input ( p 4056 ), then the setpoint is a voltage in V . If Al x is parameterized as current input ( p 4056 ), then the setpoint is a current in mA . Refer to: r4056, p4056, p4097 |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). AI: Analog Input |  |  |
| p4098[0] | TM41 analog input, simulation mode setpoint / TM41 Al sim setp |  |  |
| TM41 | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9663 |
|  | P-Group: Terminals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -20.000[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.000[\mathrm{~V}] \end{aligned}$ | Factory setting 0.000 [V] |
| Description: Index: | Sets the setpoint for the input value in simulation mode of the analog input of Terminal Module 41 (TM41).$[0]=\text { AI } 0 \text { (X523.1/X523.2) }$ |  |  |
| Dependency: | The simulation of the analog input is selected using p4097. <br> If Al x is parameterized as voltage input ( p 4056 ), then the setpoint is a voltage in V . If $\mathrm{Al} x$ is parameterized as current input ( p 4056 ), then the setpoint is a current in mA . Refer to: p4097 |  |  |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). <br> AI: Analog Input |  |  |
| p4099 | Inputs/outputs sampling time / I/O t_sampl |  |  |
| SERVO (Dig IO) | Can be changed: C1(3) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 125.00[\mu \mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mu \mathrm{~s}] \end{aligned}$ | Factory setting 4000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the sampling time for the inputs and outputs. |  |  |
| Dependency: | The sampling times can only be set as an integer multiple of the DRIVE-CLiQ clock cycle. Refer to: p0009 |  |  |
| Note: | The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0). |  |  |


| p4099[0...2] | TB30 inputs/outputs, sampling time / TB30 I/O t_sample |  |  |
| :---: | :---: | :---: | :---: |
| TB30 | Can be changed: C1(3) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1790, 9100 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 5000.00 [ $\mu \mathrm{s}$ ] | [0] 4000.00 [ $\mu \mathrm{s}$ ] |
|  |  |  | [1] 4000.00 [ $\mu \mathrm{s}$ ] |
|  |  |  | [2] 4000.00 [ $\mu \mathrm{s}]$ |
| Description: | Sets the sampling time for the inputs and outputs of Terminal Board 30 (TB30). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Digital inputs/outputs }([ } \\ & {[1]=\text { Analog inputs (AI) }} \\ & {[2]=\text { Analog outputs (AO) }} \end{aligned}$ |  |  |
| Dependency: | The parameter can only be modified for $00009=3,29$. |  |  |
|  | The sampling times can only be set as an integer multiple of the basic sampling time (r0110, r0111). |  |  |
|  | Refer to: p0009, r0110, r0111 |  |  |
| Note: | The changed sampling time is immediately effective after a completed sub-boot (p0009-> 0). |  |  |
|  | For clock cycle synchronous PROFIBUS operation, the TB30 hardware (e.g. A/D converter ) is operated with the PROFIBUS clock cycle (r2064[1]). This clock cycle is also kept after the PROFIBUS connection has been exited up to the next time that the Control Unit is powered down. In this case, a faster sampling time than the PROFIBUS clock cycle is not practical in p4099[0...2]. |  |  |
| p4099 | TM15 inputs/outputs, sampling time / TM15 I/O t_sample |  |  |
| TM15 | Can be changed: C 1 (3) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1780 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> $31.25[\mu \mathrm{~s}]$ | Max <br> 500.00 [ $\mu \mathrm{s}$ ] | Factory setting 125.00 [ $\mu \mathrm{s}$ ] |
| Description: | The sampling time of the Terminal Module 15 (TM15) is determined by the DRIVE-CLiQ clock cycle of the line to which the component is attached. An entry is not possible using p4099. At power on, p4099 is correctly set to the resulting sampling time. |  |  |
| p4099 | TM15DI/DO inputs/outputs, sampling time / TM15D I/O t_sampl |  |  |
| TM15DI_DO | Can be changed: C 1 (3) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 1781, 9400 |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 5000.00 [ $\mu \mathrm{s}$ ] | 4000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the sampling time for the inputs and outputs of Terminal Module 15 (TM15). |  |  |
| Dependency: | The parameter can only be modified for p0009 = 3, 29 . |  |  |
|  | The sampling times can only be set as an integer multiple of the DRIVE-CLiQ clock cycle. |  |  |
|  | The minimum permissible sampling time is $125 \mu \mathrm{~s}$. |  |  |
|  | Refer to: p0009, r0110, r0111 |  |  |
| Note: | The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0). |  |  |



| Note: | The value of the sampling time of the incremental encoder emulation p4099[3] can be pre-set in both operating modes ( p 4400 ). The next time that the system boots, the validity of the value is checked. For an invalid value, fault F35228 and/or A1223 is output. <br> The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0). <br> The sampling time of a TM41 in the SINAMICS mode ( $p 4400=1$ ) must be the same as that of the emulated encoder. <br> The sampling time of a TM41 in the SIMOTION mode $(p 4400=0)$ is determined by the topology used |
| :---: | :---: |
| p4100 | Spindle supplementary temperature sensor type / Supp_temp sens typ |
| SERVO (Spin_diag), <br> SERVO_AC <br> (Spin_diag), <br> SERVO_I_AC <br> (Spin_diag) | Can be changed: T Calculated: - Access level: 1 <br> Data type: Integer16 Dynamic index: - Func. diagram: - <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 2 0 |
| Description: Value: <br> Dependency: | Sets the sensor type to evaluate the spindle supplementary temperature. <br> 0 : Evaluation disabled <br> 2: KTY84 <br> Refer to: p4102, p4103, r4104, r4105, r4107 |
| p4100 TM120 | TM120 temperature evaluation, sensor type / TM120 sensor type |
| Description: Value: | Sets the sensor type for temperature evaluation via Terminal Module 120 (TM120). <br> This means that the temperature sensor type is selected and the evaluation is switched in. <br> 0 : Evaluation disabled <br> 1: PTC thermistor <br> 2: KTY84 <br> 4: Bimetallic NC contact |
| Index: | [0] = Temperature channel 0 <br> [1] = Temperature channel 1 <br> [2] = Temperature channel 2 <br> [3] = Temperature channel 3 |
| Notice: | For $\mathrm{p} 4102[0 \ldots 7]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated. <br> For sensor type "PTC thermistor" (p4100[0...3] = 1), the following applies: <br> To activate the corresponding alarm or fault, p4102[0...7] must be set $<=250^{\circ} \mathrm{C}$. |
| Note: | The temperature sensors are connected to the following terminals: <br> X521.2(+) and X521.1(-) = channel 0 <br> X521.4(+) and X521.3(-) = channel 1 <br> X521.6(+) and X521.5(-) = channel 2 <br> X521.8(+) and X521.7(-) = channel 3 |
| p4100[0...11] | TM150 sensor type / TM150 sensor type |
| TM150 | Can be changed: T Calculated: - Access level: 1 <br> Data type: Integer16 Dynamic index: - Func. diagram: 9626,9627 <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 6 5 |
| Description: | Sets the sensor type for Terminal Module 150 (TM150) |

This means that the temperature sensor type is selected and the evaluation is switched in

r4101[0...3] TM120 sensor resistance / TM120 R_sensor

| Data type: Unsigned16 | Dynamic index: - | Func. diagram: |
| :--- | :--- | :--- |
| P-Group: Terminals | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
| Min | Max | Factory setting |
| $-[o h m]$ | $-[o h m]$ | $-[o h m]$ |
| Displays the actual resistance value of the temperature sensor connected at the Terminal Module. |  |  |


| Index: | [0] = Temperature channel 0 <br> [1] = Temperature channel 1 <br> [2] = Temperature channel 2 <br> [3] = Temperature channel 3 |
| :---: | :---: |
| Note: | The maximum measurable resistance value is approx. 2170 Ohm. <br> The temperature sensors are connected to the following terminals: <br> X521.2(+) and X521.1(-) = channel 0 <br> X521.4(+) and X521.3(-) = channel 1 <br> X521.6(+) and X521.5(-) = channel 2 <br> X521.8(+) and X521.7(-) = channel 3 |
| r4101[0...11] | TM150 sensor resistance / TM150 R_sensor |
| TM150 | Can be changed: - Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: 9626,9627 <br> P-Group: Terminals Units group: - Unit selection: - <br> Not for motor type: - Scaling: PERCENT Expert list: 1 <br> Min Max Factory setting <br> $-[\mathrm{ohm}]$ $-[o h m]$ $-[o h m]$ |
| Description: Index: | Displays the actual resistance value of the temperature sensor connected at the Terminal Module. <br> [0] = Temperature channel 0 <br> [1] = Temperature channel 1 <br> [2] = Temperature channel 2 <br> [3] = Temperature channel 3 <br> [4] = Temperature channel 4 <br> [5] = Temperature channel 5 <br> [6] = Temperature channel 6 <br> [7] = Temperature channel 7 <br> [8] = Temperature channel 8 <br> [9] = Temperature channel 9 <br> [10] = Temperature channel 10 <br> [11] = Temperature channel 11 |
| Note: | The maximum measurable resistance value is approx. 2500 Ohm. <br> For $1 \times 2$ and $2 \times 2$ conductor evaluation: <br> The actual sensor resistance is displayed in this parameter(i.e. the cable resistance (p4110) is taken into account). <br> The temperature sensors are connected to the following terminals: <br> X531 = channel 0 (for $2 \times 2$ conductor evaluation, additionally channel 6) <br> X532 = channel 1 (for $2 \times 2$ conductor evaluation, additionally channel 7) <br> X533 = channel 2 (for $2 \times 2$ conductor evaluation, additionally channel 8) <br> X534 = channel 3 (for $2 \times 2$ conductor evaluation, additionally channel 9) <br> X535 = channel 4 (for $2 \times 2$ conductor evaluation, additionally channel 10) <br> X536 = channel 5 (for $2 x 2$ conductor evaluation, additionally channel 11) <br> Details on the wiring are included in the parameter description for p4108. |
| r4101 | TM31 sensor resistance / TM31 R_sensor |
| TM31 | Can be changed: - Calculated: - Access level: 3 <br> Data type: Unsigned16 Dynamic index: - Func. diagram: 9576 <br> P-Group: Terminals Units group: - Unit selection: - <br> Not for motor type: - Scaling: PERCENT Expert list: 1 <br> Min Max Factory setting <br> $-[\mathrm{ohm}]$ $-[\mathrm{ohm}]$ $-[o h m]$ |
| Description: Note: | Displays the actual resistance value of the temperature sensor connected at the Terminal Module. <br> The maximum measurable resistance value is approx. 2170 Ohm. <br> The temperature sensor is connected at terminals X522.7(+) and X522.8(-). |







| r4104.0... 7 | BO: TM120 temperature evaluation, status / TM120 temp status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM120 | Can be changed: - | Calculated: - Acce |  |  |
|  | Data type: Unsigned16 | Dynamic index: - Func |  | 9606 |
|  | P-Group: Terminals | Units group: - Unit |  |  |
|  | Not for motor type: - | Scaling: - Ex |  |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Display and binector output for the status for the Terminal Module 120 (TM120). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Channel 0 alarm present | Yes | No | 9605 |
|  | 01 Channel 0 fault present | Yes | No | 9605 |
|  | 02 Channel 1 alarm present | Yes | No | 9605 |
|  | 03 Channel 1 fault present | Yes | No | 9605 |
|  | 04 Channel 2 alarm present | Yes | No | 9606 |
|  | 05 Channel 2 fault present | Yes | No | 9606 |
|  | 06 Channel 3 alarm present | Yes | No | 9606 |
|  | 07 Channel 3 fault present | Yes | No | 9606 |
| Dependency: | Refer to: p4102 |  |  |  |






X535 = channel 4 (for $2 \times 2$ conductor evaluation, additionally channel 10)
X536 = channel 5 (for $2 \times 2$ conductor evaluation, additionally channel 11)
$\operatorname{Re} p 4108[0 \ldots 5]=0,2,3$ ( $1 \times 2,3,4$ wire evaluation):
The temperature channel belonging to the terminal block with the higher number is automatically deactivated (e.g. for X531 with 3-wire evaluation, channel 6 is deactivated).

p4110[0...11] TM150 conductor resistance value / TM150 R_cond value

| TM150 | Can be changed: T | Calculated: - | Access level: 1 |
| :---: | :---: | :---: | :---: |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9626, 9627 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ohm] | 3000.00 [ohm] | 0.00 [ohm] |
| Description: | Sets and displays the cable resistance for Terminal Module 150 (TM150). |  |  |
|  | The value is automatically set by starting the conductor resistance measurement ( $\mathrm{p} 4109[0 \ldots 11]$ ) of the corresponding channel. |  |  |






| r4154 | TM41 diagnostics speed setpoint non-filtered / Diag n_set nfilt |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{rpm}] \end{aligned}$ | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the unfiltered speed setpoint N_SETPT in revolutions per minute for diagnostic purposes. In contrast to p1155, this value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign. |  |  |
| Dependency: | Refer to: r4155 |  |  |
| Note: | The parameter is not effective in the SINAMICS operating mode (p4400 = 1). |  |  |
| r4155 | TM41 diagnostics speed setpoint / TM41 Diag n_set |  |  |
| TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 9674 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[\text { rpm }] \end{aligned}$ | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the filtered speed setpoint N_SETPT in revolutions per minute for diagnostic purposes. In contrast to p1155, this value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign. |  |  |
| Dependency: | Refer to: r4154 |  |  |
| Note: | The parameter is not effective in the SINAMICS operating mode (p4400 = 1). |  |  |
| r4201 | TM15 system time for synchronization / TM15 t_system sync |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Is used to synchronize the tim To do this, the sign-of-life of At each cycle of the system | Module 15 (TM15) w is transferred in the for r, bit 0 (SYN signal) is | me of the DP master. <br> in bits 12 to 15. <br> ation of a DP master clock |
| r4201 | TM17 system time for synchronization / TM17 t_system sync |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Is used to synchronize the ti To do this, the sign-of-life of At each cycle of the system | Module 17 (TM17) is transferred in the fo r, bit 0 (SYN signal) | me of the DP master. <br> in bits 12 to 15 . <br> ation of a DP master clo |


| r4204 | TM15 control digital output 0 ... 15 / TM15 ctrl DO 0-15 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM15 |  | be changed: - | Calculated: - | Acce |  |
|  |  | type: Unsigned16 | Dynamic index: - | Func |  |
|  |  | oup: Commands | Units group: - | Unit |  |
|  | Not | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Used to control digital output 0 ... 15 of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DI/DO 0 (X520.2) | ON | OFF | - |
|  | 01 | DI/DO 1 (X520.3) | ON | OFF | - |
|  |  | DI/DO 2 (X520.4) | ON | OFF | - |
|  | 03 | DI/DO 3 (X520.5) | ON | OFF | - |
|  | 04 | DI/DO 4 (X520.6) | ON | OFF | - |
|  | 05 | DI/DO 5 (X520.7) | ON | OFF | - |
|  | 06 | DI/DO 6 (X520.8) | ON | OFF | - |
|  |  | DI/DO 7 (X520.9) | ON | OFF | - |
|  |  | DI/DO 8 (X521.2) | ON | OFF | - |
|  | 09 | DI/DO 9 (X521.3) | ON | OFF | - |
|  | 10 | DI/DO 10 (X522.4) | ON | OFF | - |
|  | 11 | DI/DO 11 (X521.5) | ON | OFF | - |
|  | 12 | DI/DO 12 (X521.6) | ON | OFF | - |
|  |  | DI/DO 13 (X521.7) | ON | OFF | - |
|  |  | DI/DO 14 (X521.8) | ON | OFF | - |
|  | 15 | DI/DO 15 (X521.9) | ON | OFF | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4204 | TM17 control digital output 0 ... 15 / TM17 ctrl DO 0-15 |  |  |  |  |
| TM17 | Can be changed: - |  | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Used to control digital output $0 \ldots 15$ of Terminal Module 17 (TM17). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DI/DO 0 (X520.2) | ON | OFF | - |
|  | 01 | DI/DO 1 (X520.3) | ON | OFF | - |
|  | 02 | DI/DO 2 (X520.5) | ON | OFF | - |
|  | 03 | DI/DO 3 (X520.6) | ON | OFF | - |
|  | 04 | DI/DO 4 (X520.8) | ON | OFF | - |
|  | 05 | DI/DO 5 (X520.9) | ON | OFF | - |
|  | 06 | DI/DO 6 (X521.2) | ON | OFF | - |
|  | 07 | DI/DO 7 (X521.3) | ON | OFF | - |
|  | 08 | DI/DO 8 (X521.8) | ON | OFF | - |
|  | 09 | DI/DO 9 (X521.9) | ON | OFF | - |
|  | 10 | DI/DO 10 (X522.2) | ON | OFF | - |
|  | 11 | DI/DO 11 (X522.3) | ON | OFF | - |
|  | 12 | DI/DO 12 (X522.5) | ON | OFF | - |
|  | 13 | DI/DO 13 (X522.6) | ON | OFF | - |
|  | 14 | DI/DO 14 (X522.8) | ON | OFF | - |
|  | 15 | DI/DO 15 (X522.9) | ON | OFF | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |



|  | Assignment of the digital inputs to the bits: |  |
| :---: | :---: | :---: |
|  | DI 0: r4211.1 ... 0 |  |
|  | DI 1: r4211.3 ... 2 |  |
|  | DI 2: r4211.5 ... 4 |  |
|  | DI 3: r4211.7 ... 6 |  |
|  | DI 4: r4211.9 ... 8 |  |
|  | DI 5: r4211.11 ... 10 |  |
|  | DI 6: r4211.13 ... 12 |  |
|  | DI 7: r4211.15 ... 14 |  |
|  | Possible edge modes: |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |
|  | Bit $x, y=0,1-->$ rising - rising edge |  |
|  | Bit $x, y=1,0-->$ falling - falling edge |  |
|  | Bit $x, y=1,1->$ rising - falling edge or falling - rising edge |  |
| Note: | DI: Digital Input |  |
| r4212 | TM15 edge mode digital input 8 ... 15 / TM15 EdgMd DI8-15 |  |
| TM15 | Can be changed: - Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - | - |
| Description: | Displays the edge mode for digital input $8 . . .15$ of Terminal Module 15 (TM15). |  |
|  | Assignment of the digital inputs to the bits: |  |
|  | DI 8: r4212.1 ... 0 |  |
|  | DI 9: r4212.3 ... 2 |  |
|  | DI 10: r4212.5 ... 4 |  |
|  | DI 11: r4212.7 ... 6 |  |
|  | DI 12: r4212.9 ... 8 |  |
|  | DI 13: r4212.11 ... 10 |  |
|  | DI 14: r4212.13 ... 12 |  |
|  | DI 15: r4212.15 ... 14 |  |
|  | Possible edge modes: |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |
|  | Bit $x, y=0,1->$ rising - rising edge |  |
|  | Bit $x, y=1,0-->$ falling - falling edge |  |
|  | Bit $x, y=1,1->$ rising - falling edge or falling - rising edge |  |
| Note: | DI: Digital Input |  |
| r4212 | TM17 edge mode digital input 8 ... 15 / TM17 EdgMd DI 8-15 |  |
| TM17 | Can be changed: - Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - |  |
| Description: | Displays the edge mode for digital input $8 . .15$ of Terminal Module 17 (TM17). |  |
|  | Assignment of the digital inputs to the bits: |  |
|  | DI 8: r4212.1 ... 0 |  |
|  | DI 9: r4212.3 ... 2 |  |
|  | DI 10: r4212.5 ... 4 |  |
|  | DI 11: r4212.7 ... 6 |  |


|  | DI 12: r4212.9 ... 8 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DI 13: r4212.11 ... 10 |  |  |  |  |  |
|  | DI 14: r4212.13 ... 12 |  |  |  |  |  |
|  | DI 15: r4212.15 ... 14 |  |  |  |  |  |
|  | Possible edge modes: |  |  |  |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |  |  |  |
|  | Bit $x, y=0,1-->$ rising - rising edge |  |  |  |  |  |
|  | Bit $x, y=1,0-->$ falling - falling edge |  |  |  |  |  |
|  | Bit $x, y=1,1->$ rising - falling edge or falling - rising edge |  |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |  |
| r4213 | TM15 edge mode digital input $16 . . .23$ / TM15 EdgMd DI16-23 |  |  |  |  |  |
| TM15 | Can be changed: - |  | Calculated: - | Access level: 3 |  |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |  |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |  |
|  |  |  | Max | Factory setting |  |  |
|  | - |  | - |  | - |  |
| Description: | Displays the edge mode for digital input $16 . . .23$ of Terminal Module 15 (TM15). |  |  |  |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |  |  |  |
|  | DI 16: r4213.1 ... 0 |  |  |  |  |  |
|  | DI 17: r4213.3 ... 2 |  |  |  |  |  |
|  | DI 18: r4213.5 ... 4 |  |  |  |  |  |
|  | DI 19: r4213.7 ... 6 |  |  |  |  |  |
|  | DI 20: r4213.9 ... 8 |  |  |  |  |  |
|  | DI 21: r4213.11 ... 10 |  |  |  |  |  |
|  | DI 22: r4213.13 ... 12 |  |  |  |  |  |
|  | DI 23: r4213.15 ... 14 |  |  |  |  |  |
|  | Possible edge modes: |  |  |  |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |  |  |  |
|  | Bit $x, y=0,1-->$ rising - rising edge |  |  |  |  |  |
|  | Bit $x, y=1,0-->$ falling - falling edge |  |  |  |  |  |
|  | Bit $x, y=1,1->$ rising - falling edge or falling - rising edge |  |  |  |  |  |
| Note: | DI: Digital Input |  |  |  |  |  |
| p4220 | TM | 17 enable DI/DO | enable 0-5 |  |  |  |
| TM17 | Can be changed: T |  | Calculated: - | Access level: 2 |  |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |  |
|  | Min |  | Max | Factory setting |  |  |
|  | - |  | - | 0000000000000000 bin |  |  |
| Description: | Sets the enable signal with bits $0 \ldots 5$ for DI/DO $0 \ldots 5$ of Terminal Module 17 (TM17). |  |  |  |  |  |
|  | Sets the triggering of the enable signal with bits $8 \ldots 13$. |  |  |  |  |  |
|  | The following assignment applies: |  |  |  |  |  |
|  | Enable signal for DI/DO $0,1,2,3,4$ or 5 via DI/DO 10, 11, 12, 13, 14 or 15. |  |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal |  | ignal | FP |
|  |  | DI/DO 0 (X520.2) | With enable |  | hout enable | - |
|  | 01 | DI/DO 1 (X520.3) | With enable |  | hout enable | - |
|  | 02 | DI/DO 2 (X520.5) | With enable |  | hout enable | - |
|  | 03 | DI/DO 3 (X520.6) | With enable |  | hout enable | - |
|  | 04 | DI/DO 4 (X520.8) | With enable |  | hout enable | - |
|  | 05 | DI/DO 5 (X520.9) | With enable |  | hout enable | - |
|  | 08 | DI/DO 10 (X522.2) | Level-triggered |  | ge-triggered | - |


| 09 | DI/DO $11($ X522.3) | Level-triggered | Edge-triggered |
| :--- | :--- | :--- | :--- |
| 10 | DI/DO $12($ X522.5) | Level-triggered | Edge-triggered |
| 11 | DI/DO 13 (X522.6) | Level-triggered | Edge-triggered |
| 12 | DI/DO 14 (X522.8) | Level-triggered | Edge-triggered |
| 13 | DI/DO 15 (X522.9) | Level-triggered | Edge-triggered |

Note: DI/DO: Bidirectional Digital Input/Output

| p4221 | TM17 smoothing time constant, digital input 0 ... 15 / TM17 T_sm DI 0-15 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM17 | Can be changed: U, T |  | Calculated: - | Access level: 2 |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Commands |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | 0000000000000000 bin |  |
| Description: | Sets the smoothing time constant for digital input $0 \ldots 15$ of Terminal Module 17 (TM17). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DI/DO 0 (X520.2) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 01 | DI/DO 1 (X520.3) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 02 | DI/DO 2 (X520.5) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 03 | DI/DO 3 (X520.6) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 04 | DI/DO 4 (X520.8) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 05 | DI/DO 5 (X520.9) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 06 | DI/DO 6 (X521.2) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 07 | DI/DO 7 (X521.3) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 08 | DI/DO 8 (X521.8) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 09 | DI/DO 9 (X521.9) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 10 | DI/DO 10 (X522.2) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 11 | DI/DO 11 (X522.3) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 12 | DI/DO 12 (X522.5) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 13 | DI/DO 13 (X522.6) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 14 | DI/DO 14 (X522.8) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |
|  | 15 | DI/DO 15 (X522.9) | Smoothing $1 \mu \mathrm{~s}$ | Smoothing $125 \mu \mathrm{~s}$ | - |

Note: $\quad$ DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

| p4222 | TM17 time absolute/relative digital output 0 ... 15 / TM17 abs/rel 0-15 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TM17 | Can be changed: T |  | Calculated: - | Access lev |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func. diag |  |
|  | P-Group: Commands |  | Units group: - | Unit selectio |  |
|  | Not for motor type: - |  | Scaling: - | Expert list |  |
|  | Min |  | Max | Factory se |  |
|  | - |  | - | 00000000 |  |
| Description: | Sets as absolute or relative timing with bit $0 \ldots 15$ for digital output $0 \ldots 15$ of Terminal Module 17 (TM17). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DI/DO 0 (X520.2) | Relative time | Absolute time | - |
|  | 01 | DI/DO 1 (X520.3) | Relative time | Absolute time | - |
|  | 02 | DI/DO 2 (X520.5) | Relative time | Absolute time | - |
|  | 03 | DI/DO 3 (X520.6) | Relative time | Absolute time | - |
|  | 04 | DI/DO 4 (X520.8) | Relative time | Absolute time | - |
|  | 05 | DI/DO 5 (X520.9) | Relative time | Absolute time | - |
|  | 06 | DI/DO 6 (X521.2) | Relative time | Absolute time | - |
|  | 07 | DI/DO 7 (X521.3) | Relative time | Absolute time | - |
|  | 08 | DI/DO 8 (X521.8) | Relative time | Absolute time | - |
|  | 09 | DI/DO 9 (X521.9) | Relative time | Absolute time | - |
|  | 10 | DI/DO 10 (X522.2) | Relative time | Absolute time | - |
|  | 11 | DI/DO 11 (X522.3) | Relative time | Absolute time | - |
|  | 12 | DI/DO 12 (X522.5) | Relative time | Absolute time | - |
|  | 13 | DI/DO 13 (X522.6) | Relative time | Absolute time | - |



| r4252 | TM15 set/reset time digital output 2 / TM15 t_set DO 2 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4252 | TM17 set/reset time digital output 2 / TM17 t_set DO 2 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the time to set and reset for digital output 2 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4253 | TM15 set/reset time digital output 3 / TM15 t_set DO 3 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4253 | TM17 set/reset time digital output 3 / TM17 t_set DO 3 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4254 | TM15 set/reset time digital output 4 / TM15 t_set DO 4 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 4 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4254 | TM17 set/reset time digital output 4 / TM17 t_set DO 4 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 4 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4255 | TM15 set/reset time digital output 5 / TM15 t_set DO 5 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 5 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4255 | TM17 set/reset time digital output 5 / TM17 t_set DO 5 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 5 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4256 | TM15 set/reset time digital output 6 / TM15 t_set DO 6 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4256 | TM17 set/reset time digital output 6 / TM17 t_set DO 6 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4257 | TM15 set/reset time digital output 7 / TM15 t_set DO 7 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4257 | TM17 set/reset time digital output 7 / TM17 t_set DO 7 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4258 | TM15 set/reset time digital output 8 / TM15 t_set DO 8 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | F |
| Description: | Displays the time to set and reset for digital output 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4258 | TM17 set/reset time digital output 8 / TM17 t_set DO 8 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
|  |  |  |  |
| Note: | DO: Digital Output |  |  |
| r4259 | TM15 set/reset time digital output 9 / TM15 t_set DO 9 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  |  | - | F |
| Description: | Displays the time to set and reset for digital output 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4259 | TM17 set/reset time digital output 9 / TM17 t_set DO 9 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4260 | TM15 set/reset time digital output 10 / TM15 t_set DO 10 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4260 | TM17 set/reset time digital output 10 / TM17 t_set DO 10 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 10 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4261 | TM15 set/reset time digital output 11 / TM15 t_set DO 11 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4261 | TM17 set/reset time digital output 11 / TM17 t_set DO 11 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4262 | TM15 set/reset time digital output 12 / TM15 t_set DO 12 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4262 | TM17 set/reset time digital output 12 / TM17 t_set DO 12 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4263 | TM15 set/reset time digital output 13 / TM15 t_set DO 13 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4263 | TM17 set/reset time digital output 13 / TM17 t_set DO 13 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4264 | TM15 set/reset time digital output 14 / TM15 t_set DO 14 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4264 | TM17 set/reset time digital output 14 / TM17 t_set DO 14 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 14 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4265 | TM15 set/reset time digital output 15 / TM15 t_set DO 15 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4265 | TM17 set/reset time digital output 15 / TM17 t_set DO 15 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the time to set and reset for digital output 15 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4266 | TM15 set/reset time digital output 16 / TM15 t_set DO 16 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4267 | TM15 set/reset time digital output 17 / TM15 t_set DO 17 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4268 | TM15 set/reset time digital output 18 / TM15 t_set DO 18 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the time to set and reset for digital output 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4269 | TM15 set/reset time digital output 19 / TM15 t_set DO 19 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |


| r4270 | TM15 set/reset time digital output 20 / TM15 t_set DO 20 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | F |
| Description: | Displays the time to set and reset for digital output 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4271 | TM15 set/reset time digital output 21 / TM15 t_set DO 21 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 21 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4272 | TM15 set/reset time digital output 22 / TM15 t_set DO 22 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time to set and reset for digital output 22 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |
| r4273 | TM15 set/reset time digital output 23 / TM15 t_set DO 23 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Displays the time to set and reset for digital output 23 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DO: Digital Output |  |  |



|  | $\begin{aligned} & 14 \\ & 15 \end{aligned}$ | DI/DO 14 (X521.8) <br> DI/DO 15 (X521.9) | $\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$ | $\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4304 | TM17 status, digital input 0 ... 15 / TM17 St DI 0-15 |  |  |  |  |
| TM17 | Can be changed: - |  | Calculated: - | Acce |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func |  |
|  | P-Group: Commands |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Facto |  |
|  | - |  | - | - |  |
| Description: | Displays status for digital input 0 ... 15 of Terminal Module 17 (TM17). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 0 (X520.2) | ON | OFF | - |
|  |  | DI/DO 1 (X520.3) | ON | OFF | - |
|  |  | DI/DO 2 (X520.5) | ON | OFF | - |
|  |  | DI/DO 3 (X520.6) | ON | OFF | - |
|  |  | DI/DO 4 (X520.8) | ON | OFF | - |
|  |  | DI/DO 5 (X520.9) | ON | OFF | - |
|  |  | DI/DO 6 (X521.2) | ON | OFF | - |
|  |  | DI/DO 7 (X521.3) | ON | OFF | - |
|  |  | DI/DO 8 (X521.8) | ON | OFF | - |
|  |  | DI/DO 9 (X521.9) | ON | OFF | - |
|  |  | DI/DO 10 (X522.2) | ON | OFF | - |
|  |  | DI/DO 11 (X522.3) | ON | OFF | - |
|  |  | DI/DO 12 (X522.5) | ON | OFF | - |
|  |  | DI/DO 13 (X522.6) | ON | OFF | - |
|  |  | DI/DO 14 (X522.8) | ON | OFF | - |
|  |  | DI/DO 15 (X522.9) | ON | OFF | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |
| r4305 | TM15 status, digital input $16 . . .23$ / TM15 St DI 16-23 |  |  |  |  |
| TM15 | Can be changed: - |  | Calculated: - | Acce |  |
|  | Data type: Unsigned16 |  | Dynamic index: - | Func |  |
|  | P-Group: Commands |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Facto |  |
|  | - |  | - | - |  |
| Description: | Displays status for digital input 16 ... 23 of Terminal Module 15 (TM15). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | DI/DO 16 (X522.2) | ON | OFF | - |
|  | 01 | DI/DO 17 (X522.3) | ON | OFF | - |
|  | 02 | DI/DO 18 (X522.4) | ON | OFF | - |
|  |  | DI/DO 19 (X522.5) | ON | OFF | - |
|  |  | DI/DO 20 (X522.6) | ON | OFF | - |
|  | 05 | DI/DO 21 (X522.7) | ON | OFF | - |
|  |  | DI/DO 22 (X522.8) | ON | OFF | - |
|  |  | DI/DO 23 (X522.9) | ON | OFF | - |
| Note: | DI/DO: Bidirectional Digital Input/Output |  |  |  |  |


| r4311 | TM15 edge status digital input 0 ... 7 / TM15 EdgSt DI 0-7 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the edge status for digital input $0 \ldots 7$ of Terminal Module 15 (TM15). |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |
|  | DI 0: r4311.1 ... 0 |  |  |
|  | DI 1: r4311.3 ... 2 |  |  |
|  | DI 2: r4311.5 ... 4 |  |  |
|  | DI 3: r4311.7 ... 6 |  |  |
|  | DI 4: r4311.9 ... 8 |  |  |
|  | DI 5: r4311.11 ... 10 |  |  |
|  | DI 6: r4311.13 ... 12 |  |  |
|  | DI 7: r4311.15 ... 14 |  |  |
|  | Possible edge states: |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |
|  | Bit $x, y=0,1-->1$ st edge detected |  |  |
|  | Bit $x, y=1,0-->2 n d$ edge detected |  |  |
|  | Bit $x, y=1,1-->$ both edges detected |  |  |
| Note: | DI: Digital Input |  |  |
| r4311 | TM17 edge status digital input 0 ... 7 / TM17 EdgSt DI 0-7 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | Displays the edge status for digital input $0 \ldots 7$ of Terminal Module 17 (TM17). |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |
|  | DI 0: r4311.1 ... 0 |  |  |
|  | DI 1: r4311.3 ... 2 |  |  |
|  | DI 2: r4311.5 ... 4 |  |  |
|  | DI 3: r4311.7 ... 6 |  |  |
|  | DI 4: r4311.9 ... 8 |  |  |
|  | DI 5: r4311.11 ... 10 |  |  |
|  | DI 6: r4311.13 ... 12 |  |  |
|  | DI 7: r4311.15 ... 14 |  |  |
|  | Possible edge states: |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |
|  | Bit $x, y=0,1-->1$ st edge detected |  |  |
|  | Bit $x, y=1,0-->2 n d$ edge detected |  |  |
|  | Bit $x, y=1,1-->$ both edges detected |  |  |
| Note: | DI: Digital Input |  |  |


| r4312 | TM15 edge status digital input 8 ... 15 / TM15 EdgSt DI 8-15 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the edge status for digital input $8 . . .15$ of Terminal Module 15 (TM15). |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |
|  | DI 8: r4312.1 ... 0 |  |  |
|  | DI 9: r4312.3 ... 2 |  |  |
|  | DI 10: r4312.5 ... 4 |  |  |
|  | DI 11: r4312.7 ... 6 |  |  |
|  | DI 12: r4312.9 ... 8 |  |  |
|  | DI 13: r4312.11 ... 10 |  |  |
|  | DI 14: r4312.13 ... 12 |  |  |
|  | DI 15: r4312.15 ... 14 |  |  |
|  | Possible edge states: |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |
|  | Bit $x, y=0,1-->1$ st edge detected |  |  |
|  | Bit $x, y=1,0->2 n d$ edge detected |  |  |
|  | Bit $x, y=1,1$--> both edges detected |  |  |
| Note: | DI: Digital Input |  |  |
| r4312 | TM17 edge status digital input 8 ... 15 / TM17 EdgSt DI 8-15 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the edge status for digital input $8 . .15$ of Terminal Module 17 (TM17). |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |
|  | DI 8: r4312.1 ... 0 |  |  |
|  | DI 9: r4312.3 ... 2 |  |  |
|  | DI 10: r4312.5 ... 4 |  |  |
|  | DI 11: r4312.7 ... 6 |  |  |
|  | DI 12: r4312.9 ... 8 |  |  |
|  | DI 13: r4312.11 ... 10 |  |  |
|  | DI 14: r4312.13 ... 12 |  |  |
|  | DI 15: r4312.15 ... 14 |  |  |
|  | Possible edge states: |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |
|  | Bit $x, y=0,1-->1$ st edge detected |  |  |
|  | Bit $x, y=1,0-->2 n d$ edge detected |  |  |
|  | Bit $x, y=1,1-->$ both edges detectedDI: Digital Input |  |  |
| Note: |  |  |  |


| r4313 | TM15 edge status digital input $16 . . .23$ / TM15 EdgSt Dl16-23 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the edge status for digital input $16 \ldots 23$ of Terminal Module 15 (TM15). |  |  |
|  | Assignment of the digital inputs to the bits: |  |  |
|  | DI 16: r4313.1 ... 0 |  |  |
|  | DI 17: r4313.3 ... 2 |  |  |
|  | DI 18: r4313.5 ... 4 |  |  |
|  | DI 19: r4313.7 ... 6 |  |  |
|  | DI 20: r4313.9 ... 8 |  |  |
|  | DI 21: r4313.11 .. 10 |  |  |
|  | DI 22: r4313.13 ... 12 |  |  |
|  | DI 23: r4313.15 ... 14 |  |  |
|  | Possible edge states: |  |  |
|  | Bit $x, y=0,0-->$ no edge detection |  |  |
|  | Bit $x, y=0,1-->1$ st edge detected |  |  |
|  | Bit $x, y=1,0-->2 n d$ edge detected |  |  |
|  | Bit $x, y=1,1-->$ both edges detected |  |  |
| Note: | DI: Digital Input |  |  |
| r4350 | TM15 edge times digital input 0 / TM15 edge_t DI 0 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 0 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4350 | TM17 edge times digital input 0 / TM17 edge_t DI 0 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 0 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4351 | TM15 edge times digital input 1 / TM15 edge_t DI 1 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | F |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 1 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4351 | TM17 edge times digital input 1 / TM17 edge_t DI 1 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 1 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4352 | TM15 edge times digital input 2 / TM15 edge_t DI 2 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4352 | TM17 edge times digital input 2 / TM17 edge_t DI 2 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 2 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4353 | TM15 edge times digital input 3 / TM15 edge_t DI 3 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4353 | TM17 edge times digital input 3 / TM17 edge_t DI 3 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4354 | TM15 edge times digital input 4 / TM15 edge_t DI 4 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 4 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4354 | TM17 edge times digital input 4 / TM17 edge_t DI 4 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 4 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4355 | TM15 edge times digital input 5 / TM15 edge_t DI 5 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 5 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4355 | TM17 edge times digital input 5 / TM17 edge_t DI 5 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 5 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4356 | TM15 edge times digital input 6 / TM15 edge_t DI 6 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the time when detecting the 1 st and 2nd edge for digital input 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4356 | TM17 edge times digital input 6 / TM17 edge_t DI 6 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  |  |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu$ s. |  |  |
| Note: | DI: Digital Input |  |  |


| r4357 | TM15 edge times digital input 7 / TM15 edge_t DI 7 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4357 | TM17 edge times digital input 7 / TM17 edge_t DI 7 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4358 | TM15 edge times digital input 8 / TM15 edge_t DI 8 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4358 | TM17 edge times digital input 8 / TM17 edge_t DI 8 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4359 | TM15 edge times digital input 9 / TM15 edge_t DI 9 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4359 | TM17 edge times digital input 9 / TM17 edge_t DI 9 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4360 | TM15 edge times digital input 10 / TM15 edge_t DI 10 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4360 | TM17 edge times digital input 10 / TM17 edge_t DI 10 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 10 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4361 | TM15 edge times digital input 11 / TM15 edge_t DI 11 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4361 | TM17 edge times digital input 11 / TM17 edge_t DI 11 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4362 | TM15 edge times digital input 12 / TM15 edge_t DI 12 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1 st and 2 nd edge for digital input 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4362 | TM17 edge times digital input 12 / TM17 edge_t DI 12 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | , | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4363 | TM15 edge times digital input 13 / TM15 edge_t DI 13 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1 st and 2 nd edge for digital input 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4363 | TM17 edge times digital input 13 / TM17 edge_t DI 13 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4364 | TM15 edge times digital input 14 / TM15 edge_t DI 14 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4364 | TM17 edge times digital input 14 / TM17 edge_t DI 14 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 14 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4365 | TM15 edge times digital input 15 / TM15 edge_t DI 15 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4365 | TM17 edge times digital input 15 / TM17 edge_t DI 15 |  |  |
| TM17 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1 st and 2 nd edge for digital input 15 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4366 | TM15 edge times digital input 16 / TM15 edge_t DI 16 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1 st and 2 nd edge for digital input 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4367 | TM15 edge times digital input 17 / TM15 edge_t DI 17 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1 st and 2 nd edge for digital input 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |


| r4368 | TM15 edge times digital input 18 / TM15 edge_t DI 18 |  |  |
| :---: | :---: | :---: | :---: |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4369 | TM15 edge times digital input 19 / TM15 edge_t DI 19 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4370 | TM15 edge times digital input 20 / TM15 edge_t DI 20 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |
| r4371 | TM15 edge times digital input 21 / TM15 edge_t DI 21 |  |  |
| TM15 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the time when detecting the 1st and 2nd edge for digital input 21 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$. |  |  |
| Note: | DI: Digital Input |  |  |




|  | p4404.0 = 1: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Control with minimum following error (pre-control active) for synchronous position and synchronous zero-mark emulation |  |  |  |  |
|  | p4404.1 = 1 : |  |  |  |  |
|  | In the case of TTL encoders, the control response improves at slow velocities. |  |  |  |  |
|  | $\mathrm{p} 4404.0=\mathrm{p} 4404.1=0$ |  |  |  |  |
|  | Control with fixed following error. |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Pre-control | Active | Inactive | - |
|  |  | Pre-control with ad | oder Active | Inactive | - |
| Note: | The parameter is only effective in the "SINAMICS" operating mode (p4400 = 1). |  |  |  |  |
| p4408 | TM41 encoder emulation pulse number leading encoder / TM41 enc puls no. |  |  |  |  |
| TM41 |  | be changed: $\mathrm{C} 2(4)$ | Calculated: - | Acce |  |
|  | Dat | type: Unsigned32 | Dynamic index: - | Func | 9676 |
|  | P-G | oup: Encoder | Units group: - | Unit |  |
|  |  | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | 0 |  | 16384 | 0 |  |
| Description: | Parameters p4408 and p4418 define the position setpoint format for the TM41 (CI: p4420). |  |  |  |  |
|  | The two parameters p4408 and p4418 of the TM41 must be set the same as parameters p0408 and p0418 of the encoder interconnected at connector input p4420. The zero mark is only correctly output if this condition is maintained. |  |  |  |  |
|  | For p4408 = 0, the following applies: |  |  |  |  |
|  | Parameters p0408 and p0418 in addition assume the function of p4408 and p4418. |  |  |  |  |
| p4418 | TM41 encoder emulation fine resolution leading encoder / TM41 fine res |  |  |  |  |
| TM41 | Can | e changed: C2(4) | Calculated: - | Acce |  |
|  | Dat | type: Unsigned8 | Dynamic index: - | Fun | 9676 |
|  | P-G | oup: Encoder | Units group: - | Unit |  |
|  | Not | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | 2 |  | 18 | 11 |  |
| Description: | Parameters p4408 and p4418 define the position setpoint format for the TM41 (CI: p4420). |  |  |  |  |
|  | The two parameters p4408 and p4418 of the TM41 must be set the same as parameters p0408 and p0418 of the encoder interconnected at connector input p4420. The zero mark is only correctly output if this condition is maintained. |  |  |  |  |
|  | For p4408 = 0, the following applies: |  |  |  |  |
|  | Parameters p0408 and p0418 in addition assume the function of p4408 and p4418. |  |  |  |  |
| r4419 | TM41 encoder emulation diagnostics position setpoint / TM41 Diag s_set |  |  |  |  |
| TM41 | Can | be changed: - | Calculated: - | Acce |  |
|  | Dat | type: Integer32 | Dynamic index: - | Func |  |
|  | P-G | oup: Encoder | Units group: - | Unit |  |
|  | Not | for motor type: - | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | . |  |
| Description: | Displays the position setpoint after taking into account the step up / step down. The format of this parameter is defined by p0408 / p0418. |  |  |  |  |



| p4423 | TM41 encoder emulation standstill adaptation / Enc standst_adapt |  |  |
| :---: | :---: | :---: | :---: |
| TM41 | Can be changed: C2(4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 9676 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 | 2000 | 4 |
| Description: | Sets standstill adaptation on Terminal Module 41 (TM41). |  |  |
|  | p4423 is used to specify the number of clock cycles (one clock cycle $=$ p4099[3]) used for encoder standstill detec tion. Once this time has elapsed, any potential deviation is compensated when adaptation is active. |  |  |
|  | Parameter value $=0$ : adaptation inactive |  |  |
|  | Parameter value > 0: adaptation active |  |  |
| Dependency: | Refer to: r4403, p4404, p4420 |  |  |
| Danger: | The option p4404.1 = 1 is only effective if TM41 DAC is being used. |  |  |
|  | If the possibility of a TM41 DAC (new) being replaced by a TM41 SAC (old) cannot be excluded, this option should not be set. |  |  |
|  | TM41 SAC: order no. $=6$ SL3055-0AA00-3PA0 |  |  |
|  | TM41 DAC: order no. $=6 \mathrm{SL} 3055-0 \mathrm{AA} 00-3 \mathrm{PA} 1$ |  |  |
| Note: | The parameter is only effective in the SINAMICS operating mode ( $\mathrm{p} 4400=1$ ). |  |  |
|  | The parameter value must be assigned a value of 4 or more to ensure that the system functions properly. |  |  |
|  | This parameter is only relevant in the following cases: |  |  |
|  | - TTL encoder is available |  |  |
|  | - the controller option "Pre-control with adaptation for TTL encoder" has been activated (p4404.1 = 1) |  |  |
| p4426 | TM41 encoder emulation pulses for zero mark / Enc_emul pulses ZM |  |  |
| TM41 | Can be changed: C2(4) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9674 |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 | 16384 | 0 |
| Description: | Sets pulse number to output the zero mark for the incremental encoder simulation/emulation. |  |  |
|  | Example: |  |  |
|  | p0408 = 2048 (encoder pulses) |  |  |
|  | p4426 = 512 (pulses for the zero mark) |  |  |
|  | --> Position direction: The zero mark is output after 512 pulses. |  |  |
|  | --> Negative direction: The zero mark is output after 1536 pulses. |  |  |
| Dependency: | Refer to: p0408 |  |  |
| Note: | The pulses for the zero mark ( p 4426 ) must be less than the encoder pulse number ( p 0408 ). |  |  |
|  | For p4400 = 1, this parameter has no effect. |  |  |
| r4427 | TM41 encoder emulation zero mark position / TM41 NM_position |  |  |
| TM41 | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the position of the next zero mark in a positive traversing direction. |  |  |
|  | The format of this parameter is defined by p0408 / p0418 (the same as the position actual value Xact1). |  |  |





| p4603[0...n] | Motor temperature sensor $\mathbf{4}$ sensor type / Temp_sens 4 type |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: EDS, p0140 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 32 | 0 |

Description: Sets the sensor type of the fourth temperature sensor for the motor temperature monitoring.

| Value: | $0: \quad$ No sensor |
| :--- | :--- | :--- |
|  | $10: \quad$ PTC fault |
|  | $11: \quad$ PTC alarm |
|  | $12: \quad$ PTC alarm \& timer |
|  | $20: \quad$ KTY84, PT100, PT1000 |
|  | $30: \quad$ Bimetallic NC contact fault |
|  | $31: \quad$ Bimetallic NC contact alarm |
|  | $32: \quad$ Bimetallic NC contact alarm \& timer |
| Dependency: | Refer to: r0458, p0600, p0601 |
| Note: | This parameter is effective only when p0601 = 10. |
|  | Terminals for PTC triplet: X200.5, X200.6 |
|  | PTC thermistor: Tripping resistance = 1650 Ohm |
|  | Information on using temperature sensors is provided in the following literature: |
|  | - hardware description of the appropriate components |
|  | - SINAMICS S120 Commissioning Manual |



| p4611[0...n] | Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 32 | 10 |

Description: Sets the sensor type of the second temperature sensor for the motor temperature monitoring.
Value: $0: \quad$ No sensor

10: PTC fault
11: PTC alarm
12: PTC alarm \& timer
20: KTY84, PT100, PT1000
30: Bimetallic NC contact fault
31: Bimetallic NC contact alarm
32: Bimetallic NC contact alarm \& timer
Dependency: Refer to: r0458, p0600, p0601
Note: $\quad$ This parameter is effective only when p0601 $=11$.
PTC thermistor: Tripping resistance $=1650$ Ohm
Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual

| p4612[0...n] | Motor temperature sensor 3 sensor type MDS / Temp sens3 typ MDS |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(3), U, T | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: MDS, p0130 | Func. diagram: 8016 |
| SERVO_I_AC, VEC- | P-Group: Motor | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | 32 | 10 |
|  | 0 |  |  |


| Value: | $0: \quad$ No sensor |  |
| :--- | :--- | :--- |
|  | $10:$ | PTC fault |
|  | $11:$ | PTC alarm |
|  | $12:$ | PTC alarm \& timer |
|  | $20:$ | KTY84, PT100, PT1000 |
|  | $30:$ | Bimetallic NC contact fault |
|  | $31: \quad$ Bimetallic NC contact alarm |  |
|  | $32: \quad$ Bimetallic NC contact alarm \& timer |  |
| Dependency: | Refer to: r0458, p0600, p0601 |  |
| Note: | This parameter is effective only when p0601 = 11. |  |
|  | PTC thermistor: Tripping resistance = 1650 Ohm |  |
|  | Information on using temperature sensors is provided in the following literature: |  |
|  | - hardware description of the appropriate components |  |
|  | - SINAMICS S120 Commissioning Manual |  |

p4613[0...n] Motor temperature sensor 4 sensor type MDS / Temp sens4 typ MDS

SERVO, Can be changed: C2(3), U, T
SERVO_AC,
SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Data type: Integer16
P-Group: Motor
Not for motor type: -
Min Max

0

Calculated: -
Dynamic index: MDS, p0130
Units group: -
Scaling: -
Max
32

Access level: 2
Func. diagram: 8016
Unit selection: -
Expert list: 1
Factory setting
10

Description: Sets the sensor type of the fourth temperature sensor for the motor temperature monitoring.
Value: $0: \quad$ No sensor

10: PTC fault
11: PTC alarm
12: PTC alarm \& timer
20: KTY84, PT100, PT1000
30: Bimetallic NC contact fault
31: Bimetallic NC contact alarm
32: Bimetallic NC contact alarm \& timer
Dependency: Refer to: r0458, p0600, p0601
Note: $\quad$ This parameter is effective only when p0601 $=11$.
PTC thermistor: Tripping resistance $=1650$ Ohm
Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual

| r4620[0...3] | Motor temperature measured / Mot_temp meas |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_I_AC | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the actual temperature in the motor measured through temperature channels $1 . .4$. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Temperature channel } 1} \\ & {[1]=\text { Temperature channel } 2} \\ & {[2]=\text { Temperature channel } 3} \\ & {[3]=\text { Temperature channel } 4} \end{aligned}$ |  |  |
| Note: | For a value not equal to -200 - this temperature display is <br> - a KTY sensor is connected | ing applies: |  |

For a value equal to $-200.0^{\circ} \mathrm{C}$, the following applies:

- this temperature display is not valid (temperature sensor error).
- A PTC sensor or bimetallic NC contact is connected.
- the temperature sensor evaluation is de-activated ( $\mathrm{p} 0600=0$ or p0601 $=0$ ).
- the sensor channel is de-activated ( $\mathrm{p} 460 \mathrm{x}=0$ or $\mathrm{p} 461 \mathrm{x}=0$ ).

r4651[0...3] Encoder functional reserve / Enc fct_reserve
CU I, CU I D410, Can be changed: - Calculated: -
CU_NX_CX, Data type: FloatingPoint32
CU_S_AC_DP, P-Group: Displays, signals




| Note: | The reset of XIST1_ERW depends on the selected mode (p4652). |  |  |
| :---: | :---: | :---: | :---: |
| p4655[0...2] | BI: XIST1_ERW reset signal source / XIST1_ERW resS_src |  |  |
| SERVO, | Can be changed: T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 4750 |
| TOR, VECTOR_AC, | P-Group: Encoder | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source to reset XIST1_ERW (CO: r4653). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Dependency: | Refer to: p4652, r4653, r4654 |  |  |
| Note: | The reset of XIST1_ERW depends on the selected mode (p4652). |  |  |
| p4660 | Sensor Module filter bandwidth / SM Filt_bandw |  |  |
| ENC | Can be changed: $\mathrm{C} 2(4)$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{kHz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20000.00[\mathrm{kHz}] \end{aligned}$ | Factory setting 0.00 [kHz] |
| Description: | Sets the filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). |  |  |
|  | The value set on the Sensor Module is displayed in r4661. |  |  |
|  | The Sensor Module hardware only supports the following values: |  |  |
|  | - 0: The Sensor Module's default is used. |  |  |
|  | - 50 kHz |  |  |
|  | - 170 kHz |  |  |
|  | - 500 kHz |  |  |
|  | - Unlimited: Only the bandwidth of the operational amplifier is effective. |  |  |
| Dependency: | Refer to: r4661 |  |  |
| Note: | A value of zero is displayed if an encoder is not present. |  |  |
| p4660[0..2] | Sensor Module filter bandwidth / SM Filt_bandw |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(4) <br> Data type: FloatingPoint32 <br> P-Group: Encoder <br> Not for motor type: - | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Min$0.00[\mathrm{kHz}]$ | Max | Factory setting |
|  |  | 20000.00 [kHz] | 0.00 [kHz] |
| Description: | Sets the filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). |  |  |
|  | The value set on the Sensor Module is displayed in r4661. |  |  |
|  | The Sensor Module hardware only supports the following values: |  |  |
|  | - 0: The Sensor Module's default is used. |  |  |
|  | - 50 kHz |  |  |
|  | - 170 kHz |  |  |
|  | - 500 kHz |  |  |
|  | - Unlimited: Only the bandwidth of the operational amplifier is effective. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |  |  |
| Dependency: | Refer to: r 4661 |  |  |


| Note: | A value of zero is displayed if an encoder is not present. |
| :---: | :---: |
| r4661 | Sensor Module filter bandwidth display / SM Filt_bandw disp |
| ENC | Can be changed: - Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: Func. diagram: - <br> P-Group: Encoder Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $-[\mathrm{kHz}]$ $-[\mathrm{kHz}]$ $-[\mathrm{kHz}]$ |
| Description: <br> Dependency: Note: | Display of the effective filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). The bandwidth of the filter is set using p4660. <br> Refer to: p4660 <br> A value of zero is displayed if an encoder is not present. |
| r4661[0...2] <br> SERVO, <br> SERVO_AC, <br> SERVO_IAC, VECTOR, VECTOR_AC, VECTOR_I_AC | Sensor Module filter bandwidth display / SM Filt_bandw disp |
| Description: Index: | Display of the effective filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). The bandwidth of the filter is set using p4660. $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$ |
| Dependency: Note: | Refer to: p4660 <br> A value of zero is displayed if an encoder is not present. |
| p4662[0...n] | Encoder characteristic type / Enc char_type |
| ENC, SERVO, SERVO_AC, SERVOIIAC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(4) Calculated: - Access level: 4 <br> Data type: Integer16 Dynamic index: EDS, p0140 Func. diagram: - <br> P-Group: Encoder Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 1 0 |
| Description: | Sets the characteristic type. <br> For non-linear sensors, the interrelationship between the signal voltage and the position can be defined using a third degree polynomial. |
| Value: | 0 : Characteristic inactive <br> 1: Characteristic polynomial third degree |
| Dependency: Note: | Refer to: p4663, p4664, p4665, p4666 <br> If value $=1$ : <br> A third degree polynomial is defined as follows: $F(x)=K 3^{*} x^{\wedge} 3+K 2{ }^{*} x^{\wedge} 2+K 1^{*} x+K 0$ <br> Coefficients K0 ... K3 should be defined and entered into p4663 ... p4666. The sensor range is emulated to $x=-0.5 \ldots+0.5$. |



| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 06 | Set velocity to 0 | Yes | No | - |
|  | 08 | Pos val range | 0.0 / 1.0 pulse | -0.5 / +0.5 pulse | - |
|  | 09 | Fault/alarm messages | Alarm | Fault | - |
|  | 10 | Chann B act | Yes | No | - |
|  | 11 | Chann A act | Yes | No | - |
|  |  | Commutation angle constant | Yes | No | - |
|  | 14 | Suppress faults | Yes | No | - |
|  | 31 | Extrapolation | ON | OFF | - |
| Notice: | Re bit 06: |  |  |  |  |
|  | Setting the bit sets the velocity actual value (r0061) permanently to 0 . |  |  |  |  |
|  | Re bit 13: |  |  |  |  |
|  | Setting the bit sets the commutation angle permanently to the commutation angle offset (p0431). |  |  |  |  |
| Note: | Re bit 09: |  |  |  |  |
|  | A setting of bit = 0 will trigger a fault for the relevant channel if the actual value is invalid. |  |  |  |  |
|  | A setting of bit = 1 will trigger an alarm for the relevant channel if the actual value is invalid. |  |  |  |  |
|  | Re bit 10, 11: |  |  |  |  |
|  | If both channels are activated, the actual value is generated from the mean value of both channels. If a channel fails (actual value invalid), it is not included when the mean value is generated. |  |  |  |  |
|  | Re bit 14: |  |  |  |  |
|  | The bit is only evaluated for encoder 1. No effect for encoder 2 and encoder 3. |  |  |  |  |

p4671[0...n] Analog sensor input / Ana_sens inp

| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 4 |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Data type: Integer16 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | 3 | Factory setting |
|  | 0 | 0 | 0 |
| Description: | Sets the input circuit for the analog sensor. |  |  |

Description: Sets the input circuit for the analog sensor.
Value: 0 : Differential
Single-ended A, B
Single-ended $A^{*}$, $B^{*}$
Single-ended A, B sensitive
Note: $\quad$ p4671 $=0$ :
The two signals on a track are evaluated differentially.
p4671 = 1:
Only the non-inverted signal on a track is evaluated.
p4671 = 2:
Only the inverted signal on a track is evaluated.
p4671 = 3:
Only the non-inverted signal on a track (high resolution) is evaluated.

| p4672[0...n] | Analog sensor channel A voltage at actual value zero / Ana_sens A U at 0 |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-10.0000[V]$ | $0.0000[\mathrm{~V}]$ |  |
|  | Sescription: | Sets the voltage when the connected sensor is at actual value zero. |  |
|  | At this voltage channel A supplies an actual value of zero. |  |  |


| p4673[0...n] | Analog sensor channel A voltage per encoder period / Ana_sens A U/per |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | $10.0000[\mathrm{~V}]$ | Factory setting |
|  | $-10.0000[\mathrm{~V}]$ | $6.0000[\mathrm{~V}]$ |  |
|  | Sets the output voltage range to be mapped for the connected analog sensor. |  |  |
| Description: | The voltage range is determined by the following parameters: |  |  |
|  | -p 4672 (voltage at actual value 0) |  |  |
|  | -p 4673 (voltage per encoder period) |  |  |
|  | The minimum actual value which can be mapped is equal to p4672 - p4673/2. |  |  |
|  | The maximum actual value which can be mapped is equal to p4672 + p4673/2. |  |  |


| $\mathbf{p 4 6 7 4 [ 0 . . . n ] ~}$ | Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0 |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | $10.0000[V]$ | Factory setting |
|  | $-10.0000[V]$ | $0.0000[V]$ |  |
|  | Sets the voltage when the connected sensor is at actual value zero. |  |  |
| Description: | At this voltage channel B supplies an actual value of zero. |  |  |


| p4675[0...n] | Analog sensor channel B voltage per encoder period / Ana_sens B U/per |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | $10.0000[\mathrm{~V}]$ | Factory setting |
|  | $-10.0000[\mathrm{~V}]$ | 6.0000 [V] |  |
|  | Sets the output voltage range to be mapped for the connected analog sensor. |  |  |
| Description: | The voltage range is determined by the following parameters: |  |  |
|  | -p 4674 (voltage at actual value 0) |  |  |
|  | -p 4675 (voltage per encoder period) |  |  |
|  | The minimum actual value which can be mapped is equal to p4674 - p4675/2. |  |  |
|  | The maximum actual value which can be mapped is equal to $\mathrm{p} 4674+\mathrm{p} 4675 / 2$. |  |  |


| $\mathbf{p 4 6 7 6 [ 0 . . n ] ~}$ | Analog sensor range limit threshold / Ana_sens lim thr |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Min | 100.0 [\%] | Factory setting |
|  | $0.0[\%]$ | 100.0 [\%] |  |
|  | Sets the threshold for limit monitoring of the absolute actual value on the analog sensor. |  |  |
| Description: | If this threshold is overshot by the actual value of a channel, a corresponding fault/alarm (p4670.9) is output. |  |  |
|  |  |  |  |



| p4678[0...n] | Analog sensor LVDT ratio / An_sens LVDT ratio |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $0.00[\%]$ | $200.00[\%]$ | 50.00 [\%] |
|  |  |  |  |


| p4679[0...n] | Analog sensor LVDT phase / An_sens LVDT ph |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4), T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-360.00\left[{ }^{\circ}\right]$ | $360.00\left[{ }^{\circ}\right]$ | $0.00\left[{ }^{\circ}\right]$ |
|  |  |  |  |
| Description: | Sets the phase for the LVDT sensor. |  |  |


| p4680[0...n] | Zero mark monitoring tolerance permissible / ZM_monit tol perm |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Min | 1000 | Factory setting list: 1 |
|  | 0 | 4 |  |
| Description: | Sets the permissible tolerance in encoder pulses for the zero mark distance in the context of zero mark monitoring. |  |  |
|  | Causes fault F3x100 to appear less frequently. |  |  |
| Dependency: | Refer to: p0430 |  |  |
|  | Refer to: F31100 |  |  |
| Note: | The parameter is activated using p0430.21 = 1 (zero mark tolerance). |  |  |





| p4684[0...n] | Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C 2 (4) | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: EDS, p0140 | Func. diagram: - |
|  | P-Group: Encoder | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -100001 | 0 | -100001 |
| Description: | Sets the negative tolerance window in encoder pulses for limit 2 for the zero mark monitoring. <br> If the zero mark deviation is higher than the tolerance set in p4681 and p4682 and fault F3x131 is re-parameterized to alarm (A) or no message (N), the accumulator p4688 is compared with this parameter and, if applicable, alarm $\mathrm{A} 3 \times 422$ is output for 5 seconds. |  |  |
|  |  |  |  |
| Dependency: | Refer to: p0437, p4683, p4688 |  |  |
|  | Refer to: F31131, A31422 |  |  |
| Note: | Zero mark monitoring is activated by setting p0437.2 $=1$ (position actual value correction). For a set value $=-100001$, the negated value of $p 4683$ is effective. |  |  |
|  |  |  |  |


| p4685[0...n] | Speed actual value mean value generation / n_act mean val |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 20 | 0 |  |

Description: Sets the number of current controller clock cycles for mean value generation of the speed actual value.
Note: $\quad V$ alue $=0,1$ : No mean value generation.
Higher values also mean higher dead times for the speed actual value.

| p4686[0...n] | Zero mark minimum length / ZM min length |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: C2(4) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: EDS, p0140 | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Encoder | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | 0 | 10 |  |
| Description: | Sets the minimum length for the zero mark. |  |  |
| Dependency: | Refer to: p0425, p0437 |  |  |
| Note: | The value for the minimum length of the zero mark must be set less than p0425. |  |  |
|  | The parameter is activated using p0437.1 = 1 (zero mark edge detection). |  |  |




| Dependency: <br> Note: | Refer to: p4691, p4692, p4693 <br> DQI: DRIVE-CLiQ Sensor Integrated <br> SMI: SINAMICS Sensor Module Integrated |
| :---: | :---: |
| p4691 | SMI spare part save/download data / Save/DL SMI data |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: T Calculated: - Access level: 1 <br> Data type: Integer16 Dynamic index: - Func. diagram: - <br> P-Group: Displays, signals Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br>    <br> Min Max 0 |
| Description | Setting for the saving/downloading/deletion of motor and/or encoder data for the component specified in p4690 (SMI/DQI). <br> A backup of this data can be saved to non-volatile memory. The backup procedure is performed automatically as part of the function for saving to non-volatile memory (p0977 = 1 or "Copy RAM to ROM"). If a part is replaced, the saved data can be reloaded. <br> Procedure: <br> p4690 = set component number <br> p4691 = 1, 2, 30: Set the required procedure (save/download/delete). <br> p4691 $=9,10,36$ : Feedback signal on successful completion of the procedure. <br> $p 4691=11 \ldots 22,37,38$ : Error values if the procedure could not be executed successfully. |
| Value: | Inactive <br> Save SMI data <br> Download SMI data <br> SMI data downloaded and POWER ON required for component <br> SMI data backup complete <br> SMI data backup for selected component not found <br> Selected component not available or not connected <br> Insufficient memory space for backup <br> Format of saved data is incompatible <br> Transfer fault during data download <br> Transfer fault during data backup <br> Data backup does not match parameterized encoder/motor <br> Data backup directory not permissible <br> Component already contains data <br> Component does not contain any data <br> Component is not an SMI or a DQI <br> SMI data cannot be downloaded for component <br> Delete SMI data <br> Confirmation of SMI data delete required <br> SMI data deleted and POWER ON required for component <br> Access level not sufficient for delete <br> Delete SMI data not permitted for component <br> SMI data for component cannot be deleted |
| Dependency: | Refer to: p4690, p4692, p4693 |
| Notice: <br> Note: | Once SMI/DQI data has been deleted or downloaded successfully, the component has to be powered up. <br> SMI: SINAMICS Sensor Module Integrated <br> DQI: DRIVE-CLiQ Sensor Integrated <br> Help for error value = 11: <br> - Save the data for the original SMI on the memory card. <br> - Use an SMI with a suitable hardware version. <br> Help for error value $=12$ : <br> - Set the correct component number or connect the component. |

Help for error value $=13$ :

- Use a memory card with more memory space.

Help for error value $=14$ :

- Create a data backup on the memory card corresponding to the SMI type.

Help for error value $=15$ :

- Check the DRIVE-CLiQ wiring for the component.

Help for error value $=16$ :

- Check the DRIVE-CLiQ wiring for the component.

Help for error value = 17:

- Save the data for the original SMI on the memory card.

Help for error value $=18$ :

- Set parameter p4693 to an appropriate value.

Help for error value $=19$ :

- Perform an SMI delete or use a blank SMI.

Help for error value $=20$ :

- Use an SMI that is not blank.

Help for error value = 21:

- Set the correct component number (p4690).

Note for error value $=22$ :

- Data cannot be downloaded for component.

Help for error value $=35$ :

- Reset parameter p4691 to 30.

Help for error value = 37:

- Set the access level to Expert or higher.

Help for error value $=38$ :

- Insert the SMI/DQI into the actual topology as an additional component (component number >= 200).
- Set the component number from the actual topology (p4690 >= 200).
- Set the correct component number (p4690 >= 200).

Note for error value = 39:

- SMI already deleted or too old. Delete not possible.

| p4692 | SMI spare part save data of all SMIs / Save SMI data |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, | Can be changed: T | Calculated: - | Access level: 1 |
| CU_NX_CX, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, CU S AC PN, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  |  |  |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 29 | 0 |
| Description: | Setting to back up the data of all SMIs and DQIs featured in the target topology. |  |  |
| Value: | 0 : Inactive |  |  |
|  | 1: Save data of all SMIs and DQls |  |  |
|  | 10: Save all data successful |  |  |
|  | 13: Insufficient memory space for backup |  |  |
|  | 16: Transfer fault during data backup |  |  |
|  | 20: Component does not contain any data |  |  |
|  | 29: Not all components | gy saved |  |
| Note: | SMI: SINAMICS Sensor Module Integrated |  |  |
|  | p4692 = 10: Automatic on successful completion of backup procedure. |  |  |
|  | $p 4692=13,16,20,29$ : Error values if the procedure could not be executed successfully. |  |  |
|  | The procedure must be repeated if the data save operation was interrupted (e.g. if the power supply voltage failed). |  |  |

Help for error value $=13$ :

- Use a memory card with more memory space.

Help for error value $=16$ :

- check the DRIVE-CLiQ connection.

Help for error value $=20$ :

- Use an SMI that is not blank.

Help for error value $=29$ :

- Check and correct the target and actual topologies for the SMIs.
- Repeat the save procedure.

| p4693[0...1] | SMI spare part data backup directory / SMI dat_bkup dir |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU S150 PN | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 399 | 0 |
| Description: | Sets the directory for downloading and saving data. |  |  |
|  | Example: |  |  |
|  | The SMI has the component number 5 and the SMI data (motor/encoder data) is to be stored in subdirectory C205 --> p4690 $=5$, p4693[0] $=205, \mathrm{p} 4691=1$ |  |  |
| Index: | [0] = Subdirectory selection <br> [1] = Reserved |  |  |
| Dependency: | Refer to: p4691, r4694 |  |  |
| Notice: | If p4693[0] is not equal to 0 and p4693[0] is not equal to p4690, the following applies: |  |  |
|  | - Only a number >= 200 may be selected for the subdirectory when saving. |  |  |
|  | - In the case of downloads, a selection for the subdirectory may only be made for an SMI/DQI with a component number >= 200 (preliminary component number) (p4690 >= 200). |  |  |
| Note: | DQI: DRIVE-CLiQ Sensor Integrated |  |  |
|  | SMI: SINAMICS Sensor Module Integrated |  |  |
|  | Re index 0 : |  |  |
|  | This index is used to select the subdirectory for saving and downloading data. The motor order number (MLFB) of the corresponding data backup is displayed in r4694. |  |  |
|  | For $\mathrm{p} 4693[0]=0$, the following applies: |  |  |
|  | The directory is determined by the setting of p4690. |  |  |


| r4694[0...19] | SMI spare part data backup motor order number / SMI dat_bkup MLFB |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Displays, signals | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  | Max | Factory setting |
| CU_S150_DP, |  | - |  |
| CU_S150_PN | Min |  |  |
|  | - |  |  |


| Caution: | If the selected subdirectory contains a number of data sets, "More Datasets" is displayed in r4694[0...19]. |  |  |
| :---: | :---: | :---: | :---: |
|  | If there is no SMI data (motor/encoder data) in the selected subdirectory or if the selected subdirectory does not exist, the following applies: |  |  |
|  | - The number of the next subdirectory located is displayed. |  |  |
|  | - This subdirectory is not checked for valid SMI data. |  |  |
|  | - If another subdirectory cannot be located, nothing is displayed in r4694[0...19]. |  |  |
| Note: | SMI: SINAMICS Sensor Module Integrated |  |  |
| p4700[0...1] | Trace control / Trace control |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_PN, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expert list: 0 |
| CU_S120_PN, |  |  |  |
|  |  |  |  |
| CU_S150_PN | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Setting to control the trace function. |  |  |
| Value: | 0: Stop trace |  |  |
|  | 1: Start trace |  |  |
| Index: | [0] = Trace 0 |  |  |
|  | [1] = Trace 1 |  |  |
| p4701 | Measuring function, control / Meas fct ctrl |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Trace and function generator | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 3 |  |
| Description: Value: | Setting to control the measurement function. |  |  |
|  | 0 : Stop measuring function |  |  |
|  | 1: Start measuring function |  |  |
|  | 2: Measuring function, check parameterization |  |  |
|  | 3: Start measuring function without enable signals |  |  |
| r4705[0..1] | Trace status / Trace status |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expert list: 0 |
| $\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ |  |  |  |
|  |  |  |  |
|  | Min | Max4 | Factory setting |
|  | 0 |  |  |
| Description: | Displays the actual status of the trace. |  |  |
| Value: | 0: Trace inactive |  |  |
|  | 1: Trace is recording presamples |  |  |
|  | 2: Trace is waiting for trigger event |  |  |
|  | 3: Trace is recording |  |  |
|  | 4: Recording (trace) ended |  |  |





| p4712[0...1] | Trace trigger threshold / Trace trig_thresh |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Exaling: - | Expert list: 0 |
| CU_S120_DP, |  | Max |  |
| CU_S120_PN, |  | $340.28235 E 36$ | Factory setting |
| CU_S150_DP, |  |  | 0.00 |
| CU_S150_PN | Min |  |  |
|  | $-340.28235 E 36$ |  |  |
| Description: | Sets the trigger threshold for the trace. |  |  |
| Index: | $[0]=$ Trace 0 |  |  |
| Dependency: | Only effective when $p 4710=2,3$. |  |  |


| p4713[0...1] <br> CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Trace tolerance band trigger th | hold 1 / Trace |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$ | Factory setting $0.00$ |
| Description: Index: | Sets the first trigger threshold for trigger $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ | olerance band. |  |
| Dependency: | Only effective when p4710 $=4,5$. |  |  |
| p4714[0...1] <br> CU_I, CU_I_D41 CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Trace tolerance band trigger th | hold 2 / Trace |  |
|  | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & -340.28235 \text { E36 } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 340.28235 \mathrm{E} 36 \end{aligned}$ | Factory setting 0.00 |
| Description: Index: | Sets the second trigger threshold for trigg $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ | via tolerance band |  |
| Dependency: | Only effective when p4710 = 4, 5 . |  |  |
| $\begin{aligned} & \hline \text { p4715[0...1] } \\ & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_SS120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Trace bit mask trigger, bit mask / Trace trig mask |  |  |
|  | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$ | Factory setting 0 |
| Description: <br> Index: | Sets the bit mask for the bit mask trigger.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| Dependency: | Only effective when p4710 $=6$. |  |  |



| p4720[0...1] | Trace recording cycle / Trace record_cyc |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~ms}] \end{aligned}$ | Max <br> 60000.000 [ms] | Factory setting 1.000 [ms] |
| Description: Index: | Sets the recording cycle for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| p4721[0...1] | Trace recording time / Trace record_time |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~ms}] \end{aligned}$ | Max $3600000.000[\mathrm{~ms}]$ | Factory setting 1000.000 [ms] |
| Description: Index: | Sets the recording time for the trace. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| p4722[0...1] | Trace trigger delay / Trace trig_delay |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & -3600000.000[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3600000.000[\mathrm{~ms}] \end{aligned}$ | Factory setting 0.000 [ms] |
| Description: | Sets the trigger delay for the trace. <br> Trigger delay < 0 : <br> Pretrigger: Tracing (recording) starts the selected time before the trigger event actually occurs. <br> Trigger delay > 0 : <br> Post trigger: Tracing does not start until the set time after the trigger event. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |


| p4723[0..1] | Trace time slice cycle / Trace cycle |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min 0.03125 [ms] | Max <br> 4.00000 [ms] | Factory setting 0.12500 [ms] |
| Description: Index: | Sets the time slice cycle in which the trace is called.$\begin{aligned} {[0] } & =\text { Trace } 0 \\ {[1] } & =\text { Trace } 1 \end{aligned}$ |  |  |
| p4724[0...1] | Trace average in the time range / Trace average |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned8 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min 0000 bin | Max <br> 0001 bin | Factory setting 0000 bin |
| Description: Index: | Sets the averaging in the time range for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| r4725[0...1] | Trace, data type 1 traced/ Trace rec type 1 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Index: | Displays the recorded data type 1 for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| r4726[0...1] | Trace, data type 2 traced / Trace rec type 2 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 <br> Factory setting |
| Description: | Displays the recorded data type 2 for the trace. |  |  |



| $\begin{aligned} & \text { p4730[0...5] } \\ & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Trace record signal 0 / Trace reco | sig 0 |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting 0 |
| Description: Index: | Selects the first signal to be traced. <br> [0] = Trace 0 parameter in BICO format <br> [1] = Trace 1 parameter in BICO format <br> [2] = Trace 0 PINx with DO Id and chart Id <br> [3] = Trace 0 PINx with block Id and PIN Id <br> [4] = Trace 1 PINy with DO Id and chart Id <br> [5] = Trace 1 PINy with block Id and PIN Id |  |  |
| $\begin{aligned} & \hline \text { p4731[0...5] } \\ & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Trace record signal 1 / Trace rec | d sig 1 |  |
|  | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 <br> Factory setting <br> 0 |
| Description: Index: | Selects the second signal to be traced. <br> [0] = Trace 0 parameter in BICO format <br> [1] = Trace 1 parameter in BICO format <br> [2] = Trace 0 PINx with DO Id and chart Id <br> [3] = Trace 0 PINx with block Id and PIN Id <br> [4] = Trace 1 PINy with DO Id and chart Id <br> [5] = Trace 1 PINy with block Id and PIN Id |  |  |


| p4732[0...5] | Trace record signal 2 / Trace record sig 2 |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |

CU_S150_DP,
CU_S150_PN

|  | Min |
| :--- | :--- |
|  | - |
| Description: | Selects the third signal to be traced. |
| Index: | $[0]=$ Trace 0 parameter in BICO format |
|  | $[1]=$ Trace 1 parameter in BICO format |
|  | $[2]=$ Trace 0 PINx with DO Id and chart Id |
|  | $[3]=$ Trace 0 PINx with block Id and PIN Id |
|  | $[4]=$ Trace 1 PINy with DO Id and chart Id |
|  | $[5]=$ Trace 1 PINy with block Id and PIN Id |



| p4734[0...5] | Trace record signal 4 / Trace record sig 4 |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 0 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  |  | Factory setting |
| CU_S150_DP, |  | Max | 0 |

Description: Selects the fifth signal to be traced.
Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

| p4735[0...5] | Trace record signal 5 / Trace record sig 5 |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |


| Min | Max | Factory setting |
| :--- | :--- | :--- |
| - | - | 0 |

Description: Selects the sixth signal to be traced.
Index: [0] = Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id


## r4740[0...16383] Trace 0 trace buffer signal 0 floating point / Trace 0 tr sig 0

CU_I, CU_I_D410


CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: Unit selection: Expert list: 0

## Min <br> Max <br> Factory setting

Description: Displays the trace buffer (record buffer) for trace 0 and signal 0.
The trace (record) buffer is sub-divided into memory banks, each containing 16384 values. Parameter p4795 can be used to toggle between the individual banks.
Example A:
The first 16384 values of signal 0 , trace 0 are to be read out.
In this case, memory bank 0 is set with $\mathrm{p} 4795=0$. The first 16384 values can now be read out using r4740[0] to r4740[16383].

Example B:
The values 16385 to 32768 from signal 0 , trace 0 are to be read out.
In this case, memory bank 1 is set with $\mathrm{p} 4795=1$. The values can now be read out in r4740[0] to r4740[16383].
Dependency: Refer to: p4795

## r4741[0...16383] Trace 0 trace buffer signal 1 floating point / Trace 0 tr sig 1

| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- | :--- |
| CU_NX_CX, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  | Max | Factory setting |
| CU_S150_DP, |  | - | - |
| CU_S150_PN | Min | - |  |
|  | Displays the trace buffer (record buffer) for trace 0 and signal 1. |  |  |
| Description: | Refer to: 44740, p4795 |  |  |

r4742[0...16383] Trace 0 trace buffer signal 2 floating point / Trace 0 tr sig 2

| CU_I, CU_I_D410, | Can be changed: - |
| :--- | :--- |
| CU_NX_CX, | Data type: FloatingPoint32 |

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0

Factory setting

Description: Displays the trace buffer (record buffer) for trace 0 and signal 2.
Dependency: Refer to: r4740, p4795
r4743[0...16383] Trace 0 trace buffer signal 3 floating point / Trace 0 tr sig 3

| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- | :--- |
| CU_NX_CX, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Trace and function generator | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  |  | Factory setting |

Description: Displays the trace buffer (record buffer) for trace 0 and signal 3.
Dependency: Refer to: r4740, p4795

| r4744[0...16383] Trace 0 trace buffer signal 4 floating point / Trace 0 tr sig 4 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: <br> Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 4. <br> Refer to: r4740, p4795 |  |  |
| r4745[0..16383] | Trace 0 trace buffer signal 5 floating point / Trace 0 tr sig 5 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 5. <br> Refer to: r4740, p4795 |  |  |
| r4746[0..16383] | Trace 0 trace buffer signal 6 floating point / Trace 0 tr sig 6 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 6. <br> Refer to: r4740, p4795 |  |  |
| r4747[0..16383] | Trace 0 trace buffer signal 7 floating point / Trace 0 tr sig 7 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 7 . <br> Refer to: r4740, p4795 |  |  |


| r4750[0...16383] Trace 1 trace buffer signal 0 floating point / Trace 1 trace sig0 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 0 . Refer to: r4740, p4795 |  |  |
| r4751[0...16383] Trace 1 trace buffer signal 1 floating point / Trace 1 tr sig 1 |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 1. <br> Refer to: r4740, p4795 |  |  |
| r4752[0...16383] | Trace 1 trace buffer signal 2 floating point / Trace 1 tr sig 2 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 2. Refer to: r4740, p4795 |  |  |
| r4753[0...16383] | Trace 1 trace buffer signal 3 floating point / Trace 1 tr sig 3 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 3 . Refer to: r4740, p4795 |  |  |


| r4754[0...16383] Trace 1 trace buffer signal 4 floating point / Trace 1 tr sig 4 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: <br> Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 4. <br> Refer to: r4740, p4795 |  |  |
| r4755[0..16383] | Trace 1 trace buffer signal 5 floating point / Trace 1 tr sig 5 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 5. <br> Refer to: r4740, p4795 |  |  |
| r4756[0..16383] | Trace 1 trace buffer signal 6 floating point / Trace 1 tr sig 6 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 6. <br> Refer to: r4740, p4795 |  |  |
| r4757[0..16383] | Trace 1 trace buffer signal 7 floating point / Trace 1 tr sig 7 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 7 . Refer to: r4740, p4795 |  |  |


| r4760[0...16383] | Trace 0 trace buffer signal 0 / Trace 0 tr sig 0 |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Note: | Displays the trace buffer (record buffer) <br> For signals, data type 132 or U32, the tra r4760[0] = value 0 <br> r4760[1] = value 1 <br> r4760[8191] = value 8191 <br> For signals, data type I 16 or U16, the tra r4760[0] = value 0 (bit $31 \ldots$ 16) and value <br> r4760[1] = value 2 (bit $31 \ldots$ 16) and value <br> r4760[8191] = value 16382 (bit 31 ... 16) <br> For signals, data type 18 or U8, the trace <br> r4760[0] = value 0 (bit $31 \ldots 24$ ) value 1 <br> r4760[1] = value 4 (bit $31 \ldots 24$ ) value 5 <br> r4760[8191] = value 32764 (bit $31 \ldots 24$ ) | ace 0 and signal 0 uffer is assigned as <br> uffer is assigned as (bit $15 \ldots 0$ ) (bit $15 \ldots 0$ ) value 16383 (bit 15 er is assigned as fo 3. $\qquad$ 16) value 2 (bit 3 $\qquad$ 16) value 6 (bit <br> 32765 (bit 23 ... 1 | (bit $7 \ldots 0$ ) <br> (bit $7 \ldots 0$ ) <br> it $15 \ldots 8$ ) value 32767 (bit $7 \ldots 0$ ) |
| r4761[0...16383] Trace 0 trace buffer signal 1 / Trace 0 tr sig 1 |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 1 . |  |  |
| r4762[0...16383] Trace 0 trace buffer signal 2 / Trace 0 tr sig 2 |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 2. |  |  |


| r4763[0..16383] Trace 0 trace buffer signal 3 / Trace 0 tr sig 3 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 3 . Refer to: r4760 |  |  |
| r4764[0...16383] | Trace 0 trace buffer signal 4 / Trace 0 tr sig 4 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 4. <br> Refer to: r4760 |  |  |
| r4765[0...16383] | Trace 0 trace buffer signal 5 / Trace 0 tr sig 5 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 5 . Refer to: r 4760 |  |  |
| r4766[0...16383] | Trace 0 trace buffer signal 6 / Trace 0 tr sig 6 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: <br> Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 6 . <br> Refer to: r4760 |  |  |


| r4767[0...16383] Trace 0 trace buffer signal 7 / Trace 0 tr sig 7 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 0 and signal 7 . <br> Refer to: r 4760 |  |  |
| r4770[0...16383] Trace 1 trace buffer signal 0 / Trace 1 trace sig0 |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 0 . Refer to: r4760 |  |  |
| r4771[0...16383] Trace 1 trace buffer signal 1 / Trace 1 tr sig 1 |  |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 1. <br> Refer to: r4760 |  |  |
| r4772[0...16383] | Trace 1 trace buffer signal 2 / Trace 1 tr sig 2 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: Dynamic index: Units group: Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 2. Refer to: 4760 |  |  |


| r4773[0..16383] Trace 1 trace buffer signal 3 / Trace 1 tr sig 3 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 3. Refer to: r 4760 |  |  |
| r4774[0...16383] | Trace 1 trace buffer signal 4 / Trace 1 tr sig 4 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 4. <br> Refer to: r4760 |  |  |
| r4775[0...16383] | Trace 1 trace buffer signal 5 / Trace 1 tr sig 5 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 5. Refer to: r 4760 |  |  |
| r4776[0...16383] | Trace 1 trace buffer signal 6 / Trace 1 tr sig 6 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 6. <br> Refer to: r4760 |  |  |


| r4777[0...16383] Trace 1 trace buffer signal 7 / Trace 1 tr sig 7 |  |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: Dependency: | Displays the trace buffer (record buffer) for trace 1 and signal 7 . <br> Refer to: r4760 |  |  |
| p4780[0..1] | Trace physical address signal 0 / Trace PhyAddr Sig0 |  |  |
| CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 0 |
|  | Min 0000 bin | ```Max 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ b i n``` | Factory setting 0000 bin |
| Description: Index: | Sets the physical address for the first signal to be traced. The data type is defined using p4730.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| p4781[0...1] | Trace physical address signal 1 / Trace PhyAddr Sig1 |  |  |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min 0000 bin | ```Max 1111111111111111111111111 1 1 1 1 1 1 1 1 ~ b i n``` | Factory setting 0000 bin |
| Description: | Sets the physical address for the second signal to be traced. The data type is defined using p4731. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |




| p4789[0...1] | Trace physical address trigger | nal / Trace Ph |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & 0000 \text { hex } \end{aligned}$ | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: Index: | Sets the physical address for the trigger The data type is defined by making the [0] = Trace 0 <br> [1] = Trace 1 | al. priate selection in $p$ |  |
| r4790[0...1] | Trace, data type 5 traced / Tra | c type 5 |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Index: | Displays the recorded data type 5 for the $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| r4791[0...1] | Trace, data type 6 traced / Tra | c type 6 |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Index: | Displays the recorded data type 6 for the $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$ |  |  |
| r4792[0...1] | Trace, data type 7 traced/ Tra | c type 7 |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  |  | Max | Factory setting |
| Description: | Displays the recorded data type 7 for the |  |  |




Connection at speed setpoint after filter and r 4818
Connection at current setpoint before filter and r4818
Connection at speed setpoint before filter and r 4818
Connection for free measurement function r4818 and r4834
Connection at physical address and r4818







| p4832[0...2] | Function generator amplitude scaling / FG amplitude scal |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 340.28235 \text { E36 [\%] } \end{aligned}$ | Factory setting 100.00000 [\%] |
| Description: Index: | Sets the scaling for the amplitude of the <br> The value cannot be changed while the <br> [0] = First drive for connection <br> [1] = Second drive for connection <br> [2] = Third drive for connection | al waveforms separa ion generator is runn | put channel. |
| p4833[0...2] | Function generator offset scaling / FG offset scal |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Trace and function generator <br> Not for motor type: - $\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36[\%] \end{aligned}$ | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - $\begin{aligned} & \text { Max } \\ & 340.28235 \text { E36 [\%] } \end{aligned}$ | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 <br> Factory setting <br> 100.00000 [\%] |
| Description: Index: | Sets the scaling for the offset of the sign <br> The value cannot be changed while the <br> [0] = First drive for connection <br> [1] = Second drive for connection <br> [2] = Third drive for connection | aveforms separately tion generator is | channel. |






| r4955[0...n] | OA application identifier / OA ID |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM17, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned8 <br> P-Group: OEM range <br> Not for motor type: | Calculated: - <br> Dynamic index: r4951 <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: <br> Dependency: <br> Notice: | Displays the IDs of all the OA applications installed on the memory card/device memory. r4955[0...8]: Identifier of OA application 1 <br> r4955[9...17]: Identifier of OA applications 2, ... |  |  |
| r4955[0...n] | OA application identifier / OA ID |  |  |
| ENC, HUB, TB30, | Can be changed: - | Calculated: - | Access level: 4 |
| TM15DI_DO, TM31 | Data type: Unsigned8 | Dynamic index: r 4951 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the IDs of all the OA applications installed on the memory card/device memory. r4955[0...8]: Identifier of OA application 1 <br> r4955[9...17]: Identifier of OA applications 2, ... |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, p4956, r4957, r4958, r4959, r4960 |  |  |
| Notice: | If there is no OA application, then it is not possible to access an index. |  |  |


| p4956[0...n] | OA application activation / OA act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM17, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{C} 1, \mathrm{~T}$ <br> Data type: Integer16 <br> P-Group: OEM range <br> Not for motor type: - | Calculated: - <br> Dynamic index: r4950 <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{gathered} \text { Max } \\ 1 \end{gathered}$ | Factory setting 0 |
| Description: | Setting to activate the OA applications installed on the memory card/device memory. r4956[0]: Activates OA application 1 <br> r4956[1]: Activates OA application 2, ... |  |  |
| Value: | 0 : $\quad$ OA application inactive <br> 1: OA application active |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, r4955, r4957, r4958, r4959, r4960 |  |  |
| Notice: | If there is no OA application, then it is not possible to access an index. |  |  |
| p4956[0...n] | OA application activation / OA act |  |  |
| ENC, HUB, TB30, TM15DI_DO, TM31 | Can be changed: $\mathrm{C} 1, \mathrm{~T}$ | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: r4950 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$ | Factory setting 0 |
| Description: | Setting to activate the OA applications installed on the memory card/device memory. r4956[0]: Activates OA application 1 <br> r4956[1]: Activates OA application 2, ... |  |  |
| Value: | 0 : OA application inactive <br> 1: OA application active |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, r4955, r4957, r4958, r4959, r4960 <br> If there is no OA application, then it is not possible to access an index. |  |  |
| Notice: |  |  |  |


| r4957[0...n] | OA application ve |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM17, <br> TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: OEM range <br> Not for motor type: - | Calculated: - <br> Dynamic index: r4950 <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$ | Factory setting |
| Description: | Displays the versions of the OA applications installed on the memory card/device memory. r4957[0]: Version of OA application 1 <br> r4957[1]: Version of OA application 2, ... |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, r4955, p4956, r4958, r4959, r4960 |  |  |
| Notice: | If there is no OA application, then it is not possible to access an index. |  |  |
| Note: | Example: |  |  |


| r4957[0...n] | OA application version / OA version |  |  |
| :--- | :--- | :--- | :--- |
| ENC, HUB, TB30, | Can be changed: - | Calculated: - | Access level: 4 |
| TM15DI_DO, TM31 | Data type: Unsigned32 | Dynamic index: r4950 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Max | Expert list: 0 |
|  | Min | 4294967295 | Factory setting |
|  | 0 | - |  |
| Description: | Displays the versions of the OA applications installed on the memory card/device memory. |  |  |
|  | r4957[0]: Version of OA application 1 |  |  |
|  | r4957[1]: Version of OA application 2, ... |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, r4955, p4956, r4958, r4959, r4960 |  |  |
| Notice: | If there is no OA application, then it is not possible to access an index. |  |  |
| Note: | Example: |  |  |


| r4958[0...n] | OA application interface version / OA int_version |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, <br> TM120, TM15, <br> TM150, TM17, <br> TM41, TM54F_MA, <br> TM54F_SL, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: r4950 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the interface v | lications installed on the | d/device memory. |
|  | r4958[0]: Interface versi |  |  |
|  | r4958[1]: Interface versi | 2, ... |  |
| Dependency: | Refer to: r4950, r4951, | r4957, r4959, r4960 |  |
| Notice: | If there is no OA applica | ssible to access an index. |  |
| Note: | Example: |  |  |
|  | The value 1010100 sho | V01.01.01.00. |  |


| r4958[0...n] | OA application interface version / OA int_version |  |  |
| :---: | :---: | :---: | :---: |
| ENC, HUB, TB30, | Can be changed: - | Calculated: - | Access level: 4 |
| TM15DI_DO, TM31 | Data type: Unsigned32 | Dynamic index: r4950 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the interface versions of the OA applications installed on the memory card/device memory. r4958[0]: Interface version of OA application 1 <br> r4958[1]: Interface version of OA applications $2, \ldots$ |  |  |
| Dependency: | Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4959, r4960 |  |  |
| Notice: | If there is no OA application, then it is not possible to access an index. |  |  |
| Note: | Example: |  |  |
|  | The value 1010100 should be interpreted as V01.01.01.00. |  |  |


| r4959[0...n] | OA application G |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM17, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned8 <br> P-Group: OEM range <br> Not for motor type: | Calculated: - <br> Dynamic index: r4952 <br> Units group: - <br> Scaling: | Access level: 4 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | Displays the GUIDs of the OA applications installed on the memory card/device memory. r4959[0...15]: GUID of OA application 1 <br> r4960[16]: Major information of OA application 1 <br> r4960[17]: Minor information of OA application 1 <br> r4959[18...33]: GUID of OA application 2 <br> r4960[34]: Major information of OA application 2 <br> r4960[35]: Minor information of OA application 2, ... |  |  |
| Dependency: Notice: | Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4960 If there is no OA application, then it is not possible to access an index. |  |  |
| r4959[0...n] | OA application GUID / OA GUID |  |  |
| ENC, HUB, TB30, | Can be changed: - | Calculated: - | Access level: 4 |
| TM15DI_DO, TM31 | Data type: Unsigned8 | Dynamic index: r 4952 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the GUIDs of the OA applications installed on the memory card/device memory. r4959[0...15]: GUID of OA application 1 <br> r4960[16]: Major information of OA application 1 <br> r4960[17]: Minor information of OA application 1 <br> r4959[18...33]: GUID of OA application 2 <br> r4960[34]: Major information of OA application 2 <br> r4960[35]: Minor information of OA application 2, ... |  |  |
| Dependency: Notice: | Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4960 If there is no OA application, then it is not possible to access an index. |  |  |



| p4961[0...n] | OA application log | lection / OA log |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, $C U-\bar{S} A C-D P$, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM17, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $T$ <br> Data type: Unsigned32 <br> P-Group: OEM range <br> Not for motor type: - | Calculated: - <br> Dynamic index: r4950 <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Only for service purposes. |  |  |


| p4961[0...n] | OA application logbook module selection / OA logbook module |  |  |
| :---: | :---: | :---: | :---: |
| ENC, HUB, TB30, | Can be changed: T | Calculated: - | Access level: 4 |
| TM15DI_DO, TM31 | Data type: Unsigned32 | Dynamic index: r4950 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min <br> 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Only for service purposes. |  |  |
| r4975 | OA application invalid number / OA inv no. |  |  |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 4 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU S AC PN, | P-Group: OEM range | Units group: - | Unit selection: - |
| CU_S120_DP, CU S120 PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_DP, |  |  |  |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the number of invalid OA applications installed on the memory card/device memory. Refer to: r4976, r4978, r4979 <br> OA: Open Architecture |  |  |
| Dependency: |  |  |  |
| Note: |  |  |  |


| r4976 | OA application invalid identifier, total length / OA inv ID length |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the total length of the IDs of all the invalid OA applications installed on the memory card/device memory. |  |  |
| Dependency: | Refer to: r4975, r4978, r4979 |  |  |
| Note: | The identifier of an invalid OA application comprises a maximum of 8 characters plus separator. |  |  |
| r4978[0...n] | OA application invalid identifier / OA inv ID |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned8 | Dynamic index: r4976 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the IDs of all the invalid OA applications installed on the memory card/device memory. r4978[0...8]: Identifier of invalid OA application 1 <br> r4978[9...17]: Identifier of invalid OA application 2, ... |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Dependency: | Refer to: r4975, r4976, r4979 |  |  |
| Notice: | If there is no invalid OA application, then it is not possible to access an index. |  |  |
| r4979[0...n] | OA application invalid error code / OA inv error code |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: r4975 | Func. diagram: - |
|  | P-Group: OEM range | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the error code of the invalid OA applications installed on the memory card/device memory. r4979[0]: Fault value of OA application 1 <br> r4979[1]: Fault value of OA application $2, \ldots$ |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Dependency: | Refer to: r4975, r4976, r497 |  |  |
| Notice: | If there is no invalid OA | not possible to access a |  |
| Note: | The value in the error code must be interpreted in binary form. The bits have the following meaning: |  |  |
|  | Bit 0: Incompatible OA interface version. |  |  |
|  | Bit 1: OA application could not be loaded. |  |  |
|  | Bit 2: Incorrect description files. |  |  |
|  | Bit 3: OA application does not define a CPU type. |  |  |
|  | Bit 4: OA application for this device not supported (incorrect CPU type). |  |  |
|  | Bit 5: OA application for this device not supported (incorrect type ID). |  |  |
|  | Bit 6: Incorrect description files (Const/Startup incompatible). |  |  |


| r5000 | CO: Spindle properties/status / Prop/status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO (Spin_diag), | Can be changed: - | Calculated: - | Acce |  |
| SERVO_AC | Data type: Unsigned16 | Dynamic index: - | Func |  |
| (Spin_diag), SERVO I AC | P-Group: - | Units group: - | Unit |  |
| (Spin_diag) | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the properties supported by the spindle hardware and status. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Spindle functionality available | Yes | No | - |
|  | 01 Sensor S1 available | Yes | No | - |
|  | 04 Sensor S4 available | Yes | No | - |
|  | 05 Sensor S5 available | Yes | No | - |
|  | 06 Sensor S6 available | Yes | No | - |
|  | 10 State machine enabled | Yes | No | - |
|  | 11 Parameter p5043 changed | State 2 | State 1 | - |
| Note: | This display value is contained in the manufacturer-specific telegram 139 (SP_CONFIG). |  |  |  |
|  | Re bit 11: |  |  |  |
|  | After each change in $\mathrm{p} 5043[0 \ldots 6]$ the signal level of this bit is changed. |  |  |  |




| 22 | Characteristic data speed/torque matrix <br> available | Yes | No |
| :--- | :--- | :--- | :--- |
| 30 | Characteristic data sensor description avail- <br> able | Yes | No |
| 31 | Characteristic data sensor calibration data <br> available | Yes | No |

Note: This parameter can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).


Note: $\quad$ This parameter can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).
The action to adapt the selected files is selected in p5009.
Re bit 01:
The action selected in p5009 only becomes immediately effective for this bit.
Re bit 02 ... 22:
Only for internal Siemens use.
For this bit, after setting p5009, a hardware reset is required

| $\mathbf{p 5 0 0 9}$ |
| :--- |
| SERVO, |
| SERVO_AC, |
| SERVO_I_AC |

Adapt spindle file system / Adapt file sys
SERVO,
SERVO_AC,

Can be changed: $T$
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0

Access level: 3
Func. diagram: Unit selection: Expert list: 1 Factory setting 0

Description: Setting to adapt the file system on the non-volatile memory.

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max 53







| r5170[0...5] | HF phase current actual values / HF I_ph act val |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Displays, signals | Units group: $6 \_5$ | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[A]$ | $-[A]$ |  |
|  | Displays the measured phase currents as peak value. |  |  |
| Description: | $[0]=$ Phase U motor current |  |  |
| Index: | $[1]=$ Phase V motor current |  |  |
|  | $[2]=$ Phase W motor current |  |  |
|  | $[3]=$ Phase U capacitor current |  |  |
|  | $[4]=$ Phase V capacitor current |  |  |
|  | $[5]=$ Phase W capacitor current |  |  |

Note: $\quad$ HF: High Frequency Drive $\quad$ Re index $0 \ldots 2$ : $\quad$ The 3 motor phase currents are displayed. $\quad$ Re index $3 \ldots 5$ : $\quad$ The currents in the filter capacitors of the 3 phases are displayed.

| r5171 | CO: HF damping voltage actual value / HF U_damp act val |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min $-[V]$ | $\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$ | Factory setting - [V] |
| Description: | Displays the actual value of the damping voltage. |  |  |
| Dependency: | Refer to: F37002 |  |  |
| Note: | HF: High Frequency Drive |  |  |
| r5172[0...3] | CO: HF temperatures / HF temp |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the temperatures in the HF Choke Module and HF Damping Module. |  |  |
| Index: | [0] = HF Choke Module heat sink <br> [1] = HF Damping Module heat sink <br> [2] = HF Damping Module <br> [3] = HF Damping Module depletion layer |  |  |
| Note: | The value of -200 indicates that there is no measuring signal. |  |  |
|  | HF choke module (reactor module) |  |  |
|  | HF Damping Module |  |  |
|  | HF: High Frequency Drive |  |  |


| r5173 | CO: HF Damping Module I2t overload / HF DM overl I2t |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[\%]$ | $-[\%]$ | - [\%] |
|  | Displays the overload of the filter capacitors of the HF Damping Module determined using an l2t calculation. |  |  |
| Description: | HF Damping Module | Calculated: CALC_MOD_REG | Access level: 4 |
| Note: | HF control word / HF control word | Func. diagram: - |  |
| p5174 | Can be changed: T | Dynamic index: - | Unit selection: - |
| SERVO, | Uata type: Unsigned16 | Scaling: - | Expert list: 1 |
| SERVO_AC, | P-Group: Displays, signals | Max | Factory setting |


| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
| :--- | :--- | :--- | :--- | :--- |
|  | 00 Supplementary capacitor active | Yes | No | For pulse enable |
| Note: | $01 \quad$ Activate damping | Continuously |  |  |
|  | Re bit 00: |  |  |  |
|  | This bit can be used to compensate the filter resonance frequency shift for low motor inductances. |  |  |  |
|  | Re bit 01: |  |  |  |
|  | Is used for diagnostic purposes. |  |  |  |



| p5251 | Activate cogging torque compensation learning / Cog_M_comp_learn |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO | Can be changed: U, T | Calculated: - | Acce |  |
| (Cog_M_comp), | Data type: Unsigned8 | Dynamic index: - | Fun |  |
| (Cog_M_comp), | P-Group: Closed-loop control | Units group: - | Unit |  |
| SERVO_I_AC | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | 0000 |  |
| Description: | Setting for activating/de-activating learning for cogging torque compensation. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Reactivate slow learning | Yes | No | - |
|  | 01 Activate slow learning as supplement | Yes | No | - |
|  | 02 Remove average value | Yes | No | - |
| Dependency: | Refer to: p5252, p5253, r5254, r5255, p5260 |  |  |  |



| r5254[0..3] | Cogging torque compensation diagnostics / Cog_M_comp diag |  |  |
| :---: | :---: | :---: | :---: |
| SERVO | Can be changed: - | Calculated: - | Access level: 3 |
| (Cog_M_comp), | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| (Cog M comp), | P-Group: Closed-loop control | Units group: - | Unit selection: - |
| SERVO_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Displays diagnostics data for the cogging torque compensation. |  |  |
| Index: | [0] = Average values for slowly <br> [1] = Actual table index <br> [2] = Table index when starting <br> [3] = Table index when ending |  |  |
| Dependency: | Refer to: p5250, p5252, p5253, r5255, p5260 |  |  |
| Note: | Re index 0 : |  |  |
|  | Average values for slowly learning the cogging torque compensation. During learning, the average value is incremented by 1 for each table period passed. |  |  |
|  | Re index 1 : |  |  |
|  | Currently used table index. |  |  |
|  | Re index 2: |  |  |
|  | Table index when starting slow learning. |  |  |
|  | Re index 3: |  |  |
|  | Table index when ending slow learning. |  |  |
|  | Re Index 2, 3: |  |  |
|  | If the actual index when learning is decremented, then the table index at start and end is interchanged |  |  |


| r5255[0...1] | CO: Cogging torque compensation input/output / Cog_M_comp I/O |  |  |
| :---: | :---: | :---: | :---: |
| SERVO | Can be changed: - | Calculated: - | Access level: 3 |
| (Cog_M_comp, Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Cog M comp, Lin), | P-Group: Displays, signals | Units group: 8_1 | Unit selection: p0505 |
| SERVO_I_AC | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min $-[\mathrm{N}]$ | $\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$ | Factory setting - [N] |
| Description: Index: | $\begin{aligned} & {[0]=\text { Input }} \\ & {[1]=\text { Output }} \end{aligned}$ |  |  |
| Dependency: | Refer to: p5250, p5252, p5253, r5254, p5260 |  |  |
| r5255[0...1] | CO: Cogging torque compensation input/output/ Cog_M_comp I/O |  |  |
| SERVO | Can be changed: - | Calculated: - | Access level: 3 |
| (Cog_M_comp), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Cog_M_comp), | P-Group: Displays, signals | Units group: 7_1 | Unit selection: p0505 |
| SERVO_I_AC | Not for motor type: - | Scaling: p2003 | Expert list: 1 |
|  | Min <br> - [Nm] | Max <br> - [Nm] | Factory setting - [Nm] |
| Description: | Display and connector output for the input and output of the cogging torque compensation. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Input }} \\ & {[1]=\text { Output }} \end{aligned}$ |  |  |
| Dependency: | Refer to: p5250, p5252, p5253, r5254, p5260 |  |  |


| p5260[0...4095]SERVO | Cogging torque compensation force table / Cog_M_comp F-tab |  |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
| (Cog_M_comp, Lin), | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Cog M comp, Lin), | P-Group: Closed-loop control | Units group: 8_1 | Unit selection: p0505 |
| SERVO_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -1000000.000[\mathrm{~N}] \end{aligned}$ | Max $1000000.000[\mathrm{~N}]$ | Factory setting 0.000 [ N ] |
| Description: | Display or setting of the compensation values for the cogging torque compensation |  |  |
| Dependency: | Refer to: p5250, p5252, p5253 |  |  |
| Note: | The table length used is set us |  |  |

p5260[0...4095] Cogging torque compensation torque table / Cog_M_comp M-tab
SERVO Can be changed: $\mathrm{U}, \mathrm{T} \quad$ Calculated: - Access level: 3
(Cog_M_comp)
SERVO_AC
(Cog_M_comp),
SERVO_I_AC
(Cog_M_comp)

Description: Display or setting of the compensation values for the cogging torque compensation
Dependency: Refer to: p5250, p5252, p5253, r5254, r5255
Note: $\quad$ The table length used is set using p5252.

Calculated: -
Dynamic index: - Func. diagram: -
Units group: 7_1 Unit selection: p0505
Scaling: - Expert list: 1

Max
$1000000.000[\mathrm{Nm}]$

Factory setting 0.000 [Nm]


| r5402.0... 5 | CO/BO: Line droop control status word / Line drp ZSW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func |  |
|  | P-Group: Closed-loop control | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the status word of line droop control for the infeed. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Line droop control not active | Yes | No | - |
|  | 01 Line droop control active | Yes | No | - |
|  | 02 Line droop control in single mode | Yes | No | - |
|  | 03 Current limitation control active | Yes | No | 7986 |
|  | 04 Operating state line short circuit active | Yes | No | - |
|  | 05 Modulation type wobbulation active | Yes | No |  |
| Note: | Re bit 00, 01: |  |  |  |
|  | The line droop control is activated via binector input p5401. Re bit 02: |  |  |  |
|  |  |  |  |  |
|  | The operating mode of the current hysteresis controller is specified via binector input p5451. Re bit 04: |  |  |  |
|  |  |  |  |  |
|  | The status word of the sequence control is displayed in r5452. |  |  |  |
|  | Re bit 05: |  |  |  |
|  | The pulse frequency wobbulation is activated via p1810.2 $=1$, and the wobbulation amplitude p1811 is enabled p5456[0...2]. $4=0$. |  |  |  |


| p5403[0...1] | CI: Line droop control current signal source / Line drp I s_src |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2002 <br> Max | Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] 3467[0] <br> [1] 3467[1] |
| Description: Index: <br> Dependency: Note: | Sets the signal source for the current to be [0] = Alpha <br> [1] = Beta <br> Refer to: p5404 <br> The following BICO interconnections are re <br> - Droop control for current/voltage at the lin <br> - Droop control for current/voltage at the lin set) | gulated in alpha/beta <br> mmended: <br> filter: BI: p5403 = r34 <br> transformer: BI: p5403 | r3468 must be set) <br> 5404 = r5488 or r5498 must be |
| p5404[0...1] <br> A_INF (Line droop ctrl) | CI: Line droop control voltage si <br> Can be changed: T <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min | nal source / Lin <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2001 <br> Max | C <br> Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] 3468[0] <br> [1] 3468[1] |
| Description: Index: <br> Note: | The following BICO interconnections are recommended: <br> - Droop control for current/voltage at the line filter: BI: p5404 = r3468 (BI: p5403 = r3467 must be set) <br> - Droop control for current/voltage at the line transformer: BI: p5404 = r5488 or r5498 (BI: p5403 = r5497 must be set) |  |  |
| $\begin{aligned} & \hline \text { p5405 } \\ & \text { A_INF (Line droop } \\ & \text { ctrl) } \end{aligned}$ | Line droop control frequency dr <br> Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> 30.00 [\%] | p no-load freq <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max <br> 300.00 [\%] | drp f_no-Id <br> Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 100.00 [\%] |
| Description: | Sets the no-load frequency (as a \% of p0211) for the line droop control active power frequency droop. Droop formula (without smoothing):$\text { r5410 }=(\mathrm{p} 5405+\mathrm{p} 5406+\mathrm{p} 5407 \times \mathrm{r} 5411[0] / \mathrm{r} 0206) \times \mathrm{p} 0211$ |  |  |
| Dependency: | Refer to: p5409 |  |  |
| Note: | The droop characteristic input variable is the active power r5411[0] at the selected connection point (p5403, p5404). The output frequency calculated using the above formula is filtered in accordance with the parameterized smoothing time ( p 5409 ). <br> The smoothed output frequency is displayed in r 5410 . |  |  |


| p5406[0...1] | CI: Line droop control frequency droop supplementary setpoint / L drp f_suppl_setp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl, Line transf) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | [0] 0 |
|  |  |  | [1] 5582[0] |
| Description: | Sets the signal source for the frequency droop supplementary setpoint (as a \% of p0211). |  |  |
| Index: | [1] = Supplementary setpoint direct |  |  |
| Dependency: | Refer to: p5405 |  |  |
| Notice: | Re index 1: |  |  |
|  | Setpoint steps without smoothing can result in significant equalization operations in the line supply and the overload of the inverter and the line components. |  |  |
| Note: | Re index 0 : |  |  |
|  | The setpoint signals are PT1-filtered with the time constant p5409. |  |  |
|  | Re index 1: |  |  |
|  | If the signals for the unsmoothed setpoints are precisely reset to 0 (e.g. for p5483[3] = 1), then by internally adapting the smoothed setpoint state, an undesirable step-like frequency change is avoided. The signal for the smoothed setpoint should be adapted using a corresponding frequency change, if the frequency is to be kept constant. |  |  |

$\overline{p 5406[0 . .1] ~ C I: ~ L i n e ~ d r o o p ~ c o n t r o l ~ f r e q u e n c y ~ d r o o p ~ s u p p l e m e n t a r y ~ s e t p o i n t ~ / ~ L ~ d r p ~ f ~ s u p p l ~ s e t p ~}$

A_INF (Line droop
ctrl)

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Unsigned32 / FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: PERCENT
Max
-

Access level: 3
Func. diagram: 7982
Unit selection: -
Expert list: 1
Factory setting
[0] 0
[1] 0

Description: Sets the signal source for the frequency droop supplementary setpoint (as a \% of p0211).
Index: [0] = Supplementary setpoint is smoothed
[1] = Supplementary setpoint direct
Dependency: Refer to: p5405
Notice: Re index 1:
Setpoint steps without smoothing can result in significant equalization operations in the line supply and the overload of the inverter and the line components.
Note:
Re index 0 :
The setpoint signals are PT1-filtered with the time constant p5409.
Re index 1 :
If the signals for the unsmoothed setpoints are precisely reset to 0 (e.g. for p5483[3] $=1$ ), then by internally adapting the smoothed setpoint state, an undesirable step-like frequency change is avoided. The signal for the smoothed setpoint should be adapted using a corresponding frequency change, if the frequency is to be kept constant.

| p5407 | Line droop control frequency droop gradient / Line drp f grad |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Line droop | Can be changed: U, T | Calculated: - | Access level: 3 |
| ctrl) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00[\%]$ | 100.00 [\%] | 5.00 [\%] |
| Description: | Sets the gradient of the frequency droop (as a $\%$ of the rated frequency p0211 at the rated power r0206). |  |  |
| Dependency: | Refer to: p5405 |  |  |


| $\overline{\text { p5408 }}$ <br> A_INF (Line droop ctrl) | CI: Line droop control frequency droop gradient dynamic / Line drp f grad dy |  |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the additional gradient of the frequency characteristic. |  |  |
| p5409 | Line droop control frequency droop smoothing time / Line drp ft_sm |  |  |
| A_INF (Line droop ctrl) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 10000.00[\mathrm{~ms}] \end{aligned}$ | Factory setting 150.00 [ms] |
| Description: | Sets the smoothing time for the output frequency of the active power frequency droop (r5410). |  |  |
| Dependency: |  |  |  |
| Note: | When the load changes, mechanical energy generation units induce a delayed change in frequency on account of their inertia. The converter tries to emulate this response with the assistance of the smoothing time. |  |  |
|  | For the line to remain stable, all the energy generation units in a separate network have to respond in a similar man ner during operation. |  |  |
| r5410 | Line droop control frequency droop output / Line drp f outp |  |  |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [Hz] | $\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$ | Factory setting $-[\mathrm{Hz}]$ |
| Description: | Displays the smoothed output frequency of the active power frequency droop. |  |  |
|  | Droop formula (without smoothing): |  |  |
|  | r5410 $=(\mathrm{p} 5405+\mathrm{p} 5406+\mathrm{p} 5407$ * r5411[0] / r0206) * p0211 |  |  |
| Dependency: | Refer to: p5405 |  |  |


| r5411[0...1] | Line droop control frequency droop active power / Line drp f P_act |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Line droop | Can be changed: - | Calculated: - | Access level: 3 |
| ctrl) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Maxing: - | Expert list: 1 |
|  | Min | Factory setting |  |
|  | $-[\mathrm{kW}]$ | $-[\mathrm{kW}]$ |  |
| Description: | Displays the input active power of the active power frequency droop. |  |  |
|  | The active power is calculated for the currents and voltages defined with connector inputs p5403 and p5404. |  |  |
| Index: | $[0]=$ Unsmoothed |  |  |
|  | $[1]=$ Smoothed |  |  |
| Dependency: | Refer to: p5409 |  |  |
| Note: | Re index 1: |  |  |
|  | The value is smoothed using a PT1 filter (smoothing time: p0045). |  |  |


| r5412 | Line droop control line angle / Line drp angle |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ}\right]$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting - [ ${ }^{\circ}$ ] |
| Description: | Displays the actual line angle for line droop control. |  |  |
|  | The value is calculated by integrating the output frequency of the active power frequency droop (r5410). |  |  |
| p5413 | Line droop control additional frequency droop gradient / Line droop add-f |  |  |
| A_INF (Line droop ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min$0.0 \text { [\%] }$ | Max | Factory setting |
|  |  | 10000.0 [\%] | 0.0 [\%] |
| Description: | Sets the gradient for the additional, fast frequency droop. |  |  |
|  | The reference quantity is the gradient for the regular frequency droop (p5407). |  |  |
|  | The settings for the regular frequency droop (p5405 onwards) apply to the other droop parameters. |  |  |
| Dependency: <br> Note: | Refer to: p5414 |  |  |
|  | For example, a strong frequency dip can be generated when the load is connected with the additional frequency droop, and this can be used to emulate the behavior of a diesel generator. |  |  |
|  | The frequency is initially changed with the smoothing time p5414 in accordance with the additional droop, reaching the stationary end value in accordance with the time constant p5409 for the regular frequency droop. |  |  |
|  | The additional droop is de-activated with p5413 $=0$. |  |  |
| $\overline{\text { p5414 }}$ <br> A_INF (Line droop ctrl) | Line droop control additional frequency droop smoothing time / Line droop add-t |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.0 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$ | Factory setting 10.0 [\%] |
| Description: | Sets the smoothing time for the additional, fast frequency droop. |  |  |
| Dependency: | Refer to: p5413 |  |  |
| Note: | The smoothing time for the additional, fast frequency droop is less than or equal to the time constant for the regular frequency droop. |  |  |
| p5415 | Line droop control voltage droop no-load voltage / Line drp U_no-Id |  |  |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - $\begin{aligned} & \operatorname{Min} \\ & 30.00[\%] \end{aligned}$ | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: 7982 |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: PERCENT | Expert list: 1 |
|  |  | $\begin{aligned} & \operatorname{Max} \\ & 300.00 \text { [\%] } \end{aligned}$ | Factory setting 100.00 [\%] |
| Description: | Sets the no-load voltage (as a \% of p0210) for the reactive current voltage droop for line droop control. Droop formula (without smoothing):p5420 = (p5415 + p5416 + p5417 * r5421[0] / r0207) * p0210 |  |  |
| Dependency: | Refer to: p5419 |  |  |

Note: The droop characteristic input variable is the reactive power $\mathrm{r} 5421[0]$ at the selected connection point ( p 5403 , p5404).
The output voltage calculated using the above formula is filtered in accordance with the parameterized smoothing time p5419.
The smoothed output voltage is displayed in r5420.

| p5416[0..1] | CI: Line droop control voltage droop supplementary setpoint / L drp U_suppl_setp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl, Line transf) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | [0] 0 |
|  |  |  | [1] 5582[1] |
| Description: | Sets the signal source for the voltage droop supplementary setpoint (as a \% of p0210). |  |  |
| Index: | [0] = Supplementary setpoint is smoothed <br> [1] = Supplementary setpoint direct |  |  |
| Dependency: | Refer to: p5415 |  |  |
| Notice: | Re index 1: |  |  |
|  | Setpoint steps without smoothing can result in significant equalization operations in the line supply and the overload of the inverter and the line components. |  |  |
| Note: | Re index 0 : |  |  |
|  | The setpoint signals are PT1-filtered with the time constant p5419. |  |  |
|  | Re index 1 : |  |  |
|  | If the signals for the unsmoothed setpoints are precisely reset to 0 (e.g. for p5483[3] = 1), then by internally adapt ing the smoothed setpoint state, an undesirable step-like voltage change is avoided. The signal for the smoothed setpoint should be adapted using a corresponding voltage change, if the output voltage is to be kept constant. |  |  |

p5416[0...1] CI: Line droop control voltage droop supplementary setpoint / L drp U_suppl_setp
A INF (Line droop
ctrl)
Can be changed: $\mathrm{U}, \mathrm{T} \quad$ Calculated: - Access level: 3

Data type: Unsigned32 / FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min


Dynamic index: -
Units group: -
Scaling: PERCENT Max

Access level: 3
Func. diagram: 7982
Unit selection: -
Expert list: 1

## Factory setting

[0] 0
[1] 0

Description:
Sets the signal source for the voltage droop supplementary setpoint (as a \% of p0210).
Index:

Dependency:
[0] = Supplementary setpoint is smoothed
[1] = Supplementary setpoint direct

Notice:
Re index 1 :
Setpoint steps without smoothing can result in significant equalization operations in the line supply and the overload of the inverter and the line components.
Note:
Re index 0 :
The setpoint signals are PT1-filtered with the time constant p5419.
Re index 1 :
If the signals for the unsmoothed setpoints are precisely reset to 0 (e.g. for p5483[3] $=1$ ), then by internally adapting the smoothed setpoint state, an undesirable step-like voltage change is avoided. The signal for the smoothed setpoint should be adapted using a corresponding voltage change, if the output voltage is to be kept constant.

| p5417 | Line droop control voltage droop gradient / Line drp U grad |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> 0.00 [\%] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 100.00 [\%] | Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 5.00 [\%] |
| Description: <br> Dependency: | Sets the gradient of the voltage droop (as a \% of the rated voltage p0210 at the rated current r0207). Refer to: p5415 |  |  |
| p5418 | CI: Line droop control voltage droop gradient dynamic / Line drp U grad dy |  |  |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: PERCENT <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: | Sets the signal source for the additional gradient of the voltage characteristic. |  |  |
| p5419 | Line droop control voltage droop smoothing time / Line drp U t_sm |  |  |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> 0.00 [ms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 10000.00 [ms] | Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 150.00 [ms] |
| Description: | Sets the smoothing time for the reactive current actual value (r5421[1]). <br> The smoothed reactive current is the input quantity for the reactive current voltage droop. |  |  |
| Dependency: <br> Note: | When the load changes, mechanical energy generation units induce a delayed change in voltage on account of their electrical properties. The converter tries to emulate this response with the assistance of the smoothing time. For the line to remain stable, all the energy generation units in a separate network have to respond in a similar manner during operation. |  |  |
| r5420 | Line droop control voltage droop output / Line drp U outp |  |  |
| A_INF (Line droop ctrl) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min <br> - [Vrms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [Vrms] | Access level: 3 <br> Func. diagram: 7982 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> - [Vrms] |
| Description: | Displays the smoothed output voltage of the reactive current voltage droop. Droop formula (without smoothing):$\mathrm{p} 5420=\text { p5415 + p5416 + p5417 * r5421[0] / r0207 * p0210 }$ |  |  |
| Dependency: | Refer to: p5415 |  |  |




| p5428[0...3] | Line droop control voltage control short circuit / Line drp U_ctrl sh |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$ | Factory setting [0] 20.00 [\%] |
|  |  |  | [1] 0.00 [\%] |
|  |  |  | [2] 90.00 [\%] |
|  |  |  | [3] 2.00 [\%] |
| Description: | Sets the parameters for rapid pre-control of the output voltage in the event of a voltage dip. <br> The values relate to the voltage setpoint from the voltage droop (r5420). <br> The voltage output by the converter is formed from the product of the voltage setpoint and the adaptation factor, which is calculated in rapid pre-control. |  |  |
| Index: | [0] = Adaptation factor lower limit <br> [1] = Adaptation factor increment current limit <br> [2] = Adaptation factor increment voltage difference <br> [3] = Adaptation factor increment increase |  |  |
| Dependency: | Refer to: r5452 |  |  |
| Note: | Rapid adaptation of the volta the number of additional swit Re index 0 : <br> Minimum value for the adap The value is dependent upo value results from the reacto function. <br> Re index 1 : <br> When the current limit is rea of 0 means that the adaptation value of $100 \%$ de-activates <br> Re index 2 : <br> If the voltage across the line cycles, the adaptation factor Re index 3 : <br> If none of the above criteria centage value p5428[3] in e reaches the maximum value r5420 is cancelled out. | reduced line voltage completed by the <br> st be complied with $p$ at the the line reac frequency, and the <br> ation factor is weight $p$ to the minimum valu <br> the minimum value with this factor (p5 <br> adaptation factor is oller clock cycle (the ect of pre-control by | t of a line short circuit) reduces current hysteresis controller. <br> of the reduced output voltage. ent limit is reached. As such, the alue of $100 \%$ de-activates the <br> in each sampling cycle. A value the current limit is reached. A <br> least 2 current controller clock ampling cycle. <br> factor is increased by the peritive). If the adaptation factor lication by the droop setpoint |
| r5429 | Line droop control voltage control output / L drp U_ctrl outp |  |  |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7982 |
|  | P-Group: Displays, signals | Units group: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: <br> Dependency: | Displays the controller output for voltage control at the connection point. Refer to: p5426, p5427 |  |  |



| p5435 | Direct component controller low pass damping / I_dc_reg PT2 D |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min <br> 0.001 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 10.000 | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 1.000 |  |
| Description: <br> Dependency: | Sets the damping for the 2nd order low-pass filter to suppress the direct component in the converter current. Refer to: p5434 |  |  |  |
| p5436 | Direct component controller P gain / I_dc_reg Kp |  |  |  |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min <br> 0.000 [ohm] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 10.000 [ohm] | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 0.020 |  |
| Description: <br> Dependency: <br> Note: | Sets the proportional gain for the PI controller to suppress the direct component in the converter current. <br> Refer to: p5437 <br> Recommended setting: p5436 = total resistance of reactor and transformer. |  |  |  |
| p5437 | Direct component controller integration time / I_dc_reg Ti |  |  |  |
| A_INF (Line droop ctrl) | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Displays, signals <br> Not for motor type: - <br> Min <br> 0.000 [s] | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max <br> 100.000 [s] | Acce <br> Func. <br> Unit <br> Expe <br> Fact <br> 3.500 |  |
| Description: <br> Dependency: <br> Note: | Sets the integration time for the PI controller to suppress the direct component in the converter current. <br> Refer to: p5436 <br> Recommended setting: p5437 = 70\% of the control loop time constant transformer magnetizing inductance/total resistance. |  |  |  |
| p5440 | Harmonics controller bandpass filter activation / Bandpass act |  |  |  |
| A_INF (Line droop ctrl) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned16 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func. <br> Unit <br> Expe <br> Fact <br> 0000 |  |
| Description: <br> Bit field: | Setting to activate the bandp <br> Bit Signal name <br> 00 Filter 0 <br> 01 Filter 1 <br> 02 Filter 2 <br> 03 Filter 3 | harmonics controlle <br> 1 signal <br> ON <br> ON <br> ON <br> ON | 0 signal <br> OFF <br> OFF <br> OFF <br> OFF | FP |
| Dependency: | Refer to: p5441, p5442, p544 |  |  |  |


| p5441[0...3] | Harmonics controller bandpass filter gain / Bandpass gain |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 10000.00 | 120.00 |
| Description: | Sets the gain for the bandpass filter for the harmonics controller. |  |  |
| Index: | [0] = Filter 0 |  |  |
|  | [1] = Filter 1 |  |  |
|  | [2] = Filter 2 |  |  |
|  | [3] = Filter 3 |  |  |
| Dependency: | Refer to: p5440, p5442 |  |  |
| p5442[0...3] | Harmonics controller bandpass filter mid-frequency / Bandpass f_mid |  |  |
| A_INF (Line droop ctrl) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 | Calculated: - | Access level: 4 |
|  |  | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min$0.00[\mathrm{~Hz}]$ | Max | Factory setting |
|  |  | 1000.00 [Hz] | 300.00 [Hz] |
| Description: Index: | Sets the mid-frequency for the bandpass filter for the harmonics controller. |  |  |
|  |  |  |  |
|  | $\text { [0] = Filter } 0$$\text { [1] = Filter } 1$ |  |  |
|  | [2] = Filter 2 |  |  |
|  | [3] = Filter 3 |  |  |
| Dependency: | Refer to: p5440, p5441, p5443 |  |  |
|  | The parameter should be set to a value which is greater than or equal to the fundamental frequency. |  |  |
| p5443 <br> A_INF (Line droop ctrl) | Harmonics controller bandpass filter gain total / Bandpass gain tot |  |  |
|  | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 | 100.00 | 1.00 |
| Description: | Sets the total gain for all bandpass filters for the harmonics controller. <br> Refer to: p5440, p5441, p5442 |  |  |
| Dependency: |  |  |  |
| r5444[0...1] | Line droop control line voltage absolute value / U_line abs val |  |  |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min- [V] | Max | Factory setting |
|  |  | - [V] | - [V] |
| Description: | Displays the absolute value of the line voltage. |  | r5444 = sqrt (r5445[0]^2 + r5445[1]^2) |
| Index: | [0] = Droop (p5404) |  |  |
| Dependency: | Refer to: r5445 |  |  |


| r5445[0...1] | Line droop control line voltage alpha/beta component / U_line A/B comp |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting $-[V]$ |
| Description: | Displays the alpha/beta component of the line voltage. |  |  |
| Index: | $[0]=\text { Alpha }$ |  |  |
| Dependency: | Refer to: r5444 |  |  |
| r5446[0...1] | Line droop control line voltage active/reactive component / U_line P/Q comp |  |  |
| A_INF (Line droop | Can be changed: - | Calculated: - | Access level: 3 |
| ctrl) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting - [V] |
| Description: | Displays the active/reactive component of the line voltage. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Active }} \\ & {[1]=\text { Reactive }} \end{aligned}$ |  |  |


| r5447 | CO: Line droop control line voltage absolute value / I_line abs val |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop | Can be changed: - | Calculated: - | Access level: 3 |
| ctrl) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the line current absolute value at the connection point (p5403, p5404). |  |  |
| Dependency: | Refer to: r5448 |  |  |
| Note: | The following applies: r5447 $=$ sqrt(r5448[0]^2 + r54 |  |  |

r5448[0...1] Line droop control line current alpha/beta component / I_line A/B comp
ctrl) Data type: FloatingPoint32 P-Group: Displays, signals Not for motor type: Min - [A] Displays the alpha/beta component of the line current.
$\begin{array}{ll}\text { Description: } & {[0]=\text { Alpha }} \\ \text { Index: }\end{array}$
$[0]=$ Alpha
$[1]=$ Beta
Dependency: Refer to: r5447


The effective current limits are calculated from the parameterized overcurrent (p5453) and the hysteresis width (p5454).



| Note: | Re p5458[0]: |  |  |
| :---: | :---: | :---: | :---: |
|  | Minimum time for operating state "Rated operation" for change to "No-load operation". |  |  |
|  | Re p5458[1]: |  |  |
|  | Permissible short-circuit duration. If the short circuit is not cleared within this time, the main generator will shut down with fault F06850. |  |  |
| p5459[0...3] | Current hysteresis controller sequence control state change / I_hyst_ctrl seq |  |  |
| A_INF (Line droop ctrl) | Can be changed: U, T | Calculated: | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.0 [\%] | 200.0 [\%] | [0] 10.0 [\%] |
|  |  |  | [1] 5.0 [\%] |
|  |  |  | [2] 70.0 [\%] |
|  |  |  | [3] 75.0 [\%] |
| Description: | Sets the limits for state change in the sequence control on the current hysteresis controller. |  |  |
| Index: | [0] = Lower current limit no-loa <br> [1] = Upper current limit norma <br> [2] = Lower voltage limit short- <br> [3] = Upper voltage limit short- | ation <br> ation n peration |  |
| Dependency: | Refer to: r5452 |  |  |
| Note: | The current value refers to r0209. |  |  |
|  | The voltage value refers to p 0210 . |  |  |
| p5460[0...n] | VSM2 input line supply voltage, voltage scaler / VSM2 inp U_scaler |  |  |
| A_INF (Line transf) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $0.00 \text { [\%] }$ | $100000.00 \text { [\%] }$ | $0.00 \text { [\%] }$ |
| Description: | Sets a voltage scaler for Voltage Sensing Module 2 (VSM2). |  |  |
| Note: | When the 690 V input is used (X522) without voltage scaler, 0 \% should be entered. |  |  |
|  | When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by $100 \%$ should be entered. |  |  |
|  | Example: |  |  |
|  | 1000 V line supply voltage, voltage scaling, 10:1 |  |  |
|  | --> voltage at the VSM input is 100 V |  |  |
|  | --> p5460 = 10 * $100 \%=1000 \%$ |  |  |

r5461[0...n] CO: VSM2 input line supply voltage u1-u2 / VSM2 inp u1-u2

A INF (Line transf)
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min

- [V] -[V]

Displays the voltage between phases L1 and L2.
Description: $\quad$ X521.1 or X522.1: Connection of L1
X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2
Note:

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting
[V]

Calculated: -
Dynamic index: p0150
Units group: 5_3
Scaling: p2001
Max
[V]

| r5462[0...n] | CO: VSM2 input line supply voltage u2-u3 / VSM2 inp u2-u3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func |  |
|  | P-Group: Closed-loop control | Units group: 5_3 | Unit |  |
|  | Not for motor type: - | Scaling: p2001 | Exp |  |
|  | $\begin{gathered} \text { Min } \\ -[V] \end{gathered}$ | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory <br> - [V] |  |
| Description: | Displays the voltage between phases L2 and L3. |  |  |  |
| Note: | X521.2 or X522.2: Connection of L2 |  |  |  |
|  | X521.3 or X522.3: Connection of L3 |  |  |  |
| r5464[0...n] CO: VSM2 temperature evaluation status / VSM2 temp status |  |  |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned16 | Dynamic index: p0150 | Func. diagram: - |  |
|  | P-Group: Terminals | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status of the temperature evaluation of Voltage Sensing Module 2 (VSM2). |  |  |  |
|  | This displays whether the temperature actual value has exceeded the fault/alarm threshold. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Alarm is present <br> 01 Fault is present | 1 signal | 0 signal | FP |
|  |  | Yes <br> Yes | No | Pr |
|  |  |  | No | - |
| p5465[0...n] | VSM2 temperature evaluation sensor type / VSM2 temp sens_typ |  |  |  |
| A_INF (Line transf) | Can be changed: T | Calculated: - | Access level: 3 |  |
|  | Data type: Integer16 | Dynamic index: p0150 | Func. diagram: - |  |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min0 | Max | Factory setting |  |
|  |  | 2 | 0 |  |
| Description: | Sets the temperature sensor for Voltage Sensing Module 2 (VSM2). |  |  |  |
|  | The temperature sensor is connected to terminals X520.5 and X520.6 on the VSM2. |  |  |  |
| Value: | 0: No sensor |  |  |  |
|  | 1: PTC |  |  |  |
|  | 2: KTY84 |  |  |  |
| r5466[0...n] CO: VSM2 temperature KTY / VSM2 temp KTY |  |  |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: - |  |
|  | P-Group: Closed-loop control | Units group: 21_1 | Unit selection: p0505 |  |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |  |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left.{ }^{\circ} \mathrm{C}\right]$ |  |
| Description: | Displays the temperature actual value of a KTY84 temperature sensor connected to Voltage Sensing Module 2 (VSM2). |  |  |  |
|  | Prerequisite: |  |  |  |
|  | A KTY84 sensor is connected and p5465 = 2 is set. |  |  |  |
| Dependency: | Refer to: p5465 |  |  |  |
| Note: | For sensor type PTC (p5465 = 1), the following applies: |  |  |  |
|  | - Below the nominal response temperature, r5466 =-50 ${ }^{\circ} \mathrm{C}$. |  |  |  |
|  | - Above the nominal response temperature, r5466 $=199.9^{\circ} \mathrm{C}$. |  |  |  |


| p5467[0...n] | VSM2 overtemperature alarm threshold / VSM2 temp A_thresh |
| :---: | :---: |
| A_INF (Line transf) | Can be changed: T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: p0150 Func. diagram: - <br> P-Group: - Units group: 21_1 Unit selection: p0505 <br> Not for motor type: - Scaling: p2006 Expert list: 1 <br> Min Max Factory setting <br> $0.00\left[{ }^{\circ} \mathrm{C}\right]$ $301.00\left[{ }^{\circ} \mathrm{C}\right]$ $150.00\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: Dependency: | Sets the alarm threshold for the KTY temperature sensor on Voltage Sensing Module 2 (VSM2). Prerequisite: <br> A KTY84 sensor is connected and p5465 = 2 is set. <br> Refer to: p5465 <br> Refer to: A34211 |
| p5468[0...n] <br> A_INF (Line transf) | VSM2 overtemperature shutdown threshold / VSM2 temp F_thresh   <br> Can be changed: T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: p0150 Func. diagram: - <br> P-Group: - Units group: $21 \_1$ Unit selection: p0505 <br> Not for motor type: - Scaling: p2006 Expert list: 1 <br> Min Max Factory setting <br> $0.00\left[{ }^{\circ} \mathrm{C}\right]$ $301.00\left[{ }^{\circ} \mathrm{C}\right]$ $180.00\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: <br> Dependency: | Sets the shutdown threshold for the KTY temperature sensor of the VSM2 to monitor a temperature. <br> Refer to: p5467 <br> Refer to: F34207 |
| $\overline{p 5469[0 \ldots n]}$ <br> A_INF (Line transf) | VSM2 overtemperature hysteresis / VSM2 temp hyst |
| Description: <br> Dependency: | Sets the hysteresis for the warning threshold of the VSM2 to monitor a temperature. Refer to: p5467 |
| p5470[0...n] | VSM2 10 V input CT gain / VSM2 CT_gain |
| A_INF (Line transf) | Can be changed: T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: p0150 Func. diagram: - <br> P-Group: Closed-loop control Units group: - Unit selection: - <br> Not for motor type: - Scaling: p2002 Expert list: 1 <br> Min Max Factory setting <br> $0.000[A]$ $1000.000[A]$ $1.000[A]$ |
| Description: | Sets the CT gain of the CT connected at the 10 V input of Voltage Sensing Module 2 (VSM2). <br> The parameter specifies the current magnitude in [A] referred to the input voltage at VSM2 in [V]. <br> Example: <br> CT with 1 V per 200 A . $\text { --> p5470 = } 200$ |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of VSM2. The CT for phase 2 is connected at terminals X520.3 and X520.4 of VSM2. |


| r5471[0...n] | CO: VSM2 10 V input CT 1 actual value / VSM2 CT1 I_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $-[A]$ | $\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$ | Factory setting - [A] |
| Description: | Displays the current actual value from current transducer (CT) 1 at the 10 V input of Voltage Sensing Module 2 (VSM2). |  |  |
| Dependency: | Refer to: p5470 |  |  |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of VSM2. |  |  |
| r5472[0...n] | CO: VSM2 10 V input CT 2 actual value / VSM2 CT2 I_act |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [A] | Max <br> - [A] | Factory setting - [A] |
| Description: | Displays the current actual value from current transducer (CT) 2 at the 10 V input of Voltage Sensing Module 2 (VSM2). |  |  |
| Dependency: | Refer to: p5470 |  |  |
| Note: | The CT for phase 2 is connected at terminals X520.3 and X520.4 of VSM2. |  |  |
| r5473[0...n] | CO: VSM2 10 V input 1 actual value / VSM2 inp 1 U_act |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0150 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [V] | $\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$ | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 1 of Voltage Sensing Modules 2 (VSM2). |  |  |
| Dependency: | Refer to: p5470 |  |  |
| Note: | 10 V input 1: Terminals X520.1 and X520.2 |  |  |
| r5474[0...n] | CO: VSM2 10 V input 2 actual value / VSM2 inp 2 U_act |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: 00150 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [V] | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 2 of Voltage Sensing Modules 2 (VSM2). |  |  |
| Dependency: | Refer to: p5470 |  |  |
| Note: | 10 V input 2: Terminals X520.3 and X520.4 |  |  |


| p5478[0...1] | Line droop control current limits / Line droop I_lim |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line droop ctrl) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $50.0 \text { [\%] }$ | $\begin{aligned} & \operatorname{Max} \\ & 123.0 \text { [\%] } \end{aligned}$ | Factory setting [0] 90.0 [\%] |
|  |  |  | [1] 123.0 [\%] |
| Description: | Setting for the permissible maximum current in the event of an overload and short circuit with active line droop control (p5401 = 1 signal). |  |  |
| Index: | [0] = Normal operation <br> [1] = Sh-cct operation |  |  |
| Note: | The value refers to r0209. |  |  |
|  | The current limits p5453, p5 In the case of p5478[0] = 50 Re index 0 : | or the gating unit are $=50 \%$, the current | 54, p5455 can be s |
|  | Current limit for normal operation and for line short circuit in combined operation with a generator. Maximum value is $100 \%$. |  |  |
|  | Re index 1: |  |  |
|  | Current limit for short circuit with a main generator in isolated operation in the line. |  |  |
| r5479[0...4] | Line droop control current permissible / Line droop I perm |  |  |
| A_INF (Line droop ctrl) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays the permissible converter line current with active line droop control (p5401 = 1 signal). |  |  |
| Index: | [0] = Overload current limitin <br> [1] = Short-circuit current lim <br> [2] = Continuous current per <br> [3] = Continuous current per <br> [4] = Continuous current per | mbient $40^{\circ} \mathrm{C}$ <br> mbient $45^{\circ} \mathrm{C}$ <br> mbient $50^{\circ} \mathrm{C}$ |  |
| Note: | Re index 0: |  |  |
|  | Permissible overload current and permissible current during a line short circuit in combined operation (p5451). The converter current is limited to this current value. |  |  |
|  | Permissible current during a line short circuit in isolated operation ( $p 5451$ ). The converter current is limited to this current value. |  |  |
|  | Continuously permissible line current at $\cos (\mathrm{phi})=1$ for I 2 t monitoring. The I 2 t numerator ( r 0036 ) is incremented above this current value with active line droop control (r5402.1 = 1). |  |  |
|  | The current limit is dependent on the ambient temperature. |  |  |
|  | Derating should be observed at $\cos (\mathrm{phi})<1 \mathrm{in}$ order to avoid overtemperatures. |  |  |





| p5486[0...1] | Transf rated voltage primary / | sf U_rated p |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: C2(1, 2) <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - <br> Min <br> 0.00 [Vrms] | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max <br> 63000.00 [ Vrms ] | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting 400.00 [Vrms] |
| Description: Index: | Sets the primary rated voltage of the transformer. <br> [0] = Supply transformer <br> [1] = Island grid transformer |  |  |
| Note: | Re index 0 : <br> Setting the rated primary voltage of the lin If there is a circuit breaker at the transform this circuit breaker in order to avoid high in The setting of this primary voltage and set To magnetize the transformer, the voltage additional VSM must be connected and pa this VSM are displayed in r5461[0] and r54 are displayed in r5488[0, 1, 2]. <br> Re index 1 : <br> Setting the rated primary voltage of the lin connected to the secondary of this transfo another island grid through a circuit break <br> The setting of this primary voltage and setting ratio. <br> To synchronize the island grid voltage with this, an additional VSM must be connected ues of this VSM are displayed in r5461[1] side can be displayed in r5488[3, 4, 5]. To $r 5461[1], p 5487[3]=r 5462[1]$. | ransformer, at whose primary side, then th sh currents. <br> the device supply <br> as to be measured at meterized using p01 [0]. The voltages co <br> ransformer; an island er. Typically, the tran <br> the device supply v <br> e external grid, the nd parameterized us d r5462[1]. The volta this, the following B | AIM and the ALM are connected. an be magnetized before closing <br> defines the transformer ratio. he circuit breaker. To do this, an ing. The voltage actual values of he transformer secondary side <br> in the grid droop mode ( p 5401 ) is is connected to the grid or to <br> efines the island grid transformer <br> age must be measured. To do following. The voltage actual valver to the transformer secondary tions are acquired: p5487[2] = |
| p5487[0...3] | CI: Transf primary voltage signal source / Trans U_prim s_src |  |  |
| A_INF (Line transf) | Can be changed: $T$ <br> Data type: Unsigned32 / FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: p2001 <br> Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] 5461[0] <br> [1] 5462[0] <br> [2] 0 <br> [3] 0 |
| Description: | Sets the signal sources for the measured phase voltages (u12, u23) on the primary side of the transformer. Using these measured values, the transformer voltages on the secondary side are calculated and displayed (r5488). |  |  |
| Index: | [0] = Supply transformer u12 <br> [1] = Supply transformer u23 <br> [2] = Island grid transformer u12 <br> [3] = Island grid transformer u23 |  |  |
| Dependency: | Refer to: p5486 |  |  |
| Notice: | To transform the measured primary voltag to specifying the ratio (p0210, p5487), the Before commissioning it is absolutely nece Using the transformer test mode (p5480 = set. | to the transformer s ase angle (p6420) o ary that this phase a , for the supply tran | LM connection point), in addition must also be parameterized. et! <br> le and a gain error can be finely |
| Note: | The rated voltage for the transformer prim | side is set using p5 |  |


| r5488[0...5] | CO: Transf secondary voltage transformed / Transf U_sec trans |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7990 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [V] | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Factory setting $-[V]$ |
| Description: | Display and connector output for alpha/beta components and amplitude of the calculated transformer secondary voltage. |  |  |
| Index: | [0] = Supply transformer U alph <br> [1] = Supply transformer U beta <br> [2] = Supply transformer U amp <br> [3] = Island grid transformer U <br> [4] = Island grid transformer U <br> [5] = Island grid transformer U |  |  |
| Dependency: <br> Note: | Refer to: p5487 |  |  |
|  | Re index $0,1,2$ : |  |  |
|  | The signals from $\mathrm{p} 5487[0,1]$ are transformed for the transformer calculation. |  |  |
|  | To do this, the ratio ( $\mathrm{p} 5486[0]$ / p 0210 ), the phase angle of the transformer ( $\mathrm{p} 6420[0]$ ) as well as a correction factor for the voltage ratio (p6421[0]) are taken into account. |  |  |
|  | Re index 3, 4, 5: |  |  |
|  | The signals from p5487[2, 3] are transformed for the transformer calculation. |  |  |
|  | To do this, the ratio ( $\mathrm{p} 5486[1]$ / p 0210 ), the phase angle of the transformer ( $\mathrm{p} 6420[1]$ ) as well as a correction factor for the voltage ratio (p6421[1]) are taken into account. |  |  |
| r5489 Transf leakage inductance identified / Transf L_I ident |  |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min - [mH] | Max $-[\mathrm{mH}]$ | Factory setting - [mH] |
| Description: | Displays the total leakage inductance of the supply transformer determined using the identification (p5480 = 13). The result of the identification must be entered into p5490. |  |  |
| Dependency: | Refer to: p5480, p5490 |  |  |
| Notice: | During identification, the value previously entered in p5490 is not effective. |  |  |
| p5490 | Transf leakage inductance / Transf L_leak |  |  |
| A_INF (Line transf) | Can be changed: C 2 (1) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0.001[\mathrm{mH}]$ | $\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{mH}] \end{aligned}$ | Factory setting 0.100 [mH] |
| Description: | Sets the total leakage inductance of the supply transformer. |  |  |


| r5491 | Transf magnetizing inductance identified / Transf L_m ident |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Fun |  |
|  | P-Group: Converter | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min - [mH] | $\begin{aligned} & \text { Max } \\ & -[\mathrm{mH}] \end{aligned}$ | Fact <br> - [mH |  |
| Description: | Displays the magnetizing inductance of the supply transformer determined using the identification (p5480 = 11) The result of the identification must be entered into p5492. |  |  |  |
| Dependency: | Refer to: p5480, p5492 |  |  |  |
| Notice: | During identification, the value previously entered in p5492 is not effective. |  |  |  |
| p5492 | Transf magnetizing inductance / Transf L_mag |  |  |  |
| A_INF (Line transf) | Can be changed: $\mathrm{C} 2(1)$ | Calculated: - | Acc |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Fun |  |
|  | P-Group: Converter | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min |  |  |  |
|  | 0.10 [mH] | 10000.00 [mH] | 250. |  |
| Description: | Sets the magnetizing inductance of the supply transformer. |  |  |  |
| Dependency: | Refer to: r5491 |  |  |  |
| r5493.0... 1 | CO/BO: Line circuit breaker control signals / LSS control sig |  |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Acc |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Facto |  |
|  | - - | - | - |  |
| Description: | Display and connector output to control the circuit breaker for transformer magnetization and island grid synchroni zation. |  |  |  |
| Bit field: | Bit Signal name <br> 00 External pre-charging bypass contactor <br> 01 Island grid circuit breaker | 1 signal | 0 signal | FP |
|  |  | Yes | No | - |
|  |  | Yes | No | - |
| Dependency: | Refer to: r0863, r3402 |  |  |  |
| Caution: | Re bit 01: |  |  |  |
|  | Without any additional control logic, the signal is not suitable to control the island grid circuit breaker. <br> The signal only represents an enable signal to close the circuit breaker during the actual synchronization (r5499.5 = 1). For r5499.5 $=0$, generally the following applies r5493.1 $=0$. |  |  |  |
| Note: | Re bit 00: |  |  |  |
|  | The signal is used to control the external bridging contactor in the pre-charging circuit. |  |  |  |
|  | The external bridging contactor is closed if pre-charging is complete ( $\mathrm{r} 3402>5$ ) and the circuit breaker has no been activated (r0863.1 = 0). |  |  |  |
|  | Re bit 01: |  |  |  |
|  | The signal is used to control the circuit breaker between the island grid and the external grid. |  |  |  |
|  | The signal is set to 1 , if the island grid was successfully synchronized. In this case, the conditions for synchronization (frequency, amplitude, phase angle, p5586) are maintained. |  |  |  |


| p5494 | Magnetization scaling values / Sync scal |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: $T$ <br> Data type: FloatingPoint32 <br> P-Group: Converter <br> Not for motor type: - <br> Min <br> 90.0 [\%] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 100.0 [\%] | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 100.0 |  |
| Description: | Sets the scaling for the setpoint voltage for the transformer magnetization. |  |  |  |
| r5497[0...1] | CO: Transf secondary current / Transf I_second |  |  |  |
| A_INF (Line transf) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> - [A] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2002 <br> Max <br> - [A] | Acce <br> Func <br> Unit <br> Expe <br> Facto <br> - [A] |  |
| Description: Index: | Displays the components for the transformer's calculated secondary current.$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$ |  |  |  |
| r5498[0...2] | CO: Transf secondary voltage / Transf U_second |  |  |  |
| A_INF (Line transf) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> - [V] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: p2001 <br> Max <br> - [V] | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> - [V] |  |
| Description: | Displays the components for the calculated secondary voltage of the supply transformer. <br> Contrary to r 5488 , the calculation is based on the measured filter voltages ( r 3468 ) and currents ( r 3467 ) using line filter and transformer models. |  |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \\ & {[2]=\text { Amplitude }} \end{aligned}$ |  |  |  |
| Dependency: | Refer to: r3467, r3468, p5490, p5492 |  |  |  |
| r5499.0... 6 | CO/BO: Line synchronization stat | us word / Sync |  |  |
| A_INF (Line transf) | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Fact |  |
| Description: | Display and connector output for the status w | word of line synchron |  |  |
| Bit field: | Bit Signal name <br> 00 Line synchronization wait for switch on <br> 01 Transformer magnetization running <br> 02 Transformer magnetization completed <br> 03 Grid black start running <br> 04 Grid black start completed <br> 05 Island grid synchronization running <br> 06 Island grid synchronization completed | $\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$ | 0 signal <br> No | FP |


| $\overline{\mathrm{p} 5500}$ | Dynamic grid support configuration / Dyn grid config |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: T <br> Data type: Unsigned16 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min |  | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 4 <br> Func. diagram: 7996, 7997 |  |
|  |  |  |  |  |  |
|  |  |  | Unit selection: - |  |  |
|  |  |  | Expert list: 1 |  |  |
|  |  |  | Factory setting 00001000 bin |  |
|  |  |  |  |  |  |  |
| Description: | Sets the configuration for dynamic grid support. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | De-activate characteristic | Yes | No | - |
|  | 01 | Line voltage alpha/beta amplitudes | No | Yes | - |
|  | 02 | Grid support mode in the event of asymmetry | No | Yes | - |
|  | 03 | Grid support negative phase-sequence system calculation |  | No | - |
|  | 04 | Grid support neg sequence tolerance threshold characteristic | No | Yes | - |
| Dependency: | Refer to: p5507, r5510 |  |  |  |  |
| Note: | Re bit 00: |  |  |  |  |
|  | If $\mathrm{p} 5500.0=0$ the output value of the grid support characteristic is added to the control's reactive current setpoint. $\mathrm{r} 0075=\mathrm{p} 3610+\mathrm{p} 3611+\mathrm{r} 3471+\mathrm{r} 5510[0]$. |  |  |  |  |
|  | If p5500.0 $=1$ the dynamic reactive current setpoint p3611 is subtracted if dynamic grid support is active (p5502.1 1). In this case, the following applies: |  |  |  |  |
|  | $\mathrm{r} 0075=\mathrm{p} 3610+\mathrm{r} 3471+\mathrm{r} 5510[0]$. |  |  |  |  |
|  | Re bit 01: |  |  |  |  |
|  | Only active for $\mathrm{p} 5500.3=0$. |  |  |  |  |
|  | If p5500.1 $=0$ the alpha and beta amplitudes of the line voltage, which were smoothed with p5507[2], are determined. The absolute value of the line voltage, calculated from these amplitudes, is used as input value for the cha acteristic for grid support. In the event of an asymmetrical line disturbance, oscillation of the reactive current setpoint (r5510) is prevented. |  |  |  |  |
|  | If $\mathrm{p} 5500.1=1$, the smoothed absolute value of the measured line voltage is used as the input value for the grid support characteristic. Smoothing is set with p5507[3]. |  |  |  |  |
|  | Re bit 02: |  |  |  |  |
|  | Only effective if p5500.1 $=0$ and p5500.3 $=0$. |  |  |  |  |
|  | If $p 5500.2=0$, the maximum value from the alpha and beta line voltage amplitudes is used as the input value for the grid support characteristic. The reactive current setpoint $(\mathrm{r} 5510)$ will, therefore, remain virtually constant even in the event of asymmetrical line disturbance. Power fluctuations in the DC link are reduced. |  |  |  |  |
|  | If p5500.2 = 1, the mean value from the alpha and beta line voltage amplitudes is used as the input value for the grid support characteristic. |  |  |  |  |
|  | Re bit 03: |  |  |  |  |
|  | For p5500.3 $=0$, no negative phase-sequence system current setpoint according to the characteristic is calculated This means that the setpoints for the negative phase-sequence system current controller are also equal to 0 if the |  |  |  |  |
|  | For p5500.3 = 1, for an unsymmetrical line supply voltage, a negative phase-sequence system current setpoint is |  |  |  |  |
|  | The negative phase-sequence system current is impressed using the negative phase-sequence system controller (p3636 and following). |  |  |  |  |
|  | The negative phase-sequence system controller is automatically activated and deactivated (the following applies, p3636.0 $=$ p5500.3). |  |  |  |  |
|  | Re bit 04: |  |  |  |  |
|  | Only active for p5500.3 $=1$. |  |  |  |  |
|  | For p5500.4 = 0, a negative phase-sequence system current setpoint according to the characteristic p5505/p5506 is generated, if the difference between two line phase voltage amplitude is greater than p5509[8] and the amplitude of at least one line phase voltage exceeds the line tolerance range according to the characteristic. |  |  |  |  |
|  | For p5500.4 $=1$, an already supporting negative phase-sequence system current is impressed according to the characteristic, if only the difference between two line phase voltage amplitudes is greater than p5509[9]. |  |  |  |  |



| Index: | $\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: p5504 |  |  |
| p5504[0..1] | CI: Dynamic grid control voltage signal source / Dyn grid U sig_src |  |  |
| A_INF (Dyn. grid support) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 7996, 7999 |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | [0] 3468[0] |
|  |  |  | [1] 3468[1] |
| Description: | Sets the signal source for the line voltage in alpha/beta coordinates. |  |  |
|  | The signals are used as input values for the characteristic for dynamic grid support ( $p 5505, \mathrm{p} 5506$ ) and for the extended grid monitoring (p5540 and following). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r0072, r3468, r5488, r5498, p5505, p5506 |  |  |
| Note: | Possible signal sources include for example r3468, r5488, r5498. |  |  |
|  | Associated frequency and phase angle of the line voltage are parameterized in separate connector inputs (p5518, p5519). |  |  |
|  | If $\mathrm{p} 5504[0]=0$ or $\mathrm{p} 5504[1]=0$ : |  |  |
|  | The model value of the voltage source calculated in the line PLL is used (r3468[4, 5]). |  |  |

p5505[0...3] Dynamic grid support characteristic voltage values / Dyn grid char U

A INF (Dyn. grid support)


Description:

Index: $\quad[0]=$ Characteristic positive starting point
[1] = Characteristic positive finishing point
[2] = Characteristic negative starting point
[3] = Characteristic negative finishing point
Dependency: Refer to: p5506
Note: The voltage values refer to p0210.
Dynamic grid support is not applied in the event of voltage deviations between the starting points of the positive and the negative characteristic (p5505[0], p5505[2])
In the event of voltage deviations above the finishing points of the positive or the negative characteristic (p5505[1], p5505[3]), grid support is limited to the reactive current setpoint of the corresponding finishing point (p5506[1], p5506[3]).


Re index 3:
Smoothing time for the measured absolute value of the line voltage if p5500.1 $=1$.
The smoothed absolute value of the line voltage is used as the input value for the grid support characteristic. Setting p5507[3] $=0$ de-activates smoothing.

| p5508[0...1] | Dynamic grid support Vdc thresholds / Dyn grid Vdc thr |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 7997 |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -200[\mathrm{~V}] \end{aligned}$ | Max <br> 0 [V] | Factory setting [0]-50 [V] |
|  |  |  | [1] 0 [V] |
| Description: | Sets the thresholds for the DC-link voltage (Vdc) to reduce the reactive current setpoint from dynamic grid support. |  |  |
|  | A value of 0 de-activates the particular intervention. |  |  |
|  | Re index 0 : |  |  |
|  | The value represents an offset to the maximum DC link voltage. |  |  |
|  | For the intervention threshold, the following applies: r0297 + p5508[0] |  |  |
|  | Re index 1: |  |  |
|  | The value represents an offset to the setpoint of the DC link voltage. |  |  |
|  | The following applies to the intervention threshold: p3510 + p3511 + p5508[1] |  |  |
| Index: | [0] = Offset overvoltage <br> [1] = Offset setpoint volt |  |  |
| Dependency: | Refer to: r0297 |  |  |
| Note: | To avoid imminent shutdown due to a DC-link overvoltage, the reactive current setpoint is reduced for dynamic grid support. Instead of this, the available converter current is used as the active current to reduce the DC-link voltage. |  |  |

p5509[0...11] Dynamic grid support scaling values / Dyn grid scal

A_INF (Dyn. grid support)

Description: Index:

Sets the scaling values for dynamic grid support.
[0] = Ramp reactive current at the beginning/end of grid support
[1] = Ramp reactive current when Vdc threshold is overshot
[2] = Ramp reactive current when Vdc threshold is undershot
[3] = Hysteresis line voltage to exit grid support
[4] = Reference voltage scaling
[5] = Current limitation scaling
[6] = Line voltage change for fast negative sequence calculation
[7] = Line asymmetry current limit positive phase-sequence system

Access level: 3
Func. diagram: 7996, 7997
Unit selection: -
Expert list: 1
Factory setting
[0] 40.00 [\%]
[1] 40.00 [\%]
[2] 4.00 [\%]
[3] 1.00 [\%]
[4] 100.00 [\%]
[5] 100.00 [\%]
[6] 1.00 [\%]
[7] 100.00 [\%]
[8] 100.00 [\%]
[9] 10.00 [\%]
[10] 5.00 [\%]
[11] 100.00 [\%]

|  | $\begin{aligned} & {[8]=\text { Line asymmetry current limit negative phase-sequence system }} \\ & {[9]=\text { Line asymmetry minimum value for start of grid support }} \\ & {[10]=\text { Line asymmetry maximum value for end of grid support }} \\ & {[11]=\text { Active current limitation scaling }} \end{aligned}$ |
| :---: | :---: |
| Dependency: | Refer to: p5505, p5506, p5508 |
| Note: | Re index 0: |
|  | Change in the reactive current setpoint (\% per ms) at the beginning and end of dynamic grid support. |
|  | This avoids sudden changes in the reactive current if the starting points for the line voltage ( $\mathrm{p} 5505[0], \mathrm{p} 5505[2]$ ) are overshot. |
|  | Re index 1: |
|  | Change in the reactive current setpoint (\% per ms) when the maximum Vdc threshold (p5508) is overshot. |
|  | To avoid beat phenomena, the following must apply: p5509[1] > p5509[2]. |
|  | Re index 2: |
|  | Change in the reactive current setpoint (\% per ms) when the maximum Vdc threshold (p5508) is undershot. |
|  | To avoid beat phenomena, the following must apply: p5509[1] > p5509[2]. |
|  | Re index 3: |
|  | Sets the hysteresis for the line voltage to exit grid support (as a percentage of the supply voltage p0210). |
|  | To exit grid support, the line voltage must be in the interval reduced by the hysteresis width (the interval is defined with the starting points $p 5505[0]$ and $p 5505[2]$ and the hysteresis width p5509[3]). |
|  | Re index 4: |
|  | Sets the scaling factor for the reference voltage for dynamic grid support (as a percentage of the supply voltage p0210). |
|  | As a result, the product of $\mathrm{p} 0210 \times \mathrm{p} 5509[4]$ is applied as the voltage zero. |
|  | Re index 5: |
|  | Sets the scaling factor for the permissible maximum converter current absolute value for dynamic grid support (as a percentage of the converter maximum current r0209). |
|  | Values higher than 100\% will not be applied. |
|  | Re index 6: |
|  | Only active for p5500.3 = 1. |
|  | Sets the percentage voltage change (as a percentage of p0210) from which value the calculated positive phasesequence system and negative phase-sequence system amplitudes are quickly adapted. As a consequence, the grid is quickly supported when step-type faults occur. |
|  | Re index 7: |
|  | Only active for p5500.3 $=1$. |
|  | Sets the maximum positive phase-sequence system reactive current to support the grid in the case of line asymmetry $(r 5502.2=1)$ as a percentage of r0207. |
|  | Re index 8 : |
|  | Only active for p5500.3 $=1$. |
|  | Sets the maximum negative phase-sequence system absolute current to support the grid in the case of line asymmetry $(r 5502.2=1)$ as a percentage of r0207. |
|  | Re index 9: |
|  | Only active for p5500.3 = 1. |
|  | Sets the minimum value of the voltage asymmetry to impress a negative phase-sequence system current for asymmetrical grid support. |
|  | For p5500.4 = 1, a negative phase-sequence system current is already impressed, if the voltage asymmetry exceeds the set value. |
|  | For p5500.4 $=0$, in addition, for at least one of the phase voltages, the tolerance condition from the characteristic p5505 / p5506 must be exceeded. |
|  | Re index 10: |
|  | Only active for p5500.3 = 1 . |
|  | Sets the maximum value of the voltage asymmetry to end asymmetrical grid support. |
|  | This means that parameters p5509[9] and p5509[10] define a hysteresis range. |




| r5515[0..1] | Dynamic grid support display active power / Dec En_gen P_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid | Can be changed: - | Calculated: - | Access level: 3 |
| support) | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [kW] | Max <br> - [kW] | Factory setting - [kW] |
| Description: Index: | Displays the active power at the defined lin <br> [0] = Unsmoothed <br> [1] = Smoothed | connection point via p |  |
| Note: | Re index 1 : |  |  |
|  | The value is smoothed using a PT1 filter (smoothing time: p0045). |  |  |
| r5516[0...1] | Dynamic grid support display reactive power / Dec En_genQ_react |  |  |
| A_INF (Dyn. grid support) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 14_12 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [kvar] | Max <br> - [kvar] | Factory setting - [kvar] |
| Description: Index: | Displays the reactive power at the defined line connection point via p5503 and p5504. <br> [0] = Unsmoothed <br> [1] = Smoothed |  |  |
| Note: | Re index 1 : |  |  |
|  | The value is smoothed using a PT1 filter (smoothing time: p0045). |  |  |
| p5518 | CI: Dynamic grid support line phase angle signal source / Line angle S_src |  |  |
| A_INF (Dyn. grid support) | Can be changed: T | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the line phase angle associated with the voltage signal p5504. |  |  |
| Note: |  |  |  |
|  | The line voltage angle of the voltage source calculated from the line PLL is used (r0094). |  |  |
| p5519 | CI: Dynamic grid support line frequency signal source / Line freq S_src |  |  |
| A_INF (Dyn. grid support) | Can be changed: T | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2000 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | Sets the signal source | - | $0$ |
| Description: | Sets the signal source for the line frequency associated with the voltage signal p5504. |  |  |
| Note: | For p5519 = 0, the following applies: |  |  |
|  | The smoothed line frequency calculated by the line PLL is used (r0066). |  |  |


| r5522.0... 3 | CO/BO: Dynamic grid support sequence control status word / Dyn grid seq ZSW |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: - | Calculated: - | Acces |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func |  |
|  | P-Group: Closed-loop control | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exper |  |
|  | Min | Max | Facto |  |
|  | - | - | - |  |
| Description: | Displays the sequence control status word on the current hysteresis controller. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Initialization | Yes | No | - |
|  | 01 No-load | Yes | No | - |
|  | 02 Normal | Yes | No | - |
|  | 03 Short circuit | Yes | No | - |
| Dependency: | Refer to: p5528, p5529 |  |  |  |
|  | Refer to: F06850 |  |  |  |
| $\overline{p 5528[0 \ldots 1]}$ <br> A_INF (Dyn. grid support) | Dynamic grid support minimum time operating state / Dyn grid t op |  |  |  |
|  | Can be changed: $\mathrm{U}, \mathrm{T}$ Data type: FloatingPoint32 | Calculated: - | Acce |  |
|  |  | Dynamic index: - | Func. |  |
|  | P-Group: Displays, signals | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | $\begin{aligned} & \text { Min } \\ & 0.000 \text { [s] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 3.000[\mathrm{~s}] \end{aligned}$ | Facto [0] 1. |  |
|  |  |  | [1] 2.0 |  |
| Description: Index: | Sets the times for the operating <br> [0] = Minimum time in normal <br> [1] = Maximum time in short cir | current hysteresis |  |  |
| Dependency: Note: | Refer to: A06849, F06850 |  |  |  |
|  | Re index 0 : |  |  |  |
|  | Minimum time for operating state "Rated operation" for change to "No-load operation". |  |  |  |
|  | Re index 1: |  |  |  |
|  | Permissible short-circuit duration. |  |  |  |
|  | If the short circuit is not cleared within this time, then A_INF shuts down with fault F06850. |  |  |  |
| p5529[0...3] | Dynamic grid support sequence control state change / Dyn grid seq state |  |  |  |
| A_INF (Dyn. grid support) | Can be changed: U, T | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func |  |
|  | P-Group: Displays, signals | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | $\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$ | Factory setting [0] 10.0 [\%] |  |
|  |  |  | [1] 5.0 |  |
|  |  |  | [2] 65 |  |
|  |  |  | [3] 70 |  |
| Description: | Sets the limits for state change in the context of sequence control on the current hysteresis controller. |  |  |  |
| Index: | [0] = Minimum current for change from no-load to rated operation <br> [1] = Maximum current for change from rated to no-load operation <br> [2] = Minimum voltage for state change to short circuit <br> [3] = Maximum voltage for change from short circuit to rated operation |  |  |  |
| Dependency: | Refer to: r5522 |  |  |  |
| Note: | The current value refers to r0209. |  |  |  |
|  | The voltage value refers to p0210. |  |  |  |


| p5540 | Line monitoring configuration / Line monit config |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: T | Calculated: - | Acce |  |
|  | Data type: Unsigned16 | Dynamic index: - | Fun |  |
|  | P-Group: Closed-loop control | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min | Max | Fact |  |
|  | - | - | 0000 | bin |
| Description: | Sets the configuration for line monitoring. |  |  |  |
|  | Line monitoring is activated using binector input p5541-1 signal. |  |  |  |
| Bit field: |  | 1 signal | 0 signal | FP |
|  | 00 Voltage and frequency monitoring | Yes | No | - |
|  | 01 AISL frequency shift technique | Yes | No | - |
|  | 04 FRT voltage time characteristic | Yes | No | - |
|  | 05 FRT shutdown delayed | Yes | No | - |
|  | 07 Frequency time characteristic | Yes | No | - |
|  | 07 Frequency time characteristic <br> 09 Line synchronization voltage/frequency check | Yes | No | - |
| Dependency: Note: | Refer to: p5541 |  |  |  |
|  | AISL: Anti Islanding |  |  |  |
|  | FRT: Fault Ride Through (riding through a line fault) |  |  |  |
|  | Re bit 00: |  |  |  |
|  | The monitoring bandwidths of the voltage and frequency criteria are defined using the thresholds p5543 and p5544. Also see the note regarding bit 03 and bit 05 . |  |  |  |
|  | The frequency shift technique actively changes the frequency that is fed in. For islanding formation this results in the permissible frequency bandwidth being violated. Shut down is realized via fault F06851. |  |  |  |
|  | It is only possible to activate the FRT voltage time characteristic (HVRT, LVRT) when the voltage and frequency monitoring are activated ( $\mathrm{p} 5540.0=1$ signal). The monitoring thresholds p 5543 and p 5544 are deactivated. |  |  |  |
|  | The behavior after an LVRT limit has been exceeded depends on the signal state. 0 signal = immediate shutdown. |  |  |  |
|  | 1 signal = shutdown only after the time in p5545[2] has expired. |  |  |  |
|  | Re bit 07: |  |  |  |
|  | It is only possible to activate the frequency time characteristic (HFRT, LFRT) when the voltage and frequency monitoring are activated ( $\mathrm{p} 5540.0=1$ signal). The monitoring thresholds p5543 and p5544 are deactivated. |  |  |  |
|  | Re bit 09: |  |  |  |
|  | The additional voltage and frequency check at switch-on is activated. To do this, before operation is enabled, a check is made against the limits $p 5543[2,3]$ and $p 5544[2,3]$ and the system waits until these limits are maintained. |  |  |  |
| p5541 | BI: Line monitoring activation / Lin | ne monit act |  |  |
| A_INF (Dyn. grid support) | Can be changed: $T$ | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func |  |
|  | P-Group: Commands | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - - |  | 0 |  |
| Description: | Sets the signal source to activate line monitoring. |  |  |  |
|  | BI: p5541 $=1$ signal: |  |  |  |
|  | Activating line monitoring. |  |  |  |
|  | BI: p5541 = 0 signal: |  |  |  |
|  | Deactivating line monitoring. |  |  |  |



Re Index 2, 3:
Effective monitoring limits for line synchronization and for automatic restart.
With the default setting 100\%, the separate limit values are deactivated and the monitoring limits for regular operation apply (index 0, 1).

| p5544[0...3] | Line monitoring frequency threshold / Line mon_f thresh |  |
| :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: T Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 Dynamic index: - | Func. diagram: 7999 |
|  | P-Group: - Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max <br> $0.0[\mathrm{~Hz}]$ $3.0[\mathrm{~Hz}]$ | Factory setting [0] $0.5[\mathrm{~Hz}]$ |
|  |  | [1] $0.7[\mathrm{~Hz}]$ |
|  |  | [2] $0.0[\mathrm{~Hz}]$ |
|  |  | [3] $0.0[\mathrm{~Hz}]$ |
| Description: | Sets the relative frequency thresholds for line monitoring. The setting is realized as a deviation from p0211. |  |
| Index: | [0] = Operation upper <br> [1] = Operation lower <br> [2] = Synchronization upper <br> [3] = Synchronization lower |  |
| Dependency: | Refer to: F06851 |  |
| Note: | The active thresholds of the frequency criteria are obtained as follows: |  |
|  | Threshold, upper $=$ p0211 + p5544[0] |  |
|  | Threshold, lower = p0211-p5544[1] |  |
|  | Re Index 0, 1 : |  |
|  | Effective monitoring limits in operation. |  |

Re Index 2, 3:
Effective monitoring limits for line synchronization and for automatic restart.
With the default setting 0 Hz , the separate limit values are deactivated and the monitoring limits for regular operation apply (index 0, 1).
p5545[0...7] Line monitoring times / Line monit times

A_INF (Dyn. grid support)

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.00 [ms]

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
300000.00 [ms]

## Access level: 4

Func. diagram: 7999
Unit selection: -
Expert list: 1
Factory setting
[0] 150.00 [ms]
[1] 50.00 [ ms ]
[2] 3000.00 [ms]
[3] 0.00 [ms]
[4] 0.00 [ms]
[5] 2000.00 [ms]
[6] 100.00 [ms]
[7] 60000.00 [ms]

Description: Sets the time values for line monitoring.
Index: $\quad[0]=$ Voltage/frequency monitoring, break time minimum
[1] = AISL input angular frequency smoothing time
[2] = FRT LVRT shutdown time
[3] = FRT voltage return wait time
[4] = FRT frequency return wait time
[5] = FRT maximum synchronization time
[6] = Line synchronization switch on test duration
[7] = Line synchronization restart test duration



| p5552[0...9] | Line monitoring HVRT voltage values / Line monit HVRT U |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid | Can be changed: T | Calculated: - | Access level: 3 |
| support) | Data type: FloatingPoint32 | Dynamic index:- | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 101.0 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 150.0 \text { [\%] } \end{aligned}$ | Factory setting $110.0 \text { [\%] }$ |
| Description: | Sets the voltage values of the HVRT voltage characteristic. The setting is a percentage of p 0210 . |  |  |
| Index: | [ 0 ] = Value 0 <br> [1] = Value 1 <br> [2] = Value 2 <br> [3] = Value 3 <br> [4] = Value 4 <br> [5] = Value 5 <br> [6] = Value 6 <br> $[7]=$ Value 7 <br> [8] = Value 8 <br> [9] = Value 9 |  |  |



| p5555[0..2] | Line monitoring line fault thresholds frequency characteristic / Line mon thresh f |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Dyn. grid support) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -20.0[\mathrm{~Hz}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 20.0[\mathrm{~Hz}] \end{aligned}$ | Factory setting [0] $0.5[\mathrm{~Hz}]$ |
|  |  |  | [1] -0.7 [Hz] |
|  |  |  | [2] $0.2[\mathrm{~Hz}]$ |
| Description: | Sets the frequency activation threshold for a line fault for the FRT line monitoring. The setting is realized as a difference to the rated frequency p0211. |  |  |
| Index: | [0] = HFRT frequency <br> [1] = LFRT frequency <br> [2] = Hysteresis freq |  |  |
| Note: | FRT: Fault Ride Through (riding through a line fault) |  |  |
|  | HFRT: High Frequency Ride Through |  |  |
|  | LFRT: Low Frequency Ride Through |  |  |
| p5556[0...9] | Line monitoring HFRT time values / Line monit HFRT t |  |  |
| A_INF (Dyn. grid support) | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [s] } \end{aligned}$ | Factory setting [0] 0.00 [s] |
|  |  |  | [1] 0.15 [s] |
|  |  |  | [2] 0.70 [s] |
|  |  |  | [3] 1.50 [s] |
|  |  |  | [4] 3.00 [s] |
|  |  |  | [5] 25.00 [s] |
|  |  |  | [6] 50.00 [s] |
|  |  |  | [7] 100.00 [s] |
|  |  |  | [8] 200.00 [s] |
|  |  |  | [9] 300.00 [s] |
| Description: | Setting the time values of the HFRT frequency characteristic. |  |  |
| Index: | [0] = Value 0 |  |  |
|  | [1] = Value 1 |  |  |
|  | [2] = Value 2 |  |  |
|  | [3] = Value 3 |  |  |
|  | [4] = Value 4 |  |  |
|  | [5] = Value 5 |  |  |
|  | [6] = Value 6 |  |  |
|  | [7] = Value 7 |  |  |
|  | [8] = Value 8 |  |  |
|  | [9] = Value 9 |  |  |
| Note: | If the frequency does not return to the monitoring range ( $\mathrm{p} 5556[9]$ ) within the permissible tolerance range ( $\mathrm{p} 5555[0$, 1]) then the system is shut down with fault F06851. |  |  |




| Note: | Re bit 00: |  |  |
| :---: | :---: | :---: | :---: |
|  | It is recommended that the PLL2 should be deactivated if invalid voltage values are present (e.g. when the power supply is shutdown). |  |  |
|  | After activation initially a PLL synchronization is carried out. An excessively low voltage prevents synchronization from starting and this is displayed using r5572.3... $0=1011$. |  |  |
|  | Re bit 01: |  |  |
|  | After PLL synchronization starts $(r 5572.0=0)$ and the settling time has expired, the actual values are valid for phase angle, frequency and amplitude (r5572.1 = 0). |  |  |
|  | Re bit 02: |  |  |
|  | The tolerance limits are set using p0284 and p0285. |  |  |
|  | Re bit 03: |  |  |
|  | The tolerance limits are set using p0281 and p0282. |  |  |
| p5574[0...1] | CI: Line PLL2 voltage signal source / Line PLL2 U s_src |  |  |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | [0] 5488[3] |
|  |  |  | [1] 5488[4] |
| Description: | Sets the signal source for the voltage to be measured in alpha/beta coordinates. |  |  |
| Index: | [0] = Alpha |  |  |
| Note: | PLL2 is deactivated with input signal 0. |  |  |
|  | The following interconnection is practical for synchronizing an island grid to another grid (typically: public grid): |  |  |
|  | - The voltage of the island grid is measured using a VSM (r5461[0] and r5462 [0]), which is connected in front of the circuit breaker between the island grid and the ALM. |  |  |
|  | - The voltage of the external grid is measured using another VSM (r5461[1] and r5462 [1]), which is connected in front of the circuit breaker between the external grid and the island grid. The voltages ( $\mathrm{r} 5488[3,4]$ ) transformed to the ALM supply voltage are used as input variables for the PLL2. |  |  |
| p5580 | Island grid black start mode / Black start mode |  |  |
| A_INF (Line transf) | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 0 |
| Description: | Sets the mode for the black start. |  |  |
|  | An island grid, which at the start has no voltage, can be established using this function. In this case, the ALM acts as the grid voltage source or as grid generator for the connected island grid. |  |  |
|  | Prerequisite: |  |  |
|  | The ALM function module "line droop control" and line droop operation (p5501) are activated. |  |  |
|  | The black start is deactivated. |  |  |
|  | If value $=2$ : |  |  |
|  | At the next switch on, a black start is carried out. Here, the precondition is that the line voltage is close to zero (less than $p 5586[0]$ ). Using the grid droop control, the grid voltage is increased up to the rated value using a ramp function. <br> If value $=3$ : |  |  |
|  | At the next switch on, a black start is carried out if the grid voltage is less than p5586[0]. If on the other hand, a grid is connected within the regular tolerances (p0281, p0282), then a regular switch-on operation is carried out with synchronization to the existing grid voltage. |  |  |
|  | If, in so doing, transformer magnetization is activated ( $\mathrm{p} 5480=1$ ), then this is performed. |  |  |


| Value: | 0: De-activated |
| :---: | :---: |
|  | 2: Grid black start completed |
|  | 3: Grid black start automatic |
| Notice: | A black start is only possible when the grid droop control (p5501) is activated. |
|  | A black start is only possible when the transformer test operation mode is deactivated (p5480<= 1). |
|  | The use of feedback signal contacts from the circuit breaker between the Active Interface Module and the island grid is urgently recommended (p0860). |
| Note: | Precondition for establishing a voltage in an island grid is that adequate power is supplied into the ALM DC link (e.g. generator, photovoltaic) as well as control of the DC link voltage using this power generation system. The power requirement of the Island grid must not exceed the power of the generating system - even briefly. |
|  | In order to avoid the high inrush currents, when the grid is being established, the voltage is ramped up to the rated value. At the end of the voltage ramp, the system changes over into regular grid droop operation. The ALM then operates as grid-generating voltage source using active and reactive power droop, also with other sources of power in the island grid, in a stable fashion. The other power units can then act as a current source to support the grid or as a voltage source to form a grid. As grid forming unit, then the other power units must also have a grid droop function. |
|  | The circuit breaker between the Active Interface Module and the island grid is controlled via binector output r0863.1 Before closing this switch, it is checked as to whether the island grid is in a non-voltage condition. A possibly existing residual voltage in the Active Interface Module is automatically controlled down to zero. |


| p5581[0...8] | Island grid times / Island grid t |  |
| :--- | :--- | :--- |
| A_INF (Line transf) | Can be changed: T | Calculated: - |
|  | Data type: FloatingPoint32 | Dynamic index: - |
|  | P-Group: Commands | Units group: - |
|  | Not for motor type: - | Scaling: - |
|  | Min | Max |
|  | $0.10[\mathrm{~s}]$ | $100.00[\mathrm{~s}]$ |
|  |  | Unit selection: - |
|  |  | Fxpert list: 1 |
|  |  | $[0] 2.00[\mathrm{~s}]$ |
|  |  | $[1] 1.00[\mathrm{~s}]$ |
|  |  | $[3] 60.00[\mathrm{~s}]$ |
|  |  | $[4] 1.00[\mathrm{~s}]$ |
|  |  | $[5] 1.00[\mathrm{~s}]$ |
|  |  | $[6] 60.00[\mathrm{~s}]$ |
|  |  | $[7] 1.00[\mathrm{~s}]$ |
|  |  | $[8] 0.10[\mathrm{~s}]$ |

Description: Sets the time parameters for transformer magnetization, black start and island grid synchronization.

Index:

Note:
[0] = Black start voltage ramp duration
[1] = Black start circuit breaker bounce time
[2] = Black start maximum time
[3] = Black start checking time
[4] = Black start ramp smoothing time
[5] = Synchronization circuit breaker bounce time
[6] = Synchronization maximum time
[7] = Synchronization check time
[8] = Synchronization ramp smoothing time
Re index 0:
Sets the ramp time for the grid voltage.
Re index 1 :
Sets the bounce time for the circuit breaker at the line side of the line transformer.
An interruption-free connection between the line supply and the transformer is only guaranteed after the bounce time has expired.
Re index 2 :
Sets the permissible maximum time
If the maximum time elapses without the line being synchronized, fault F06503 is output.

Re index 3 :
Sets the test of time for the line voltage before closing the circuit breaker.
The line voltage must be less than the threshold specified in p5586[0].
Re index 4:
Sets the smoothing time constant for an additional PT1 filtering of the voltage ramp.
Re index 5:
Sets the bounce time for the circuit breaker at the line side of the line transformer.
An interruption-free connection between the line supply and the transformer is only guaranteed after the bounce time has expired.
Re index 6:
Sets the permissible maximum time.
If the maximum time elapses without the line being synchronized, fault F06504 is output.
Re index 7:
Sets of the test time for the outer line supply, to which the system should be synchronized (voltage signals r5488[3, 4]). This line supply must maintain the regular tolerance for voltage and frequency (see p0281 ... p0285). The test is realized before synchronizing starts.
Re index 8 :
Sets the smoothing time constant for an additional PT1 filtering of the voltage and frequency ramp.

| r5582[0...1] | CO: Island grid synchronization setpoint control / Island sync setpno |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [\%] | Max <br> - [\%] | Factory setting - [\%] |
| Description: | Display and connector output of the supplementary setpoints for the frequency and voltage control during island grid synchronization. |  |  |
| Index: | [0] = Setpoint ramp frequency <br> [1] = Setpoint ramp voltage |  |  |
| Notice: | In order to avoid equalization operations, after island synchronization has been completed, it is not permissible that supplementary setpoints for frequency and voltage are suddenly set to zero (as step function). This is the reason that after ending synchronization, the setpoints are held constant and reset with the trigger signal p5583[2] $=1$. |  |  |
|  | In the same controller cycle, the signals for smoothed frequency ( $\mathrm{p} 5406[0]$ ) and voltage ( $\mathrm{p} 5416[0]$ ) are corrected by the corresponding absolute values! |  |  |
|  | The supplementary setpoints (r5582) are automatically reset when synchronization is canceled and when the grid droop ( p 5401 ) is deactivated with a change into regular closed-loop current control operation (with adaption to the grid frequency). |  |  |
| Note: | In the default setting, the setpoints are connected with the unfiltered setpoint inputs (no-load frequency p5406[1], no-load voltage p5416[1]) of the grid droop. While synchronizing the island grid to an external grid, the amplitude, phase angle as well as the frequency of the island grid are adapted in this fashion. |  |  |
|  | The setpoints for synchronizing can also be used for synchronous voltage and frequency adaptation of additional power generating systems in the island grid. |  |  |

p5583[0...2] BI : Island grid synchronization signal sources / Island sync s_src

Data type: Unsigned32 / Binary
P-Group: Commands
Not for motor type: -
Min
Min

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 0
[1] 0
[2] 0
Description: Sets the signal sources for island grid synchronization.

## Index:

Using the island grid synchronization function, and island grid can be synchronized with an external grid regarding frequency, phase angle and voltage amplitude.

After synchronization has been performed, a circuit breaker between the two grids can be closed (r5493.1).
[0] = Start
[1] = Circuit breaker feedback signal
[2] = Reset setpoints

Notice: In order to synchronize an island grid with an external grid, frequency, phase position and amplitude of the island
Re index 1:
The feedback signal contact of the circuit breaker between the external grid and the island grid (in front of the grid transformer) must be connected in parallel via binector input p5583[1].

The feedback signal is required for a state change in the synchronization sequence control. This signal is not used to completely monitor the contactor (p860 and following). grid must be changed in operation
This assumes that the components of the island grid are suitable for these parameter changes and that the ALM is the only grid generator in the island grid.

Note:
Re index 0 :
Signal source for the start command to synchronize the island grid with an external grid.
The target values for the synchronization, are the output values of the PLL2 (r6311[1], r6313, r6314).
The PLL2 must be activated at the latest when synchronization starts (p5571, p5574).
Re index 1:
Signal source for the feedback signal of the circuit breaker between the island grid and the external grid.
Re index 2:
Signal source to reset the supplementary setpoints for voltage and frequency(r5582[0,1]) after island grid synchronization has been completed.

At the same time as the reset command, the external cyclic supplementary setpoints (p5406[0], p5416[0]) must be appropriately adapted.
p5584[0...2] Island grid synchronization controller dynamics / Island synch dyn
Can be changed: $T \quad$ Calculated: - Access level: 3

Data type: FloatingPoint32
P-Group: Commands
Not for motor type: -

## Min

0.00 [ms]

Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max
1000.00 [ms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 100.00 [ms]
1] 100.00 [ms]
[2] 100.00 [ms]

Description: Sets the time constants for the closed-loop control for the island grid synchronization.

## Index:

[0] = Angle controller integration time
[1] = Voltage controller integration time
[2] = Control deviation smoothing time

| p5585[0..1] | Island grid synchronization voltage thresholds / Island sync U_thr |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0 [V] | 300.0 [V] | [0] 35.0 [V] |
|  |  |  | [1] 3.5 [V] |
| Description: | Sets the permissible voltage difference between the space vectors of the line voltage and the Active Line Module (ALM). |  |  |
| Index: | [0] = Unsmoothed <br> [1] = Smoothed |  |  |
| Dependency: | Refer to: p5484 |  |  |





| Index: | $[0]=$ Unsmoothed |
| :--- | :--- |
| $[1]=$ Smoothed |  |
| Note: $\quad$ | A positive sign of the frequency is obtained when the line supply phases $U, V$ and $W$ are connected with the correct |
| phase sequence. |  |
| A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a neg- |  |
| ative direction of the rotating field of the 3-phase line supply voltage. |  |
| Re index 0: |  |
| Displays the instantaneous value. |  |
|  | The following applies for the dynamic time constant of the PLL2: $\mathrm{p} 3458[1]$ * p6423 |
|  | Re index 1: |
|  | Displays the values additionally smoothed with a time constant of 50 ms (suitable for monitoring the frequency). |


| r6313 | CO: Line PLL2 smoothed voltage / Line PLL2 U smth |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 2 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 6799, 8026 |
|  | P-Group: Displays, signals | Units group: 5_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min <br> - [Vrms] | Max <br> - [Vrms] | Factory setting - [Vrms] |
| Description: | Display the rms value calculated with PLL2 for the voltage signals specified in p5574. |  |  |
| Dependency: | Refer to: p3472 |  |  |
| Note: | The following applies to the smoothing time: p3458[1] * p6425 |  |  |
| r6314 | CO: Line PLL2 phase angle / Line PLL2 ph_angle |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2005 | Expert list: 1 |
|  | $\begin{gathered} \text { Min } \\ -\left[^{\circ}\right] \end{gathered}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting - [ ${ }^{\circ}$ ] |
| Description: | Display the phase angle calculated with PLL2 for the voltage signals specified in p5574. |  |  |



| Dependency: | Refer to: p7003 |
| :--- | :--- |
| Notice: | The parameter is only evaluated if $\mathrm{p} 7003=2$. |
| Note: | For $\mathrm{p} 6397=0$ the following applies: The second systems leads for a positive direction of rotation. |
|  | For $\mathrm{p} 6397=1$ the following applies: The second systems lags for a positive direction of rotation. |


| p6420[0...1] | Transformer phase shift / Tr ph_shift |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -180.00\left[{ }^{\circ}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 179.90\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting $\left.0.00{ }^{[ }{ }^{\circ}\right]$ |
| Description: | Sets the phase shift between the line transformer's primary and secondary voltages. |  |  |
| Index: | [0] = Supply transformer <br> [1] = Island grid transformer |  |  |
| Notice: | It is absolutely necessary to coarsely set this transformer parameter when commissioning the system the first time in order to avoid high inrush currents. |  |  |
|  | For the infeed transformer, a fine setting can then be subsequently performed using the transformer data identification (p5480, r6440). |  |  |
| Note: | The phase shift is referred to the phase angle of the line voltage at the transformer primary. |  |  |
|  |  |  |  |
|  | A transformer with vector group Dy 5 n has a phase shift of $-5 \times 30^{\circ}=-150^{\circ}$. |  |  |
|  | This means that the secondary voltage leads the primary voltage by $150^{\circ}$. |  |  |
|  | This phase shift must be determined when commissioning the system, in order to achieve synchronous magnetiza tion of the transformer before closing the circuit breaker. |  |  |
|  | Re index 0 : |  |  |
|  | The data is used to calculate the secondary voltage r5488[0, 1, 2] from the measured primary voltages p5487[0, 1]. |  |  |
|  | Re index 1: |  |  |
|  | The data is used to calculate the secondary voltage r5488[3, 4, 5] from the measured primary voltag |  |  |


| p6421[0...1] | Transformer gain adaption / Trans gain_adapt |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 50.000[\%] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 200.000 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \text { Factory setting } \\ & 100.000 \text { [\%] } \end{aligned}$ |
| Description: Index: | Sets the correction for the gain factor for fine calibration of the line transformer transformation ratio. <br> [0] = Supply transformer <br> [1] = Island grid transformer |  |  |
| Dependency: | Refer to: r6441 |  |  |
| Notice: | It is absolutely necessary to coarsely set this transformer parameter when commissioning the system the first time in order to avoid high inrush currents. |  |  |
| Note: | The ratio can be finely calib for the VSM) can be compe Re index 0 : <br> The data is used to calculat Re index 1 : <br> The data is used to calculat | rrection factor. Gain <br> voltage r5488[0 ,1, 2] <br> voltage r5488[3, 4, 5] | esult of a measurin <br> red primary voltage <br> red primary voltage |


| p6422 | Island grid black start orientation / S_start orient |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{gathered} \text { Max } \\ 1 \end{gathered}$ | Factory setting 0 |
| Description: | Sets the line rotating field orientation for a black start in the island grid. |  |  |
| Value: | 0 : Rotating field direction positive <br> 1: Rotating field negative |  |  |
| Notice: | Only use in an emergency if it is not possible to correct the wiring. Extreme caution must be applied in this case when measuring the phase shift ( p 6420 ). |  |  |
| Note: | Allows the rotating field direction to be adapted if there is inconsistency in the wiring. |  |  |
| p6423 | Line PLL2 dyn response / Line PLL2 dyn |  |  |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 2.000 \text { [\%] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 500.000 \text { [\%] } \end{aligned}$ | Factory setting 20.000 [\%] |
| Description: | Sets the dynamic response for PLL2. |  |  |
| Note: | Higher values increase the A value of 100 \% correspon PLL2 is configured using pa The output quantities of the | e but also the tende etting according to p and the following. ed in r6311 and foll | oscillate (instability) |
| p6425 | Line PLL2 voltage smoothing time / Line PLL2 U t_smth |  |  |
| A_INF (Line transf) | Can be changed: $T$ | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 1.000[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 5000.000 \text { [ms] } \end{aligned}$ | Factory setting 100.000 [ms] |
| Description: <br> Dependency: | Setting the PLL2 smoothing time constant for the absolute value of the line voltage. |  |  |
| r6440 | Transf phase offset identified / Tr ph_shift ident |  |  |
| A_INF (Line transf) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -\left[{ }^{\circ}\right] \end{gathered}$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ}\right] \end{aligned}$ | Factory setting - [ ${ }^{\circ}$ ] |
| Description: | Displays the phase shift between the primary and secondary voltages of the line transformer identified by automatic transformer identification (p5480 = 12). |  |  |
| Dependency: | Refer to: p 5480 , p 420 |  |  |



| r7002[0...n] | Par_circuit status power units / Status PU |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $0$ | Max | Factory setting |
| Description: Value: | Displays the status of the power units in the parallel circuit configuration. |  |  |
|  | 0: Pulses inhibited <br> 1: Pulses enabled |  |  |
| Dependency: | Refer to: r7000, p7001 |  |  |
| p7003 <br> VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Par_circuit winding system / Wind_sys |  |  |
|  | Can be changed: C2(2) | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Converter | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting 0 |
| Description: Value: | Specifies the motor winding system when power units are connected in parallel. |  |  |
|  | 0 : One-winding system <br> 1: Several separate winding systems or motors <br> 2: Two separate offset winding systems |  |  |
| Dependency: | Rep7003 = 2: |  |  |
|  | In order to permit separate, offset winding systems, wobbulation must first be deactivated (p1810.2 = 0). The magnitude and direction of the offset is parameterized in p6397. |  |  |
|  | When exiting commissioning, the circulating current control is automatically deactivated (p7035 $=0$ ), and the compensation of the valve interlocking times is replaced by the appropriate stator resistance adaptation ( $p 1780.7=1$ ). Refer to: p1802, p6397 |  |  |
| Note: | Rep7003 = 0: |  |  |
|  | - the motor data identification routine ( p 1910 ) determines the stator resistance and the cable resistance. The cable resistance of an individual Motor Module is entered into p0352. |  |  |
|  | - the current symmetrizing is activated as standard after the motor data identification routine (p7035 = 1). |  |  |
|  | - individual Motor Modules can be activated and de-activated (p7001). |  |  |
|  | Re p7003 = 1, 2: |  |  |
|  | - the motor data identification routine ( p 1910 ) determines the total (overall) resistance. The cable resistance is not measured, but instead, entered as a component of the total resistance (refer to p0352). |  |  |
|  | - all Motor Modules are activated. It is not possible to de-activate a motor model. |  |  |
| p7010 | Par_circuit current dissymmetry alarm threshold / i_dissym A thresh |  |  |
| A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 2 [\%] | 100 [\%] | 20 [\%] |
| Description: | Sets the alarm threshold to detect current dissymmetry in the parallel circuit configuration. <br> The deviation between the measured values and average value is evaluated. The specified value is referred to the rated power unit current (p7251[0]). |  |  |
|  |  |  |  |



| Dependency: | Refer to: r7021, r7022, r7025 |  |  |
| :---: | :---: | :---: | :---: |
| r7021[0...n] | CO: Par_circuit deviation current in phase V / Phase V curr dev |  |  |
| A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[\mathrm{A}] \end{gathered}$ | Factory setting - [A] |
| Description: | Displays the deviation between the measured current actual value of phase V and the average value as peak value. The maximum deviation from the average value is displayed in r7026. |  |  |
| Dependency: | Refer to: r7020, r7022, r7026 |  |  |
| r7022[0...n] | CO: Par_circuit deviation current in phase W / Phase W curr dev |  |  |
| A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [A] | - [A] |  |
| Description: | Displays the deviation between the measured current actual value of phase $W$ and the average value as peak value. |  |  |
|  | The maximum deviation from the average value is displayed in r 7027 . |  |  |
| Dependency: | Refer to: r7020, r7021, r7027 |  |  |
| r7025 | CO: Par_circuit max. deviation currents phase U / Phase U Max i_dev |  |  |
| A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[\mathrm{A}] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the maximum absolute deviation of the measured current actual values of phase $U$ from the average value as peak value. |  |  |
| Dependency: | The deviation of the individual currents from the average value is displayed in r7020. |  |  |
|  | Refer to: r7020, r7026, r7027 |  |  |
|  | Refer to: A05052 |  |  |
| r7026 | CO: Par_circuit max. deviation currents phase V / Phase V Max i_dev |  |  |
| A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[\mathrm{A}] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[\mathrm{A}] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the maximum absolute deviation of the measured current actual values of phase $V$ from the average value as peak value. |  |  |
|  | The deviation of the individual currents from the average value is displayed in r 7021. |  |  |




| p7037[0...n] | Par_circuit circulating current control integral time / I_circ Tn |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Modulation <br> Not for motor type: - <br> Min <br> 2.0 | Calculated: CALC_MOD_CON <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 1000.0 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $4.0$ |
| Description: Dependency: | Sets the integral time of the The parameter is referred Refer to: p0115 | t controller. <br> oller sampling time (p0115[0]). |  |
| p7038 | Infeed par_circuit circulating current control limit / I_circ limit |  |  |
| A INF (Parallel), <br> S_INF (Parallel) | Can be changed: $U, T$ <br> Data type: FloatingPoint32 <br> P-Group: Modulation <br> Not for motor type: - <br> Min <br> 1 [\%] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 100 [\%] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 100 [\%] |
| Description: | Sets the limit of the circulating current controller output values. <br> The parameter is, depending on the phase, referred to the valve lockout times ( $\mathrm{p} 1828, \mathrm{p} 1829, \mathrm{p} 1830$ ). |  |  |
| p7038[0...n] | Par_circuit circulating current control limit / I_circ limit |  |  |
| VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: FloatingPoint32 <br> P-Group: Modulation <br> Not for motor type: - <br> Min <br> 1 [\%] | Calculated: CALC_MOD_ALL <br> Dynamic index: DDS, p0180 <br> Units group: - <br> Scaling: - <br> Max <br> 100 [\%] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 50 [\%] |
| Description: | Sets the limit of the circulatin The parameter is, dependin | ler output values. eferred to the valve lockout time | 828, p1829, p1830). |
| p7040[0...n] | Par_circuit correction valve lockout time phase U / Comp t_lockout U |  |  |
| A INF (Parallel), | Can be changed: U, T | Calculated: - | Access level: 4 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Modulation | Units group: - | Unit selection: - |
| lel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mu \mathrm{~s}] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mu \mathrm{~s}] \end{aligned}$ | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase U (p1828). | n time must be added to the valve variations/spread in the valve lock | kout time to be compensated for <br> times of Motor Modules for a par- |
| Dependency: | Refer to: p1828 |  |  |



| r7052[0...n] | Par_circuit circulating current phase W / Circ_I_phase W |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [A] | $\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$ | Factory setting $-[A]$ |
| Description: | Displays the circulating current of phase W as peak value. |  |  |
| r7100[0...99] | Par_circuit ring buffer fault/alarm code / Fault/alarm code |  |  |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module). <br> Displays the fault/alarm code. |  |  |
| Dependency: | Refer to: r7101, r7102, r7103 |  |  |
| Note: | The last fault case that occurred is documented in index 0 . |  |  |
|  | The parameter is reset to 0 at POWER ON. |  |  |
| r7101[0...99] | Par_circuit ring buffer data set number / Ring buffer Ds_No |  |  |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> S INF (Parallel) | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 硡 |
| Description: | Ring buffer for faults and ala Line Infeed, Voltage Sensing p7101 < 100: <br> Displays the Power unit Dat p7101 >= 100: <br> Displays the Voltage Sensin | curred from power units conne <br> S). <br> et number (VSMDS) | parallel (Motor Module, Active |
| Dependency: | Refer to: r7100, r7102, r7103 |  |  |
| Note: | The parameter is reset to 0 at POWER ON. |  |  |


| r7102[0...99] | Par_circuit ring buffer fault/alarm received / F/A received |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: - | Unit selection: - |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module). |  |  |
|  | Displays the relative system runtime when the fault or alarm occurred. |  |  |
| Dependency: | Refer to: r7100, r7101, r7103 |  |  |
| Note: | The last fault case that occurred is documented in index 0 . |  |  |
|  | The parameter is reset to 0 at POWER ON. |  |  |

r7103[0...99] Par_circuit ring buffer fault/alarm gone / F/A gone

B_INF (Parallel),
S_INF (Parallel), VECTOR (Parallel),
VECTOR_AC (Paral
(Parallel)

r7201[0...n]
A_INF (Parallel),
B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR_AC (Paral (Parallel)

CO: Par_circuit power unit temperatures max. inverter / PU temp max inv

Data type: FloatingPoint32
Calculated: -
Dynamic index: PDS, p0120
Access level: 3

P-Group: Displays, signals
Not for motor type: -
Min Max
$-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right]$
Factory setting

Description: Displays the maximum inverter temperature in the power unit for a parallel circuit configuration.

The maximum value of all power units is displayed in r0037[0].
r7202[0...n] Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer
A_INF (Parallel),
B_INF (Parallel),
S_INF (Parallel), VECTOR (Parallel),
VECTOR_AC (Paral-
lel), VECTOR_IAC
lel), VECT
(Parallel)


| r7205[0...n] | Par_circuit power unit temperatures electronics / PU temp electr |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - [ $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the temperature of the electronics module in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[4]. |  |  |


| r7206[0...n] | Par_circuit power unit temperatures inverter 1 / PU temp inv 1 |  |  |
| :---: | :---: | :---: | :---: |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| S_INF (Parallel), <br> VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | Max <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting - [ $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[5]. |  |  |
| r7207[0...n] | Par_circuit power unit temperatures inverter 2 / PU temp inv 2 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> S INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | Max <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[6]. |  |  |
| r7208[0...n] | Par_circuit power unit temperatures inverter 3 / PU temp inv 3 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> S INF (Parallel) | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Max $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 3 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[7]. |  |  |
| r7209[0...n] | Par_circuit power unit temperatures inverter 4 / PU temp inv 4 |  |  |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> SINF (Parallel) | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Max $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting - [ $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[8]. |  |  |


| r7210[0...n] | Par_circuit power unit temperatures inverter 5 / PU temp inv 5 |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| S_INF (Parallel), <br> VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Paral- <br> lel), VECTOR_I_AC <br> (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[9]. |  |  |
| r7211[0...n] | Par_circuit power unit temperatures inverter 6 / PU temp inv 6 |  |  |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the inverter temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[10]. |  |  |
| r7212[0...n] | Par_circuit power unit temperatures inverter 1 / PU temp rect 1 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays rectifier temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[11]. |  |  |
| r7213[0...n] | Par_circuit power unit temperatures inverter 2 / PU temp rect 2 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Max $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays rectifier temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[12]. |  |  |


| r7214[0...n] | Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1 |  |  |
| :---: | :---: | :---: | :---: |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| S_INF (Parallel), <br> VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | Max <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting - [ $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[13]. |  |  |
| r7215[0...n] | Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [ $\left.{ }^{\circ} \mathrm{C}\right]$ | $-\left[{ }^{\circ} \mathrm{C}\right]$ | - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[14]. |  |  |
| r7216[0...n] | Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> S INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [ $\left.{ }^{\circ} \mathrm{C}\right]$ | - [ ${ }^{\circ} \mathrm{C}$ ] | - $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 3 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[15]. |  |  |
| r7217[0...n] | Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), <br> S INF (Parallel) | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | Max $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[16]. |  |  |


| r7218[0...n] | Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5 |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), <br> B_INF (Parallel), <br> S_INF (Parallel), <br> VECTOR (Parallel), <br> VECTOR_AC (Paral- <br> lel), VECTOR_I_AC <br> (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[17]. |  |  |
| r7219[0...n] | Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6 |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), | P-Group: Displays, signals | Units group: 21_1 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | $\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$ | Factory setting $-\left[^{\circ} \mathrm{C}\right]$ |
| Description: | Displays depletion layer temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[18]. |  |  |
| r7220[0...n] | Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm |  |  |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel) | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the currently permissible line-side absolute current when motoring. |  |  |


| $\mathbf{r 7 2 2 0 [ 0 . . . n ] ~}$ | CO: Par_circuit drive output current maximum / Drv I_outp max |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC (Paral- | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| lel), VECTOR_I_AC | P-Group: Displays, signals | Units group: - | Unit selection: - |
| (Parallel) | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - [Arms] | - [Arms] | -[Arms] |
| Description: | Displays the maximum output current of the power unit. |  |  |
|  | The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067. |  |  |


| r7221[0...n] | Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm |  |  |
| :---: | :---: | :---: | :---: |
| A INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel) | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting <br> - [Arms] |
| Description: | Displays the currently permissible line-side absolute regenerative current. |  |  |
| r7222[0...n] | CO: Par_circuit absolute current actual value / I_act abs val |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), <br> VECTOR (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR_AC (Paral- | P-Group: Displays, signals | Units group: 6_2 | Unit selection: p0505 |
| lel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [Arms] | Max <br> - [Arms] | Factory setting - [Arms] |
| Description: | Displays actual absolute current. |  |  |
| r7223[0...n] | CO: Par_circuit phase current actual value phase U / I_phase U act val |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), VECTOR (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $-[A]$ | $\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$ | Factory setting - [A] |
| Description: | Displays the measured actual value of phase $U$ as peak value. |  |  |


| r7224[0...n] | CO: Par_circuit phas | al value phase V / I_p | V act val |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), <br> S_INF (Parallel), <br> VECTOR (Parallel), <br> VECTOR_AC (Paral- <br> lel), VECTOR_I_AC <br> (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - [A] | - [A] | - [A] |
| Description: | Displays the measured actu | V as peak value. |  |
|  | The summed value of all pow | yed in r0069[1]. |  |


| r7225[0...n] | CO: Par_circuit phase current actual value phase W / I_phase W act val |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min <br> - [A] | $\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$ | Factory setting $-[\mathrm{A}]$ |
| Description: | Displays the measured actual value of phase W as peak value. |  |  |

The summed value of all power units is displayed in r0069[2].

| r7226[0...n] | CO: Par_circuit phase current actual value phase U offset / I_phase U offset |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), <br> VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -[A] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the measured offset of phase $U$ as peak value. The summed value of all power units is displayed in r0069 |  |  |


| r7227[0...n] | CO: Par_circuit phase current actual value phase V offset / I_phase V offset |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR (Parallel), VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[A] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the measured offset of phase V as peak value. The summed value of all power units is displayed in r0069[4]. |  |  |

r7228[0...n] CO: Par_circuit phase current actual value phase W offset / I_phase W offset

A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel), VECTOR AC (Parallel), VECTOR_I_AC (Parallel)

|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -[A] \end{gathered}$ | Factory setting $-[A]$ |
| :---: | :---: | :---: | :---: |
| Description: | Displays the measured offset of phase W as peak value. The summed value of all power units is displayed in r0069[5]. |  |  |
| r7229[0...n] | CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW |  |  |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| VECTOR AC (Paral- | P-Group: Displays, signals | Units group: 6_5 | Unit selection: p0505 |
| lel), VECTOR_I_AC | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$ | $\begin{gathered} \text { Max } \\ -[\mathrm{A}] \end{gathered}$ | Factory setting $-[A]$ |
| Description: | Displays the measured sum of the currents in phases $\mathrm{U}, \mathrm{V}$ and W as peak value. The summed value of all power units is displayed in r0069[6]. |  |  |


| r7230[0...n] | CO: Par_circuit DC link voltage actual value / Vdc_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), | Can be changed: - | Calculated: - | Access level: 3 |
| B_INF (Parallel), | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| S_INF (Parallel), <br> VECTOR (Parallel), | P-Group: Displays, signals | Units group: 5_2 | Unit selection: p0505 |
| VECTOR_AC (Parallel), VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$ | $\begin{gathered} \text { Max } \\ -[\mathrm{V}] \end{gathered}$ | Factory setting - [V] |
| Description: | Displays the measured actual value of the DC link voltage. The average value of all power units is displayed in r0070. |  |  |

r7231[0...n] CO: Par_circuit phase voltage actual value phase U / U_phase U act val
lel), VECTOR (Paral- Data type: FloatingPoint32
lel), VECTOR_AC P-Group: Displays, signals
(Parallel), VECTOR I AC (Par- Not for motor type: -
allel)

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-[\mathrm{V}]$ | $-[\mathrm{V}]$ | $-[\mathrm{V}]$ |

Description: Displays the actual voltage, phase U. The average value of all power units is displayed in r0089[0].

| $\mathbf{r 7 2 3 1 [ 0 . . . n ] ~}$ | CO: Par_circuit phase voltage actual value phase $\mathbf{U} / \mathbf{U}$ _phase $\mathbf{U}$ act val |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 5_3 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V]$ | $-[V]$ | $-[V]$ |
| Description: | Displays the actual voltage, phase $U$. |  |  |

r7232[0...n] CO: Par_circuit phase voltage actual value phase V / U_phase V act val

| A_INF, S_INF (Paral- Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- |
| lel), VECTOR (Paral- | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: -


| $\mathbf{r 7 2 3 2 [ 0 . . . n ] ~}$ | CO: Par_circuit phase voltage actual value phase V / U_phase V act val |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 5_3 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V]$ | $-[V]$ | $-[V]$ |


| r7233[0...n] | CO: Par_circuit phase voltage actual value phase W / U_phase W act val |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, S_INF (Paral | Can be changed: - | Calculated: - | Access level: 3 |
| lel), VECTOR (Paral- | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| (Paralle), | P-Group: Displays, signals | Units group: 5_3 | Unit selection: p0505 |
| VECTOR_I_AC (Parallel) | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$ | $\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$ | Factory setting <br> - [V] |
| Description: | Displays the actual voltage, phase W . |  |  |
|  | The average value of all power units is displayed in r0089[2]. |  |  |


| r7233[0...n] | CO: Par_circuit phase voltage actual value phase W / U_phase W act val |  |  |
| :--- | :--- | :--- | :--- |
| A_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: PDS, p0120 | Func. diagram: - |
|  | P-Group: Displays, signals | Units group: 5_3 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | $-[V]$ | $-[V]$ |  |
| Description: | Displays the actual voltage, phase W. |  |  |




| r7300[0...n] | CO: Par_circuit VSM input line voltage u1-u2 / VSM inp u1-u2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Closed-loop control <br> Not for motor type: - <br> Min <br> - [V] | Calculated: - Access level: 3 |  |  |
|  |  | Dynamic index: p0140 | Func |  |
|  |  | Units group: - | Unit |  |
|  |  | Scaling: p2001 | Exp |  |
|  |  | $\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$ | Fact $-[V]$ |  |
| Description: | Displays the voltage between phases L1 and L2 of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. |  |  |  |
|  | The average value of all VSMs is displayed in r3661. |  |  |  |
| Dependency: <br> Note: | Refer to: p3660 |  |  |  |
|  | X521.1 or X522.1: Connection of L1 |  |  |  |
|  | X521.2 or X522.2: Connection of L2 |  |  |  |
| $\begin{aligned} & \hline \mathbf{r 7 3 0 1 [ 0 . . . n ]} \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel) } \end{aligned}$ | CO: Par_circuit VSM input line voltage u2-u3 / VSM inp u2-u3 |  |  |  |
|  | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Fun |  |
|  | P-Group: Closed-loop control | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: p2001 | Exp |  |
|  | Min $-[V]$ | $\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$ |  |  |
| Description: | Displays the voltage between phases L2 and L3 of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. <br> The average value of all VSMs is displayed in r3662. |  |  |  |
|  |  |  |  |  |
| Dependency: Note: | Refer to: p3660 |  |  |  |
|  | X521.2 or X522.2: Connection of L2 |  |  |  |
|  | X521.3 or X522.3: Connection of L3 |  |  |  |
| r7305[0...n] <br> A_INF (Parallel), <br> S_INF (Parallel) | Par_circuit VSM temperature evaluation status / VSM temp status |  |  |  |
|  | Can be changed: - | Calculated: - | Acce |  |
|  | Data type: Unsigned16 | Dynamic index: p0140 | Func |  |
|  | P-Group: Terminals | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Fact |  |
|  | - | - | - |  |
| Description: | Displays the status of the temperature evaluation of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. |  |  |  |
|  | This displays whether the temperature actual value has exceeded the fault/alarm threshold. |  |  |  |
|  | The overall status of the temperature evaluation of all VSMs is displayed in r3664. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Alarm is present | Yes | No | - |
|  | 01 Fault is present | Yes | No | - |
| Dependency: | Refer to: p3665, r3666, p3667, p3668 |  |  |  |


| r7306[0...n] | CO: Par_circuit VSM temperature KTY / VSM temp KTY |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: 21_1 | Unit selection: p0505 |
|  | Not for motor type: - | Scaling: p2006 | Expert list: 1 |
|  | Min $-\left[{ }^{\circ} \mathrm{C}\right]$ | Max <br> $-\left[{ }^{\circ} \mathrm{C}\right]$ | Factory setting - $\left.{ }^{\circ} \mathrm{C}\right]$ |
| Description: | Displays the temperature actual value of the KTY84 temperature sensor connected to the Voltage Sensing Module (VSM) for a parallel circuit configuration. |  |  |
|  | The maximum value of all VSMs is displayed in r3666. |  |  |
|  | Prerequisite: |  |  |
|  | A KTY84 sensor is connected and p3665 is set to 2 . |  |  |
| Dependency: | Refer to: p3665 |  |  |
| r7310[0...n] | CO: Par_circuit VSM 10 V input CT1 actual value / VSM CT 1 I_act |  |  |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $-[A]$ | Max <br> - [A] | Factory setting - [A] |
| Description: | Displays the current actual value from current transducer (CT) 1 at the 10 V input of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. |  |  |
| r7311[0...n] | CO: Par_circuit VSM 10 V input CT2 actual value / VSM CT 2 I_act |  |  |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2002 | Expert list: 1 |
|  | Min $-[A]$ | $\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$ | Factory setting - [A] |
| Description: | Displays the current actual value from current transducer (CT) 2 at the 10 V input of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. <br> The average value of all VSMs is displayed in r3672. |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM. |  |  |
| r7315[0...n] | CO: Par_circuit VSM 10 V input 1 actual value / VSM inp 1 U_act |  |  |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | Min $-[V]$ | Max <br> - [V] | Factory setting - [V] |
| Description: | Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Modules (VSM). The average value of all VSM is displayed in r3673. |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | 10 V input 1: Terminals X520.1 and X520.2 |  |  |


| r7316[0...n] | CO: Par_circuit VSM 10 V input 2 actual value / VSM inp 2 U_act |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Parallel), <br> S_INF (Parallel) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: p2001 | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$ | $\begin{gathered} \text { Max } \\ -[V] \end{gathered}$ | Factory setting $-[V]$ |
| Description: | Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM). The average value of all VSMs is displayed in r3674. |  |  |
| Dependency: | Refer to: p3670 |  |  |
| Note: | 10 V input 2: Terminals X520.3 and X520.4 |  |  |
| $\begin{aligned} & \hline \mathbf{r 7 3 2 0 [ 0 . . . n ]} \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel) } \end{aligned}$ | Par_circuit VSM line filter capacitance phase U / VSM filt C phase U |  |  |
|  | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ $\mu \mathrm{F}$ ] | Max <br> $-[\mu \mathrm{F}]$ | Factory setting - [ $\mu \mathrm{F}$ ] |
| Description: | Displays the capacitance of the line filter, phase U of the particular Voltage Sensing Module (VSM). The average value of all VSMs is displayed in r3677[0]. |  |  |
| Dependency: | Refer to: p3676 |  |  |
| Note: | Prerequisites: |  |  |
|  | The monitoring of the filter capacitance is activated. |  |  |
| r7321[0...n] <br> A_INF (Parallel), <br> S_INF (Parallel) | Par_circuit VSM line filter capacitance phase V / VSM filt C phase V |  |  |
|  | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min $-[\mu \mathrm{F}]$ | Max <br> $-[\mu \mathrm{F}]$ | Factory setting - $[\mu \mathrm{F}]$ |
| Description: | Displays the capacitance of the line filter, phase V of the particular Voltage Sensing Module (VSM). The average value of all VSMs is displayed in r3677[1]. |  |  |
| Dependency: | Refer to: p3676 |  |  |
| Note: | Prerequisites: |  |  |
|  | The monitoring of the filter capacitance is activated. |  |  |
| $\overline{\text { r7322[0...n] }}$ <br> A_INF (Parallel), <br> S_INF (Parallel) | Par_circuit VSM line filter capacitance phase W / VSM filt C phase W |  |  |
|  | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: FloatingPoint32 | Dynamic index: p0140 | Func. diagram: - |
|  | P-Group: Closed-loop control | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ $\mu \mathrm{F}$ ] | Max <br> $-[\mu \mathrm{F}]$ | Factory setting - $[\mu \mathrm{F}]$ |
| Description: | Displays the capacitance of the line filter, phase W of the particular Voltage Sensing Module (VSM). The average value of all VSMs is displayed in r3677[2]. |  |  |
| Dependency: | Refer to: p3676 |  |  |
| Note: | Prerequisites: |  |  |
|  | The monitoring of the filter capacitance is activated. |  |  |



| Note: | KHP: Know-How Protection |  |  |
| :---: | :---: | :---: | :---: |
|  | Re bit 00: |  |  |
|  | Write protection can be activated/deactivated via p7761 on the Control Unit. |  |  |
|  | Re bit 01: |  |  |
|  | The know-how protection can be activated by entering a password (p7766 ... p7768). |  |  |
|  | Re bit 02: |  |  |
|  | If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766. In this case, bit $1=0$ and bit $2=1$ offset. |  |  |
|  | Re bit 03: |  |  |
|  | Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory setting is possible). This bit is only set if know-how protection is active (bit $1=1$ ) and p7766 has not been entered in the OEM exception list. |  |  |
|  | Re bit 04: |  |  |
|  | When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards. This bit is only set if know-how protection is active and p7765 $=1$. |  |  |
| p7761 | Write protection / Write protection |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Setting for activating/de-activating the write protection for adjustable parameters. |  |  |
| Value: | 0: Deactivate write protection |  |  |
|  | 1: Activate write protection |  |  |
| Dependency: | Refer to: r7760 |  |  |
| Note: | While write protection is active, a download is prevented; however, it is still possible to restore the factory settings. |  |  |
|  | Examples of parameters, which for the SINAMICS drive family, are excluded from write protection: |  |  |
|  | p0003, p0124, p0144, p0154, p0971, p0977, p2017, p3950, p3980, p3981, p3982, p3983, p7761, p8560, p8562, |  |  |
| p7762 | Write protection multi-master fieldbus system access behavior / Fieldbus acc_behav |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 1 | 0 |
| Description: | Sets the behavior for write protection when accessing via multi-master fieldbus systems (e.g. CAN, BACnet). |  |  |
| Value: | 0: Write access independent of p7761 |  |  |
|  | 1: Write access dependent on p7761 |  |  |
| Dependency: | Refer to: r7760, p7761 |  |  |





| Dependency: | Refer to: p7767, p7768 |  |  |
| :---: | :---: | :---: | :---: |
| Notice: | When using the STARTER commissioning software, the password should be entered using the associated dialogs. |  |  |
| Note: | KHP: Know-How Protection |  |  |
|  | When reading, p7766[0...29] = 42 dec (ASCII character $=$ "*") is displayed. |  |  |
|  | When using the STARTER commissioning software, when reading via the expert list, p7766[0...29] is displayed with "********". |  |  |
|  | The following rules apply when entering the password: |  |  |
|  | - Password entry must start with p7766[0]. |  |  |
|  | - No gaps are permissible in the password. |  |  |
|  | - Entering a password is completed when writing to $\mathrm{p} 7766[29]$ ( $p 7766[29]=0$ for passwords less than 30 characters). |  |  |
| p7767[0...29] | KHP password new / KHP passw new |  |  |
| $\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Sets the new password for know-how protection. |  |  |
| Dependency: | Refer to: p7766, p7768 |  |  |
| Note: | KHP: Know-How Protection |  |  |
|  | When reading, p7767[0...29] = 42 dec (ASCII character $=$ "*") is displayed. |  |  |
| p7768[0...29] | KHP password confirmation / KHP passw confirm |  |  |
| CU_I, CU_NX_CX, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_S_AC_DP, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| $\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Confirms the new password for know-how protection. |  |  |
| Dependency: | Refer to: p7766, p7767 |  |  |
| Note: | KHP: Know-How Protection |  |  |
|  | When reading, p7768[0...29] = 42 dec (ASCII character $=$ "*") is displayed. |  |  |
| p7769[0...20] | KHP memory card reference serial number / KHP mem ref ser_no |  |  |
| CU_I, CU_NX_CX, | Can be changed: $T$ | Calculated: - | Access level: 3 |
| CU_S_AC_DP, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_PN, CU S120 DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_DP, |  |  |  |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Sets the reference serial number for the memory card. |  |  |
|  | Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware. |  |  |
| Dependency: | Refer to: p7765, p7766, p7767, p7768 |  |  |

Note: KHP: Know-How Protection

- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".
- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.

| p7770 | NVRAM action / NVRAM action |  |
| :--- | :--- | :--- |
| A_INF, B_INF, ENC, | Can be changed: T | Calculated: - |
| HUB, S_INF, | Data type: Integer16 | Dynamic index: - |
| SERVO, | P-Group: - | Anits group: - |
| SERVO_AC, | Scaling: - | Func. diagram: - |
| SERVO_I_AC, TB30, Not for motor type: - |  | Unit selection: - |
| TM120, TM15, |  | Expert list: 1 |
| TM150, TM15DI_DO, |  |  |
| TM17, TM31, TM41, |  |  |
| TM54F_MA, |  | Factory setting |
| TM54F_SL, VEC- |  | 0 |
| TOR, VECTOR_AC, |  |  |
| VECTOR_I_AC |  | 3 |

Description: Sets the action to be executed for NVRAM data.
At the end of the action the value is automatically set to 0 .
Value: $0: \quad$ Inactive
1: Load NVRAM data to parameters
2: Load parameters to NVRAM
3: Reset
Notice: $\quad$ After action $p 7770=1$ no more pulses may be enabled.
After action $p 7770=2$, it is essential that parameters are backed up ( $\mathrm{p} 0977=1$ ) and that a warm restart is then performed ( $p 0009=30$, p0976 $=2,3$ ). This will apply the values written.
Note: $\quad$ If value $=1$ :
This action loads the NVRAM data to the parameters.
If value $=2$ :
This action loads the parameters to the NVRAM.
If value $=3$ :
This action sets parameters p7771 ... p7774 to the factory setting.
It is recommended to avoid placing unnecessary load on the subsequent upload/download operation.

## p7775 NVRAM data backup/import/delete / NVRAM backup

CU_I, CU_I D410,
CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_DP,
CU_S120_PN,
CU_S150_DP,
CU_S150_PN

Can be changed: C1, T
Data type: Integer16
P-Group: -
Not for motor type: -

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1

| Min | Max |
| :--- | :--- |
| 0 | 17 |

Description:
Setting to backup/import/delete NVRAM data.
NVRAM data are non-volatile data in the device (e.g. fault buffer).
For NVRAM data actions, the following data are excluded:

- Crash diagnostics
- CU operating hours counter
- CU temperature
- Safety logbook


## Factory setting

0


| p7820 | DRIVE-CLiQ component component number / DLQ comp_no |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $U, T$ <br> Data type: Unsigned16 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$ | Factory setting 0 |
| Description: <br> Dependency: | Sets the component number of the DRIVE-CLiQ component whose parameters are to be accessed. Refer to: p7821, p7822, r7823 |  |  |
| p7821 | DRIVE-CLiQ component parameter number / DLQ para_no |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $U$, $T$ <br> Data type: Unsigned16 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$ | Factory setting <br> 0 |
| Description: Dependency: | Sets the parameter number to access a parameter of a DRIVE-CLiQ component. Refer to: p7820, p7822, r7823 |  |  |
| p7822 | DRIVE-CLiQ component parameter index / DLQ para_index |  |  |
| CU_I, CU_IDD410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN | Can be changed: $U, T$ <br> Data type: Unsigned16 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$ | Max $65535$ | Factory setting 0 |
| Description: <br> Dependency: | Sets the parameter index to access a parameter of a DRIVE-CLiQ component. Refer to: p7820, p7821, r7823 |  |  |
| r7823 | DRIVE-CLiQ component read parameter value / Read DLQ value |  |  |
| CU_I, CU_I_D410, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU S150 PN | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: <br> Scaling: - | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the parameter value read from the DRIVE-CLiQ component. Refer to: p7820, p7821, p7822 |  |  |



| r7827 | Firmware update progress display / FW update progress |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: - <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$ | $\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$ | Factory setting - [\%] |
| Description: | Displays the progress when updating the firmware of the DRIVE-CLiQ components. |  |  |


| p7828[0...1] | Firmware download component number / FW downl comp_no |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  | Max | Factory setting |
| CU_S150_PN |  | 399 | 0 |


| Description: | Sets the component number for the required DRIVE-CLiQ component. |
| :--- | :--- |
| Index 0: |  |
|  | Component number of the DRIVE-CLiQ component for which a firmware download is to be made. |
|  | Index 1: |
|  | Component number of the DRIVE-CLiQ component for which the reference firmware version, saved in r7825 on the |
|  | memory card/device memory, is to be displayed. |
| Index: | [0] = Firmware download |
|  | [1] = Reference firmware version |
| Dependency: | Refer to: p0121, p0141, p0151, p7829 |
| Note: | For p7828[0] = 399, the firmware for all of the existing components is downloaded. |
|  | The firmware download is started with $\mathrm{p} 7829=1$. |


| p7829 | Activate firmware download / FW download act |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  | Max | Factory setting |
| CU_S150_PN | Min | 999 | 0 |

Description: Activating the firmware download for the DRIVE-CLiQ components specified in p7828.
1: Activate download.
-1 : activate the download and carry out a reset.
0 : Download successfully completed.
> 1: Fault code
011: DRIVE-CLiQ component has detected a checksum error.
015: The selected DRIVE-CLiQ components did not accept the contents of the firmware file.
018: Firmware version is too old and is not accepted by the component.
019: Firmware version is not suitable for the hardware release of the component.
101: After several communication attempts, no response from the DRIVE-CLiQ component.
140: Firmware file for the DRIVE-CLiQ component not available on the memory card/device memory.
143: Component has not changed to the mode for firmware download. It was not possible to delete the existing
firmware.
144: When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible
that the file on the memory card/device memory is defective.
145: Checking the loaded firmware (checksum) was not completed by the component in the appropriate time.
156: Component with the specified component number is not available.
Additional values:
Only for internal Siemens troubleshooting.
Dependency: $\quad$ Refer to: p7828
Note:

| p7830 | Diagnostics telegram selection / Diag telegram |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | 0 | 3 | 0 |

Description: Selects a telegram whose contents should be shown in p7831 ... p7836.

| Value: | $0:$ | Reserved |
| :--- | :--- | :--- |
|  | $1:$ | First cyclic receive telegram sensor 1 |
|  | $2:$ | First cyclic receive telegram sensor 2 |
|  | $3:$ | First cyclic receive telegram sensor 3 |
| Dependency: | Refer to: r7831, r7832, r7833, r7834, r7835, r7836 |  |


| $\mathbf{r 7 8 3 1 [ 0 . . . 1 5 ] ~}$ | Telegram diagnostics signals / Tel diag signals |  |  |
| :--- | :--- | :--- | :--- |
| ENC, SERVO, | Can be changed: - | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | 15157 | Factory setting |
|  | 0 | - |  |

Description: Displays the signals contained in the selected telegram (p7830).
Value:

| 0: | UNUSED |
| :--- | :--- |
| 1: | UNKNOWN |
| 102: | SAPAR_ID_DSA_ALARM |
| 110: | SAPAR_ALARMBITS_FLOAT_0 |
| 111: | SAPAR_ALARMBITS_FLOAT_1 |
| 112: | SAPAR_ALARMBITS_FLOAT_2 |
| 113: | SAPAR_ALARMBITS_FLOAT_3 |
| 114: | SAPAR_ALARMBITS_FLOAT_4 |
| 115: | SAPAR_ALARMBITS_FLOAT_5 |
| 10500: ENC_ID_TIME_PRETRIGGER |  |
| 10501: ENC_ID_TIME_SEND_TELEG_1 |  |
| 10502: ENC_ID_TIME_CYCLE_FINISHED |  |
| 10503: ENC_ID_TIME_DELTA_FUNMAN |  |
| 10504: ENC_ID_SUBTRACE_CALCTIMES |  |
| 10505: ENC_ID_SYNO_PERIOD |  |
| 10516: ENC_ID_ADC_TRACK_A |  |
| 10517: ENC_ID_ADC_TRACK_B |  |
| 10518: ENC_ID_ADC_TRACK_C |  |
| 10519: ENC_ID_ADC_TRACK_-A |  |
| 10520: ENC_ID_ADC_TRACK_A_SAFETY |  |
| 10521: ENC_ID_ADC_TRACK_B_SAFETY |  |

```
10523: ENC_ID_ADC_TEMP_1
10526: ENC_ID_ADC_TRACK_R
10532: ENC_ID_TRACK_AB_X
10533: ENC_ID_TRACK_AB_Y
10534: ENC_ID_OFFSET_CORR_AB X
10535: ENC_ID_OFFSET_CORR_AB_Y
10536: ENC_ID_AB_ABS_VALUE
10537: ENC_ID_TRACK_CD_X
10538: ENC_ID_TRACK_CD_Y
10539: ENC_ID_TRACK_CD_ABS
10542: ENC_ID_AB_RAND_X
10543: ENC_ID_AB_RAND_Y
10544: ENC_ID_AB_RAND_ABS_VALUE
10545: ENC_ID_SUBTRACE_ABS_ARRAY
10546: ENC_ID_PROC_OFFSET_0
10547: ENC_ID_PROC_OFFSET_4
10564: ENC_SELFTEMP_ACT
10565: ENC_ID_MOTOR_TEMP_TOP
10566: ENC_ID_MOTOR_TEMP_1
10580: ENC_ID_RESISTA`NCE_1
10590: ENC_ID_ANA_CHAN_A
10591: ENC_ID_ANA_CHAN_B
10592: ENC_ID_ANA_CHAN_X
10593: ENC_ID_ANA_CHAN_Y
10596: ENC_ID_AB_ANGLE
10597: ENC_ID_CD_ANGLE
10598: ENC_ID_MECH_ANGLE_HI
10599: ENC_ID_RM_POS_PHI_COMMU
10600: ENC_ID_PHI_COMMU
10612: ENC_ID_DIFF_CD_INC
10613: ENC_ID_RM_POS_PHI_COMMU_RFG
10628: ENC_ID_MECZH_ANGLE
10629: ENC_ID_MECH_RM_POS
10644: ENC_ID_INIT_VECTOR
10645: FEAT_INIT_VECTOR
10660: ENC_ID_SENNSOR_STATE
10661: ENC_ID_BASIC_SYSTEM
10662: ENC_ID_REFMARRK_STATUS
10663: ENC_ID_DSA_STATUS1_SENSOR
10664: ENC_ID_DSA_RMSTAT_HANDSHAKE
10665: ENC_ID_DSA_CONTROL1_SENSOR
10667: ENC_ID_SAFETY
10676: ENC_ID_COUNTCORR_SAW_VALUE
10677: ENC_ID_COUNTCORR_ABS_VALUE
10678: ENC_ID_SAWTOOTH_CORR
10692: ENC_ID_RESISTANCE_CALIB_INSTANT
10693: ENC_ID_SERPROT_POS
10724: ENC_ID_ACT_FUNMAN_FUNCTION
10725: ENC_ID_SAFĒTY_COUNTTER_CRC
10740: ENC_ID_POS_ABSOLUTE
10741: ENC_ID_POS_REFMARK
10742: ENC_ID_SAWTOOTH
10743: ENC_ID_SAFETY_PULSE_COUNTER
10756: ENC_ID_DSA_ACTUAL_SPEED
10757: ENC_ID_SPEED_DEV_ABS
10772: ENC_ID_DSA_POS_XIST1
10788: ENC_ID_AB_CROSS__CORR
10789: ENC_ID_AB_GAIN_Y_CORR
10790: ENCID_AB_PEAK_CORR
11825: ENC_ID_RES_TRANSITION_RATIO
11826: ENC-ID RES PHASE SHIFT
15150: ENC_ID_SPINDLE_S1_RAW
15151: ENC_ID_SPINDLE_S4_RAW
15152: ENC_ID_SPINDLE_S5_RAW
```

```
15155: ENC_ID_SPINDLE_S1_CAL
15156: ENC_ID_SPINDLE_S4_CAL
15157: ENC_ID_SPINDLE_S5_CAL
```

| r7832[0..15] | Telegram diagnostics numerical format / tel diag format |  |  |
| :---: | :---: | :---: | :---: |
| ENC, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -1 | 14 | - |
| Description: | Displays the original numerical format of the signals contained in the telegram. |  |  |
|  | The associated signal number is represented in the appropriate index of r7831. |  |  |
| Value: | -1: Unknown |  |  |
|  | 0: Boolean |  |  |
|  | 1: $\quad$ Signed 1 byte |  |  |
|  | 2: Signed 2 byte |  |  |
|  | 3: $\quad$ Signed 4 byte |  |  |
|  | 4: $\quad$ Signed 8 byte |  |  |
|  | 5: Unsigned 1 byte |  |  |
|  | 6: Unsigned 2 byte |  |  |
|  | 7: Unsigned 4 byte |  |  |
|  | 8: Unsigned 8 byte |  |  |
|  | 9: Float 4 byte |  |  |
|  | 10: Double 8 byte |  |  |
|  | 11: mm dd yy HH MM SS MS DOW |  |  |
|  | 12: ASCII string |  |  |
|  | 13: SINUMERIK frame type |  |  |
|  | 14: SINUMERIK axis type |  |  |
| Dependency: | Refer to: r7831 |  |  |

r7833[0...15] Telegram diagnostics unsigned / Tel diag unsigned

| ENC, SERVO, | Can be changed: - | Calculated: - |
| :--- | :--- | :--- |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - |
| SERVO_I_AC, VEC- | P-Group: - | Units group: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - |
| VECTOR_I_AC | Min | Max |
|  | - | - |
| Description: | Parameter to display a DSA signal in the unsigned-integer format. |  |
|  | The associated signal number is represented at the appropriate index in r7831. |  |

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

7834[0...15] Telegram diagnostics signed / Tel diag signed

SERVO AC,
SERVO_I_AC, VEC-
TOR, VECTOR AC,
VECTOR_I_AC
Data type: Integer32
P-Group: -
Not for motor type: -
Min
Calculated: -
Dynamic index: -
Units group: -
Scaling: -
Max

Description: Parameter to display a DSA signal in the signed-integer format.
The associated signal number is represented at the appropriate index in r7831.

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting


| 42: | Kilowatt |
| :---: | :---: |
| 43: | Micro amps peak-to-peak |
| 44: | Volt seconds |
| 45: | Microvolt seconds |
| 46: | Micro newton meters |
| 47: | Amps / volt seconds |
| 48: | Per mille |
| 49: | Hertz / second |
| 53: | Micrometer or millidegrees |
| 54: | Micrometer |
| 55: | Millidegrees |
| 59: | Nanometer |
| 61: | Newton/Amps |
| 62 : | Volt seconds/meter |
| $63:$ | Newton seconds/meter |
| 64: | Micronewton |
| 65: | Liters / minute |
| 66: | Bar |
| 67: | Cubic centimeters |
| 68: | Millimeter / volt minute |
| 69 : | Newton/Volt |
| 80: | Millivolts peak-to-peak |
| 81: | Volt rms |
| 82: | Millivolts rms |
| 83: | Amps rms |
| 84: | Micro amps rms |
| 85: | Micrometers / revolution |
| 90: | Tenths of a second |
| 91: | Hundredths of a second |
| 92: | 10 microseconds |
| 93: | Pulses |
| 94: | 256 pulses |
| 95: | Tenths of a pulse |
| 96: | Revolutions |
| 97: | 100 revolutions / minute |
| 98: | 10 revolutions / minute |
| 99: | 0.1 revolutions / minute |
| 100: | Thousandth revolution / minute |
| 101: | Pulses / second |
| 102: | 100 pulses / second |
| 103: | 10 revolutions / (minute $\times$ seconds) |
| 104: | 10000 pulses/second^2 |
| 105: | 0.1 Hertz |
| 106: | 0.01 Hertz |
| 107: | 0.1 / seconds |
| 108: | Factor 0.1 |
| 109: | Factor 0.01 |
| 110: | Factor 0.001 |
| 111: | Factor 0.0001 |
| 112: | 0.1 Volt peak-to-peak |
| 113: | 0.1 Volt peak-to-peak |
| 114: | 0.1 amps peak-to-peak |
| 115: | Watt |
| 116: | 100 Watt |
| 117: | 10 Watt |
| 118: | 0.01 percent |
| 119: | 1/second^3 |
| 120: | 0.01 percent/millisecond |
| 121: | Pulses / revolution |
| 122: | Microfarads |
| 123: | Milliohm |
| 124: | 0.01 Newton meter |
| 125: | Kilogram millimeter^2 |
| 126: | Rad / (seconds newton meter) |


|  | 127: | Henry |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 128: | Kelvin |  |  |
|  | 129: | Hours |  |  |
|  | 130: | Kilohertz |  |  |
|  | 131: | Milliamperes peak-to-peak |  |  |
|  | 132: | Millifarads |  |  |
|  | 133: | Meter |  |  |
|  | 135: | Kilowatt hours |  |  |
|  | 136: | Percent |  |  |
|  | 137: | Amps / Volt |  |  |
|  | 138: | Volt |  |  |
|  | 139: | Millivolts |  |  |
|  | 140: | Microvolts |  |  |
|  | 141: | Amps |  |  |
|  | 142: | Milliamperes |  |  |
|  | 143: | Micro amps |  |  |
|  | 144: | Milliamperes rms |  |  |
|  | 145: | Millimeter |  |  |
|  | 146: | Nanometer |  |  |
|  | 147: | Joules |  |  |
| r7843[0...20] | Memory card serial number / Mem_card ser.no |  |  |  |
| CU_I, CU_I_D410, CU_S_AC_DP, | Can be changed: - |  | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 |  | Dynamic index: - | Func. diagram: - |
| CU_S_AC_PN, CU S120 DP, | P-Group: - |  | Units group: - | Unit selection: |
| CU_S120_PN, | Not for motor type: - |  | Scaling: - | Expert list: 1 |
| CU_S150_DP, |  |  |  |  |
| CU_S150_PN |  |  |  |  |
|  |  |  | Min |  | Max | Factory setting |
|  | - |  | - |  |
| Description: | Displays the actual serial number of the memory card. |  |  |  |
|  | The individual characters of the serial number are displayed in the ASCII code in the indices. |  |  |  |
| Dependency: | Refer to: p9920, p9921 |  |  |  |
| Notice: | An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. |  |  |  |
| Note: | Example: displaying the serial number for a memory card: |  |  |  |
|  | r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1 |  |  |  |
|  | r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2 |  |  |  |
|  | r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3 |  |  |  |
|  | r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4 |  |  |  |
|  | r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5 |  |  |  |
|  | r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6 |  |  |  |
|  | r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7 |  |  |  |
|  | r7843[7] = 0 dec --> ASCII characters = " " --> serial number, character 8 |  |  |  |
|  | ... |  |  |  |
|  | r7843[19] = 0 dec --> ASCII characters = " " --> serial number, character 20 |  |  |  |
|  | r7843[20] = 0 dec |  |  |  |
|  | Serial number $=111923 E$ |  |  |  |


| r7844[0...2] | Memory card/device memory firmware version / Mem_crd/dev_mem FW |  |  |
| :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_DP, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_PN, CU S120 DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, CU S150 DP | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the version of th <br> [0] = Internal <br> [1] = External <br> [2] = Parameter backup | n the memory card/ |  |
| Note: | Re index 0 : |  |  |
|  | Displays the internal firmware version (e.g. 04402315). |  |  |
|  | This firmware version is normally they have the s Re index 1 : <br> Displays the external firm <br> For automation systems Re index 2: <br> Displays the internal CU With this CU firmware ve | mory card/device m <br> 04040000 -> 4.4). grated this is the 018) of the parame backup was saved | e CU firmware (r00 <br> he automation syste <br> when powering up. |
| r7850[0...23] | Drive object operational/not operational / DO ready for oper |  |  |
| CU_I, CU_I_D410, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | $-32786$ | $32767$ | - |
| Description: | Displays whether, for an activated drive object, all activated topology components are available or not (or whether these can be addressed). |  |  |
|  | 0 : Drive object not ready for operation |  |  |
|  | 1: Drive object ready for operation |  |  |


| p7852 | Number of indices for r7853 / Qty indices r7853 |  |
| :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: U, T | Calculated: - |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - |
| CU_S_AC_DP, | P-Group: - | Units group: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - |
| CU_S120_DP, |  | Unit selection: - |
| CU_S120_PN, |  | Expert list: 1 |
| CU_S150_DP, |  | Max |
| CU_S150_PN | Min | Factory setting |
|  | 1 | 1 |




|  | [12] = Object number in p0101[11] |  |  |
| :---: | :---: | :---: | :---: |
|  | [13] = Object number in p0101[12] |  |  |
|  | [14] = Object number in p0101[13] |  |  |
|  | [15] = Object number in p0101[14] |  |  |
|  | [16] = Object number in p0101[15] |  |  |
|  | [17] = Object number in p0101[16] |  |  |
|  | [18] = Object number in p0101[17] |  |  |
|  | [19] = Object number in p0101[18] |  |  |
|  | [20] = Object number in p0101[19] |  |  |
|  | [21] = Object number in p0101[20] |  |  |
|  | [22] = Object number in p0101[21] |  |  |
|  | [23] = Object number in p0101[22] |  |  |
|  | [24] = Object number in p0101[23] |  |  |
| Dependency: | Refer to: p0101, r7867, r7871 |  |  |
| r7869[0...24] | Status changes drive object reference / Status_chng DO ref |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Reference to the drive objects whose status has changed. |  |  |
|  | Index 0: |  |  |
|  | When changing one of the following indices, then the value in this index is increased. |  |  |
|  | Index 1...n: |  |  |
|  | The drive object with object number in $\mathrm{p} 0101[\mathrm{n}-1]$ has changed its status. |  |  |
|  | Example: |  |  |
|  | r7868[3] was incremented since the last time it was read. |  |  |
|  | --> the status of the drive object with object number in p0101[2] was changed. |  |  |
| Index: | [0] = Sum of the following indices |  |  |
|  | [1] = Object number in p0101[0] |  |  |
|  | [2] = Object number in p0101[1] |  |  |
|  | [3] = Object number in p0101[2] |  |  |
|  | [4] = Object number in p0101[3] |  |  |
|  | [5] = Object number in p0101[4] |  |  |
|  | [6] = Object number in p0101[5] |  |  |
|  | [7] = Object number in p0101[6] |  |  |
|  | [8] = Object number in p0101[7] |  |  |
|  | [9] = Object number in p0101[8] |  |  |
|  | [10] = Object number in p0101[9] |  |  |
|  | [11] = Object number in p0101[10] |  |  |
|  | [12] = Object number in p0101[11] |  |  |
|  | [13] = Object number in p0101[12] |  |  |
|  | [14] = Object number in p0101[13] |  |  |
|  | [15] = Object number in p0101[14] |  |  |
|  | [16] = Object number in p0101[15] |  |  |
|  | [17] = Object number in p0101[16] |  |  |
|  | [18] = Object number in p0101[17] |  |  |
|  | [19] = Object number in p0101[18] |  |  |
|  | [20] = Object number in p0101[19] |  |  |
|  | [21] = Object number in p0101[20] |  |  |
|  | [22] = Object number in p0101[21] |  |  |
|  | [23] = Object number in p0101[22] |  |  |
|  | [24] = Object number in p0101[23] |  |  |
| Dependency: | Refer to: p0101, r7867, r7872 |  |  |



| r7871[0...10] | Configuration changes drive object / Config_chng DO |  |
| :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - Calculated: - | Access level: 4 |
| S_INF | Data type: Unsigned32 Dynamic index: - | Func. diagram: - |
|  | P-Group: - Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | - - | - |
| Description: | Displays the configuration changes on the drive object. |  |
| Index: | [0] = Sum of the following indices |  |
|  | [1] = p0010, p0107 or p0108 |  |
|  | $[2]=\text { Drive object name (p0199) }$ |  |
|  | [3] = Structure-relevant parameters (e.g. p0180) |  |
|  | [4] = BICO interconnections |  |
|  | [5] = Activate/de-activate drive object |  |
|  | [6] = Data backup required |  |
|  | [7] = Activate/de-activate component |  |
|  | [8] = Reference or changeover parameters (e.g. p2000) |  |



Re index 0 :
When changing one of the following indices, then the value in this index is incremented.
Re index 1 :
Drive object commissioning: When changing either p0107 or p0108, the value in this index is incremented.
Re index 2:
Drive object name. When changing p0199, the value in this index is incremented.
Re index 3:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
Re index 4:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
Re index 5:
Drive object activity: When changing p0105, the value in this index is incremented.
Re index 6:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
Re index 8 :
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 10:
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.


Re index 4:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
Re index 5:
Drive object activity: When changing p0105, the value in this index is incremented.
Re index 6:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
Re index 8:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 10:
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.

| r7871[0...15] | Configuration cha | ct / Config_chn |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the configuration changes on the drive object. |  |  |
| Index: | [0] = Sum of the following indices |  |  |
|  | $[1]=\mathrm{p} 0010, \mathrm{p} 0107 \text { or p0108 }$ |  |  |
|  | [2] = Drive object name (p0199) |  |  |
|  | [3] = Structure-relevant parameters (e.g. p0180) |  |  |
|  | [4] = BICO interconnections |  |  |
|  | [5] = Activate/de-activate drive object |  |  |
|  | [6] = Data backup required |  |  |
|  | [7] = Activate/de-activate component |  |  |
|  | [8] = Reference or changeover parameters (e.g. p2000) |  |  |
|  | [9] = Parameter count through Drive Control Chart (DCC) |  |  |
|  | [10] = p0107 or p0108 |  |  |
|  | [11] = p0530 or p0531 |  |  |
|  | [12] = Reserved |  |  |
|  | [13] = Reserved |  |  |
|  | [14] = Reserved |  |  |
|  | [15] = Enc type (p0400) |  |  |
| Dependency: | Refer to: r7868, r7870 |  |  |
| Note: | Re index 0 : |  |  |
|  | When changing one of the following indices, then the value in this index is incremented. |  |  |
|  | Re index 1: |  |  |
|  | Drive object configuration. When changing p0010, p0107 or p0108, the value in this index is incremented. |  |  |
|  | Re index 2: |  |  |
|  | Drive object name. When changing p0199, the value in this index is incremented. |  |  |
|  | Re index 3: |  |  |
|  | Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented. |  |  |
|  | Re index 4: |  |  |
|  | Drive object BICO interconnections. When changing r3977, the value in this index is incremented. |  |  |

Re index 6 :
Drive object, data save
0 : There are no parameter changes to save.
1: There are parameter changes to save.
Re index 8:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 ...), the value in this index is incremented.

Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 15:
Encoder configuration. When changing p0400, the value in this index is incremented.


Re index 7:
Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented. Re index 8:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 10 :
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.
Re index 11:
Drive object bearing. When changing p0530 or p0531, the value in this index is incremented.
Re index 15:
SERVO/VECTOR configuration. When changing p0300, p0301 or p0400, the value in this index is incremented.


Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 10 :
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.

| r7872[0...3] | Status changes drive obje |
| :--- | :--- |
| All objects | Can be changed: - |
|  | Data type: Unsigned32 |
|  | P-Group: - |
|  | Not for motor type: - |
|  | Min |
|  | - |
| Description: | Displays the status changes on the |
|  | Index 0: |
|  | When changing one of the following |
|  | Index 1: |
|  | Drive object faults. When changing |
|  | Index 2: |
|  | Drive object alarms. When changing |
|  | Index 3: |
|  | Drive object safety messages. Whe |
|  | [0] = Sum of the following indices |
|  | [1] = Faults (r0944) |
|  | [2] = Alarms (r2121) |
|  | [3] = Safety messages (r9744) |
|  | Refer to: r7869 |

p7900[0...23] Drive objects priority / DO priority

CU_I, CU_I_D410,
CU NX CX, CU_S_AC_DP,
CU S AC PN, CU_S120_DP, CU_S120 PN CU_S150_DP, CU_S150_PN

Min Max
065535

## Access level: 4

Func. diagram: -
Unit selection: -
Expert list: 1

Sets the priority for processing the existing drive objects in the system.
The parameter enables a free sequence to be set for processing the drive objects. For this purpose all the drive object numbers existing in the system have to be written in the desired sequence into the corresponding indices of the parameter. After re-booting this sequence will be effective without a plausibility check.
With the factory setting the following priorities regarding processing are applicable:

- The drive objects are pre-sorted according to their type as follows: CONTROL UNIT, INFEED, SERVO, VECTOR, TM, HUB, CU_LINK
- If they are of the same type, they are sorted in ascending order according to their drive object number, i.e. the lower the number, the higher the priority for processing.

Index:
[0] = Drive object number Control Unit
[1] = Drive object number object 1
[2] = Drive object number object 2
[3] = Drive object number object 3
[4] = Drive object number object 4
[5] = Drive object number object 5
[6] = Drive object number object 6
[7] = Drive object number object 7
[8] = Drive object number object 8

|  | [9] = Drive object number object 9 |  |  |
| :---: | :---: | :---: | :---: |
|  | [10] = Drive object number object 10 |  |  |
|  | [11] = Drive object number object 11 |  |  |
|  | [12] = Drive object number object 12 |  |  |
|  | [13] = Drive object number object 13 |  |  |
|  | [14] = Drive object number object 14 |  |  |
|  | [15] = Drive object number object 15 |  |  |
|  | [16] = Drive object number object 16 |  |  |
|  | [17] = Drive object number object 17 |  |  |
|  | [18] = Drive object number object 18 |  |  |
|  | [19] = Drive object number object 19 |  |  |
|  | [20] = Drive object number object 20 |  |  |
|  | [21] = Drive object number object 21 |  |  |
|  | [22] = Drive object number object 22 |  |  |
|  | [23] = Drive object number object 23 |  |  |
| Notice: | This parameter may only be used by qualified service personnel. |  |  |
| Note: | If the same drive object numbers are used and if the existing drive object numbers in the system are entered incompletely, the content of this parameter is ignored entirely. The behavior as with factory setting will then become effec- |  |  |
| r7901[0...43] | Sampling times / t_sample |  |  |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 4 |
| CU_NX_CX, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, $C U S A C P N$, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_PN, |  |  |  |
| $\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ |  |  |  |
|  | Min <br> - [ $\mu \mathrm{s}$ ] | Max | Factory setting - [ $\mu \mathrm{s}$ ] |
|  |  | - [ $\mu \mathrm{s}$ ] |  |
| Description: | Displays the sampling times currently present on the drive unit. |  |  |
|  | For $\mathrm{r} 7901[\mathrm{x}]=0$, the following applies: |  |  |
|  | The time slice is not active. |  |  |
| r7903 | Hardware sampling times still assignable / HW t_samp free |  |  |
| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU S AC PN, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  |  |  |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the number of hardware sampling times that can still be assigned. |  |  |
|  | These free sampling times can be used by OA applications such as DCC (Drive Control Chart) or FBLOCKS (free function blocks). |  |  |
| Note: | OA: Open Architecture |  |  |


p8501[0...21] BI: Input signal bit-serially 1 / Input_sig bit 1
CU_I, CU_I_D410, Can be changed: U, T Calculated: -
CU_S_AC_DP, Data type: Unsigned32 / Binary Dynamic index: -
CU_S_AC_PN, P-Group: - Units group: -

CU_S120_PN, $\quad$ Not for motor type: -
Scaling: -
Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
CU S150 DP, CU_S150_PN
Min
Max
Factory setting
0
Description: Sets the signal source for bit-serial input signals.


| Index: | [0] = To BO: r8511.0 |
| :---: | :---: |
|  | [1] = To BO: 88511.1 |
|  | [2] = To BO: r 8511.2 |
|  | [3] = To BO: 88511.3 |
|  | [4] = To BO: r 8511.4 |
|  | [5] = To BO: r 8511.5 |
|  | [6] = To BO: r8511.6 |
|  | [7] = To BO: r 8511.7 |
|  | [8] = To BO: r 8511.8 |
|  | [9] = To BO: r 8511.9 |
|  | [10] = To BO: 88511.10 |
|  | [11] = To BO: 88511.11 |
|  | [12] = То ВО: r8511.12 |
|  | [13] = То BO: 88511.13 |
|  | [14] = To BO: 88511.14 |
|  | [15] = То ВО: r8511.15 |
|  | [16] = To BO: 88511.16 |
|  | [17] $=$ To BO: r 8511.17 |
|  | [18] = То ВО: r8511.18 |
|  | [19] = To BO: r 8511.19 |
|  | [20] = To BO: r8511.20 |
|  | [21] = To BO: r8511.21 |
| Dependency: | Refer to: r8511 |


| p8501[0...21] | BI: Send data transfer bit-serially 1 / Send trans bit 1 |  |  |
| :---: | :---: | :---: | :---: |
| CU_NX_CX | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2211 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting <br> [0] 722.0 |
|  |  |  | [1] 722.1 |
|  |  |  | [2] 722.2 |
|  |  |  | [3] 722.3 |
|  |  |  | [4...7] 0 |
|  |  |  | [8] 722.8 |
|  |  |  | [9] 722.9 |
|  |  |  | [10] 722.10 |
|  |  |  | [11] 722.11 |
|  |  |  | [12...15] 0 |
|  |  |  | [16] 722.16 |
|  |  |  | [17] 722.17 |
|  |  |  | [18...21] 0 |
| Description: | Sets the signal source for bitwise data transfer. |  |  |
|  | These signals are transferred to another Control Unit and are located in BO: r8511.0 ... 21 for further interconnection. |  |  |
| Index: | [ 0 ] = To BO: r8511.0 |  |  |
|  | [1] = To BO: 88511.1 |  |  |
|  | [2] = To BO: 88511.2 |  |  |
|  | [3] = То BO: 88511.3 |  |  |
|  | [4] = То BO: 88511.4 |  |  |
|  | [5] = То BO: 88511.5 |  |  |
|  | [6] = То BO: 88511.6 |  |  |
|  | [7] = То BO: 88511.7 |  |  |
|  | [8] = To BO: 88511.8 |  |  |
|  | [ 9 ] To BO: 88511.9 |  |  |
|  | [10] = То BO: r8511.10 |  |  |
|  | [11] = To BO: 88511.11 |  |  |
|  | [12] = То BO: r8511.12 |  |  |


|  | [13] = To BO: r8511.13 |  |  |
| :---: | :---: | :---: | :---: |
|  | [14] = To BO: r8511.14 |  |  |
|  | [15] = To BO: r8511.15 |  |  |
|  | [16] = To BO: r8511.16 |  |  |
|  | [17] = To BO: r8511.17 |  |  |
|  | [18] = To BO: r8511.18 |  |  |
|  | [19] = To BO: r8511.19 |  |  |
|  | [20] = To BO: r8511.20 |  |  |
|  | [21] = To BO: r8511.21 |  |  |
| Dependency: | Refer to: 88511 |  |  |
| p8502 | CI: Input signal word-serially 0 / Input_sig word 0 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting 0 |
|  |  | - |  |
| Description: | Sets the signal source for wordwise input signals. |  |  |
|  | This signal value is available in connector output r8512 for further interconnection. |  |  |
| Dependency: | Refer to: r8512 |  |  |
| p8502 | CI: Send data transfer wordwise 0 / Send trans word 0 |  |  |
| CU_LINK,CU_NX_CX | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / FloatingPoint32 | Calculated: - | Access level: 2 |
|  |  | Dynamic index: - | Func. diagram: 2211 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - |  |
| Description: | Sets the signal source for the wordwise data transfer (process signal). |  |  |
|  | This signal value is transferred to another Control Unit and is located at CO: r8512 for further interconnection. |  |  |
| Dependency: | Refer to: r8512 |  |  |
| p8503 | CI: Input signal word-serially 1 / Input_sig word 1 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for wordwise input signals. |  |  |
|  | This signal value is available in connector output r8513 for further interconnection. |  |  |
| Dependency: | Refer to: r8513 |  |  |


| p8503 | CI: Send data transfer wordwise 1 / Send trans word 1 |  |  |
| :---: | :---: | :---: | :---: |
| CU_LINK,CU_NX_CX | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / FloatingPoint32 | Dynamic index: - | Func. diagram: 2211 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the wordwise data transfer (process signal). |  |  |
|  | This signal value is transferred to another Control Unit and is located in CO: r8513 for further interconnection. |  |  |
| Dependency: | Refer to: 88513 |  |  |
| p8504 | CI: Input signal word-serially 2 / Input_sig word 2 |  |  |
| CU_I, CU_I_D410 CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type:-Min | Scaling: PERCENT | Expert list: 1 |
|  |  | Max | Factory setting |
|  |  | - | 0 |
| Description: | Sets the signal source for wordwise input signals. |  |  |
|  | This signal value is available in connector output r8514 for further interconnection. |  |  |
| Dependency: | Refer to: r8514 |  |  |
| p8504 | CI: Send data transfer wordwise 2 / Send trans word 2 |  |  |
| CU_LINK, <br> CU_NX_CX | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / FloatingPoint32 | Calculated: - | Access level: 2 |
|  |  | Dynamic index: - | Func. diagram: 2211 |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the wordwise data transfer (process signal). |  |  |
|  | This signal value is transferred to another Control Unit and is located in CO: r8514 for further interconnection. |  |  |
| Dependency: | Refer to: r8514 |  |  |
| p8505 | CI: Input signal word-serially 3 / Input_sig word 3 |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: U, T | Calculated: - | Access level: 2 |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: PERCENT | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Sets the signal source for wordwise input signals. |  |  |
|  | This signal value is available in connector output r8515 for further interconnection. |  |  |
| Dependency: | Refer to: 88515 |  |  |



| r8511.0... 21 |  | Output signal | Outp_sig bit 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CU_I, CU_I_D410, |  | be changed: - | Calculated: - | Access level: 2 |  |
| CU_S_AC_DP, |  | type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
| CU S120 DP, |  | oup: - | Units group: - | Unit selection: - |  |
| CU_S120_PN, |  | for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: |  | $y$ and binector outp | rconnected via bine | 501[0...21]. |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | From BI: p8501[0] | ON | OFF | - |
|  | 01 | From BI: p8501[1] | ON | OFF | - |
|  | 02 | From BI: p8501[2] | ON | OFF | - |
|  | 03 | From BI: p8501[3] | ON | OFF | - |
|  | 04 | From BI: p8501[4] | ON | OFF | - |
|  | 05 | From BI: p8501[5] | ON | OFF | - |
|  | 06 | From BI: p8501[6] | ON | OFF | - |
|  | 07 | From BI: p8501[7] | ON | OFF | - |
|  | 08 | From BI: p8501[8] | ON | OFF | - |
|  | 09 | From BI: p8501[9] | ON | OFF | - |
|  | 10 | From BI: p8501[10] | ON | OFF | - |
|  | 11 | From BI: p8501[11] | ON | OFF | - |
|  | 12 | From BI: p8501[12] | ON | OFF | - |
|  | 13 | From BI: p8501[13] | ON | OFF | - |
|  | 14 | From BI: p8501[14] | ON | OFF | - |
|  | 15 | From BI: p8501[15] | ON | OFF | - |
|  | 16 | From BI: p8501[16] | ON | OFF | - |
|  | 17 | From BI: p8501[17] | ON | OFF | - |
|  | 18 | From BI: p8501[18] | ON | OFF | - |
|  | 19 | From BI: p8501[19] | ON | OFF | - |
|  | 20 | From BI: p8501[20] | ON | OFF | - |
|  | 21 | From BI: p8501[21] | ON | OFF | - |
| Dependency: |  | to: p8501 |  |  |  |


| r8511.0... 21 | BO: Receive data transfer bit-serially 1 / Recv trans bit 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CU_LINK, <br> CU_NX_CX | Can be changed: - |  | Calculated: - Access level: 2 |  |  |
|  | Data type: Unsigned32 |  | Dynamic index: - Func. diagram: 2211 |  |  |
|  | P-Group: - |  | Units group: - Unit selection: - |  |  |
|  | Not for motor type: - |  | Scaling: - Expert list: 1 |  |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Display and binector output for the bit-serial received data. |  |  |  |  |
|  | These signals were interconnected and transferred to another Control Unit via BI: p8501[0...21]. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | From BI: p8501[0] | ON | OFF | - |
|  | 01 | From BI: p8501[1] | ON | OFF | - |
|  | 02 | From BI: p8501[2] | ON | OFF | - |
|  | 03 | From BI: p8501[3] | ON | OFF | - |
|  | 04 | From BI: p8501[4] | ON | OFF | - |
|  | 05 | From BI: p8501[5] | ON | OFF | - |
|  | 06 | From BI: p8501[6] | ON | OFF | - |
|  | 07 | From BI: p8501[7] | ON | OFF | - |
|  | 08 | From BI: p8501[8] | ON | OFF | - |
|  | 09 | From BI: p8501[9] | ON | OFF | - |
|  | 10 | From BI: p8501[10] | ON | OFF | - |
|  | 11 | From BI: p8501[11] | ON | OFF | - |





| r8570[0...39] | Macro drive object / Macro DO |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_I_D410, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_NX_CX, CU S AC DP | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, CU_S150_DP, CU S150 PN, |  |  |  |
|  |  |  |  |
|  |  |  |  |
| S_INF, SERVO, |  |  |  |
| SERVO_AC, |  |  |  |
| SERVO_I_AC,TM120, TM150, |  |  |  |
|  |  |  |  |
| TM15DI_DO, TM31, |  |  |  |
| VECTOR, |  |  |  |
| VECTOR_AC, |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the macro file saved in the appropriate directory on the memory card/device memory. |  |  |
| Dependency: | Refer to: p0015 |  |  |
| Note: | For a value = 9999999, the following applies: The read operation is still running. |  |  |
| r8571[0...39] | Macro Binector Input (BI) / Macro BI |  |  |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 1 |
| S_INF, SERVO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| SERVO_AC, SERVO I AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 0 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the ACX file saved in the appropriate directory in the non-volatile memory. |  |  |
| Dependency: | Refer to: p0700 |  |  |
| Note: | For a value = 9999999, the following applies: The read operation is still running. |  |  |
| r8572[0...39] | Macro Connector Inputs (CI) for speed setpoints / Macro Cl n_set |  |  |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 1 |
| S_INF, SERVO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| SERVO_AC, SERVO I AC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 0 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the ACX file saved in the appropriate directory in the non-volatile memory. |  |  |
| Dependency: | Refer to: p1000 |  |  |
| Note: | For a value = 9999999, the following applies: The read operation is still running. |  |  |


| r8573[0...39] | Macro Connector Inputs (CI) for torque setpoints / Macro Cl M_set |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 1 |
| S_INF, SERVO, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| SERVO_IAC, VEC- | P-Group: - | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 0 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the ACX file saved in the appropriate directory in the non-volatile memory. |  |  |
| Dependency: | Refer to: p1500 |  |  |
| Note: | For a value = 9999999, the following applies: The read operation is still running. |  |  |
| r8585 | Macro execution actual / Macro executed |  |  |
| A_INF, B_INF, CU_I, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_I_D410, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU S AC DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 0 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  |  |  |
| CU_S150_PN, |  |  |  |
| S_INF, SERVO, |  |  |  |
| SERVO_AC, |  |  |  |
| SERVO_I_AC, TB30, |  |  |  |
| TM120, TM150, |  |  |  |
| TM15DI_DO, TM31, |  |  |  |
| VECTOR, |  |  |  |
| VECTOR_AC, |  |  |  |
| VECTOR_I_AC |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the macro currently being executed on the drive object. |  |  |
| Dependency: | Refer to: p0015, p0700, p1000, p1500, r8570, r8571, r8572, r8573 |  |  |
| r8600 | CAN device type / Device type |  |  |
| $\begin{aligned} & \text { CU_S120_DP } \\ & \text { (CAN), } \\ & \text { CU_S120_PN } \\ & \text { (CAN), } \\ & \text { CU_S150_DP } \\ & \text { (CAN), } \\ & \text { CU_S150_PN (CAN) } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  | Min Max Factory setting | Max | Factory setting |
|  |  |  |  |
| Description: | Displays all of the devices connected to the CAN bus after run-up. |  |  |
|  | r8600 |  |  |
|  | $=00000000$ hex: No drive recognized. |  |  |
|  | = FFFF0192 hex: Several drives - drive 1 is an Active Line Module, servo drive or vector drive |  |  |
|  | = FFFF0191 hex: Several drives - 1st drive is a Terminal Module |  |  |
|  | = 02010192 hex: 1 Vector drive |  |  |
|  | = 00020192 hex: 1 Servo drive |  |  |
|  | = 01000192 hex: 1 Active Line Module |  |  |
|  | = 00080191 hex: 1 Terminal Module |  |  |
| Note: | Corresponds to the CANopen object 1000 hex. |  |  |
|  | For each detected drive, the device type is displayed in object 67FF hex +800 hex * x (x: Drive number $0 \ldots 7$ ) |  |  |



The changeover of the node ID using the hardware switch at the Control Unit or per software has no effect on the COB-ID EMCY. The saved value remains effective.


Note: $\quad$\begin{tabular}{l}
Corresponds to the CANopen object 1018 hex. <br>
Re index 3: <br>
The SINAMICS serial number comprises 60 bits. Of these bits, the following are displayed in this index: <br>
Bits $0 \ldots$ 19: Consecutive number <br>
Bits $20 \ldots$ 23: Production ID <br>
-0 hex: Development <br>
-1 hex: P1 unique number <br>
-2 hex: P2 unique number <br>
-3 hex: WA unique number <br>
-9 hex: Pattern <br>

- F hex: All others <br>
Bits $24 \ldots 27:$ Month of manufacture (0 means January, B means December) <br>
Bits $28 \ldots 31$ : Year of manufacture (0 means 2002)
\end{tabular}

| p8608[0...1] | CAN Clear Bus Off Error / Clear bus off err |  |  |
| :--- | :--- | :--- | :--- |
| CU_S120_DP | Can be changed: U, T | Calculated: - |  |
| (CAN), | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN | P-Group: - | Units group: - | Unit selection: - |
| (CAN), | Scaling: - | Expert list: 1 |  |
| CU_S150_DP | Not for motor type: - |  |  |
| (CAN), |  | Max | Factory setting |
| CU_S150_PN (CAN) | 1 | 0 |  |

Description: $\quad$ As a result of a Bus Off error, the CAN controller is set into the initialization state.
Index 0:
The CAN controller is manually started after resolving the cause of the error with $\mathrm{p} 8608[0]=1$.
Index 1:
The automatic CAN bus start function is activated using p8608[1] $=1$.
At 2 second intervals, the CAN controller is automatically restarted until the cause of the error has been resolved
and a CAN connection has been established.
Value: 0 : Inactive
Start CAN controller
Index: $\quad[0]=$ Manual controller start function
[1] = Activating the automatic controller start function
Note: $\quad$ Re index 0 :
This parameter is automatically reset to 0 after start.

| p8609[0...1] | CAN Error Behavior / Error behavior |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_S120_DP } \\ & \text { (CAN), } \\ & \text { CU_S120_PN } \\ & \text { (CAN), } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
| (CAN),CU_S150_PN (CAN) |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 2 | 1 |
| Description: Value: | Sets the behavior of the CAN node referred to the communications error or equipment fault. |  |  |
|  | 0: Pre-operational |  |  |
|  | 1: No change |  |  |
|  | 2: Stopped |  |  |
| Index: | [0] = Behavior for communication errors |  |  |
|  | [1] = Behavior for device faults |  |  |
| Note: | Corresponds to the CANopen object 1029 hex. |  |  |


[16] $=$ Fault 5/ drive 2
[17] = Fault 6/ drive 2
[18] = Fault 7/ drive 2
[19] = Fault 8/ drive 2
[20] = Number of faults drive 3
[21] = Fault 1/ drive 3
[22] = Fault $2 /$ drive 3
[23] = Fault 3/ drive 3
[24] = Fault 4/ drive 3
[25] = Fault 5/ drive 3
[26] = Fault 6/ drive 3
[27] = Fault 7/ drive 3
[28] = Fault 8/ drive 3
[29] = Number of faults drive 4
[30] = Fault 1/ drive 4
[31] = Fault 2/ drive 4
[32] = Fault 3/ drive 4
[33] = Fault 4/ drive 4
[34] = Fault 5/ drive 4
[35] = Fault 6/ drive 4
[36] = Fault 7/ drive 4
[37] = Fault 8/ drive 4
[38] = Number of faults drive 5
[39] = Fault $1 /$ drive 5
[40] = Fault $2 /$ drive 5
[41] $=$ Fault $3 /$ drive 5
[42] = Fault 4/ drive 5
[43] $=$ Fault $5 /$ drive 5
[44] = Fault 6/ drive 5
[45] = Fault 7/ drive 5
[46] $=$ Fault 8/ drive 5
[47] = Number of faults drive 6
[48] = Fault 1/ drive 6
[49] = Fault 2/ drive 6
[50] = Fault 3/ drive 6
[51] = Fault 4/ drive 6
[52] = Fault 5/ drive 6
[53] = Fault 6/ drive 6
[54] = Fault 7/ drive 6
[55] = Fault 8/ drive 6
[56] = Number of faults drive 7
[57] = Fault $1 /$ drive 7
[58] = Fault $2 /$ drive 7
[59] = Fault 3/ drive 7
[60] = Fault 4/ drive 7
[61] = Fault 5/ drive 7
[62] = Fault 6/ drive 7
[63] = Fault 7/ drive 7
[64] = Fault 8/ drive 7
[65] = Number of faults drive 8
[66] = Fault 1/ drive 8
[67] = Fault 2/ drive 8
[68] = Fault 3/ drive 8
[69] = Fault 4/ drive 8
[70] $=$ Fault $5 /$ drive 8
[71] = Fault 6/ drive 8
[72] $=$ Fault $7 /$ drive 8
[73] = Fault 8/ drive 8
[74] = Number of faults Control Unit
[75] = Fault 1/Control Unit
[76] = Fault 2/Control Unit
[77] = Fault 3/Control Unit
[78] = Fault 4/Control Unit
[79] = Fault 5/Control Unit
[82] $=$ Fault 8/Control
Note: Corresponds to the CANopen object 1003 hex.

| p8620 | CAN Node-ID / No |  |  |
| :---: | :---: | :---: | :---: |
| CU_S120_DP | Can be changed: T | Calculated: - | Access level: 2 |
| (CAN), | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| (CAN), | P-Group: - | Units group: - | Unit selection: - |
| $\begin{aligned} & \text { CU_S150_DP } \\ & \text { (CAN), } \end{aligned}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_PN |  |  |  |
|  | $\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 127 \end{aligned}$ | Factory setting 126 |
| Description: | Display or setting of the The Node ID can be se <br> 1) Using the address sw <br> --> p8620 can then only <br> --> A change only beco <br> --> CANopen Node ID <br> 2) Using p8620 <br> --> Only if address 0 is <br> --> the Node ID is set a <br> --> A change only beco | the selected Node POWER ON. ss are identical. switch. <br> ve and POWER ON |  |
| Dependency: | Refer to: 88621 |  |  |
| Note: | Every node ID change The active node ID is disp The parameter is not in It is only possible to ind requisite: the address | after a POWER <br> factory setting. <br> en node ID and the switch). | ess using p0918 and |





| r8680[0..36] | CAN Diagnosis Hard | ostics HW |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_S120_DP } \\ & \text { (CAN), } \\ & \text { CU_S120_PN } \\ & \text { (CAN), } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), |  |  |  |
| CU_S150_PN (CAN) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the register of the CAN controller C_CAN: |  |  |
|  | Register, Message Interface Register and Message Handler Register - referred to the CAN protocol. |  |  |
| Index: | [0] = Control register |  |  |
|  |  |  |  |
|  | [2] = Error counter |  |  |
|  | [3] = Bit timing register |  |  |
|  | [4] = Interrupt register |  |  |
|  | [5] = Test register |  |  |
|  | [6] = Baud rate prescaler extension register |  |  |
|  | [7] = Interface 1 command request register |  |  |
|  | [8] = Interface 1 command mask register |  |  |
|  | [9] = Interface 1 mask 1 register |  |  |
|  | [10] = Interface 1 mask 2 register |  |  |
|  | [11] = Interface 1 arbitration 1 register |  |  |
|  | [12] = Interface 1 arbitration 2 register |  |  |
|  | [13] = Interface 1 message control register |  |  |
|  | [14] = Interface 1 data A1 register |  |  |
|  | [15] = Interface 1 data A2 register |  |  |
|  | [16] = Interface 1 data B1 register |  |  |
|  | [17] = Interface 1 data B2 register |  |  |
|  | [18] = Interface 2 command request register |  |  |
|  | [19] = Interface 2 command mask register |  |  |
|  | [20] = Interface 2 mask 1 register |  |  |
|  | [21] = Interface 2 mask 2 register |  |  |
|  | [22] = Interface 2 arbitration 1 register |  |  |
|  | [23] = Interface 2 arbitration 2 register |  |  |
|  | [24] = Interface 2 message control register |  |  |
|  | [25] = Interface 2 data A1 register |  |  |
|  | [26] = Interface 2 data A2 register |  |  |
|  | [27] = Interface 2 data B1 register |  |  |
|  | [28] = Interface 2 data B2 register |  |  |
|  | [29] = Transmission request 1 register |  |  |
|  | [30] = Transmission request 2 register |  |  |
|  | [31] = New data 1 register |  |  |
|  | [32] = New data 2 register |  |  |
|  | [33] = Interrupt pending 1 register |  |  |
|  | [34] = Interrupt pending 2 register |  |  |
|  | [35] = Message valid 1 register |  |  |
|  |  |  |  |
| Note: | A description of the individual registers of the C_CAN controller can be taken from "C_CAN User's M |  |  |




| p8701[0..1] | CAN Receive PDO 2 / Receive PDO 2 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (CAN), | Can be changed: C1(3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9204, 9206 |
| SERVO_IAC | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR | Scaling: - | Expert list: 1 |  |

(CAN),
VECTOR_I_AC
(CAN)

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| 0000 hex | $800006 D F$ hex | [0] 8000 06DF hex |
|  |  | [1] 00FE hex |

Description: Sets the communication parameters for CANopen Receive Process Data Object 2 (RPDO 2).

| Index: | $[0]=$ PDO COB-ID |
| :--- | :--- |
|  | $[1]=$ PDO transmission type |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. |
|  | Refer to: p8740, p8741 |
| Note: | Corresponds to the CANopen object 1401 hex +40 hex * x (x: Drive number $0 \ldots 7$ ). |
|  | Transmission types 0, 1, FE and FF can be set. |
|  | PDO: Process Data Object |


| p8702[0..1] | CAN Receive PDO 3 / Receive PDO 3 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: C 1 (3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9204, 9206 |
| SERVO_I_AC <br> (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR_AC (CAN), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (CAN) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0000 hex | 8000 06DF hex | [0] 8000 06DF hex |
|  |  |  | [1] 00FE hex |
| Description: | Sets the communication par | open Receive Proc | (RPDO 3). |


p8704[0...1] CAN Receive PDO 5 / Receive PDO 5
SERVO (CAN), Can be changed: C1(3), T Calculated: - Access level: 3
SERVO_AC (CAN), Data type: Unsigned32
SERVO I AC

SERVO_I_AC
(CAN), VECTOR
P-Group: Communications
(CAN), VECTOR_AC Not for motor type: -
(CAN),
VECTOR_I_AC
(CAN)
Min Max Factory setting

0000 hex 8000 06DF hex
[0] 8000 06DF hex
[1] 00FE hex
Description: Sets the communication parameters for CANopen Receive Process Data Object 5 (RPDO 5).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Refer to: p8740, p8741
Note: Corresponds to the CANopen object 1404 hex +40 hex * $x$ ( $x$ : Drive number 0 ... 7).
Transmission types 0, 1, FE and FF can be set.
PDO: Process Data Object



| p8707[0..1] | CAN Receive PDO 8 / Receive PDO 8 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: C 1 (3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9204 |
| SERVO_I_AC <br> (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR_AC (CAN), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (CAN) |  |  |  |
|  | Min <br> 0000 hex | Max <br> 8000 06DF hex | Factory setting <br> [0] 8000 06DF hex |
|  |  |  | [1] 00FE hex |
| Description: | Sets the communication par | open Receive Proce | (RPDO 8). |




| Note: | Corresponds to the CANopen object 1604 hex +40 hex ${ }^{*} \mathrm{x}(\mathrm{x}$ : Drive number $0 \ldots 7)$. |
| :--- | :--- |
| Dummy mapping not supported. |  |
| The parameter can only be written online when the associated COB ID in p870x is set as invalid. |  |


| p8715[0..3] | CAN Receive Mapping for RPDO 6 / Mapping RPDO 6 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: C 1 (3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 9204 |
| SERVO_I_AC <br> (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
| (CAN), |  |  |  |
| VECTOR_I_AC (CAN) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | $0000 \text { hex }$ |
| Description: | Sets the mapping parameters for CANopen Receive Process Data Object 6 (RPDO 6). |  |  |
| Index: | $\text { [0] = Mapped object } 1$ |  |  |
|  | $\text { [1] = Mapped object } 2$ |  |  |
|  | [2] = Mapped object 3 |  |  |
|  | [3] = Mapped object 4 |  |  |
| Note: | Corresponds to the CANopen object 1605 hex +40 hex * x (x: Drive number $0 \ldots 7$ ). |  |  |
|  | Dummy mapping not supported. |  |  |
|  | The parameter can only be written online when the associated COB ID in p870x is set as invalid. |  |  |



| p8717[0...3] | CAN Receive Mapping for RPDO 8 / Mapping RPDO 8 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: C1(3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 920 |
| (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: |
| $\begin{aligned} & \text { (CAN), VECTOR_AC } \\ & \text { (CAN), } \end{aligned}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (CAN) |  |  |  |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8). |  |  |
| Index: | [0] = Mapped object 1 <br> [1] = Mapped object 2 |  |  |

$[2]=$ Mapped object 3
$[3]=$ Mapped object 4
Corresponds to the CANopen object 1607 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).
Dummy mapping not supported.
The parameter can only be written online when the associated COB ID in p870x is set as invalid.


## p8721[0...4] CAN Transmit PDO 2 / Transmit PDO 2

| SERVO (CAN), | Can be changed: C 1 (3), T | Calculated: - | Access level: 3 |
| :---: | :---: | :---: | :---: |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 920 |
| (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR_AC (CAN), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC |  |  |  |
|  | Min 0000 hex | Max <br> C000 06DF hex | Factory setting <br> [0] C000 06DF hex |
|  |  |  | [1] 00FE hex |
|  |  |  | [2] 0000 hex |
|  |  |  | [3] 0000 hex |
|  |  |  | [4] 0000 hex |

Description: Sets the communication parameters for CANopen Transmit Process Data Object 2 (TPDO 2).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type
[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )
[3] = Reserved
[4] = Event timer (in ms)

| Dependency: | A valid COB-ID can only be set for the available (existing) channel. Refer to: p8740, p8741 |
| :---: | :---: |
| Notice: | For inhibit time and even timer, the following apply: <br> A value that is not a multiple integer of CANopen ( 4 ms ) is rounded-off. |
| Note: | Corresponds to the CANopen object 1801 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Transmission types $0,1 \ldots$ F0, FE and FF can be set. <br> PDO: Process Data Object |
| p8722[0..4] | CAN Transmit PDO 3 / Transmit PDO 3 |
| SERVO (CAN), <br> SERVO_AC (CAN), <br> SERVO_I_AC <br> (CAN), VECTOR <br> (CAN), VECTOR_AC <br> (CAN), <br> VECTOR_I_AC <br> (CAN) | Can be changed: C1(3), T Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: 9208, 9210 <br> P-Group: Communications Units group: - Unit selection: - <br> Not for motor type: - Scaling: -  <br>   Fxpert list: 1 <br> Min Max [0] C000 06DF hex <br> 0000 hex C000 06DF hex [1] 00FE hex <br>   $[2] 0000$ hex <br>   $[3] 0000$ hex <br>   $[4] 0000$ hex |
| Description: Index: | Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$ |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. Refer to: p8740, p8741 |
| Notice: | For inhibit time and even timer, the following apply: <br> A value that is not a multiple integer of CANopen ( 4 ms ) is rounded-off. |
| Note: | Corresponds to the CANopen object 1802 hex +40 hex *x (x: Drive number $0 \ldots 7$ ). Transmission types $0,1 \ldots$ F0, FE and FF can be set. <br> PDO: Process Data Object |
| p8723[0...4] | CAN Transmit PDO 4 / Transmit PDO 4 |
| SERVO (CAN), <br> SERVO_AC (CAN), <br> SERVO_I_AC <br> (CAN), VECTOR <br> (CAN), VECTOR_AC <br> (CAN), <br> VECTOR_I_AC <br> (CAN) | Can be changed: C1(3), T Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: 9208,9210 <br> P-Group: Communications Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br>   Factory setting <br>   [0] C000 06DF hex <br> Min Max [1] 00FE hex <br> 0000 hex C000 06DF hex [2] 0000 hex <br>   $[3] 0000$ hex <br>   [4] 0000 hex |
| Description: Index: | Sets the communication parameters for CANopen Transmit Process Data Object 4 (TPDO 4). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \end{aligned}$ |


|  | $[3]=$ Reserved |
| :--- | :--- |
|  | $[4]=$ Event timer (in ms) |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. |
|  | Refer to: p8740, p8741 |
| Notice: | For inhibit time and even timer, the following apply: |
|  | A value that is not a multiple integer of CANopen (4 ms) is rounded-off. |
| Note: | Corresponds to the CANopen object 1803 hex +40 hex * x (x: Drive number $0 \ldots 7$ ). |
|  | Transmission types 0, $1 \ldots$ F0, FE and FF can be set. |
|  | PDO: Process Data Object |

p8724[0...4] CAN Transmit PDO 5 / Transmit PDO 5

SERVO (CAN), Can be changed: C1(3), T
SERVO_AC (CAN), Data type: Unsigned32
SERVO_I_AC
(CAN), VECTOR
P-Group: Communications
(CAN), VECTOR_AC Not for motor type: -
(CAN),
VECTOR_I_AC
(CAN)

| Min | Max |
| :--- | :--- |
| 0000 hex | C000 06DF he |

## Access level: 3

Func. diagram: 9208
Unit selection: -
Expert list: 1

## Factory setting

[0] C000 06DF hex
[1] 00FE hex
[2] 0000 hex
[3] 0000 hex
[4] 0000 hex
Description: Sets the communication parameters for CANopen Transmit Process Data Object 5 (TPDO 5).

| Index: | [0] = PDO COB-ID |
| :---: | :---: |
|  | [1] = PDO transmission type |
|  | [2] = Inhibit time (in $100 \mu \mathrm{~s}$ ) |
|  | [3] = Reserved |
|  | [4] = Event timer (in ms) |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. |
|  | Refer to: p8740, p8741 |
| Notice: | For inhibit time and even timer, the following apply: |
|  | A value that is not a multiple integer of CANopen ( 4 ms ) is rounded-off. |
| Note: | Corresponds to the CANopen object 1804 hex +40 hex *x (x: Drive number $0 \ldots 7$ ). |
|  | Transmission types 0, $1 \ldots$ F0, FE and FF can be set. |
|  | PDO: Process Data Object |

p8725[0...4] CAN Transmit PDO 6 / Transmit PDO 6
SERVO_AC (CAN), Data type: Unsigned32

SERVO_I_AC
(CAN), VECTOR
P-Group: Communications
(CAN), VECTOR_AC Not for motor type: -
(CAN),
VECTOR_I_AC
(CAN)
Min Max Factory setting
0000 hex C000 06DF hex [0] C000 06DF hex
[1] 00FE hex
[2] 0000 hex
[3] 0000 hex
[4] 0000 hex

Description: Sets the communication parameters for CANopen Transmit Process Data Object 6 (TPDO 6).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type

|  | $\begin{aligned} & {[2]=\text { Inhibit time (in } 100 \mu \mathrm{~s} \text { ) }} \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. Refer to: p8740, p8741 |  |  |
| Notice: | For inhibit time and even timer, the following apply: |  |  |
| Note: | Corresponds to the CANopen <br> Transmission types 0, 1 ... F <br> PDO: Process Data Object | $x+40 \text { hex * } x(x: \operatorname{Dr}$ <br> be set. |  |
| p8726[0...4] | CAN Transmit PDO 7 / Transmit PDO 7 |  |  |
| SERVO (CAN), <br> SERVO_AC (CAN), <br> SERVO_I_AC <br> (CAN), VECTOR <br> (CAN), VECTOR_AC <br> (CAN), <br> VECTOR_I_AC <br> (CAN) | Can be changed: C1(3), T <br> Data type: Unsigned32 <br> P-Group: Communications <br> Not for motor type: - <br> Min <br> 0000 hex | Calculated: Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> C000 06DF hex | Access level: 3 <br> Func. diagram: 9208 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] C000 06DF hex <br> [1] 00FE hex <br> [2] 0000 hex <br> [3] 0000 hex <br> [4] 0000 hex |
| Description: Index: | $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$ |  |  |
| Dependency: | A valid COB-ID can only be set for the available (existing) channel. Refer to: p8740, p8741 |  |  |
| Notice: | For inhibit time and even timer, the following apply: <br> A value that is not a multiple integer of CANopen ( 4 ms ) is rounded-off. |  |  |
| Note: | Transmission types $0,1 \ldots$ F0, FE and FF can be set. PDO: Process Data Object |  |  |
| p8727[0...4] | CAN Transmit PDO 8 / Transmit PDO 8 |  |  |
| SERVO (CAN), <br> SERVO_AC (CAN), <br> SERVO_I_AC <br> (CAN), VECTOR <br> (CAN), VECTOR_AC <br> (CAN), <br> VECTOR_I_AC <br> (CAN) | Can be changed: C1(3), T <br> Data type: Unsigned32 <br> P-Group: Communications <br> Not for motor type: - <br> Min <br> 0000 hex | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> C000 06DF hex | Access level: 3 <br> Func. diagram: 9208 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> [0] C000 06DF hex <br> [1] 00FE hex <br> [2] 0000 hex <br> [3] 0000 hex <br> [4] 0000 hex |
| Description: | Sets the communication parameters for CANopen Transmit Process Data Object 8 (TPDO 8). |  |  |





| p8737[0...3] | CAN Transmit Mapping for TPDO 8 / Mapping TPDO 8 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: C1(3), T | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 92 |
| (CAN), VECTOR | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR_AC (CAN), | Not for motor type: - | Scaling: - | Expert list: 1 |
| $\begin{aligned} & \text { VECTOR_I_AC } \\ & \text { (CAN) } \end{aligned}$ |  |  |  |
|  | $\mathbf{M i n}$ | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: | Sets the mapping parameters for CANopen Transmit Process Data Object 8 (TPDO 8). |  |  |
| Index: | [0] = Mapped object 1 |  |  |
|  | [1] = Mapped object 2 |  |  |
|  | [2] = Mapped object 3 |  |  |
|  | [3] = Mapped object 4 |  |  |
| Note: | Corresponds to the CANopen object 1A07 hex +40 hex * x (x: Drive number $0 \ldots 7$ ). |  |  |
|  | The parameter can only be written online when the associated COB ID in p872x is set as invalid. |  |  |




Dependency: Refer to: r8750
r8760[0...14] CAN mapped 32-bit receive objects / RPDO 32 mapped
SERVO (CAN), Can be changed: - Calculated: - Access level: 3

SERVO_AC (CAN), Data type: Unsigned16
SERVO I AC
(CAN) VECTOR P-Group: Communications
(CAN), VECTOR_AC Not for motor type: -
(CAN),
VECTOR_I_AC
(CAN)

Description: Displays the mapped 32-bit receive CANopen objects in the process data buffer.
Index:
[0] = PZD $1+2$
[1] $=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] = PZD $5+6$
[5] $=$ PZD $6+7$
[6] = PZD $7+8$
$[7]=$ PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] $=$ PZD $12+13$
[12] = PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$

| r8761[0...14] | CAN mapped 32-bit transmit objects / TPDO 32 mapped |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (CAN), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: Communications | Units group: - | Unit selection: - |
| (CAN), VECTOR | Scaling: - | Expert list: 1 |  |

VECTOR_I_AC
(CAN)
Min Max Factory setting

Description: Displays mapped 32-bit transmit CANopen objects in the process data buffer.
Index:
[0] = PZD $1+2$
[1] $=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] = PZD $6+7$
[6] = PZD $7+8$
$[7]=$ PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] = PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$



BI: p2103.0 = r209x. 7
The write access is rejected if a CANopen control word is not mapped at one of these locations.
This also causes the project download of the commissioning software to be canceled.

| r8795 | CAN control word / Control word |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| SERVO_AC (CAN), | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: - |  |
| (CAN), VECTOR | P-Group: - |  | Units group: - | Unit selection: - |  |
| (CAN), VECTOR_AC | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
| (CAN), |  |  |  |  |
| VECTOR_I_AC (CAN) |  |  |  |  |  |
|  |  |  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Access to the CANopen control word using SDO transfer. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | ON/OFF1 | Yes | No | - |
|  | 01 | Do not activate coast down | Yes | No | - |
|  | 02 | Do not activate a Quick Stop | Yes | No | - |
|  | 03 | Operation enable | Yes | No | - |
|  | 07 | Acknowledge fault | Yes | No | - |
|  | 11 | Freely interconn | High | Low | - |
|  | 12 | Freely interconn | High | Low | - |
|  | 13 | Freely interconn | High | Low | - |
|  | 14 | Freely interconn | High | Low | - |
|  | 15 | Freely interconn | High | Low | - |
| Dependency: | Refer to: p8790 |  |  |  |  |
| Note: | Corresponds to the CANopen object 6040 hex +800 hex * x (x: Drive number $0 \ldots 7)$. |  |  |  |  |


| r8796 | CAN Target Velocity / Target velocity |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (CAN), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC | P-Group: - | Units group: - | Unit selection: - |
| (CAN), VECTOR | Scaling: - | Expert list: 1 |  |

## (CAN),

VECTOR_I_AC
(CAN)

## Min Max

## Factory setting

Description: Access to the CANopen object target velocity using the SDO transfer.
The value is displayed in increments/second as standard.
Note:
Corresponds to the CANopen object 60FF hex +800 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). The displayed value is calculated as follows:
r8796 = n_set [RPM] / 60 s * p0408 * 2^p0418 * p8798[1] / p8798[0]

| r8797 | CAN Target Torque / Target torque |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (CAN), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (CAN), | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC (CAN), VECTOR | P-Group: - | Units group: | Unit selection: - |
| (CAN), VECTOR_AC (CAN), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC <br> (CAN) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Access to the CANopen object target torque using SDO transfer. The value is displayed as per mille $(1 / 1000)$ as standard. |  |  |
| Note: | Corresponds to the CA The displayed value is r8797 [per mille] = M_s | $\begin{aligned} & \text { ex }+800 \text { hex * } x(x: \\ & * 1000 \end{aligned}$ |  |



| p8811 | SINAMICS Link project selection / SINAMICS Link proj |  |  |
| :---: | :---: | :---: | :---: |
| CU_S120_DP (PRO- | Can be changed: C 1 (1) | Calculated: - | Access level: 3 |
| FINET), | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PROFINET), | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_DP (PROFINET) | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_PN (PROFINET) |  |  |  |
|  | $\begin{aligned} & \text { Min } \\ & 16 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 64 \end{aligned}$ | Factory setting 64 |
| Description: | Project selection for SINAMICS Link. |  |  |
| Value: | 16: SINAMICS Link project 16 participants <br> 64: SINAMICS Link project 64 participants |  |  |
| Note: | SINAMICS Link requires tha <br> The parameter must be set <br> A change only becomes effe <br> The parameter is not influen | CBE20 firmware participants. NER ON. e factory setting. | $(\mathrm{p} 8835=3) .$ |










| r8850[0...9] | CO: IF2 PZD receive word / IF2 PZD recv word |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF | Data type: Integer16 | Dynamic index: - | Func. diagram: 2491 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| Note: | IF2: Interface 2 |  |  |
|  | PZD1 to PZD2 are displayed bit-serially in r8890 to r8891. |  |  |




| r8850[0...31] | CO: IF2 PZD receive word / IF2 PZD recv word |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, <br> VECTOR_I_AC | Data type: Integer16 | Dynamic index: - | Func. diagram: 2485, 9204, 9206 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Dependency: | Refer to: r8860, r8890, r8891, r8892, r8893 |  |  |
| Notice: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r8850 or r8860. |  |  |
| Note: | IF2: Interface 2 |  |  |
|  | PZD1 to PZD4 are displayed bit-serially in r8890 to r8893. |  |  |
| p8851[0...9] | CI: IF2 PZD send word / IF2 PZD send word |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2493, 9210 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | 0 |
| Description: | Selects the PZD (actual values) to b | a interface 2 in the |  |


| Index: | $\begin{aligned} & \text { [0] = PZD } 1 \\ & \text { [1] = PZD } 2 \\ & \text { [2] = PZD } 3 \\ & \text { [3] = PZD } 4 \\ & \text { [4] = PZD } 5 \\ & \text { [5] = PZD } 6 \\ & \text { [6] = PZD } 7 \\ & \text { [7] = PZD } 8 \\ & \text { [8] = PZD } 9 \\ & \text { [9] = PZD } 10 \\ & \text { IF2: Interface } \end{aligned}$ |  |
| :---: | :---: | :---: |
| p8851[0...24] | CI: IF2 PZD send word / IF2 PZD send word |  |
| CU_S_AC_DP, CU S AC PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: U, T Calculated: - <br> Data type: Unsigned32 / Integer16 Dynamic index: - <br> P-Group: Communications Units group: - <br> Not for motor type: - Scaling: 4000H <br> Min Max | Access level: 3 <br> Func. diagram: 2493, 9210 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: Index: | Selects the PZD (actual values) to be sent via interface 2 in the word format. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \\ & {[16]=\text { PZD } 17} \\ & {[17]=\text { PZD } 18} \\ & {[18]=\text { PZD } 19} \\ & {[19]=\text { PZD } 20} \\ & {[20]=\text { PZD } 21} \\ & {[21]=\text { PZD } 22} \\ & {[22]=\text { PZD } 23} \\ & {[23]=\text { PZD } 24} \\ & {[24]=\text { PZD } 25} \end{aligned}$ |  |
| Note: | IF2: Interface 2 |  |
| p8851[0...11] | CI: IF2 PZD send word / IF2 PZD send word |  |
| ENC | Can be changed: U, T Calculated: - <br> Data type: Unsigned32 / Integer16 Dynamic index: - <br> P-Group: Communications Units group: - <br> Not for motor type: - Scaling: 4000H <br> Min Max <br> - - | Access level: 3 <br> Func. diagram: 2487, 9208 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: Index: | Selects the PZD (actual values) to be sent via interface 2 in the word format. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \end{aligned}$ |  |


|  | [3] = PZD 4 |  |  |
| :---: | :---: | :---: | :---: |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
| Dependency: | Refer to: p8861 |  |  |
| Note: | IF2: Interface 2 |  |  |
| p8851[0...27] | CI: IF2 PZD send word / IF2 PZD send word |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2487, 9208 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) to be sent via interface 2 in the word format. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
| Dependency: | Refer to: p8861 |  |  |
| Note: | IF2: Interface 2 |  |  |
| p8851[0...4] CI: IF2 PZD send word / IF2 PZD send word |  |  |  |
| TB30, TM120, TM150, TM15DI_DO, TM31 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2493, 9210 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) to be sent via interface 2 in the word format. |  |  |


| Index: | $[0]=$ PZD 1 |
| :--- | :--- |
|  | $[1]=$ PZD 2 |
|  | $[2]=$ PZD 3 |
|  | $[3]=$ PZD 4 |
|  | $[4]=$ PZD 5 |
| Note: | IF2: Interface 2 |


| p8851[0...31] | CI: IF2 PZD send word / IF2 PZD send word |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 / Integer16 | Dynamic index: - | Func. diagram: 2487, 9208 |
| VECTOR_I_AC | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) to be sent via interface 2 in the word format. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Dependency: | Refer to: p8861 |  |  |
| Note: | IF2: Interface 2 |  |  |


| r8853[0...9] | IF2 diagnostics PZD send / IF2 diag PZD send |  |  |
| :--- | :--- | :--- | :--- |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
| S_INF | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2493 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |


| Index: | $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Bit field: | Bit Signal name <br> 00 Bit 0 <br> 01 Bit 1 <br> 02 Bit 2 <br> 03 Bit 3 <br> 04 Bit 4 <br> 05 Bit 5 <br> 06 Bit 6 <br> 07 Bit 7 <br> 08 Bit 8 <br> 09 Bit 9 <br> 10 Bit 10 <br> 11 Bit 11 <br> 12 Bit 12 <br> 13 Bit 13 <br> 14 Bit 14 <br> 15 Bit 15 | 1 signal ON | 0 signal OFF <br> OFF |
| Note: | IF2: Interface 2 |  |  |
| r8853[0...24] | IF2 diagnostics PZD | PZD send |  |
| CU S AC DP, $C U S A C P N$, CU S120 DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Communications <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: 2493 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the sent PZD (act <br> [0] = PZD 1 <br> [1] = PZD 2 <br> [2] = PZD 3 <br> [3] = PZD 4 <br> [4] = PZD 5 <br> [5] = PZD 6 <br> [6] = PZD 7 <br> [7] = PZD 8 <br> [8] = PZD 9 <br> [9] = PZD 10 <br> [10] = PZD 11 <br> [11] = PZD 12 <br> [12] = PZD 13 <br> [13] = PZD 14 <br> [14] = PZD 15 <br> [15] = PZD 16 <br> [16] = PZD 17 <br> [17] = PZD 18 <br> [18] = PZD 19 <br> [19] = PZD 20 <br> [20] = PZD 21 <br> [21] = PZD 22 <br> [22] = PZD 23 | a interface 2. |  |


| Bit field: | $\begin{aligned} & {[23]=\text { PZD } 24} \\ & {[24]=\text { PZD } 25} \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  | 11 | Bit 11 | ON | OFF | - |
|  | 12 | Bit 12 | ON | OFF | - |
|  |  | Bit 13 | ON | OFF | - |
|  |  | Bit 14 | ON | OFF | - |
|  | 15 | Bit 15 | ON | OFF | - |
| Note: | IF2: Interface 2 |  |  |  |  |
| r8853[0...11] | IF2 | diagnostics PZD | g PZD send |  |  |
| ENC | Can be changed: - <br> Data type: Unsigned16 |  | Calculated: - | Acce |  |
|  |  |  | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 9210 \end{aligned}$ | $9208$ |
|  | P-Group: Communications |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Displays the sent PZD (actual values) sent via interface 2. |  |  |  |  |
| Index: | [0] = PZD 1 |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
|  | [5] = PZD 6 |  |  |  |  |
|  | [6] = PZD 7 |  |  |  |  |
|  | [7] = PZD 8 |  |  |  |  |
|  | [8] = PZD 9 |  |  |  |  |
|  | [9] = PZD 10 |  |  |  |  |
|  | [10] = PZD 11 |  |  |  |  |
|  | [11] = PZD 12 |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  |  | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  | 11 | Bit 11 | ON | OFF | - |
|  | 12 | Bit 12 | ON | OFF | - |
|  | 13 | Bit 13 | ON | OFF | - |
|  | 14 | Bit 14 | ON | OFF | - |
|  | 15 | Bit 15 | ON | OFF | - |
| Dependency: | Refer to: p8851, p8861 |  |  |  |  |



| r8853[0...4] | IF2 diagnostics PZD send / IF2 diag PZD send |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TB30, TM120, TM150, TM15DI_DO, TM31 | Can be changed: - |  | Calculated: - <br> Dynamic index: | Access level: 3 |  |
|  | Data type: Unsigned16 |  |  | Func. diagram: 2493 |  |
|  | P-Group: Communications |  | Units group: - | Unit selection: - |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: Index: |  |  |  |  |  |
|  | $\text { [0] = PZD } 1$ |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Bit 0 | ON | OFF | - |
|  |  | Bit 1 | ON | OFF | - |
|  |  | Bit 2 | ON | OFF | - |
|  |  | Bit 3 | ON | OFF | - |
|  |  | Bit 4 | ON | OFF | - |
|  |  | Bit 5 | ON | OFF | - |
|  |  | Bit 6 | ON | OFF | - |
|  |  | Bit 7 | ON | OFF | - |
|  |  | Bit 8 | ON | OFF | - |
|  |  | Bit 9 | ON | OFF | - |
|  |  | Bit 10 | ON | OFF | - |
|  |  | Bit 11 | ON | OFF | - |
|  |  | Bit 12 | ON | OFF | - |
|  |  | Bit 13 | ON | OFF | - |
|  |  | Bit 14 | ON | OFF | - |
|  |  | Bit 15 | ON | OFF | - |
| Note: | IF2: Interface 2 |  |  |  |  |
| r8853[0...31] | IF2 diagnostics PZD send / IF2 diag PZD send |  |  |  |  |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 |  | Calculated: - | Access level: 3 |  |
|  |  |  | Dynamic index: - | $\begin{aligned} & \text { Func } \\ & 9210 \end{aligned}$ | , 9208 |
|  | P-Group: Communications |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Facto |  |
|  | - |  | - | - |  |
| Description: Index: | Displays the sent PZD (actual values) sent via interface 2. |  |  |  |  |
|  | [0] = PZD 1 |  |  |  |  |
|  | [1] = PZD 2 |  |  |  |  |
|  | [2] = PZD 3 |  |  |  |  |
|  | [3] = PZD 4 |  |  |  |  |
|  | [4] = PZD 5 |  |  |  |  |
|  | [5] = PZD 6 |  |  |  |  |
|  | [6] = PZD 7 |  |  |  |  |
|  | [7] = PZD 8 |  |  |  |  |
|  | [8] = PZD 9 |  |  |  |  |
|  | [9] = PZD 10 |  |  |  |  |
|  | [10] = PZD 11 |  |  |  |  |
|  | [11] = PZD 12 |  |  |  |  |
|  | [12] = PZD 13 |  |  |  |  |
|  | [13] $=$ PZD 14$[14]=$ PZD 15 |  |  |  |  |
|  |  |  |  |  |  |  |
|  | [15] = PZD 16 |  |  |  |  |
|  | [16] = PZD 17 |  |  |  |  |




| r8859[0...7] | COMM BOARD identification Data / CB Ident_data |  |  |
| :--- | :--- | :--- | :--- |
| CU_S120_DP | Can be changed: - | Calculated: - | Access level: 3 |
| (COMM BOARD, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: |
| PROFINET), | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S120_PN | Scaling: - | Expert list: 1 |  | PROFINET), CU_S150_DP (COMM BOARD, PROFINET), CU_S150_PN (COMM BOARD, PROFINET)


|  | Min | Max |
| :--- | :--- | :--- |
| Description: | - | Factory setting |
| Index: | Displays the COMM BOARD identification data |  |
|  | $[0]=$ Version interface structure |  |
|  | $[1]=$ Version interface driver |  |
|  | $[2]=$ Company (Siemens $=42)$ |  |
|  | $[3]=$ CB type |  |
|  | $[4]=$ Firmware version |  |
|  | $[5]=$ Firmware date (year) |  |
|  | $[6]=$ Firmware date (day/month) |  |
|  | $[7]=$ Firmware patch/hot fix |  |
|  | Example for CBE20: |  |
|  | r8859[0] $=100$--> version of the interface structure V1.00 |  |
|  | r8859[1] $=111$--> version of the interface driver V1.11 |  |
|  | r8859[2] $=42$--> SIEMENS |  |
|  | r8859[3] $=0$--> CBE20 |  |
|  | r8859[4] $=1200$--> first part, firmware version V12.00 (second part, see index 7) |  |
|  | r8859[5] $=2010$--> year 2010 |  |

$$
\begin{aligned}
& \text { r8859[6] }=2306 \text {--> 23rd June } \\
& \text { r8859[7] }=1300 \text {--> second part, firmware version (complete version: V12.00.13.00) }
\end{aligned}
$$

| r8860[0...2] | CO: IF2 PZD receive double word / IF2 PZD recv DW |  |  |
| :---: | :---: | :---: | :---: |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 2485, 9204, 9206 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Connector output for intercon $\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \end{aligned}$ | (setpoints) receive | in the double word format. |
| Dependency: | Refer to: r8850 |  |  |
| Notice: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r8850 or r8860. |  |  |
| Note: | IF2: Interface 2 |  |  |
| r8860[0..18] | CO: IF2 PZD receive double word / IF2 PZD recv DW |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: 2485, 9204, 9206 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | M | - | - |
| Description: | Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] = PZD 3 + 4 |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD 9 + 10 |  |  |
|  | [9] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |
|  | [15] = PZD $16+17$ |  |  |
|  | [16] = PZD $17+18$ |  |  |
|  | [17] = PZD $18+19$ |  |  |
|  | [18] = PZD $19+20$ |  |  |
| Dependency: | Refer to: r8850 |  |  |
| Notice: | Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. |  |  |
|  | A BICO interconnection for a single PZD can only take place either on r8850 or r8860. |  |  |
|  | A maximum of 4 indices of the "trace" function can be used. |  |  |
| Note: | IF2: Interface 2 |  |  |



| Index: | [0] = PZD $1+2$ |  |  |
| :---: | :---: | :---: | :---: |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] = PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [ 9 = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
| Dependency: | Refer to: p8851 |  |  |
| Notice: | A BICO interconnection for a single PZD can only take place either on r8851 or r8861. |  |  |
| Note: | IF2: Interface 2 |  |  |
| p8861[0...26] | CI: IF2 PZD send double word / IF2 PZD send DW |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Acc |
|  | Data type: Unsigned32 / Integer32 | Dynamic index: - |  |
|  | P-Group: Communications | Units group: - |  |
|  | Not for motor type: - | Scaling: 4000H |  |
|  | Min | Max | Fac |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) to be sent via interface 2 in the double word format. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] $=$ PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [9] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |
|  | [15] = PZD $16+17$ |  |  |
|  | [16] = PZD 17-18 |  |  |
|  | [17] = PZD $18+19$ |  |  |
|  | [18] = PZD $19+20$ |  |  |
|  | [19] = PZD $20+21$ |  |  |
|  | [20] = PZD $21+22$ |  |  |
|  | [21] = PZD $22+23$ |  |  |
|  | [22] = PZD $23+24$ |  |  |
|  | [23] = PZD $24+25$ |  |  |
|  | [24] = PZD $25+26$ |  |  |
|  | [25] = PZD $26+27$ |  |  |
|  | [26] = PZD $27+28$ |  |  |
| Dependency: | Refer to: p 8851 |  |  |
| Notice: | A BICO interconnection for a single PZD can only take place either on r8851 or r8861. |  |  |
| Note: | IF2: Interface 2 |  |  |


| p8861[0...30] | CI: IF2 PZD send double word / IF2 PZD send DW |  |  |
| :---: | :---: | :---: | :---: |
| VECTOR, | Can be changed: U, T | Calculated: - | Access level: 3 |
| VECTOR_AC, <br> VECTOR_I_AC | Data type: Unsigned32 / Integer32 | Dynamic index: - | Func. diagram: 2487, 9208, 9210 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: 4000H | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Selects the PZD (actual values) to be sent via interface 2 in the double word format. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |
|  | [6] = PZD $7+8$ |  |  |
|  | [7] = PZD $8+9$ |  |  |
|  | [8] = PZD $9+10$ |  |  |
|  | [ 9 ] = PZD $10+11$ |  |  |
|  | [10] = PZD $11+12$ |  |  |
|  | [11] = PZD $12+13$ |  |  |
|  | [12] = PZD $13+14$ |  |  |
|  | [13] = PZD $14+15$ |  |  |
|  | [14] = PZD $15+16$ |  |  |
|  | [15] = PZD $16+17$ |  |  |
|  | [16] = PZD $17+18$ |  |  |
|  | [17] = PZD $18+19$ |  |  |
|  | [18] = PZD $19+20$ |  |  |
|  | [19] = PZD $20+21$ |  |  |
|  | [20] = PZD $21+22$ |  |  |
|  | [21] = PZD $22+23$ |  |  |
|  | [22] = PZD $23+24$ |  |  |
|  | [23] = PZD $24+25$ |  |  |
|  | [24] = PZD $25+26$ |  |  |
|  | [25] = PZD $26+27$ |  |  |
|  | [26] = PZD $27+28$ |  |  |
|  | $[27]=$ PZD $28+29$$[28]=$ PZD $29+30$ |  |  |
|  |  |  |  |
|  | [29] = PZD $30+31$ |  |  |
|  | [30] = PZD $31+32$ |  |  |
| Dependency: | Refer to: p8851 |  |  |
| Notice: | A BICO interconnection for a single PZD can only take place either on r8851 or r8861. |  |  |
| Note: | IF2: Interface 2 |  |  |
| r8863[0...10] | IF2 diagnostics PZD send double word / IF2 diag send DW |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2487 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the PZD sent via interface 2 (actual values) with double word format. |  |  |
| Index: | [0] = PZD $1+2$ |  |  |
|  | [1] = PZD $2+3$ |  |  |
|  | [2] $=$ PZD $3+4$ |  |  |
|  | [3] = PZD $4+5$ |  |  |
|  | [4] = PZD $5+6$ |  |  |
|  | [5] = PZD $6+7$ |  |  |


| Bit field: | $\begin{aligned} & {[6]=\text { PZD } 7+8} \\ & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \\ & {[10]=\text { PZD } 11+12} \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  | 11 | Bit 11 | ON | OFF | - |
|  | 12 | Bit 12 | ON | OFF | - |
|  | 13 | Bit 13 | ON | OFF | - |
|  | 14 | Bit 14 | ON | OFF | - |
|  | 15 | Bit 15 | ON | OFF | - |
|  | 16 | Bit 16 | ON | OFF | - |
|  | 17 | Bit 17 | ON | OFF | - |
|  | 18 | Bit 18 | ON | OFF | - |
|  | 19 | Bit 19 | ON | OFF | - |
|  | 20 | Bit 20 | ON | OFF | - |
|  |  | Bit 21 | ON | OFF | - |
|  |  | Bit 22 | ON | OFF | - |
|  |  | Bit 23 | ON | OFF | - |
|  |  | Bit 24 | ON | OFF | - |
|  |  | Bit 25 | ON | OFF | - |
|  |  | Bit 26 | ON | OFF | - |
|  |  | Bit 27 | ON | OFF | - |
|  |  | Bit 28 | ON | OFF | - |
|  |  | Bit 29 | ON | OFF | - |
|  |  | Bit 30 | ON | OFF | - |
|  | 31 | Bit 31 | ON | OFF | - |
| Notice: | A maximum of 4 indices of the "trace" function can be used. IF2: Interface 2 |  |  |  |  |
| Note: |  |  |  |  |  |
| r8863[0..26] | IF2 diagnostics PZD send double word / IF2 diag send DW |  |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - |  | Calculated: - | Acce |  |
|  | Data type: Unsigned32 |  | Dynamic index: - | Func |  |
|  | P-Group: Communications |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: Index: | Displays the PZD sent via interface 2 (actual values) with double word format. |  |  |  |  |
|  | [0] = PZD $1+2$ |  |  |  |  |
|  | [1] = PZD $2+3$ |  |  |  |  |
|  | [2] = PZD $3+4$ |  |  |  |  |
|  | [3] = PZD $4+5$ |  |  |  |  |
|  | [4] = PZD $5+6$ |  |  |  |  |
|  | [5] = PZD $6+7$ |  |  |  |  |
|  | [6] = PZD $7+8$ |  |  |  |  |
|  | [7] = PZD $8+9$ |  |  |  |  |
|  | [8] = PZD $9+10$ |  |  |  |  |
|  | [ 9 ] = PZD $10+11$ |  |  |  |  |
|  | [10] = PZD 11 + 12 |  |  |  |  |



| r8863[0...30] | IF2 diagnostics PZD send double word / IF2 diag send DW |  |  |
| :--- | :--- | :--- | :--- |
| VECTOR, | Can be changed: - | Calculated: - | Access level: 3 |
| VECTOR_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2487 |
| VECTOR_I_AC | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | - | Faxtory setting |
|  | - | - |  |
| Description: | Displays the PZD sent via interface 2 (actual values) with double word format. |  |  |



p8870[0...15] SINAMICS Link receive telegram word PZD / Recv link word

| A_INF (PROFINET), Can be changed: T | Calculated: - | Access level: 3 |
| :--- | :--- | :--- |
| B_INF (PROFINET), | Data type: Unsigned16 | Dynamic index: - |
| CU_S120_DP (PRO- | P-Group: Communications | Units group: - |
| FINET), | Scaling: - | Unit selection: - |
| CU_S120_PN (PRO- Not for motor type: - |  | Expert list: 1 |

FINET),
CU_S150_DP (PRO-
FINET),
CU_S150_PN (PRO-
FINET), ENC (PRO-
FINET), S_INF
(PROFINET),
SERVO (PROFI-
NET), TB30 (PROFI-
NET), TM120
(PROFINET), TM15
(PROFINET), TM150
(PROFINET),
TM15DI_DO (PRO-
FINET), TM17 (PRO
FINET), TM31
(PROFINET), TM41
(PROFINET), VEC-
TOR (PROFINET)

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| 0 | 16 | 0 |

Description: Assignment of a PZD to a telegram word from a SINAMICS Link receive telegram. PZD p2050[index] is assigned by means of p8870[index], p8872[index].
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4


|  | $[13]=$ PZD 14 |
| :--- | :--- |
|  | $[14]=$ PZD 15 |
|  | $[15]=$ PZD 16 |
| Dependency: $\quad$ | Refer to: p2051, p8851 |
| Note: | Refer to: A50002 |
|  | Value range: |
|  | $0:$ Not used |
|  | $1 \ldots 16:$ Send telegram word |
|  | A specific telegram word send may only be used once within a single device. |
|  | A change only becomes effective after POWER ON, reset, project download or p8842 = 1. |

p8872[0...15] SINAMICS Link address receive PZD / Link addr recv

A_INF (PROFINET), B_INF (PROFINET), CU_S120_DP (PROFINET),
CU_S120 PN (PROFINET),
CU_S150_DP (PRO-
FINET),
CU_S150_PN (PRO-
FINET), ENC (PRO-
FINET), S_INF
(PROFINET),
SERVO (PROFI-
NET), TB30 (PROFINET), TM120
(PROFINET), TM15
(PROFINET), TM150 (PROFINET), TM15DI DO (PROFINET), TM17 (PROFINET), TM31 (PROFINET), TM41 (PROFINET), VECTOR (PROFINET)

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1

|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 64 \end{aligned}$ | Factory setting 0 |
| :---: | :---: | :---: | :---: |
| Description: Index: | Selects the addr $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & \text { [10] = PZD } 11 \\ & \text { [11] = PZD } 12 \\ & \text { [12] = PZD } 13 \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & \text { [15] = PZD } 16 \end{aligned}$ | ender | $Z D)$ is received. |
| Dependency: | Refer to: p8870 |  |  |
| Note: | Value range: <br> 0: Not used <br> 1 ... 64: Address |  |  |


| r8874[0...9] | IF2 diagnostics bus address PZD receive / IF2 diag addr recv |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the bus address of sender from which the PZD is received. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
| r8874[0...19] | IF2 diagnostics bus address PZD receive / IF2 diag addr recv |  |  |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the bus address of sender from which the PZD is received. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
| r8874[0...3] | IF2 diagnostics bus address PZD receive / IF2 diag addr recv |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | deas | - |  |
| Description: | Displays the bus address of | ch the PZD is receiv |  |



| r8874[0...31] | bus address PZD receive / IF2 diag addr recv |  |
| :---: | :---: | :---: |
| VECTOR, <br> VECTOR AC, <br> VECTOR_I_AC | Can be changed: - Calculated: - <br> Data type: Unsigned16 Dynamic index: - <br> P-Group: Communications Units group: - <br> Not for motor type: - Scaling: - <br> Min Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the bus address of sender from which the PZD is received. <br> [0] = PZD 1 <br> [1] = PZD 2 <br> [2] = PZD 3 <br> [3] = PZD 4 <br> [4] = PZD 5 <br> [5] = PZD 6 <br> [6] = PZD 7 <br> [7] = PZD 8 <br> [8] = PZD 9 <br> [9] = PZD 10 <br> [10] = PZD 11 <br> [11] = PZD 12 <br> [12] = PZD 13 <br> [13] = PZD 14 <br> [14] = PZD 15 <br> [15] = PZD 16 <br> [16] = PZD 17 <br> [17] = PZD 18 <br> [18] = PZD 19 <br> [19] = PZD 20 <br> [20] = PZD 21 <br> [21] = PZD 22 <br> [22] = PZD 23 <br> [23] = PZD 24 <br> [24] = PZD 25 <br> [25] = PZD 26 <br> [26] = PZD 27 <br> [27] = PZD 28 <br> [28] = PZD 29 <br> [29] = PZD 30 <br> [30] = PZD 31 <br> [31] = PZD 32 |  |
| Note: | IF2: Interface 2 <br> Value range: <br> $0-125$ : Bus address of the sender <br> 255: Not assigned |  |
| r8875[0...9] | IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - Calculated: - <br> Data type: Unsigned16 Dynamic index: - <br> P-Group: Communications Units group: - <br> Not for motor type: - Scaling: - <br> Min Max | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the byte offset of the PZD in the receive telegram. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \end{aligned}$ $\text { [4] = PZD } 5$ |  |

$[5]=$ PZD 6
$[6]=$ PZD 7
$[7]=$ PZD 8
$[8]=$ PZD 9
$[9]=$ PZD 10

| r8875[0..19] | IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S_AC_PN, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN, | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the byte offset of the PZD in the receive telegram. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
| r8875[0..3] IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the byte offset of the PZD in the receive telegram. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
| Note: | IF2: Interface 2 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 255: Not assigned |  |  |


| r8875[0...19] | IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TM41 | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Communications <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the byte offset of th <br> [0] = PZD 1 <br> [1] = PZD 2 <br> [2] = PZD 3 <br> [3] = PZD 4 <br> [4] = PZD 5 <br> [5] = PZD 6 <br> [6] = PZD 7 <br> [7] = PZD 8 <br> [8] = PZD 9 <br> [9] = PZD 10 <br> [10] = PZD 11 <br> [11] = PZD 12 <br> [12] = PZD 13 <br> [13] = PZD 14 <br> [14] = PZD 15 <br> [15] = PZD 16 <br> [16] = PZD 17 <br> [17] = PZD 18 <br> [18] = PZD 19 <br> [19] = PZD 20 | eive telegram. |  |
| Note: | IF2: Interface 2 <br> Value range: <br> 0-242: Byte offset <br> 255: Not assigned |  |  |
| r8875[0...4] | IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |  |
| TB30, TM120, <br> TM150, TM15DI_DO, TM31 | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Communications <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the byte offset of the $\begin{aligned} & \text { [0] = PZD } 1 \\ & \text { [1] = PZD } 2 \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & \text { [4] = PZD } 5 \end{aligned}$ | eive telegram. |  |
| r8875[0...31] | IF2 diagnostics telegram offset PZD receive / IF diag offs recv |  |  |
| VECTOR, <br> VECTOR AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Communications <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: | Displays the byte offset of the PZD in the receive telegram. |  |  |


| Index: | [0] = PZD 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
|  | [25] = PZD 26 |  |  |
|  | [26] = PZD 27 |  |  |
|  | [27] = PZD 28 |  |  |
|  | [28] = PZD 29 |  |  |
|  | [29] = PZD 30 |  |  |
|  | [30] = PZD 31 |  |  |
|  | [31] = PZD 32 |  |  |
| Note: | IF2: Interface 2 |  |  |
|  | Value range: |  |  |
|  | 0-242: Byte offset |  |  |
|  | 255: Not assigned |  |  |
| r8876[0...9] IF2 diagnostics telegram offset PZD send / IF2 d |  |  |  |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the byte offset of the PZD in the send telegram. |  |  |
|  | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |


| r8876[0...24] | IF2 diagnostics telegram offset PZD send / IF2 diag offs send |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 3 |
| CU_S_AC_PN, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| $\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \end{aligned}$ | P-Group: Communications | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the byte offset of the PZD in the send telegram. |  |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | [8] = PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |
|  | [12] = PZD 13 |  |  |
|  | [13] = PZD 14 |  |  |
|  | [14] = PZD 15 |  |  |
|  | [15] = PZD 16 |  |  |
|  | [16] = PZD 17 |  |  |
|  | [17] = PZD 18 |  |  |
|  | [18] = PZD 19 |  |  |
|  | [19] = PZD 20 |  |  |
|  | [20] = PZD 21 |  |  |
|  | [21] = PZD 22 |  |  |
|  | [22] = PZD 23 |  |  |
|  | [23] = PZD 24 |  |  |
|  | [24] = PZD 25 |  |  |
| r8876[0...11] IF2 diagnostics telegram offset PZD send / IF2 diag offs send |  |  |  |
| ENC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the byte offset of the | d telegram. |  |
| Index: | [0] = PZD 1 |  |  |
|  | [1] = PZD 2 |  |  |
|  | [2] = PZD 3 |  |  |
|  | [3] = PZD 4 |  |  |
|  | [4] = PZD 5 |  |  |
|  | [5] = PZD 6 |  |  |
|  | [6] = PZD 7 |  |  |
|  | [7] = PZD 8 |  |  |
|  | $[8]=$ PZD 9 |  |  |
|  | [9] = PZD 10 |  |  |
|  | [10] = PZD 11 |  |  |
|  | [11] = PZD 12 |  |  |



| r8876[0...4] | IF2 diagnostics telegram offset PZD send / IF2 diag offs send |  |  |
| :--- | :--- | :--- | :--- |
| TB30, TM120, | Can be changed: - | Calculated: - | Access level: 3 |
| TM150, TM15DI_DO, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| TM31 | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
|  |  |  |  |
| Description: | Displays the byte offset of the PZD in the send telegram. |  |  |
| Index: | $[0]=$ PZD 1 |  |  |
|  | $[1]=$ PZD 2 |  |  |

$$
\begin{aligned}
& {[3]=\text { PZD } 4} \\
& {[4]=\text { PZD } 5}
\end{aligned}
$$

| r8876[0...31] | IF2 diagnostics teleg | D send / IF2 |  |
| :---: | :---: | :---: | :---: |
| VECTOR, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Communications <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting |
| Description: Index: | Displays the byte offset of the <br> [0] = PZD 1 <br> [1] = PZD 2 <br> [2] = PZD 3 <br> [3] = PZD 4 <br> [4] = PZD 5 <br> [5] = PZD 6 <br> [6] = PZD 7 <br> [7] = PZD 8 <br> [8] = PZD 9 <br> [9] = PZD 10 <br> [10] = PZD 11 <br> [11] = PZD 12 <br> [12] = PZD 13 <br> [13] = PZD 14 <br> [14] = PZD 15 <br> [15] = PZD 16 <br> [16] = PZD 17 <br> [17] = PZD 18 <br> [18] = PZD 19 <br> [19] = PZD 20 <br> [20] = PZD 21 <br> [21] = PZD 22 <br> [22] = PZD 23 <br> [23] = PZD 24 <br> [24] = PZD 25 <br> [25] = PZD 26 <br> [26] = PZD 27 <br> [27] = PZD 28 <br> [28] = PZD 29 <br> [29] = PZD 30 <br> [30] = PZD 31 <br> [31] = PZD 32 | d telegram. |  |
| Note: | IF2: Interface 2 Value range: 0-242: Byte offset 255: Not assigned |  |  |



|  | $\begin{aligned} & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| Dependency: | Refer to: p8888, r8889 |  |  |
| p8882[0..15] | BI: IF2 binector-connector converter status word 3 / Bin/con ZSW3 |  |  |
| A_INF, B_INF, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $U, T$ <br> Data type: Unsigned32 / Binary <br> P-Group: Communications <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2489 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Selects bits to be sent via interface 2. <br> The individual bits are combined to form free status word 3 . |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$ |  |  |
| Dependency: | Refer to: p8888, r8889 |  |  |
| p8883[0...15] | BI: IF2 binector-connector converter status word 4 / Bin/con ZSW4 |  |  |
| A_INF, B_INF, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned32 / Binary <br> P-Group: Communications <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: 2489 <br> Unit selection: - <br> Expert list: 1 |
|  | Min | Max | Factory setting 0 |
| Description: | Selects bits to be sent via interface 2. |  |  |


| Index: | The individual bits are combined to form free status word 4.$[0]=\text { Bit } 0$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | [1] $=$ Bit 1 |  |  |
|  | [2] $=$ Bit 2 |  |  |
|  | [3] $=$ Bit 3 |  |  |
|  | [4] $=$ Bit 4 |  |  |
|  | [5] $=$ Bit 5 |  |  |
|  | [ 6$]=$ Bit 6 |  |  |
|  | $[7]=$ Bit 7 |  |  |
|  | [8] $=$ Bit 8 |  |  |
|  | [9] $=$ Bit 9 |  |  |
|  | [10] $=$ Bit 10 |  |  |
|  | [11] $=$ Bit 11 |  |  |
|  | [12] $=$ Bit 12 |  |  |
|  | [13] $=$ Bit 13 |  |  |
|  | [14] $=$ Bit 14 |  |  |
|  | [15] = Bit 15 |  |  |
| Dependency: | Refer to: p8888, r8889 |  |  |
| p8884[0...15] | BI: IF2 binector-connector converter status word 5 / Bin/con ZSW5 |  |  |
| A_INF, B_INF, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: 2489 |
|  | P-Group: Communications | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Selects bits to be sent via interfa |  |  |
|  | The individual bits are combined | status word 5. |  |
| Index: | [0] = Bit 0 |  |  |
|  | [1] $=$ Bit 1 |  |  |
|  | [2] $=$ Bit 2 |  |  |
|  | [3] $=$ Bit 3 |  |  |
|  | [4] $=$ Bit 4 |  |  |
|  | [5] $=$ Bit 5 |  |  |
|  | [6] = Bit 6 |  |  |
|  | [7] $=$ Bit 7 |  |  |
|  | [8] $=$ Bit 8 |  |  |
|  | [9] $=$ Bit 9 |  |  |
|  | [10] $=$ Bit 10 |  |  |
|  | [11] $=$ Bit 11 |  |  |
|  | [12] $=$ Bit 12 |  |  |
|  | [13] $=$ Bit 13 |  |  |
|  | [14] $=$ Bit 14 |  |  |
|  | [15] = Bit 15 |  |  |
| Dependency: | Refer to: p8888, r8889 |  |  |






| r8894.0... 15 | BO: IF2 connector-binector converter binector output / Con/bin outp |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A_INF, B_INF, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| CU_S_AC_DP, | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 2485, 2491 |  |
| CU S120 DP, | P-Group: Communications |  | Units group: - | Unit selection: - |  |
| CU_S120_PN, | Not | for motor type: - | Scaling: - | Expert list: 1 |  |
| CU_S150_DP, |  |  |  |  |  |
| CU_S150_PN, ENC, |  |  |  |  |  |
| S_INF, SERVO,SERVO AC, |  |  |  |  |  |
|  |  |  |  |  |  |
| SERVO_AC, |  |  |  |  |  |
| SERVO_I_AC, VECTOR, VECTOR AC, |  |  |  |  |  |
| VECTOR_I_AC |  |  |  |  |  |
|  |  | Min |  | Max | Factory setting |  |
|  |  | - |  | - | - |  |
| Description: |  | Binector output for bit-serial interconnection of a PZD word received via interface 2. |  |  |  |  |
|  |  | The PZD is selected via p8899[0]. |  |  |  |  |
| Bit field: |  |  |  | Signal name | 1 signal | 0 signal | FP |
|  |  |  | Bit 0 | ON | OFF | - |
|  |  | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |
|  | 05 | Bit 5 | ON | OFF | - |
|  | 06 | Bit 6 | ON | OFF | - |
|  | 07 | Bit 7 | ON | OFF | - |
|  | 08 | Bit 8 | ON | OFF | - |
|  | 09 | Bit 9 | ON | OFF | - |
|  | 10 | Bit 10 | ON | OFF | - |
|  |  | Bit 11 | ON | OFF | - |
|  |  | Bit 12 | ON | OFF | - |
|  |  | Bit 13 | ON | OFF | - |
|  |  | Bit 14 | ON | OFF | - |
|  |  | Bit 15 | ON | OFF | - |
| Dependency: | Refer to: p8899 |  |  |  |  |
| r8895.0... 15 | BO: IF2 connector-binector converter binector output / Con/bin outp |  |  |  |  |
| A_INF, B_INF, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| CU_S_AC_DP, | Data type: Unsigned16 |  | Dynamic index: - | Func. diagram: 2485, 2491 |  |
| CU_S120_DP, | P-Group: Communications |  | Units group: - | Unit selection: - |  |
| CU_S120_PN, CU_S150_DP, | Not for motor type: - |  | Scaling: - | Expe |  |
| CU_S150_PN, ENC, |  |  |  |  |
| S_INF, SERVO, |  |  |  |  |
| SERVO_AC, |  |  |  |  |
| SERVO_I_AC, VEC- |  |  |  |  |
| TOR, VECTOR_AC, |  |  |  |  |
| VECTOR_I_AC |  |  | Min | Max | Factory setting |  |
|  |  |  | - | - | - |  |
| Description: |  |  | Binector output for bit-serial interconnection of a PZD word received via interface 2. The PZD is selected via p8899[1]. |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Bit 0 | ON | OFF | - |
|  | 01 | Bit 1 | ON | OFF | - |
|  | 02 | Bit 2 | ON | OFF | - |
|  | 03 | Bit 3 | ON | OFF | - |
|  | 04 | Bit 4 | ON | OFF | - |





| p8901[0...3] | IE IP Address of Station / IE IP of Stat |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, | Can be changed: U, T | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| $\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \end{aligned}$ | P-Group: - | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_PN |  |  |  |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the IP address for the Industrial Ethernet interface (X127) on the Control Unit. The active IP address is displayed in r8911. |  |  |
| Dependency: | Refer to: p8905, r8911 |  |  |
| Note: | The interface configuration (p8900 and following) is activated with p8905 = 1 . |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |


| p8902[0...3] | IE Default Gateway of Station / IE Def Gateway |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the default gateway for the Industrial Ethernet interface (X127) on the Control Unit. The active default gateway is displayed in r8912. |  |  |
| Dependency: | Refer to: p8905, r8912 |  |  |
| Note: | The interface configuration (p8900 and following) is activated with p8905 = 1 . |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |
| p8903[0...3] | IE Subnet Mask of Station / IE Subnet Mask |  |  |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: U, T | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the subnet mask for the Industrial Ethernet interface (X127) on the Control Unit. The active subnet mask is displayed in r8913. |  |  |
| Dependency: | Refer to: p8905, r8913 |  |  |
| Note: | The interface configuration (p8900 and following) is activated with p8905 = 1 . |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |
| p8904 | IE DHCP mode / IE DHCP mode |  |  |
| CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 1 |
|  | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 0 |
| Description: | Sets the DHCP mode for the Industrial Ethernet interface (X127) on the Control Unit. |  |  |
| Note: | The interface configuration (p8900 and following) is activated with p8905 = 1. |  |  |
|  | The parameter is not influenced by setting the factory setting. |  |  |
|  | If value $=0$ : |  |  |
|  | DHCP deactivated. |  |  |
|  | If value = 2: |  |  |
|  | DHCP activated. |  |  |
|  | Re value = 1, 3: |  |  |
|  | Reserved. |  |  |




Note: | List of the SINAMICS Device IDs: |
| :--- |
| 0501 hex: S120/S150 |
| 0504 hex: G130/G150 |
| 0505 hex: GM150 |
| 0509 hex: GL150 |
| 050A hex: DC MASTER |
| 050B hex: SL150 |
| 050C hex: SM120 |
| 050E hex: S110 |
| 050F hex: G120P |
| 0510 hex: G120C |
| 0511 hex: G120 |
| 0512 hex: G120D |

## r8910[0...239] IE Name of Station active / IE Name Stat act

| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| :--- | :--- | :--- | :--- |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_DP, |  | Max | Factory setting |
| CU_S150_PN |  | - | - |
|  | Min | - |  |


| r8911[0...3] | IE IP Address of Station active / IE IP of Stat act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Scaling: - | Expert list: 1 |  |
| CU_S150_DP, | Not for motor type: - | Max | Factory setting |
| CU_S150_PN |  | - | - |
|  | Min | - |  |
|  | Displays the active IP address for the Industrial Ethernet interface $(X 127)$ on the Control Unit. |  |  |


| r8912[0...3] | IE Default Gateway of Station active / IE Def Gateway act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Scaling: - | Expert list: 1 |  |
| CU_S150_DP, | Not for motor type: - | Max | Factory setting |
| CU_S150_PN | Min | - | - |
|  | - | Displays the active default gateway for the Industrial Ethernet interface (X127) on the Control Unit. |  |


| r8913[0...3] | IE Subnet Mask of Station active / IE Subnet Mask act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S120_PN, | Scaling: - | Expert list: 1 |  |
| CU_S150_DP, | Not for motor type: - | Max | Factory setting |
| CU_S150_PN |  | - | - |
|  | Min | - |  |


| r8914 | IE DHCP mode of station active / IE DHCP mode act |  |  |
| :---: | :---: | :---: | :---: |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN, | P-Group: - | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the active DHCP mode for the Industrial Ethernet interface (X127) on the Control Unit. |  |  |
| r8915[0...5] | IE MAC Address of Station / IE MAC of Station |  |  |
| CU_S_AC_DP, | Can be changed: - | Calculated: - | Access level: 1 |
| CU_S_AC_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN, | P-Group: - | Units group: - | Unit selection: - |
| CU_S150_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the MAC address for the Industrial Ethernet interface (X127) on the Control Unit. |  |  |
| p8920[0...239] | PN Name of Station / PN Name Stat |  |  |
| CU_S_AC_PN, | Can be changed: $U$, T | Calculated: - | Access level: 3 |
| CU_S120_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Sets the station name for the onboard PROFINET interface on the Control Unit. The active station name is displayed in r8930. |  |  |
| Note: | An ASCII table (excerp <br> The interface configura <br> The parameter is not in <br> PN: PROFINET | xample, in the appen wing) is activated with e factory setting. | nual. |
| p8921[0...3] | PN IP address of station / PN IP of stat |  |  |
| CU_S_AC_PN, | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
| CU_S120_PN, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| C | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the IP address for the onboard PROFINET interface on the Control Unit. The active IP address is displayed in r8931. |  |  |
| Note: | The interface configuration (p8920 and following) is activated with p8925 $=1$. The parameter is not influenced by setting the factory setting. |  |  |






Note: $\quad$ An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. The parameter is only valid for firmware version "PROFINET Device" (p8835 = 1) or "Ethernet/IP" (p8835 = 4). The interface configuration (p8940 and following) is activated with p8945 = 2 (becomes effective after the next POWER ON).
The parameter is not influenced by setting the factory setting.

p8942[0...3] CBE20 Default Gateway of Station / CBE20 Def Gateway

CU_S120_DP (PRO- Can be changed: U, T Calcula
FINET), Data type: Unsigned CU_S120_PN (PROFINET), P-Group: CU_S150_DP (PRO- Not for motor type: FINET),
CU_S150_PN (PROFINET)

|  | Min | Max | Factory setting |
| :--- | :--- | :--- | :--- |
|  | 0 | 255 | 0 |

p8943[0...3] CBE20 Subnet Mask of Station / CBE20 Subnet Mask
CU_S120_DP (PRO- Can be changed: U,
FINET),
CU S120 PN (PRO
Data type: Unsigned8
FINET), P-Group: -
CU_S150_DP (PRO- Not for motor type: -
FINET),
CU_S150_PN (PRO-
FINET)

|  | Min | Max | Factory setting |
| :--- | :--- | :--- | :--- |
|  | 0 | 255 | 0 |

## Description: <br> ets the subnet mask for the Communication Board Ethernet 20 (CBE20)

The interface configuration (p8940 and following) is activated with p8945 = 2 (becomes effective after the next

The parameter is not influenced by setting the factory setting.

r8950[0...239] CBE20 Name of Station active / CBE20 name act

| CU_S120_DP (PRO- Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- |
| FINET), | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PRO- Data type: Unsigned8 | P-Group: - | Units group: - |
| FINET), | Unit selection: - |  |
| CU_S150_DP (PRO- Not for motor type: - | Scaling: - | Expert list: 1 | FINET),

CU_S150_PN (PRO-
FINET)

|  | Min | $\boldsymbol{M a x}$ | Factory setting |
| :--- | :--- | :--- | :--- |
| Description: | - | - | - |
|  | Displays the active station name for the Communication Board Ethernet 20 (CBE20). |  |  |


| r8951[0...3] | CBE20 IP Address of Station active / CBE20 IP act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S120_DP (PRO- Can be changed: - | Calculated: - | Access level: 3 |  |
| FINET), | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PRO- | P-Group: - | Units group: - | Unit selection: - |
| FINET), | Scaling: - | Expert list: 1 |  |
| CU_S150_DP (PRO- Not for motor type: - |  |  |  |
| FINET), |  | Factory setting |  |
| CU_S150_PN (PRO- | Max | - | - |
| FINET) | Min | - |  |
|  | Displays the active IP address for the Communication Board Ethernet $20(C B E 20)$. |  |  |


| r8952[0...3] | CBE20 Default Gateway of Station active / CBE20 def GW act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S120_DP (PRO- Can be changed: - | Calculated: - | Access level: 3 |  |
| FINET), | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PRO- | P-Group: - | Units group: - | Unit selection: - |
| FINET), | Scaling: - | Expert list: 1 |  |
| CU_S150_DP (PRO- Not for motor type: - |  |  |  |
| FINET), |  | Factory setting |  |
| CU_S150_PN (PRO- | Max | - |  |
| FINET) | Min |  |  |
|  | - | - |  |
| Description: | Displays the active standard gateway for the Communication Board Ethernet 20 (CBE20). |  |  |


| r8953[0...3] | CBE20 Subnet Mask of Station active / CBE20 sub mask act |  |  |
| :---: | :---: | :---: | :---: |
| CU_S120_DP (PRO- | Can be changed: - | Calculated: - | Access level: 3 |
| FINET), | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PROFINET), | P-Group: - | Units group: - | Unit selection: - |
| CU_S150_DP (PROFINET), | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S150_PN (PROFINET) |  |  |  |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the active sub | munication Board E |  |


| r8954 | CBE20 DHCP Mode active / CBE20 DHCP act |  |  |
| :--- | :--- | :--- | :--- |
| CU_S120_DP (PRO- Can be changed: - | Calculated: - | Access level: 3 |  |
| FINET), | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| CU_S120_PN (PRO- | P-Group: - | Units group: - | Unit selection: - |
| FINET), | Scaling: - | Expert list: 1 |  |
| CU_S150_DP (PRO- Not for motor type: - |  |  |  |
| FINET), |  | Factory setting |  |
| CU_S150_PN (PRO- | Max | - |  |
| FINET) | Min | - | - |
|  | Displays the active DHCP mode for the Communication Board Ethernet 20 (CBE20). |  |  |




| r8970[0...2] | CBE20 subslot c | ment / CBE20 s |  |
| :---: | :---: | :---: | :---: |
| A_INF (PROFINET), B_INF (PROFINET), <br> CU_S120_DP (PRO- <br> FINET), <br> CU_S120_PN (PRO- <br> FINET), <br> CU_S150_DP (PRO- <br> FINET), <br> CU_S150_PN (PRO- <br> FINET), ENC (PRO- <br> FINET), S_INF <br> (PROFINET), <br> SERVO (PROFI- <br> NET), SERVO_AC <br> (PROFINET), <br> SERVO_I_AC (PRO- <br> FINET), TB30 (PRO- <br> FINET), TM120 <br> (PROFINET), TM15 <br> (PROFINET), TM150 <br> (PROFINET), <br> TM15DI_DO (PRO- <br> FINET), TM17 (PRO- <br> FINET), TM31 <br> (PROFINET), TM41 <br> (PROFINET), VEC- <br> TOR (PROFINET), <br> VECTOR_AC (PRO- <br> FINET), <br> VECTOR_I_AC <br> (PROFINET) | Can be changed: - <br> Data type: Unsigned8 <br> P-Group: <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 8 \end{aligned}$ | Factory setting |
| Description: Index: <br> Dependency: <br> Note: | Displays the controller assignment of a PROFINET subslot on the actual drive object. <br> [0] = Subslot 2 PROFIsafe <br> [1] = Subslot 3 PZD telegram <br> [2] = Subslot 4 PZD supplementary data |  |  |
| $\overline{\mathrm{r} 8971[0 \ldots 3]}$ <br> CU_S120_DP (PROFINET), CU_S120_PN (PROFINET), CU_S150_DP (PROFINET), CU_S150_PN (PROFINET) | CBE20 IP Addres <br> Can be changed: - <br> Data type: Unsigned8 <br> P-Group: - <br> Not for motor type: - <br> Min <br> 0 | oller 1 / CBE20 <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 255 | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: | Displays the IP address of the first PROFINET controller connected with the device via CBE20. |  |  |



| r9207$\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Topology direct ac | lue / Topo acc |  |
| :---: | :---: | :---: | :---: |
|  | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Topology <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: | Displays the value for th A value is only displayed | 06. perties. |  |
| Dependency: | Refer to: p9206, r9208 |  |  |
| r9208[0...50] <br> CU_I, CU_I_D410 <br> CU_NX_CX, <br> CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Topology direct access string / Topo access string |  |  |
|  | Can be changed: - <br> Data type: Unsigned8 <br> P-Group: Topology <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | Min | Max | Factory setting |
| Description: | Displays the value for the property set in p9206. <br> A value is only displayed for string type properties. |  |  |
| Dependency: Note: | Refer to: p9206, r9207 <br> An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. |  |  |
| p9210 | Flashing component number / Flash comp_no. |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Unsigned16 <br> P-Group: Topology <br> Not for motor type: - | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 499 \end{aligned}$ | Factory setting 0 |
| Description: Dependency: | Sets the component number for a component to get its status LED to flash. Refer to: p9211 |  |  |
| p9211 | Flash function / Flash fct. |  |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{U}, \mathrm{T}$ <br> Data type: Integer16 <br> P-Group: Topology <br> Not for motor type: - <br> Min <br> -1 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 1 | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting -1 |
| Description: | Sets the function for the component selected in p9210. |  |  |



SP: Safe Position
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

| p9302 | SI Motion axis type (Motor Module) / SI Mtn AxisType MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_IAC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Max |
| VECTOR_I_AC | Factory setting |  |  |
|  | Min | 0 |  |
|  | 0 | 1 |  |
| Description: | Sets the axis type (linear axis or rotary axis/spindle). |  |  |
| Value: | $0: \quad$ Linear axis |  |  |
|  | $1: \quad$ Rot axis/spindle |  |  |
| Dependency: | Refer to: p9502 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For the commissioning software, after changing over the axis type, the units dependent on the axis type are only |  |  |
|  | updated after a project upload. |  |  |



| p9306 | SI Motion function specification (Motor Module) / SI Mtn fct_spc MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_IAC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 3 | 0 |

Description: Sets the function specification for the safe motion monitoring.
Value: $\quad 0: \quad$ Safety with encoder and accel_monitoring(SAM) / delay time
1: Safety without encoder and braking ramp(SBR)
Dependency: Refer to: C30711
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.


| Note: | SDI: Safe Direction (safe motion direction) <br> SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) <br> Re bit 00: <br> For bit = 1 and with the SSM safety function activated, the following applies: <br> - During pulse suppression, monitoring is switched off and the feedback signal has a 0 signal level. <br> For bit $=0$ and with the SSM safety function activated, the following applies: <br> - Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state. <br> Re bit 08: <br> For bit = 1 and with the SDI safety function activated, the following applies: <br> - During pulse suppression, monitoring is switched off and the status signal indicates inactive. <br> For bit $=0$ and with the SDI safety function activated, the following applies: <br> - Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state. |
| :---: | :---: |
| p9311 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | SI Motion actual value sensing clock cycle (Motor Module) / SI Mtn act clk MM |
| Descri | Sets the clock cycle time of the actual value sensing for safe motion monitoring. <br> Setting criteria if the motion monitoring functions are executed with an encoder. <br> - A slower clock cycle time reduces the maximum permissible velocity - however, it ensures a lower load of the Control Unit for safe actual value sensing. <br> - The maximum permissible velocity which, when exceeded, can mean that errors occur during safe actual value sensing, is displayed in r9730. <br> - The isochronous PROFIBUS clock cycle is used as a clock cycle time for actual value sensing with a setting of 0 ms ; the setting is 1 ms if isochronous operation is not being used. <br> Setting criteria if the motion monitoring functions are executed without an encoder: <br> - The actual value sensing clock cycle must be set to the same value as the current controller clock cycle ( p 0115 ). |
| Dependency: | Refer to: p0115, p9300, p9511 <br> Refer to: F01652 |
| Notice: Note: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. <br> The parameter is only active for drive-based motion monitoring functions (p9801.2 = 1). <br> The monitoring clock cycle from p9300 must be an integer multiple of this parameter. <br> In the case of motion monitoring functions with encoder, the clock cycle time for actual value sensing must be an integer multiple of the current controller clock cycle and at least 4 times slower than the current controller clock cycle. A factor of at least 8 is recommended. <br> The clock cycle time of the actual value sensing should not be set to more than 8 ms . <br> A change only becomes effective after a POWER ON. |
| $\overline{\mathrm{p} 9312}$ <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Select SI Motion safety functions without selection (MM) / SI Mtn w/o sel MM |
| Description: | Sets the safety functions without selection. <br> The safety functions without selection are enabled with p9601.5/p9801.5. <br> Using this parameter, the individual motion monitoring functions can then be selected (e.g. SLS, SDI positive, SDI negative), which should then be permanently selected. |



| p9316 | SI Motion encoder configuration, safety functions (Motor Module) / SI Mtn enc_cfg MM |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Acces |  |
|  | Data type: Unsigned16 | Dynamic index: - | Func |  |
|  | P-Group: Safety Integrated | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Exp |  |
|  | Min |  | Facto 0000 |  |
| Description: | Sets the configuration for the encoder and position actual value. |  |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. |  |  |  |
| Bit field: | Bit Signal name <br> 00 Encoder rotating/linear <br> 01 Position actual value, sign change | 1 signal Linear Yes | 0 signal <br> Rotating: <br> No | FP |
|  |  |  |  |  |
|  |  |  |  | - |
| Dependency: | Refer to: p0404, p0410, p9516 |  |  |  |
| p9317 | SI Motion linear scale grid division (Motor Module) / SI Mtn grid MM |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  |  | Scaling: - | Expert list: 1 |  |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~nm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 250000000.00[\mathrm{~nm}] \end{aligned}$ | Factory setting 10000.00 [nm] |  |
|  |  |  |  |  |
| Description: | Sets the grid division for a linear encoder. |  |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. |  |  |  |
| Dependency: | Refer to: p0407, p9316 |  |  |  |
| p9318 | SI Motion encoder pulses per revolution (Motor Module) / SI Mtn p/rev MM |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  |  | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated <br> Not for motor type: - | Units group: - | Unit selection: - |  |
|  |  | Scaling: - | Exper |  |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | Max <br> 16777215 | Factory setting 2048 |  |
| Description: | Sets the number of encoder pulses per revolution for rotary encoders. |  |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. |  |  |  |
| Dependency: | Refer to: p0408, p9316 |  |  |  |
| p9319 | SI Motion fine resolution G1_XIST1 (Motor Module) / SI Mtn G1_XIST1 MM |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated <br> Not for motor type: - | Units group: - | Unit selection: - |  |
|  |  | Scaling: - | Expert list: 1 |  |
|  |  | $\begin{aligned} & \text { Max } \\ & 18 \end{aligned}$ | Factory setting 11 |  |
| Description: | Sets the fine resolution for G1_XIST1 in bits. |  |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. |  |  |  |
| Dependency: | Refer to: p0418 |  |  |  |
|  | Refer to: F01670, F01671 |  |  |  |


| Note: | For safety functions that have not been enabled (p9301 = 0), the following applies: When booting, p9319 is automatically set the same as p0418. <br> For safety functions that are enabled (p9301>0), the following applies: p9319 is checked for agreement with p0418. <br> G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive) |
| :---: | :---: |
| p9320 | SI Motion spindle pitch (Motor Module) / SI Mtn sp_pitch MM |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.1000[\mathrm{~mm}]$ $8388.0000[\mathrm{~mm}]$ $10.000[\mathrm{~mm}]$ |
| Description: <br> Dependency: <br> Notice: | Sets the gear ratio between the encoder and load in mm/revolution for a linear axis with rotary encoder. <br> The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. <br> Refer to: p9520 <br> The fourth decimal point can be rounded-off depending on the size of the entered number (from 3 places before the decimal point). |
| p9321[0...7] | SI Motion gearbox encoder (motor)/load denom (Motor Module) / SI Mtn gearDenomMM |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 1 2147000000 1 |
| Description: | Sets the denominator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. |
| Index: | [0] = Gearbox 1 <br> [1] = Gearbox 2 <br> [2] = Gearbox 3 <br> [3] = Gearbox 4 <br> [4] = Gearbox 5 <br> [5] = Gearbox 6 <br> [6] = Gearbox 7 <br> [7] = Gearbox 8 |
| Dependency: | Refer to: p9322 |
| Notice: | It is not possible to change over the gearbox stages. Gearbox 1 (index 0 ) is always active. |
| p9322[0. | SI Motion gearbox encoder (motor)/Ioad numerator (Motor Module) / SI Mtn gear num MM |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(95)$ Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 1 2147000000 1 |
| Description: | Sets the numerator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. |
| Index: | $\begin{aligned} & {[0]=\text { Gearbox } 1} \\ & {[1]=\text { Gearbox } 2} \\ & {[2]=\text { Gearbox } 3} \\ & {[3]=\text { Gearbox } 4} \end{aligned}$ |



| p9326 | SI Motion encoder assignment (Motor Module) / SI Mtn encoder MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 3 | 1 |
| Description: | Sets the number of the encoder, which is used on the Motor Module for safe motion monitoring functions. |  |  |
| Dependency: | For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set ( $\mathrm{p} 0430.19=1$ ). |  |  |
|  | Refer to: p0187, p0188, p0189, p0430, p9526 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For p9326 = 1 the following applies: Motor Module uses an encoder for closed-loop speed control, it involves a 1encoder system. |  |  |
| p9328[0...11] | SI Motion Sensor Module Node Identifier (Motor Module) / SI Mtn SM Ident MM |  |  |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | 00FF hex | 0000 hex |
| Description: | Sets the node identifier of the Sensor Module that is used by the Motor Module for the motion monitoring functions. |  |  |
| Dependency: | Refer to: r9881 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| p9329 | SI Motion Gx_XIST1 coarse pos safe most significant bit (MM) / Gx_XIST1 MSB MM |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 31 | 14 |
| Description: | Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position. |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter. |  |  |
| Dependency: | Refer to: p0415, r0475, p9529 |  |  |
| Note: | MSB: Most Significant Bit |  |  |
| p9330 | SI Motion standstill tolerance (Motor Module) / SI Mtn SOS Tol MM |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO- I AC VEC | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [mm] | 100.000 [mm] | 1.000 [mm] |
| Description: | Sets the tolerance for the function "Safe Operating Stop" (SOS). |  |  |
| Dependency: | Refer to: p9530 |  |  |
|  | Refer to: C01707 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SOS: Safe Operating Stop |  |  |



| p9334[0..1] | SI Motion SLP upper limit values (Motor Module) / SI Mtn SLP uplimMM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2822 |
| $-0-=-1$ TOF | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | -2147000.000 [mm] | 2147000.000 [mm] | 100000.000 [mm] |
| Description: | Sets the upper limit for the function "Safely-Limited Position" (SLP). |  |  |
| Index: | [0] = Limit value SLP1 (SE1) |  |  |
|  | [1] = Limit value SLP2 (SE2) |  |  |
| Dependency: | Refer to: p9501, p9535, p9562 |  |  |
|  | Refer to: C01715 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For setting this limit value, the following applies: $\mathrm{p} 9334[\mathrm{x}]>\mathrm{p} 9335[\mathrm{x}], \mathrm{x}=0,1$ |  |  |
|  | A change only becomes effective after a POWER ON. |  |  |
|  | SLP: Safely-Limited Position / SE: Safe software limit switches |  |  |


| p9334[0...1] | SI Motion SLP upper limit values (Motor Module) / SI Mtn SLP uplimMM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -2147000.000 [ ${ }^{\circ}$ ] | $2147000.000\left[^{\circ}\right]$ | 100000.000 [ ${ }^{\circ}$ ] |
| Description: | Sets the upper limit for the function "Safely-Limited Position" (SLP). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$ |  |  |
|  |  |  |  |
| Dependency: | Refer to: p9501, p9535, p9562 |  |  |
|  | Refer to: C01715 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For setting this limit value, the following applies: p9334[x] >p9335[x], x=0,1 |  |  |
|  | A change only becomes effective after a POWER ON. |  |  |
|  | SLP: Safely-Limited Position / SE: Safe software limit switches |  |  |


| p9335[0...1] | SI Motion SLP lower limit values (Motor Module) / SI Mtn SLPlowLimMM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2822 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | $2147000.000[\mathrm{~mm}]$ | Factory setting |
|  | $-2147000.000[\mathrm{~mm}]$ | -100000.000 [mm] |  |
|  | Sets the lower limit for the function "Safely-Limited Position" (SLP). |  |  |
| Description: | [0] Limit value SLP1 (SE1) |  |  |
| Index: | [1] = Limit value SLP2 (SE2) |  |  |
| Dependency: | Refer to: p9501, p9534, p9562 |  |  |
|  | Refer to: C01715 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |

Note: $\quad$ For setting this limit value, the following applies: $p 9334[x]>p 9335[x], x=0,1$
A change only becomes effective after a POWER ON. SLP: Safely-Limited Position / SE: Safe software limit switches


VECTOR_AC (Safety
rot), VECTOR_I_AC
(Safety rot)

|  | Min | Max |
| :--- | :--- | :--- |
|  | $-2147000.000\left[{ }^{\circ}\right]$ | Factory setting |
|  |  | $-100000.000\left[{ }^{\circ}\right]$ |



Note: $\quad$ For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and standard setting of p9320, p9321 and p9322, the standard setting of p9342 corresponds to a position tolerance of $36^{\circ}$ on the motor side.

## p9342

SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), SI Motion act val comparison tol (crosswise) (Motor Module) / SI Mtn actV tol MM VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot)

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $0.0010\left[^{\circ}\right]$ | $360.0000\left[^{\circ}\right]$ | $0.1000\left[^{\circ}\right]$ |

Description: Sets the tolerance for the crosswise data comparison of the actual position between the two monitoring channels. For encoderless motion monitoring functions, the tolerance must be set to a higher value ( 12 degrees rotary and 1 mm linear).
Dependency: Refer to: p9542 Refer to: C01711
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: $\quad$ For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and standard setting of p9320, p9321 and p9322, the standard setting of p9342 corresponds to a position tolerance of $36^{\circ}$ on the motor side.

| p9344 | SI Motion actual value comparison tolerance (referencing) (MM) / SI mtn ref tol MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.0000[\mathrm{~mm}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 36.0000[\mathrm{~mm}] \end{aligned}$ | Factory setting 0.0100 [mm] |
| Description: | Sets the tolerance to check the actual values after referencing (incremental encoder) or when powering up (absolute encoder). |  |  |
| Dependency: | Refer to: C01711 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | A change only becomes effective after a POWER ON. |  |  |
|  | For linear axes, the maximum value is limited to 1 mm . |  |  |
| p9344 | SI Motion actual value comparison tolerance (referencing) (MM) / SI mtn ref tol MM |  |  |
| SERVO (Safety rot), | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC (Safety | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Safety rot), VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR (Safety rot), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.0000 [ ${ }^{\circ}$ ] | $36.0000{\left[{ }^{\circ}\right]}$ | 0.0100 [ ${ }^{\circ}$ ] |
| Description: | Sets the tolerance to check the actual values after referencing (incremental encoder) or when powering up (absolute encoder). |  |  |
| Dependency: | Refer to: C01711 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | A change only becomes effective after a POWER ON. |  |  |
|  | For linear axes, the maximum value is limited to 1 mm . |  |  |


| p9345 | SI Motion SSM filter time (Motor Module) / SI Mtn SSM filt MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | 100000.00 $[\mu \mathrm{s}]$ | Factory setting |
|  | $0.00[\mu \mathrm{~s}]$ | $0.00[\mu \mathrm{~s}]$ |  |
| Description: | Sets the filter time for the SSM feedback signal to detect standstill. |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | The filter time is effective only if the function is enabled (p9301.16 = p9501.16 = 1). |  |  |
|  | The parameter is included in the crosswise data comparison of the two monitoring channels. |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |


| p9346 | SI Motion SSM velocity limit (Motor Module) / SI Mtn SSM v_limMM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mathrm{mm} / \mathrm{min}$ ] | 1000000.00 [mm/min] | 20.00 [mm/min] |
| Description: | Sets the velocity limit for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ). |  |  |
|  | When this limit value is undershot, the signal "SSM feedback signal active" is set. |  |  |
|  | For p9368 = p9568 $=0$ the value in p9346/p9546 is also applicable for the function "SAM". |  |  |
| Dependency: | Refer to: p9546 |  |  |
| Caution: | The "SAM" function is switch | cted threshold value is |  |



Notice:
Note:

This parameter is overwritten by the copy function of the safety functions integrated in the drive. SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

## p9346

SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot),
VECTOR_AC (Safety
rot), VECTOR_I_AC
(Safety rot)


| p9347 | SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.0010 [ $\mathrm{mm} / \mathrm{min}$ ] | Max <br> 500.0000 [ $\mathrm{mm} / \mathrm{min}$ ] | Factory setting 10.0000 [ $\mathrm{mm} / \mathrm{min}$ ] |
| Description: | Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ). |  |  |
| Dependency: | Refer to: C01711 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | The velocity hysteresis is effective only if the function is enabled (p9301.16 = p9501.16 = 1). |  |  |
|  | The parameter is included in the crosswise data comparison of the two monitoring channels. |  |  |
|  | SSM: Safe Speed Monitor | back signal from | ing) |



| p9348 | SI Motion SAM actual velocity tolerance (Motor Module) / SI Mtn SAM tol MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTORRAC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | Min |  |  |
|  | $0.00[\mathrm{~mm} / \mathrm{min}]$ | $300.00[\mathrm{~mm} / \mathrm{min}]$ |  |
| Description: | Sets the velocity tolerance for the "SAM" function. |  |  |
| Dependency: | Refer to: p9548 |  |  |
|  | Refer to: C01706 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |



| p9351 | SI Motion SLS changeover delay time (Motor Module) / SI Mtn SLS t MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2825 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | Max $600000000.00[\mu \mathrm{~s}]$ | Factory setting 100000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the delay time for the SLS changeover or for the changeover from SLS to SOS for the function "Safely-Limited Speed" (SLS). |  |  |
|  | When transitioning from a higher to a lower safely-limited velocity/speed stage or to the safe operating stop (SOS), within this delay time, the "old" velocity stage remains active. |  |  |
| Dependency: | Refer to: p9551 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SLS: Safely-Limited Speed |  |  |
|  | SOS: Safe Operating Stop |  |  |
| p9352 | SI Motion transition time STOP C to SOS (Motor Module) / SI Mtn t C->SOS MM |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2825 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 600000000.00 [ $\mu \mathrm{s}$ ] | 100000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the transition time from STOP C to "Safe Operating Stop" (SOS). |  |  |
| Dependency: | Refer to: p9552 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SOS: Safe Operating Stop |  |  |
| p9353 | SI Motion transition time STOP D to SOS (Motor Module) / SI Mtn t D->SOS MM |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2825 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 600000000.00 [ $\mu \mathrm{s}$ ] | 100000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the transition time from STOP D to "Safe Operating Stop" (SOS). |  |  |
| Dependency: | Refer to: p9553 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SOS: Safe Operating Stop |  |  |
| p9354 | SI Motion transition time STOP E to SOS (Motor Module) / SI Mtn t E->SOS MM |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2825 |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 600000000.00 [ $\mu \mathrm{s}$ ] | 100000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the transition time from STOP E to "Safe Operating Stop" (SOS). |  |  |
| Dependency: | Refer to: p9554 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |





| p9364 | SI Motion SDI tolerance (Motor Module) / SI Mtn SDI tol MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2861 |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.001 \text { [mm] } \end{aligned}$ | $\begin{aligned} & \operatorname{Max} \\ & 360.000[\mathrm{~mm}] \end{aligned}$ | Factory setting 12.000 [mm] |
| Description: | Sets the tolerance for the function "Safe motion direction" (SDI). |  |  |
| Dependency: | Refer to: p9365, p9366 <br> Refer to: C30716 |  |  |
| Notice: <br> Note: | This parameter is overwritte SDI: Safe Direction (safe mo | ction of the safety | in the drive. |



Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).
SDI: Safe Direction (safe motion direction)

| p9368 | SI Motion SAM velocity limit (Motor Module) / SI Mtn SAM v_limMM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0.00 [ $\mathrm{mm} / \mathrm{min}$ ] | $\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$ | Factory setting 0.00 [ $\mathrm{mm} / \mathrm{min}$ ] |
| Description: | Sets the velocity tolerance limit for the "SAM" function. SAM is de-activated once the set velocity limit has been undershot. |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |
|  | For p9568 $=$ p9368 $=0$, the following applies: |  |  |
|  | The value in p9546/p9346 (SSM) is applied as the velocity limit for SAM. |  |  |

p9368
SERVO (Safety rot), SERVO_AC (Safety rot), SERVO I AC
(Safety rot), VEC-
TOR (Safety rot),
VECTOR_AC (Safety
rot), VECTOR_I_AC
(Safety rot)

|  | Min | Max |
| :--- | :--- | :--- |
|  | $0.00[\mathrm{rpm}]$ | Factory setting |
| Description: | Sets the velocity tolerance limit for the "SAM" function. |  |
|  | SAM is de-activated once the set velocity limit has been undershot. |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |
| Note: | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |
|  | For p9568 $=\mathrm{p9368}=0$, the following applies: |  |
|  | The value in $\mathrm{p} 9546 / \mathrm{p} 9346(\mathrm{SSM})$ is applied as the velocity limit for SAM. |  |


| p9370 | SI Motion acceptance test mode (Motor Module) / SI Mtn acc_mod MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | 00AC hex | 0000 hex |
| Description: | Setting to select and de-select the acceptance test mode. |  |  |
| Value: | 0: [00 hex] De-select the acceptance test mode172: [AC hex] Select the acceptance test mode |  |  |
| Dependency: | Refer to: p9358, r9371 |  |  |
|  | Refer to: C01799 |  |  |
| Note: | Acceptance test mode can only be selected if the motion monitoring functions, which are integrated in the drives, are enabled (p9601.2/p9801.2). |  |  |


| r9371 | SI Motion acceptance test status (Motor Module) / SI Mtn acc_stat MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- <br> TOR VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0000 hex | Max <br> 00AC hex | Factory setting |
| Description: | Displays the status of the acceptance test mode. |  |  |
| Value: | 0: [00 hex] Acc_mode in <br> 12: [OC hex] Acc_mode n <br> 13: [OD hex] Acc_mode n <br> 15: [OF hex] Acc_mode n <br> 172: [AC hex] Acc_mode | to POWER ON fault to incorrect ID in p9370 to expired Acc_timer |  |
| Dependency: | Refer to: p9358, p9370 |  |  |

p9374
SERVO,
SERVO_AC,
SERVOIIAC, VEC-
TOR, VECTOR_AC,

| SI Motion safe position scaling (Motor Module) / SI mtn SP scal MM |  |  |
| :--- | :--- | :--- |
| Can be changed: C2(95) | Calculated: - | Access level: 3 |
| Data type: Integer32 | Dynamic index: - | Func. diagram: - |
| P-Group: Safety Integrated | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |
| Min | Max | Factory setting |
| 1 | 100000 | 1000 |

Description: Sets the scaling factor to transfer the safe position via PROFIsafe in the 16-bit notation.
Dependency: Refer to: r9713
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:

The parameter is only effective when PROFIsafe telegram 901 is selected.
By selecting a suitable scaling of the 32 bit position actual value ( $\mathrm{r} 9713[0]$ ), it must be ensured that the scaled position actual value is not greater than 16 bit. The scaling is realized by dividing r9713[0] with this scaling factor.
If, during operation, a position actual value is determined, which cannot be scaled to the 16 bits, then message C30711 with value 7001 is output and safety stop response STOP F.

| p9380 | SI Motion pulse suppression delay bus failure (Motor Module) / SI Mtn to lL MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | Max <br> 800000.00 [ $\mu \mathrm{s}$ ] | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the delay time after which the pulses are safely suppressed after a bus failure. |  |  |
| Dependency: | Refer to: p9363 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F). |  |  |
|  | The main use of the wait time | ction (Extended Stop |  |


| p9381 | SI Motion brake ramp reference value (Motor Module) / SI Mtn ramp ref MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 600.0000 [mm/min] | 240000.0000 [mm/min] | 1500.0000 [ $\mathrm{mm} / \mathrm{min}$ ] |
| Description: | Sets the reference value to define the brake ramp. |  |  |
|  | The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time). |  |  |
| Dependency: | Refer to: p9382, p9383 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| p9381 | SI Motion brake ramp reference value (Motor Module) / SI Mtn ramp ref MM |  |  |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 600.0000 [rpm] | 240000.0000 [rpm] | 1500.0000 [rpm] |
| Description: | Sets the reference value to define the brake ramp. |  |  |
|  | The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time). |  |  |
| Dependency: | Refer to: p9382, p9383 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| p9382 | SI Motion brake ramp delay time (Motor Module) / SI Mtn rp t_del MM |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 10000.00 [ $\mu \mathrm{s}$ ] | $99000000.00[\mu \mathrm{~s}]$ | 250000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the delay time for monitoring the brake ramp. |  |  |
|  | Monitoring of the brake ramp starts once the delay time has elapsed. |  |  |
| Dependency: | Refer to: p9381, p9383 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| p9383 | SI Motion brake ramp monitoring time (Motor Module) / SI Mtn rp t_mon MM |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 500.00 [ms] | 3600000.00 [ms] | 10000.00 [ms] |
| Description: | Sets the monitoring time to define the brake ramp. |  |  |
| Dependency: | Refer to: p9381, p9382 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |



| p9386 | SI Motion delay time of the evaluation sensorless (MM) / SI Mtn t_del SL MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 5.00[\mathrm{~ms}] \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 1000.00 \text { [ms] } \end{aligned}$ | Factory setting 100.00 [ms] |
| Description: | Sets the evaluation delay for encoderless actual value sensing after pulse enable. The value should be greater than or equal to the motor magnetizing time. |  |  |
| Dependency: | Refer to: C30711 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. <br> If this value is reduced, this can have a negative impact on the actual value acquisition and plausibility check - and result in Safety message C30711 with the message value 1041 or 1042. |  |  |
|  | When the value is increased, this results in a longer evaluation delay. |  |  |
| Note: | This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). |  |  |
| p9387 | SI Motion act val sensing encoderless filter time (Motor Module) / SI Mtn SL filt MM |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ $\mu \mathrm{s}$ ] | 100000.00 [ $\mu \mathrm{s}$ ] | 25000.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the filter time for smoothing the actual value with sensorless actual value sensing. |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). |  |  |




| r9407[0...19] | PS file parameter index parameter not transferred / PS parameter index |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card). |  |  |
|  | If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in r9406[n] and the first index that was not transferred is displayed in r9407[n]. |  |  |
|  | --> All of the parameter values were able to be transferred error-free. |  |  |
|  | r9406[n] > 0 |  |  |
|  | --> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred. |  |  |
| Dependency: <br> Note: | Refer to: r9406, r9408 |  |  |
|  | All indices from r9406 to r9408 designate the same parameter. |  |  |
|  | r9406[x] parameter number, parameter not accepted |  |  |
|  | r9407[x] parameter index, parameter not accepted |  |  |
|  | r9408[x] fault code, parameter not accepted |  |  |
| r9408[0...19] | PS file fault code parameter not transferred / PS fault code |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 1 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Only for internal Siemens service purposes. |  |  |
| Dependency: | Refer to: r9406, r9407 |  |  |
| Note: | All indices from r9406 to r9408 designate the same parameter. |  |  |
|  | r9406[x] parameter number, parameter not accepted |  |  |
|  | r9407[x] parameter index, parameter not accepted |  |  |
|  | r9408[x] fault code, parameter not accepted |  |  |
| r9409 | Number of parameters to be saved / Qty par to save |  |  |
| All objects | Can be changed: - | Calculated: - | Access level: 4 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the number of modified parameters and those that have still not be saved for this drive object |  |  |
| Dependency: | Refer to: p0971, p0977 |  |  |
| Notice: | Inherent to the system, the list of the parameters to be backed up is empty after the following actions: - Download |  |  |
|  | - Warm restart |  |  |
|  | - Factory setting |  |  |
|  | In these cases, a new parameter backup must be initiated, which is then the starting point for the list of modified parameters. |  |  |
| Note: | The modified parameters that still need to be saved are internally listed in r9410 ... r9419. |  |  |



| r9482[0...n] | BICO interconnections $\mathrm{BI} / \mathrm{Cl}$ parameters / BICO BI/Cl par |  |  |
| :---: | :---: | :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Commands <br> Not for motor type: - | Calculated: - <br> Dynamic index: r9481 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 0 |
|  | Min | $\operatorname{Max}$ | Factory setting |
| Description: <br> Dependency: <br> Note: | Displays the signal sinks <br> The number of BICO int Refer to: r9481, r9483 <br> The list is sorted accordi r9842[0]: Interconnection r9842[1]: Interconnection ... | inputs, $\mathrm{Bl} / \mathrm{Cl}$ parameters) layed in r9481. <br> and is structured as follo coded), r9843[0]: Interc coded), r9843[1]: Intercor | (signal source, BICO coded) (signal source, BICO coded) |
| r9483[0...n] <br> A_INF, B_INF, CU_I, CU_I_D410, <br> CU_LINK, <br> CU_NX_CX, <br> CU_S_AC_DP, <br> CU_S_AC_PN, <br> CU_S120_DP, <br> CU_S120_PN, <br> CU_S150_DP, <br> CU_S150_PN, ENC, <br> S_INF, SERVO, <br> SERVO_AC, <br> SERVO_I_AC, TB30, <br> TM120, TM15, <br> TM150, TM15DI_DO, <br> TM17, TM31, TM41, <br> TM54F_MA, <br> TM54F_SL, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | BICO interconnec <br> Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Commands <br> Not for motor type: - | rameters / BICO B <br> Calculated: - <br> Dynamic index: r9481 <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 0 |
|  | Min | Max | Factory setting |
| Description: Dependency: | Displays the signal sources (binector/connector outputs, $\mathrm{BO} / \mathrm{CO}$ parameters). The number of BICO interconnections is displayed in r9481. <br> Refer to: r9481, r9482 |  |  |


| Note: | The list is sorted according to signal sources and is structured as follows: r9842[0]: Interconnection 1 (signal sink, BICO coded), r9843[0]: Interconnection 1 (signal source, BICO coded) r9842[1]: Interconnection 2 (signal sink, BICO coded), r9843[1]: Interconnection 2 (signal source, BICO coded) ... |
| :---: | :---: |
| p9484 | BICO interconnections search signal source / BICO S_src srch |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150,TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: U, T Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 0 |
|  | Min Max Factory setting <br> 0 4294967295 0 |
| Description: | Sets the signal source ( $\mathrm{BO} / \mathrm{CO}$ parameter, BICO coded) to search in the signal sinks. <br> The question is answered: <br> How often is a connection made to a signal source in the drive object and from which index are these interconnections saved (r9482 and r9483)? |
| Dependency: | Refer to: r9481, r9482, r9483, r9485, r9486 |
| r9 | BICO interconnections signal source search count / BICO S_src srchQty |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: - Calculated: - Access level: 3 <br> Data type: Unsigned16 Dynamic index: - Func. diagram: - <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 0 |
|  | Min Max Factory setting |
| Description: Dependency: | Displays the number of BICO interconnections to the signal sink being searched for. Refer to: r9481, r9482, r9483, p9484, r9486 |


| Note: | The signal source to be searched is set in p9484 (BICO-coded). |
| :--- | :--- |
|  | The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486). |

## r9486

A_INF, B_INF, CU_I,
CU_I_D410,
CU_LINK,
CU_NX_CX,
CU_S_AC_DP,
BICO interconnections signal source search first index / BICO S_src srchIdx

CU_S_AC_PN,
CU_S120_DP,
CU_S120_PN,
CU_S150_DP,
CU_S150_PN, ENC,
S_INF, SERVO,
SERVO_AC,
SERVO_I_AC, TB30,
TM120, TM15,
TM150,TM15DI_DO,
TM17, TM31, TM41,
TM54F_MA,
TM54F_SL, VEC-
TOR, VECTOR_AC,
VECTOR_I_AC
Min
Max
Factory setting

Description: Displays the first index of the signal source being searched for.
Dependency: Refer to: r9481, r9482, r9483, p9484, r9485

## Note:

The signal source to be searched is set in p9484 (BICO-coded).
The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).

## r9490

All objects
Description:
Dependency

Displays the number of signal sources from this drive to other drives/drive objects (Binector Output/Connector Output, BO/CO).

| r9491[0...9] | $\mathrm{Bl} / \mathrm{Cl}$ of BICO interconnections to other drives / Bl/Cl to drive |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the signal receiver list (Binector Input/Connector Input, $\mathrm{BI} / \mathrm{Cl}$ ) for the first interconnections between this drive and other drives/drive objects. |  |  |
| Dependency: | Refer to: r9490, r9492, p9493 |  |  |
| Notice: | A drive cannot be deleted if this list is not empty! Otherwise, another drive would continue to attempt to read a sig nal from a drive that no longer existed. |  |  |
| Note: | All indices of r9491 to p9493 designate the same interconnection. |  |  |
|  | r9491[x] contains the signal receiver and r9492[x] the matching signal source; p9493[x] can be set to modify the |  |  | interconnection.


| r9492[0...9] | $\mathrm{BO} / \mathrm{CO}$ of BICO interconnections to other drives / BO/CO to drive |  |  |
| :---: | :---: | :---: | :---: |
| All objects | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Commands | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - |  | - |
| Description: | Displays the signal source list (Binector Output/Connector Output, BO/CO) for the first interconnections between this drive and other drives/drive objects. |  |  |
| Dependency: | Refer to: r9490, r9491, p9493 |  |  |
| Notice: | A drive cannot be deleted if this list is not empty! Otherwise, another drive would continue to attempt to read a signal from a drive that no longer existed. |  |  |
| Note: | All indices of r9491 to p9493 designate the same interconnection. |  |  |
|  | $r 9491[x]$ contains the signal receiver and $r 9492[x]$ the matching signal source; $\mathrm{p} 9493[\mathrm{x}]$ can be set to modify the interconnection. |  |  |
| p9493[0...9] | Reset BICO interconnections to other drives / Reset BICO to drv |  |  |
| All objects | Can be changed: T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: - | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 15 \end{aligned}$ | Factory setting 15 |
| Description: | Setting to reset the BICO interconnections to other drives. Each interconnection can be individually reset. |  |  |
| Value: | 0 : Set connection to 0 |  |  |
|  | 1: Set connection to 1 (100\%) |  |  |
|  | 2: Set connection to factory setti |  |  |
|  | 15: Finished |  |  |
| Dependency: | Refer to: r9490, r9491, r9492 |  |  |
| Note: | All indices of r9491 to p9493 designate the same interconnection. |  |  |
|  | $\mathrm{r} 9491[\mathrm{x}]$ contains the signal receiver and $\mathrm{r} 9492[\mathrm{x}]$ the matching sis interconnection. |  | 493[x] can be set to |


| p9495 | BICO behavior for de-activated drive objects / Behav for deact DO |
| :---: | :---: |
| A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: T Calculated: - Access level: 3 <br> Data type: Integer16 Dynamic index: - Func. diagram: - <br> P-Group: - Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 |
|  | Min Max Factory setting <br> 0 2 0 |
| Description: | Sets the behavior for BICO interconnections to drive objects that are either not capable of operation or have been deactivated. <br> $\mathrm{BO} / \mathrm{CO}$ parameters are on the drive object that is either not capable of operation or has been deactivated (signal source). |
| Value: | 0: Inactive <br> 1: Save interconnections <br> 2: Save interconnections and establish the factory setting |
| Dependency: | Refer to: p9496, p9497, p9498, p9499 Refer to: A01318, A01507 |
| Note: | For p9495 $=0$, the following applies: <br> - the number of interconnections is zero (p9497 = 0). <br> For p9495 not equal to 0 , the following applies: <br> - the $\mathrm{BI} / \mathrm{Cl}$ parameters involved are listed in p9498[0...29] (signal sink). <br> - the associated $\mathrm{BO} / \mathrm{CO}$ parameters are listed in p9499[0...29] (signal source). |


$\mathrm{BO} / \mathrm{CO}$ parameters are on the drive object that is either not capable of operation or has been deactivated (signal source).
Dependency: Refer to: p9495, p9496, p9498, p9499
Refer to: A01318, A01507

p9499[0...29] BICO BO/CO parameters to de-activated drive objects / BO/CO to deact obj

| A_INF, B_INF, CU_I, | Can be changed: T | Calculated: - | Access level: 3 |
| :---: | :---: | :---: | :---: |
| CU_I_D410, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_LINK, | P-Group: Commands | Units group: - | Unit selection: - |
| CU_S_AC_DP, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S_AC_PN, |  |  |  |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  |  |  |
| CU_S150_DP, |  |  |  |
| CU_S150_PN, ENC, |  |  |  |
| S_INF, SERVO, |  |  |  |
| SERVO_AC, |  |  |  |
| SERVO_I_AC, TB30, |  |  |  |
| TM120, TM15, |  |  |  |
| TM150, TM15DI_DO, |  |  |  |
| TM17, TM31, TM41, |  |  |  |
| VECTOR, |  |  |  |
| VECTOR_AC, |  |  |  |
| VECTOR_I_AC |  |  |  |
|  | Min | Max | Factory setting |
|  | - |  | 0 |
| Description: | Displays the saved BO/ ble of operation or have | al source), which ar | objects that are e |
| Dependency: | Refer to: p9495, p9496, |  |  |
|  | Refer to: A01318, A01507 |  |  |
| Note: | A BICO interconnection | ource) is displayed in | of p9498 and p949 |



| p9501 | SI Motion enable safety functions (Control Unit) / SI Mtn enable CU |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, VECTOR | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | 0000000000000000000 |  |
|  |  | 000000000000 bin |  |




| p9507 | SI Motion function specification (Control Unit) / SI Mtn config CU |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Cal | ulated: - | Access leve |  |
|  | Data type: Unsigned32 D | mic index: - | Func. diag |  |
|  | P-Group: Safety Integrated Un | group: - | Unit selectio |  |
|  | Not for motor type: - Sc | ing: - | Expert list: |  |
|  | Min Max |  | Factory sett |  |
|  | - - |  | 0000 bin |  |
| Description: | Sets the function configuration for the safe motion monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Extended message acknowledgement | Yes | No | - |
|  | 01 Setpoint velocity limit for STOP F | No | Yes | - |
|  | 02 Motor type sensorless actual value sensing | Synchronous motor | Induction motor | - |
|  | 03 SS1 drive-based braking response | without OFF3 | with OFF3 | - |
| Dependency: | Refer to: C01711 |  |  |  |
| Note: | Re bit 00: |  |  |  |
|  | When the function is activated, a safety-relevant acknowledgement (internal event acknowledge) can be performed by selecting/deselecting STO. |  |  |  |
|  | Re bit 01: |  |  |  |
|  | When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. Re bit 02: |  |  |  |
|  | This bit defines the type of motor, which the sensorless safety technology evaluates. |  |  |  |
|  | For bit $=0$, the sensorless motion monitoring function calculates the actual velocity for an induction motor. |  |  |  |
|  | For bit = 1, an actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300 |  |  |  |
|  | Bit $=0$ should be set if no motor is defined (p0300 $=0$ ). |  |  |  |
|  | Re bit 03: |  |  |  |
|  | When the function is activated, the drive-based braking response (OFF3 ramp) after SS1/internal STOP B is deactivated. Braking monitoring (SBR, SAM) is also deactivated. |  |  |  |



For bit = 0 and with the SSM safety function activated, the following applies:

- Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state.
Re bit 08:
For bit = 1 and with the SDI safety function activated, the following applies:
- During pulse suppression, monitoring is switched off and the status signal indicates inactive.

For bit = 0 and with the SDI safety function activated, the following applies:

- Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state.

| p9510 | SI Motion clock-cycle synchronous PROFIBUS master / SI Mtn sync master |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_IAC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | 0 | 1 | 0 |

Description: Setting for clock cycle synchronous communication between PROFIdrive controller and Control Unit.

The parameter is only relevant, if the safety-relevant motion monitoring functions integrated in the drive have been enabled (p9601.2 =1).
If a PROFIdrive controller exchanges process data in clock cycle synchronism with the Control Unit, then p9510 must be set to 1 . This also applies if the drive itself does not exchange process data in clock cycle synchronism. Examples for clock cycle synchronous communication:

- clock-cycle synchronous control for the motion control (e.g. SIMOTION).
- clock-cycle synchronous PROFIsafe master (e.g. SIMATIC S7-400F).
Value: $\quad 0:$ Communication not isochronous

1: Communication isochronous

Notice: As of firmware version 2.6, the parameter has no effect.


The clock cycle time of the actual value sensing should not be set to more than 8 ms .
A change only becomes effective after a POWER ON.


| p9513 | SI Motion non safety-relevant measuring steps POS1 (CU) / nsrPOS1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Unsigned32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 4294967295 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting $22000$ |
| Description: | Sets the non safety-relevant measuring steps of position value POS1. <br> The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |  |  |
| Dependency: | Refer to: p0416, r0473, p9313 |  |  |
| Note: | For safe functions that are not enabled (p9501 $=0$ ), the following applies: - p9513 is automatically set the same as r0416 when the system boots. For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: - p9513 is checked to see that it matches p0416. |  |  |
| p9514 | SI Motion absolute encoder linear measuring steps (CU) / Enc lin meas step |  |  |
| SERVO, <br> SERVO_AC, <br> SERVOIIAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: $\mathrm{C} 2(95)$ <br> Data type: Unsigned32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 [nm] | Calculated:- <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 4294967295 [nm] | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 100 [ nm ] |
| Description: | Sets the resolution of the absolute position for a linear absolute encoder. <br> The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |  |  |
| Dependency: | Refer to: p0422, r0469, p9314 |  |  |



| p9517 | SI Motion linear scale grid division (Control Unit) / SI Mtn grid CU |
| :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mathrm{~nm}]$ $250000000.00[\mathrm{~nm}]$ $10000.00[\mathrm{~nm}]$ |
| Description: | Sets the grid division for a linear motor encoder. <br> The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |
| Dependency: | Refer to: p0407, p9516 <br> Refer to: F01671 |
| Note: | For safety functions that have not been enabled ( $\mathrm{p} 9501=0$ ), the following applies: When booting p9517 is automatically set the same as p0407. <br> For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: p 9517 is checked whether it coincides with p0407. |
| p9518 | SI Motion encoder pulses per revolution (Control Unit) / SI Mtn |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0 16777215 2048 |
| Description: | Sets the number of encoder pulses per revolution for rotary motor encoders. <br> The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |
| Dependency: | Refer to: p0408, p9516 <br> Refer to: F01671 |
| Note: | For safety functions that have not been enabled ( $\mathrm{p} 9501=0$ ), the following applies: When booting, p9518 is automatically set the same as p0408. <br> For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: p 9518 is checked whether it coincides with p0408. |
| p9519 | SI Motion fine resolution G1_XIST1 (Control Unit) / SI Mtn G1_XIST1 CU |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 2 18 11 |
| Description: | Sets the fine resolution for G1_XIST1 in bits. <br> The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |
| Dependency: | Refer to: p0418 <br> Refer to: F01671 |
| Note: | For safety functions that have not been enabled ( $\mathrm{p} 9501=0$ ), the following applies: When booting, p9519 is automatically set the same as p0418. <br> For safety functions that are enabled (p9501 > 0), the following applies: p9519 is checked whether it coincides with p0418. <br> G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive) |




| p9526 | SI Motion encoder assignment second channel / SI Mtn enc chan 2 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 3 | 1 |
| Description: | Sets the number of the encoder that the second channel (control, Motor Module) uses for safe motion monitoring functions. |  |  |
| Dependency: | For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set (p0430.19 = 1). |  |  |
|  | Refer to: p0187, p0188, p0189, p0430 |  |  |
| Note: | For p9526 = 1, the encoder for the closed-loop speed control is used for the second channel of the motion monitoring functions (1-encoder system). |  |  |
|  | A change only becomes effective after a POWER ON. |  |  |
| p9529 | SI Motion Gx_XIST1 coarse pos. safe most significant bit (CU) / Gx_XIST1 MSB CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 31 | 14 |
| Description: | Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position. |  |  |
|  | The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter. |  |  |
| Dependency: | Refer to: p0415, r0475, p9329 |  |  |
| Note: | For safe functions that are not enabled (p9501 = 0), the following applies: |  |  |
|  | - p9529 is automatically set the same as r0475 when the system boots. |  |  |
|  | For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: |  |  |
|  | - p9529 is checked to see that it matches r0475. |  |  |
|  | MSB: Most Significant Bit |  |  |
| p9530 | SI Motion standstill tolerance (Control Unit) / SI Mtn standst_tol |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.000 [mm] | 100.000 [mm] | 1.000 [mm] |
| Description: | Sets the tolerance for the function "Safe Operating Stop" (SOS). |  |  |
| Dependency: | Refer to: C01707 |  |  |
| Note: | SOS: Safe Operating Stop / SBH: Safe operating stop |  |  |



| p9532[0...15] | SI Motion SLS (SG) override factor (Control Unit) / SI Mtn SLS over CU |
| :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T Calculated: - Access level: 4 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.000[\%]$ $100.000[\%]$ 100.000 [\%] |
| Description: Index: | Sets the override factor for the limit value for SLS2 and SLS4 for the function "Safely-Limited Speed" (SLS). <br> [0] = SLS (SG) override factor 0 <br> [1] = SLS (SG) override factor 1 <br> [2] = SLS (SG) override factor 2 <br> [3] = SLS (SG) override factor 3 <br> [4] = SLS (SG) override factor 4 <br> [5] = SLS (SG) override factor 5 <br> [6] = SLS (SG) override factor 6 <br> [7] = SLS (SG) override factor 7 <br> [8] = SLS (SG) override factor 8 <br> [9] = SLS (SG) override factor 9 <br> [10] = SLS (SG) override factor 10 <br> [11] = SLS (SG) override factor 11 <br> [12] = SLS (SG) override factor 12 <br> [13] = SLS (SG) override factor 13 <br> [14] = SLS (SG) override factor 14 <br> [15] = SLS (SG) override factor 15 |
| Dependency: Note: | Refer to: p9501, p9531 <br> The actual override factor for SLS2 and SLS4 is selected using the safety-relevant inputs (SGE). SLS: Safely-Limited Speed / SG: Safely reduced speed |
| p953 | SI Motion SLS setpoint velocity limiting (Control Unit) / SI Mtn SLS set_lim |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.000[\%]$ 100.000 [\%] 80.000 [\%] |
| Description: | This is an evaluation factor to define the setpoint limit from the selected actual speed limit. The active SLS limit value is evaluated with this factor and is made available as setpoint limit in r9733. |
| Dependency: | This parameter only has to be parameterized for the motion monitoring functions integrated in the drive (p9601.2 = 1) <br> r9733[0] $=\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the motor side) <br> r9733[1] = - p9531[x] x p9533 (converted from the load side to the motor side) <br> $[x]=$ Selected SLS stage <br> Conversion factor from the motor side to the load side: <br> - motor type = rotary and axis type = linear: p9522 / (p9521 x p9520) <br> - otherwise: p9522 / p9521 <br> Refer to: p9501, p9531, p9601 |
| Note: | The active actual speed limit is selected via safety-relevant inputs (SGE). When selecting SOS or a STOP A ... D, setpoint 0 is specified in r9733. SLS: Safely-Limited Speed |



| p9534[0...1] | SI Motion SLP (SE) upper limit values (Control Unit) / SI Mtn SLP up lim |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2822 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -2147000.000 [ ${ }^{\circ}$ ] | 2147000.000 [ ${ }^{\circ}$ ] | $100000.000\left[^{\circ}\right.$ ] |
| Description: | Sets the upper limit for the function "Safely-Limited Position" (SLP). |  |  |
| Index: | [0] = Limit value SLP1 (SE1) |  |  |
| Dependency: | Refer to: p9501, p9535, p9562 |  |  |
|  | Refer to: C01715 |  |  |
| Note: | For setting this limit value, the following applies: $\mathrm{p} 9534[x]>p 9535[x], x=0,1$ |  |  |
|  | A change only becomes effective after a POWER ON. |  |  |
|  | SLP: Safely-Limited Position / SE: Safe software limit switches |  |  |


| p9535[0...1] | SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP low lim |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2822 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-2147000.000[m m]$ | $2147000.000[\mathrm{~mm}]$ | $-100000.000[\mathrm{~mm}]$ |

Description: Sets the lower limit for the function "Safely-Limited Position" (SLP).
Index: $\quad[0]=$ Limit value SLP1 (SE1)
[1] = Limit value SLP2 (SE2)
Dependency: Refer to: p9501, p9534, p9562
Refer to: C01715
Note: $\quad$ For setting this limit value, the following applies: $p 9534[x]>p 9535[x], x=0,1$
A change only becomes effective after a POWER ON.
SLP: Safely-Limited Position / SE: Safe software limit switches

| p9535[0..1] | SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP Iow lim |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2822 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | -2147000.000 [ $\left.{ }^{\circ}\right]$ | 2147000.000 [ ${ }^{\circ}$ ] | -100000.000 [] |
| Description: | Sets the lower limit for the function "Safely-Limited Position" (SLP). |  |  |
| Index: | [0] = Limit value SLP1 (SE1) |  |  |
|  | [1] = Limit value SLP2 (SE2) |  |  |
| Dependency: | Refer to: p9501, p9534, p9562 |  |  |
|  | Refer to: C01715 |  |  |
| Note: | For setting this limit value, the following applies: $p 9534[x]>p 9535[x], x=0,1$ |  |  |
|  | A change only becomes effective after a POWER ON. |  |  |
|  | SLP: Safely-Limited Position / SE: Safe software limit switches |  |  |


| p9536[0...29] | SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA+ |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-2147000.000[\mathrm{~mm}]$ | $2147000.000[\mathrm{~mm}]$ | $10.000[\mathrm{~mm}]$ |

Description: Sets the plus cam position for the function "Safe Cam" (SCA).
Index:
[0] = Cam position SCA1 (SN1)
[1] = Cam position SCA2 (SN2)
[2] = Cam position SCA3 (SN3)
[3] = Cam position SCA4 (SN4)
[4] = Cam position SCA5 (SN5)
[5] = Cam position SCA6 (SN6)
[6] = Cam position SCA7 (SN7)
[7] = Cam position SCA8 (SN8)
[8] = Cam position SCA9 (SN9)
[9] = Cam position SCA10 (SN10)
[10] = Cam position SCA11 (SN11)
[11] = Cam position SCA12 (SN12)
[12] = Cam position SCA13 (SN13)
[13] = Cam position SCA14 (SN14)
[14] = Cam position SCA15 (SN15)
[15] = Cam position SCA16 (SN16)
[16] = Cam position SCA17 (SN17)
[17] = Cam position SCA18 (SN18)
[18] = Cam position SCA19 (SN19)
[19] = Cam position SCA20 (SN20)
[20] = Cam position SCA21 (SN21)
[21] = Cam position SCA22 (SN22)
[22] = Cam position SCA23 (SN23)
[23] = Cam position SCA24 (SN24)
[24] = Cam position SCA25 (SN25)
[25] = Cam position SCA26 (SN26)
[26] = Cam position SCA27 (SN27)
[27] = Cam position SCA28 (SN28)
[28] = Cam position SCA29 (SN29)
[29] = Cam position SCA30 (SN30)

Dependency:
Note:

Refer to: p9501, p9503, p9537
A change only becomes effective after a POWER ON.
SCA: Safe Cam / SN: Safe software cam
p9536[0...29]
SERVO (Safety rot),
SERVO_AC (Safety
rot), SERVO_IAC
(Safety rot), VEC-
TOR (Safety rot),
VECTOR_AC(Safety
rot), VECTOR_I_AC
(Safety rot)

| SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA+ |  |  |
| :--- | :--- | :--- |
| Can be changed: U, T | Calculated: - | Access level: 4 |
| Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| P-Group: Safety Integrated | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |


|  | Min Max <br> $-2147000.000\left[{ }^{\circ}\right]$ $2147000.000\left[{ }^{\circ}\right]$ | Factory setting 10.000 [] |
| :---: | :---: | :---: |
| Description: | Sets the plus cam position for the function "Safe Cam" (SCA). |  |
| Index: | [0] = Cam position SCA1 (SN1) |  |
|  | [1] = Cam position SCA2 (SN2) |  |
|  | [2] = Cam position SCA3 (SN3) |  |
|  | [3] = Cam position SCA4 (SN4) |  |
|  | [4] = Cam position SCA5 (SN5) |  |
|  | [5] = Cam position SCA6 (SN6) |  |
|  | [6] = Cam position SCA7 (SN7) |  |
|  | [7] = Cam position SCA8 (SN8) |  |
|  | [8] = Cam position SCA9 (SN9) |  |
|  | [9] = Cam position SCA10 (SN10) |  |
|  | [10] = Cam position SCA11 (SN11) |  |
|  | [11] = Cam position SCA12 (SN12) |  |
|  | [12] = Cam position SCA13 (SN13) |  |
|  | [13] = Cam position SCA14 (SN14) |  |
|  | [14] = Cam position SCA15 (SN15) |  |
|  | [15] = Cam position SCA16 (SN16) |  |
|  | [16] = Cam position SCA17 (SN17) |  |
|  | [17] = Cam position SCA18 (SN18) |  |
|  | [18] = Cam position SCA19 (SN19) |  |
|  | [19] = Cam position SCA20 (SN20) |  |
|  | [20] = Cam position SCA21 (SN21) |  |
|  | [21] = Cam position SCA22 (SN22) |  |
|  | [22] = Cam position SCA23 (SN23) |  |
|  | [23] = Cam position SCA24 (SN24) |  |
|  | [24] = Cam position SCA25 (SN25) |  |
|  | [25] = Cam position SCA26 (SN26) |  |
|  | [26] = Cam position SCA27 (SN27) |  |
|  | [27] = Cam position SCA28 (SN28) |  |
|  | [28] = Cam position SCA29 (SN29) |  |
|  | [29] = Cam position SCA30 (SN30) |  |
| Dependency: | Refer to: p9501, p9503, p9537 |  |
| Note: | A change only becomes effective after a POWER ON. |  |
|  | SCA: Safe Cam / SN: Safe software cam |  |


| p9537[0...29] | SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA- |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 4 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Max | Factory setting |
|  | $-2147000.000[m m]$ | 2147000.000 [mm] | $-10.000[\mathrm{~mm}]$ |
| Description: | Sets the minus cam position for the function "Safe Cam" (SCA). |  |  |


| Index: | [0] = Cam position SCA1 (SN1) |
| :---: | :---: |
|  | [1] = Cam position SCA2 (SN2) |
|  | [2] = Cam position SCA3 (SN3) |
|  | [3] = Cam position SCA4 (SN4) |
|  | [4] = Cam position SCA5 (SN5) |
|  | [5] = Cam position SCA6 (SN6) |
|  | [6] = Cam position SCA7 (SN7) |
|  | [7] = Cam position SCA8 (SN8) |
|  | [8] = Cam position SCA9 (SN9) |
|  | [ 9 ] = Cam position SCA10 (SN10) |
|  | [10] = Cam position SCA11 (SN11) |
|  | [11] = Cam position SCA12 (SN12) |
|  | [12] = Cam position SCA13 (SN13) |
|  | [13] = Cam position SCA14 (SN14) |
|  | [14] = Cam position SCA15 (SN15) |
|  | [15] = Cam position SCA16 (SN16) |
|  | [16] = Cam position SCA17 (SN17) |
|  | [17] = Cam position SCA18 (SN18) |
|  | [18] = Cam position SCA19 (SN19) |
|  | [19] = Cam position SCA20 (SN20) |
|  | [20] = Cam position SCA21 (SN21) |
|  | [21] = Cam position SCA22 (SN22) |
|  | [22] = Cam position SCA23 (SN23) |
|  | [23] = Cam position SCA24 (SN24) |
|  | [24] = Cam position SCA25 (SN25) |
|  | [25] = Cam position SCA26 (SN26) |
|  | [26] = Cam position SCA27 (SN27) |
|  | [27] = Cam position SCA28 (SN28) |
|  | [28] = Cam position SCA29 (SN29) |
|  | [29] = Cam position SCA30 (SN30) |
| Dependency: | Refer to: p9501, p9503, p9536 |
| Note: | A change only becomes effective after a POWER ON. |

SCA: Safe Cam / SN: Safe software cam

## p9537[0...29] SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA-

SERVO (Safety rot), SERVO AC (Safety rot), SERVO_I_AC (Safety rot), VEC TOR (Safety rot),
VECTOR AC (Safety rot), VECTOR_I_AC (Safety rot)

Can be changed: $U, T$
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-2147000.000\left[^{\circ}\right]$ | $2147000.000\left[^{\circ}\right]$ | $-10.000\left[{ }^{\circ}\right]$ |

Description: Index:

Factory setting
$-10.000\left[{ }^{\circ}\right]$
[0] = Cam position SCA1 (SN1)
[1] = Cam position SCA2 (SN2)
[2] = Cam position SCA3 (SN3)
[3] = Cam position SCA4 (SN4)
[4] = Cam position SCA5 (SN5)
[5] = Cam position SCA6 (SN6)
[6] = Cam position SCA7 (SN7)
[7] = Cam position SCA8 (SN8)
[8] = Cam position SCA9 (SN9)
[9] = Cam position SCA10 (SN10)
[10] = Cam position SCA11 (SN11)
[11] = Cam position SCA12 (SN12)
[12] = Cam position SCA13 (SN13)
[13] = Cam position SCA14 (SN14)
[14] = Cam position SCA15 (SN15)
[15] = Cam position SCA16 (SN16)

| $[16]=$ Cam position SCA17 (SN17) |  |
| :--- | :--- |
| $[17]=$ Cam position SCA18 (SN18) |  |
| $[18]=$ Cam position SCA19 (SN19) |  |
| $[19]=$ Cam position SCA20 (SN20) |  |
| $[20]=$ Cam position SCA21 (SN21) |  |
| $[21]=$ Cam position SCA22 (SN22) |  |
| $[22]=$ Cam position SCA23 (SN23) |  |
|  | $[23]=$ Cam position SCA24 (SN24) |
|  | $[24]=$ Cam position SCA25 (SN25) |
|  | $[25]=$ Cam position SCA26 (SN26) |
|  | $[26]=$ Cam position SCA27 (SN27) |
|  | $[27]=$ Cam position SCA28 (SN28) |
|  | $[28]=$ Cam position SCA29 (SN29) |
| Dependency: | Refer to: p9501, p9503, p9536 |
| Note: | A change only becomes effective after a POWER ON. |
|  | SCA: Safe Cam / SN: Safe software cam |


| p9538[0...29] | SI Motion SCA (SN) cam track assignment (Control Unit) / SI Mtn SCA assign |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 100 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 414 \end{aligned}$ | Factory setting <br> [0] 100 |
|  |  |  | [1] 101 |
|  |  |  | [2] 102 |
|  |  |  | [3] 103 |
|  |  |  | [4] 104 |
|  |  |  | [5] 105 |
|  |  |  | [6] 106 |
|  |  |  | [7] 107 |
|  |  |  | [8] 108 |
|  |  |  | [9] 109 |
|  |  |  | [10] 110 |
|  |  |  | [11] 111 |
|  |  |  | [12] 112 |
|  |  |  | [13] 113 |
|  |  |  | [14] 114 |
|  |  |  | [15] 200 |
|  |  |  | [16] 201 |
|  |  |  | [17] 202 |
|  |  |  | [18] 203 |
|  |  |  | [19] 204 |
|  |  |  | [20] 205 |
|  |  |  | [21] 206 |
|  |  |  | [22] 207 |
|  |  |  | [23] 208 |
|  |  |  | [24] 209 |
|  |  |  | [25] 210 |
|  |  |  | [26] 211 |
|  |  |  | [27] 212 |
|  |  |  | [28] 213 |
|  |  |  | [29] 214 |
| Description: | Assigns the individual cams to the maximum of 4 cam tracks and defines the numerical value for the SGA "cam range". |  |  |
|  | p9538[0...29] = CBA dec |  |  |
|  | $\mathrm{C}=$ Assignment of the cam to the cam track. |  |  |
|  | Valid values are 1, 2, 3, 4. |  |  |
|  | BA = Numerical value for the SGA "cam range". |  |  |
|  | If the position lies in the range of this cam, the value BA is signaled to the safety-relevant logic via the SGA "cam range" of the cam track set using C. |  |  |
|  | Valid values are $0 \ldots 14$. Each numerical value may only be used once for each cam track. |  |  |
|  | Examples: |  |  |
|  | p9538[0] $=207$ |  |  |
|  | Cam 1 (index 0 ) is assigned cam track 2. If the position lies within the range of this cam, a value of 7 is entered in the SGA "cam range" of the second cam track. |  |  |
|  | p9538[5] = 100 |  |  |
|  | Cam 6 (index 5 ) is assigned cam track 1 . If the position lies within the range of this cam, a value of 0 is entered in the SGA "cam range" of the first cam track. |  |  |


Note: A change only becomes effective after a POWER ON.

| p9541 | SI Motion encoder comparison algorithm (CU) / Enc com |
| :---: | :---: |
| SERVO, | Can be changed: C2(95) Calculated: - |
| SERVO_AC, | Data type: Integer16 Dynamic index: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated Units group: - |
| VECTOR_I_AC | Not for motor type: - Scaling: - |
|  | Min Max <br> 0 255 |
| Description: | Sets the the comparison algorithm for the encoder position monitoring func The encoder that is used for the safe motion monitoring functions on the Co parameter. |
| Value: | 0: $\quad \mathrm{SM} \times 20$ safety algorithm <br> 10: DQL binary safety algorithm <br> 11: DQL linear non-binary safety algorithm <br> 255: Safety algorithm unknown |
| Dependency: | Refer to: p0417, p9341 |
| Note: | For safe functions that are not enabled (p9501 = 0), the following applies: - p9541 is automatically set the same as r0417 when the system boots. For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: - p9541 is checked to see that it matches r0417. |

p9542

SERVO,

| SI Motion act val comparison tol (crosswise) (Control Unit) / SI Mtn act tol CU |  |  |
| :--- | :--- | :--- |
| Can be changed: C2(95) | Calculated: - | Access level: 3 |
| Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| P-Group: Safety Integrated | Units group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |
| Min | Max | Factory setting |
| $0.0010[\mathrm{~mm}]$ | $360.0000[\mathrm{~mm}]$ | $0.1000[\mathrm{~mm}]$ |

Description: Sets the tolerance for the crosswise data comparison of the actual position between the two monitoring channels. For encoderless motion monitoring functions, the tolerance must be set to a higher value (12 degrees rotary and 1 mm linear).
Dependency: Refer to: C01711
Note: $\quad$ For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and standard setting of p9520, p9521 and p9522, the standard setting of p9542 corresponds to a position tolerance of $36^{\circ}$ on the motor side.

## p9542

SERVO (Safety rot), SERVO_AC (Safety rot), SERVO I AC
(Safety rot), VEC-
TOR (Safety rot),
VECTOR_AC (Safety
rot), VECTOR_I_AC
(Safety rot)



| Caution: | The following applies for p9506-3: |  |  |
| :---: | :---: | :---: | :---: |
| 0 | The "SAM" function is switched out if the selected threshold value is undershot. |  |  |
| Note: | F-DO: Failsafe Digital Output / SGA: Safety-related output |  |  |
|  | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA n < nx: Safetyrelated output $\mathrm{n}<\mathrm{nx}$ |  |  |
| p9546 | SI Motion SSM (SGA n < nx ) velocity limit (CU) / SI Mtn SSM v_limCU |  |  |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC(Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 1000000.00 [rpm] | 20.00 [rpm] |
| Description: | Sets the velocity limit for the SSM feedback signal to detect standstill ( $n<n x$ ). |  |  |
|  | When this limit value is undershot, the signal "SSM feedback signal active" (SGA $\left.n<n \_x\right)$ is set. |  |  |
|  | For p9568 = 0, the value in p9546 is also applicable for the function "SAM". |  |  |
| Caution: | The following applies for p9506-3: |  |  |
|  | The "SAM" function is switched out if the selected threshold value is undershot. |  |  |
| Note: | F-DO: Failsafe Digital Output / SGA: Safety-related output |  |  |
|  | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $\mathrm{n}<\mathrm{nx}$ : Safetyrelated output $\mathrm{n}<\mathrm{nx}$ |  |  |
| p9547 | SI Motion SSM (SGA n < nx) velocity hysteresis (CU) / SI Mtn SSM hyst CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.0010 [ $\mathrm{mm} / \mathrm{min}$ ] | 500.0000 [mm/min] | 10.0000 [mm/min] |
| Description: | Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ) . |  |  |
| Dependency: | Refer to: C01711 |  |  |
| Note: | The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1). |  |  |
|  | The parameter is included in the crosswise data comparison of the two monitoring channels. |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |


| p9547 | SI Motion SSM (SGA $\mathbf{n}<\mathbf{n x}$ ) velocity hysteresis (CU) / SI Mtn SSM hyst CU |  |  |
| :--- | :--- | :--- | :--- |
| SERVO (Safety rot), | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC (Safety | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2860 |
| rot), SERVO_I_AC | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| (Safety rot), VEC- | Not for motor type: - | Scaling: - | Expert list: 1 |

VECTOR AC(Safety
rot), VECTOR_I_AC
(Safety rot)
0.0010 [rpm] 500.0000 [rpm] 10.0000 [rpm]

Description: Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ).

| Dependency: | Refer to: C01711 |
| :--- | :--- |
| Note: | The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1). |
|  | The parameter is included in the crosswise data comparison of the two monitoring channels. |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |



| p9549 | SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C2(95) <br> Data type: FloatingPoint32 <br> P-Group: Safety Integrated <br> Not for motor type: - | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 6000.00[\mathrm{rpm}] \end{aligned}$ | Factory setting 6.00 [rpm] |
| Description: | Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels. |  |  |
| Dependency: Note: | Refer to: p9501, p9542 <br> If the "actual value synchroniz tolerance in the crosswise da | abled (p9501.3 = 0), | arameterized in p9542 is used as |
| p9550 | SI Motion SGE changeover tolerance time (Control Unit) / SI Mtn SGE_chg tol |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T <br> Data type: FloatingPoint32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0.00 [ms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 10000.00 [ms] | Access level: 4 <br> Func. diagram: - <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 500.00 [ms] |
| Description: | Sets the tolerance time for the changeover of the safety-related inputs (SGE). |  |  |
| p9551 | SI Motion SLS (SG) changeover delay time (Control Unit) / SI Mtn SLS t CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) <br> Data type: FloatingPoint32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0.00 [ms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 600000.00 [ms] | Access level: 3 <br> Func. diagram: 2825 <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 100.00 [ms] |
| Description: | Sets the delay time for the SL Speed" (SLS). <br> When transitioning from a hig within this delay time, the "ol Even if SLS or SOS is activa | $r$ for the changeove <br> afely-limited velocity remains active. ety-related operatio | S for the function "Safely-Limited o the safe operating stop (SOS), is still applied. |
| Note: | Even if SLS or SOS is activated from non safety-related operation, then this delay is still applied. <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> SOS: Safe Operating Stop / SBH: Safe operating stop |  |  |
| p9552 | SI Motion transition time STOP C to SOS (SBH) (Control Unit) / SI Mtn t C->SOS CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) <br> Data type: FloatingPoint32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0.00 [ms] | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 600000.00 [ms] | Access level: 3 <br> Func. diagram: 2825 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 100.00 [ms] |
| Description: Note: | Sets the transition time from STOP C to "Safe Operating Stop" (SOS). SOS: Safe Operating Stop / SBH: Safe operating stop |  |  |





| p9562[0...1] | SI Motion SLP (SE) stop response (Control Unit) / SI Mtn SLP Stop CU |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 14 | 2 |
| Description: | Sets the stop response for the function "Safely-Limited Position" (SLP). |  |  |
| Value: | 0 0 STOP A |  |  |
|  |  |  |  |
|  | $\begin{array}{ll} \text { 1: } & \text { STOP B } \\ 2: & \text { STOP C } \end{array}$ |  |  |
|  | 3: STOP D |  |  |
|  | 4: STOP E |  |  |
|  | 10: STOP A with delayed pulse suppression when the bus fails |  |  |
|  | 11: STOP B with delayed pulse suppression when the bus fails |  |  |
|  | 12: STOP C with delayed pulse suppression when the bus fails |  |  |
|  | 13: STOP D with delayed pulse suppression when the bus fails14: STOP E with delayed pulse suppression when the bus fails |  |  |
|  |  |  |  |
| Index: | [0] = Limit value SLP1 (SE1) |  |  |
| Dependency: | Refer to: p9534, p9535 |  |  |
| Note: | SLP: Safely-Limited Position / SE: Safe software limit switches |  |  |
| p9563[0...3] | SI Motion SLS (SG)-specific stop response (Control Unit) / SI Mtn SLS stop CU |  |  |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC VEC- | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety IntegratedNot for motor type: - | Units group: - | Unit selection: - |
| VECTOR_I_AC |  | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 14 | 2 |
| Description: | Sets the SLS-specific stop response for the function "Safely-Limited Speed" (SLS). |  |  |
|  | These settings apply to the individual limit values for SLS. |  |  |
|  | An input value of less than 5 signifies personnel protection, from 10 and upwards, machine protection. |  |  |
|  | In the case of encoderless motion monitoring ( $\mathrm{p} 9506 / \mathrm{p} 9306=1,3$ ), only a value of 0 or 1 is permitted. |  |  |
| Value: | 0 : STOP A |  |  |
|  | 1: STOP B |  |  |
|  | 2: STOP C |  |  |
|  | 3: STOP D |  |  |
|  | 4: STOP E |  |  |
|  | 10: STOP A with delayed pulse suppression when the bus fails |  |  |
|  | 11: STOP B with delayed pulse suppression when the bus fails |  |  |
|  | 12: STOP C with delayed pulse suppression when the bus fails |  |  |
|  | 13: STOP D with delayed pulse suppression when the bus fails |  |  |
|  | 14: STOP E with delayed pulse suppression when the bus fails |  |  |
| Index: | [0] = Limit value SLS1 <br> [1] = Limit value SLS2 <br> [2] = Limit value SLS3 <br> [3] = Limit value SLP4 |  |  |
| Dependency: | Refer to: p9531, p9561, p9580 |  |  |
| Note: | In the extended sense, a bus safety functions (e.g. via PROF SLS: Safely-Limited Speed / | e seen here as a com F). <br> ced speed | or in the control sign |



| Value: | $0:$ | STOP A |
| :--- | :--- | :--- |
|  | $1:$ STOP B |  |
|  | $2:$ | STOP C |
|  | $3:$ | STOP D |
|  | $4:$ | STOP E |
|  | $10:$ | STOP A with delayed pulse suppression when the bus fails |
|  | $11: \quad$ STOP B with delayed pulse suppression when the bus fails |  |
|  | $12: \quad$ STOP C with delayed pulse suppression when the bus fails |  |
|  | $13: \quad$ STOP D with delayed pulse suppression when the bus fails |  |
| Dependency: | $14: \quad$ STOP E with delayed pulse suppression when the bus fails |  |
|  | Refer to: p9564, p9565 |  |
| Notice: | Refer to: C01716 |  |
| Note: | In the case of encoderless motion monitoring (p9506 = 1), only a value of 0 or 1 is permitted. |  |
|  | In the extended sense, a bus failure should be seen here as a communication error in the control signals of the |  |
|  | safety functions (e.g. via PROFIsafe or TM54F). |  |
|  | SDI: Safe Direction (safe motion direction) |  |


| p9568 | SI Motion SAM velocity limit (Control Unit) / SI Mtn SAM v_limCU |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | $0.00[\mathrm{~mm} / \mathrm{min}]$ | 0.00 [mm/min] |  |
|  | Sets the velocity tolerance limit for the "SAM" function. |  |  |
| Description: | SAM is de-activated once the set velocity limit has been undershot. |  |  |
|  | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |
|  | For p9568 = p9368 = 0, the following applies: |  |  |
|  | The value in p9546/p9346 (SSM) is applied as the velocity limit for SAM. |  |  |


| p9568 | SI Motion SAM velocity limit (Control Unit) / SI Mtn SAM v_limCU |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | 0.00 [rpm] | 1000.00 [rpm] | 0.00 [rpm] |
| Description: | Sets the velocity tolerance limit for the "SAM" function. <br> SAM is de-activated once the set velocity limit has been undershot. |  |  |
|  |  |  |  |
| Note: | SAM: Safe Acceleration Monitor (safe acceleration monitoring) |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |
|  | For p9568 $=$ p9368 $=0$, the following applies: |  |  |
|  | The value in p9546/p9346 (SSM) is applied as the velocity limit for SAM. |  |  |



|  | If errors are identified when performing the plausibility checks, then message C01711 is output with message value 1003 |  |  |
| :---: | :---: | :---: | :---: |
| Note: | The unit depends on the selected axis type, linear or rotary axis, in p9502 |  |  |
| p9573 | SI Motion accept reference position (Control Unit) / SI mtn set_ref_pos |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 122 | 0 |
| Description: | If errors are identified when performing the plausibility checks, then message C1711 is output with message value 1003 |  |  |
| Value: | 0: No action |  |  |
|  | 89: Set reference position |  |  |
|  | 122: Declare reference position invalid |  |  |
| Dependency: | Refer to: p9572 |  |  |
| p9574 | SI Motion safe position scaling (Control Unit) / SI mtn SP scal CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: Integer32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 100000 | 1000 |
| Description: | Sets the scaling factor to transfer the safe position via PROFIsafe in the 16-bit notation. |  |  |
| Dependency: | Refer to: r9713 |  |  |
| Note: | The parameter is only effective when PROFIsafe telegram 901 is selected. |  |  |
|  | By selecting a suitable scaling of the 32 bit position actual value (r9713[0]), it must be ensured that the scaled position actual value is not greater than 16 bit. The scaling is realized by dividing r9713[0] with this scaling factor. |  |  |
|  | If, during operation, a position actual value is determined, which cannot be scaled to the 16 bits, then message C0711 with value 7001 is output and safety stop response STOP F. |  |  |
| p9580 | SI Motion pulse suppression delay bus failure (Control Unit) / SI Mtn to lL CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 800.00 [ms] | 0.00 [ms] |
| Description: | Sets the delay time after which the pulses are safely suppressed after a bus failure. |  |  |
| Dependency: | Refer to: p9561, p9563 |  |  |
| Note: | In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F). |  |  |




| p9586 | SI Motion delay time of the evaluation sensorless (CU) / SI Mtn t_del SL CU |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 5.00 [ms] | 1000.00 [ms] | 100.00 [ms] |
| Description: | Sets the evaluation delay for encoderless actual value sensing after pulse enable. The value should be greater than or equal to the motor magnetizing time. |  |  |
|  |  |  |  |
| Dependency: <br> Notice: | Refer to: C01711 |  |  |
|  | If this value is reduced, this can have a negative impact on the actual value acquisition and plausibility check - and result in Safety message C01711 with the message value 1041 or 1042. |  |  |
|  | When the value is increased, this results in a longer evaluation delay. |  |  |
| Note: | This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). |  |  |
| p9587 | SI Motion act val sensing sensorless filter time (Control Unit) / SI Mtn SL filt CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [ms] | 100.00 [ms] | 25.00 [ ms ] |
| Description: | Sets the filter time for smoothing the actual value with sensorless actual value sensing. |  |  |
| Note: | This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). |  |  |
| p9588 | SI Motion act val sensing sensorless min current (Control Unit) / SI Mtn SL I_min CU |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [\%] | 1000.00 [\%] | 10.00 [\%] |
| Description: | Sets the minimum current for encoderless actual value sensing in reference to 10 mA (i.e. when $1 \%=10 \mathrm{~mA}$ ). |  |  |





It is not permissible to parameterize "motor holding brake without feedback signals" and also enable "safe brake control" (p1278 = 1, p9602 = 1, p9802 = 1).
CU: Control Unit
SBC: Safe Brake Control
SI: Safety Integrated

| p9610 | SI PROFIsafe address (Control Unit) / SI PROFIsafe CU |  |
| :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) Calculated: - <br> Data type: Unsigned16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0000 hex FFFE hex | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 0000 hex |
| Description: Dependency: | Sets the PROFIsafe address for the Control Unit. Refer to: p9810 |  |
| p9611 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | SI PROFIsafe telegram selection (Control Unit) / SI Ps teleg  <br> Can be changed: C2(95) Calculated: - <br> Data type: Unsigned16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 998 | m CU <br> Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting 998 |
| Description: Value: <br> Dependency: | Sets the PROFIsafe telegram number for the Control Unit. <br> 0: $\quad$ No PROFIsafe telegram selected <br> 30: PROFIsafe standard telegram 30, PZD-1/1 <br> 31: PROFIsafe standard telegram 31, PZD-2/2 <br> 901: PROFIsafe SIEMENS telegram 901, PZD-3/5 <br> 902: PROFIsafe SIEMENS telegram 902, PZD-3/6 <br> 998: Compatibility mode (as for firmware version < 4.5) <br> Refer to: p9811, p60022 |  |
| p9620[0...7] <br> SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | BI: SI signal source for STO (SH)/SBC/SS1 (Control Unit) / S | S_srcSTO/SS1 CU <br> Access level: 3 <br> Func. diagram: 2810 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: | Sets the signal source for the following functions on the Control Unit: <br> STO: Safe Torque Off / SH: Safe standstill <br> SBC: Safe Brake Control <br> SS1: Safe Stop 1 (time monitored) |  |
| Dependency: | Refer to: p9601 |  |
| Note: | The following signal sources are permitted: <br> - fixed zero (standard setting). <br> - digital inputs DI $0 \ldots 7,16,17,20$, 21 on the Control Unit 320-2 (CU320-2). <br> - digital inputs DI $0 \ldots 3$ on the Controller Extensions (CX32-2, NX10.3, NX15.3). <br> - digital inputs DI 0 ... 3, 16 on the Control Unit 310-2 (CU310-2). <br> It is not permitted to establish an interconnection to a digital input in the simulation | mode. |


|  | For a parallel circuit configuration of $n$ power units, the following applies: |  |
| :--- | :--- | :--- |
|  | p9620[0] = Signal source for power unit 1 |  |
|  | .. |  |
|  | p9620[n-1] = Signal source for power unit $n$ |  |


| Dependency: | Refer to: p9850 |
| :--- | :--- |
| Note: | For a crosswise data comparison between p9650 and p9850, a difference of one Safety monitoring clock cycle is |
| tolerated. |  |
|  | The parameterized time is rounded internally to an integer multiple of the monitoring clock cycle. |
|  | SGE: Safety-related input (e.g. STO terminals) |


| p9651 |
| :--- |
| SERVO, |
| SERVO_AC, |
| SERVO_I_AC, VEC- |
| TOR, VECTOR_AC, |

SI STO/SBC/SS1 debounce time (Control Unit) / SI STO t_debou CU
Can be changed: C2(95) Calculated: - Access level: 3

Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
P-Group: Safety Integrated Units group: - Unit selection: -

Not for motor type: - Scaling: -

## Min

100.00 [ms

Access level: 3

Expert list: 1
Factory setting
0.00 [ms]

Description: Sets the debounce time for the failsafe digital inputs used to control STO/SBC/SS1.
Note:
The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.

## p9652

SERVO,
SERVO AC,
SERVO_I_AC, VEC-
TOR, VECTOR_AC,
VECTOR_I_AC
SI Safe Stop 1 delay time (Control Unit) / SI Stop 1 t_del CU

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [s]

Calculated: -
Dynamic index: -
Units group:
Scaling: -
Max
300.00 [s]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 0.00 [s]

Description: Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Control Unit to brake along the OFF3 down ramp (p1135).
Recommend.: In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows:
Motor holding brake parameterized: delay time >= p1135 + p1228 + p1217
Motor holding brake not parameterized: delay time >= p1135 + p1228
Dependency:
Note:
Refer to: p1135, p9852
For a crosswise data comparison between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated.
The parameterized time is rounded internally to an integer multiple of the monitoring clock cycle. SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

| p9653 | SI Safe Stop 1 drive-based braking response / SI SS1 OFF3 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Min | Factory setting |  |
|  | 0 | 1 | 0 |
|  |  |  |  |
| Description: | Sets the drive-based braking response for the "Safe Stop 1" (SS1) function. |  |  |
| Value: | $0: \quad$ SS1 with OFF3 |  |  |
|  | $1: \quad$ SS1 without OFF3 |  |  |
| Note: | SS1: Safe Stop 1 (Safe Stop 1, corresponds to Stop Category 1 acc. to EN60204) |  |  |



| p9700 | SI Motion copy function / SI Mtn copy fct |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95), U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | 00D0 hex | 0000 hex |
| Description: | Setting to start the required copy function. |  |  |
|  | After starting, the appropriate parameters are copied from the Control Unit to the Motor Module. |  |  |
|  | Once copying is complete, the parameter is automatically reset to zero. |  |  |
| Value: | 0: [00 hex] Copy function ended |  |  |
|  | 29: [1D hex] Start copy function node identifier |  |  |
|  | 87: [57 hex] Start copy function SI parameters |  |  |
|  | 208: [D0 hex] Start copy function SI basic param |  |  |
| Note: | Re value $=57$ hex and D0 hex: |  |  |
|  | The value can only be set if the safety commissioning mode is set and the Safety Integrated password was entered. |  |  |
|  | Re value = D0 hex: |  |  |
|  | The following parameters are copied after starting the copy function: |  |  |
|  | p9601/p9801, p9602/p9802, p9610/9810, p9650/p9850, p9652/p9852, p9658/p9858 |  |  |


| p9700 | SI Motion copy function / SI Mtn copy fct |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA | Can be changed: C2(95), U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 0000 hex | Max <br> 0057 hex | Factory setting 0000 hex |
| Description: | Setting to start the required copy function. <br> After starting, the appropriate parameters are copied from the Control Unit to the Motor Module. Once copying is complete, the parameter is automatically reset to zero. |  |  |
| Value: | 0: [00 hex] Copy function <br> 29: [1D hex] Start copy func <br> 87: [57 hex] Start copy func | ntifier eters |  |
| Note: | Re value $=57$ hex: <br> The value can only be set if the <br> SI: Safety Integrated | ssioning mode is | Itegrated password |



Note: $\quad$| Re value = AC and DC hex: |  |
| :--- | :--- |
|  | These values can only be set if the safety commissioning mode is set and the Safety Integrated password was |
|  |  |

| p9701 | Acknowledge SI motion data change / Ackn SI Mtn dat |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | Can be changed: C2(95), U, T | Calculated: - | Access level: 3 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | 00EC hex | 0000 hex |
| Description: | Setting to transfer the reference checksums from the associated actual checksums after changes (SI parameters, hardware). |  |  |
|  | After transferring the reference checksums, parameters are automatically reset to zero. |  |  |
| Value: | 0: [00 hex] Data unchanged <br> 172: [AC hex] Acknowledge data change complete <br> 236: [EC hex] Acknowledge hardware CRC |  |  |
| Dependency: | Refer to: r9398, p9399, r9728, p9729, r9798, p9799, r9898, p9899 |  |  |
| Note: | Re value = AC hex: |  |  |
|  | These values can only be set if the safety commissioning mode is set and the Safety Integrated password was entered. |  |  |
|  | SI: Safety Integrated |  |  |
| p9705 | BI: SI Motion: Test stop signal source / SI Mtn test stop |  |  |
| SERVO, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_AC, SERVO I AC VEC | Data type: Unsigned32 / Binary | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0 |
| Description: | Sets the signal source for the test stop of the safety-relevant motion monitoring functions. |  |  |
| Caution: | Before setting the signal source in p9705 it must be ensured that the signal source is at a logical 0 . |  |  |
|  | If, in the Safety commissioning mode, the signal source in p9705 is set - and it already has a logical 1 - then a test stop is immediately initiated and the messages C01711/C30711 are output with message value 1005. |  |  |
| Notice: | It is not permissible to use TM54F inputs to start the test stop. |  |  |



Re index 1:
The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
Re index 2 :
The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
Re index 3 :
The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
Re index 4:
Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
The value is an average value from the values in index 0 and 1.
For a 16-bit notation, the value is influenced using the scaling factor (p9574/p9374).
When the function is not enabled, the content corresponds to the value in index 0 .
CDC: Crosswise Data Comparison

## r9708[0...4] SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VEC- TOR (Safety rot), VECTOR_AC(Safety rot), VECTOR_I_AC (Safety rot) <br> (Safety rot)

## SI Motion diagnostics safe position / SI mtn safe pos

Can be changed: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

Access level: 3
Func. diagram: 2822
Unit selection: -
Expert list: 1

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-\left[{ }^{\circ}\right]$ | $-\left[{ }^{\circ}\right]$ | $-\left[{ }^{\circ}\right]$ |

Description: Displays the actual load-side actual values of both monitoring channels and their difference.
Index: [0] = Load-side actual value on the CU
[1] = Load-side actual value on the second channel
[2] = Load-side actual value difference CU - second channel
[3] = Load-side max. actual value difference CU - second channel
[4] = Load-side actual value as safe position via PROFIsafe
Dependency: Refer to: r9713
Note: Re index 0:
The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle.
Re index 1 :
The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
Re index 2 :
The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
Re index 3 :
The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
Re index 4:
Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
The value is an average value from the values in index 0 and 1.
For a 16-bit notation, the value is influenced using the scaling factor (p9574/p9374).
When the function is not enabled, the content corresponds to the value in index 0 .
CDC: Crosswise Data Comparison

| r9710[0...1] | SI Motion diagnostics result list 1 / SI Mtn res_list 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC |  |  | Calculated: - <br> Acce |  |  |
|  | Data type: Unsigned32 |  |  |  |  |
|  | Data type: Unsigned32 <br> P-Group: Safety Integrated |  | Units group: - Unit |  |  |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Factory setting |  |
|  | - |  | - | - |  |
| Description: | Displays result list 1 that, for the crosswise data comparison between the monitoring channels, led to the fault. |  |  |  |  |
| Index: | [0] = Result list, second channel |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | Actual value > upper limit SOS | Yes | No | - |
|  |  | Actual value > lower limit SOS | Yes | No | - |
|  |  | Actual value > upper limit, SLP1 | Yes | No | - |
|  |  | Actual value > lower limit, SLP1 | Yes | No | - |
|  |  | Actual value > upper limit, SLP2 | Yes | No | - |
|  |  | Actual value > lower limit, SLP2 | Yes | No | - |
|  |  | Actual value > upper limit, SLS1 | Yes | No | - |
|  |  | Actual value > lower limit, SLS1 | Yes | No | - |
|  |  | Actual value > upper limit, SLS2 | Yes | No | - |
|  |  | Actual value > lower limit, SLS2 | Yes | No | - |
|  |  | Actual value > upper limit, SLS3 | Yes | No | - |
|  |  | Actual value > lower limit, SLS3 | Yes | No | - |
|  |  | Actual value > upper limit, SLS4 | Yes | No | - |
|  |  | Actual value > lower limit, SLS4 | Yes | No | - |
|  |  | Actual value > upper limit, SAM/SBR | Yes | No | - |
|  |  | Actual value > lower limit, SAM/SBR | Yes | No | - |
|  |  | Actual value > upper limit SDI positive | Yes | No | - |
|  |  | Actual value > lower limit SDI positive | Yes | No | - |
|  |  | Actual value > upper limit SDI negative | Yes | No | - |
|  |  | Actual value > lower limit SDI negative | Yes | No | - |
| Dependency: | Refer to: C01711 |  |  |  |  |
| Note: | SBR: Safe Brake Ramp (safe brake ramp monitoring) |  |  |  |  |
|  | SLP: Safely-Limited Position |  |  |  |  |
|  | SLS: Safely-Limited Speed |  |  |  |  |
|  | SOS: Safe Operating Stop |  |  |  |  |



|  | 08 | Actual value > upper limit SCA3+ | Yes | No |
| :--- | :--- | :--- | :--- | :--- |
|  | 09 | Actual value > lower limit, SCA3+ | Yes | No |
|  | 10 | Actual value > upper limit SCA3- | Yes | No |
|  | 11 | Actual value > lower limit, SCA3- | Yes | No |
|  | 12 | Actual value > upper limit SCA4+ | Yes | No |
|  | 13 | Actual value > lower limit, SCA4+ | Yes | No |
|  | 14 | Actual value > upper limit SCA4- | Yes | No |
|  | 15 | Actual value > lower limit, SCA4- | Yes | No |
|  | 16 | Actual value > upper limit, SSM+ | Yes | No |
| Dependency: | 17 | Actual value > lower limit, SSM+ | Yes | No |
| Note: | 18 | Actual value > upper limit, SSM- | Yes | No |
|  | 19 | Actual value > lower limit, SSM- | Yes | No |
|  | 20 | Actual value > upper limit, modulo | Yes | No |
|  | 21 | Actual value > lower limit, modulo | Yes | No |
|  | Refer to: C01711 |  | - |  |
| SCA: Safe Cam |  | - |  |  |
|  | SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) |  |  |  |


| $\mathbf{r 9 7 1 2}$ |
| :--- |
| SERVO, |
| SERVO_AC, |
| SERVO_I_AC, VEC- |
| TOR, VECTOR_AC, |

VECTOR_I_AC

CO: SI Motion diagnostics position actual value motor side / SI Mtn s_act mot
Can be changed: -
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min

Calculated: -
Dynamic index: - Func. diagram: -
Units group: - Unit selection: -
Scaling: - Expert list: 1
Max

Description: Displays the actual motor-side position actual value for the motion monitoring functions on the Control Unit.
For rotary axes, the following unit applies: Millidegrees
For linear axes, the following unit applies: micrometers
Note: $\quad$ The display is updated in the safety monitoring clock cycle.

| r9713[0...4] | CO: SI Motion diagnostics position actual value load side / SI Mtn s_act load |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the actual load-side actual values of both monitoring channels and their difference. For rotary axes, the following unit applies: Millidegrees <br> For linear axes, the following unit applies: micrometers |  |  |
|  |  |  |  |
|  |  |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Load-side actual value on the CU }} \\ & {[1]=\text { Load-side actual value on the second channel }} \\ & {[2]=\text { Load-side actual value difference CU - second channel }} \\ & {[3] \text { = Load-side max. actual value difference CU - second channel }} \\ & {[4] \text { = Load-side actual value as safe position via PROFIsafe }} \end{aligned}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Dependency: | Refer to: r9708, r9724 |  |  |
| Note: | The value of this parameter is displayed in r9708 with units (mm or degrees). |  |  |
|  | The display is updated in the safety monitoring clock cycle. |  |  |
|  | Re index 0 : |  |  |
|  | The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle. |  |  |
|  | Re index 1: |  |  |
|  | The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle. |  |  |
|  | Re index 2: |  |  |
|  | The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle. |  |  |

Re index 3:
The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
Re index 4 :
Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
The value is an average value from the values in index 0 and 1.
For a 16-bit notation, the value is influenced using the scaling factor (p9574/p9374).
When the function is not enabled, the content corresponds to the value in index 0 .
CDC: Crosswise Data Comparison

| r9714[0...2] | CO: SI motion diagnostics velocity / SI Mtn diag v |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [mm/min] | Max <br> - [mm/min] | Factory setting - [mm/min] |
| Description: Index: | $\begin{aligned} & {[0]=\text { Load-side velocity actual value on the Control Unit }} \\ & {[1]=\text { Actual SAM/SBR velocity limit on the Control Unit }} \\ & {[2]=\text { Actual SLS velocity limit on the Control Unit }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r9732 |  |  |
| Notice: | This SLS velocity limit can, as a result of conversion into the internal monitoring format, deviate from the specified SLS velocity limit (see r9732). |  |  |
| Note: | The display is updated in the For linear axes, the following For rotary axes, the following | ng clock cycle. <br> ilimeters per minute volutions per minute |  |

## r9714[0...2] CO: SI motion diagnostics velocity / SI Mtn diag v

SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot),
VECTOR AC(Safety
rot), VECTOR_I_AC
(Safety rot)

Can be changed: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

## Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-[\mathrm{rpm}]$ | $-[\mathrm{rpm}]$ | $-[\mathrm{rpm}]$ |

Description: Displays the velocity actual values for the motion monitoring functions on the Control Unit.
Index:
[0] = Load-side velocity actual value on the Control Unit
[1] = Actual SAM/SBR velocity limit on the Control Unit
[2] = Actual SLS velocity limit on the Control Unit
Dependency: Refer to: r9732
Notice: Re index 2:
This SLS velocity limit can, as a result of conversion into the internal monitoring format, deviate from the specified SLS velocity limit (see r9732).
Note: The display is updated in the safety monitoring clock cycle.
For linear axes, the following unit applies: millimeters per minute
For rotary axes, the following unit applies: revolutions per minute

| r9718.23 | CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access |  |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. d |  |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit sele |  |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert |  |
|  | Min | Max | Factory |  |
|  | - | - | - |  |
| Description: | Control signal 1 for safety-relevant motion monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 23 Set offset for TfS to the actual torque | Set | Reset | - |
| Note: | TfS: Traverse to fixed stop |  |  |  |
| r9718.23 | CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1 |  |  |  |
| $\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 4 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |
| Description: | Control signal 1 for safety-relevant motion monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 23 Set offset for |  | Reset |  |
| Note: | TfS: Traverse to fixed stop |  |  |  |
| r9719.0... 31 | CO/BO: SI Motion control signals 2 / SI Mtn ctrl_sig 2 |  |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - |  |  |
| Description: | Control signal 2 for safety-relevant motion monitoring functions. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 De-select SOS/SLS (SBH/SG) | Yes | No | - |
|  | 01 De-select SOS (SBH) | Yes | No | - |
|  | 03 Select SLS (SG) bit 0 | Set | Not set | - |
|  | 04 Select SLS (SG) bit 1 | Set | Not set | - |
|  | 05 Deselect SDI positive | Yes | No | - |
|  | 06 Deselect SDI negative | Yes | No | - |
|  | 07 Deselect SLP | Yes | No | - |
|  | 08 Gearbox selection, bit 0 | Set | Not set | - |
|  | 09 Gearbox selection, bit 1 | Set | Not set | - |
|  | 10 Gearbox selection, bit 2 | Set | Not set | - |
|  | 12 Select SLP (SE) position range | SLP2 (SE2) | SLP1 (SE1) | - |
|  | 13 Close brake from control | Yes | No | - |
|  | 15 Select test stop | Yes | No | - |
|  | 16 SGE valid | Yes | No | - |
|  | 18 De-select external STOP A | Yes | No | - |
|  | 19 De-select external STOP C | Yes | No | - |
|  | 20 De-select external STOP D | Yes | No | - |
|  | 21 De-select external STOP E | Yes | No | - |
|  | 28 SLS (SG) override bit 0 | Set | Not set | - |
|  | 29 SLS (SG) override bit 1 | Set | Not set | - |
|  | 30 SLS (SG) override bit 2 | Set | Not set | - |
|  | 31 SLS (SG) override bit 3 | Set | Not set | - |

Note: | Re r9719.0 and r9719.1: |  |
| :--- | :--- |
| These two bits must be considered together. |  |
|  | - if SOS/SLS (SBH/SG) is de-selected using bit 0 , then assignment of bit 1 is irrelevant. |
| - if SOS/SLS (SBH/SG) is selected using bit 0 , then a changeover is made between SOS (SBH) and SLS (SG) |  |
| using bit 1. |  |
| SLP: Safely-Limited Position / SE: Safe software limit switches |  |
| SLS: Safely-Limited Speed / SG: Safely reduced speed |  |
| SOS: Safe Operating Stop / SBH: Safe operating stop |  |
| SDI: Safe Direction (safe motion direction) |  |

| r9720.0.. 19 | CO/BO: SI Motion control signals integrated in the drive / SI Mtn integ STW |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2840, 2855 |  |
| TOR, VECTOR AC, | P-Group: Safety Integrated |  | Units group: - | Unit selection: - |  |
| VECTOR_I_AC | Not for motor type: - |  | Scaling: - | Expert list: 1 |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Control signals for safety-relevant motion monitoring functions integrated in the drive. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | De-select STO | Yes | No | - |
|  | 01 | De-select SS1 | Yes | No | - |
|  | 02 | De-select SS2 | Yes | No | - |
|  | 03 | De-select SOS | Yes | No | - |
|  | 04 | De-select SLS | Yes | No | - |
|  | 06 | Deselect SLP | Yes | No | 2822 |
|  | 07 | Acknowledgement | Signal edge active | No | - |
|  | 09 | Select SLS bit 0 | Set | Not set | - |
|  | 10 | Select SLS bit 1 | Set | Not set | - |
|  | 12 | Deselect SDI positive | Yes | No | 2861 |
|  | 13 | Deselect SDI negative | Yes | No | 2861 |
|  | 19 | Select SLP position range | SLP2 | SLP1 | 2822 |

Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

| r9721.0... 15 | CO/BO: SI Motion status signals / SI Mtn stat_sig |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC |  |  | Calculated: - | Acce |  |
|  | Can be changed: -Data type: Unsigned32 |  | Dynamic index: - | Func |  |
|  | P-Group: Safety Integrated |  | Units group: - | Unit |  |
|  | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Status signal for safety-relevant motion monitoring functions. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | SOS or SLS active | Yes | No | - |
|  | 01 | SOS active | Yes | No | - |
|  | 02 | Pulse enable | Deleted | Enabled | - |
|  |  | Active SLS stage bit 0 | Set | Not set | - |
|  | 04 | Active SLS stage bit 1 | Set | Not set | - |
|  | 05 | Velocity below limit value n _x | Yes | No | - |
|  | 06 | SLP active | Yes | No | - |
|  | 07 | Safely referenced | Yes | No | - |
|  | 08 | SDI pos active | Yes | No | - |
|  | 09 | SDI neg active | Yes | No | - |
|  | 10 | SLP active position area | SLP2 | SLP1 | - |
|  | 12 | STOP A or B active | Yes | No | - |
|  | 13 | STOP C active | Yes | No | - |


| 14 | STOP D active | Yes | No |
| :--- | :--- | :--- | :--- |
| 15 | STOP E active | Yes | No |

Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

| r9722.0... 31 | CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - |  | Calculated: - | Access level: 3 |  |
| SERVO_AC, | Data type: Unsigned32 |  | Dynamic index: - | Func. diagram: 2840, 2855 |  |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Safety Integrated |  | Units group: - | Unit |  |
| VECTOR_I_AC | Not for motor type: - |  | Scaling: - | Expe |  |
|  | Min |  | Max | Fact |  |
|  | - |  | - | - |  |
| Description: | Status signal for safety-relevant motion monitoring functions integrated in the drive. |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | STO or safe pulse cancellation active | Yes | No | - |
|  | 01 | SS1 active | Yes | No | - |
|  | 02 | SS2 active | Yes | No | - |
|  | 03 | SOS active | Yes | No | - |
|  | 04 | SLS active | Yes | No | - |
|  | 06 | SLP active | Yes | No | 2822 |
|  | 07 | Internal event | No | Yes | - |
|  | 09 | Active SLS stage bit 0 | Set | Not set | - |
|  | 10 | Active SLS stage bit 1 | Set | Not set | - |
|  | 11 | SOS selected | Yes | No | - |
|  | 12 | SDI pos active | Yes | No | 2861 |
|  | 13 | SDI neg active | Yes | No | 2861 |
|  | 15 | SSM (speed below limit value) | Yes | No | 2860 |
|  | 19 | SLP active position area | SLP2 | SLP1 | 2822 |
|  | 22 | SP valid | Yes | No | - |
|  | 23 | Safely referenced | Yes | No | - |
|  |  | SLP limit upper maintained | Yes | No | 2822 |
|  | 31 | SLP limit lower maintained | Yes | No | 2822 |
| Notice: | Re bit 07: |  |  |  |  |
|  | The signal state behaves in an opposite way to the PROFIsafe Standard. |  |  |  |  |
| Note: | This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero. |  |  |  |  |
|  | An in | ternal event is displayed if a STOP A ... | $F$ is active. |  |  |




| r9725[0...2] | SI Motion, diagnostics STOP F / SI Mtn Diag STOP F |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Re index 0 : |  |  |
|  | Displays the message value that resulted in the STOP F on the drive. |  |  |
|  | Value $=0$ : |  |  |
|  | The Control Unit signaled a STOP F. |  |  |
|  | Value = $1 . . .999$ : |  |  |
|  | Number of the incorrect date in the crosswise data comparison between the monitoring channels. Value >= 1000: |  |  |
|  |  |  |  |
|  | Additional diagnostic values of the drive. |  |  |
|  | Re index 1: |  |  |
|  | Displays the value of the Control Unit that resulted in the STOP F. |  |  |
|  | Re index 2: |  |  |
|  | Displays the value from the second channel that resulted in the STOP F. |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Message value for CDC }} \\ & {[1]=\text { Control Unit CDC actua }} \\ & {[2]=\text { Components CDC actua }} \end{aligned}$ |  |  |
| Dependency: | Refer to: C01711 |  |  |
| Note: | The significance of the individual message values is described in message C01711. |  |  |
|  | CDC: Crosswise Data Comparison |  |  |
| p9726 | SI Motion, user agreement selection/de-selection / SI Mtn UserAgr sel |  |  |
| SERVO, | Can be changed: $U, T$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC ${ }^{-}$ | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | 00AC hex | 0000 hex |
| Description: | Setting to select and de-select the user agreement. |  |  |
| Value: | 0: [00 hex] De-select user agreement <br> 172: [AC hex] Select user agreement |  |  |
| Dependency: | Refer to: r9727 |  |  |
| r9727 | SI Motion user agreement, inside the drive / SI Mtn UserAgr int |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: 2822 |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the internal state of the user agreement. |  |  |
|  | Value = 0: User agreement is not set. |  |  |
|  | Value = AC hex: User agreement is set. |  |  |
| Dependency: | Refer to: p9726 |  |  |


| r9728[0...2] | SI Motion actual checksum, SI parameters / SI Mtn act CRC |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the checksum over the checked Safety Integrated parameters of the motion monitoring functions (actual checksum). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Checksum over SI parameters for motion monitoring }} \\ & {[1]=\text { Checksum over SI parameters for actual values }} \\ & {[2]=\text { Checksum over SI parameters for hardware }} \end{aligned}$ |  |  |
| Dependency: | Refer to: p9729 |  |  |
|  | Refer to: F01680 |  |  |
| p9729[0...2] | SI Motion reference checksum, SI parameters / SI Mtn ref CRC |  |  |
| SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min 0000 hex | Max <br> FFFF FFFF hex | Factory setting 0000 hex |
| Description: | Sets the checksum using the checksum-tested Safety Integrated parameters for motion monitoring functions (reference checksum). |  |  |
| Index: | $\begin{aligned} & {[0]=\text { Checksum over SI parameters for motion monitoring }} \\ & {[1]=\text { Checksum over SI parameters for actual values }} \\ & {[2]=\text { Checksum over SI parameters for hardware }} \end{aligned}$ |  |  |
| Dependency: | Refer to: r9728 |  |  |
|  | Refer to: F01680 |  |  |
| r9730 | SI Motion Safe maximum velocity / SI mtn safe v_Max |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [ $\mathrm{mm} / \mathrm{min}$ ] | Max <br> - [mm/min] | Factory setting - [mm/min] |
| Description: | Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing. |  |  |
|  | This parameter indicates up to which load velocity the safe encoder actual values (redundant encoder coarse position) can still be correctly detected as a result of the particular encoder parameterization. |  |  |
|  | This parameter is only of significance for enabled safety with encoder (otherwise "0"). |  |  |
| Note: | If the value displayed is exce | C01711 is output ind | subsequent faults. |


| r9730 | SI Motion Safe maximum velocity / SI mtn safe v_Max |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Safety rot), | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC (Safety | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| (Safety rot), VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR (Safety rot), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) |  |  |  |
|  | Min <br> - [rpm] | Max <br> - [rpm] | Factory setting - [rpm] |
| Description: | Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing. |  |  |
|  | This parameter indicates up to which load velocity the safe encoder actual values (redundant encoder coarse position) can still be correctly detected as a result of the particular encoder parameterization. |  |  |
|  | This parameter is only of significance for enabled safety with encoder (otherwise "0"). |  |  |
| Note: | If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults. |  |  |
| r9731 | SI Motion safe position accuracy / SI Mtn pos acc |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> - [mm] | Max <br> - [mm] | Factory setting - [mm] |
| Description: | Displays the safe position accuracy (load side). |  |  |
|  | As a result of the actual value sensing for safe motion monitoring functions, this accuracy can be achieved as the maximum. |  |  |
| Note: | The parameter is only of significance for enabled safety with encoder (otherwise "0"). |  |  |
| r9731 | SI Motion safe position accuracy / SI Mtn pos acc |  |  |
| SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC (Safety rot), VECTOR_I_AC (Safety rot) | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  |  |
|  | Min | Max | Factory setting |
|  | - [ ${ }^{\circ}$ ] | - [ ${ }^{\circ}$ ] |  |
| Description: | Displays the safe position accuracy (load side). |  |  |
|  | As a result of the actual value sensing for safe motion monitoring functions, this accuracy can be achieved as the maximum. |  |  |
| Note: | The parameter is only of significance for enabled safety with encoder (otherwise "0"). |  |  |
| r9732 | SI Motion velocity resolution / SI Mtn v_res |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Safety Integrated <br> Not for motor type: - | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: - |
|  |  | Units group: - | Unit selection: - |
|  |  | Scaling: - | Expert list: 1 |
|  | Min <br> - [mm/min] | Max <br> - [mm/min] | Factory setting - [mm/min] |
| Description: | Displays the safe velocity resolution (load side). |  |  |
|  | Setpoints for velocity limits or parameter changes for velocities below this threshold have no effect. |  |  |

Note: This parameter does not provide any information about the actual accuracy of the velocity sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.

## r9732

SERVO (Safety rot), SERVO_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR (Safety rot), VECTOR_AC(Safety rot), VECTOR_I_AC (Safety rot)

|  | $\operatorname{Min}$ |
| :--- | :--- |
| $-[r p$ |  |



- [rpm] - [rpm]

Description: Displays the safe velocity resolution (load side). Setpoints for velocity limits or parameter changes for velocities below this threshold have no effect.
Note: This parameter does not provide any information about the actual accuracy of the velocity sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.



| 13 | SDI neg selected | Yes | No |
| :--- | :--- | :--- | :--- |
| 14 | ESR retract requested | Yes | No |
| 15 | Safety message present | Yes | No |

Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.
Re bit 07:
An internal event is displayed if a STOP A ... F is active.

| p9740 | SI Motion, user agreement selection/de-selection MM / SI mtn UserAgr MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: U, T | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  |  |  | Factory setting |
|  | 0000 bin | 10101100 bin | 0000 bin |
| Description: | Setting to select and de-select the user agreement on the Motor Module. |  |  |
| Value: | 0: [00 hex] De-select user agreement <br> 172: [AC hex] Select user agreement |  |  |
| Dependency: | Refer to: r9741 |  |  |
| r9741 | SI Motion user agreement, inside the drive MM / SI Mtn UserAgr int |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Integer16 <br> P-Group: Safety Integrated <br> Not for motor type: - | Calculated: - | Access level: 3 |
|  |  | Dynamic index: - | Func. diagram: 2822 |
|  |  | Units group: - | Unit selection: - |
|  |  | Not for motor type: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - - |  | - |
| Description: | Displays the internal state of the user agreement. |  |  |
|  | Value = 0: User agreement is not set. |  |  |
|  | Value = AC hex: User agreement is set. |  |  |
| Dependency: | Refer to: p9740 |  |  |
| r9744 | SI message buffer changes, counter / SI msg_buffer chng |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Messages | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  |  | - | - |
| Description: | Displays the changes of the safety message buffer. This counter is incremented every time that the safety message buffer changes. |  |  |
| Recommend.: | This is used to check whether the safety message buffer has been read out consistently. |  |  |
| Dependency: | Refer to: r9747, r9748, r9749, p9752, r9753, r9754, r9755, r9756 |  |  |
| r9745[0...63] | SI component number / SI comp_num |  |  |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| TOR, VECTOR_AC, | P-Group: Messages | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the component number of the safety message that has occurred. |  |  |
| Note: | Value $=0$ : Assignment to a component not possible |  |  |


| r9747[0...63] | Sl message code / Sl msg_code |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting |
| Description: <br> Dependency: <br> Note: | Displays the numbers of safety messages Refer to: r9744, r9748, r9749, p9752, r9753 <br> The messages type "safety message" (Cxx Message buffer structure (principle): r9747[0], r9748[0], r9749[0], r9753[0], r975 r9747[7], r9748[7], r9749[7], r9753[7], r975 r9747[8], r9748[8], r9749[8], r9753[8], r975 message 1 <br> r9747[15], r9748[15], r9749[15], r9753[15], safety message 8 <br> r9747[56], r9748[56], r9749[56], r9753[56], safety message 1 <br> r9747[63], r9748[63], r9749[63], r9753[63], safety message 8 | at have occurred. r9754, r9755, r9756 $x$ ) are entered in the 0], r9755[0], r9756[0 7], r9755[7], r9756[7] 8], r9755[8], r9756[8 <br> 754[15], r9755[15], <br> 754[56], r9755[56], <br> 754[63], r9755[63], | buffer. <br> sage case, safety message 1 <br> age case, safety message 8 edged message case, safety <br> acknowledged message case, <br> acknowledged message case, <br> acknowledged message case, |
| $\overline{\text { r9748[0...63] }}$ <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | SI message time received in mil <br> Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> - [ms] | seconds / SI t_m <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [ms] | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> - [ms] |
| Description: Dependency: | Displays the relative system runtime in milliseconds when the safety message occurred. |  |  |
| r9749[0...63] | Sl message value / SI msg_value |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Integer32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting |
| Description: <br> Dependency: | Displays the additional information about the safety message that occurred (as integer number). Refer to: r9744, r9747, r9748, p9752, r9753, r9754, r9755, r9756 |  |  |


| r9750[0...63] | SI diagnostic attributes / SI diag_ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |  |
| Description: <br> Bit field: | Displays the diagnostic attributes of the safet <br> Bit Signal name <br> 00 Hardware replacement recommended | y messages that hav <br> 1 signal <br> Yes | 0 signal <br> No | FP |
| p9752 <br> SERVO, <br> SERVO_AC, <br> SERVO_IAC, VECTOR, VECTOR_AC, VECTOR_I_AC | SI message cases, counter / SI ms <br> Can be changed: $U, T$ <br> Data type: Unsigned16 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> 0 | sg_cases coun <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 65535 | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting 0 |  |
| Description: <br> Dependency: <br> Note: | Number of safety messages that have occurr The safety message buffer is cleared by rese Refer to: r9744, r9747, r9748, r9749, r9753, The parameter is reset to 0 at POWER ON. | red since the last res tting the parameter r9754, r9755, r9756 |  |  |
| r9753[0...63] <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | SI message value for float values <br> Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: Messages <br> Not for motor type: - <br> Min | / SI msg_val fl <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |  |
| Description: <br> Dependency: | Displays additional information about the safe Refer to: r9744, r9747, r9748, r9749, p9752, | ety message that ha r9754, r9755, r9756 | float values. |  |
| r9754[0...63] <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | SI message time received in days <br> Can be changed: - <br> Data type: Unsigned16 <br> P-Group: Messages <br> Not for motor type: - <br> Min | / SI t_msg rec <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting |  |
| Description: <br> Dependency: | Displays the relative system runtime in days <br> Refer to: r9744, r9747, r9748, r9749, p9752, | when the safety me r9753, r9755, r9756 |  |  |
| r9755[0...63] <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC | SI message time removed in milli <br> Can be changed: - <br> Data type: Unsigned32 <br> P-Group: Messages <br> Not for motor type: - <br> Min <br> - [ms] | seconds / SI t_ <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> - [ms] | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting - [ms] |  |
| Description: | Displays the relative system runtime in millis | conds when the sa | was removed. |  |

Dependency: Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9754, r9756

| r9756[0..63] | SI message time removed in days / SI t_msg rem days |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VECTOR, VECTOR AC, | P-Group: Messages | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: | Displays the relative system runtime in days when the safety message was removed. |  |  |
| Dependency: | Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9754, r9755 |  |  |
| p9761 | SI password input / SI password inp |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | Can be changed: $\mathrm{C} 1, \mathrm{~T}$ | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2800 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: | Enters the Safety Integrated password. |  |  |
| Dependency: | Refer to: F01659 |  |  |
| Note: | It is not possible to change Safety Integrated parameters until the Safety Integrated password has been entered. |  |  |
| p9762 | SI password new / Sl password new |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2800 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: | Enters a new Safety Integrated password. |  |  |
| Dependency: | A change made to the Safety Integrated password must be acknowledged in the following parameter: |  |  |
| p9763 | SI password acknowledgement / SI ackn password |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2800 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: | Acknowledges the new Safety Integrated password. |  |  |
| Dependency: | Refer to: p9762 |  |  |
| Note: | The new password entered into p9762 must be re-entered in order to acknowledge. |  |  |
|  | p9762 $=$ p9763 $=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged. |  |  |




SS1: Safe Stop 1
STO: Safe Torque Off / SH: Safe standstill
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $\mathrm{n}<\mathrm{nx}$ : Safetyrelated output $n<n x$
ESR: Extended Stop and Retract


SMM: Safe Motion Monitoring
Re bit 22 and 23:
These bits show via which path the SS1 has been triggered, i.e. what has started the SS1 delay time. If the SS1 delay time is not started (e.g. because an STO is triggered at the same time), neither of the two bits is set.

| r9773.0...31 | CO/BO: Sl status (Control Unit + Motor Module) / SI status CU+MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2804 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | - | - |
| Description: | - | Displays the Safety Integrated status on the drive (Control Unit + Motor Module). |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal |
|  | 00 | STO selected in drive | Yes |
|  | 01 | STO active in drive | Nes |
|  | 02 | SS1 delay time active in the drive | Yes |
|  | 04 | SBC requested | Yes |
|  | 05 | SS1 selected in the drive (Basic Functions) | Yes |
|  | 06 | SS1 active in the drive (Basic Functions) | Yes |
|  | 31 | Shutdown paths must be tested | Yes |

Note: $\quad$ This status is formed from the AND operation of the relevant status of the two monitoring channels.









It is not permissible to parameterize "motor holding brake without feedback signals" and also enable "safe brake control" (p1278 = 1, p9602 = 1, p9802 = 1).
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated

| p9810 | SI PROFIsafe address | e) SIPROF |  |
| :---: | :---: | :---: | :---: |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Unsigned16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0000 hex | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> FFFE hex | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 0000 hex |
| Description: Notice: | Sets the PROFIsafe address of the Motor Module. <br> This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| p9811 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | SI PROFIsafe telegram sela <br> Can be changed: C2(95) <br> Data type: Unsigned16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 | (Motor Module) <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 998 | ram MM <br> Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 998 |
| Description: Value: | Sets the PROFIsafe telegram nu <br> 0: $\quad$ No PROFIsafe telegram <br> 30: PROFIsafe standard tele <br> 31: PROFIsafe standard tel <br> 901: PROFIsafe SIEMENS te <br> 902: PROFIsafe SIEMENS te <br> 998: Compatibility mode (as f | Motor Module. <br> D-1/1 <br> D-2/2 <br> PZD-3/5 <br> PZD-3/6 <br> ersion < 4.5) |  |
| Dependency: <br> Notice: | Refer to: p9611, p60022 <br> This parameter is overwritten by | tion of the safety | d in the drive. |
| p9821 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, VECTOR_I_AC | BI: SI Safe Brake Adapt <br> Can be changed: C2(95) <br> Data type: Unsigned32 / Binary <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min | source (Motor M <br> Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | BA S_src MM <br> Access level: 3 <br> Func. diagram: 2814 <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: | Sets the signal source for Safe Brake Adapter (SBA). <br> This defines via which digital input the Safe Brake Adapter feedback signal is read-in (SBA_DIAG). p9621/p9821 = 0 : <br> There is no Safe Brake Control (SBC) with Safe Brake Adapter (SBA) available. $\text { p9621/p9821 = r0722.x }(x=0,1 \ldots 7)$ <br> Safe Brake Adapter and Booksize unit (no Communication Interface Module (CIM)). p9621/p9821 = r9872.3 <br> Safe Brake Adapter and Chassis unit (CIM). |  |  |
| Dependency: <br> Notice: <br> Note: | No difference is tolerated for a crosswise data comparison between p9621 and p9821. To use the "Safe Brake Adapter" function the following must apply: p9601 $=$ p9801 <> 0 and p9602 $=$ p9802 $=1$ |  |  |



| $\overline{\mathrm{p} 9852}$ | SI Safe Stop 1 delay time (Motor Module) / SI Stop 1 t_del MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
| SERVO_I_AC, VEC- <br> TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$ | Max <br> 300000.00 [ms] | Factory setting 0.00 [ms] |
| Description: | Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Motor Module to brake along the OFF3 down ramp (p1135). |  |  |
| Recommend.: | In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows: |  |  |
|  | Motor holding brake parameterized: delay time >= p1135 + p1228 + p1217 |  |  |
|  | Motor holding brake not parameterized: delay time >= p1135 + p1228 |  |  |
| Dependency: | Refer to: p1135, p9652 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For a crosswise data comparison between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated. |  |  |
|  | The parameterized time is rounded internally to an integer multiple of the monitoring clock cycle. |  |  |


| p9858 | SI transition time STOP F to STOP A (Control Unit) / SI STOP F->A MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2802 |
| TOR VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$ | Max <br> 30000000.00 [ $\mu \mathrm{s}$ ] | Factory setting 0.00 [ $\mu \mathrm{s}$ ] |
| Description: | Sets the transition period from STOP F to STOP A on the Motor Module. |  |  |
| Dependency: | Refer to: p9658, r9895 |  |  |
|  | Refer to: F30611 |  |  |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |  |  |
| Note: | For a crosswise data comparison between p9658 and p9858, a difference of one Safety monitoring clock cycle is tolerated. |  |  |
|  | The parameterized time is rounded internally to an integer multiple of the monitoring clock cycle. |  |  |
|  | STOP F: Defect in a monitoring channel (error in the crosswise data comparison) |  |  |
|  | STOP A: Pulse suppression via the safety shutdown path |  |  |


| r9870[0...3] | SI version drive-integrated safety function (Motor Module) / SI version MM |  |  |
| :---: | :---: | :---: | :---: |
| SERVO, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_AC, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2 |
| TOR, VECTOR AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - |  |
| Description: | Displays the Safety Integrated version for the drive-integrated safety functions on the Motor Module. |  |  |
| Index: | [ 0 ] = Safety Version (major release) |  |  |
|  | [1] = Safety Version (minor release) |  |  |
|  | [2] = Safety Version (baselevel or patch) |  |  |
|  | [3] = Safety Version (hotfix) |  |  |
| Dependency: | Refer to: r9770, r9890 |  |  |
| Note: | Example: |  |  |
|  | $\mathrm{r} 9870[0]=2, \mathrm{r9870}[1]=60, \mathrm{r9870}[2]=1, r 9870[3]=0$--> Safety version Vo2.60.01.00 |  |  |



| r9872.0...24 | CO/BO: SI status list (Motor Module) / SI status MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2804 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC | Max | Factory setting |  |
|  | Min | - | - |
| Description: | - | Displays the Safety Integrated status on the Motor Module. |  |


| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | STO on Motor Module selected | Yes | No | 2810 |
|  | 01 | STO on Motor Module active | Yes | No | 2810 |
|  | 02 | SS1 delay time on Motor Module active | Yes | No | 2810 |
|  | 03 | Safe Brake Adapter feedback signal | Yes | No | 2814 |
|  | 04 | SBC requested | Yes | No | 2814 |
|  | 05 | SS1 selected on the Motor Module (Basic Functions) | Yes | No | - |
|  | 06 | SS1 active on the Motor Module (Basic Functions) | Yes | No | - |
|  | 09 | STOP A cannot be acknowledged, active | Yes | No | 2802 |
|  | 10 | STOP A active | Yes | No | 2802 |
|  | 15 | STOP F active | Yes | No | 2802 |
|  | 16 | STO cause: Safety comm. mode | Yes | No | - |
|  | 17 | STO cause selection via terminal (Basic Functions) | Yes | No | - |
|  | 18 | STO cause: selection via SMM | Yes | No | - |
|  | 20 | STO cause selection PROFIsafe (Basic Functions) | Yes | No | - |
|  | 22 | SS1 cause selection terminal (Basic Functions) | Yes | No | - |
|  | 23 | SS1 cause selection PROFIsafe (Basic Functions) | Yes | No | - |
|  | 24 | Slave Motor Module ready for communication | Yes | No | - |
| Dependency: | Refer to: r9772 |  |  |  |  |
| Notice: | If communication between the Control Unit and the Motor Module is interrupted (e.g. by switching off the Motor Module), this display parameter is no longer updated. The last transferred status of the Motor Module is displayed. |  |  |  |  |
| Note: | Re bit 00: |  |  |  |  |
|  | When STO is selected, the cause is displayed in bits 16 ... 18 and in bit 20. |  |  |  |  |
|  |  |  |  |  |  |
|  | When SS1 is selected, the cause is displayed in bits 22 and 23. |  |  |  |  |
|  | Re bit 18: |  |  |  |  |
|  | When the bit is set, STO is selected via PROFIsafe or Terminal Module 54F (TM54F). |  |  |  |  |
|  | SMM: Safe Motion Monitoring |  |  |  |  |
|  | Re bit 22, 23: |  |  |  |  |
|  | If the SS1 delay time is not started (e.g. because an STO is triggered at the same time), neither of the two bits is set. |  |  |  |  |
|  | Re bit 24: |  |  |  |  |
|  | Only for parallel connection and active motion monitoring functions: Slave Motor Module ready for communicatio |  |  |  |  |
| r9880 | SI monitoring clock cycle (Motor Module) / SI monitor_clck MM |  |  |  |  |
| SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: - |  | ulated: - | Acce |  |
|  | Data type: FloatingPoint32 |  | amic index: - | Func |  |
|  | P-Group: Safety Integrated |  | group: - | Unit |  |
|  | Not for motor type: - S |  | Scaling: - | Expe |  |
|  | Min- [ms] |  | Max <br> [ms] | Fact <br> - [ms |  |
| Description: | Displays the clock cycle time for the Safety Integrated Basic Functions on the Motor Module. |  |  |  |  |
| Dependency: | Refer to: r0110, p0115, r9780 |  |  |  |  |



The complete list of numbers for crosswise data comparison is listed in Fault F30611.

| r9895 | SI diagnostics STOP F (Motor Module)/SI diag STOP F MM |  |  |
| :--- | :--- | :--- | :--- |
| SERVO, | Can be changed: - | Calculated: - | Access level: 2 |
| SERVO_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2802 |
| SERVO_I_AC, VEC- | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| TOR, VECTOR_AC, | Sot for motor type: - | Max | Expert list: 1 |
| VECTOR_I_AC | Mor | Factory setting |  |
|  | Min | - | - |
|  | - |  |  |
| Description: | Displays the number of the cross-compared data which has caused STOP F on the Motor Module. |  |  |
| Dependency: | Refer to: r9795 |  |  |
|  | Refer to: F30611 |  |  |


| Note: | The complete list of numbers for crosswise data comparison is listed in Fault F30611. |
| :---: | :---: |
| p9897 | SI Motion pulse suppression failsafe delay time (MM) / SI Mtn IL t_del M |
| SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mu \mathrm{~s}]$ $800000.00[\mu \mathrm{~s}]$ $0.00[\mu \mathrm{~s}]$ |
| Description: <br> Notice: <br> Note: | Sets the delay time for the pulse suppression after bus failure via failsafe values on the Motor Module (e.g. used for ESR). <br> This parameter is overwritten by the copy function of the safety functions integrated in the drive. <br> ESR: Extended Stop and Retract |
| r9898 <br> SERVO, <br> SERVO_AC, <br> SERVO_IAC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | SI actual checksum SI parameters (Motor Module) / SI act_checksum MM |
| Description: <br> Dependency: | Displays the checksum for the checked Safety Integrated parameters on the Motor Module (actual checksum). <br> Refer to: r9798, p9899 |
| p9899 <br> SERVO, <br> SERVO_AC, <br> SERVO_I_AC, VEC- <br> TOR, VECTOR_AC, <br> VECTOR_I_AC | SI reference checksum SI parameters (Motor Module) / SI set_checksum MM |
| Description: <br> Dependency: | Sets the checksum for the checked Safety Integrated parameters on the Motor Module (reference checksum). Refer to: p9799, r9898 |
| r9900 | Actual topology number of indices / Act topo indices |
| CU_I, CU_I_D410, CU NX CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN | Can be changed: - Calculated: - Access level: 3 <br> Data type: Unsigned16 Dynamic index: - Func. diagram: - <br> P-Group: Topology Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 0 |
|  | Min Max Factory setting |
| Description: <br> Dependency: <br> Note: | Displays the number of indices of the actual topology. <br> Refer to: r9901 <br> Only for internal Siemens use. <br> The parameter is not displayed for the STARTER commissioning software. |






```
- Serial No. (e.g. "T-P30050495")
When comparing the topology, the following data is compared in the target and actual topologies:
p9908 = 0: Component type, Order No., Hardware version, Manufacturer, Serial No.
p9908 = 1: Component type, Order No.
p9908 = 2: Component type
p9908 = 3: Component class (e.g. Sensor Module or Motor Module)
```

| p9909 |
| :--- |
| CU_I, CU_I_D410 |
| CU_NX_CX, |
| CU_S_AC_DP, |
| CU_S_AC_PN, |
| CU_S120_DP, |
| CU_S120_PN, |
| CU_S150_DP, |
| CU_S150_PN |

Min Max Factory setting

0
1

## Factory setting

For p9909 = 1, the serial number and the hardware version of the new replaced component is automatically transferred from the actual topology into the target topology and then saved in a non-volatile fashion.
For the components that have been replaced, the electronic rating plate must match as far as the following data is concerned:

- component type (e.g. "SMC20")
- Order No. (e.g. "6SL3055-0AA0-5BA0")

For p9909 $=0$, serial numbers and hardware versions are not automatically transferred. In this case, the transfer must be made using p9904.
Dependency: Refer to: p9904, p9905
Note: $\quad$ The modified target topology is automatically saved in a non-volatile fashion when the drive object runs-up (e.g. after a POWER ON).
Special case for Control Unit and option slot modules:
When replacing these components, independent of p9909, the serial number and hardware version are automatically transferred and saved in a non-volatile fashion.

| p9910 | Transfer additional components into the target topology / Transfer comp |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: C1(1) | Calculated: - | Access level: 1 |
| CU_NX_CX, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: Topology | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 1 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  | Factory setting |  |
| CU_S150_DP, |  | Max |  |

Description: Transfer additional inserted DRIVE-CLiQ components into the target topology and add the appropriate drive objects to the project.
Value:
No selection
Drive object type SERVO
Drive object type VECTOR
SINAMICS GM (DFEMV \& VECTORMV)
SINAMICS SM (AFEMV \& VECTORMV)
SINAMICS GL (VECTORGL)
SINAMICS SL (VECTORSL)

| p9911[0...3] | Insert drive object / Drv_obj insert |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{C} 1(1)$ Calculated: - <br> Data type: Unsigned32 Dynamic index: - <br> P-Group: - Units group: - <br> Not for motor type: - Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min Max <br> 0 4294967295 | Factory setting 0 |
| Description: | New drive objects can be created using this parameter. <br> Index 0: <br> The values 2 ... 62 are permissible. <br> Index 1: <br> Number of the drive object type (e.g. 11 for type SERVO). <br> Index 2: <br> Function modules defined for the drive object. <br> Index 3 : <br> $=0$ : Ready. <br> = 1: Reset (only indices $0 \ldots 3$ ). <br> = 2: Reset all (indices $0 \ldots 3$ and flagged entries). <br> = 3: Check and flag for insertion. |  |
| Index: | [0] = Drive object number <br> [1] = Drive object type <br> [2] = Drive object function module <br> [3] = Reset or check and flag for insertion |  |
| Note: | Only for internal Siemens use. <br> The parameter is not displayed for the STARTER commissioning software. |  |
| p9912[0..1] | Delete drive object / Drv_obj delete |  |
| $\begin{aligned} & \text { CU_I, CU_I_D410, } \\ & \text { CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_DP, } \\ & \text { CU_S150_PN } \end{aligned}$ | Can be changed: $\mathrm{C} 1(3)$ Calculated: - <br> Data type: Unsigned16 Dynamic index: - <br> P-Group: - Units group: - <br> Not for motor type: - Scaling: - | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 0 |
|  | Min Max <br> 0 62 | Factory setting 0 |
| Description: | Drive objects can be deleted using this parameter. <br> Index 0: <br> The values $2 \ldots 62$ are permissible. <br> Index 1: <br> $=0$ : Ready . <br> $=1$ : Reset (only indices 0 and 1 ) <br> = 2: Reset all (indices 0 and 1 and flagged entries). <br> = 3: Check and flag for deletion. <br> $=30$ : Check and flag for deletion. Keep target topology. |  |
| Index: | [0] = Drive object number <br> [1] = Reset or check and flag for deletion |  |
| Note: | Only for internal Siemens use. <br> The parameter is not displayed for the STARTER commissioning software. |  |



| p9914[0...2] | Change component number / Change comp_no |  |  |
| :--- | :--- | :--- | :--- |
| CU_I, CU_I_D410, | Can be changed: C1 | Calculated: - | Access level: 3 |
| CU_NX_CX, | Data type: Unsigned16 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Scaling: - | Expert list: 0 |  |
| CU_S120_DP, | Not for motor type: - |  |  |
| CU_S120_PN, |  | Factory setting |  |
| CU_S150_DP, |  | Max | 0 |

[^1]





Re index 5:
The total utilization is determined using all sampling times used. The largest total utilization is mapped here. The sampling time with the largest total utilization is displayed in r9979.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).


[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] = Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] $=$ Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43

|  | [88] = Net utilization 44 |
| :---: | :---: |
|  | [89] = Total utilization 44 |
|  | [90] = Net utilization 45 |
|  | [91] = Total utilization 45 |
|  | [92] = Net utilization 46 |
|  | [93] = Total utilization 46 |
|  | [94] = Net utilization 47 |
|  | [95] = Total utilization 47 |
|  | [96] = Net utilization 48 |
|  | [97] = Total utilization 48 |
|  | [98] = Net utilization 49 |
|  | [99] = Total utilization 49 |
|  | [100] $=$ Net utilization 50 |
|  | [101] $=$ Total utilization 50 |
| Dependency: | Refer to: r7901, r9976, r9979 |
|  | Refer to: F01054 |
| Note: | The corresponding sampling times can be read out in parameter r7901. |
|  | Net utilization: |
|  | Computing time load that is only called by the sampling time involved. |
|  | Total utilization: |
|  | Computing time load of sampling time involved including load from higher-priority sampling times (interrupts). |

r9981[0...101] Sampling times utilization measured / t_sampl util meas
CU_I, CU_I_D410, Can be changed: -

CU NX CX, CU_S_AC_DP,
CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP,
CU_S150_PN

| Min | Max | Factory setting |
| :--- | :--- | :--- |
| $-[\%]$ | $-[\%]$ | $-[\%]$ |

Description: Displays the utilizations measured for the active sampling times.
Index:

Calculated: -
Dynamic index: -
Units group: -
Scaling: -

## Access level: 4

Func. diagram: -
Unit selection: -
Expert list: 1

Factory setting

- [\%]
[0] = Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] = Total utilization 5
[12] = Net utilization 6
[13] = Total utilization 6
[14] = Net utilization 7
[15] $=$ Total utilization 7
[16] = Net utilization 8
[17] $=$ Total utilization 8
[18] = Net utilization 9
[19] $=$ Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] = Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45




r9999[0...99] Software error internal supplementary diagnostics / SW_err int diag

| CU_I, CU_I_D410, | Can be changed: - | Calculated: - | Access level: 3 |
| :--- | :--- | :--- | :--- |
| CU_NX_CX, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| CU_S_AC_DP, | P-Group: - | Units group: - | Unit selection: - |
| CU_S_AC_PN, | Not for motor type: - | Scaling: - | Expert list: 1 |
| CU_S120_DP, |  |  |  |
| CU_S120_PN, |  | Max | Factory setting |
| CU_S150_DP, |  | - | - |
| CU_S150_PN | Min | - |  |



| p10002 | SI discrepancy monitoring time / SI discrep t_monit |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2850, 2851 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min <br> 1.00 [ms] | $\begin{aligned} & \text { Max } \\ & 2000.00[\mathrm{~ms}] \end{aligned}$ | Factory setting 500.00 [ms] |
| Description: | Sets the monitoring time for the discrepancy for the digital inputs. <br> The signal states at the two associated digital inputs (F-DI) must assume the same state within this monitoring time. |  |  |
| Note: | F-DI: Failsafe Digital Input |  |  |
| p10003 | SI forced checking procedure timer / SI FCP Timer |  |  |
| $\begin{aligned} & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$ | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0.00 [h] | 8760.00 [h] | 8.00 [h] |
| Description: | Sets the time to carry out the forced checking procedure (test stop). |  |  |
|  | Within the parameterized time, the digital inputs/outputs must must have been subject to a forced checking procedure at least once. The forced checking procedure is started with BI : $\mathrm{p} 10007=0 / 1$ signal. |  |  |
| Dependency: | Refer to: p10002, p10007, p10046 |  |  |
| p10003 | SI forced checking procedure timer / SI FCP Timer |  |  |
| TM54F_MA | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: 2848 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0.00 [h] | 8760.00 [h] | 8.00 [h] |
| Description: | Sets the time to carry out the forced checking procedure (test stop). |  |  |
|  | Within the parameterized time, the digital inputs/outputs must must have been subject to a forced checking procedure at least once. The forced checking procedure is started with BI : p10007 = 0/1 signal. |  |  |
| Dependency: | Refer to: p10001, p10007, p10046 |  |  |
| r10004[0...1] | SI actual checksum TM54F parameters / SI act CRC TM54F |  |  |
| $\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2847 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | - |
| Description: Index: | Displays the actual checksum of the checksum-checked parameters for the Terminal Module 54F (TM54F).[0] = Checksum HW-independent TM54F parameters$[1]$ = Checksum HW-dependent TM54F parameters (MM) |  |  |


| p10005[0...1] | SI reference checksum TM54F parameters / SI ref CRC TM54F |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| TM54F_SL | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2847 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFFF FFFF hex | 0000 hex |
| Description: Index: | Displays the reference checksum of the checksum-checked parameters for the Terminal Module 54F (TM54F). <br> [ 0 ] = Checksum HW-independent TM54F parameters <br> [1] = Checksum HW-dependent TM54F parameters (MM) |  |  |
| p10006 | SI acknowledgement internal event F-DI (processor 1) / SI ackn int evt P1 |  |  |
| SERVO_AC, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Select a fail-safe digital input for the signal "acknowledge internal event" (internal fault). The falling edge at this input resets the status "internal event" in the drives. The rising edge at this input acknowledges any existing discrepancy errors. |  |  |
| Value: | 0: Statically active <br> 1: F-DI 0 <br> 2: F-DI 1 <br> 3: F-DI 2 <br> 255: Statically inact |  |  |
| Dependency: | Refer to: 10106 |  |  |
|  | Refer to: A01666, A30666 |  |  |
| Note: | The values "static active" and "static inactive" result in an inactive function of the safe acknowledgment. F-DI: Failsafe Digital Input |  |  |
| p10006 | SI acknowledgement internal event input terminal / SI ackn int event |  |  |
| TM54F_MA, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$ | Factory setting 0 |
| Description: | Select a fail-safe digital input for the signal "acknowledge internal event" (internal fault). The signal is transferred to the corresponding control signal of all drives. <br> The falling edge at this input resets the status "internal event" in the drives. <br> The rising edge at this input acknowledges any existing discrepancy errors. |  |  |
| Value: | 0: Statically active <br> 1: F-DI 0 (X521.2/3/6) <br> 2: F-DI 1 (X521.4/5/7) <br> 3: F-DI 2 (X522.1/2/7) <br> 4: F-DI 3 (X522.3/4/8) <br> 5: F-DI 4 (X522.5/6/9) <br> 6: F-DI 5 (X531.2/3/6) <br> 7: F-DI 6 (X531.4/5/7) <br> 8: F-DI 7 (X532.1/2/7) <br> 9: F-DI 8 (X532.3/4/8) <br> 10: F-DI 9 (X532.5/6/9) <br> 255: Statically inact |  |  |


| Dependency: | Refer to: A35081 |
| :--- | :--- |
| Note: | The values "static active" and "static inactive" result in an inactive function of the safe acknowledgment. |
|  | F-DI: Failsafe Digital Input |



Description: Sets the operating mode for the Terminal Module 54F (TM54F).
Value: $\quad 0: \quad$ Function interface

Note: Parameter being prepared. For this firmware version, the function interface is not supported.

| p10009 | SI SLP retract F-DI / SI SLP retr F-DI |  |  |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Max | Expert list: 1 |
|  | Min | 3 | Factory setting |
|  | 0 | 0 |  |
| Description: | Selects a fail-safe digital input for the "Retract SLP" function. |  |  |
|  | A rising edge at this FDI makes it possible to retract the axis, if at this instant in time indicates a violation of the SLP |  |  |



| p10010[0...5] | SI drive object assignment / SI drv_obj assign |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, TM54F_SL | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2847, 2848 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min |  | Factory setting |
|  | 0 | 62 | 0 |
| Description: | Sets the drive object number for the drives that are available. |  |  |
| Index: | [0] = Drive 1 |  |  |
|  | [1] = Drive 2 |  |  |
|  | [2] = Drive 3 |  |  |
|  | [3] = Drive 4 |  |  |
|  | [4] = Drive 5 |  |  |
|  | [5] = Drive 6 |  |  |
| Notice: | If, for a drive, Terminal Module 54F (TM54F) is activated (p9601.2 = 1), its drive object number must be set in an index. |  |  |
| Note: | A change only becomes effective after a POWER ON. |  |  |
| p10011[0...5] | SI drive group assignment / Sl drv_gr assign |  |  |
| TM54F_MA, <br> TM54F_SL | Can be changed: C2(95) | Calculated: - | Access level: 3 |
|  | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 2848 |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1 | 4 |  |
| Description: | Sets the drive group for the drives that are available. |  |  |
|  | A drive group is a combination of several drives with the same types of behavior. |  |  |
| Index: | [0] = Drive 1 |  |  |
|  | [1] = Drive 2 |  |  |
|  | [2] = Drive 3 |  |  |
|  | [3] = Drive 4 |  |  |
|  | [4] = Drive 5 |  |  |
|  | [5] = Drive 6 |  |  |


| p10012[0...5] | SI Motor Module Node Identifier Word 1 / SI MM Node ID 1 |  |  |
| :--- | :--- | :--- | :--- |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - | Access level: 4 |
| TM54F_SL | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0000 hex | FFF FFFF hex |  |
|  | Sets the actual Node Identifier (word 1, bit $0 \ldots 31$ ) for the Motor Modules. |  |  |
| Description: | $[0]=$ Drive 1 |  |  |
| Index: | $[1]=$ Drive 2 |  |  |
|  | $[2]=$ Drive 3 |  |  |
|  | $[3]=$ Drive 4 |  |  |
|  | $[4]=$ Drive 5 |  |  |
|  | $[5]=$ Drive 6 |  |  |
|  | Refer to: p10013, p10014 |  |  |


| Note: | The Node Identifier ( 96 bit ) is represented in the following 3 parameters. p10012[0] word 1 (bit 0 ... 31) for Motor Module 1 <br> p10012[5] word 1 (bit 0 ... 31) for Motor Module 6 p10013[0] word 2 (bit 32 ... 63) for Motor Module 1 <br> p10013[5] word 2 (bit 32 ... 63) for Motor Module 6 p10014[0] word 3 (bit 64 ... 95) for Motor Module 1 <br> p10014[5] word 3 (bit 64 ... 95) for Motor Module 6 |
| :---: | :---: |
| $\begin{aligned} & \text { p10013[0...5] } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | SI Motor Module Node Identifier Word 2 / SI MM Node ID 2   <br> Can be changed: C2(95) Calculated: - Access level: 4 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0000 hex FFFF FFFF hex 0000 hex |
| Description: Index: <br> Dependency: Note: | Sets the actual Node Identifier (word 2, bit 32 ... 63) for the Motor Modules. <br> [0] = Drive 1 <br> [1] = Drive 2 <br> [2] = Drive 3 <br> [3] = Drive 4 <br> [4] = Drive 5 <br> [5] = Drive 6 <br> Refer to: p10012, p10014 <br> The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014. |
| $\begin{aligned} & \text { p10014[0...5] } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | SI Motor Module Node Identifier Word 3 / SI MM Node ID 3 |
| Description: Index: | Sets the actual Node Identifier (word 3, bit 64 ... 95) for the Motor Modules. $\begin{aligned} & {[0]=\text { Drive } 1} \\ & {[1]=\text { Drive } 2} \\ & {[2]=\text { Drive } 3} \\ & {[3]=\text { Drive } 4} \\ & {[4]=\text { Drive } 5} \\ & {[5]=\text { Drive } 6} \end{aligned}$ |
| Dependency: <br> Note: | Refer to: p10012, p10013 <br> The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014. |
| p10017 <br> SERVO_AC, <br> SERVO_I_AC, <br> VECTOR_AC, <br> VECTOR_I_AC | SI digital inputs debounce time (processor 1) / SI DI t_debounceP1   <br> Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: FloatingPoint32 Dynamic index: - Func. diagram: - <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> $0.00[\mathrm{~ms}]$ $100.00[\mathrm{~ms}]$ 1.00 [ms] |
| Description: | Sets the debounce time for digital inputs. <br> The debounce time is accepted rounded off to whole milliseconds. |

The debounce time acts on the following digital inputs:

- Fail-safe digital inputs (F-DI).
- Single-channel digital inputs (DI).
- Single-channel digital input 22 (DI 22, read back input for the forced checking procedure).
Dependency: $\quad$ Refer to: p10117
Note: $\quad$ Example:
Debounce time $=1 \mathrm{~ms}:$ Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.

The debounce result can be read in r 10051.

| p10017 | SI digital inputs debounce time / SI DI t_debounce |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, TM54F_SL | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
|  | Data type: FloatingPoint32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 1.00 [ms] | 100.00 [ms] | 1.00 [ms] |
| Description: | Sets the debounce time for digital inputs. |  |  |
|  | The debounce time is accepted rounded off to whole milliseconds. |  |  |
|  | The debounce time acts on the following digital inputs: |  |  |
|  | - Fail-safe digital inputs (F-DI). |  |  |
|  | - Single-channel digital inputs (DI). |  |  |
| Note: | Example: |  |  |
|  | Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed |  |  |
|  | Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed |  |  |


| p10020[0...3] | SI special operating mode selection / SI spec op sel |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, TM54F_SL | Can be changed: C 2 (95) | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 3 | 1 |
| Description: | Sets the special operating mode for the operating mode "function interface". |  |  |
|  | $0=\text { Inactive }$ |  |  |
|  | 1 = Safe Operating Stop with braking (SS2) |  |  |
|  | 2 = Safe Operating Stop without braking (SOS) |  |  |
|  | 3 = Safely reduced speed without standstill (SLS) |  |  |
|  | 4 = Safely reduced speed with agreement (SS2 --> SLS) |  |  |
| Index: | [0] = Drive group 1 <br> [1] = Drive group 2 <br> [2] = Drive group 3 <br> [3] = Drive group 4 |  |  |
| Dependency: | Refer to: p10008 |  |  |
| Note: | Parameter being prepared. For this firmware version, the function interface is not supported. <br> SLS: Safely-Limited Speed <br> SOS: Safe Operating Stop <br> SS2: Safe Stop 2 |  |  |




|  | 10: F-DI 9 (X532.5/6/9) <br> 255: Statically inact <br> [0] = Drive group 1 <br> [1] = Drive group 2 <br> [2] = Drive group 3 <br> [3] = Drive group 4 |  |  |
| :---: | :---: | :---: | :---: |
| Index: |  |  |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety If value $=255$ : <br> No terminal assigned, safety F-DI: Failsafe Digital Input SS1: Safe Stop 1 | active. <br> inactive. |  |
| p10024 | SI SS2 input termina | ) / SI SS2 F-D |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Integer16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max <br> 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: Value: | Sets the fail-safe digital inpu | S2" function. |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety If value $=255$ : <br> No terminal assigned, safety F-DI: Failsafe Digital Input SS2: Safe Stop 2 | active. <br> inactive. |  |
| p10024[0...3] | SI SS2 input termina |  |  |
| TM54F_MA, <br> TM54F_SL | Can be changed: C2(95) <br> Data type: Integer16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - Max $255$ | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: Value: | Sets the input terminal for SS2  <br> 0: Statically active <br> 1: F-DI $0($ X521.2/3/6) <br> 2: F-DI 1 (X521.4/5/7) <br> 3: F-DI $2($ X522.1/2/7) <br> 4: F-DI $3($ X522.3/4/8) <br> 5: F-DI 4 (X522.5/6/9) <br> 6: F-DI $5($ X531.2/3/6) <br> 7: F-DI 6 (X531.4/5/7) <br> 8: F-DI 7 (X532.1/2/7) <br> 9: F-DI 8 (X532.3/4/8) <br> 10: F-DI 9 (X532.5/6/9) <br> 255: Statically inact | de "control interface |  |
| Index: | [0] = Drive group 1 <br> [1] = Drive group 2 |  |  |


|  | $[2]=$ Drive group 3 |
| :--- | :--- |
|  | $[3]=$ Drive group 4 |
| Note: | If value $=0:$ |
|  | No terminal assigned, safety function always active. |
|  | If value $=255:$ |
|  | No terminal assigned, safety function always inactive. |
|  | F-DI: Failsafe Digital Input |
|  | SS2: Safe Stop 2 |


| p10025 | SI SOS input terminal (processor 1) / SI SOS F-DI P1 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |

Description: Sets the fail-safe digital input (F-DI) for the "SOS" function.

| Value: | $0:$ | Statically active |
| :--- | :--- | :--- |
|  | $1:$ | F-DI 0 |
|  | $2:$ | F-DI 1 |
|  | $3:$ | F-DI 2 |
|  | $255:$ | Statically inact |

No terminal assigned, safety function always active.
If value $=255$ :
No terminal assigned, safety function always inactive.
F-DI: Failsafe Digital Input
SOS: Safe Operating Stop

| p10025[0...3] | SI SOS input terminal / SI SOS DI |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the fail-safe digital input (F-DI) for the "SOS" function (operating mode = control interface). |  |  |
| Value: | 0 0 Statically active |  |  |
|  | 1: F-DI 0 (X521.2/3/6) |  |  |
|  | 2: F-DI 1 (X521.4/5/7) |  |  |
|  | 3: F-DI 2 (X522.1/2/7) |  |  |
|  | 4: F-DI 3 (X522.3/4/8) |  |  |
|  | 5: F-DI 4 (X522.5/6/9) |  |  |
|  | 6: F-DI 5 (X531.2/3/6) |  |  |
|  | 7: F-DI 6 (X531.4/5/7) |  |  |
|  | 8: F-DI 7 (X532.1/2/7) |  |  |
|  | 9: F-DI 8 (X532.3/4/8) |  |  |
|  | 10: F-DI 9 (X532.5/6/9) |  |  |
|  | 255: Statically inact |  |  |
| Index: | [0] = Drive group 1 |  |  |
|  | [1] = Drive group 2 |  |  |
|  | [2] = Drive group 3 |  |  |
|  | [3] = Drive group 4 |  |  |
| Note: | If value $=0$ : |  |  |
|  | No terminal assigned, safety function always active. |  |  |

If value $=255$ :
No terminal assigned, safety function always inactive.
F-DI: Failsafe Digital Input
SOS: Safe Operating Stop

| p10026 | SI SLS input terminal (processor 1) / SI SLS F-DI P1 |  |
| :---: | :---: | :---: |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) Calculated: - <br> Data type: Integer16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: Value: <br> Dependency: Note: | Sets the fail-safe digital input (F-DI) for the "SLS" function. <br> 0 : Statically active <br> 1: F-DI 0 <br> 2: F-DI 1 <br> 3: F-DI 2 <br> 255: Statically inact <br> Refer to: p10126 <br> If value $=0$ : <br> No terminal assigned, safety function always active. <br> If value $=255$ : <br> No terminal assigned, safety function always inactive. <br> F-DI: Failsafe Digital Input <br> SLS: Safely-Limited Speed |  |
| $\begin{aligned} & \text { p10026[0...3] } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | SI SLS input terminal / SI SLS DI  <br> Can be changed: C2(95) Calculated: - <br> Data type: Integer16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: Value: | Sets the input terminal for SLS (operating mode "control interface"). <br> 0: $\quad$ Statically active <br> F-DI 0 (X521.2/3/6) <br> F-DI 1 (X521.4/5/7) <br> F-DI 2 (X522.1/2/7) <br> F-DI 3 (X522.3/4/8) <br> F-DI 4 (X522.5/6/9) <br> F-DI 5 (X531.2/3/6) <br> F-DI 6 (X531.4/5/7) <br> F-DI 7 (X532.1/2/7) <br> F-DI 8 (X532.3/4/8) <br> F-DI 9 (X532.5/6/9) <br> 255: Statically inact |  |
| Index: | $\begin{aligned} & \text { [0] = Drive group } 1 \\ & \text { [1] }=\text { Drive group } 2 \\ & \text { [2] }=\text { Drive group } 3 \\ & \text { [3] }=\text { Drive group } 4 \end{aligned}$ |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety function always active. <br> If value $=255$ : <br> No terminal assigned, safety function always inactive. <br> F-DI: Failsafe Digital Input <br> SLS: Safely-Limited Speed |  |


| p10027 | SI SLS limit bit 0 input terminal (processor 1) / SI SLS lim 0 DI P1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO_AC, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| VECTOR_I_AC | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the fail-safe digital input (F-DI) for the limit value bit 0 of the "SLS" function. |  |  |
| Value: | 0 : Statically active |  |  |
|  | 1: F-DI 0 |  |  |
|  | 2: F-DI 1 |  |  |
|  | 3: F-DI 2 |  |  |
|  | 255: Statically inact |  |  |
| Note: | If value $=0$ : |  |  |
|  | No terminal assigned, select | tatically at "0". |  |
|  | If value = 255: |  |  |
|  | No terminal assigned, select | tatically at "1". |  |
|  | F-DI: Failsafe Digital Input |  |  |
|  | SLS: Safely-Limited Speed |  |  |


| p10027[0...3] | SI SLS limit bit 0 input terminal / SI SLS lim O DI |  |  |
| :--- | :--- | :--- | :--- |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - |  |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Sets the input terminal for SLS limit bit 0 (operating mode "control interface").
Value:

Index: $\quad[0]=$ Drive group 1

Note:

$$
\begin{array}{ll}
0: & \text { Statically active } \\
\text { 1: } & \text { F-DI 0 (X521.2/3/6) } \\
\text { 2: } & \text { F-DI 1 (X521.4/5/7) } \\
3: & \text { F-DI 2 (X522.1/2/7) } \\
4: & \text { F-DI 3 (X522.3/4/8) } \\
5: & \text { F-DI 4 (X522.5/6/9) } \\
\text { 6: } & \text { F-DI 5 (X531.2/3/6) } \\
7: & \text { F-DI 6 (X531.4/5/7) } \\
\text { 8: } & \text { F-DI 7 (X532.1/2/7) } \\
9: & \text { F-DI 8 (X532.3/4/8) } \\
\text { 10: } & \text { F-DI 9 (X532.5/6/9) } \\
\text { 255: } & \text { Statically inact }
\end{array}
$$

[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
If value $=0$ :
No terminal assigned, selection bit remains statically at "0"
If value $=255$ :
No terminal assigned, selection bit remains statically at "1"
F-DI: Failsafe Digital Input
SLS: Safely-Limited Speed

| p10028 | SI SLS limit bit 1 input terminal (processor 1) / SI SLS lim 1 |  |
| :---: | :---: | :---: |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) Calculated: - <br> Data type: Integer16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: Value: <br> Note: | Sets the fail-safe digital input (F-DI) for the limit value bit 1 of the "SLS" function. <br> 0 : Statically active <br> F-DI 0 <br> F-DI 1 <br> F-DI 2 <br> Statically inact <br> If value $=0$ : <br> No terminal assigned, selection bit remains statically at "0". <br> If value $=255$ : <br> No terminal assigned, selection bit remains statically at "1". <br> F-DI: Failsafe Digital Input <br> SLS: Safely-Limited Speed |  |
| $\begin{aligned} & \text { p10028[0...3] } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | SI SLS limit bit 1 input terminal / SI SLS lim 1 DI | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: Value: | Sets the input terminal for SLS limit bit 1 (operating mode "control interface"). <br> Statically active <br> F-DI 0 (X521.2/3/6) <br> F-DI 1 (X521.4/5/7) <br> F-DI 2 (X522.1/2/7) <br> F-DI 3 (X522.3/4/8) <br> F-DI 4 (X522.5/6/9) <br> F-DI 5 (X531.2/3/6) <br> F-DI 6 (X531.4/5/7) <br> F-DI 7 (X532.1/2/7) <br> F-DI 8 (X532.3/4/8) <br> F-DI 9 (X532.5/6/9) <br> Statically inact |  |
| Index: | $\begin{aligned} & {[0]=\text { Drive group } 1} \\ & {[1]=\text { Drive group } 2} \\ & {[2]=\text { Drive group } 3} \\ & {[3]=\text { Drive group } 4} \end{aligned}$ |  |
| Note: | If value $=0$ : <br> No terminal assigned, selection bit remains statically at "0". <br> If value $=255$ : <br> No terminal assigned, selection bit remains statically at "1". <br> F-DI: Failsafe Digital Input <br> SLS: Safely-Limited Speed |  |




| p10032 | SI SLP select input terminal (processor 1) / SI SLS sel F-DI P1 |  |  |
| :---: | :---: | :---: | :---: |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Integer16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0 | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max <br> 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: Value: | Sets the input terminal for the |  |  |
| Dependency: | Refer to: p10132 |  |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety <br> If value $=255$ : <br> No terminal assigned, safety <br> F-DI: Failsafe Digital Input <br> SLP: Safely-Limited Position | active. <br> inactive. |  |


| p10032[0...3] | SI SLP input terminal |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, | Can be changed: C 2 (95) | Calculated: - | Access level: 3 |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the input terminal for the |  |  |
| Value: | 0 0 Statically active |  |  |
|  | 1: F-DI 0 (X521.2/3/6) |  |  |
|  | 2: F-DI 1 (X521.4/5/7) |  |  |
|  | 3: F-DI 2 (X522.1/2/7) |  |  |
|  | 4: F-DI 3 (X522.3/4/8) |  |  |
|  | 5: F-DI 4 (X522.5/6/9) |  |  |
|  | 6: F-DI 5 (X531.2/3/6) |  |  |
|  | 7: F-DI 6 (X531.4/5/7) |  |  |
|  | 8: F-DI 7 (X532.1/2/7) |  |  |
|  | 9: F-DI 8 (X532.3/4/8) |  |  |
|  | 10: F-DI 9 (X532.5/6/9) |  |  |
|  | 255: Statically inact |  |  |
| Index: | [0] = Drive group 1 |  |  |
|  | [1] = Drive group 2 |  |  |
|  | [2] = Drive group 3 |  |  |
|  | [3] = Drive group 4 |  |  |
| Note: | If value $=0$ : |  |  |
|  | No terminal assigned, safety | active. |  |
|  | If value $=255$ : |  |  |
|  | No terminal assigned, safety | inactive. |  |
|  | F-DI: Failsafe Digital Input |  |  |
|  | SLP: Safely-Limited Position |  |  |



| p10036[0...3] | SI special operating mode input terminal / SI spec op DI |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, <br> TM54F_SL | Can be changed: C2(95) | Calculated: - | Access level: 4 |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the input terminal for "special operating mode" (operating mode "function interface"). |  |  |
| Value: | 0 : Statically active |  |  |
|  | 1: F-DI 0 (X521.2/3/6) |  |  |
|  | 2: F-DI 1 (X521.4/5/7) |  |  |
|  | 3: F-DI 2 (X522.1/2/7) |  |  |
|  | 4: F-DI 3 (X522.3/4/8) |  |  |
|  | 5: F-DI 4 (X522.5/6/9) |  |  |
|  | 6: F-DI 5 (X531.2/3/6) |  |  |
|  | 7: F-DI 6 (X531.4/5/7) |  |  |
|  | 8: F-DI 7 (X532.1/2/7) |  |  |
|  | 9: F-DI 8 (X532.3/4/8) |  |  |
|  | 10: F-DI 9 (X532.5/6/9) |  |  |
|  | 255: Statically inact |  |  |
| Index: | [0] = Drive group 1 |  |  |
|  | [1] = Drive group 2 |  |  |
|  | [2] = Drive group 3 |  |  |
|  | [3] = Drive group 4 |  |  |
| Note: | Parameter being prepared. For this firmware version, the function interface is not supported. |  |  |
|  | If value = 0: |  |  |
|  | No terminal assigned, static special operation. |  |  |
|  | If value $=255$ : |  |  |
|  | No terminal assigned, static normal operation. |  |  |


| p10037[0...3] | SI agreement input terminal / SI agreement DI |  |  |
| :---: | :---: | :---: | :---: |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - | Access level: 4 |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |
| Description: | Sets the input terminal for "agreement" (operating mode "function interface"). |  |  |
| Value: | 0 : Statically active |  |  |
|  | 1: F-DI 0 (X521.2/3/6) |  |  |
|  | 2: F-DI 1 (X521.4/5/7) |  |  |
|  | 3: F-DI 2 (X522.1/2/7) |  |  |
|  | 4: F-DI 3 (X522.3/4/8) |  |  |
|  | 5: F-DI 4 (X522.5/6/9) |  |  |
|  | 6: F-DI 5 (X531.2/3/6) |  |  |
|  | 7: F-DI 6 (X531.4/5/7) |  |  |
|  | 8: $\quad$ F-DI 7 (X532.1/2/7) |  |  |
|  | 9: F-DI 8 (X532.3/4/8) |  |  |
|  | F-DI 9 (X532.5/6/9) |  |  |
|  | 255: Statically inact |  |  |
| Index: | [0] = Drive group 1 |  |  |
|  | [1] = Drive group 2 |  |  |
|  | [2] = Drive group 3 |  |  |
|  | [3] = Drive group 4 |  |  |

Note:
If value $=0$ :
No terminal assigned, no static agreement.
If value $=255$ :
No terminal assigned, static agreement.

| p10038[0..3] | SI Emergency Stop input terminal / SI Emer Stop DI |  |  |
| :--- | :--- | :--- | :--- |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - | Access level: 4 |
| TM54F_SL | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 255 | 0 |



| Index: | $[0]=$ Drive group 1 |
| :--- | :--- |
|  | $[1]=$ Drive group 2 |
|  | $[2]=$ Drive group 3 |
|  | $[3]=$ Drive group 4 |
| Dependency: $\quad$ | Refer to: p10008, p10021 |
| Note: | Parameter being prepared. For this firmware version, the function interface is not supported. |
|  | If value $=0:$ |
|  | No terminal assigned, "Emergency Stop" statically active. |
|  | If value $=255:$ |
|  | No terminal assigned, no "Emergency Stop" statically active. |


| p10039 | SI Safe State signal selection / SI Safe State Sel |  |  |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2856 |
| VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 0000 0001 bin |
|  | Bit Signal name | 1 signal | 0 signal |
| Bit field: | 00 | Power_removed | Selected |



Note: $\quad$ Only an NC contact can be connected for the safety digital inputs not listed

| p10040 | SI F-DI input mode / SI F-DI inp_mode |  |  |
| :--- | :--- | :--- | :--- |
| TM54F_MA, | Can be changed: C2(95) | Calculated: - | Access level: 3 |
| TM54F_SL | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | 00000000 0000 0000 bin |
| Description: | Sets the input mode for the safety digital inputs (F-DI). |  |  |
| Bit field: | Bit Signal name | 1 signal | NO signal |
|  | 00 | F-DI 0, DI 1+ (X521.3) | NO contact |
|  | 01 | F-DI 1, DI 3+ (X521.5) | NO contact |
|  | 02 | F-DI 2, DI 5+ (X522.2) | NO contact |

Note: Only an NC contact can be connected for the safety digital inputs not listed.


| p10042[0...5] | SI F-DO 0 signal sources / SI F-DO 0 S_src |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM54F_MA, TM54F_SL | Can be changed: C2(95) |  | Calculated: - | Access level: 3 |
|  | Data type: Integer16 |  | Dynamic index: - | Func. diagram: 2857 |
|  | P-Group: Safety Integrated |  | Units group: - | Unit selection: - |
|  | Not for motor type: - |  | Scaling: - | Expert list: 1 |
|  | Min |  | Max | Factory setting |
|  | 0 |  | 783 | 0 |
| Description: | Sets the signal sources for F-DO 0. |  |  |  |
|  | The 6 signal sources in p10042[0...5] are AND'ed and the result is output at F-DO 0 . |  |  |  |
| Value: | 0 : No function |  |  |  |
|  | 1: | Drive group 1 STO |  |  |
|  | 2 : | Drive group 1 SS1 ac |  |  |
|  | 3 : | Drive group 1 SS2 ac |  |  |
|  | 4: | Drive group 1 SOS a |  |  |
|  | $5:$ | Drive group 1 SLS activ |  |  |
|  | 6 : | Drive group 1 SSM fe | ctive |  |
|  | 7: | Drive group 1 safe st |  |  |
|  | 8 : | Drive group 1 SOS s |  |  |
|  | 9: | Drive group 1 interna |  |  |
|  | 10: | Drive group 1 active |  |  |
|  | 11: | Drive group 1 active |  |  |
|  | 12: | Drive group 1 SDI po |  |  |
|  | 13: | Drive group 1 SDI ne |  |  |
|  | 14: | Drive group 1 SLP ac |  |  |
|  | 15: | Drive group 1 active |  |  |
|  | 257: | Drive group 2 STO |  |  |
|  | 258: | Drive group 2 SS1 activ |  |  |
|  | 259: | Drive group 2 SS2 ac |  |  |
|  | 260: | Drive group 2 SOS a |  |  |
|  | 261: | Drive group 2 SLS activ |  |  |
|  | 262: | Drive group 2 SSM fe | ctive |  |
|  | 263: | Drive group 2 safe st |  |  |
|  | 264: | Drive group 2 SOS s |  |  |
|  | 265: | Drive group 2 interna |  |  |
|  | 266: | Drive group 2 active |  |  |
|  | 267: | Drive group 2 active |  |  |
|  | 268: | Drive group 2 SDI po |  |  |
|  | 269: | Drive group 2 SDI ne |  |  |
|  | 270: | Drive group 2 SLP ac |  |  |
|  | 271: | Drive group 2 active |  |  |
|  | 513: | Drive group 3 STO |  |  |
|  | 514: | Drive group 3 SS1 activ |  |  |
|  | 515: | Drive group 3 SS2 ac |  |  |
|  | 516: | Drive group 3 SOS a |  |  |
|  | 517: | Drive group 3 SLS activ |  |  |
|  | 518: | Drive group 3 SSM fe | ctive |  |
|  | 519: | Drive group 3 safe st |  |  |
|  | 520: | Drive group 3 SOS s |  |  |
|  | 521: | Drive group 3 interna |  |  |
|  | 522: | Drive group 3 active |  |  |
|  | 523: | Drive group 3 active |  |  |
|  | 524: | Drive group 3 SDI po |  |  |
|  | 525: | Drive group 3 SDI ne |  |  |
|  | 526: | Drive group 3 SLP ac |  |  |
|  | 527: | Drive group 3 active |  |  |
|  | 769: | Drive group 4 STO |  |  |
|  | 770: | Drive group 4 SS1 ac |  |  |
|  | 771: | Drive group 4 SS2 ac |  |  |
|  | 772: | Drive group 4 SOS a |  |  |
|  | 773: | Drive group 4 SLS ac |  |  |





| Value: | 0 : | No function |
| :---: | :---: | :---: |
|  | 1: | Drive group 1 STO active |
|  | 2 : | Drive group 1 SS1 active |
|  | 3: | Drive group 1 SS2 active |
|  | 4: | Drive group 1 SOS active |
|  | 5: | Drive group 1 SLS active |
|  | 6: | Drive group 1 SSM feedback signal active |
|  | 7: | Drive group 1 safe state |
|  | 8: | Drive group 1 SOS selected |
|  | 9: | Drive group 1 internal event |
|  | 10: | Drive group 1 active SLS stage bit 0 |
|  | 11: | Drive group 1 active SLS stage bit 1 |
|  | 12: | Drive group 1 SDI positive active |
|  | 13: | Drive group 1 SDI negative active |
|  | 14: | Drive group 1 SLP active |
|  | 15: | Drive group 1 active SLP area |
|  | 257: | Drive group 2 STO active |
|  | 258: | Drive group 2 SS1 active |
|  | 259: | Drive group 2 SS2 active |
|  | 260: | Drive group 2 SOS active |
|  | 261: | Drive group 2 SLS active |
|  | 262: | Drive group 2 SSM feedback signal active |
|  | 263: | Drive group 2 safe state |
|  | 264: | Drive group 2 SOS selected |
|  | 265: | Drive group 2 internal event |
|  | 266: | Drive group 2 active SLS stage bit 0 |
|  | 267: | Drive group 2 active SLS stage bit 1 |
|  | 268: | Drive group 2 SDI positive active |
|  | 269: | Drive group 2 SDI negative active |
|  | 270: | Drive group 2 SLP active |
|  | 271: | Drive group 2 active SLP area |
|  | 513: | Drive group 3 STO active |
|  | 514: | Drive group 3 SS1 active |
|  | 515: | Drive group 3 SS2 active |
|  | 516: | Drive group 3 SOS active |
|  | 517: | Drive group 3 SLS active |
|  | 518: | Drive group 3 SSM feedback signal active |
|  | 519: | Drive group 3 safe state |
|  | 520: | Drive group 3 SOS selected |
|  | 521: | Drive group 3 internal event |
|  | 522: | Drive group 3 active SLS stage bit 0 |
|  | 523: | Drive group 3 active SLS stage bit 1 |
|  | 524: | Drive group 3 SDI positive active |
|  | 525: | Drive group 3 SDI negative active |
|  | 526: | Drive group 3 SLP active |
|  | 527: | Drive group 3 active SLP area |
|  | 769: | Drive group 4 STO active |
|  | 770: | Drive group 4 SS1 active |
|  | 771: | Drive group 4 SS2 active |
|  | 772: | Drive group 4 SOS active |
|  | 773: | Drive group 4 SLS active |
|  | 774: | Drive group 4 SSM feedback signal active |
|  | 775: | Drive group 4 safe state |
|  | 776: | Drive group 4 SOS selected |
|  | 777: | Drive group 4 internal event |
|  | 778: | Drive group 4 active SLS stage bit 0 |
|  | 779: | Drive group 4 active SLS stage bit 1 |
|  | 780: | Drive group 4 SDI positive active |
|  | 781: | Drive group 4 SDI negative active |
|  | 782: | Drive group 4 SLP active |
|  | 783: | Drive group 4 active SLP area |


| Index: | $\begin{aligned} & {[0]=\text { AND logic operation input } 1} \\ & {[1]=\text { AND logic operation input } 2} \\ & {[2]=\text { AND logic operation input } 3} \\ & {[3]=\text { AND logic operation input } 4} \\ & {[4]=\text { AND logic operation input } 5} \\ & {[5]=\text { AND logic operation input } 6} \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Note: | F-DO: Failsafe Digital Output |  |  |  |
| p10046 | SI F-DO feedback signal | vation / SI F- |  |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Unsigned32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 0000 |  |
| Description: | Activates the readback input for t The test mode for the particular s | gital output (F-DO) <br> output is set in p100 |  |  |
| Bit field: | Bit Signal name <br> 00 Test F-DO 0 | 1 signal <br> Test active | 0 signal <br> No test | FP |
| Dependency: <br> Note: | Refer to: p10001, p10003, p1000 <br> The test stop is only performed if | output of the Control | used (see |  |
| p10046 | SI F-DO feedback signal | vation / SI F-D |  |  |
| TM54F_MA, TM54F_SL | Can be changed: C2(95) <br> Data type: Unsigned32 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min | Calculated: - <br> Dynamic index: - <br> Units group: - <br> Scaling: - <br> Max | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 0000 |  |
| Description: | Activates the readback input for the The test mode for the particular s | gital outputs (F-DO) output is set in p100 |  |  |
| Bit field: | Bit Signal name <br> 00 Read back F-DO 0 <br> 01 Read back F-DO 1 <br> 02 Read back F-DO 2 <br> 03 Read back F-DO 3 | 1 signal <br> Test active Test active Test active Test active | 0 signal <br> No test <br> No test <br> No test <br> No test | FP |
| Dependency: Note: | Refer to: p10047 <br> F-DO: Failsafe Digital Output |  |  |  |
| p10047 | SI F-DO test stop mode | est mode |  |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) <br> Data type: Integer16 <br> P-Group: Safety Integrated <br> Not for motor type: - <br> Min <br> 0001 bin | Calculated: - <br> Dynamic index: <br> Units group: - <br> Scaling: - <br> Max <br> 0011 bin | Acce <br> Func <br> Unit <br> Expe <br> Fact <br> 0010 |  |
| Description: Value: | Sets the test stop mode for the s <br> 1: $\quad$ Test mode 1 evaluation of <br> 2: $\quad$ Test mode 2 read back $F$ <br> 3: $\quad$ Test mode 3 read back F | output (F-DO) <br> stic signal (passive <br> (relay circuit) <br> ctuator with feedba |  |  |
| Dependency: Note: | Refer to: p10001, p10003, p1000 <br> The test stop is only performed if | output is being used |  |  |


| p10047[0...3] | SI F-DO test stop mode / SI F-DO test mode |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM54F_MA, <br> TM54F_SL | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  | Data type: Integer16 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting 0010 bin |  |
|  | 0001 bin | 0011 bin |  |  |
| Description: | Sets the test stop mode for the particular safety digital output (F-DO) |  |  |  |
|  | Index 0: F-DO 0 |  |  |  |
|  | Index 1: F-DO 1 |  |  |  |
|  | Index 2: F-DO 2 |  |  |  |
|  | Index 3: F-DO 3 |  |  |  |
| Value: | 1: Test mode 1 evaluation of int. diagnostic signal (passive load) |  |  |  |
|  | 2: Test mode 2 read back F-DO in DI (relay circuit) |  |  |  |
|  | 3: Test mode 3 read back F-DO in DI (actuator with feedback |  |  |  |
| Note: | If value $=1$ : |  |  |  |
|  | When this test mode is being used, and excessive resistance of the load between DO+ and DO- can lead to problems during the test stop. It is therefore important to make sure that the load resistance at an individual F-DO does not exceed 10 kOhm. |  |  |  |
| r10049 | SI F-DI monitoring status (processor 1) / SI F-DI status P1 |  |  |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the monitoring status of the fail-safe digital inputs (F-DI). |  |  |  |
|  | The F-Dls that are being used by the Safety Integrated functions are displayed. |  |  |  |
|  | If the module used has fewer than 3 F-Dls, "Freely available" is displayed for the F-Dls which are not in use. |  |  |  |
| Bit field: | $\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { F-DI 0 } \\ 01 & \text { F-DI 1 } \\ 02 & \text { F-DI } 2\end{array}$ | 1 signal <br> Safety monitored <br> Safety monitored <br> Safety monitored | 0 signal <br> Freely available Freely available Freely available | FP |
|  |  |  |  | - |
|  |  |  |  | - |
|  |  |  |  | - |
| Dependency: | p10006 / p10106 |  |  |  |
|  | p10009 / p10109 |  |  |  |
|  | p10022 / p10122 |  |  |  |
|  | p10023 / p10123 |  |  |  |
|  | p10024 / p10124 |  |  |  |
|  | p10025 / p10125 |  |  |  |
|  | p10026 / p10126 |  |  |  |
|  | p10027 / p10127 |  |  |  |
|  | p10028 / p10128 |  |  |  |
|  | p10030 / p10130 |  |  |  |
|  | p10031 / p10131 |  |  |  |
|  | p10032 / p10132 |  |  |  |
|  | p10033 / p10133 |  |  |  |
|  | p10036 / p10136 |  |  |  |
|  | p10050 / p10150 |  |  |  |
|  | Refer to: r10149 |  |  |  |




| Bit field: | TM54F_MA (master): display of DOTM54F_SL (slave): display of DO+ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal name | 1 signal | 0 signal | FP |
|  | 00 | DO 0 | High | Low | 2853 |
|  | 01 | DO 1 | High | Low | 2853 |
|  | 02 | DO 2 | High | Low | 2853 |
|  | 03 | DO 3 | High | Low | 2853 |
| Note: | F-DO: Failsafe Digital Output |  |  |  |  |
| r10053.0... 3 | CO/BO: SI digital inputs $20 . . .23$ status / SI DI 20... 23 stat |  |  |  |  |
| TM54F_SL | Can be changed: - C |  | ulated: - | Access level: 3 |  |
|  | Data type: Unsigned32 |  | amic index: - | Func. diagram: 2848 |  |
|  | P-Group: Safety Integrated U |  | s group: - | Unit selection: - |  |
|  | Not for motor type: - Scall |  | ing: - | Expert list: 1 |  |
|  |  |  |  | Factory setting |  |
|  | - |  |  | - |  |
| Description: | Displays the status of the digital inputs at the Terminal Module 54F (TM54F). |  |  |  |  |
| Bit field: |  | Signal name | 1 signal | 0 signal | FP |
|  |  | DI 20 | High | Low | 2853 |
|  |  | DI 21 | High | Low | 2853 |
|  |  | DI 22 | High | Low | $2853$ |
|  |  | DI 23 | High | Low | 2853 |
| r10054 | SI TM54F failsafe events active / SI failsafe act |  |  |  |  |
| TM54F_MA, | Can be changed: - Ca |  | ulated: - | Access level: 3 |  |
| TM54F_SL | Data type: Unsigned32 |  | amic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated |  | s group: - | Unit selection: - |  |
|  | Not for motor type: - Scalicher |  | ing: - | Expert list: 1 |  |
|  | Min |  |  | Factory setting |  |
|  |  |  |  |  |  |
| Description: | Displays the events that lead to the transfer of failsafe signals to all drives assigned to the TM54F. If the second channel of the TM54F transmits failsafe signals, then these are synchronized to the other channel. |  |  |  |  |
|  | Possibilities of resolving the situation: |  |  |  |  |
|  | - error during test stop: correctly perform the test stop. |  |  |  |  |
|  | - internal software error: no possibility of resolving this problem, POWER ON. |  |  |  |  |
|  | - internal synchronization problem: no possibility of resolving this problem, POWER ON. |  |  |  |  |
|  | - all other causes: remove the cause of the error and carry out a safety-relevant acknowledgement (p10006). |  |  |  |  |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
|  | 00 | Commissioning mode active (p0010 = 95) | Yes | No | 2847 |
|  | 01 | Checksum error of the safety parameters | Yes | No | - |
|  | 02 | Internal synchronization problem within TM54F | Yes | No | - |
|  | 03 | Internal software error | Yes | No | - |
|  | 04 | Overvoltage in the TM54F | Yes | No | - |
|  | 05 | Undervoltage in the TM54F | Yes | No | - |
|  | 06 | Error at test stop | Yes | No | - |
|  | 07 | Error for crosswise data comparison within TM54F | Yes | No | - |
|  | 08 | Overtemperature in the TM54F | Yes | No | - |
|  | 31 | Failsafe events active on another channel | Yes | No | - |


| r10055 | SI TM54F communication status drive-specific / SI comm_stat drv |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TM54F_MA, <br> TM54F_SL | Can be changed: - <br> Data type: Unsigned32 | Calculated: - | Access level: 3 |  |
|  |  | Dynamic index: - | Func. diagram: 2846 |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the communication status of the in For r10055 = 0, the following applies: <br> All drives assigned in p10010 communicate | ividual drives with the with the TM54F. | al Module 54 |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Communication between drive 1 and TM54F | Not configured | Configured | - |
|  | 01 Communication between drive 2 and TM54F | Not configured | Configured | - |
|  | 02 Communication between drive 3 and TM54F | Not configured | Configured | - |
|  | 03 Communication between drive 4 and TM54F | Not configured | Configured | - |
|  | 04 Communication between drive 5 and TM54F | Not configured | Configured | - |
|  | 05 Communication between drive 6 and TM54F | Not configured | Configured | - |
| r10056.0 | CO/BO: SI Status / SI stat |  |  |  |
| TM54F_MA | Can be changed: - | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
|  | - | - | - |  |
| Description: | Displays the status of the Terminal Module 54F (TM54F). |  |  |  |
| Bit field: | Bit Signal name <br> 00 Test stop status | 1 signal Active | 0 signal Inactive | FP |
| p10061 | SI password input TM54F / Sl password inp |  |  |  |
| $\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | Can be changed: $T$ | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2847 |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max <br> FFFF FFFF hex | Factory setting |  |
| Description: | Enters the Safety Integrated password for the Terminal Module 54F (TM54F). This password is required to change the safety-relevant parameters. |  |  |  |
| p10062 | SI password new TM54F / SI password new |  |  |  |
| TM54F_MA, TM54F_SL | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2847 |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min | Max | Factory setting |  |
| Description: | Enters the new Safety Integrated password for the Terminal Module 54F (TM54F). |  |  |  |


| Dependency: | A change made to the Safety Integrated password must be acknowledged in the following parameter: Refer to: p10063 |
| :---: | :---: |
| p10063 | SI password acknowledgement TM |
| TM54F_MA, TM54F_SL | Can be changed: C2(95) Calculated: - Access level: 3 <br> Data type: Unsigned32 Dynamic index: - Func. diagram: 2847 <br> P-Group: Safety Integrated Units group: - Unit selection: - <br> Not for motor type: - Scaling: - Expert list: 1 <br> Min Max Factory setting <br> 0000 hex FFFF FFFF hex 0000 hex |
| Description: <br> Dependency: <br> Note: | Acknowledgement of the new Safety Integrated password for the Terminal Module 54F (TM54F). <br> Refer to: p10062 <br> The new password entered into p10062 must be re-entered in order to acknowledge. <br> p10062 $=$ p10063 $=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged. |
| $\begin{aligned} & \text { r10090[0...3] } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$ | SI TM54F version / SI TM54F version |
| Description: Index: <br> Dependency: <br> Note: | Displays the Safety Integrated version for the Terminal Module 54F (TM54F). <br> [ 0 ] = Safety Version (major release) <br> [1] = Safety Version (minor release) <br> [2] = Safety Version (baselevel or patch) <br> [3] = Safety Version (hotfix) <br> Refer to: r9390, r9590, r9770, r9870, r9890 <br> Example: <br> $r 10090[0]=2, r 10090[1]=60, r 10090[2]=1, r 10090[3]=0$--> SI TM54F version V02.60.01.00 |
| p10101 <br> SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | SI delay time for test stop at DO / SI t_delay DO |
| Description: | Sets the delay time for testing the digital output. <br> Within this time, for a forced checking procedure of the digital output, the signal must have been detected via the corresponding readback input (p10047). |
| Dependency: | Refer to: p10003, p10007, p10041, p10046 |
| Note: | The delay time must be set to a value greater than the debounce time ( p 10017 ). <br> Regardless of p10001, the forced checking procedure will pause for at least two safety monitoring clock cycles between each stage of the test. <br> The test stop is only performed if the safety output is being used (p10142). |





| Note: | If value $=0$ : <br> No terminal assigned, safety function always active. <br> If value $=255$ : <br> No terminal assigned, safety function always inactive. <br> F-DI: Failsafe Digital Input <br> SS1: Safe Stop 1 |  |
| :---: | :---: | :---: |
| p10124 | SI SS2 input terminal (processor 2) / SI SS2 F-DI P2 |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) Calculated: - <br> Data type: Integer16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 255 | Access level: 3 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting 0 |
| Description: <br> Value: | Sets the fail-safe digital input (F-DI) for the "SS2" function. <br> 0 : Statically active <br> F-DI 0 <br> F-DI 1 <br> F-DI 2 <br> 255: Statically inact |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety function always active. <br> If value $=255$ : <br> No terminal assigned, safety function always inactive. <br> F-DI: Failsafe Digital Input <br> SS2: Safe Stop 2 |  |
| p10125 | SI SOS input terminal (processor 2) / SI SOS F-DI P2 |  |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) Calculated: - <br> Data type: Integer16 Dynamic index: - <br> P-Group: Safety Integrated Units group: - <br> Not for motor type: - Scaling: - <br> Min Max <br> 0 255 | Access level: 3 <br> Func. diagram: - <br> Unit selection: - <br> Expert list: 1 <br> Factory setting <br> 0 |
| Description: Value: | Sets the fail-safe digital input (F-DI) for the "SOS" function. <br> 0 : Statically active <br> F-DI 0 <br> F-DI 1 <br> F-DI 2 <br> Statically inact |  |
| Note: | If value $=0$ : <br> No terminal assigned, safety function always active. <br> If value $=255$ : <br> No terminal assigned, safety function always inactive. <br> F-DI: Failsafe Digital Input <br> SOS: Safe Operating Stop |  |



| Note: | If value $=0$ : |  |
| :---: | :---: | :---: |
|  | No terminal assigned, selection bit remains statically at "0". |  |
|  | If value = 255: |  |
|  | No terminal assigned, selection bit remains statically at "1". |  |
|  | F-DI: Failsafe Digital Input |  |
|  | SLS: Safely-Limited Speed |  |
| p10130 | SI SDI positive input terminal (processor 2) / SI SDI pos DI P2 |  |
| SERVO_AC, <br> SERVO_I_AC, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - | Access level: 3 |
|  | Data type: Integer16 Dynamic index: - | Func. diagram: |
|  | P-Group: Safety Integrated <br> Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | 0255 | 0 |
| Description: | Sets the fail-safe digital input (F-DI) for the "SDI positive" function. |  |
| Value: | 0 : Statically active |  |
|  | 1: F-DI 0 |  |
|  | 2: F-DI 1 |  |
|  | 3: F-DI 2 |  |
|  | 255: Statically inact |  |
| Note: | If value $=0$ : |  |
|  | No terminal assigned, safety function always active. |  |
|  | If value $=255$ : |  |
|  | No terminal assigned, safety function always inactive. |  |
|  | F-DI: Failsafe Digital Input |  |
|  | SDI: Safe Direction (safe motion direction) |  |
| p10131 | SI SDI negative input terminal (processor 2) / SI SDI neg DI P2 |  |
| SERVO_AC, <br> SERVO_I_AC, <br> VECTOR_AC, <br> VECTOR_I_AC | Can be changed: C2(95) Calculated: - | Access level: 3 |
|  | Data type: Integer16 Dynamic index: - | Func. diagram: - |
|  | P-Group: Safety Integrated Units group: - | Unit selection: - |
|  | Not for motor type: - Scaling: - | Expert list: 1 |
|  | Min Max | Factory setting |
|  | 0255 |  |
| Description: Value: | Sets the fail-safe digital input (F-DI) for the "SDI negative" function. |  |
|  | 0 : Statically active |  |
| Value: | 1: F-DI 0 |  |
|  | 2: F-DI 1 |  |
|  | 3: F-DI 2 |  |
|  | 255: Statically inact |  |
| Note: | If value $=0$ : |  |
|  | No terminal assigned, safety function always active. |  |
|  | If value $=255$ : |  |
|  | No terminal assigned, safety function always inactive. |  |
|  | F-DI: Failsafe Digital Input |  |
|  | SDI: Safe Direction (safe motion direction) |  |



| p10139 | SI Safe State signal selection (processor 2) / SI Safe State Sel |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO_AC, SERVO_I_AC, VECTOR_AC, VECTOR_I_AC | Can be changed: C2(95) | Calculated: - | Access level: 3 |  |
|  | Data type: Unsigned32 | Dynamic index: - | Func. diagram: 2856 |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Factory setting 00000001 bin |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 Power_removed | Selected | Not selected |  |
|  | 01 SS1_active | Selected | Not selected |  |
|  | 02 SS2_active | Selected | Not selected | - |
|  | 03 SOS_active | Selected | Not selected | - |
|  | 04 SLS_active | Selected | Not selected | - |
|  | 05 SDI_pos_active | Selected | Not selected | - |
|  | 06 SDI_neg_active | Selected | Not selected | - |
|  | 07 SLP_active | Selected | Not selected | - |


| p10140 | SI F-DI input mode (processor 2) / SI F-DI mode P2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO_AC, | Can be changed: $\mathrm{C} 2(95)$ | Calculated: - | Access level: 3 |  |
| SERVO_I AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |  |
|  | P-Group: Safety Integrated | Units group: - | Unit selection: - |  |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |  |
|  | Min |  | Factory setting 0000 bin |  |
| Description: | Sets the input mode for the safety digital inputs (F-DI). |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 F-DI 1 (X130.2) | NO contact | NC contact | 2850 |
|  | 01 F-DI 2 (X130.5) | NO contact | NC contact | 2850 |
|  | 02 F-DI 3 (X131.2) | NO contact | NC contact | 2850 |

Note: $\quad$ Only an NC contact can be connected for the safety digital inputs not listed.


p10026 / p10126
p10027 / p10127
p10028 / p10128
p10030 / p10130
p10031 / p10131
p10036 / p10136
p10050 / p10150
Refer to: r10049

| r10151.0... | CO/BO: SI digital inputs status (processor 2) / SI DI status P2 |  |  |
| :--- | :--- | :--- | :--- |
| SERVO_AC, | Can be changed: - | Calculated: - | Access level: 3 |
| SERVO_I_AC, | Data type: Unsigned32 | Dynamic index: - | Func. diagram: - |
| VECTOR_AC, | P-Group: Safety Integrated | Units group: - | Unit selection: - |
| VECTOR_I_AC | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |

Description: Displays the single-channel debounced status of the digital inputs DI 17, DI 19, and DI 21.

| Bit field: | Bit | Signal name | 1 signal | High | signal |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 00 | F-DI 0 processor 2 | High | Low | - |
|  | 01 | F-DI 1 processor 2 | High | Low | - |
|  | 02 | F-DI 2 processor 2 |  |  |  |

Dependency: Refer to: p9501, p9601, p10117, p10140
Note: $\quad$ F-DI: Failsafe Digital Input
If a safety function is assigned to an input (e.g. via p10122), then the following applies:

- logical "0": Safety function is selected
- logical "1": Safety function is de-selected

The interrelationship between the logical level and the external voltage level at the input depends on the parameterization (refer to p10140) of the input as either NC or NO contact and is aligned to the use of a safety function:
With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical " 0 " level.
This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, for 24 V at both inputs, de-selects the safety function.
With 24 V at the input, NO contacts have a logical " 0 " level, for 0 V at the input, a logical "1" level.
This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 $\mathrm{V} / 0 \mathrm{~V}$ de-selects the safety function.
The state of parameter r10151 is delayed by one monitoring clock cycle in relation to r10051.
The parameter is only updated in the following cases:

- If the Safety Extended Functions are enabled by means of activation via F-DI.
- If transfer of the F-Dls via PROFIsafe is enabled (see p9501).

In this case only the F-DIs transferred for PROFIsafe are displayed and updated (see p10050/p10150). All F-Dls which have not been transferred have a static zero value.

| r10152.0 | CO/BO: SI digital outputs status (processor 2) / SI DO status P2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SERVO_AC, | Can be changed: - | Calculated: - | Acce |  |
| SERVO_I_AC, | Data type: Unsigned32 | Dynamic index: - | Func |  |
|  | P-Group: Safety Integrated | Units group: - | Unit |  |
|  | Not for motor type: - | Scaling: - | Expe |  |
|  | Min | Max | Facto |  |
|  | - | - | - |  |
| Description: | Displays the status of digital output DO 16-(X131.6) from processor 2. |  |  |  |
| Bit field: | Bit Signal name | 1 signal | 0 signal | FP |
|  | 00 DO 0 | High | Low | 2853 |
| Note: | F-DO: Failsafe Digital Output |  |  |  |



### 1.3 Parameters for data sets

### 1.3.1 Parameters for command data sets (CDS)

Note:<br>References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

The following list contains the parameters that are dependent on the command data sets.

| p0641[0...n] | CI: Current limit, variable / Curr lim var |
| :---: | :---: |
| p0700[0...n] | Macro Binector Input (BI) / Macro BI |
| p0820[0...n] | BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0 |
| p0821[0...n] | BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1 |
| p0822[0...n] | BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2 |
| p0823[0...n] | BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3 |
| p0824[0...n] | BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4 |
| p0828[0...n] | BI: Motor changeover, feedback signal / Mot_chng fdbk sig |
| p0840[0...n] | BI: ON / OFF (OFF1) / ON / OFF (OFF1) |
| p0844[0...n] | BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1 |
| p0845[0...n] | BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2 |
| p0848[0...n] | BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1 |
| p0849[0...n] | BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2 |
| p0852[0...n] | BI: Enable operation/inhibit operation / Operation enable |
| p0854[0...n] | BI: Control by PLC/no control by PLC / Master ctrl by PLC |
| p0855[0...n] | BI: Unconditionally release holding brake / Uncond open brake |
| p0856[0...n] | BI : Speed controller enable / n_ctrl enable |
| p0856[0...n] | BI: Velocity controller enable / v_ctrl enable |
| p0858[0...n] | BI: Unconditionally close holding brake / Uncond close brake |
| p1000[0...n] | Macro Connector Inputs (Cl) for speed setpoints / Macro CI n_set |
| p1000[0...n] | Macro Connector Inputs (Cl) for velocity setpoints / Macro Cl v_set |
| p1020[0...n] | BI: Fixed velocity setpoint selection Bit $0 / \mathrm{v}$ _set_fixed Bit 0 |
| p1020[0...n] | BI: Fixed speed setpoint selection Bit $0 / n \_$set_fixed Bit 0 |
| p1021[0...n] | BI: Fixed velocity setpoint selection Bit $1 / \mathrm{v}$ _set_fixed Bit 1 |
| p1021[0...n] | BI: Fixed speed setpoint selection Bit $1 / n \_$set_fixed Bit 1 |
| p1022[0...n] | BI: Fixed velocity setpoint selection Bit $2 / \mathrm{v}$ _set_fixed Bit 2 |
| p1022[0...n] | BI: Fixed speed setpoint selection Bit $2 / n \_$set_fixed Bit 2 |
| p1023[0...n] | BI: Fixed velocity setpoint selection Bit $3 / \mathrm{v}$ _set_fixed Bit 3 |
| p1023[0...n] | BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3 |
| p1035[0...n] | BI: Motorized potentiometer setpoint raise / Mop raise |
| p1036[0...n] | BI: Motorized potentiometer lower setpoint / Mop lower |
| p1039[0...n] | BI: Motorized potentiometer inversion / MotP inv |
| p1041[0...n] | BI: Motorized potentiometer manual/automatic / Mop manual/auto |
| p1042[0...n] | Cl : Motorized potentiometer automatic setpoint / Mop auto setpoint |
| p1043[0...n] | BI: Motorized potentiometer accept setting value / MotP acc set val |
| p1044[0...n] | CI : Motorized potentiometer setting value / Mop set val |
| p1051[0...n] | CI : Velocity limit RFG positive direction / v_limit RFG pos |
| p1051[0...n] | Cl : Speed limit RFG positive direction of rotation / n_limit RFG pos |


| p1052[0...n] | CI: Velocity limit RFG negative direction / v_limit RFG neg |
| :---: | :---: |
| p1052[0...n] | CI: Speed limit RFG negative direction of rotation / n_limit RFG neg |
| p1055[0...n] | BI: Jog bit 0 / Jog bit 0 |
| p1056[0...n] | BI: Jog bit 1 / Jog bit 1 |
| p1070[0...n] | Cl : Main setpoint / Main setpoint |
| p1071[0...n] | CI: Main setpoint scaling / Main setp scal |
| p1075[0...n] | Cl : Supplementary setpoint / Suppl setp |
| p1076[0...n] | Cl : Supplementary setpoint scaling / Suppl setp scal |
| p1085[0...n] | CI: Velocity limit positive direction / v_limit pos |
| p1085[0...n] | CI : Speed limit in positive direction of rotation / n _limit pos |
| p1088[0...n] | Cl : Velocity limit negative direction / n_limit neg |
| p1088[0...n] | CI : Speed limit in negative direction of rotation / n _limit neg |
| p1106[0...n] | CI : Minimum velocity signal source / v_min s_src |
| p1106[0...n] | Cl : Minimum speed signal source / n_min s_src |
| p1110[0...n] | BI : Inhibit negative direction / Inhib neg dir |
| p1111[0...n] | BI: Inhibit positive direction / Inhib pos dir |
| p1113[0...n] | BI: Setpoint inversion / Setp inv |
| p1122[0...n] | BI: Bypass ramp-function generator / Bypass RFG |
| p1138[0...n] | CI: Up ramp scaling / Up ramp scaling |
| p1139[0...n] | Cl : Down ramp scaling / Down ramp scaling |
| p1140[0...n] | BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable |
| p1141[0...n] | BI : Continue ramp-function generator/freeze ramp-function generator / Continue RFG |
| p1142[0...n] | BI: Enable setpoint/inhibit setpoint / Setpoint enable |
| p1143[0...n] | BI: Ramp-function generator, accept setting value / RFG accept set v |
| p1144[0...n] | Cl : Ramp-function generator setting value / RFG setting value |
| p1155[0...n] | CI: Speed controller speed setpoint $1 / \mathrm{n}$ _ctrl n_set 1 |
| p1155[0...n] | CI: Velocity controller, velocity setpoint $1 / \mathrm{v}$ _ctrl v_set 1 |
| p1160[0...n] | CI: Speed controller speed setpoint 2 / n_ctrl n_set 2 |
| p1160[0...n] | CI: Velocity controller, velocity setpoint 2 / v_ctrl v_set 2 |
| p1201[0...n] | BI: Flying restart enable signal source / Fly_res enab S_src |
| p1230[0...n] | BI: Armature short-circuit / DC braking activation / ASC/DCBRK act |
| p1235[0...n] | BI: External armature short-circuit, contactor feedback signal / ASC ext feedback |
| p1330[0...n] | CI: U/f control independent voltage setpoint / Uf U_set independ. |
| p1356[0...n] | CI: U/f control, angular setpoint / Uf ang setpoint |
| p1430[0...n] | CI: Speed pre-control / n_prectrl |
| p1430[0...n] | CI: Velocity pre-control / v_prectrl |
| p1437[0...n] | CI : Speed controller, reference model I component input / n_ctrRefMod I_comp |
| p1440[0...n] | CI: Speed controller speed actual value / n_ctrl n_act |
| p1455[0...n] | CI : Speed controller P gain adaptation signal / n_ctr adapt_sig Kp |
| p1455[0...n] | CI: Velocity controller, P gain adaptation signal / v_ctr adapt_sig Kp |
| p1466[0...n] | CI : Speed controller P-gain scaling / n_ctrl Kp scal |
| p1466[0...n] | CI : Velocity controller P gain scaling / v_ctrl Kp scal |
| p1475[0...n] | CI : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB |
| p1476[0...n] | BI: Speed controller hold integrator / n_ctrl integ stop |
| p1476[0...n] | BI: Velocity controller hold integrator / v_ctrl integ stop |
| p1477[0...n] | BI: Speed controller set integrator value / n_ctrl integ set |
| p1477[0...n] | BI: Velocity controller set integrator value / v_ctrl integ set |
| p1478[0...n] | CI : Speed controller integrator setting value / n_ctr integ_setVal |
| p1478[0...n] | CI: Velocity controller integrator value / v_ctr integ_setVal |
| p1479[0...n] | CI : Speed controller integrator setting value scaling / n_ctrl I_val scal |
| p1486[0...n] | CI: Droop compensation torque / Droop M_comp |
| p1492[0...n] | BI: Droop feedback enable / Droop enable |
| p1495[0...n] | Cl : Acceleration pre-control / a_prectrl |


| p1497[0...n] | CI: Moment of inertia, scaling / M_mom inert scal |
| :---: | :---: |
| p1497[0...n] | Cl : Motor weight scaling / Motor weight scal |
| p1500[0...n] | Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set |
| p1500[0...n] | Macro Connector Inputs (Cl) for force setpoints / Macro CI F_set |
| p1501[0...n] | BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl |
| p1501[0...n] | BI: Change over velocity/force control / Changeov n/F_ctrl |
| p1502[0...n] | BI: Freeze moment of inertia estimator / J_estim freeze |
| p1503[0...n] | Cl : Torque setpoint / M_set |
| p1511[0...n] | CI: Supplementary torque 1 / M_suppl 1 |
| p1511[0...n] | CI: Supplementary force 1 / F_suppl 1 |
| p1512[0...n] | CI: Supplementary torque 1 scaling / M_suppl 1 scal |
| p1512[0...n] | CI: Supplementary force 1 scaling / F_suppl 1 scal |
| p1513[0...n] | Cl : Supplementary torque 2 / M_suppl 2 |
| p1513[0...n] | CI: Supplementary force 2 / F_suppl 2 |
| p1522[0...n] | CI : Torque limit upper/motoring / M_max upper/mot |
| p1522[0...n] | Cl : Force limit upper/motoring / F_max upper/mot |
| p1522[0...n] | Cl : Torque limit upper / M_max upper |
| p1523[0...n] | CI : Torque limit lower/regenerative / M_max lower/regen |
| p1523[0...n] | CI : Force limit lower/regenerative / F_max lower/regen |
| p1523[0...n] | CI : Torque limit lower / M_max lower |
| p1528[0...n] | Cl : Torque limit upper/motoring scaling / M_max up/mot scal |
| p1528[0...n] | CI : Force limit upper/motoring scaling / F_max up/mot scal |
| p1528[0...n] | Cl : Torque limit upper scaling / M_max upper scal |
| p1529[0...n] | Cl : Torque limit lower/regenerative scaling / M_max low/gen scal |
| p1529[0...n] | CI: Force limit lower/regenerative scaling / F_max lo/reg scal |
| p1529[0...n] | Cl : Torque limit lower scaling / M_max lower scal |
| p1540[0...n] | CI : Torque limit speed controller upper scaling / M_max n-ctr upScal |
| p1541[0...n] | CI : Torque limit. speed controller lower scaling / M_max nctr lowScal |
| p1542[0...n] | CI : Travel to fixed stop torque reduction / TfS M_red |
| p1542[0...n] | CI: Travel to fixed stop force reduction / TfS F_red |
| p1545[0...n] | BI : Activates travel to a fixed stop / TfS activation |
| p1550[0...n] | BI : Transfer actual torque as torque offset / Accept act torque |
| p1550[0...n] | BI: Transfer actual force as force offset / Accept act force |
| p1551[0...n] | BI: Torque limit variable/fixed signal source / M_lim var/fixS_src |
| p1551[0...n] | BI: Force limit variable/fixed signal source / F_lim var/fixS_src |
| p1552[0...n] | CI : Torque limit upper scaling without offset / M_max up w/o offs |
| p1552[0...n] | CI: Force limit upper scaling without offset / F_max up w/o offs |
| p1554[0...n] | CI : Torque limit lower scaling without offset / M_max low w/o offs |
| p1554[0...n] | CI : Force limit lower scaling without offset / F_max low w/o offs |
| p1555[0...n] | CI: Power limit / P_max |
| p1569[0...n] | CI: Supplementary torque 3 / M_suppl 3 |
| p1569[0...n] | CI: Supplementary force 3 / F_suppl 3 |
| p1571[0...n] | CI: Supplementary flux setpoint / Suppl flux setp |
| p1640[0...n] | CI: Excitation current actual value signal source / I_exc_ActVal S_src |
| p2103[0...n] | BI: 1. Acknowledge faults / 1. Acknowledge |
| p2104[0...n] | BI: 2. Acknowledge faults / 2. Acknowledge |
| p2105[0...n] | BI: 3. Acknowledge faults / 3. Acknowledge |
| p2106[0...n] | BI: External fault 1 / External fault 1 |
| p2107[0...n] | BI: External fault 2 / External fault 2 |
| p2108[0...n] | BI: External fault 3 / External fault 3 |
| p2112[0...n] | BI: External alarm 1 / External alarm 1 |
| p2116[0...n] | BI: External alarm 2 / External alarm 2 |
| p2117[0...n] | BI: External alarm 3 / External alarm 3 |


| p2144[0...n] | BI: Motor stall monitoring enable (negated) / Mot stall enab neg |
| :--- | :--- |
| p2148[0...n] | BI: RFG active / RFG active |
| p2151[0...n] | CI: Speed setpoint for messages/signals / n_set for msg |
| p2151[0...n] | CI: Velocity setpoint for messages/signals /v_set for msg |
| p2154[0...n] | CI: Speed setpoint $2 /$ n_set 2 |
| p2154[0...n] | CI: Velocity setpoint $2 /$ v_set 2 |
| p2200[0...n] | BI: Technology controller enable / Tec_ctrl enable |
| p2220[0...n] | BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0 |
| p2221[0...n] | BI: Technology controller fixed value selection bit $1 /$ Tec_ctrl sel bit 1 |
| p2222[0...n] | BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2 |
| p2223[0...n] | BI: Technology controller fixed value selection bit $3 /$ Tec_ctrl sel bit 3 |
| p2235[0...n] | BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise |
| p2236[0...n] | BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower |
| p2253[0...n] | CI: Technology controller setpoint $1 /$ Tec_ctrl setp 1 |
| p2254[0...n] | CI: Technology controller setpoint $2 /$ Tec_ctrl setp 2 |
| p2264[0...n] | CI: Technology controller actual value / Tec_ctrl act val |
| p2286[0...n] | BI: Hold technology controller integrator / Tec_ctr integ stop |
| p2289[0...n] | CI: Technology controller pre-control signal / Tec_ctrl prectrl |
| p2296[0...n] | CI: Technology controller output scaling / Tec_ctrl outp scal |
| p2297[0...n] | CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src |
| p2298[0...n] | CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s |
| p2299[0...n] | CI: Technology controller limit offset / Tech_ctrl lim offs |
| p3111[0...n] | BI: External fault 3, enable / Ext fault 3 enab |
| p3112[0...n] | BI: External fault 3 enable negated / Ext flt 3 enab neg |
| p3750[0...n] | CI: APC acceleration sensor input / APC accel input |
| p3784[0...n] | BI: Sync-line-drive external increase voltage / Sync ext U incr |
| p3785[0...n] | BI: Sync-line-drive external decrease voltage / Sync ext U decr |
| p3802[0...n] | BI: Sync-line-drive enable / Sync enable |

### 1.3.2 Parameters for drive data sets (DDS)

## Note:

References: /FH1/ $\begin{aligned} & \text { SINAMICS S120 Function Manual Drive Functions } \\ & \text { Section "Data sets" }\end{aligned}$

The following list contains the parameters that are dependent on the drive data sets.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: DDS |  |
| :--- | :--- |
| p0186[0...n] | Motor Data Sets (MDS) number / MDS number |
| p0187[0...n] | Encoder 1 encoder data set number / Enc 1 EDS number |
| p0188[0...n] | Encoder 2 encoder data set number / Enc 2 EDS number |
| p0189[0...n] | Encoder 3 encoder data set number / Enc 3 EDS number |
| p0340[0...n] | Automatic calculation, motor/control parameters / Calc auto par |
| p0572[0...n] | Activate/de-activate inhibit list / Inh_list act/deact |
| p0578[0...n] | Calculate technology-dependent parameters / Calc tec par |
| p0640[0...n] | Current limit / Current limit |
| p0642[0...n] | Encoderless operation current reduction / Encoderl op I_red |
| p1001[0...n] | CO: Fixed velocity setpoint $1 / n \_$net_fixed 1 |
| p1001[0...n] | CO: Fixed speed setpoint $1 / n \_$set_fixed 1 |
| p1002[0...n] | CO: Fixed velocity setpoint $2 / n \_$set_fixed 2 |


| p1002[0...n] | CO: Fixed speed setpoint $2 / \mathrm{n}$ _set_fixed 2 |
| :---: | :---: |
| p1003[0...n] | CO: Fixed velocity setpoint $3 / \mathrm{n}$ _set_fixed 3 |
| p1003[0...n] | CO: Fixed speed setpoint $3 / \mathrm{n}$ _set_fixed 3 |
| p1004[0...n] | CO: Fixed velocity setpoint $4 / \mathrm{n}$ _set_fixed 4 |
| p1004[0...n] | CO: Fixed speed setpoint 4 / n_set_fixed 4 |
| p1005[0...n] | CO: Fixed velocity setpoint 5/n_set_fixed 5 |
| p1005[0...n] | CO: Fixed speed setpoint $5 / \mathrm{n}$ _set_fixed 5 |
| p1006[0...n] | CO: Fixed velocity setpoint 6 / $n$ _set_fixed 6 |
| p1006[0...n] | CO: Fixed speed setpoint $6 / \mathrm{n}$ _set_fixed 6 |
| p1007[0...n] | CO: Fixed velocity setpoint 7 / n_set_fixed 7 |
| p1007[0...n] | CO: Fixed speed setpoint 7 / n_set_fixed 7 |
| p1008[0...n] | CO: Fixed velocity setpoint $8 / \mathrm{n}$ _set_fixed 8 |
| p1008[0...n] | CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8 |
| p1009[0...n] | CO: Fixed velocity setpoint $9 / \mathrm{n}$ _set_fixed 9 |
| p1009[0...n] | CO: Fixed speed setpoint 9 / n_set_fixed 9 |
| p1010[0...n] | CO: Fixed velocity setpoint 10 / n_set_fixed 10 |
| p1010[0...n] | CO: Fixed speed setpoint 10 /n_set_fixed 10 |
| p1011[0...n] | CO: Fixed velocity setpoint 11 / n_set_fixed 11 |
| p1011[0...n] | CO: Fixed speed setpoint 11/n_set_fixed 11 |
| p1012[0...n] | CO: Fixed velocity setpoint 12 / n_set_fixed 12 |
| p1012[0...n] | CO: Fixed speed setpoint 12 / n_set_fixed 12 |
| p1013[0...n] | CO: Fixed velocity setpoint 13 / n_set_fixed 13 |
| p1013[0...n] | CO: Fixed speed setpoint 13 / n_set_fixed 13 |
| p1014[0...n] | CO: Fixed velocity setpoint 14 / n_set_fixed 14 |
| p1014[0...n] | CO: Fixed speed setpoint 14 / n_set_fixed 14 |
| p1015[0...n] | CO: Fixed velocity setpoint 15 / n_set_fixed 15 |
| p1015[0...n] | CO: Fixed speed setpoint 15 / n_set_fixed 15 |
| p1030[0...n] | Motorized potentiometer configuration / Mop configuration |
| p1037[0...n] | Motorized potentiometer maximum velocity / MotP n_max |
| p1037[0...n] | Motorized potentiometer maximum speed / MotP n_max |
| p1038[0...n] | Motorized potentiometer minimum velocity / MotP n_min |
| p1038[0...n] | Motorized potentiometer minimum speed / MotP n_min |
| p1040[0...n] | Motorized potentiometer starting value / Mop start value |
| p1047[0...n] | Motorized potentiometer ramp-up time / Mop ramp-up time |
| p1048[0...n] | Motorized potentiometer ramp-down time / Mop ramp-down time |
| p1058[0...n] | Jog 1 velocity setpoint / Jog 1 n_set |
| p1058[0...n] | Jog 1 speed setpoint / Jog 1 n_set |
| p1059[0...n] | Jog 2 velocity setpoint / Jog 2 n _set |
| p1059[0...n] | Jog 2 speed setpoint / Jog 2 n _set |
| p1063[0...n] | Velocity limit setpoint channel / v_limit setp |
| p1063[0...n] | Speed limit setpoint channel / $n$ _limit setp |
| p1080[0...n] | Minimum velocity / v_min |
| p1080[0...n] | Minimum speed / n_min |
| p1082[0...n] | Maximum speed / n_max |
| p1082[0...n] | Maximum velocity / v_max |
| r1082[0...n] | Encoder emulation, maximum speed / Enc_emul n_max |
| p1083[0...n] | CO: Speed limit in positive direction of rotation / n_limit pos |
| p1083[0...n] | CO: Velocity limit positive direction /v_limit pos |
| p1086[0...n] | CO: Speed limit in negative direction of rotation / n_limit neg |
| p1086[0...n] | CO: Velocity limit negative direction / v_limit neg |
| p1091[0...n] | Skip velocity $1 / \mathrm{v}$ _skip 1 |
| p1091[0...n] | Skip speed 1 / n_skip 1 |
| p1092[0...n] | Skip velocity 2 / v_skip 2 |

```
p1092[0...n] Skip speed 2 / n_skip 2
p1093[0...n] Skip velocity 3 / v_skip 3
p1093[0...n] Skip speed 3/n_skip 3
p1094[0...n] Skip velocity 4 / v_skip 4
p1094[0...n] Skip speed 4 / n_skip 4
p1101[0...n] Skip velocity bandwidth / v_skip bandwidth
p1101[0...n] Skip speed bandwidth / n_skip bandwidth
p1120[0...n] Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n] Ramp-function generator ramp-down time / RFG ramp-down time
p1130[0...n] Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0..n] Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n] Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n] OFF3 ramp-down time / OFF3 t_RD
p1136[0...n] OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n] OFF3 final rounding-off time / RFG OFF3 t_end_del
p1145[0..n] Ramp-function generator tracking intensity. / RFG track intens
p1148[0...n] Ramp-function gen., tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1151[0...n] Ramp-function generator configuration / RFG config
p1189[0..n] Speed setpoint configuration / n_ctrl config
p1189[0...n] Velocity setpoint configuration / v_ctrl config
p1192[0...n] DSC enc selection / DSC enc selection
p1193[0...n] DSC encoder adaptation factor / DSC encodAdaptFact
p1200[0...n] Flying restart operating mode / FlyRest op_mode
p1202[0...n] Flying restart search current / FlyRest I_srch
p1203[0\ldotsn] Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n] Threshold for zero speed detection / n_standst n_thresh
p1226[0...n] Standstill detection, velocity threshold / v_standst v_thresh
p1240[0..n] Vdc controller or Vdc monitoring configuration / Vdc_ctrl config
p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1244[0...n] DC link voltage threshold upper / Vdc upper thresh
p1245[0..n] Vdc_min controller switch-in level (kinetic buffering)/ Vdc_min on_level
p1247[0..n] Vdc_min controller dynamic factor (kinetic buffering)/ Vdc_min dyn_factor
p1248[0...n] DC link voltage threshold lower / Vdc lower thresh
p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n] Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n] Vdc controller integral time / Vdc_ctrl Tn
p1252[0..n] Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n] Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n] Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh
p1262[0...n] Bypass dead time / Bypass t_dead
p1280[0...n] Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
p1283[0...n] Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1285[0...n] Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level
p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor
p1288[0...n] Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
p1289[0...n] Vdc_max controller speed threshold (U/f) / Vdc_max n_thresh
p1290[0...n] Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
p1291[0...n] Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n] Vdc controller rate time (U/f) / Vdc_ctrl t_rate
p1293[0...n] Vdc min controller output limit (U/f) / Vdc_min outp_lim
p1295[0...n] Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1296[0...n] Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response
```

| p1297[0...n] | Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh |
| :---: | :---: |
| p1300[0...n] | Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode |
| p1302[0...n] | U/f control configuration / U/f configuration |
| p1310[0...n] | Voltage boost permanent / U_boost perm |
| p1311[0...n] | Voltage boost at acceleration / U_boost accelerate |
| p1312[0...n] | Voltage boost when starting / U_boost starting |
| p1317[0...n] | U/f control activation / Uf act |
| p1318[0...n] | U/f control ramp-up/ramp-down time / Uf t_rmp-up_rmp-dn |
| p1319[0...n] | U/f control voltage at zero frequency / Uf U at $\mathrm{f}=0 \mathrm{~Hz}$ |
| p1320[0...n] | U/f control programmable characteristic frequency 1 / Uf char f1 |
| p1321[0...n] | U/f control programmable characteristic voltage 1 / Uf char U1 |
| p1322[0...n] | U/f control programmable characteristic frequency 2 / Uf char f2 |
| p1323[0...n] | U/f control programmable characteristic voltage 2 / Uf char U2 |
| p1324[0...n] | U/f control programmable characteristic frequency 3 / Uf char f3 |
| p1325[0...n] | U/f control programmable characteristic voltage 3 / Uf char U3 |
| p1326[0...n] | U/f control characteristic frequency / Uf char f |
| p1326[0...n] | U/f control programmable characteristic frequency 4 / Uf char f4 |
| p1327[0...n] | U/f control characteristic voltage / Uf char U |
| p1327[0...n] | U/f control programmable characteristic voltage 4 / Uf char U4 |
| p1333[0...n] | U/f control FCC starting frequency / U/f FCC f_start |
| p1334[0...n] | U/f control slip compensation starting frequency / Slip comp start |
| p1335[0...n] | Slip compensation, scaling / Slip comp scal |
| p1336[0...n] | Slip compensation limit value / Slip comp lim val |
| p1338[0...n] | U/f mode resonance damping gain / Uf Res_damp gain |
| p1339[0...n] | U/f mode resonance damping filter time constant / Uf Res_damp T |
| p1340[0...n] | I_max frequency controller proportional gain / I_max_ctrl Kp |
| p1341[0...n] | I_max frequency controller integral time / I_max_ctrl Tn |
| p1345[0...n] | DC braking proportional gain / DCBRK Kp |
| p1345[0...n] | I_max voltage controller proportional gain / __max_U_ctrl Kp |
| p1346[0...n] | DC braking, integral time / DCBRK Tn |
| p1346[0...n] | I_max voltage controller integral time / I_max_U_ctrl Tn |
| p1349[0...n] | U/f mode resonance damping maximum frequency / Uf res_damp f_max |
| p1350[0...n] | Soft starting / Soft starting |
| p1351[0...n] | CO: Motor holding brake starting frequency / Brake f_start |
| p1358[0...n] | Angular difference, symmetrizing, actual angle / Sym act angle |
| p1400[0...n] | Speed control configuration / n_ctrl config |
| p1400[0...n] | Velocity control, configuration / v_ctrl config |
| p1401[0...n] | Flux control configuration / Flux ctrl config |
| p1402[0...n] | Closed-loop current control and motor model configuration / I_ctrl config |
| p1404[0...n] | Encoderless operation changeover speed / Encoderl op n_chg |
| p1404[0...n] | Encoderless operation changeover velocity / Encoderl op v_chg |
| p1409[0...n] | Speed control extended configuration / n_ctrl ext config |
| p1409[0...n] | Velocity control extended configuration / v_ctrl ext config |
| p1412[0...n] | TM41 increm. encoder emulation, speed setpoint filter deadtime / n_set dead time |
| p1413[0...n] | Speed actual value filter activation / n_act_filt act |
| p1413[0...n] | Velocity actual value filter activation / v_act_filt act |
| p1414[0...n] | Speed setpoint filter activation / n_set_filt act |
| p1414[0...n] | Velocity setpoint filter activation / v_set_filt act |
| p1414[0...n] | TM41 incr. encoder emulation, speed setpoint filter activation / n_set_filt act |
| p1415[0...n] | Speed setpoint filter 1 type / n_set_filt 1 typ |
| p1415[0...n] | Velocity setpoint filter 1 type / v_setp_filt 1 typ |
| p1416[0...n] | Speed setpoint filter 1 time constant/n_set_filt 1 T |
| p1416[0...n] | Velocity setpoint filter 1 time constant/v_set_filt 1 T |

p1417[0...n] Speed setpoint filter 1 denominator natural frequency / n_set_filt 1 fn_d
p1417[0...n] Velocity setpoint filter 1 denominator natural frequency / v_set_filt 1 fn _d
$\mathrm{p} 1417[0 \ldots \mathrm{n}] \quad$ TM41 Speed setpoint filter 1 denominator natural frequency / n _set_filt 1 fn _d
p1418[0...n] Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d
p1418[0...n] Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_d
p1418[0...n] TM41 Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d
p1419[0...n] Speed setpoint filter 1 numerator natural frequency / n_set_filt 1 fn_n
$\mathrm{p} 1419[0 \ldots \mathrm{n}] \quad$ Velocity setpoint filter 1 numerator natural frequency / v_set_filt 1 fn _n
p1420[0...n] Speed setpoint filter 1 numerator damping / n_set_filt 1 D_n
p1420[0...n] Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_n
p1421[0...n] Speed setpoint filter 2 type / n_set_filt 2 typ
p1421[0...n] Velocity setpoint filter 2 type / v_setp_filt 2 typ
p1422[0...n] Speed setpoint filter 2 time constant / n_set_filt 2 T
p1422[0...n] Velocity setpoint filter 2 time constant / v_set_filt 2 T
$\mathrm{p} 1423[0 \ldots \mathrm{n}] \quad$ Speed setpoint filter 2 denominator natural frequency $/ \mathrm{n}$ _set_filt 2 fn _d
p1423[0...n] Velocity setpoint filter 2 denominator natural frequency / v_set_filt 2 fn _d
p1424[0...n] Speed setpoint filter 2 denominator damping / n_set_filt 2 D_d
p1424[0...n] Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_d
p1425[0...n] Speed setpoint filter 2 numerator natural frequency / n_set_filt 2 fn_n
p1425[0...n] Velocity setpoint filter 2 numerator natural frequency / v_set_filt 2 fn_n
p1426[0...n] Speed setpoint filter 2 numerator damping / n_set_filt 2 D_n
p1426[0...n] Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_n
p1427[0...n] DSC symmetrizing time constant additive T_SYMM_ADD / DSC T_SYMM_ADD
p1428[0...n] Speed pre-control balancing dead time / n_prectrBal t_dead
p1428[0...n] Velocity pre-control balancing dead time / n_prectrBal t_dead
p1429[0...n] Speed pre-control balancing time constant / n_prectr bal T
p1429[0...n] Velocity pre-control balancing time constant / n_prectr bal T
$\mathrm{p} 1433[0 \ldots \mathrm{n}] \quad$ Speed controller reference model natural frequency / n_ctrl RefMod fn
p1433[0...n] Velocity controller reference model natural frequency / v_ctrl RefMod fn
p1434[0...n] Speed controller reference model damping / n_ctrl RefMod D
p1434[0...n] Velocity controller reference model damping / v_ctrl RefMod D
p1435[0...n] Speed controller reference model dead time / n_ctrRefMod t_dead
p1435[0...n] Velocity controller reference model dead time / v_ctrRefMod t_dead
p1441[0...n] Actual speed smoothing time / n_act T_smooth
p1441[0...n] Actual velocity smoothing time / v_act T_smooth
p1442[0...n] Speed controller speed actual value smoothing time / n_ctr n_act T_smth
p1446[0...n] Speed actual value filter type / n_act_filt type
p1446[0...n] Velocity actual value filter type / v_act_filt type
p1447[0...n] Speed actual value filter denominator natural frequency / n_act_filt fn_d
p1447[0...n] Velocity actual value filter denominator natural frequency / v_act_filt fn_d
p1448[0...n] Speed actual value filter denominator damping / n_act_filt D_d
p1448[0...n] Velocity actual value filter denominator damping / v_act_filt D_d
p1449[0...n] Speed actual value filter numerator natural frequency / n_act_filt fn_n
p1449[0...n] Velocity actual value filter numerator natural frequency / v_act_filt fn_n
p1450[0...n] Speed actual value filter numerator damping / n_act_filt D_n
p1450[0...n] Velocity actual value filter numerator damping / v_act_filt D_n
p1451[0...n] Speed actual value smoothing time sensorless / n_act t_sm SL
p1451[0...n] Velocity actual value smoothing time sensorless / v_act t_sm SL
p1451[0...n] Motor model speed actual value smoothing time SLVC / Mot_mod n_act t_sm
p1452[0...n] Speed controller speed actual value smoothing time (SLVC) /n_C n_act T_s SLVC
p1456[0...n] Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
$\mathrm{p} 1456[0 \ldots \mathrm{n}] \quad$ Velocity controller P gain adaptation, lower starting point / v_ctrl AdaptKpLow
p1457[0...n] Speed controller $P$ gain adaptation upper starting point / n_ctrl AdaptKp up

| p1457[0...n] | Velocity controller P gain adaptation upper starting point / v_ctrl AdaptKp up |
| :---: | :---: |
| p1458[0...n] | Adaptation factor, lower / Adapt_factor lower |
| p1459[0...n] | Adaptation factor, upper / Adapt_factor upper |
| p1460[0....n] | Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower |
| p1460[0...n] | Velocity controller, P gain adaptation velocity, lower / v_ctrl Kp n lower |
| p1461[0...n] | Speed controller Kp adaptation speed, upper scaling / n_ctr Kp n up scal |
| p1461[0...n] | Velocity controller Kp adaptation velocity, upper scaling / v_ctr Kp n up scal |
| p1462[0...n] | Speed controller integral time adaptation speed lower / n _ctrl Tn n lower |
| p1462[0....n] | Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower |
| p1463[0...n] | Speed controller Tn adaptation speed, upper scaling / n_ctr Tn n up scal |
| p1463[0...n] | Velocity controller Tn adaptation velocity, upper scaling / v_ctr Tn n up scal |
| p1464[0...n] | Speed controller adaptation speed, lower / n_ctrl n lower |
| p1464[0...n] | Velocity controller adaptation velocity, lower / v_ctrl n lower |
| p1465[0....n] | Speed controller adaptation speed, upper / n_ctrl n upper |
| p1465[0...n] | Velocity controller adaptation velocity, upper / v_ctrl n upper |
| p1470[0...n] | Speed controller encoderless operation P-gain / n_ctrl SLVC Kp |
| p1470[0...n] | Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp |
| p1472[0...n] | Speed controller encoderless operation integral time / n_ctrl SLVC Tn |
| p1472[0...n] | Velocity controller encoderless operation integral time / v_ctrl SLVC Tn |
| p1487[0...n] | Droop compensation torque scaling / Droop M_comp scal |
| p1488[0....n] | Droop input source / Droop input source |
| p1489[0...n] | Droop feedback scaling / Droop scaling |
| p1494[0....n] | Speed controller integrator feedback time constant / n _ctr integ_fdbk T |
| p1494[0...n] | Velocity controller integrator feedback time constant / v_ctr integ_fdbk T |
| p1496[0...n] | Acceleration pre-control scaling / a_prectrl scal |
| p1498[0...n] | Load moment of inertia / Load mom of inert |
| p1498[0...n] | Load mass / Load mass |
| p1499[0....n] | Accelerating for torque control, scaling / a for M_ctrl scal |
| p1514[0...n] | Supplementary torque 2 scaling / M_suppl 2 scal |
| p1517[0...n] | Accelerating torque smoothing time constant / M_accel T_smooth |
| p1517[0...n] | Acceleration force smoothing time constant / F_accel T_smooth |
| p1520[0....n] | CO: Torque limit upper/motoring / M_max upper/mot |
| p1520[0....n] | CO: Force limit upper/motoring / F_max upper/mot |
| p1520[0...n] | CO: Torque limit upper / M_max upper |
| p1521[0....n] | CO: Torque limit lower/regenerative / M_max lower/regen |
| p1521[0...n] | CO: Force limit lower/regenerative / F_max lower/regen |
| p1521[0....n] | CO: Torque limit lower / M_max lower |
| p1524[0...n] | CO: Torque limit upper/motoring scaling / M_max up/mot scal |
| p1524[0...n] | CO: Force limit upper/motoring scaling / F_max up/mot scal |
| p1524[0....n] | CO: Torque limit upper scaling / M_max upper scal |
| p1525[0...n] | CO: Torque limit lower/regenerative scaling / M_max low/gen scal |
| p1525[0....n] | CO: Force limit lower/regenerative scaling / F_max lo/reg scal |
| p1525[0...n] | CO: Torque limit lower scaling / M_max lower scal |
| p1530[0....n] | Power limit motoring / P_max mot |
| p1531[0...n] | Power limit regenerative / P_max gen |
| p1532[0....n] | CO: Torque limit offset / M_max offset |
| p1532[0...n] | CO: Force offset, force limit / F_max offset |
| p1556[0...n] | Power limit scaling / P_max scal |
| p1570[0....n] | CO: Flux setpoint / Flux setpoint |
| p1572[0...n] | Supplementary flux setpoint / Suppl flux setp |
| p1573[0....n] | Flux threshold value magnetizing / Flux thresh magnet |
| p1574[0....n] | Voltage reserve dynamic / U_reserve dyn |
| p1576[0...n] | Flux boost, adaptation speed, lower / Flux boost n lower |


| p1577[0...n] | Flux boost adaptation speed, upper / Flux boost n upper |
| :---: | :---: |
| p1578[0...n] | Flux reduction flux decrease smoothing time / Flux red dec t_sm |
| p1579[0...n] | Flux reduction flux build-up smoothing time / Flux red up t_sm |
| p1580[0...n] | Efficiency optimization / Efficiency opt. |
| p1581[0...n] | Flux reduction factor / Flux red factor |
| p1582[0...n] | Flux setpoint smoothing time / Flux setp T_smth |
| p1584[0...n] | Field weakening operation, flux setpoint smoothing time / Field weak T_smth |
| p1585[0...n] | Flux actual value, smoothing time / Flux actVal T_smth |
| p1586[0...n] | Field weakening characteristic, scaling / Field weak scal |
| p1590[0...n] | Flux controller P gain / Flux controller Kp |
| p1592[0...n] | Flux controller integral time / Flux controller Tn |
| p1594[0...n] | Field-weakening controller, P gain / Field_ctrl Kp |
| p1596[0...n] | Field weakening controller integral-action time / Field_ctrl Tn |
| p1599[0...n] | Flux controller, excitation current difference / Flux ctr I_exc_dif |
| p1600[0...n] | P flux controller, P gain / P flux ctrl Kp |
| p1603[0...n] | Field-generating current, maximum / Id max |
| p1604[0...n] | Pulse technique current limit / Pulse current lim |
| p1605[0...n] | Pulse technique pattern configuration / Puls pattrn config |
| p1607[0...n] | Pulse technique stimulus / Puls stimulus |
| p1609[0...n] | I/f operation current setpoint / I/f op I_setp |
| p1610[0...n] | Torque setpoint static (SLVC) / M_set static |
| p1611[0...n] | Supplementary accelerating torque (SLVC) / M_suppl_accel |
| p1612[0...n] | Current setpoint, open-loop control, encoderless / I_setCtrEncoderl |
| p1612[0...n] | Current setpoint magnetizing open-loop controlled / Id_set ctrl |
| p1616[0...n] | Current setpoint smoothing time / I_set T_smooth |
| p1619[0...n] | Setpoint/actual value tracking threshold / SetAct track thrsh |
| p1620[0...n] | Stator current, minimum / I_stator min |
| p1621[0...n] | Changeover speed, inner cos phi $=1 / \mathrm{n}$ _chngov $\cos \mathrm{phi=1}$ |
| p1622[0...n] | Field-generating current setpoint smoothing time constant/Id_setp T_smth |
| p1625[0...n] | Excitation current setpoint calibration / _eexc_setp cal |
| p1628[0...n] | Current model controller, dynamic factor / I_mod_ctr dyn_fact |
| p1629[0...n] | Current model controller P gain / I_mod_ctrl Kp |
| p1630[0...n] | Current model controller integral time / I_mod_ctrl Tn |
| p1642[0...n] | Minimum excitation current / Min I_exc |
| p1643[0...n] | Gain factor, minimum excitation current closed-loop control / Min I_exc Kp |
| p1653[0...n] | Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min |
| p1654[0...n] | Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW |
| p1656[0...n] | Activates current setpoint filter / I_setp_filt act |
| p1656[0...n] | Current setpoint/Speed actual value filter activation / I_setp_filt act |
| p1657[0...n] | Current setpoint filter 1 type / I_set_filt 1 Typ |
| p1658[0...n] | Current setpoint filter 1 denominator natural frequency / I_set_filt 1 fn_n |
| p1659[0...n] | Current setpoint filter 1 denominator damping / I_set_filt 1 D_n |
| p1660[0...n] | Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn _z |
| p1661[0...n] | Current setpoint filter 1 numerator damping / I_set_filt 1 D_z |
| p1662[0...n] | Current setpoint filter 2 type / I_set_filt 2 Typ |
| p1663[0...n] | Current setpoint filter 2 denominator natural frequency / I_set_filt 2 fn_n |
| p1664[0...n] | Current setpoint filter 2 denominator damping / I_set_filt 2 D_n |
| p1665[0...n] | Current setpoint filter 2 numerator natural frequency / I_set_filt 2 fn _z |
| p1666[0...n] | Current setpoint filter 2 numerator damping / I_set_filt 2 D_z |
| p1667[0...n] | Current setpoint filter 3 type / I_set_filt 3 Typ |
| p1668[0...n] | Current setpoint filter 3 denominator natural frequency / I_set_filt 3 fn_n |
| p1669[0...n] | Current setpoint filter 3 denominator damping / I_set_filt 3 D_n |
| p1670[0...n] | Current setpoint filter 3 numerator natural frequency / I_set_filt 3 fn _z |


| p1671[0...n] | Current setpoint filter 3 numerator damping / I_set_filt 3 D_z |
| :---: | :---: |
| p1672[0...n] | Current setpoint filter 4 type / I_set_filt 4 Typ |
| p1673[0...n] | Current setpoint filter 4 denominator natural frequency / I_set_filt 4 fn _n |
| p1674[0...n] | Current setpoint filter 4 denominator damping / I_set_filt 4 D_n |
| p1675[0...n] | Current setpoint filter 4 numerator natural frequency / I_set_filt 4 fn_n |
| p1676[0...n] | Current setpoint filter 4 numerator damping / I_set_filt 4 D_z |
| p1677[0...n] | Speed actual value filter 5 type / n_act_filt 5 type |
| p1678[0...n] | Speed actual value filter 5 denominator natural frequency / n_act_filt 5 fn_d |
| p1679[0...n] | Speed actual value filter 5 denominator damping / n_act_filt 5 D_d |
| p1680[0...n] | Speed actual value filter 5 numerator natural frequency / n_act_filt 5 fn_n |
| p1681[0...n] | Speed actual value filter 5 numerator damping / n_act_filt 5 D _n |
| p1701[0...n] | Current controller reference model dead time / I_ctrRefMod t_dead |
| p1702[0...n] | Isd current controller pre-control scaling / Isd_ctr_prectrScal |
| p1703[0...n] | Isq current controller pre-control scaling / Isq_ctr_prectrScal |
| p1704[0...n] | Isq current controller pre-control EMF scaling / Isq_ctrl EMF scal |
| p1705[0...n] | Flux setpoint/actual value tracking threshold / Flux track thresh |
| p1715[0...n] | Current controller P gain / I_ctrl Kp |
| p1717[0...n] | Current controller integral-action time / I_ctrl Tn |
| p1726[0...n] | Quadrature arm decoupling, scaling / Transv_decpl scal |
| p1727[0...n] | Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal |
| p1730[0...n] | Isd controller integral component shutdown threshold / Isd_ctr I_compDeac |
| p1731[0...n] | Isd controller combination current time component / Isd ctrl iCombi T1 |
| p1740[0...n] | Gain resonance damping for encoderless closed-loop control / Gain res_damp |
| p1744[0...n] | Motor model speed threshold stall detection / MotMod n_thr stall |
| p1745[0...n] | Motor model error threshold stall detection / MotMod ThreshStall |
| p1748[0...n] | Motor model lower changeover speed n_set -> n_act / Lower n_chngov |
| p1749[0...n] | Motor model upper changeover speed / increase changeover speed / Upper / n_chgov |
| p1750[0...n] | Motor model configuration / MotMod config |
| p1752[0...n] | Motor model changeover speed operation with encoder / MotMod n_chgov enc |
| p1752[0...n] | Motor model with encoder changeover velocity / MotMod enc v_chgov |
| p1753[0...n] | Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE |
| p1754[0...n] | Flux angle difference smoothing time / Angle diff T_smth |
| p1755[0...n] | Motor model changeover speed encoderless operation / MotMod n_chgSnsorl |
| p1755[0...n] | Motor model changeover velocity encoderless operation / MotMod v_chgSnsorl |
| p1757[0...n] | Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp |
| p1758[0...n] | Motor model changeover delay time closed/open-loop control / MotMod t cl_op |
| p1759[0...n] | Motor model changeover delay time open/closed-loop control / MotMod t op_cl |
| p1760[0...n] | Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp |
| p1761[0...n] | Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn |
| p1764[0...n] | Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp |
| p1766[0...n] | Motor model voltage model calculation enable / U_mod calc enab |
| p1767[0...n] | Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn |
| p1774[0...n] | Motor model, offset voltage compensation alpha / MotMod offs comp A |
| p1775[0...n] | Motor model, offset voltage compensation beta / MotMod offs comp B |
| p1780[0...n] | Motor model adaptation configuration / MotMod adapt conf |
| p1780[0...n] | Motor/converter model adaptation configuration / MotMod adapt conf |
| p1784[0...n] | Motor model feedback scaling / MotMod fdbk scal |
| p1785[0...n] | Motor model Lh adaptation Kp / MotMod Lh Kp |
| p1786[0...n] | Motor model Lh adaptation integral time / MotMod Lh Tn |
| r1787[0...n] | Motor model Lh adaptation corrective value / MotMod Lh corr |
| p1795[0...n] | Motor model kT adaptation smoothing time / MotMod kT T_smth |
| p1795[0...n] | Motor model kT adaptation integral time / MotMod kT Tn |
| r1797[0...n] | Motor model kT adaptation corrective value / MotMod kT corr |

p1798[0...n] Motor model pulse technique speed adaptation Kp / MotMod pulses Kp
p1800[0...n] Pulse frequency setpoint / Pulse freq setp
p1802[0...n] Modulator mode / Modulator mode
p1803[0...n] Maximum modulation depth / Modulat depth max
p1804[0...n] Filter time constant smoothed modulation index / T_filt mod_idxSmth
p1806[0...n] Filter time constant Vdc correction / T_filt Vdc_corr
p1811[0...n] Pulse frequency wobbulation amplitude / Puls wobb ampl
p1820[0...n] Reverse the output phase sequence / Outp_ph_seq rev
p1821[0...n] Dir of rot/Dir of rot
p1821[0...n] Direction / Direction
p1840[0...n] Actual value correction configuration / ActVal_corr conf
p1845[0...n] Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig
p1846[0...n] Actual value correction damping factor / ActV_corr D_factor
p1952[0...n] Voltage emulation error final value / U_error final val
p1953[0...n] Voltage emulation error current offset / U_error I_offset
p2140[0...n] Hysteresis speed 2 / n_hysteresis 2
p2140[0...n] Hysteresis velocity $2 /$ v_hysteresis 2
p2141[0...n] Speed threshold $1 / n+$ thresh val 1
p2141[0...n] Velocity threshold value $1 / \mathrm{v}$ _thresh val 1
p2142[0...n] Hysteresis speed 1 / n_hysteresis 1
p2142[0...n] Hysteresis velocity $1 / \mathrm{v}$ _hysteresis 1
p2149[0...n] Monitoring configuration / Monit config
p2150[0...n] Hysteresis speed $3 / n+h y s t e r e s i s ~ 3$
p2150[0...n] Hysteresis velocity $3 / \mathrm{v}$ _hysteresis 3
p2153[0...n] Speed actual value filter time constant / n_act_filt T
p2153[0...n] Velocity actual value filter time constant / v_act_filt T
p2155[0...n] Speed threshold 2 / n_thresh val 2
p2155[0...n] Velocity threshold value $2 /$ v_thresh val 2
p2156[0...n] On delay, comparison value reached / t_on cmpr val rchd
p2161[0...n] Speed threshold $3 / n+$ thresh val 3
p2161[0...n] Velocity threshold value $3 / v$ _thresh val 3
p2162[0...n] Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2162[0...n] Hysteresis velocity v_act > v_max / Hyst v_act>v_max
p2163[0...n] Speed threshold $4 /$ n_thresh val 4
p2163[0...n] Velocity threshold value 4 / v_thresh val 4
p2164[0...n] Hysteresis speed 4 / n_hysteresis 4
p2164[0...n] Hysteresis velocity 4 / v_hysteresis 4
p2166[0...n] Off delay n_act $=n$ _set $/ \mathrm{t}$ _del_off $n \_i=n \_$so
p2166[0...n] Off delay v_act = v_set / t_del_off n_i=n_so
p2167[0...n] Switch-on delay n_act = n_set / t_on n_act=n_set
p2167[0...n] On delay v_act = v_set / t_on n_act=n_set
p2174[0...n] Torque threshold value $1 / \mathrm{M}$ _thresh val 1
p2174[0...n] Force threshold value $1 /$ F_thresh val 1
p2175[0...n] Motor blocked speed threshold / Mot lock n_thresh
p2175[0...n] Motor blocked, velocity threshold / Mot lock v_thresh
p2177[0...n] Motor blocked delay time / Mot lock t_del
p2178[0...n] Motor stalled delay time / Mot stall t_del
p2181[0...n] Load monitoring response / Load monit resp
p2182[0...n] Load monitoring velocity threshold 1 / n_thresh 1
p2182[0...n] Load monitoring speed threshold value $1 / n$ nthresh 1
p2183[0...n] Load monitoring velocity threshold $2 / n+$ thresh 2
p2183[0...n] Load monitoring speed threshold value 2 / n_thresh 2
p2184[0...n] Load monitoring velocity threshold $3 /$ n_thresh 3
p2184[0...n] Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n] Load monitoring force threshold 1, upper / M_thresh 1 upper
p2185[0...n] Load monitoring torque threshold 1, upper / M_thresh 1 upper
p2186[0...n] Load monitoring force threshold 1, lower / M_thresh 1 lower
p2186[0...n] Load monitoring torque threshold 1, lower / M_thresh 1 lower
p2187[0...n] Load monitoring force threshold 2, upper / M_thresh 2 upper
p2187[0...n] Load monitoring torque threshold 2, upper / M_thresh 2 upper
p2188[0...n] Load monitoring force threshold 2, lower / M_thresh 2 lower
p2188[0...n] Load monitoring torque threshold 2, lower / M_thresh 2 lower
p2189[0...n] Load monitoring force threshold 3, upper / M_thresh 3 upper
p2189[0...n] Load monitoring torque threshold 3, upper / M_thresh 3 upper
p2190[0...n] Load monitoring force threshold 3, lower / M_thresh 3 lower
p2190[0...n] Load monitoring torque threshold 3, lower / M_thresh 3 lower
p2192[0...n] Load monitoring delay time / Load monit t_del
p2194[0...n] Torque threshold value 2 / M_thresh val 2
p2194[0...n] Force threshold value 2 / F_thresh val 2
p2195[0...n] Torque utilization switch-off delay / M_util t_off
p2195[0...n] Force utilization switch-off delay / F_util t_off
p2196[0...n] Torque utilization scaling / M_util scal
p2201[0...n] CO: Technology controller, fixed value 1 / Tec_ctrl fix val1
p2202[0...n] CO: Technology controller, fixed value 2 / Tec_ctr fix val 2
p2203[0...n] CO: Technology controller, fixed value 3 / Tec_ctr fix val 3
p2204[0...n] CO: Technology controller, fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller, fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller, fixed value 6 / Tec_ctr fix val 6
p2207[0...n] CO: Technology controller, fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller, fixed value 8 / Tec_ctr fix val 8
p2209[0...n] CO: Technology controller, fixed value 9 / Tec_ctr fix val 9
p2210[0...n] CO: Technology controller, fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller, fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller, fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller, fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller, fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller, fixed value 15 / Tec_ctr fix val 15
p2216[0...n] Technology controller fixed value selection method / Tec_ctr FixVal sel
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2502[0...n] LR encoder assignment / Encoder assignment
p2503[0...n] LR length unit LU per $10 \mathrm{~mm} / \mathrm{LU}$ per 10 mm
p2504[0...n] LR motor/load motor distance / Mot/load motor dis
p2504[0...n] LR motor/load motor revolutions / Mot/load motor rev
p2505[0...n] LR motor/load motor revolutions / Mot/load motor rev
p2506[0...n] LR length unit LU per load path / LU per load path
p2506[0...n] LR length unit LU per load revolution / LU per load rev
p2519[0...n] LR position actual value preprocessing config. DDS changeover / s_act config DDS
p2533[0...n] LR position setpoint filter, time constant / s_set_filt T
p2534[0...n] LR velocity pre-control factor / v_prectrl fact
p2534[0...n] LR speed pre-control factor / n_prectrl fact
p2535[0...n] LR velocity pre-control balancing filter dead time / v_prectrFlt t_dead

| p2535[0...n] | LR speed pre-control balancing filter dead time / n_prectrFlt t_dead |
| :---: | :---: |
| p2536[0...n] | LR velocity pre-control, balancing filter PT1 / v_prectrl filt PT1 |
| p2536[0...n] | LR speed pre-control, symmetrizing filter PT1 / n_prectrl filt PT1 |
| p2538[0...n] | LR proportional gain / Kp |
| p2539[0...n] | LR integral time / Tn |
| p2546[0...n] | LR dynamic following error monitoring tolerance / s_delta_monit tol |
| p2567[0...n] | LR force pre-control mass / F_prectrl mass |
| p2567[0...n] | LR torque pre-control moment of inertia / M_prectr M_inertia |
| p2634[0...n] | EPOS fixed stop maximum following error / Following err max |
| p2720[0...n] | Load gear configuration / Load gear config |
| p2721[0...n] | Load gear, rotary absolute encoder, revolutions, virtual / Abs rot rev |
| p2722[0...n] | Load gear, position tracking tolerance window / Pos track tol |
| r2723[0...n] | CO: Load gear absolute value / Load gear abs_val |
| r2724[0...n] | CO: Load gear position difference / Load gear pos diff |
| p2900[0...n] | CO: Fixed value 1 [\%] / Fixed value 1 [\%] |
| p2901[0...n] | CO: Fixed value 2 [\%] / Fixed value 2 [\%] |
| p2930[0...n] | CO: Fixed value M [ Nm ] / Fixed value M [ Nm ] |
| p2930[0...n] | CO: Fixed value F [ N / / Fixed value F [ N ] |
| p3201[0...n] | Excitation current outside the tolerance threshold value / I_exc n Tol thresh |
| p3202[0...n] | Excitation current outside the tolerance hysteresis / I_exc n Tol hyst |
| p3203[0...n] | Excitation current outside the tolerance delay time / I_exc n Tol t_del |
| p3204[0...n] | Flux outside the tolerance threshold value / Flux n tol thresh |
| p3205[0...n] | Flux outside the tolerance hysteresis / Flux $n$ tol hyst |
| p3206[0...n] | Flux outside tolerance delay time / Flux $n$ tol t_del |
| p3207[0...n] | Zero current signal threshold value / I_0_sig thresh |
| p3208[0...n] | Zero current signal hysteresis / __0_sig hyst |
| p3209[0...n] | Zero current signal delay time / I_0_sig t_del |
| p3233[0...n] | Torque actual value filter, time constant / M_act_filt T |
| p3236[0...n] | Speed threshold 7 / n_thresh val 7 |
| p3237[0...n] | Hysteresis speed 7 / n_hysteresis 7 |
| p3238[0...n] | OFF delay n_act_motor model = n_act external / t_del n_a = n_ext |
| p3320[0...n] | Fluid flow machine power point 1 / Fluid_mach P1 |
| p3321[0...n] | Fluid flow machine speed point 1 / Fluid_mach n1 |
| p3322[0...n] | Fluid flow machine power point 2 / Fluid_mach P2 |
| p3323[0...n] | Fluid flow machine speed point 2 / Fluid_mach n2 |
| p3324[0...n] | Fluid flow machine power point 3 / Fluid_mach P3 |
| p3325[0...n] | Fluid flow machine speed point 3 / Fluid_mach n3 |
| p3326[0...n] | Fluid flow machine power point 4 / Fluid_mach P4 |
| p3327[0...n] | Fluid flow machine speed point 4 / Fluid_mach n4 |
| p3328[0...n] | Fluid flow machine power point 5 / Fluid_mach P5 |
| p3329[0...n] | Fluid flow machine speed point 5 / Fluid_mach n5 |
| p3702[0...n] | APC load speed/motor speed weighting / APC n_load/mot wt |
| p3704[0...n] | APC filter activation / APC filter act |
| p3705[0...n] | APC filter type / APC filter type |
| p3706[0...n] | APC sub-sampling, filter 2.x / APC sub-samp. 2.x |
| p3707[0...n] | APC sub-sampling, filter 3.x / APC sub-samp. 3.x |
| p3708[0...n] | APC velocity actual value smoothing time encoder 2 / APC v_act t_sm 2 |
| p3708[0...n] | APC speed actual value smoothing time encoder 2 / APC n_act t_sm 2 |
| p3709[0...n] | APC velocity actual value smoothing time encoder 3 / APC v_act t_sm 3 |
| p3709[0...n] | APC speed actual value smoothing time encoder 3 / APC n_act t_sm 3 |
| p3711[0...n] | APC filter 1.1 denominator natural frequency / APC Filt 1.1 fn _d |
| p3712[0...n] | APC filter 1.1 denominator damping / APC Filt 1.1 D_d |
| p3713[0...n] | APC filter 1.1 numerator natural frequency / APC Filt 1 fn_n |


| p3714[0...n] | APC filter 1.1 numerator damping / APC Filt 1.1 D_n |
| :---: | :---: |
| p3721[0...n] | APC filter 2.1 denominator natural frequency / APC Filt 2.1 fn_d |
| p3722[0...n] | APC filter 2.1 denominator damping / APC Filt 2.1 D_d |
| p3723[0...n] | APC filter 2.1 numerator natural frequency / APC Filt 2.1 fn_n |
| p3724[0...n] | APC filter 2.1 numerator damping / APC Filt 2.1 D_n |
| p3726[0...n] | APC filter 2.2 denominator natural frequency / APC Filt 2.2 fn_d |
| p3727[0...n] | APC filter 2.2 denominator damping / APC Filt 2.2 D_d |
| p3728[0...n] | APC filter 2.2 numerator natural frequency / APC Filt 2.2 fn_n |
| p3729[0...n] | APC filter 2.2 numerator damping / APC Filt 2.2 D_n |
| p3731[0...n] | APC filter 3.1 denominator natural frequency / APC Filt 3.1 fn_d |
| p3732[0...n] | APC filter 3.1 denominator damping / APC Filt 3.1 D_d |
| p3733[0...n] | APC filter 3.1 numerator natural frequency / APC Filt 3.1 fn_n |
| p3734[0...n] | APC filter 3.1 numerator damping / APC Filt 3.1 D_n |
| p3736[0...n] | APC filter 3.2 denominator natural frequency / APC Filt 3.2 fn_d |
| p3737[0...n] | APC filter 3.2 denominator damping / APC Filt 3.2 D_d |
| p3738[0...n] | APC filter 3.2 numerator natural frequency / APC Filt 3.2 fn_n |
| p3739[0...n] | APC filter 3.2 numerator damping / APC Filt 3.2 D_n |
| p3751[0...n] | APC acceleration sensor high pass time constant / APC accel DT1 T |
| p3760[0...n] | APC load velocity controller 1 P gain / APC v_load ctr1 Kp |
| p3760[0...n] | APC load speed controller 1 P gain / APC n_load ctr1 Kp |
| p3761[0...n] | APC load velocity controller 1 rate time / APC v_load ctr1 Tv |
| p3761[0...n] | APC load speed controller 1 rate time / APC n_load ctr1 Tv |
| p3765[0...n] | APC load velocity controller 2 P gain / APC v_load ctr2 Kp |
| p3765[0...n] | APC load speed controller 2 P gain / APC n_load ctr2 Kp |
| p3766[0...n] | APC load velocity controller 2 rate time / APC v_load ctr2 Tv |
| p3766[0...n] | APC load speed controller 2 rate time / APC n_load ctr2 Tv |
| p3778[0...n] | APC velocity limit / APC v_limit |
| p3778[0...n] | APC speed limit / APC n_limit |
| p3779[0...n] | APC velocity limit monitoring time / APC v_limit $t$ |
| p3779[0...n] | APC speed limit monitoring time / APC n_limit t |
| p3800[0...n] | Sync-line-drive activation / Sync act |
| p3801[0...n] | Sync-line-drive, drive object number / Sync DO_No |
| p3806[0...n] | Sync-line-drive frequency difference threshold value / Sync f_diff thresh |
| p3809[0...n] | Sync-line-drive phase setpoint / Sync phase setp |
| p3811[0...n] | Sync-line-drive frequency limiting / Sync f_lim |
| p3813[0...n] | Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh |
| p3815[0...n] | Sync-line-drive voltage difference threshold value / Sync U_diff thresh |
| p3820[0...n] | Friction characteristic, value n0 / Friction n0 |
| p3820[0...n] | Friction characteristic, value v0 / Friction v0 |
| p3821[0...n] | Friction characteristic, value $\mathrm{n} 1 /$ Friction n 1 |
| p3821[0...n] | Friction characteristic, value v1/ Friction v1 |
| p3822[0...n] | Friction characteristic, value $\mathrm{n} 2 /$ Friction n 2 |
| p3822[0...n] | Friction characteristic, value v2 / Friction v2 |
| p3823[0...n] | Friction characteristic, value n3 / Friction n3 |
| p3823[0...n] | Friction characteristic, value v3 / Friction v3 |
| p3824[0...n] | Friction characteristic, value $\mathrm{n} 4 /$ Friction n 4 |
| p3824[0...n] | Friction characteristic, value v4/ Friction v4 |
| p3825[0...n] | Friction characteristic, value n5 / Friction n5 |
| p3825[0...n] | Friction characteristic, value v5 / Friction v5 |
| p3826[0...n] | Friction characteristic, value n 6 / Friction n6 |
| p3826[0...n] | Friction characteristic, value v6 / Friction v6 |
| p3827[0...n] | Friction characteristic, value n 7 / Friction n 7 |
| p3827[0...n] | Friction characteristic, value v7 / Friction v7 |


| p3828[0...n] | Friction characteristic, value n8/ Friction n8 |
| :---: | :---: |
| p3828[0...n] | Friction characteristic, value v8/ Friction v8 |
| p3829[0...n] | Friction characteristic, value n9 / Friction n9 |
| p3829[0...n] | Friction characteristic, value v9 / Friction v9 |
| p3830[0...n] | Friction characteristic, value M0 / Friction M0 |
| p3830[0...n] | Friction characteristic, value F0 / Friction F0 |
| p3831[0...n] | Friction characteristic, value M1 / Friction M1 |
| p3831[0...n] | Friction characteristic, value F1 / Friction F1 |
| p3832[0...n] | Friction characteristic, value M2 / Friction M2 |
| p3832[0...n] | Friction characteristic, value F2 / Friction F2 |
| p3833[0...n] | Friction characteristic, value M3 / Friction M3 |
| p3833[0...n] | Friction characteristic, value F3 / Friction F3 |
| p3834[0...n] | Friction characteristic, value M4 / Friction M4 |
| p3834[0...n] | Friction characteristic, value F4 / Friction F4 |
| p3835[0...n] | Friction characteristic, value M5 / Friction M5 |
| p3835[0...n] | Friction characteristic, value F5 / Friction F5 |
| p3836[0...n] | Friction characteristic, value M6 / Friction M6 |
| p3836[0...n] | Friction characteristic, value F6 / Friction F6 |
| p3837[0...n] | Friction characteristic, value M7 / Friction M7 |
| p3837[0...n] | Friction characteristic, value F7 / Friction F7 |
| p3838[0...n] | Friction characteristic, value M8 / Friction M8 |
| p3838[0...n] | Friction characteristic, value F8 / Friction F8 |
| p3839[0...n] | Friction characteristic, value M9 / Friction M9 |
| p3839[0...n] | Friction characteristic, value F9 / Friction F9 |
| p3843[0...n] | Friction characteristic smoothing time frictional torque diff. / Frict T_smooth dM |
| p3844[0...n] | Friction characteristic number changeover point upper / Frict chngov pt up |
| p3846[0...n] | Friction characteristic record ramp-up/ramp-down time / Frict rec t_RFG |
| p3847[0...n] | Friction characteristic record warm-up time / Frict rec t_warm |
| r3925[0...n] | Identification final display / Ident final_disp |
| r3927[0...n] | Motor data identification induction motor data determined / MotID ASM dat det |
| r3928[0...n] | Motor data identification synchronous motor data determined/ Motld PEM dat det |
| r3998[0...n] | First drive commissioning / First drv_comm |
| p5250[0...n] | Activate cogging torque compensation / Cog_M_comp act |
| p7035[0...n] | Par_circuit circulating current control operating mode / Circ_I mode |
| p7036[0...n] | Par_circuit circulating current control proportional gain / Circ_I Kp |
| p7037[0...n] | Par_circuit circulating current control integral time / I_circ Tn |
| p7038[0...n] | Par_circuit circulating current control limit / I_circ limit |

### 1.3.3 Parameters for encoder data sets (EDS)

## Note:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

The following list contains the parameters that are dependent on the encoder data sets.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: EDS |  |
| :---: | :---: |
| p0141[0...n] | Encoder interface (Sensor Module) component number / Enc_interf comp_no |
| p0142[0...n] | Encoder component number / Encoder comp_no |
| p0144[0...n] | Sensor Module detection via LED / SM detection LED |
| p0145[0...n] | Activate/de-activate encoder interface / Enc_intf act/deact |
| r0146[0...n] | Encoder interface active/inactive / Enc_intf act/inact |
| r0147[0...n] | Sensor Module EEPROM data version / SM EEPROM version |
| r0148[0...n] | Sensor Module firmware version / SM FW version |
| p0400[0...n] | Encoder type selection / Enc_typ sel |
| p0401[0...n] | Encoder type, OEM selection / Enc type OEM sel |
| p0402[0...n] | Gearbox type selection / Gearbox type sel |
| p0404[0...n] | Encoder configuration effective / Enc_config eff |
| p0405[0...n] | Square-wave encoder track A/B / Sq-wave enc A/B |
| p0407[0...n] | Linear encoder grid division / Enc grid div |
| p0408[0...n] | Rotary encoder pulse No. / Rot enc pulse No. |
| p0410[0...n] | Encoder inversion actual value / Enc inv act value |
| p0411[0...n] | Measuring gear, configuration / Meas gear config |
| p0412[0...n] | Measuring gear, absolute encoder, rotary, revolutions, virtual / Abs rot rev |
| p0413[0...n] | Measuring gear, position tracking tolerance window / Pos track window |
| p0414[0...n] | Redundant coarse position value relevant bits (identified) / Relevant bits |
| p0415[0...n] | Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB |
| p0416[0...n] | Non safety-relevant meas. steps position value pos1 (detected) / nsrPos1 |
| p0417[0...n] | Encoder safety comparison algorithm (detected) / Safety CompAlgo |
| p0418[0...n] | Fine resolution Gx_XIST1 (in bits) / Enc fine Gx_XIST1 |
| p0419[0...n] | Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2 |
| p0420[0...n] | Encoder connection / Enc_connection |
| p0421[0...n] | Absolute encoder rotary multiturn resolution / Enc abs multiturn |
| p0422[0...n] | Absolute encoder linear measuring step resolution / Enc abs meas step |
| p0423[0...n] | Absolute encoder rotary singleturn resolution / Enc abs singleturn |
| p0424[0...n] | Encoder, linear zero mark distance / Enc lin ZM_dist |
| p0425[0...n] | Encoder, rotary zero mark distance / Enc rot dist ZM |
| p0426[0...n] | Encoder zero mark differential distance / Enc ZM Dif_dist |
| p0427[0...n] | Encoder SSI baud rate / Enc SSI baud rate |
| p0428[0...n] | Encoder SSI monoflop time / Enc SSI t_monoflop |
| p0429[0...n] | Encoder SSI configuration / Enc SSI config |
| p0430[0...n] | Sensor Module configuration / SM config |
| p0431[0...n] | Angular commutation offset / Ang_com offset |
| p0432[0...n] | Gearbox factor, encoder revolutions / Grbx_fact enc_rev |
| p0433[0...n] | Gearbox factor, motor/load revolutions / Grbx_fact mot_rev |
| p0434[0...n] | Encoder SSI error bit / Enc SSI error bit |
| p0435[0...n] | Encoder SSI alarm bit / Enc SSI alarm bit |
| p0436[0...n] | Encoder SSI parity bit / Enc SSI parity bit |
| p0437[0...n] | Sensor Module configuration extended / SM config ext |

p0438[0...n] Squarewave encoder filter time / Enc t_filt
p0439[0...n] Encoder ramp-up time / Enc ramp-up time
p0440[0...n] Copy encoder serial number / Copy enc ser_no
p0441[0...n] Encoder commissioning serial number part 1 / Enc comm ser_no 1
p0442[0...n] Encoder commissioning serial number part 2 / Enc comm ser_no 2
p0443[0...n] Encoder commissioning serial number part 3 / Enc comm ser_no 3
p0444[0...n] Encoder commissioning serial number part 4 / Enc comm ser_no 4
p0445[0...n] Encoder commissioning serial number part 5 / Enc comm ser_no 5
p0446[0...n] Encoder SSI number of bits before the absolute value / Enc SSI bit before
p0447[0...n] Encoder SSI number of bits absolute value / Enc SSI bit val
p0448[0...n] Encoder SSI number of bits after the absolute value / Enc SSI bit after
p0449[0...n] Encoder SSI number of bits, filler bits / Enc SSI fill bits
p0453[0...n] Pulse encoder evaluation zero speed measuring time / Enc_ev z 0 t_meas
p0493[0...n] Zero mark selection, input terminal / ZM_sel inp_term
p0494[0...n] Equivalent zero mark, input terminal / ZM_equiv input
p2507[0...n] LR absolute encoder adjustment status / Abs_enc_adj stat
p2525[0...n] CO: LR encoder adjustment, offset / Enc_adj offset
p4600[0...n] Motor temperature sensor 1 sensor type / Temp_sens 1 type
p4601[0...n] Motor temperature sensor 2 sensor type / Temp_sens 2 type
p4602[0...n] Motor temperature sensor 3 sensor type / Temp_sens 3 type
p4603[0...n] Motor temperature sensor 4 sensor type / Temp_sens 4 type
p4662[0...n] Encoder characteristic type / Enc char_type
p4663[0...n] Encoder characteristic K0 / Enc char K0
p4664[0...n] Encoder characteristic K1 / Enc char K1
p4665[0...n] Encoder characteristic K2 / Enc char K2
p4666[0...n] Encoder characteristic K3 / Enc char K3
p4670[0...n] Analog sensor configuration / Ana_sens config
p4671[0...n] Analog sensor input / Ana_sens inp
p4672[0...n] Analog sensor channel A voltage at actual value zero / Ana_sens $A U$ at 0
p4673[0...n] Analog sensor channel A voltage per encoder period / Ana_sens A U/per
p4674[0...n] Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0
p4675[0...n] Analog sensor channel B voltage per encoder period / Ana_sens B U/per
p4676[0...n] Analog sensor range limit threshold / Ana_sens lim thr
p4677[0...n] Analog sensor LVDT configuration / Ana_sens LVDT conf
p4678[0...n] Analog sensor LVDT ratio / An_sens LVDT ratio
p4679[0...n] Analog sensor LVDT phase / An_sens LVDT ph
p4680[0...n] Zero mark monitoring tolerance permissible / ZM_monit tol perm
p4681[0...n] Zero mark monitoring, tolerance window limit 1 positive / ZM tol lim 1 pos
p4682[0...n] Zero mark monitoring, tolerance window limit 1 negative / ZM tol lim 1 neg
p4683[0...n] Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr pos
p4684[0...n] Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
p4685[0...n] Speed actual value mean value generation / n_act mean val
p4686[0...n] Zero mark minimum length / ZM min length

### 1.3.4 Parameters for motor data sets (MDS)

## Note:

References: /FH1/ | SINAMICS S120 Function Manual Drive Functions |
| :--- |
| Section "Data sets" |

The following list contains the parameters that are dependent on the motor data sets.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: MDS |  |
| :---: | :---: |
| p0131[0...n] | Motor component number / Mot comp_no |
| p0300[0...n] | Motor type selection / Mot type sel |
| p0301[0...n] | Motor code number selection / Mot code No. sel |
| r0302[0...n] | Motor code number of motor with DRIVE-CLiQ / Motor code Mot DLQ |
| r0303[0...n] | Motor with DRIVE-CLiQ status word / Motor w DLQ ZSW |
| p0304[0...n] | Rated motor voltage / Mot U_rated |
| p0305[0...n] | Rated motor current / Mot I_rated |
| p0306[0...n] | Number of motors connected in parallel / Motor qty |
| p0307[0...n] | Rated motor power / Mot P_rated |
| p0308[0...n] | Rated motor power factor / Mot cos_phi_rated |
| p0309[0...n] | Rated motor efficiency / Mot eta_rated |
| p0310[0...n] | Rated motor frequency / Mot f_rated |
| p0311[0...n] | Rated motor speed / Mot n_rated |
| p0311[0...n] | Rated motor velocity / Mot v_rated |
| p0312[0...n] | Rated motor torque / Mot M_rated |
| p0312[0...n] | Rated motor force / Mot F_rated |
| r0313[0...n] | Motor pole pair number, actual (or calculated) / Mot PolePairNo act |
| p0314[0...n] | Motor pole pair number / Mot pole pair No. |
| p0315[0...n] | Motor pole pair width / MotPolePair width |
| p0316[0...n] | Motor torque constant / Mot kT |
| p0316[0...n] | Motor force constant / Mot kT |
| p0317[0...n] | Motor voltage constant / Mot kE |
| p0318[0...n] | Motor stall current / Mot I_standstill |
| p0319[0...n] | Motor stall torque / Mot M_standstill |
| p0319[0...n] | Motor stall force / Mot F_standstill |
| p0320[0...n] | Motor rated magnetizing current/short-circuit current / Mot I_mag_rated |
| p0322[0...n] | Maximum motor speed / Mot n_max |
| p0322[0...n] | Motor maximum velocity / Mot v_max |
| p0323[0...n] | Maximum motor current / Mot I_max |
| p0324[0...n] | Winding maximum speed / Winding n_max |
| p0324[0...n] | Winding maximum velocity / Winding v_max |
| p0325[0...n] | Motor pole position identification current, 1st phase / Mot PollD I 1st ph |
| p0326[0...n] | Motor stall torque correction factor / Mot M_stall_corr |
| p0326[0...n] | Motor stall force correction factor / Mot F_stall_corr |
| p0327[0...n] | Optimum motor load angle / Mot phi_load opt |
| p0328[0...n] | Motor reluctance torque constant / Mot kT_reluctance |
| p0328[0...n] | Motor reluctance force constant / Mot kT_reluctance |
| p0329[0...n] | Motor pole position identification current / Mot PollD current |
| r0330[0...n] | Rated motor slip / Mot slip_rated |
| r0331[0...n] | Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act |
| r0332[0...n] | Rated motor power factor / Mot cos_phi_rated |
| r0333[0...n] | Rated motor torque / Mot M_rated |


| r0334[0...n] | Actual motor-torque constant / Mot kT act |
| :---: | :---: |
| r0334[0...n] | Actual motor force constant / Mot kT act |
| p0335[0...n] | Motor cooling type / Motor cooling type |
| r0336[0...n] | Actual rated motor frequency / Mot f_rated act |
| r0337[0...n] | Rated motor EMF / Mot EMF_rated |
| p0338[0...n] | Motor limit current / Mot I_limit |
| r0339[0...n] | Rated motor voltage / Mot U_rated |
| p0341[0...n] | Motor moment of inertia / Mot M_mom of inert |
| p0341[0...n] | Motor weight / Mot weight |
| p0342[0...n] | Ratio between the total and motor moment of inertia / Mot MomInert Ratio |
| p0342[0...n] | Ratio between the total and motor force of inertia / Mot MomInert Ratio |
| r0343[0...n] | Rated motor current identified / Mot I_rated ident |
| p0344[0...n] | Motor weight (for the thermal motor model) / Mot weight th mod |
| r0345[0...n] | Nominal motor starting time / Mot t_start_rated |
| p0346[0...n] | Motor excitation build-up time / Mot t_excitation |
| p0347[0...n] | Motor de-excitation time / Mot t_de-excitat. |
| p0348[0...n] | Speed at the start of field weakening Vdc $=600 \mathrm{~V} /$ Mot n _field weaken |
| p0348[0...n] | Velocity at the start of field weakening Vdc $=600 \mathrm{~V} / \mathrm{Mot}$ v_field weaken |
| p0350[0...n] | Motor stator resistance, cold / Mot R_stator cold |
| p0352[0...n] | Cable resistance / Mot R_cable cold |
| p0353[0..n] | Motor series inductance / Mot L_series |
| p0354[0...n] | Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d |
| p0355[0...n] | Motor damping resistance, q axis / Mot R_damp q |
| p0356[0...n] | Motor stator leakage inductance / Mot L_stator leak. |
| p0357[0...n] | Motor stator inductance, d axis / Mot L_stator d |
| p0358[0...n] | Motor rotor leakage inductance / damping inductance, d axis / Mot L_r leak / LDd |
| p0359[0...n] | Motor damping inductance, q axis / Mot L_damp q |
| p0360[0...n] | Motor magnetizing inductance/magn. inductance, d axis saturated / Mot Lh/Lh d sat |
| p0361[0...n] | Motor magnetizing inductance q axis, saturated/ Mot L_magn q sat |
| p0362[0...n] | Motor saturation characteristic flux 1 / Mot saturat.flux 1 |
| p0363[0...n] | Motor saturation characteristic flux 2 / Mot saturat.flux 2 |
| p0364[0...n] | Motor saturation characteristic flux 3 / Mot saturat.flux 3 |
| p0365[0...n] | Motor saturation characteristic flux 4 / Mot saturat.flux 4 |
| p0366[0...n] | Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1 |
| p0367[0...n] | Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2 |
| p0368[0...n] | Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3 |
| p0369[0...n] | Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4 |
| r0370[0...n] | Motor stator resistance, cold / Mot R_stator cold |
| r0372[0...n] | Cable resistance / Mot R_cable |
| r0373[0...n] | Motor rated stator resistance / Mot R_stator rated |
| r0374[0...n] | Motor rotor resistance cold / damping resistance d axis / Mot R_r cold / RDd |
| r0375[0...n] | Motor damping resistance, q axis / Mot R_damp q |
| r0376[0...n] | Rated motor rotor resistance / Mot R_rotor rated |
| r0377[0...n] | Motor leakage inductance, total / Mot L_leak total |
| r0378[0...n] | Motor stator inductance, d axis / Mot L_stator d |
| r0380[0...n] | Motor damping inductance, d axis / Mot L_damping_d |
| r0381[0...n] | Motor damping inductance, q axis / Mot L_damping_q |
| r0382[0...n] | Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat |
| r0383[0...n] | Motor magnetizing inductance q axis, saturated / Mot L_magn q sat |
| r0384[0...n] | Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd |
| r0385[0...n] | Motor damping time constant, q axis / Mot L_damping q |
| r0386[0...n] | Motor stator leakage time constant / Mot T_stator leak |
| r0387[0...n] | Motor stator leakage time constant, q axis / Mot T_Sleak /T_Sq |


| p0389[0...n] | Excitation rated no-load current / Exc I_noload_rated |
| :---: | :---: |
| p0390[0...n] | Rated excitation current / Exc I_rated |
| p0391[0...n] | Current controller adaptation, starting point KP / I_adapt pt KP |
| p0392[0...n] | Current controller adaptation, starting point KP adapted / I_adapt pt KP adap |
| p0393[0...n] | Current controller adaptation p gain adaptation / I_adapt Kp adapt |
| p0393[0...n] | Current controller adaptation P gain scaling / I_adapt Kp scal |
| r0395[0...n] | Actual stator resistance / R_stator act |
| r0396[0...n] | Actual rotor resistance / R_rotor act |
| p0398[0...n] | Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1 |
| p0399[0...n] | Angle magn decoupling (cross saturation) coeff 3 / Magn decoupl C3 |
| p0530[0...n] | Bearing version selection / Bearing vers sel |
| p0531[0...n] | Bearing code number selection / Bearing codeNo sel |
| p0532[0...n] | Bearing maximum speed / Bearing n_max |
| p0532[0...n] | Bearing maximum velocity / Bearing v_max |
| p0600[0...n] | Motor temperature sensor for monitoring / Mot temp_sensor |
| p0601[0...n] | Motor temperature sensor type / Mot_temp_sens type |
| p0604[0...n] | Mot_temp_mod 1/KTY alarm threshold / Mod 1/KTY A thresh |
| p0605[0...n] | Mot_temp_mod 1/2 threshold / Threshold |
| p0606[0...n] | Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer |
| p0607[0...n] | Temperature sensor fault timer / Sensor fault time |
| p0610[0...n] | Motor overtemperature response / Mot temp response |
| p0611[0...n] | I2t motor model thermal time constant / I2t mot_mod T |
| p0612[0...n] | Mot_temp_mod activation / Mot_temp_mod act |
| p0615[0...n] | Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh |
| p0616[0...n] | Motor overtemperature alarm threshold 1 / Mot temp alarm 1 |
| p0617[0...n] | Stator thermally relevant iron component / Stat therm iron |
| p0618[0...n] | Stator thermally relevant copper component / Stat therm copper |
| p0619[0...n] | Rotor thermally relevant weight / Rotor therm weight |
| p0620[0...n] | Thermal adaptation, stator and rotor resistance / Mot therm_adapt R |
| p0621[0...n] | Identification stator resistance after restart / Rst_ident Restart |
| p0622[0...n] | Motor excitation time for Rs_ident after powering up again / t_excit Rs_id |
| p0624[0...n] | Motor temperature offset PT100 / Mot T_offset PT100 |
| p0625[0...n] | Motor ambient temperature / Mot T_ambient |
| p0626[0...n] | Motor overtemperature, stator core / Mot T_over core |
| p0627[0...n] | Motor overtemperature, stator winding / Mot T_over stator |
| p0628[0...n] | Motor overtemperature rotor winding / Mot T_over rotor |
| r0630[0...n] | Mot_temp_mod ambient temperature / Mod T_ambient |
| r0631[0...n] | Mot_temp_mod stator iron temperature / Mod T_stator |
| r0632[0...n] | Mot_temp_mod stator winding temperature / Mod T_winding |
| r0633[0...n] | Mot_temp_mod rotor temperature / Mod T_rotor |
| p0634[0...n] | Q flux flux constant unsaturated / PSIQ KPSI UNSAT |
| p0635[0...n] | Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT |
| p0636[0...n] | Q flux direct axis current constant unsaturated / PSIQ KID UNSAT |
| p0637[0...n] | Q flux flux gradient saturated / PSIQ Grad SAT |
| p0643[0...n] | Overvoltage protection for synchronous motors / Overvolt_protect |
| p0645[0...n] | Motor kT characteristic kT1 / Mot kT char kT1 |
| p0646[0...n] | Motor kT characteristic kT3 / Mot kT char kT3 |
| p0647[0...n] | Motor kT characteristic kT5 / Mot kT char kT5 |
| p0648[0...n] | Motor kT characteristic kT7 / Mot kT char kT7 |
| p0650[0...n] | Actual motor operating hours / Mot t_oper act |
| p0651[0...n] | Motor operating hours maintenance interval / Mot t_op maint |
| p0652[0...n] | Motor stator resistance, scaling / Mot R_stator scal |
| p0653[0...n] | Motor stator leakage inductance, scaling / Mot L_S_leak scal |

p0655[0...n] Motor magnetizing inductance, d axis saturated scaling / Mot L_m d sat scal
p0656[0...n] Motor magnetizing inductance, q axis, saturated scaling / Mot L_m q sat scal
p0657[0...n] Motor damping inductance, d axis scaling / Mot L_damp d scal
p0658[0...n] Motor damping inductance, q axis scaling / Mot L_damp q scal
p0659[0...n] Motor damping resistance, d axis scaling / Mot R_damp d scal
p0660[0...n] Motor damping resistance, q axis scaling / Mot R_damp q scal
p0826[0...n] Motor changeover, motor number / Mot_chng mot No.
p0827[0...n] Motor changeover status word bit number / Mot_chg ZSW bitNo.
p1231[0...n] Armature short-circuit / DC braking configuration / ASC/DCBRK config
p1232[0...n] DC braking, braking current / DCBRK I_brake
p1233[0...n] DC braking time / DCBRK time
p1234[0...n] Speed at the start of DC braking / DCBRK n_start
p1234[0...n] DC braking, starting velocity / DCBRK v_start
p1236[0...n] Ext. armature short-cct., contactor feedback signal monit. time / ASC ext t_monit
p1237[0...n] External armature short-circuit, delay time when opening / ASC ext t_wait
p1909[0...n] Motor data identification control word / MotID STW
p1958[0...n] Rotating measurement ramp-up/ramp-down time / Rot meas t_r up/dn
p1958[0...n] Moving measurement ramp-up/ramp-down time / Mov meas t_r up/dn
p1959[0...n] Rotating measurement configuration / Rot meas config
p1959[0...n] Moving measurement configuration / Mov meas config
p1980[0...n] PollD technique / PolID technique
p1981[0...n] PollD distance max / PolID distance max
p1982[0...n] PolID selection / PolID selection
p1991[0...n] Motor changeover, angular commutation correction / Ang_com corr
p1993[0...n] PollD motion-based current / PolID I mot_bas
p1994[0...n] PollD motion-based rise time / PoIID T mot_bas
p1995[0...n] PolID motion-based gain / PolID kp mot_bas
p1996[0...n] PolID motion-based integral time / PoIID Tn mot_bas
p1997[0...n] PollD motion-based smoothing time / PollD t_sm mot_bas
p1999[0...n] Ang. commutation offset calibr. and PolID scaling / Com_ang_offs scal
p3049[0...n] Motld Speed at start of field weakening identified / ident
p3049[0...n] Motld Speed at start of field weakening identified / v_Fieldweak ident
p3050[0...n] Motorld stator resistance identified / R_stator ident
p3054[0...n] Motld rotor resistance identified / R_rotor ident
p3056[0...n] Motld stator leakage inductance identified / L_stator leak
p3058[0...n] Motld rotor leakage inductance identified / L_rotor leak
p3060[0...n] Motld magnetizing inductance identified / Motld Lh ident
p3090[0...n] PolID elasticity-based configuration / PollD el config
p3091[0...n] PolID elasticity-based ramp time / PollD el t_ramp
p3092[0...n] PollD elasticity-based wait time / PollD el t_wait
p3093[0...n] PollD elasticity-based measurement number / PollD el meas
p3094[0...n] PolID elasticity-based deflection expected / PollD el defl exp
p3095[0...n] PolID elasticity-based deflection permissible / PollD el defl exp
p3096[0...n] PolID elasticity-based current / PolID el curr
p4610[0...n] Motor temperature sensor 1 sensor type MDS / Temp sens1 typ MDS
p4611[0...n] Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS
p4612[0...n] Motor temperature sensor 3 sensor type MDS / Temp sens3 typ MDS
p4613[0...n] Motor temperature sensor 4 sensor type MDS / Temp sens4 typ MDS

### 1.3.5 Parameters for power unit data sets (PDS)

## Note:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

The following list contains the parameters that are dependent on the power unit data sets.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: PDS |  |
| :---: | :---: |
| p0121[0...n] | Power unit component number / PU comp_no |
| p0124[0...n] | Power unit detection via LED / PU detection LED |
| p0125[0...n] | Activate/de-activate power unit components / PU_comp act/deact |
| r0126[0...n] | Power unit components active/inactive / PU comp act/inact |
| r0127[0...n] | Power unit version EPROM data / PU EPROM version |
| r0128[0...n] | Power unit, firmware version / PU FW version |
| r0200[0...n] | Power unit code number actual / PU code no. act |
| p0201[0...n] | Power unit code number / PU code no |
| r0203[0...n] | Actual power unit type / PU actual type |
| r0204[0...n] | Power unit hardware properties / PU HW property |
| p0251[0...n] | Operating hours counter power unit fan / PU fan t_oper |
| p0254[0...n] | Power unit internal fan operating hours counter / PU int fan t_oper |
| p0895[0...n] | BI: Activate/de-activate power unit components / PU_comp act/deact |
| p3469[0...n] | Latch delay time correction, zero crossover detection / t_latch corr PLL |
| p3901[0...n] | Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc_offs |
| p7001[0...n] | Par_circuit power units enable / PU enable |
| r7002[0...n] | Par_circuit status power units / Status PU |
| r7020[0...n] | CO: Par_circuit deviation current in phase U / Phase U curr dev |
| r7021[0...n] | CO: Par_circuit deviation current in phase V / Phase V curr dev |
| r7022[0...n] | CO: Par_circuit deviation current in phase W / Phase W curr dev |
| r7030[0...n] | CO: Par_circuit DC link voltage deviation / Vdc deviation |
| p7040[0...n] | Par_circuit correction valve lockout time phase U / Comp t_lockout U |
| p7042[0...n] | Par_circuit correction valve lockout time phase V / Comp t_lockout V |
| p7044[0...n] | Par_circuit correction valve lockout time phase W / Comp t_lockout W |
| r7050[0...n] | Par_circuit circulating current phase U / Circ_I_phase U |
| r7051[0...n] | Par_circuit circulating current phase V / Circ_I_phase V |
| r7052[0...n] | Par_circuit circulating current phase W / Circ_I_phase W |
| r7200[0...n] | Par_circuit power unit overload I2t / PU overload I2t |
| r7201[0...n] | CO: Par_circuit power unit temperatures max. inverter / PU temp max inv |
| r7202[0...n] | Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer |
| r7203[0...n] | Par_circuit power unit temperatures max. rectifier / PU temp max rect |
| r7204[0...n] | Par_circuit power unit temperatures air intake / PU temp air intake |
| r7205[0...n] | Par_circuit power unit temperatures electronics / PU temp electr |
| r7206[0...n] | Par_circuit power unit temperatures inverter 1 / PU temp inv 1 |
| r7207[0...n] | Par_circuit power unit temperatures inverter 2 / PU temp inv 2 |
| r7208[0...n] | Par_circuit power unit temperatures inverter 3 / PU temp inv 3 |
| r7209[0...n] | Par_circuit power unit temperatures inverter 4 / PU temp inv 4 |
| r7210[0...n] | Par_circuit power unit temperatures inverter 5 / PU temp inv 5 |
| r7211[0...n] | Par_circuit power unit temperatures inverter 6 / PU temp inv 6 |
| r7212[0...n] | Par_circuit power unit temperatures inverter 1 / PU temp rect 1 |
| r7213[0...n] | Par_circuit power unit temperatures inverter 2 / PU temp rect 2 |
| r7214[0...n] | Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1 |


| r7215[0...n] | Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2 |
| :---: | :---: |
| r7216[0...n] | Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3 |
| r7217[0....n] | Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4 |
| r7218[0...n] | Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5 |
| r7219[0...n] | Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6 |
| r7220[0...n] | Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm |
| r7220[0...n] | CO: Par_circuit drive output current maximum / Drv I_outp max |
| r7221[0...n] | Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm |
| r7222[0...n] | CO: Par_circuit absolute current actual value / I_act abs val |
| r7223[0...n] | CO: Par_circuit phase current actual value phase U / I phase U act val |
| r7224[0...n] | CO: Par_circuit phase current actual value phase V / I_phase V act val |
| r7225[0...n] | CO: Par_circuit phase current actual value phase W / I_phase W act val |
| r7226[0...n] | CO: Par_circuit phase current actual value phase U offset / I_phase U offset |
| r7227[0...n] | CO: Par_circuit phase current actual value phase V offset / _ phase V offset |
| r7228[0...n] | CO: Par_circuit phase current actual value phase W offset / I_phase W offset |
| r7229[0...n] | CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW |
| r7230[0...n] | CO: Par_circuit DC link voltage actual value / Vdc_act |
| r7231[0...n] | CO: Par_circuit phase voltage actual value phase U / U_phase U act val |
| r7232[0...n] | CO: Par_circuit phase voltage actual value phase V / U_phase V act val |
| r7233[0...n] | CO: Par_circuit phase voltage actual value phase W / U_phase W act val |
| r7240[0...n] | Par_circuit gating unit status word 1/ Gating unit ZSW1 |

## Note:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Write protection and know-how protection"

### 1.4.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute.
These parameters are not affected by the write protection.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: WRITE_NO_LOcK |  |
| :--- | :--- |
| p0003 | BOP access level / BOP acc_level |
| p0009 | Device commissioning parameter filter / Dev comm par_filt |
| p0124[0...n] | Power unit detection via LED / PU detection LED |
| p0124[0...23] | Main component detection using LED / M_comp detect LED |
| p0144[0...n] | Voltage Sensing Module detection via LED / VSM detection LED |
| p0144[0...n] | Sensor Module detection via LED / SM detection LED |
| p0154[0...n] | Voltage Sensing Module 2 detection via LED / VSM2 detection LED |
| p0154 | DRIVE-CLiQ Hub Module detection via LED / Hub detection LED |
| p0154 | Terminal Module detection via LED / TM detection LED |
| p0972 | Drive unit reset / Drv_unit reset |
| p0976 | Reset and load all parameters / Reset load all par |
| p0977 | Save all parameters / Save all par |
| p2035 | Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no |
| p2102 | BI: Acknowledge all faults / Ackn all faults |
| p2111 | Alarm counter / Alarm counter |
| p3100 | RTC time stamp mode / RTC t_stamp mode |
| p3101[0...1] | RTC set UTC time / RTC set UTC |
| p3103 | RTC synchronization source / RTC sync_source |
| p3950 | Service parameter / Serv. par. |
| p3981 | Faults, acknowledge drive object / Faults ackn DO |
| p3985 | Master control mode selection / PcCtrl mode select |
| p4700[0...1] | Trace control / Trace control |
| p4701 | Measuring function, control / Meas fct ctrl |
| p4707 | Measurement function configuration / Meas fct config |
| p4710[0...1] | Trace trigger condition / Trace Trig_cond |
| p4711[0...5] | Trace trigger signal / Trace trig_signal |
| p4712[0...1] | Trace trigger threshold / Trace trig_thresh |
| p4713[0...1] | Trace tolerance band trigger threshold $1 /$ Trace trig thr 1 |
| p4714[0...1] | Trace tolerance band trigger threshold $2 /$ Trace trig thr 2 |
| p4715[0...1] | Trace bit mask trigger, bit mask / Trace trig mask |
| p4716[0...1] | Trace, bit mask trigger, trigger condition / Trace Trig_cond |
| p4717 | Measuring function, number of averaging operations / Meas fct avg qty |
| p4718 | Measuring function, number of stabilizing periods / MeasFct StabPerQty |
| p4720[0...1] | Trace recording cycle / Trace record_cyc |
| p4721[0...1] | Trace recording time / Trace record_time |
| Trace trigger delay / Trace trig_delay |  |

p4723[0...1] Trace time slice cycle / Trace cycle
p4724[0...1] Trace average in the time range / Trace average
p4730[0...5] Trace record signal 0 / Trace record sig 0
p4731[0...5] Trace record signal 1 / Trace record sig 1
p4732[0...5] Trace record signal 2 / Trace record sig 2
p4733[0...5] Trace record signal 3 / Trace record sig 3
p4734[0...5] Trace record signal 4 / Trace record sig 4
p4735[0...5] Trace record signal 5 / Trace record sig 5
p4736[0...5] Trace record signal 6 / Trace record sig 6
p4737[0...5] Trace record signal 7 / Trace record sig 7
p4780[0...1] Trace physical address signal 0 / Trace PhyAddr Sig0
p4781[0...1] Trace physical address signal 1 / Trace PhyAddr Sig1
p4782[0...1] Trace physical address signal 2 / Trace PhyAddr Sig2
p4783[0...1] Trace physical address signal 3 / Trace PhyAddr Sig3
p4784[0...1] Trace physical address signal 4 / Trace PhyAddr Sig4
p4785[0...1] Trace physical address signal 5 / Trace PhyAddr Sig5
p4786[0...1] Trace physical address signal 6 / Trace PhyAddr Sig6
p4787[0...1] Trace physical address signal 7 / Trace PhyAddr Sig7
p4789[0...1] Trace physical address trigger signal / Trace PhyAddr Trig
p4795 Trace memory bank changeover / Trace mem changeov
p4800 Function generator control / FG control
p4810 Function generator mode / FG operating mode
p4812 Function generator physical address / FG phys address
p4813 Function generator physical address reference value / FG phys addr ref
p4815[0...2] Function generator drive number / FG drive number
p4816 Function generator output signal integer number scaling / FG outp integ scal
p4819 BI: Function generator control / FG control
p4820 Function generator signal shape / FG signal shape
p4821 Function generator period / FG period duration
p4822 Function generator pulse width / FG pulse width
p4823 Function generator bandwidth / FG bandwidth
p4824 Function generator amplitude / FG amplitude
p4825 Function generator 2nd amplitude / FG 2nd amplitude
p4826 Function generator offset / FG offset
p4827 Function generator ramp-up time to offset / FG ramp-up offset
p4828 Function generator lower limit / FG lower limit
p4829 Function generator upper limit / FG upper limit
p4830 Function generator time slice cycle / FG time slice
p4831 Function generator amplitude scaling / $F G$ amplitude scal
p4832[0...2] Function generator amplitude scaling / FG amplitude scal
p4833[0...2] Function generator offset scaling / FG offset scal
p4835[0...4] Function generator free measurement function scaling / FG fr MeasFct scal
p7761 Write protection / Write protection
p7770 NVRAM action / NVRAM action
p8550 AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8829 CBE20 remote controller number / CBE20 rem ctrl num
p9210 Flashing component number / Flash comp_no.
p9211 Flash function / Flash fct.
p9484 BICO interconnections search signal source / BICO S_src srch

### 1.4.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

| Product: SINAMICS S120/S150, Version: 4502400, Language: eng, Type: KHP_WRITE_NO_LOCK |  |
| :--- | :--- |
| p0003 | BOP access level / BOP acc_level |
| p0009 | Device commissioning parameter filter / Dev comm par_filt |
| p0124[0...n] | Power unit detection via LED / PU detection LED |
| p0124[0...23] | Main component detection using LED / M_comp detect LED |
| p0144[0...n] | Voltage Sensing Module detection via LED / VSM detection LED |
| p0144[0...n] | Sensor Module detection via LED / SM detection LED |
| p0154[0...n] | Voltage Sensing Module 2 detection via LED / VSM2 detection LED |
| p0154 | DRIVE-CLiQ Hub Module detection via LED / Hub detection LED |
| p0154 | Terminal Module detection via LED / TM detection LED |
| p0972 | Drive unit reset / Drv_unit reset |
| p0976 | Reset and load all parameters / Reset load all par |
| p0977 | Save all parameters / Save all par |
| p2035 | Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no |
| p2102 | BI: Acknowledge all faults / Ackn all faults |
| p2111 | Alarm counter / Alarm counter |
| p3100 | RTC time stamp mode / RTC t_stamp mode |
| p3101[0...1] | RTC set UTC time / RTC set UTC |
| p3103 | RTC synchronization source / RTC sync_source |
| p3950 | Service parameter / Serv. par. |
| p3981 | Faults, acknowledge drive object / Faults ackn DO |
| p3985 | Master control mode selection / PcCtrl mode select |
| p7761 | Write protection / Write protection |
| p7770 | NVRAM action / NVRAM action |
| p8550 | AOP LOCAL/REMOTE / AOP LOCAL/REMOTE |
| p8829 | CBE20 remote controller number / CBE20 rem ctrl num |
| p9210 | Flashing component number / Flash comp_no. |
| p9211 | Flash function / Flash fct. |
| p9484 | BICO interconnections search signal source / BICO S_src srch |

### 1.4.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute. These parameters can also be read with activated know-how protection.

| Product: SIN | S150, Version: 4502400, Language: eng, Type: KHP_ACTIVE_READ |
| :---: | :---: |
| p0015 | Macro drive object / Macro DO |
| p0015 | Macro drive unit / Macro drv unit |
| p0100 | IEC/NEMA mot stds / IEC/NEMA mot stds |
| p0101[0...23] | Drive object numbers / DO numbers |
| p0103[0...23] | Application-specific view / Appl_spec view |
| p0105 | Activate/de-activate drive object / DO act/deact |
| p0107[0...23] | Drive object type / DO type |
| p0108[0...23] | Drive objects, function module / DO function module |
| p0120 | Number of Power unit Data Sets (PDS) / PDS count |
| p0121[0...n] | Power unit component number / PU comp_no |
| p0125[0...n] | Activate/de-activate power unit components / PU_comp act/deact |
| p0130 | Number of Motor Data Sets (MDS) / MDS count |
| p0131[0...n] | Motor component number / Mot comp_no |
| p0140 | Number of VSM data sets / VSM count |
| p0140 | Number of Encoder Data Sets (EDS) / EDS count |
| p0141[0...n] | VSM component number / VSM comp_no |
| p0141[0...n] | Encoder interface (Sensor Module) component number / Enc_interf comp_no |
| p0142[0...n] | Encoder component number / Encoder comp_no |
| p0145[0...n] | Voltage Sensing Module, activate/de-activate / VSM act/deact |
| p0145[0...n] | Activate/de-activate encoder interface / Enc_intf act/deact |
| p0150 | VSM2 data sets selection / VSM2 dat_sets qty |
| p0150 | Number of VSM data sets / VSM dat_sets qty. |
| p0151[0...n] | Voltage Sensing Module 2 component number / VSM2 comp_num |
| p0151[0...1] | DRIVE-CLiQ Hub Module component number / Hub comp_no |
| p0151 | Terminal Module component number / TM comp_no |
| p0151[0...n] | Voltage Sensing Module component number / VSM comp_no |
| p0161 | HF Damping Module component number / HF Damp comp_no |
| p0161 | Option board, component number / Opt board comp_no |
| p0162 | CU-LINK slave component number / CU-LINK comp_no |
| p0162 | HF Choke Module component number / HF Choke comp_no |
| p0170 | Number of Command Data Sets (CDS) / CDS count |
| p0180 | Number of Drive Data Sets (DDS) / DDS count |
| p0199[0...24] | Drive object name / DO name |
| p0300[0...n] | Motor type selection / Mot type sel |
| p0304[0...n] | Rated motor voltage / Mot U_rated |
| p0305[0...n] | Rated motor current / Mot I_rated |
| p0349 | System of units, motor equivalent circuit diagram data / Unit_sys mot ESB |
| p0400[0...n] | Encoder type selection / Enc_typ sel |
| p0505 | Selecting the system of units / Unit sys select |
| p0595 | Technological unit selection / Tech unit select |
| p0806 | BI: Inhibit master control / PcCtrl inhibit |
| p0864 | BI: Infeed operation / INF operation |
| p0915[0...29] | TM15 PROFIdrive PZD setpoint assignment / TM15 PD PZD setp |
| p0915[0...35] | TM17 PROFldrive PZD setpoint assignment / TM17 PD PZD setp |
| p0916[0...29] | TM15 PROFldrive PZD actual value assignment / TM15 PD PZD actVal |
| p0916[0...35] | TM17 PROFldrive PZD actual value assignment / TM17 PD PZD actVal |
| p0922 | IF1 PROFIdrive telegram selection / IF1 PD Telegr_sel |


| p0978[0...24] | List of drive objects / List of the DO |
| :---: | :---: |
| p1080[0...n] | Minimum velocity / v_min |
| p1080[0...n] | Minimum speed / n_min |
| p1082[0...n] | Maximum speed / n_max |
| p1082[0...n] | Maximum velocity / v_max |
| p1520[0...n] | CO: Torque limit upper/motoring / M_max upper/mot |
| p1520[0...n] | CO: Force limit upper/motoring / F_max upper/mot |
| p1520[0...n] | CO: Torque limit upper / M_max upper |
| p1532[0...n] | CO: Torque limit offset / M_max offset |
| p1532[0...n] | CO: Force offset, force limit / F_max offset |
| p1544 | Travel to fixed stop evaluation torque reduction / TfS M_red eval |
| p1544 | Travel to fixed stop evaluation force reduction / TfS F_red eval |
| p2000 | Reference frequency / f_ref |
| p2000 | Reference speed reference frequency / n_ref f_ref |
| p2000 | Reference velocity, reference frequency / v_ref f_ref |
| p2001 | Reference voltage / Reference voltage |
| p2002 | Reference current / I_ref |
| p2003 | Reference torque / M_ref |
| p2003 | Reference force / Reference force |
| p2005 | Reference angle / Reference angle |
| p2006 | Reference temp / Ref temp |
| p2007 | Reference acceleration / a_ref |
| p2030 | Field bus int protocol selection / Field bus protocol |
| p2038 | IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode |
| p2079 | IF1 PROFldrive PZD telegram selection extended / IF1 PD PZD tel ext |
| p4956[0...n] | OA application activation / OA act |
| p5043[0...6] | Spindle speed limits / n_limits |
| p7763 | KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764 |
| p7764[0...n] | KHP OEM exception list / KHP OEM excep list |
| p7852 | Number of indices for r7853 / Qty indices r7853 |
| p9500 | SI Motion monitoring clock cycle (Control Unit) / SI Mtn clock CU |
| p9601 | SI enable, functions integrated in the drive (Control Unit) / SI enable fct CU |
| p9810 | SI PROFIsafe address (Motor Module) / SI PROFIsafe MM |
| p9902 | Target topology number of indices / TargetTopo indices |

## Function diagrams

| Contents |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 2.1 | Table of contents | 2-1627 |
|  | 2.2 | Explanations on the function diagrams | 2-1639 |
|  | 2.3 | Overviews | 2-1644 |
|  | 2.4 | CU310-2 input/output terminals | 2-1670 |
|  | 2.5 | CU320-2 input/output terminals | 2-1679 |
|  | 2.6 | S120M input/output terminals | 2-1686 |
|  | 2.7 | CU_LINK | 2-1688 |
|  | 2.8 | CX32-2 input/output terminals | 2-1690 |
|  | 2.9 | PROFIdrive | 2-1694 |
|  | 2.10 | Internal control/status words | 2-1755 |
|  | 2.11 | Sequence control | 2-1768 |
|  | 2.12 | Brake control | 2-1771 |
|  | 2.13 | Safety Integrated Basic Functions | 2-1776 |
|  | 2.14 | Safety Integrated Extended Functions | 2-1783 |
|  | 2.15 | Setpoint channel | 2-1805 |
|  | 2.16 | Setpoint channel not activated | 2-1816 |
|  | 2.17 | Basic positioner (EPOS) | 2-1818 |
|  | 2.18 | Position control | 2-1834 |
|  | 2.19 | Encoder evaluation | 2-1839 |
|  | 2.20 | Servo control | 2-1849 |
|  | 2.21 | Vector control | 2-1869 |
|  | 2.22 | Technology functions | 2-1899 |
|  | 2.23 | Technology controller | 2-1907 |


| 2.24 | Signals and monitoring functions | $2-1913$ |
| :--- | :--- | :--- |
| 2.25 | Diagnostics | $2-1922$ |
| 2.26 | Data sets | $2-1928$ |
| 2.27 | Basic Infeed | $2-1934$ |
| 2.28 | Smart Infeed | $2-1941$ |
| 2.29 | Active Infeed | $2-1950$ |
| 2.30 | Terminal Board 30 (TB30) | $2-1962$ |
| 2.31 | Communication Board CAN10 (CBC10) | $2-1967$ |
| 2.32 | Terminal Module 15 for SINAMICS (TM15DI/DO) | $2-1974$ |
| 2.33 | Terminal Module 31 (TM31) | $2-1978$ |
| 2.34 | Terminal Module 120 (TM120) | $2-1988$ |
| 2.35 | Terminal Module 150 (TM150) | $2-1991$ |
| 2.36 | Terminal Module 41 (TM41) | $2-1995$ |
| 2.37 | Auxiliaries | $2-2009$ |
| 2.38 | Voltage Sensing Module (VSM) | $2-2012$ |
| 2.39 | Basic Operator Panel 20 (BOP20) | $2-2015$ |
| 2.40 | Braking Module External | $2-2017$ |

### 2.1 Table of contents

2.2 Explanations on the function diagrams ..... 2-1639
1020 - Explanation of the symbols (Part 1) ..... 2-1640
1021 - Explanation of the symbols (Part 2) ..... 2-1641
1022 - Explanation of the symbols (Part 3) ..... 2-1642
1030 - Handling BICO technology ..... 2-1643
2.3 Overviews ..... 2-1644
1508 - CU310-2 input/output terminals ..... 2-1645
1510 - CU320-2 input/output terminals ..... 2-1646
1512 - CX32-2 input/output terminals ..... 2-1647
1520 - PROFIdrive ..... 2-1648
1530 - Internal control/status words, data sets ..... 2-1649
1550 - Setpoint channel ..... 2-1650
1580 - Servo control, encoder evaluations (position, speed, temperature) ..... 2-1651
1590 - Servo control, speed control and V/f control ..... 2-1652
1610 - Servo control, generation of the torque limits ..... 2-1653
1630 - Servo control, current control ..... 2-1654
1680 - Vector control, encoder evaluations (position, speed, temperature) ..... 2-1655
1690 - Vector control, V/f control ..... 2-1656
1700 - Vector control, speed control and generation of the torque limits ..... 2-1657
1710 - Vector control, current control ..... 2-1658
1750 - Monitoring functions, faults, alarms ..... 2-1659
1773 - Basic Infeed ..... 2-1660
1774 - Active Infeed ..... 2-1661
1775 - Smart Infeed ..... 2-1662
1780 - Terminal Module 15 (TM15) ..... 2-1663
1781 - Terminal Module 15 for SINAMICS (TM15DI/DO) ..... 2-1664
1782 - Terminal Module 17 High Feature (TM17 High Feature) ..... 2-1665
1790 - Terminal Board 30 (TB30) ..... 2-1666
1840 - Terminal Module 31 (TM31) ..... 2-1667
1842 - Terminal Module 41 (TM41) ..... 2-1668
1850 - Terminal Module 54F (TM54F) ..... 2-1669
2.4 CU310-2 input/output terminals ..... 2-1670
2020 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 22) ..... 2-1671
2021 - Digital inputs, electrically isolated (DI 16 ... DI 21) ..... 2-1672
2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2-1673
2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2-1674
2032 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2-1675
2033 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2-1676
2038 - Digital output (DO 16) ..... 2-1677
2040 - Analog input (AI 0) ..... 2-1678
2.5 CU320-2 input/output terminals ..... 2-1679
2120 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17) ..... 2-1680
2121 - Digital inputs, electrically isolated (DI 4 ... DI 7, DI 20, DI 21) ..... 2-1681
2130 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2-1682
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2-1683
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2-1684
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2-1685
2.6 S120M input/output terminals ..... 2-1686
2201 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) ..... 2-1687
2.7 CU_LINK ..... 2-1688
2211 - Data transfer ..... 2-1689
2.8 CX32-2 input/output terminals ..... 2-1690
2220 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17) ..... 2-1691
2230 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2-1692
2231 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2-1693
2.9 PROFIdrive ..... 2-1694
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics ..... 2-1697
2415 - Standard telegrams and process data 1 ..... 2-1698
2416 - Standard telegrams and process data 2 ..... 2-1699
2419 - Manufacturer-specific telegrams and process data 1 ..... 2-1700
2420 - Manufacturer-specific telegrams and process data 2 ..... 2-1701
2421 - Manufacturer-specific telegrams and process data 3 ..... 2-1702
2422 - Manufacturer-specific telegrams and process data 4 ..... 2-1703
2423 - Manufacturer-specific/free telegrams and process data ..... 2-1704
2425 - STW1_BM control word metal industry interconnection ..... 2-1705
2426 - STW2_BM control word metal industry interconnection ..... 2-1706
2427 - E_STW1_BM control word infeed metal industry interconnection ..... 2-1707
2428 - ZSW1_BM status word metal industry interconnection ..... 2-1708
2429 - ZSW2_BM status word metal industry interconnection ..... 2-1709
2430 - E_ZSW1_BM control word infeed metal industry interconnection ..... 2-1710
2433 - STW2_ENC control word ENCODER interconnection ..... 2-1711
2434 - ZSW2 ENC status word ENCODER interconnection ..... 2-1712
2439 - PZD receive signals, interconnection, profile-specific ..... 2-1713
2440 - PZD receive signals, interconnection, manufacturer-specific ..... 2-1714
2441 - STW1 control word interconnection (p2038 = 2) ..... 2-1715
2442 - STW1 control word interconnection (p2038 = 0) ..... 2-1716
2443 - STW1 control word interconnection (p2038 = 1) ..... 2-1717
2444 - STW2 control word interconnection (p2038 = 0) ..... 2-1718
2445 - STW2 control word interconnection (p2038 = 1) ..... 2-1719
2447 - E_STW1 control word infeed interconnection ..... 2-1720
2449 - PZD send signals, interconnection, profile-specific ..... 2-1721
2450 - PZD send signals, interconnection, manufacturer-specific ..... 2-1722
2451 - ZSW1 status word interconnection (p2038 = 2) ..... 2-1723
2452 - ZSW1 status word interconnection (p2038 = 0) ..... 2-1724
2453 - ZSW1 status word interconnection (p2038 = 1) ..... 2-1725
2454 - ZSW2 status word interconnection (p2038 = 0) ..... 2-1726
2455 - ZSW2 status word interconnection (p2038 = 1) ..... 2-1727
2456 - MELDW status word interconnection ..... 2-1728
2457 - E_ZSW1 status word infeed interconnection ..... 2-1729
2462 - POS_STW positioning control word interconnection (r0108.4 = 1) ..... 2-1730
2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1) ..... 2-1731
2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1) ..... 2-1732
2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1) ..... 2-1733
2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1) ..... 2-1734
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) ..... 2-1735
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) ..... 2-1736
2472 - IF1 status words, free interconnection ..... 2-1737
2475 - STW1 control word 1 interconnection (r0108.4 = 1) ..... 2-1738
2476 - SATZANW block selection interconnection (r0108.4 = 1) ..... 2-1739
2479 - ZSW1 status word 1 interconnection (r0108.4 = 1) ..... 2-1740
2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1) ..... 2-1741
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) ..... 2-1742
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) ..... 2-1743
2485 - IF2 receive telegram, free interconnection ..... 2-1744
2487 - IF2 send telegram, free interconnection ..... 2-1745
2489 - IF2 status words, free interconnection ..... 2-1746
2491 - IF2 receive telegram, free interconnection ..... 2-1747
2493 - IF2 send telegram, free interconnection ..... 2-1748
2495 - CU_STW1 control word 1, Control Unit interconnection ..... 2-1749
2496 - CU_ZSW1 status word 1, Control Unit interconnection ..... 2-1750
2497 - A DIGITAL interconnection ..... 2-1751
2498 - E_DIGITAL interconnection ..... 2-1752
2499 - A_DIGITAL_1 interconnection ..... 2-1753
2500 - E_DIGITAL_1 interconnection ..... 2-1754
2.10 Internal control/status words ..... 2-1755
2501 - Control word, sequence control ..... 2-1756
2503 - Status word sequence control ..... 2-1757
2505 - Control word, setpoint channel ..... 2-1758
2520 - Control word, speed controller ..... 2-1759
2522 - Status word, speed controller ..... 2-1760
2526 - Status word, closed-loop control ..... 2-1761
2530 - Status word, current control ..... 2-1762
2534 - Status word, monitoring functions 1 ..... 2-1763
2536 - Status word, monitoring functions 2 ..... 2-1764
2537 - Status word, monitoring functions 3 ..... 2-1765
2546 - Control word, faults/alarms ..... 2-1766
2548 - Status word, faults/alarms 1 and 2 ..... 2-1767
2.11 Sequence control ..... 2-1768
2610 - Sequencer ..... 2-1769
2634 - Missing enable signals, line contactor control, logic operation ..... 2-1770
2.12 Brake control ..... 2-1771
2701 - Basic brake control (r0108.14 = 0) ..... 2-1772
2704 - Extended brake control, zero-speed detection (r0108.14 = 1) ..... 2-1773
2707 - Extended brake control, open/close brake (r0108.14 = 1) ..... 2-1774
2711 - Extended brake control, signal outputs (r0108.14 = 1) ..... 2-1775
2.13 Safety Integrated Basic Functions ..... 2-1776
2800 - Parameter manager ..... 2-1777
2802 - Monitoring and faults/alarms ..... 2-1778
2804 - Status words ..... 2-1779
2810 - STO (Safe Torque Off), SS1 (Safe Stop 1) ..... 2-1780
2811 - STO (Safe Torque Off), safe pulse suppression ..... 2-1781
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter) ..... 2-1782
2.14 Safety Integrated Extended Functions ..... 2-1783
2820 - SLS (Safely-Limited Speed) ..... 2-1784
2822 - SLP (Safely-Limited Position) ..... 2-1785
2825 - SS1, SS2, SOS, internal STOP B, C, D, F ..... 2-1786
2840 - Control word and status word ..... 2-1787
2846 - Parameter manager ..... 2-1788
2847 - TM54F parameter manager ..... 2-1789
2848 - TM54F configuration, F-DI/F-DO test ..... 2-1790
2850 - TM54F (F-DI 0 ... F-DI 4) ..... 2-1791
2851 - TM54F (F-DI 5 ... F-DI 9) ..... 2-1792
2853 - TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23) ..... 2-1793
2855 - TM54F control interface (p9601.2 = 1 \& p9601.3 = 0) ..... 2-1794
2856 - TM54F Safe State selection ..... 2-1795
2857 - TM54F assignment (F-DO 0 ... F-DO 3) ..... 2-1796
2858 - Control via PROFIsafe (p9601.2 = p9601.3 = 1) ..... 2-1797
2860 - SSM (Safe Speed Monitor) ..... 2-1798
2861 - SDI (Safe Direction) ..... 2-1799
2870 - CU310-2 (F-DI 0 ... F-DI 2) ..... 2-1800
2873 - CU310-2 fail-safe digital output (F-DO 0) ..... 2-1801
2875 - CU310-2 control interface ..... 2-1802
2876 - CU310-2 Safe State selection ..... 2-1803
2877 - CU310-2 assignment (F-DO 0) ..... 2-1804
2.15 Setpoint channel ..... 2-1805
3010 - Fixed speed setpoints ..... 2-1806
3020 - Motorized potentiometer ..... 2-1807
3030 - Main/supplementary setpoint, setpoint scaling, jogging ..... 2-1808
3040 - Direction limitation and direction reversal ..... 2-1809
3050 - Skip frequency bands and speed limitations ..... 2-1810
3060 - Basic ramp-function generator ..... 2-1811
3070 - Extended ramp-function generator ..... 2-1812
3080 - Ramp-function generator selection, status word, tracking ..... 2-1813
3082 - Extended Stop and Retract (ESR, r0108.9 = 1) ..... 2-1814
3090 - Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1) ..... 2-1815
2.16 Setpoint channel not activated ..... 2-1816
3095 - Generating the speed limits $(r 0108.8=0)$ ..... 2-1817
2.17 Basic positioner (EPOS) ..... 2-1818
3610 - Jog mode (r0108.4 = 1) ..... 2-1819
3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal) ..... 2-1820
3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal) ..... 2-1821
3615 - Traversing block mode, external block change (r0108.4 = 1) ..... 2-1822
3616 - Traversing block mode (r0108.4 = 1) ..... 2-1823
3617 - Travel to fixed stop (r0108.4 = 1) ..... 2-1824
3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1) ..... 2-1825
3620 - Direct setpoint input/MDI mode (r0108.4 = 1) ..... 2-1826
3625 - Mode control (r0108.4 = 1) ..... 2-1827
3630 - Traversing range limits (r0108.4 = 1) ..... 2-1828
3635 - Interpolator (r0108.4 = 1) ..... 2-1829
3640 - Control word block selection/MDI selection (r0108.4 = 1) ..... 2-1830
3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1) ..... 2-1831
3646 - Status word $2(r 0108.3=1, r 0108.4=1)$ ..... 2-1832
3650 - Status word, active traversing block/MDI active (r0108.4 = 1) ..... 2-1833
2.18 Position control ..... 2-1834
4010 - Position actual value preprocessing (r0108.3 = 1) ..... 2-1835
4015 - Position controller (r0108.3 = 1) ..... 2-1836
4020 - Standstill monitoring / positioning monitoring (r0108.3 = 1) ..... 2-1837
4025 - Dynamic following error monitoring, cam controllers (r0108.3 = 1) ..... 2-1838
2.19 Encoder evaluation ..... 2-1839
4704 - Position and temperature sensing, encoders 1 ... 3 ..... 2-1840
4710 - Speed actual value and pole position sensing, motor encoder (encoder 1) ..... 2-1841
4711 - Speed actual value sensing, encoders 2, 3 ((r0108.7 = 1, APC activated) ..... 2-1842
4715 - Speed actual value and pole position sensing, motor encoder ASM/SM (encoder 1) ..... 2-1843
4720 - Encoder interface, receive signals, encoders 1 ... 3 ..... 2-1844
4730 - Encoder interface, send signals, encoders 1 ... 3 ..... 2-1845
4735 - Reference mark search with external zero mark, encoders 1 ... 3 ..... 2-1846
4740 - Probe evaluation, measured value memory, encoders 1 ... 3 ..... 2-1847
4750 - Absolute value for incremental encoder ..... 2-1848
2.20 Servo control ..... 2-1849
5020 - Speed setpoint filter and speed pre-control ..... 2-1850
5030 - Reference model/pre-control balancing/speed limitation ..... 2-1851
5040 - Speed controller with encoder ..... 2-1852
5042 - Speed controller, torque/speed pre-control with encoder (p1402.4 = 1) ..... 2-1853
5050 - Speed controller adaptation (Kp_n/Tn_n adaptation) ..... 2-1854
5060 - Torque setpoint, control type changeover ..... 2-1855
5210 - Speed controller without encoder ..... 2-1856
5300 - V/f control for diagnostics ..... 2-1857
5301 - Signaling function variable ..... 2-1858
5490 - Speed control configuration ..... 2-1859
5610 - Torque limiting/reduction/interpolator ..... 2-1860
5620 - Motoring/generating torque limit ..... 2-1861
5630 - Upper/lower torque limit ..... 2-1862
5640 - Mode changeover, power/current limiting ..... 2-1863
5650 - Vdc_max controller and Vdc_min controller ..... 2-1864
5710 - Current setpoint filter ..... 2-1865
5714 - Iq and Id controller ..... 2-1866
5722 - Field current/flux input, flux reduction, flux controller ..... 2-1867
5730 - Interface to the Motor Module (gating signals, current actual values) ..... 2-1868
2.21 Vector control ..... 2-1869
6030 - Speed setpoint, droop ..... 2-1871
6031 - Pre-control balancing, reference/acceleration model ..... 2-1872
6040 - Speed controller with/without encoder ..... 2-1873
6050 - Speed controller adaptation (Kp_n/Tn_n adaptation) ..... 2-1874
6060 - Torque setpoint ..... 2-1875
6220 - Vdc_max controller and Vdc_min controller ..... 2-1876
6300 - V/f characteristic and voltage boost ..... 2-1877
6310 - Resonance damping and slip compensation ..... 2-1878
6320 - Vdc_max controller and Vdc_min controller (U/f) ..... 2-1879
6490 - Speed control configuration ..... 2-1880
6491 - Flux control configuration ..... 2-1881
6495 - Excitation (FEM, p0300 = 5) ..... 2-1882
6630 - Upper/lower torque limit ..... 2-1883
6640 - Current/power/torque limits ..... 2-1884
6710 - Current setpoint filter ..... 2-1885
6714 - Iq and Id controller ..... 2-1886
6721 - Id setpoint (PEM, p0300 = 2) ..... 2-1887
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) ..... 2-1888
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) ..... 2-1889
6724 - Field weakening controller (PEM, p0300 = 2) ..... 2-1890
6725 - Flux setpoint, field weakening controller (FEM, p0300 = 5) ..... 2-1891
6726 - Field weakening controller, flux controller (FEM, p0300 = 5) ..... 2-1892
6727 - Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5) ..... 2-1893
6730 - Interface to the Motor Module (ASM, p0300 = 1) ..... 2-1894
6731 - Interface to the Motor Module (PEM, p0300 = 2) ..... 2-1895
6732 - Interface to the Motor Module (FEM, p0300 = 5) ..... 2-1896
6733 - Motor model selection (FEM and p1300 = 20, p0300 = 5) ..... 2-1897
6799 - Display signals ..... 2-1898
2.22 Technology functions ..... 2-1899
7008 - kT estimator ..... 2-1900
7010 - Friction characteristic ..... 2-1901
7012 - Advanced Positioning Control (APC, r0108.7 = 1) ..... 2-1902
7014 - External Armature Short-Circuit (EASC, p0300 = 2xx or 4xx) ..... 2-1903
7016 - Internal Armature Short-Circuit (IASC, p0300 = 2xx or 4xx) ..... 2-1904
7017 - DC braking (p0300 = 1xx) ..... 2-1905
7020 - Synchronization ..... 2-1906
2.23 Technology controller ..... 2-1907
7950 - Fixed values, binary selection (r0108.16 = 1 and p2216 = 2) ..... 2-1908
7951 - Fixed values, direct selection (r0108.16 = 1 and p2216 = 1) ..... 2-1909
7954 - Motorized potentiometer (r0108.16 = 1) ..... 2-1910
7958 - Closed-loop control (r0108.16 = 1) ..... 2-1911
7960 - DC-link voltage controller (r0108.16 = 1) ..... 2-1912
2.24 Signals and monitoring functions ..... 2-1913
8010 - Speed signals 1 ..... 2-1914
8011 - Speed signals 2 ..... 2-1915
8012 - Torque signals, motor locked/stalled ..... 2-1916
8013 - Load monitoring (r0108.17 = 1) ..... 2-1917
8014 - Thermal monitoring, power unit ..... 2-1918
8016 - Thermal monitoring, motor ..... 2-1919
8017 - Thermal motor models $(p 0300=x x x)$ ..... 2-1920
8018 - Separately excited synchronous motor (FEM, p0300 = 5) ..... 2-1921
2.25 Diagnostics ..... 2-1922
8060 - Fault buffer ..... 2-1923
8065 - Alarm buffer ..... 2-1924
8070 - Fault/alarm trigger word (r2129) ..... 2-1925
8075 - Fault/alarm configuration ..... 2-1926
8134 - Measuring sockets ..... 2-1927
2.26 Data sets ..... 2-1928
8560 - Command Data Sets (CDS) ..... 2-1929
8565 - Drive Data Sets (DDS) ..... 2-1930
8570 - Encoder Data Sets (EDS) ..... 2-1931
8575 - Motor Data Sets (MDS) ..... 2-1932
8580 - Power unit Data Sets (PDS) ..... 2-1933
2.27 Basic Infeed ..... 2-1934
8720 - Control word, sequence control infeed ..... 2-1935
8726 - Status word, sequence control infeed ..... 2-1936
8732 - Sequencer ..... 2-1937
8734 - Missing enable signals, line contactor control ..... 2-1938
8750 - Interface to the Basic Infeed power unit (control signals, actual values) ..... 2-1939
8760 - Signals and monitoring functions (p3400.0 = 0) ..... 2-1940
2.28 Smart Infeed ..... 2-1941
8820 - Control word, sequence control infeed ..... 2-1942
8826 - Status word, sequence control infeed ..... 2-1943
8828 - Status word, infeed ..... 2-1944
8832 - Sequencer ..... 2-1945
8834 - Missing enable signals, line contactor control ..... 2-1946
8850 - Interface to the Smart Infeed (control signals, actual values) ..... 2-1947
8860 - Signals and monitoring functions, line supply voltage monitoring ..... 2-1948
8864 - Signals and monitoring functions, line frequency and Vdc monitoring ..... 2-1949
2.29 Active Infeed ..... 2-1950
8920 - Control word, sequence control infeed ..... 2-1951
8926 - Status word, sequence control infeed ..... 2-1952
8928 - Status word, infeed ..... 2-1953
8932 - Sequencer ..... 2-1954
8934 - Missing enable signals, line contactor control ..... 2-1955
8940 - Controller modulation depth reserve / controller DC-link voltage (p3400.0 = 0) ..... 2-1956
8946 - Current pre-control / current controller / gating unit (p3400.0 = 0) ..... 2-1957
8948 - Master/slave (r0108.19 = 1) ..... 2-1958
8950 - Interface to the Active Infeed, control signals, actual values (p3400.0 = 0) ..... 2-1959
8960 - Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0) ..... 2-1960
8964 - Signals and monitoring functions, line frequency/Vdc monit. (p3400.0 = 0) ..... 2-1961
2.30 Terminal Board 30 (TB30) ..... 2-1962
9100 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2-1963
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) ..... 2-1964
9104 - Analog inputs (AI 0 ... AI 1) ..... 2-1965
9106 - Analog outputs (AO 0 ... AO 1) ..... 2-1966
2.31 Communication Board CAN10 (CBC10) ..... 2-1967
9204 - Receive telegram, free PDO mapping (p8744 = 2) ..... 2-1968
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) ..... 2-1969
9208 - Send telegram, free PDO mapping (p8744 = 2) ..... 2-1970
9210 - Send telegram, Predefined Connection Set (p8744 = 1) ..... 2-1971
9220 - Control word, CANopen ..... 2-1972
9226 - Status word, CANopen ..... 2-1973
2.32 Terminal Module 15 for SINAMICS (TM15DI/DO) ..... 2-1974
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) ..... 2-1975
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) ..... 2-1976
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) ..... 2-1977
2.33 Terminal Module 31 (TM31) ..... 2-1978
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2-1979
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7) ..... 2-1980
9556 - Digital relay outputs, isolated (DO 0 ... DO 1) ..... 2-1981
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2-1982
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2-1983
9566 - Analog input 0 (AI 0) ..... 2-1984
9568 - Analog input 1 (AI 1) ..... 2-1985
9572 - Analog outputs (AO 0 ... AO 1) ..... 2-1986
9576 - Temperature evaluation (KTY/PTC) ..... 2-1987
2.34 Terminal Module 120 (TM120) ..... 2-1988
9605 - Temperature evaluation channel 1 and 2 (KTY/PTC/bimetal) ..... 2-1989
9606 - Temperature evaluation channel 3 and 4 (KTY/PTC/bimetal) ..... 2-1990
2.35 Terminal Module 150 (TM150) ..... 2-1991
9625 - Temperature evaluation structure (channel 0 ... 11) ..... 2-1992
9626 - Temperature evaluation 1x2, 3, 4-wire (channel 0 ... 5) ..... 2-1993
9627 - Temperature evaluation 2x2-wire (channel 0 ... 11) ..... 2-1994
2.36 Terminal Module 41 (TM41) ..... 2-1995
9660 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2-1996
9661 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) ..... 2-1997
9662 - Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3) ..... 2-1998
9663 - Analog input 0 (AI 0) ..... 2-1999
9674 - Incremental encoder emulation (p4400 = 0) ..... 2-2000
9676 - Incremental encoder emulation (p4400 = 1) ..... 2-2001
9677 - STW1 control word interconnection (p0922 = 3) ..... 2-2002
9678 - Control word, sequence control (p4400 = 0) ..... 2-2003
9679 - STW2 control word interconnection (p0922 = 3) ..... 2-2004
9680 - Status word sequence control ..... 2-2005
9681 - ZSW1 status word interconnection (p0922 = 3) ..... 2-2006
9682 - Sequencer $(p 4400=0)$ ..... 2-2007
9683 - ZSW2 status word interconnection (p0922 = 3) ..... 2-2008
2.37 Auxiliaries ..... 2-2009
9794 - Cooling unit, control and feedback signals (r0108.28 = 1) ..... 2-2010
9795 - Cooling unit, sequence control (r0108.28 = 1) ..... 2-2011
2.38 Voltage Sensing Module (VSM) ..... 2-2012
9880 - Analog inputs (AI 0 ... AI 3) ..... 2-2013
9886 - Temperature evaluation ..... 2-2014
2.39 Basic Operator Panel 20 (BOP20) ..... 2-2015
9912 - Control word interconnection ..... 2-2016
2.40 Braking Module External ..... 2-2017
9951 - Sequencer (r0108.26 = 1) ..... 2-2018

### 2.2 Explanations on the function diagrams

Function diagrams
1020 - Explanation of the symbols (Part 1) ..... 2-1640
1021 - Explanation of the symbols (Part 2) ..... 2-1641
1022 - Explanation of the symbols (Part 3) ..... 2-1642
1030 - Handling BICO technology ..... 2-1643





Function diagrams
Explanations on the function diagrams

### 2.3 Overviews

## Function diagrams

| 1508 - CU310-2 input/output terminals | 2-1645 |
| :---: | :---: |
| 1510 - CU320-2 input/output terminals | 2-1646 |
| 1512 - CX32-2 input/output terminals | 2-1647 |
| 1520 - PROFIdrive | 2-1648 |
| 1530 - Internal control/status words, data sets | 2-1649 |
| 1550 - Setpoint channel | 2-1650 |
| 1580 - Servo control, encoder evaluations (position, speed, temperature) | 2-1651 |
| 1590 - Servo control, speed control and V/f control | 2-1652 |
| 1610 - Servo control, generation of the torque limits | 2-1653 |
| 1630 - Servo control, current control | 2-1654 |
| 1680 - Vector control, encoder evaluations (position, speed, temperature) | 2-1655 |
| 1690 - Vector control, V/f control | 2-1656 |
| 1700 - Vector control, speed control and generation of the torque limits | 2-1657 |
| 1710 - Vector control, current control | 2-1658 |
| 1750 - Monitoring functions, faults, alarms | 2-1659 |
| 1773 - Basic Infeed | 2-1660 |
| 1774 - Active Infeed | 2-1661 |
| 1775 - Smart Infeed | 2-1662 |
| 1780 - Terminal Module 15 (TM15) | 2-1663 |
| 1781 - Terminal Module 15 for SINAMICS (TM15DI/DO) | 2-1664 |
| 1782 - Terminal Module 17 High Feature (TM17 High Feature) | 2-1665 |
| 1790 - Terminal Board 30 (TB30) | 2-1666 |
| 1840 - Terminal Module 31 (TM31) | 2-1667 |
| 1842 - Terminal Module 41 (TM41) | 2-1668 |
| 1850 - Terminal Module 54F (TM54F) | 2-1669 |



[^2]






















### 2.4 CU310-2 input/output terminals

| Function diagrams |  |
| :---: | :---: |
| 2020 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 22) | 2-1671 |
| 2021 - Digital inputs, electrically isolated (DI 16 ... DI 21) | 2-1672 |
| 2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) | 2-1673 |
| 2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) | 2-1674 |
| 2032 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) | 2-1675 |
| 2033 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) | 2-1676 |
| 2038 - Digital output (DO 16) | 2-1677 |
| 2040 - Analog input (AI 0) | 2-1678 |



Function diagrams
CU310-2 input/output terminals



Function diagrams
CU310-2 input/output terminals
© Siemens AG 2012 All Rights Reserved
SINAMICS S120/S150 List Manual (LH1), 01/2012, 6SL3097-4AP00-0BP3



Function diagrams
CU310-2 input/output terminals



[^3]

### 2.5 CU320-2 input/output terminals

| Function diagrams |  |
| :--- | ---: |
| 2120 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17) | $2-1680$ |
| 2121 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7, DI 20, DI 21) | $2-1681$ |
| 2130 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9) | $2-1682$ |
| 2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) | $2-1683$ |
| 2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) | $2-1684$ |
| 2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) | $2-1685$ |






Function diagrams
CU320-2 input/output terminals



Function diagrams
CU320-2 input/output terminals

### 2.6 S120M input/output terminals

## Function diagrams

2201 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) 2-1687


Function diagrams
S120M input/output terminals

### 2.7 CU_LINK

## Function diagrams

2211 - Data transfer

<1> The drive object CU_LINK only exists for automation systems with SINAMICS Integrated (e.g. SIMOTION D, SINUMERIK NCU) and the corresponding controller extension (e.g. CX32-2, NX10). On the SINAMICS Integrated, each controller extension is represented by a drive object CU_LINK
<2> p8800: CU_LINK address.
Address of the controller extension, represented by the drive object CU LINK. The address correlates with the DRIVE-CLiQ socket of the control unit connected to the controller extension configured. Value range: See p0918 (PROFIBUS address)
The parameter p8800 is only readable through non-cyclic parameter access via DPV1 services.


### 2.8 CX32-2 input/output terminals

## Function diagrams

| 2220 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17) | $2-1691$ |
| :--- | ---: |
| 2230 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9) | $2-1692$ |
| 2231 - Digital inputs/outputs, bidirectional (DI/DO $10 \ldots$ DI/DO 11) | $2-1693$ |





Function diagrams
CX32-2 input/output terminals

## $2.9 \quad$ PROFIdrive

## Function diagrams

| 2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics | 2-1697 |
| :---: | :---: |
| 2415 - Standard telegrams and process data 1 | 2-1698 |
| 2416 - Standard telegrams and process data 2 | 2-1699 |
| 2419 - Manufacturer-specific telegrams and process data 1 | 2-1700 |
| 2420 - Manufacturer-specific telegrams and process data 2 | 2-1701 |
| 2421 - Manufacturer-specific telegrams and process data 3 | 2-1702 |
| 2422 - Manufacturer-specific telegrams and process data 4 | 2-1703 |
| 2423 - Manufacturer-specific/free telegrams and process data | 2-1704 |
| 2425 - STW1_BM control word metal industry interconnection | 2-1705 |
| 2426 - STW2_BM control word metal industry interconnection | 2-1706 |
| 2427 - E_STW1_BM control word infeed metal industry interconnection | 2-1707 |
| 2428 - ZSW1_BM status word metal industry interconnection | 2-1708 |
| 2429 - ZSW2_BM status word metal industry interconnection | 2-1709 |
| 2430 - E_ZSW1_BM control word infeed metal industry interconnection | 2-1710 |
| 2433 - STW2_ENC control word ENCODER interconnection | 2-1711 |
| 2434 - ZSW2_ENC status word ENCODER interconnection | 2-1712 |
| 2439 - PZD receive signals, interconnection, profile-specific | 2-1713 |
| 2440 - PZD receive signals, interconnection, manufacturer-specific | 2-1714 |
| 2441 - STW1 control word interconnection (p2038 = 2) | 2-1715 |
| 2442 - STW1 control word interconnection (p2038 = 0) | 2-1716 |
| 2443 - STW1 control word interconnection (p2038 = 1) | 2-1717 |
| 2444 - STW2 control word interconnection (p2038 = 0) | 2-1718 |
| 2445 - STW2 control word interconnection (p2038 = 1) | 2-1719 |
| 2447 - E_STW1 control word infeed interconnection | 2-1720 |
| 2449 - PZD send signals, interconnection, profile-specific | 2-1721 |
| 2450 - PZD send signals, interconnection, manufacturer-specific | 2-1722 |
| 2451 - ZSW1 status word interconnection (p2038 = 2) | 2-1723 |


| 2452 - ZSW1 status word interconnection (p2038 = 0) | 2-1724 |
| :---: | :---: |
| 2453 - ZSW1 status word interconnection (p2038 = 1) | 2-1725 |
| 2454 - ZSW2 status word interconnection (p2038 = 0) | 2-1726 |
| 2455 - ZSW2 status word interconnection (p2038 = 1) | 2-1727 |
| 2456 - MELDW status word interconnection | 2-1728 |
| 2457 - E_ZSW1 status word infeed interconnection | 2-1729 |
| 2462 - POS_STW positioning control word interconnection (r0108.4 = 1) | 2-1730 |
| 2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1) | 2-1731 |
| 2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1) | 2-1732 |
| 2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1) | 2-1733 |
| 2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1) | 2-1734 |
| 2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) | 2-1735 |
| 2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) | 2-1736 |
| 2472 - IF1 status words, free interconnection | 2-1737 |
| 2475 - STW1 control word 1 interconnection (r0108.4 = 1) | 2-1738 |
| 2476 - SATZANW block selection interconnection (r0108.4 = 1) | 2-1739 |
| 2479 - ZSW1 status word 1 interconnection (r0108.4 = 1) | 2-1740 |
| 2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1) | 2-1741 |
| 2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) | 2-1742 |
| 2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) | 2-1743 |
| 2485 - IF2 receive telegram, free interconnection | 2-1744 |
| 2487 - IF2 send telegram, free interconnection | 2-1745 |
| 2489 - IF2 status words, free interconnection | 2-1746 |
| 2491 - IF2 receive telegram, free interconnection | 2-1747 |
| 2493 - IF2 send telegram, free interconnection | 2-1748 |
| 2495 - CU_STW1 control word 1, Control Unit interconnection | 2-1749 |
| 2496 - CU_ZSW1 status word 1, Control Unit interconnection | 2-1750 |
| 2497 - A_DIGITAL interconnection | 2-1751 |
| 2498 - E_DIGITAL interconnection | 2-1752 |

2499 - A_DIGITAL_1 interconnection ..... 2-1753
2500 - E_DIGITAL_1 interconnection ..... 2-1754


$<1>$ Depending on the drive object, only specific telegrams can be used. Not suitable for sensorless vector control.
2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2424].
If p0922 $\neq 999$ is changed to p0922 = 999, the "old" telegram assignment is maintained as specified in [2415] - [2424]
<3> The maximum number of PZD words depends on the drive object type
<4> Only for SINAMICS S120/S150.
$\square=$ Position encoder signal

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: ENC, SERVO, VECTOR |  |  |  |  | fp_2415_54_eng.vsd | Function diagram | -2415 - |
| PROFIdrive - Standard telegrams and process data 1 |  |  |  |  | 22.11.11 V04.05.00 | S120/S150/G130/G150 |  |




<1> Depending on the drive object, only specific telegrams can be used
<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423].
If p0922 $\neq 999$ is changed to p0922 = 999, the "old" telegram assignment is maintained as specified in [2415] - [2423]
<4> The maximum number of PZD words depends on the drive object type
$\square=$ Position encoder signal


5> Only in "DSC win spline function module is active (r010..6 = 1 ),
<6> Only if the "Spindie function module is active (r0108.11 = 1).
<7> Only for SINAMICS S120.

d＞Depending on the drive object，only specific telegrams can be used．
＜2＞If p0922＝ 999 is changed to another value，the telegram is automatically assigned as specified in［2415］－［2423］．
If p0922 $\neq 999$ is changed to p0922 $=999$ ，the＂old＂telegram assignment is maintained as specified in［2415］－［2423］！
＜3＞Freely interconn．
＜4＞The maximum number of PZD words depends on the drive object type
＜5＞In order to comply with the PROFIdrive profile，PZD1 must be used as control word 1 （STW1）or status word 1 （ZSW1）．
p2037＝ 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile．

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO：A＿INF，B＿INF，CU＿G，CU＿S，S＿INF，SERVO，VECTOR |  |  |  |  | fp＿2421＿54＿eng．vsd | Function diagram | －2421－ |
| PROFIdrive－Manufacturer－specific telegrams and process data 3 |  |  |  |  | 22．11．11 V04．05．00 | S120／S150／G130／G150 |  |

＜6＞Not for U／f control．
＜7＞Preassignment，not disabled．
＜9＞Only if the＂Spindle＂function module is active（r0108．11＝1）
＜8＞Only for S120／S150
＜9＞Values smoothed at Vector，Values unsmooted at Servo
＜10＞Not for SERVO．


<1> Depending on the drive object, only specific telegrams can be used
<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423].
If p0922 $\neq 999$ is changed to p0922 $=999$, the "old" telegram assignment is maintained as specified in [2415] - [2423]
<3> In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1)
p2037 = 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.
$4>$ The maximum number of PZD words depends on the drive object type.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: A_INF, B_INF, CU_G, CU_S, S_INF, SERVO, VECTOR |  |  |  |  | fp_2423_54_eng.vsd | Function diagram | -2423 - |
|  |  |  |  |  |  |  |  |



| Signal targets for STW2_BM |  |  |  |  | <1> |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning | Interconnection parameters | [Function diagram] internal control word | [Function diagram] signal target | Inverted |
| STW2.0 | Command data set selection CDS, bit 0 | p0810 $=$ r2093.0 | - | [8560] | - |
| STW2.1 | Command data set selection CDS, bit $1<3>$ | p0811 $=$ r2093.1 | - | [8560] | - |
| STW2.2 | Drive data set selection DDS, bit 0 | $\underset{\sim 2>}{\operatorname{pos} 20[0]}=r 2093.2$ | - | [8565] | - |
| STW2.3 | Drive data set selection DDS, bit 1 | $\begin{gathered} \mathrm{p} 0821[0]=\mathrm{r} 2093.3 \\ <2> \end{gathered}$ | - | [8565] | - |
| STW2.4 | Drive data set selection DDS, bit 2 | $\begin{gathered} \mathrm{p} 0822[0]=\mathrm{r} 2093.4 \\ <2> \end{gathered}$ | - | [8565] | - |
| STW2.5 | 1 = Bypass ramp-function generator <4> | $\mathrm{p} 1122[0]=\mathrm{r} 2093.5$ | - | - | - |
| STW2.6 | Reserved | - | - | - | - |
| STW2.7 | 1 = Speed controller set integrator value | $\mathrm{p} 1477[0]=\mathrm{r} 2093.7$ | - | - | - |
| STW2.8 | 1 = Droop enabled $<3>$ | $\mathrm{p} 1492[0]=\mathrm{r} 2093.8$ | - | [6030] | - |
| STW2.9 | 1 = Speed controller enabled | $\begin{gathered} \mathrm{p} 0856[0]=\mathrm{r} 2093.9 \\ <2> \end{gathered}$ | - | - | - |
| STW2.10 | Reserved <2> | <2> | - | - | - |
| STW2.11 | $1=$ Torque controlled operation <br> $0=$ Speed controlled operation | $\mathrm{p} 1501[0]=\mathrm{r} 2093.11$ | - | - | - |
| STW2.12 | Reserved <2> | <2> | - | - | - |
| STW2.13 | Reserved <2> | <2> | - | - | - |
| STW2.14 | Reserved <2> | <2> | - | - | - |
| STW2.15 | Controller slave sign-of-life Toggle bit | p2081[15] $=$ r2093.15 | - | - | - |




<1> Used in telegram 220
<3> Interconnection is no



| Signal sources for ZSW2_ENC <1> |  |  |  |  |  |  |  |  | Refer to [1020.7] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning |  |  | Interconnection parameters | [Function diagram] signal source | [Function diagram] internal status word |  | Inverted |  |  |
| zSW1.0 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.1 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.2 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.3 | 1 = Fault present |  |  | p2080[3] $=$ r2139.3 | [2548.7] |  |  | - |  |  |
| ZSW1.4 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.5 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.6 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.7 | 1 = Alarm present |  |  | p2080[7] $=$ r2139.7 | [2548.7] |  |  | - |  |  |
| ZSW1.8 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.9 | 1 = Control requested <2> |  |  | p2080[9] $=$ r0899.9 | [2503.7] |  |  | - |  |  |
| ZSW1.10 | Reserved |  |  | - | - |  |  | - |  |  |
| zSW1.11 | Reserved |  |  | - | - |  |  | - |  |  |
| ZSW1.12 | Slave-sign-of-life bit 0 |  |  | $\mathrm{p} 2045=\mathrm{r} 2050[3]$ |  |  |  |  |  |  |
| ZSW1.13 | Slave-sign-of-life bit 1 |  |  |  |  |  |  |  |  |  |
| ZSW1.14 | Slave-sign-of-life bit 2 |  |  |  |  |  |  |  |  |  |
| ZSW1.15 | Slave-sign-of-life bit 3 |  |  |  |  |  |  |  |  |  |
| <1> Used in telegrams 81, 82, 83. <br> <2> The drive object is ready to accept data. |  |  |  |  |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 |  |  | 7 |  | 8 |
| DO: ENC |  |  |  |  | fp_2434_55 | _eng.vsd | Functi | dia |  | - 2434 - |
| PROFldrive - ZSW2-ENC status word ENCODER interconnection |  |  |  |  | 02.02.10 | 04.05.00 | SINAM | ICS S | 50 |  |


-



| Signal targets for STW1 in Interface Mode SINAMICS（p2038＝0） |  |  |  |  | $<1\rangle$ <br> Inverted |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning | Interconnection parameters | ［Function diagram］ internal control word | ［Function diagram］ signal target |  |
| STW1．0 | $\boldsymbol{S}$ $=$ ON（pulses can be enabled） <br> 0 $=$ OFF1（braking with ramp－function generator，then pulse suppression \＆ready for switching on） | p0840［0］$=$ r2090．0 | ［2501．3］ | ［2610］ | － |
| STW1．1 | 1 ＝No OFF2（enable is possible） <br> $0=$ OFF2（immediate pulse suppression and switching on inhibited） | p0844［0］＝r2090．1 | ［2501．3］ | ［2610］ | － |
| STW1．2 | 1 ＝No OFF3（enable possible） <br> $0=$ OFF3（braking with the OFF3 ramp p1135，then pulse suppression and switching on inhibited） | p0848［0］＝r2090．2 | ［2501．3］ | ［2610］ | － |
| STW1．3 | $\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (suppress pulses) } \end{aligned}$ | p0852［0］$=$ r2090．3 | ［2501．3］ | ［2610］ | － |
| STW1．4 | 1 ＝Operating condition（the ramp－function generator can be enabled） <br> $0=$ Inhibit ramp－function generator（set the ramp－function generator output to zero） | p1140［0］$=$ r2090．4 | ［2501．3］ | ［3060］［3070］［3080］ | － |
| STW1．5 | 1 ＝Continue ramp－function generator <br> $0=$ Freeze ramp－function generator（freeze the ramp－function generator output） | p1141［0］$=$ r2090．5 | ［2501．3］ | ［3060］［3070］ | － |
| STW1．6 | 1 ＝Enable setpoint <br> $0=$ Inhibit setpoint（set the ramp－function generator input to zero） | p1142［0］$=$ r2090．6 | ［2501．3］ | ［3060］［3070］［3080］ | － |
| STW1．7 | $\mathcal{S}=1$ ．Acknowledge faults | p2103［0］＝r2090．7 | ［2546．1］ | ［8060］ | － |
| STW1．8 | Reserved | － | － | － | － |
| STW1．9 | Reserved | － | － | － | － |
| STW1．10 | 1 ＝Control via PLC＜2＞ | p0854［0］$=$ r2090．10 | ［2501．3］ | ［2501］ | － |
| STW1．11 | 1 ＝Setpoint inversion＜3＞ | p1113［0］$=$ r2090．11 | ［2505．3］ | ［3040］ | － |
| STW1．12 | 1 ＝Unconditionally open the holding brake | $\mathrm{p} 0855[0]=\mathrm{r} 2090.12$ | ［2501．3］ | ［2701］ | － |
| STW1．13 | 1 ＝Motorized potentiometer setpoint raise＜3＞ | p1035［0］$=$ r2090．13 | ［2505．3］ | ［3020］ | － |
| STW1．14 | 1 ＝Motorized potentiometer setpoint lower＜3＞ | p1036［0］$=$ r2090．14 | ［2505．3］ | ［3020］ | － |
| STW1．15 | Reserved | － | － | － | － |


|  | $\begin{aligned} & 7 \pi \\ & \hline 6 \\ & N \\ & \vdots \\ & 8 \end{aligned}$ | Signal targets for STW1 in Interface Mode SIMODRIVE 611 universal (p2038 = 1) <1> |  |  |  |  |  |  |  |  | PROFIdrive sampling time <br> Refer to [1020.7] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal | Meaning |  |  | Interconnection parameters | [Function diagram] internal control word | [Function signal | diagram] arget | Inverted |  |  |
|  |  | STW1.0 | $\boldsymbol{\Gamma}=$ ON (pulses can be enabled)$\mathbf{0}=$ OFF1 (braking with ramp-function generator, then pulse suppression \& ready for switching on) |  |  | p0840[0] $=$ r2090.0 | [2501.3] |  |  | - |  |  |
| $\stackrel{N}{\circ} \mathrm{O}$ | $\stackrel{\bar{\omega}}{\stackrel{\rightharpoonup}{\mathrm{L}}}$ | STW1.1 | 1 = No OFF2 (enable is possible) <3> <br> $0=$ OFF2 (immediate pulse cancellation and power-on inhibit) |  |  | $\mathrm{p} 0844[0]=\mathrm{r} 2090.1$ | [2501.3] |  |  | - |  |  |
| $\begin{aligned} & G \geqq \geqq \\ & \bar{\sigma} \geqq \underline{D} \end{aligned}$ | $\sum_{\sum}^{0-1}$ | STW1.2 | $1=$ No OFF3 (enable possible) $<3>$$0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse cancellation and power-on inhibit) |  |  | p0848[0] $=$ r2090.2 | [2501.3] |  |  | - |  |  |
|  | $\frac{8}{3}$ | STW1.3 | $\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (cancel pulses) } \end{aligned}$ |  |  | p0852[0] = r2090.3 | [2501.3] |  |  | - |  |  |
|  | $\frac{0}{\Sigma}$ | STW1.4 | 1 = Operating condition (the ramp-function generator can be enabled) <br> $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero) |  |  | p1140[0] = r2090.4 | [2501.3] | [3060] [30 | 70] [3080] | - |  |  |
| $\stackrel{\ominus}{-}$ | $\underset{\sim}{\square}$ | STW1.5 | 1 = Enable the ramp-function generator <br> $0=$ Stop the ramp-function generator (freeze the ramp-function generator output) |  |  | $\mathrm{p} 1141[0]=\mathrm{r} 2090.5$ | [2501.3] | [3060] | [3070] | - |  |  |
| $\frac{\mathrm{N}}{\mathrm{~N}}$ | O゙ | STW1.6 | 1 = Enable setpoint <br> $0=$ Inhibit setpoint (set the ramp-function generator input to zero) |  |  | p1142[0] $=\mathrm{r} 2090.6$ | [2501.3] | [3060] [30 | 70] [3080] | - |  |  |
| 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 1 <br>  <br> 0 <br> 0 <br>  <br> 0 <br> 0 <br> 0 <br> 0 | $\stackrel{\stackrel{1}{\stackrel{\circ}{0}}}{\stackrel{1}{2}}$ | STW1.7 | $5=$ Acknowledge faults |  |  | $\mathrm{p} 2103[0]=\mathrm{r} 2090.7$ | [2546.1] |  |  | - |  |  |
|  | จิ | STW1.8 | Reserved |  |  | - | - |  |  | - |  |  |
|  | $\omega_{\infty}$ | STW1.9 | 1 = Enable ESR reaction <4> |  |  | p0889 $=$ r2090.9 | [2495] |  |  | - |  |  |
|  |  | STW1.10 | 1 = Control via PLC | <2> |  | $\mathrm{p} 0854[0]=\mathrm{r} 2090.10$ | [2501.3] |  |  | - |  |  |
|  |  | STW1.11 | 1 = Ramp-function generator active |  |  | $\mathrm{p} 2148[0]=\mathrm{r} 2090.11$ | - |  |  | - |  |  |
|  |  | STW1.12 | 1 = Unconditionally open the holding brake |  |  | $\mathrm{p} 0855[0]=\mathrm{r} 2090.12$ | [2501.3] |  |  | - |  |  |
|  |  | STW1.13 | Reserved |  |  | - | - |  |  | - |  |  |
|  |  | STW1.14 | 1 = Closed-loop torque control active <br> 0 = Closed-loop speed control active |  |  | p1501[0] $=\mathrm{r} 2090.14$ | [2520.3] | [5060] | [6060] | - |  |  |
|  |  | STW1.15 | Reserved |  |  | - | - |  |  | - |  |  |
| $\begin{aligned} & \stackrel{\rightharpoonup}{V} \\ & \stackrel{\rightharpoonup}{V} \end{aligned}$ |  | < $1>$ Used in telegrams $1,2,3,4,5,6,102,103,105,106,116,118,125,126,136,138,139$. <2> STW1.10 must be set to ensure that the drive object accepts the process data (PZD). |  |  |  | <3> OC -> Operating condition. <br> <4> Only available when the funktion module "extended setpoint channel" is active (r0108.9 = 1) |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |  | 7 |  |  | 8 |
|  |  | DO: SERVO |  |  |  |  | fp_2443_55_eng.vsd |  | Function diagram |  |  | - 2443 - |
|  |  | PROFIdrive - STW1 control word interconnection (p2038 = 1) |  |  |  |  | 07.11.11 V04.05.00 |  | SINAMICS S120/S150 |  |  |  |


| Signal targets for STW2 in Interface Mode SINAMICS（p2038＝0） |  |  |  |  |  | <1> <br> Inverted |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning |  | Interconnection parameters | ［Function diagram］ internal control word | ［Function diagram］ signal target |  |
| STW2．0 | Drive data set selection DDS，bit 0 |  | $\begin{aligned} & \hline \text { p0820[0] }=\text { r2093.0 } \\ &<4>\text { r2092.0 } \end{aligned}$ | － | ［8565］ | － |
| STW2．1 | Drive data set selection DDS，bit 1 |  | $\begin{aligned} & \mathrm{p} 0821[0]=\mathrm{r} 2093.1 \\ &<4>\mathrm{r} 2092.1 \end{aligned}$ | － | ［8565］ | － |
| STW2． 2 | Drive data set selection DDS，bit 2 |  | $\begin{aligned} \text { p0822[0] } & =r 2093.2 \\ <4> & \text { r2092.2 } \end{aligned}$ | － | ［8565］ | － |
| STW2．3 | Drive data set selection DDS，bit 3 |  | $\begin{gathered} \mathrm{p} 0823[0]=\mathrm{r} 2093.3 \\ <4>\mathrm{r} 2092.3 \end{gathered}$ | － | ［8565］ | － |
| STW2．4 | Drive data set selection DDS，bit 4 |  | $\begin{gathered} \mathrm{p} 0824[0]=\mathrm{r} 2093.4 \\ <4>\mathrm{r} 2092.4 \end{gathered}$ | － | ［8565］ | － |
| STW2．5 | Reserved |  | － | － | － | － |
| STW2．6 | Reserved |  | － | － | － | － |
| STW2．7 | 1 ＝Parking axis |  | $\begin{aligned} \hline \text { p0897 } & \text { r } 2093.7 \\ <4> & \text { r2092.7 } \end{aligned}$ | － | － | － |
| STW2．8 | 1 ＝Traverse to fixed endstop＜2＞＜3＞ | ＜5＞ | $\mathrm{p} 1545[0]=\mathrm{r} 2093.8$ | ［2520．2］ | ［8012］ | － |
| STW2．9 | Reserved |  | － | － | － | － |
| STW2． 10 | Reserved |  | － | － | － | － |
| STW2．11 | $\leq 1=$ Motor changeover，feedback Signal |  | $\begin{gathered} \mathrm{p} 0828[0]=\mathrm{r} 2093.11 \\ <4>\mathrm{r} 2092.11 \end{gathered}$ | － | － | － |
| STW2．12 | Master sign－of－life，bit 0 | ＜5＞ | $\begin{aligned} & \mathrm{p} 2045=\mathrm{r} 2050[3] \\ &<4>\mathrm{r} 2050[2] \end{aligned}$ | － | ［2410］ | － |
| STW2． 13 | Master sign－of－life，bit 1 | ＜5＞ |  |  |  |  |
| STW2．14 | Master sign－of－life，bit 2 | ＜5＞ |  |  |  |  |
| STW2． 15 | Master sign－of－life，bit 3 | ＜5＞ |  |  |  |  |


| Signal targets for STW2 in Interface Mode SIMODRIVE 611 universal（p2038＝1）＜1＞ |  |  |  |  |  |  |  |  | Refer to［1020．7］ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning |  |  | Interconnection parameters | ［Function diagram］ internal control word | ［Function signal | diagram］ arget | Inverted |  |  |
| STW2．0 | Drive data set selection DDS，bit 0 |  |  | p0820［0］$=$ r2093．0 | － |  |  | － |  |  |
| STW2． 1 | Drive data set selection DDS，bit 1 |  |  | p0821［0］＝r2093．1 | － |  |  | － |  |  |
| STW2． 2 | Drive data set selection DDS，bit 2 |  |  | p0822［0］$=\mathrm{r} 2093.2$ | － |  |  | － |  |  |
| STW2．3 | Reserved |  |  | － | － |  |  | － |  |  |
| STW2．4 | 1 ＝Bypass ramp－function generator | ＜3＞ |  | $\mathrm{p} 1122[0]=\mathrm{r} 2093.4$ | － | ［3060］［3070］ |  | － |  |  |
| STW2．5 | Reserved |  |  | － | － |  |  | － |  |  |
| STW2．6 | 1 ＝Integrator inhibit，speed controller | ＜2＞ |  | $\mathrm{p} 1477[0]=\mathrm{r} 2093.6$ | － | ［5040］［5210］ |  | － |  |  |
| STW2．7 | 1 ＝Parking axis selection |  |  | p0897 $=$ r2093．7 | － |  |  | － |  |  |
| STW2． 8 | 1 ＝Traverse to fixed endstop |  |  | $\mathrm{p} 1545[0]=\mathrm{r} 2093.8$ | ［2520．2］ |  |  | － |  |  |
| STW2．9 | Drive data set selection DDS，bit 3 |  |  | p0823［0］$=\mathrm{r} 2093.9$ | － |  |  | － |  |  |
| STW2． 10 | Drive data set selection DDS，bit 4 |  |  | p0824［0］$=\mathrm{r} 2093.10$ | － |  |  | － |  |  |
| STW2．11 | $\Sigma=$ Motor changeover，feedback signal |  |  | p0828［0］＝r2093．11 | － |  |  | － |  |  |
| STW2． 12 | Master sign－of－life，bit 0 |  |  | $\mathrm{p} 2045=\mathrm{r} 2050[3]$ | － | ［2410］ |  |  |  |  |
| STW2．13 | Master sign－of－life，bit 1 |  |  |  |  |  |  |  |  |  |
| STW2． 14 | Master sign－of－life，bit 2 |  |  |  |  |  |  |  |  |  |
| STW2． 15 | Master sign－of－life，bit 3 |  |  |  |  |  |  |  |  |  |
| ＜1＞Used in telegrams 2，3，4，5，6，102，103，105，106，116，118，125，126，136，138， 139. <br> ＜2＞For a 1 signal，the integral component of the speed controller is cleared and the integrator is inhibited．＜3＞Only if the function module＂extended setpoint channel＂is active（r0108．8 |  |  |  |  |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 |  |  | 7 |  | 8 |
| DO：SERVO |  |  |  |  | fp＿2445＿55 | ＿eng．vsd | Funct | on diag |  | － 2445 － |
| PROFldrive－STW2 control word interconnection（p2038＝1） |  |  |  |  | 06．09．11 V04 | 04．05．00 | SINAI | IICS S | ／S150 |  |



＜2＞


＜1＞Data type according to the PROFIdrive profile：I16＝Integer16，I32＝Integer32，U16＝Unsigned16，U32＝Unsigned32
＜2＞Only for SINAMICS S120



| Signal sources for ZSW1 im Interface Mode SINAMICS（p2038＝0） |  |  |  |  | ＜1＞ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning | Interconnection parameters | ［Function diagram］ Internal status word | ［Function diagram］ signal source | Inverted ＜2＞ |
| ZSW1．0 | 1 ＝Ready for switching on | p2080［0］$=$ r0899．0 | ［2503．7］ | ［2610］ | － |
| ZSW1．1 | 1 ＝Ready for operation | p2080［1］＝r0899．1 | ［2503．7］ | ［2610］ | － |
| ZSW1．2 | 1 ＝Operation enabled | p2080［2］$=$ r0899．2 | ［2503．7］ | ［2610］ | － |
| zSW1．3 | 1 ＝Fault present | p2080［3］$=$ r2139．3 | ［2548．7］ | ［8060］ | － |
| ZSW1．4 | 1 ＝No coast down active（OFF2 inactive） | p2080［4］$=$ r0899．4 | ［2503．7］ | ［2610］ | － |
| ZSW1．5 | 1 ＝No fast stop active（OFF3 inactive） | p2080［5］＝r0899．5 | ［2503．7］ | ［2610］ | － |
| ZSW1．6 | 1 ＝Switching on inhibited active | p2080［6］$=$ r0899．6 | ［2503．7］ | ［2610］ | － |
| ZSW1．7 | 1 ＝Alarm present | p2080［7］$=$ r2139．7 | ［2548．7］ | ［8065］ | － |
| ZSW1．8 | 1 ＝Speed setpoint－actual value deviation within tolerance t＿off | p2080［8］＝r2197．7 | ［2534．7］ | ［8010］ | － |
| ZSW1．9 | 1 ＝Control requested \ll | p2080［9］$=$ r0899．9 | ［2503．7］ | ［2503］ | － |
| ZSW1．10 | 1 ＝ f or n comparison value reached／exceeded | $\mathrm{p} 2080[10]=\mathrm{r} 2199.1$ | ［2536．7］ | ［8010］ | － |
| ZSW1．11 | $1=\mathrm{I}, \mathrm{M}$, or P limit reached | $\mathrm{p} 2080[11]=\mathrm{r} 1407.7$ | ［2522．7］ | $\underset{<5>}{[5610]} \text { [6060] }$ | $\checkmark$ |
| ZSW1．12 | 1 ＝Open the holding brake | p2080［12］$=$ r0899．12 | ［2503．7］ | ［2701］ | － |
| ZSW1．13 | 1 ＝No motor overtemperature alarm | p2080［13］$=$ r2135．14 | ［2548．7］ | ［8016］ | $\checkmark$ |
| ZSW1．14 | $\begin{aligned} & 1=\text { Motor rotates forwards }\left(n_{\text {_act }} \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(n_{\_} \text {act }<0\right) \end{aligned}$ | $\mathrm{p} 2080[14]=\mathrm{r} 2197.3$ | ［2534．7］ | ［8010］ | － |
| ZSW1．15 | 1 ＝No alarm，thermal overload，power unit | p2080［15］$=\mathrm{r} 2135.15$ | ［2548．7］ | ［8014］ | $\checkmark$ |

＜1＞Used in telegrams 1，2，3，4，$\overbrace{5,6,352 .}$
＜2＞The ZSW1 is generated using the binector－connector converter（BI：p2080［0．．．15］，inversion：p2088［0］．0．．．p2088［0］．15）

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO：SERVO，VECTOR |  |  |  |  | fp＿2452＿54＿eng．vsd | Function diagram | － 2452 － |
| PROFldrive－ZSW1 status word interconnection（p2038＝0） |  |  |  |  | 26．07．11 V04．05．00 | S120／S150／G130／G |  |

$<3>$ The drive object is ready to accept data
＜4＞Not for VECTOR U／f．
＜5＞Only for SINAMICS S120．




| Signal sources for MELDW <1> |  |  |  |  |  |  |  |  | PROFIdrive sampling time Refer to [1020.7] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning |  |  | Interconnection parameters | [Function diagram] Internal status word | [Function signal | diagram] ource | Inverted <2> |  |  |
| MELDW. 0 | 1 = Ramp-up/ramp-down completed <br> $0=$ Ramp-function generator active |  |  | p2082[0] = 2199.5 | [2537.7] |  |  | - |  |  |
| MELDW. 1 | 1 = Torque utilization [\%] < torque threshold value 2 (p2194) |  |  | $\mathrm{p} 2082[1]=\mathrm{r} 2199.11$ | [2537.7] |  |  | - |  |  |
| MELDW. 2 | 1 = \|n_act ${ }^{\text {- }}$ speed threshold value 3 (p2161) |  |  | p2082[2] = r2199.0 | [2537.7] |  |  | - |  |  |
| MELDW. 3 | 1 = \|n_act| $\leq$ speed threshold value 2 (p2155) |  |  | $\mathrm{p} 2082[3]=\mathrm{r} 2197.1$ | [2534.7] |  |  | - |  |  |
| MELDW. 4 | 1 = Vdc_min controller activ (Vdc < p1248) |  |  | p2082[4] $=$ r0056.15 | - |  |  | - |  |  |
| MELDW. 5 | Variable signaling function <4> |  |  | p2082[5] = r3294 | - |  |  | - |  |  |
| MELDW. 6 | 1 = No motor overtemperature alarm |  |  | p2082[6] $=$ r2135.14 | [2548.7] |  |  | $\checkmark$ |  |  |
| MELDW. 7 | 1 = No alarm, thermal overload, power unit |  |  | $\mathrm{p} 2082[7]=\mathrm{r} 2135.15$ | [2548.7] |  |  | $\checkmark$ |  |  |
| MELDW. 8 | 1 = Speed setpoint - actual value deviation within tolerance t_on |  |  | p2082[8] $=\mathrm{r} 2199.4$ | [2537.7] |  |  | - |  |  |
| MELDW. 9 | 1 = Initiated ESR reaction <3> |  |  | p2082[9] $=$ r0887.12 | - |  |  | - |  |  |
| MELDW. 10 | Reserved |  |  | - | - |  |  | - |  |  |
| MELDW. 11 | 1 = Controller enable |  |  | p2082[11] $=$ r0899.8 | [2503.7] |  |  | - |  |  |
| MELDW. 12 | 1 = Drive ready |  |  | p2082[12] $=$ r0899.7 | [2503.7] |  |  | - |  |  |
| MELDW. 13 | 1 = Pulses enabled |  |  | p2082[13] = r0899.11 | [2503.7] |  |  | - |  |  |
| MELDW. 14 | Reserved |  |  | - | - |  |  | - |  |  |
| MELDW. 15 | Reserved |  |  | - | - |  |  | - |  |  |
|  |  |  | <2> The status word is generated using the binector-connector converter p2088[2]. <br> <5> Only for EPOS. <br> $<3>$ Only available when the function module "extended setpoint channel" is active (r0108.9 = 1). <br> <4> Only for Servo. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| DO: SERVO, VECTOR |  |  |  |  | fp_2456_55 | eng.vsd | Function | on diag | m | - 2456 - |
| PROFIdrive - MELDW status word interconnection |  |  |  |  | 20.09.11 V | 04.05.00 | SINAM | IICS S | 0/S150 |  |











| Signal targets for STW1（positioning mode，r0108．4＝1）＜1＞ |  |  |  |  |  |  |  |  | Refer to［1020．7］ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning |  |  | Interconnection parameters | ［Function diagram］ internal control word | ［Function signal targ | liagram] | Inverted |  |  |
| STW1．0 | $\begin{aligned} & \overline{\boldsymbol{\Sigma}}=\text { ON (pulses can be enabled) } \\ & \mathbf{0}=\text { OFF1 (braking with ramp-funct. generator, then pulse suppression \& ready for switching on) } \end{aligned}$ |  |  | p0840［0］$=$ r2090．0 | ［2501．3］ | ［26 |  | － |  |  |
| STW1．1 | $1=$ No OFF2（enable is possible）＜4＞$0=$ OFF2（immediate pulse suppression and switching on inhibited） |  |  | p0844［0］＝r2090．1 | ［2501．3］ | ［26 |  | － |  |  |
| STW1．2 | $1=$ No OFF3（enable possible）＜4＞$0=$ OFF3（braking with the OFF3 ramp p1135，then pulse suppression \＆switching on inhibited） |  |  | p0848［0］$=$ r2090．2 | ［2501．3］ | ［26 |  | － |  |  |
| STW1．3 | $\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (suppress pulses) } \end{aligned}$ |  |  | p0852［0］$=$ r2090．3 | ［2501．3］ | ［26 |  | － |  |  |
| STW1．4 | 1 ＝Do not reject traversing task <br> $0=$ Reject traversing task（ramp－down with the maximum deceleration） |  |  | p2641 $=$ r2090．4 | － | ${ }^{\text {［3616 }}$ |  | － |  |  |
| STW1．5 | $\begin{aligned} & 1=\text { No intermediate stop } \\ & 0=\text { Intermediate stop } \end{aligned}$ |  |  | p2640 $=$ r2090．5 | － | $\begin{gathered} {[3616} \\ {[362} \end{gathered}$ |  | － |  |  |
| STW1．6 | $\Sigma=$ Activate traversing task |  |  | $\begin{aligned} \hline 3>\text { p2631 } & =\text { r2090.6 } \\ \text { p2650 } & =r 2090.6 \end{aligned}$ | － | $\begin{gathered} {[3620} \\ {[362} \end{gathered}$ |  | － |  |  |
| STW1．7 | $\mathcal{J}=$ Acknowledge faults |  |  | $\mathrm{p} 2103[0]=\mathrm{r} 2090.7$ | ［2546．1］ | ［80 |  | － |  |  |
| STW1．8 | 1 ＝Jog 1 signal source |  |  | p2589 $=$ r2090．8 | － | $\begin{array}{r} {[3610} \\ {[362} \end{array}$ |  | － |  |  |
| STW1．9 | 1 ＝Jog 2 signal source |  |  | p2590 $=$ r2090．9 | － | ${ }^{\text {［3610 }}$ |  | － |  |  |
| STW1．10 | 1 ＝Control via PLC | ＜2＞ |  | p0854［0］＝r2090．10 | ［2501．3］ | ［25 |  | － |  |  |
| STW1．11 | $\begin{aligned} & 1=\text { Start homing } \\ & 0=\text { Stop homing } \end{aligned}$ |  |  | $\mathrm{p} 2595=\mathrm{r} 2090.11$ | － | $\begin{array}{r} {[3612} \\ {[362} \end{array}$ |  | － |  |  |
| STW1．12 | Reserved |  |  | － | － | － |  | － |  |  |
| STW1．13 | $\mathcal{J}=$ External block change |  |  | p2633 $=$ r2090．13 | － | ［361 |  | － |  |  |
| STW1．14 | Reserved |  |  | － | － | － |  | － |  |  |
| STW1．15 | Reserved |  |  | － | － |  |  | － |  |  |
| ＜1＞Used in telegrams 7，9，110， 111. <br> ＜2＞STW1．10 must be set to ensure that the drive object accepts the process data（PZD）． |  |  |  | $\begin{aligned} & 3>\text { The interconnection p2649 }=0 \text { is made additionally only in Telegram 7,9 and } 110 . \\ & 4>\text { OC } \rightarrow \text { Operating condition } \end{aligned}$ |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 |  |  | 7 |  | 8 |
| DO：SERVO，VECTOR |  |  |  |  | fp＿2475＿55 | ＿eng．vsd | Func | on dia |  |  |
| PROFIdrive－STW1 control word 1 interconnection（r0108．4＝1） |  |  |  |  | 19．01．10 V | 04．05．00 | SINA | IICS S | 20／S150 | － 2475 － |


|  | $\begin{aligned} & \underline{̣} \\ & \\ & \stackrel{1}{0} \\ & \end{aligned}$ |  |  |  |  | Signal targets for SATZANW (positioning mode, r0108.4 = 1) <1> |  |  |  |  | PROFIdrive sampling time <br> Refer to [1020.7] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal | Meaning |  |  | Interconnection parameters | [Function diagram] internal control word | [Function signal targ | iagram] | Inverted |  |  |
|  |  | SATZANW. 0 | 1 = Traversing block |  |  | p2625 = r2091.0 | - | [36 |  | - |  |  |
| $\stackrel{O}{0}$ | $\stackrel{\square}{\circ}$ | SATZANW. 1 | 1 = Traversing block |  |  | p2626 = r2091.1 | - | [36 |  | - |  |  |
|  | $\xrightarrow{8}$ | SATZANW. 2 | 1 = Traversing block |  |  | p 2627 = r 2091.2 | - | [36 |  | - |  |  |
| $\stackrel{\rightharpoonup}{0}$ | $\underset{\sum}{2}$ | SATZANW. 3 | 1 = Traversing block |  |  | $\mathrm{p} 2628=\mathrm{r} 2091.3$ | - | [36 |  | - |  |  |
| ج品 | - | SATZANW. 4 | 1 = Traversing block |  |  | p2629 = r2091.4 | - | [36 |  | - |  |  |
| $\bigcirc$ | $\frac{D}{D}$ | SATZANW. 5 | 1 = Traversing block |  |  | $\mathrm{p} 2630=\mathrm{r} 2091.5$ | - | [36 |  | - |  |  |
| $\stackrel{N}{N}$ | $\bigcirc$ | SATZANW. 6 | Reserved |  |  | - | - |  |  | - |  |  |
| $\omega$ | $\stackrel{0}{0}$ | SATZANW. 7 | Reserved |  |  | - | - |  |  | - |  |  |
| $\stackrel{+}{+}$ | $\stackrel{\square}{8}$ | SATZANW. 8 | Reserved |  |  | - | - |  |  | - |  |  |
| \% | $\bigcirc$ | SATZANW. 9 | Reserved |  |  | - | - |  |  | - |  |  |
| $\omega$ | $\bigcirc$ | SATZANW. 10 | Reserved |  |  | - | - |  |  | - |  |  |
|  | $\stackrel{\rightharpoonup}{ \pm}$ | SATZANW. 11 | Reserved |  |  | - | - |  |  | - |  |  |
|  |  | SATZANW. 12 | Reserved |  |  | - | - |  |  | - |  |  |
|  |  | SATZANW. 13 | Reserved |  |  | - | - | - |  | - |  |  |
|  |  | SATZANW. 14 | Reserved |  |  | - | - | - |  | - |  |  |
|  |  | SATZANW. 15 | 1 = Activate MDI <br> $0=$ De-activate MDI |  |  | p2647 $=$ r2091.15 | - | $\begin{gathered} {[36} \\ {[36} \end{gathered}$ |  | - |  |  |
|  |  | <1> Used in telegrams 7, 9, 110. |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  | 7 |  |  |
|  |  | DO: SERVO, VECTOR |  |  |  |  | fp_2476_55_eng.vsd |  | Function diagram |  |  |  |
|  |  | PROFIdrive - SATZANW-Block selection interconnection (r0108.4 = 1) |  |  |  |  | 19.01.10 V04.05.00 |  | SINAMICS S120/S150 |  |  |  |





<1> The number of PZD receive words depends on the drive object type
<2> TM15DI_DO, TM120 not for G130/G150
<3> The following representation applies for words: 4000 hex $=100 \%$.
The reference variables p200x apply for the ongoing interconnection ( $100 \%$-> p200x).
$\rightarrow$ The following applies for temperature values: $100{ }^{\circ} \mathrm{C} \rightarrow 100 \%$ order to maintain the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1) for A INF, B_INF, S_INF and CU_S
<5> Using the binector/connector converters at [2472], bits of 4 send words can be interconnected with any binectors.
<6> A_INF and S_INF not for G130/G150.


＜1＞The number of PZD send words depends on the drive object type
＜2＞A PZD send word can either be supplied via connector input p8851［x］（WORD）or via
The two corresponding connector inputs cannot be interconnected．
＜3＞Physical word and double word values are inserted in the telegram as referenced
variables．p200x apply as reference variables（telegram contents $=4000$ hex or 4000
0000 hex in the case of double words，if the input variable has the value p200x）．
The following applies for temperature values： $100^{\circ} \mathrm{C}->100 \%=4000$ hex；

$$
0^{\circ} \mathrm{C} \rightarrow 0 \%=40000000 \text { hex }
$$





p200x
<1> B_INF and S_INF not for S150 and G130.
<2> A_INF and S_INF not for G130/G150.
3> The following representation applies for words: 4000 hex $=100 \%$
The reference variables p200x apply for the ongoing interconnection ( $100 \%$-> p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C}->100 \%=4000$ hex; $0^{\circ} \mathrm{C}->0 \%$.
<5> Only for CUUS and CUGG
<6> Not for TB30, TM15DI_DO, TM31 and TM120.




PROFIdrive sampling time Refer to [1020.7]




### 2.10 Internal control/status words

| Function diagrams |  |
| :---: | :---: |
| 2501 - Control word, sequence control | 2-1756 |
| 2503 - Status word sequence control | 2-1757 |
| 2505 - Control word, setpoint channel | 2-1758 |
| 2520 - Control word, speed controller | 2-1759 |
| 2522 - Status word, speed controller | 2-1760 |
| 2526 - Status word, closed-loop control | 2-1761 |
| 2530 - Status word, current control | 2-1762 |
| 2534 - Status word, monitoring functions 1 | 2-1763 |
| 2536 - Status word, monitoring functions 2 | 2-1764 |
| 2537 - Status word, monitoring functions 3 | 2-1765 |
| 2546 - Control word, faults/alarms | 2-1766 |
| 2548 - Status word, faults/alarms 1 and 2 | 2-1767 |




Function diagrams
Internal control/status words


<1> Only for servo conirol without encoder.
<2 Only for servo co
<3> Only for SERVO
Only for SINAMIC

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: SERVO, VECTOR |  |  |  |  | fp_2522_54_eng.vsd | Function diagram | - 2522 - |
| Internal control/status words - Status word, speed controller |  |  |  |  | 14.11.11 V04.05.00 | S120/S150/G130/G150 |  |









### 2.11 Sequence control

## Function diagrams

| 2610 - Sequencer | $2-1769$ |
| :--- | :---: |
| 2634 - Missing enable signals, line contactor control, logic operation | $2-1770$ |




### 2.12 Brake control

| Function diagrams |  |
| :--- | ---: |
| 2701 - Basic brake control $($ r0108.14 $=0)$ | $2-1772$ |
| 2704 - Extended brake control, zero-speed detection $(r 0108.14=1)$ | $2-1773$ |
| $2707-$ Extended brake control, open/close brake $(\mathrm{r} 0108.14=1)$ | $2-1774$ |
| 2711 - Extended brake control, signal outputs $(\mathrm{rO108.14}=1)$ | $2-1775$ |


＜1＞Motor holding brake configuration（p1215）
$0=$ No motor holding brake being used．
$1=$ Motor holding brake acc．to sequence control．
$2=$ Motor holding brake always released．
3 ＝Motor holding brake like sequence control，connection via BICO．
＜2＞Priority assignment（high $\rightarrow$ low）：p1215，p0858，p0855，p0856，sequence control． ＜3＞If p1215＝0， $2->\mathrm{t}=0 \mathrm{~ms}$ ． $<3>$ If p1215 $=0,2->\mathrm{t}=0 \mathrm{~ms}$ ． ＜4＞Only if Safety Integrated is active（Double Motor Module：X X 22 ，Chassis：X41）
＜5＞For p1227＝ 300 s ，the monitoring function is deactivated．
＜6＞If an external motor holding brake is used，p1215 should be set to 3 and r0899．12 should be interconnected as control signal．
＜7＞r0046．21 $=0$ ，as long as r0046．0 $=1$（OFF1 enable missing or power－on inhibit）．
r0046．21 $=1$ ，if p0858 $=1$ or p0856 $=0$ ．
The signal generation is shown simplified．
＜8＞The internal signal includes signals that lead to OFF1 or OFF3（e．g．BICO or fault response）．
＜9＞If the brake is permanently applied or released（p0855，p0858 or p1215），the drive does not wait while the brake is released or applied． ＜10＞Only for SINAMICS S120．
Note：Braking signal diagnostic evaluation（p1278）only applies for SBC（Safe Brake Control）（controls the Safe Brake Relay）．＜10＞
Note：With VECTOR with activated＂parallel circuit＂Function Module（r0108．15＝1），the holding brake may only be connected to a power unit（p7015）．

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO：SERVO，VECTOR |  |  |  |  | fp＿2701＿54＿eng．vsd | Function diagram | － 2701 － |
| Brake control－Basic brake control（r0108．14＝0） |  |  |  |  | 30．03．11 V04．05．00 | S120／S150／G130／G150 |  |





### 2.13 Safety Integrated Basic Functions

Function diagrams
2800 - Parameter manager ..... 2-1777
2802 - Monitoring and faults/alarms ..... 2-1778
2804 - Status words ..... 2-1779
2810 - STO (Safe Torque Off), SS1 (Safe Stop 1) ..... 2-1780
2811 - STO (Safe Torque Off), safe pulse suppression ..... 2-1781
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter) ..... 2-1782





Function diagrams
Safety Integrated Basic Functions


### 2.14 Safety Integrated Extended Functions

| Function diagrams |  |
| :---: | :---: |
| 2820 - SLS (Safely-Limited Speed) | 2-1784 |
| 2822 - SLP (Safely-Limited Position) | 2-1785 |
| 2825 - SS1, SS2, SOS, internal STOP B, C, D, F | 2-1786 |
| 2840 - Control word and status word | 2-1787 |
| 2846 - Parameter manager | 2-1788 |
| 2847 - TM54F parameter manager | 2-1789 |
| 2848 - TM54F configuration, F-DI/F-DO test | 2-1790 |
| 2850 - TM54F (F-DI 0 ... F-DI 4) | 2-1791 |
| 2851 - TM54F (F-DI 5 ... F-DI 9) | 2-1792 |
| 2853 - TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23) | 2-1793 |
| 2855 - TM54F control interface (p9601.2 = 1 \& p9601.3 = 0) | 2-1794 |
| 2856 - TM54F Safe State selection | 2-1795 |
| 2857 - TM54F assignment (F-DO 0 ... F-DO 3) | 2-1796 |
| 2858 - Control via PROFIsafe (p9601.2 = p9601.3 = 1) | 2-1797 |
| 2860 - SSM (Safe Speed Monitor) | 2-1798 |
| 2861 - SDI (Safe Direction) | 2-1799 |
| 2870 - CU310-2 (F-DI 0 ... F-DI 2) | 2-1800 |
| 2873 - CU310-2 fail-safe digital output (F-DO 0) | 2-1801 |
| 2875 - CU310-2 control interface | 2-1802 |
| 2876 - CU310-2 Safe State selection | 2-1803 |
| 2877 - CU310-2 assignment (F-DO 0) | 2-1804 |





<1> Comparator, see [1021]
2> Analog signal memory, see [1021].
<3> The target checksum must be equal to the actual check sum.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: TM54F_MA, TM54F_SL |  |  |  |  | fp_2847_51_eng.vsd | Function diagram |  |
| SI Extended Functions - Parameter manager |  |  |  |  | 15.11.11 V04.05.00 | Function diagram SINAMICS $^{\text {- } 2847-~}$ |  |

Function diagrams
Safety Integrated Extended Functions



[^4]



Function diagrams
Safety Integrated Extended Functions










### 2.15 Setpoint channel

| Function diagrams | $2-1806$ |
| :--- | ---: |
| 3010 - Fixed speed setpoints | $2-1807$ |
| 3020 - Motorized potentiometer | $2-1808$ |
| 3030 - Main/supplementary setpoint, setpoint scaling, jogging | $2-1809$ |
| 3040 - Direction limitation and direction reversal | $2-1810$ |
| 3050 - Skip frequency bands and speed limitations | $2-1811$ |
| 3060 - Basic ramp-function generator | $2-1812$ |
| 3070 - Extended ramp-function generator | $2-1813$ |
| 3080 - Ramp-function generator selection, status word, tracking | $2-1814$ |
| 3082 - Extended Stop and Retract (ESR, r0108.9 = 1) | $2-1815$ |
| 3090 - Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1) | 2 |





<1> AOP30 not at SINAMICS SM150
2 2 Only active in LOCAL mode (r0807.0 = 1) [2501.2]
<101> To view the pre-assignment of the sampling times in p0115, refer to p0112.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: SERVO, VECTOR, VECTORGL, VECTORMV, VECTORSL |  |  |  |  | fp_3040_51_eng.vsd | Function diagram | - 3040 - |
| Setpoint channel - Direction limitation and direction reversal |  |  |  |  | 29.06.09 V04.05.00 | SINAMICS |  |




ןəииецо ұи！одəәS
Function diagrams





### 2.16 Setpoint channel not activated

## Function diagrams

3095 - Generating the speed limits $(r 0108.8=0)$
2-1817


### 2.17 Basic positioner (EPOS)

| Function diagrams |  |
| :---: | :---: |
| 3610 - Jog mode (r0108.4 = 1) | 2-1819 |
| 3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal $)$ | 2-1820 |
| 3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal) | 2-1821 |
| 3615 - Traversing block mode, external block change (r0108.4 = 1) | 2-1822 |
| 3616 - Traversing block mode (r0108.4 = 1) | 2-1823 |
| 3617 - Travel to fixed stop (r0108.4 = 1) | 2-1824 |
| 3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1) | 2-1825 |
| 3620 - Direct setpoint input/MDI mode (r0108.4 = 1) | 2-1826 |
| 3625 - Mode control (r0108.4 = 1) | 2-1827 |
| 3630 - Traversing range limits (r0108.4 = 1) | 2-1828 |
| 3635 - Interpolator (r0108.4 = 1) | 2-1829 |
| 3640 - Control word block selection/MDI selection (r0108.4 = 1) | 2-1830 |
| 3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1) | 2-1831 |
| 3646 - Status word 2 (r0108.3 = 1, r0108.4 = 1) | 2-1832 |
| 3650 - Status word, active traversing block/MDI active (r0108.4 = 1) | 2-1833 |










Function diagrams
Basic positioner (EPOS)



Function diagrams
Basic positioner (EPOS)




### 2.18 Position control

| Function diagrams | $2-1835$ |
| :--- | ---: |
| 4010 - Position actual value preprocessing $(\mathrm{r} 0108.3=1)$ | $2-1836$ |
| 4015 - Position controller $(\mathrm{r} 0108.3=1)$ | $2-1837$ |
| 4020 - Standstill monitoring / positioning monitoring $($ r0108.3 = 1) | $2-1838$ |
| 4025 - Dynamic following error monitoring, cam controllers $(\mathrm{r} 0108.3=1)$ |  |





одиоэ ио!!!sod
Function diagrams


### 2.19 Encoder evaluation

| Function diagrams | $2-1840$ |
| :--- | :--- |
| 4704 - Position and temperature sensing, encoders $1 \ldots 3$ | $2-1841$ |
| 4710 - Speed actual value and pole position sensing, motor encoder (encoder 1) | $2-1842$ |
| 4711 - Speed actual value sensing, encoders 2, 3 ((r0108.7 = 1, APC activated) | $2-1843$ |
| 4715 - Speed actual value and pole position sensing, motor encoder ASM/SM (encoder 1) | $2-1844$ |
| 4720 - Encoder interface, receive signals, encoders $1 \ldots 3$ | $2-1845$ |
| 4730 - Encoder interface, send signals, encoders $1 \ldots 3$ | $2-1846$ |
| 4735 - Reference mark search with external zero mark, encoders $1 \ldots 3$ | $2-1847$ |
| 4740 - Probe evaluation, measured value memory, encoders $1 \ldots 3$ | $2-1848$ |
| 4750 - Absolute value for incremental encoder |  |




ио！деплелә ләроэиョ
Function diagrams








### 2.20 Servo control

| Function diagrams |  |
| :---: | :---: |
| 5020 - Speed setpoint filter and speed pre-control | 2-1850 |
| 5030 - Reference model/pre-control balancing/speed limitation | 2-1851 |
| 5040 - Speed controller with encoder | 2-1852 |
| 5042 - Speed controller, torque/speed pre-control with encoder (p1402.4 = 1) | 2-1853 |
| 5050 - Speed controller adaptation (Kp_n/Tn_n adaptation) | 2-1854 |
| 5060 - Torque setpoint, control type changeover | 2-1855 |
| 5210 - Speed controller without encoder | 2-1856 |
| 5300 - V/f control for diagnostics | 2-1857 |
| 5301 - Signaling function variable | 2-1858 |
| 5490 - Speed control configuration | 2-1859 |
| 5610 - Torque limiting/reduction/interpolator | 2-1860 |
| 5620 - Motoring/generating torque limit | 2-1861 |
| 5630 - Upper/lower torque limit | 2-1862 |
| 5640 - Mode changeover, power/current limiting | 2-1863 |
| 5650 - Vdc_max controller and Vdc_min controller | 2-1864 |
| 5710 - Current setpoint filter | 2-1865 |
| 5714 - Iq and Id controller | 2-1866 |
| 5722 - Field current/flux input, flux reduction, flux controller | 2-1867 |
| 5730 - Interface to the Motor Module (gating signals, current actual values) | 2-1868 |




Function diagrams
Servo control










<1> For p1400.4 = 0 the torque limits for the positive and negative torque direction (upwards and downwards) are compatible with MASTERDRIVES and MICROMASTER 4. Normal case. If neither dynamic limits nor offsets are required, the upper torque limit is entered via p1520 and the lower via p1521 (as a negative value).
<2> Danger: Negative values at (A) or positive values at (B) represent a minimum torque for the other torque direction and can cause the motor to accelerate uncontrollably
<3> The limiter ensure that the limits do not mutually "overtake" one another. With A < B , Fault F07090 is initiated, which can also be disabled.
<4> For the manufacturer-specific PROFIdrive telegrams $102 \ldots 106$, r1543 is switched in here [5610.4].









### 2.21 Vector control

## Function diagrams

| 6030 - Speed setpoint, droop | 2-1871 |
| :---: | :---: |
| 6031 - Pre-control balancing, reference/acceleration model | 2-1872 |
| 6040 - Speed controller with/without encoder | 2-1873 |
| 6050 - Speed controller adaptation (Kp_n/Tn_n adaptation) | 2-1874 |
| 6060 - Torque setpoint | 2-1875 |
| 6220 - Vdc_max controller and Vdc_min controller | 2-1876 |
| 6300 - V/f characteristic and voltage boost | 2-1877 |
| 6310 - Resonance damping and slip compensation | 2-1878 |
| 6320 - Vdc_max controller and Vdc_min controller (U/f) | 2-1879 |
| 6490 - Speed control configuration | 2-1880 |
| 6491 - Flux control configuration | 2-1881 |
| 6495 - Excitation (FEM, p0300 = 5) | 2-1882 |
| 6630 - Upper/lower torque limit | 2-1883 |
| 6640 - Current/power/torque limits | 2-1884 |
| 6710 - Current setpoint filter | 2-1885 |
| 6714 - Iq and Id controller | 2-1886 |
| 6721 - Id setpoint (PEM, p0300 = 2) | 2-1887 |
| 6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) | 2-1888 |
| 6723 - Field weakening controller, flux controller (ASM, p0300 = 1) | 2-1889 |
| 6724 - Field weakening controller (PEM, p0300 = 2) | 2-1890 |
| 6725 - Flux setpoint, field weakening controller (FEM, p0300 = 5) | 2-1891 |
| 6726 - Field weakening controller, flux controller (FEM, p0300 = 5) | 2-1892 |
| 6727 - Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5) | 2-1893 |
| 6730 - Interface to the Motor Module (ASM, p0300 = 1) | 2-1894 |
| 6731 - Interface to the Motor Module (PEM, p0300 = 2) | 2-1895 |
| 6732 - Interface to the Motor Module (FEM, p0300 = 5) | 2-1896 |


| $6733-$ Motor model selection $(F E M$ and $\mathrm{p} 1300=20, \mathrm{p} 0300=5)$ | $2-1897$ |
| :--- | :---: |
| $6799-$ Display signals | $2-1898$ |



Function diagrams



Function diagrams
Vector control







[^5]Function diagrams



[^6]






[^7]Function diagrams





<2> Frozen if the deviation in the excitation current is > p1599
P controller becomes a PI controller (p1592). The entire output is then limited. If there is a limitation, the I component of the controller is held
$<4>\mathrm{r} 1617=\mathrm{r} 1508$ if the speed controller is enabled ( $\mathrm{r} 1776[4]>0$ ).
FEM: separately excited synchronous motor





[^8]



### 2.22 Technology functions

| Function diagrams |  |
| :--- | ---: |
| $7008-$ kT estimator | $2-1900$ |
| 7010 - Friction characteristic | $2-1901$ |
| 7012 - Advanced Positioning Control (APC, r0108.7 = 1) | $2-1902$ |
| 7014 - External Armature Short-Circuit (EASC, p0300 = $2 x x$ or 4xx) | $2-1903$ |
| 7016 - Internal Armature Short-Circuit (IASC, p0300 = 2xx or 4xx) | $2-1904$ |
| $7017-$ DC braking (p0300 = 1xx) | $2-1905$ |
| $7020-$ Synchronization | $2-1906$ |






F07907
"Motor terminals are not at zero potential after pulse cancellation"
 $2000 \mu \mathrm{~s}$
$\mathrm{p} 1231=4$ <1>



Function diagrams
Technology functions


### 2.23 Technology controller

| Function diagrams |  |
| :--- | ---: |
| 7950 - Fixed values, binary selection $(\mathrm{r} 0108.16=1$ and $\mathrm{p} 2216=2)$ | $2-1908$ |
| 7951 - Fixed values, direct selection $(\mathrm{r} 0108.16=1$ and p2216 = 1) | $2-1909$ |
| $7954-$ Motorized potentiometer $(\mathrm{r} 0108.16=1)$ | $2-1910$ |
| $7958-$ Closed-loop control $(\mathrm{r0108.16=1)}$ | $2-1911$ |
| $7960-$ DC-link voltage controller $(\mathrm{r} 0108.16=1)$ | $2-1912$ |


<101> The pre-assignment of the sampling time in p0115[6] is $4000.00 \mu \mathrm{~s}$.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: SERVO, VECTOR |  |  |  |  | fp_7951_54_eng.vsd | Function diagram | 7951 - |
| Technology controller - Fixed value selection direct (r0108.16 = 1 and p2216 = 1) |  |  |  |  | 18.10.10 V04.05.00 | S120/S150/G130/G150 |  |




Function diagrams


### 2.24 Signals and monitoring functions

| Function diagrams |  |
| :--- | ---: |
| 8010 - Speed signals 1 | $2-1914$ |
| 8011 - Speed signals 2 | $2-1915$ |
| 8012 - Torque signals, motor locked/stalled | $2-1916$ |
| 8013 - Load monitoring (r0108.17 = 1) | $2-1917$ |
| 8014 - Thermal monitoring, power unit | $2-1918$ |
| 8016 - Thermal monitoring, motor | $2-1919$ |
| 8017 - Thermal motor models (p0300 = xxx) | $2-1920$ |
| $8018 ~-~ S e p a r a t e l y ~ e x c i t e d ~ s y n c h r o n o u s ~ m o t o r ~(F E M, ~ p 0300 ~=~ 5) ~$ | $2-1921$ |




Function diagrams
Signals and monitoring functions







### 2.25 Diagnostics

## Function diagrams

| 8060 - Fault buffer | $2-1923$ |
| :--- | :---: |
| 8065 - Alarm buffer | $2-1924$ |
| 8070 - Fault/alarm trigger word (r2129) | $2-1925$ |
| 8075 - Fault/alarm configuration | $2-1926$ |
| 8134 - Measuring sockets | $2-1927$ |




Changing the fault response for maximum 20 faults <1>

Changing the message type - fault <==> alarm for maximum 20 faults/alarms <1>

Changing the acknowledge mode for maximum 20 faults <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting. Changes that may be required are only possible in specific value ranges specified by SIEMENS,
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r2124 and vice versa.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |



### 2.26 <br> Data sets

## Function diagrams

| 8560 - Command Data Sets (CDS) | $2-1929$ |
| :--- | :---: |
| 8565 - Drive Data Sets (DDS) | $2-1930$ |
| 8570 - Encoder Data Sets (EDS) | $2-1931$ |
| 8575 - Motor Data Sets (MDS) | $2-1932$ |
| 8580 - Power unit Data Sets (PDS) | $2-1933$ |



<1> A BICO interconnection to a parameter which is part of a drive data set always influences the currently effective data set.
<2> Only for SINAMICS S120/S150.

| 1 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: SERVO, VECTOR, TM41 |  |  |  | fp_8565_54_eng.vsd | Function diagram | - 8565 - |
| Data sets - Drive Data Sets (DDS) |  |  |  | 25.06.08 V04.05.00 | S120/S150/G130/G150 |  |



[^9]


### 2.27 Basic Infeed

## Function diagrams

| 8720 - Control word, sequence control infeed | $2-1935$ |
| :--- | :---: |
| 8726 - Status word, sequence control infeed | $2-1936$ |
| 8732 - Sequencer | $2-1937$ |
| $8734-$ Missing enable signals, line contactor control | $2-1938$ |
| 8750 - Interface to the Basic Infeed power unit (control signals, actual values) | $2-1939$ |
| $8760-$ Signals and monitoring functions $(p 3400.0=0)$ | $2-1940$ |







рәәди э!seg
Function diagrams
Line voltage monitoring when powering-up


## DC link monitoring



### 2.28 Smart Infeed

| Function diagrams |  |
| :--- | ---: |
| 8820 - Control word, sequence control infeed | $2-1942$ |
| 8826 - Status word, sequence control infeed | $2-1943$ |
| 8828 - Status word, infeed | $2-1944$ |
| 8832 - Sequencer | $2-1945$ |
| 8834 - Missing enable signals, line contactor control | $2-1946$ |
| 8850 - Interface to the Smart Infeed (control signals, actual values) | $2-1947$ |
| 8860 - Signals and monitoring functions, line supply voltage monitoring | $2-1948$ |
| 8864 - Signals and monitoring functions, line frequency and Vdc monitoring | $2-1949$ |







рәәли дешя
sweл6е！р ио！џวип」



### 2.29 Active Infeed

## Function diagrams

| 8920 - Control word, sequence control infeed | $2-1951$ |
| :--- | ---: |
| 8926 - Status word, sequence control infeed | $2-1952$ |
| 8928 - Status word, infeed | $2-1953$ |
| 8932 - Sequencer | $2-1954$ |
| 8934 - Missing enable signals, line contactor control | $2-1955$ |
| 8940 - Controller modulation depth reserve / controller DC-link voltage (p3400.0 = 0) | $2-1956$ |
| 8946 - Current pre-control / current controller / gating unit (p3400.0 = 0) | $2-1957$ |
| 8948 - Master/slave (r0108.19 = 1) | $2-1958$ |
| $8950-$ Interface to the Active Infeed, control signals, actual values (p3400.0 = 0) | $2-1959$ |
| 8960 - Signals and monitoring functions, line supply voltage monitoring $(p 3400.0=0)$ | $2-1960$ |
| $8964-$ Signals and monitoring functions, line frequency/Vdc monit. (p3400.0 = 0) | $2-1961$ |





[^10]



рәәци әл!џナヲ





### 2.30 Terminal Board 30 (TB30)

## Function diagrams

| 9100 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3) | $2-1963$ |
| :--- | ---: |
| 9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) | $2-1964$ |
| 9104 - Analog inputs (AI O ... AI 1) | $2-1965$ |
| $9106-$ Analog outputs (AO $0 \ldots$ AO 1) | $2-1966$ |



Function diagrams
Terminal Board 30 (TB30)



Function diagrams
Terminal Board 30 (TB30)


### 2.31 Communication Board CAN10 (CBC10)

| Function diagrams | $2-1968$ |
| :--- | ---: |
| 9204 - Receive telegram, free PDO mapping (p8744 = 2) | $2-1969$ |
| 9206 - Receive telegram, Predefined Connection Set (p8744 = 1) | $2-1970$ |
| $9208-$ Send telegram, free PDO mapping (p8744 = 2) | $2-1971$ |
| $9210-$ Send telegram, Predefined Connection Set (p8744 = 1) | $2-1972$ |
| 9220 - Control word, CANopen | $2-1973$ |
| $9226-$ Status word, CANopen |  |



$<1>$ To use automatic BICO interconnection (p8790 = 1), one of the receive words $1-4$ must be used as control word 1 (STW1).
<2> Telegram: up to 4 words or 64 bits.
<3> When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type

RPDO: Receive Process Data Object COB-ID: CAN Communication Object Identifier

| 7 | 8 |  |
| :--- | :--- | :--- |
|  | Function diagram | $-9204-$ |
|  | SINAMICS |  |



Communication Board CAN10（CBC10）
swe»6е！р ио！џวип」

[^11]



| Signal targets for control word CANopen |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | Meaning | Interconnection parameters <1> | [Function diagram] internal control word | [Function diagram] signal target | Inverted |
| STW1.0 | $\begin{aligned} \boldsymbol{\Sigma}= & \text { ON (pulses can be enabled) } \\ 0 & =\text { OFF1 (braking with ramp-function generator, then pulse cancellation and ready-to-power-up) } \end{aligned}$ | p0840[0] = r8890.0 | [2501.3] | [2610] | - |
| STW1.1 | 1 = No coast-down activated (enable possible) <br> $0=$ Activate coast-down (immediate pulse cancellation and power-on inhibit) | p0844[0] = r8890.1 | [2501.3] | [2610] | - |
| STW1.2 | 1 = No fast stop activated (enable possible) <br> $0=$ Activate fast stop (braking along an OFF3 ramp p1135, then pulse cancellation and power-on inhibit) | p0848[0] = r8890.2 | [2501.3] | [2610] | - |
| STW1.3 | 1 = Enable operation (pulses can be enabled) <br> $0=$ Inhibit operation (cancel pulses) | p0852[0] = r8890.3 | [2501.3] | [2610] | - |
| STW1.4 | Reserved | - | - | - | - |
| STW1.5 | Reserved | - | - | - | - |
| STW1.6 | Reserved | - | - | - | - |
| STW1.7 | $\Psi^{=}$Acknowledge fault | $\mathrm{p} 2103[0]=\mathrm{r} 8890.7$ | [2546.1] | [8060] | - |
| STW1.8 | Reserved | - | - | - | - |
| STW1.9 | Reserved | - | - | - | - |
| STW1.10 | Reserved | - |  |  | - |
| STW1.11 | Can be freely connected | pxxxx[y] $=\mathrm{r} 8890.11$ |  |  | - |
| STW1.12 | Can be freely connected | pxxxx[y] $=$ r8890.12 | - | - | - |
| STW1.13 | Can be freely connected | pxxxx[y] $=$ r8890.13 | - | - | - |
| STW1.14 | Can be freely connected | pxxxx[y] $=$ r8890.14 | - | - | - |
| STW1.15 | Can be freely connected | pxxxx[y] $=$ r8890.15 | - | - | - |

<1> Depending on the position of the CANopen control word in p8750, the number of the binector to be connected changes.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: SERVO, VECTOR, VECTORGL, VECTORMV,VECTORSL |  |  |  |  | fp_9220_51_eng.vsd | Function diagram | 9220- |
| Communication Board CAN10 (CBC10) - Control word, CANopen |  |  |  |  | 04.11.09 V04.05.00 | SINAMICS |  |


$\square$

### 2.32 Terminal Module 15 for SINAMICS (TM15DI/DO)

## Function diagrams

| 9400 - Digital inputs/outputs, bidirectional (DI/DO $0 \ldots$ DI/DO 7) | $2-1975$ |
| :--- | ---: |
| 9401 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 15) | $2-1976$ |
| 9402 - Digital inputs/outputs, bidirectional (DI/DO $16 \ldots$ DI/DO 23) | $2-1977$ |



Function diagrams
Terminal Module 15 for SINAMICS (TM15DI/DO)



[^12]
### 2.33 Terminal Module 31 (TM31)

| Function diagrams |  |
| :--- | ---: |
| 9550 - Digital inputs, electrically isolated (DI $0 \ldots$... 13 ) | $2-1979$ |
| 9552 - Digital inputs, electrically isolated (DI $4 \ldots$... 7 ) | $2-1980$ |
| 9556 - Digital relay outputs, isolated (DO 0 ... DO 1) | $2-1981$ |
| 9560 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$... IIDO 9) | $2-1982$ |
| 9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) | $2-1983$ |
| 9566 - Analog input 0 (AI 0) | $2-1984$ |
| 9568 - Analog input 1 (AI 1) | $2-1985$ |
| 9572 - Analog outputs (AO 0 ... AO 1) | $2-1986$ |
| $9576 ~-~ T e m p e r a t u r e ~ e v a l u a t i o n ~(K T Y / P T C) ~$ | $2-1987$ |



Function diagrams
Terminal Module 31 (TM31)


[^13]


Function diagrams
Terminal Module 31 (TM31)

[^14]




### 2.34 Terminal Module 120 (TM120)

## Function diagrams

| 9605 - Temperature evaluation channel 1 and 2 (KTY/PTC/bimetal) | $2-1989$ |
| :--- | :---: |
| 9606 - Temperature evaluation channel 3 and 4 (KTY/PTC/bimetal) | $2-1990$ |




### 2.35 Terminal Module 150 (TM150)

## Function diagrams

9625 - Temperature evaluation structure (channel $0 \ldots 11$ ) 2-1992
9626 - Temperature evaluation $1 \times 2,3,4$-wire (channel $0 \ldots 5$ ) 2-1993
9627 - Temperature evaluation 2x2-wire (channel 0 ... 11) 2-1994





### 2.36 Terminal Module 41 (TM41)







[^15]


Function diagrams



[^16]


Function diagrams
Terminal Module 41 (TM41)



Function diagrams
Terminal Module 41 (TM41)


### 2.37 Auxiliaries

## Function diagrams

| $9794-$ Cooling unit, control and feedback signals $(\mathrm{r} 0108.28=1)$ | $2-2010$ |
| :--- | :--- |
| $9795-$ Cooling unit, sequence control $(\mathrm{r0108.28=1)}$ | $2-2011$ |




[^17]
## $2.38 \quad$ Voltage Sensing Module (VSM)

## Function diagrams

| $9880-$ Analog inputs $(\mathrm{AI} 0 \ldots \mathrm{Al} 3)$ | $2-2013$ |
| :--- | :--- |
| $9886-$ Temperature evaluation | $2-2014$ |


Function diagrams
Voltage Sensing Module (VSM)


### 2.39 Basic Operator Panel 20 (BOP20)

## Function diagrams

9912 - Control word interconnection 2-2016


### 2.40 Braking Module External

## Function diagrams

[^18]

## Faults and alarms

## Contents

| 3.1 | Overview of faults and alarms | $3-2020$ |
| :--- | :--- | :--- |
| 3.2 | List of faults and alarms | $3-2030$ |

### 3.1 Overview of faults and alarms

### 3.1.1 General information on faults and alarms

## Fault and alarm displays

If a fault occurs, the drive indicates this by issuing corresponding fault(s) and/or alarm(s).

The following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS.
- Display online via the commissioning software.


## Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 3-1 Differences between faults and alarms

| Type | $\quad$ Description |
| :--- | :--- |
| Faults | What happens when a fault occurs? <br> - The appropriate fault reaction is triggered. <br> - Status signal ZSW1.3 is set. <br> - The fault is entered in the fault buffer. |
|  | How are faults eliminated? <br> - Remove the original cause of the fault. <br> - Acknowledge the fault. |
| Alarms | What happens when an alarm occurs? <br> - Status signal ZSW1.7 is set. <br> - The alarm is entered in the alarm buffer. |
| How are alarms eliminated? |  |
| - Alarms acknowledge themselves. If the cause of the alarm is no lon- |  |
| ger present, they automatically reset themselves. |  |

## Fault reactions

The following fault reactions are defined:
Table 3-2 Fault reactions

| List | PROFIdrive | Reaction | Description |
| :---: | :---: | :---: | :---: |
| NONE | - | None | No reaction when a fault occurs. <br> Note: <br> When the "Basic positioner" function module is activated (r0108.4 = 1), the following applies: <br> When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and the system switches to tracking mode until the fault has been rectified and acknowledged. |
| OFF1 | ON/ OFF | Brake along the ramp-function generator deceleration ramp followed by pulse disable | Speed control (p1300 = 20, 21) <br> - $n$ _set $=0$ is input immediately to brake the drive along the ramp-function generator deceleration ramp (p1121). <br> - When zero speed is detected, the motor holding brake (if parameters have been assigned for it) is closed (p1215). The pulses are suppressed when the brake closing time ( p 1217 ) expires. <br> Zero speed is detected if the actual speed drops below the threshold ( p 1226 ) or if the monitoring time ( p 1227 ) started when the speed setpoint <= speed threshold (p1226) has expired. <br> Closed-loop torque control (p1300 = 23) <br> - The following applies for torque control: <br> Reaction as for OFF2 <br> - When the system switches to torque control with p1501, the following applies: <br> No separate braking reaction. <br> If the actual speed value drops below the speed threshold ( p 1226 ) or the timer stage ( p 1227 ) has expired, the motor holding brake (if one is being used) is closed. The pulses are suppressed when the brake closing time ( p 1217 ) expires. |
| OFF1 DELAYED | - | As for OFF1, but delayed | Faults with this fault reaction do not become effective until after the delay time set in p3136. <br> The remaining time up to OFF1 is displayed in r3137. |
| OFF2 | $\begin{aligned} & \text { COAST } \\ & \text { STOP } \end{aligned}$ | Internal/external pulse disable | Closed-loop speed and torque control <br> - Instantaneous pulse suppression, the drive "coasts" to a standstill. <br> - The motor holding brake (if one is being used) is closed immediately. <br> - "Switching on inhibited" is activated. |

Table 3-2 Fault reactions, continued

| List | PROFIdrive | Reaction | Description |
| :---: | :---: | :---: | :---: |
| OFF3 | QUICK <br> STOP | Brake along the OFF3 deceleration ramp followed by pulse disable | Speed control (p1300 = 20, 21) <br> - $n$ _set $=0$ is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). <br> - When zero speed is detected, the motor holding brake (if parameters have been assigned for it) is closed. The pulses are suppressed when the closing time of the holding brake ( p 1217 ) expires. <br> Zero speed is detected if the actual speed drops below the threshold ( p 1226 ) or if the monitoring time ( p 1227 ) started when the speed setpoint <= speed threshold (p1226) has expired. <br> - "Switching on inhibited" is activated. <br> Closed-loop torque control (p1300 = 23) <br> - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation. |
| STOP1 | - | - | Under development |
| STOP2 | - | n _set $=0$ | - n_set $=0$ is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). <br> - The drive remains in speed control mode. |
| IASC/ DCBRAKE | - |  | - For synchronous motors, the following applies: <br> If a fault occurs with this fault reaction, an internal armature short-circuit is triggered. <br> The conditions for p1231 = 4 must be observed. <br> - For induction motors, the following applies: If a fault occurs with this fault reaction, DC braking is triggered. <br> DC braking must have been commissioned (p1232, p1233, p1234). |
| ENCODER | - | Internal/external pulse disable (p0491) | The fault reaction ENCODER is applied as a function of the setting in p0491. <br> Factory setting: <br> p0491 = 0 --> Encoder fault causes OFF2 <br> Notice: <br> When changing p0491, it is imperative that the information in the description of this parameter is carefully observed. |

## Acknowledgement of faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been remedied.

Table 3-3 Acknowledgement of faults

| Acknowledgement | Description |
| :---: | :---: |
| POWER ON | The fault is acknowledged by a POWER ON process (switch drive unit off and on again). <br> Note: <br> If this action has not eliminated the fault cause, the fault is displayed again immediately after power up. |
| IMMEDIATELY | Faults can be acknowledged on one drive object (Points 1 to 3 ) or on all drive objects (Point 4) as follows: <br> 1 Acknowledge by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ <br> 2 Acknowledge via binector inputs: <br> p2103 <br> BI: 1. Acknowledge faults <br> p2104 BI: 2. Acknowledge faults <br> p2105 BI: 3. Acknowledge faults <br> 3 Acknowledge using PROFIBUS control signal: <br> STW1.7 = 0 --> 1 (edge) <br> 4 Acknowledge all faults <br> p2102 <br> BI: Acknowledge all faults <br> All of the faults on all of the drive objects of the drive system can be acknowledged using this binector input. <br> Note: <br> - These faults can also be acknowledged by a POWER ON operation. <br> - If this action has not eliminated the fault cause, the fault will continue to be displayed after acknowledgement. <br> - Safety Integrated faults The "Safe standstill" (SH) function must be deselected before these faults are acknowledged. |
| PULSE DISABLE | The fault can only be acknowledged with a pulse disable (r0899.11 = 0). <br> The same options are available for acknowledging as described under acknowledgement with IMMEDIATELY. |

## Saving the fault buffer when switching off

The contents of the fault buffer are saved to the non-volatile memory when the Control Unit is switched off, i.e. the fault buffer history is still available when the unit is switched on again.

The fault buffer of a drive object comprises the following parameters:

- r0945[0...63], r0947[0...63], r0948[0...63], r0949[0...63]
- r2109[0...63], r2130[0...63], r2133[0...63], r2136[0...63]

The fault buffer contents can be deleted manually as follows:

- Delete fault buffer for all drive objects: p2147 = 1 --> p2147 = 0 is automatically set after execution.
- Delete fault buffer for a specific drive object: p0952 = 0 --> The parameter belongs to the specified drive object.

The fault buffer contents are automatically deleted when the following occurs:

- Restore factory setting ( $\mathrm{p} 0009=30$ and $\mathrm{p} 0976=1$ ).
- Download with modified structure (e.g. number of drive objects changed).
- Power-up after other parameter values have been loaded (e.g. p0976 = 10).
- Upgrade firmware to later version.


### 3.1.2 Explanation of the list of faults and alarms

The data in the following example has been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.
The list of faults and alarms (See Section 3.2) is structured as follows:

| Axxxxx (F, N) | Fault location (optional): Name |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | List of objects. |
| Reaction: | NONE |
| Acknowledgement: | NONE |
| Cause: | Description of possible causes. <br> Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional) Information about fault or alarm values (optional). |
| Remedy: | Description of possible remedies. |
| Reaction to F: | A INFEED: OFF2 (OFF1, NONE) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3) |
| Acknowledgement for F : | IMMEDIATELY (POWER ON) |
| Reaction to N : | NONE |
| Acknowledgement for N : | NONE |

End of example

| Axxxxx | Alarm xxxxx |
| :---: | :---: |
| Axxxxx (F, N) | Alarm xxxxx (message type can be changed to F or N ) |
| Fxxxxx | Fault xxxxx |
| Fxxxxx (A, N) | Fault xxxxx (message type can be changed to F or N ) |
| Nxxxxx | No message |
| Nxxxxx (A) | No message (message type can be changed to A) |
| Cxxxxx | Safety message (separate message buffer) |

A message comprises a letter followed by the relevant number.
The meaning of the letters is as follows:

- A means "Alarm".
- F means "Fault".
- N means "No message" or "Internal message" ("No report")
- C means "Safety message"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).

Information on reaction and acknowledgement is specified independently for a message with an adjustable message type (e.g. reaction to $F$, acknowledgement for F).

## Note:

You can change the default properties of a fault or alarm by setting parameters.

| References: /IH1/ | SINAMICS S120 Commissioning Manual |
| :--- | :--- |
|  | Section "Diagnostics" |

The list of faults and alarms (see Section 3.2) provides information in relation to the properties of a message that have been set as standard. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

## Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

## Message value:

The information provided under the message value tells you about the composition of the fault/alarm value.

## Example:

Message value: Component number: \%1, fault cause: \%2
This message value contains information about the component number and fault cause. The entries $\% 1$ and $\% 2$ are placeholders, which are filled appropriately in online operation (e.g. with the commissioning software).

## Drive object:

Each message (fault/alarm) specifies the drive object in which it can be found.
A message can belong to either one, several, or all drive objects.

## Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional brackets indicate whether the default fault reaction can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

## Note:

See Section 3.1.1

## Acknowledgement: Default acknowledgement (adjustable acknowledgement)

Specifies the default method of acknowledging faults after the cause has been eliminated.

The optional brackets indicate whether the default acknowledgement can be changed and which acknowledgement can be adjusted via parameters (p2126, p2127).

## Note:

See Section 3.1.1

## Cause:

Describes the possible causes of the fault/alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...7] and specifies additional, more precise information about an alarm.

## Remedy:

Describes the methods available for eliminating the cause of the active fault or alarm.

## Warning

In certain cases, service and maintenance personnel are responsible for choosing a suitable method to eliminate the cause of faults.

### 3.1.3 Number ranges of faults and alarms

## Note:

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.

The faults and alarms for the product described in this List Manual are described in detail in Section 3.2.

Faults and alarms are organized into the following number ranges:
Table 3-4 Number ranges of faults and alarms

| From | To | Range |
| :---: | :---: | :---: |
| 1000 | 3999 | Control Unit |
| 4000 | 4999 | Reserved |
| 5000 | 5999 | Power unit |
| 6000 | 6899 | Infeed |
| 6900 | 6999 | Braking Module |
| 7000 | 7999 | Drive |
| 8000 | 8999 | Option Board |
| 9000 | 12999 | Reserved |
| 13000 | 13010 | Licensing |
| 13002 | 19999 | Reserved |
| 20000 | 29999 | OEM |
| 30000 | 30999 | DRIVE-CLiQ component power unit |
| 31000 | 31999 | DRIVE-CLiQ component encoder 1 |
| 32000 | 32999 | DRIVE-CLiQ component encoder 2 <br> Note: <br> Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control. |
| 33000 | 33999 | DRIVE-CLiQ component encoder 3 <br> Note: <br> Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control. |
| 34000 | 34999 | Voltage Sensing Module (VSM) |
| 35000 | 35199 | Terminal Module 54F (TM54F) |
| 35200 | 35999 | Terminal Module 31 (TM31) |
| 36000 | 36999 | DRIVE-CLiQ Hub Module |

Table 3-4 Number ranges of faults and alarms, continued

| From | To | Range |
| :---: | :---: | :--- |
| 40000 | 40999 | Controller Extension 32 (CX32) |
| 41000 | 48999 | Reserved |
| 49000 | 49999 | SINAMICS GM/SM/GL |
| 50000 | 50499 | Communication Board (COMM BOARD) |
| 50500 | 59999 | OEM Siemens |
| 60000 | 65535 | SINAMICS DC MASTER (DC control) |

### 3.2 List of faults and alarms

|  | Product: SINAMICS S120/S150, Version: 4502400, Language: eng Objects: A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, <br>  TM 54 F _SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :---: | :---: |
| F01000 | Internal software error |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. |
| Remedy: | - evaluate fault buffer (r0945). <br> - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. <br> - replace the Control Unit. |
| F01001 | FloatingPoint exception |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An exception occurred during an operation with the FloatingPoint data type. <br> The error may be caused by the base system or an OA application (e.g., FBLOCKS, DCC). <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. <br> Note: <br> Refer to r9999 for further information about this fault. <br> r9999[0]: Fault number. <br> r9999[1]: Program counter at the time when the exception occurred. <br> r9999[2]: Cause of the FloatingPoint exception. <br> Bit $0=1$ : Operation invalid <br> Bit $1=1$ : Division by zero <br> Bit 2 = 1: Overflow <br> Bit 3 = 1: Underflow <br> Bit 4 = 1: Imprecise result |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - check configuration and signals of the blocks in FBLOCKS. <br> - check configuration and signals of DCC charts. <br> - upgrade firmware to later version. <br> - contact the Hotline. |
| F01002 | Internal software error |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. |


| F01003 | Acknowledgement delay when accessing the memory |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A memory area was accessed that does not return a "READY". <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a PowER ON (power off/on) for all components. |
|  | - contact the Hotline. |

Remedy: - check the selected component number (p7828).
$x x x x=0091$ hex $=145 \mathrm{dec}:$
Checking the loaded firmware (checksum) was not completed by the component in the appropriate time. xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$ :
Component with the specified component number is not available (p7828).
xxxx = Additional values:
Only for internal Siemens troubleshooting

- check the DRIVE-CLiQ connection
- save suitable firmware file for download in the directory "/siemens/sinamics/code/sac/".
- use a component with a suitable hardware version
- after POWER ON has been carried out again for the DRIVE-CLiQ component, download the firmware again.

Depending on p7826, the firmware will be automatically downloaded.

| A01006 | Firmware update for DRIVE-CLiQ component required |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in |
|  | the component for operation with the Control Unit. |
|  | Alarm value (r2124, interpret decimal): <br>  <br> Component number of the DRIVE-CLiQ component. |
| Remedy: | Firmware update using the commissioning software: |
|  | The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator <br> under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out. |
|  | Firmware update via parameter: |
|  | - take the component number from the alarm value and enter into p7828. |
| - start the firmware download with p7829 =1. |  |


| A01007 | POWER ON for DRIVE-CLiQ component required |
| :---: | :---: |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A DRIVE-CLiQ component must be powered up again (POWER ON) (e.g. due to a firmware update). Alarm value (r2124, interpret decimal): <br> Component number of the DRIVE-CLiQ component. <br> Note: <br> For a component number $=1$, a POWER ON of the Control Unit is required. |
| Remedy: | - Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again. <br> - For SINUMERIK, auto commissioning is prevented. In this case, a POWER ON is required for all components and the auto commissioning must be restarted. |


| A01009 (N) | CU: Control module overtemperature |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value. |
| Remedy: | - check the air intake for the Control Unit. <br> - check the Control Unit fan. |
|  | Note: <br> The alarm automatically disappears after the limit value has been undershot. |
| Reaction upon N: | NONE |
| Acknowl. upon $\mathrm{N}:$ | NONE |


| F01010 | Drive type unknown |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An unknown drive type was found. <br> Fault value (r0949, interpret decimal): <br>  <br> Drive object number (refer to p0101, po107). <br> - replace Power Module. <br> - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. |
|  | - contact the Hotline. |


| A01013 | CU: Fan operating time reached or exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The maximum operating time of the fan in the Control Unit has either been reached or exceeded. Alarm value (r2124, interpret decimal): <br> 0 : The maximum fan operating time is 500 hours. <br> 1: The maximum fan operating time has been exceeded ( 50,000 hours). |
| Remedy: | Replace the fan in the Control Unit and reset the operating hours counter to 0 (p3961 = 0). |
| F01015 | Internal software error |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. |
| A01016 (F) | Firmware changed |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory. <br> Alarm value (r2124, interpret decimal): <br> 0 : Checksum of one file is incorrect. <br> 1: File missing. <br> 2: Too many files. <br> 3: Incorrect firmware version. <br> 4: Incorrect checksum of the back-up file. |
| Remedy: | For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition. Note: <br> The file involved can be read out using parameter r9925. <br> The status of the firmware check is displayed using r9926. <br> See also: r9925 (Firmware file incorrect), r9926 (Firmware check status) |
| Reaction upon F: | OFF2 |
| Acknowl. upon F: | POWER ON |

A01017 Component lists changed

Message value: \%1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory. Alarm value (r2124, interpret decimal):
zyx dec: $x=$ Problem, $y=$ Directory, $z=$ File name
$x=1$ : File does not exist.
$x=2$ : Firmware version of the file does not match the software version.

|  | $x=3$ : File checksum is incorrect. <br> $y=0$ : Directory /SIEMENS/SINAMICS/DATA/ <br> $y=1$ : Directory /ADDON/SINAMICS/DATA/ <br> z = 0: File MOTARM.ACX <br> z = 1: File MOTSRM.ACX <br> z = 2: File MOTSLM.ACX <br> $\mathrm{z}=3$ : File ENCDATA.ACX <br> $\mathrm{z}=4$ : File FILTDATA.ACX <br> $z=5$ : File BRKDATA.ACX <br> $\mathrm{z}=6$ : File DAT_BEAR.ACX <br> $\mathrm{z}=7$ : File CFG_BEAR.ACX <br> z = 8: File ENC_GEAR.ACX |
| :---: | :---: |
| Remedy: | For the file on the memory card involved, restore the status originally supplied from the factory. |
| A01020 | Writing to RAM disk unsuccessful |
| Message value: | - RAM disk unsuccessul |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A write access to the internal RAM disk was unsuccessful. |
| Remedy: | Adapt the file size for the system logbook to the internal RAM disk (p9930). See also: p9930 (System logbook activation) |
| F01023 | Software timeout (internal) |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An internal software timeout has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. |
| F01030 | Sign-of-life failure for master control |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) <br> Vector: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the active BICO interconnection. |
| Remedy: | Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. <br> For the commissioning software, the monitoring time is set as follows: <br> <Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds. <br> Notice: <br> The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails! |


| F01031 | Sign-of-life failure for OFF in REMOTE |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) |
|  | Servo: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) |
|  | Vector: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 seconds. |
| Remedy: | - Check the data cable connection at the serial interface for the Control Unit (CU) and operator panel. |


| A01032 (F) | ACX: all parameters must be saved |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The parameters of an individual drive object were saved ( $\mathrm{p} 0971=1$ ), although there is still no backup of all drive system parameters. <br> The saved object-specific parameters are not loaded the next time that the system powers up. <br> For the system to successfully power up, all of the parameters must have been completely backed up. <br> Alarm value (r2124, interpret decimal): <br> Only for internal Siemens troubleshooting. <br> See also: p0971 (Save drive object parameters) |
| Remedy: | Save all parameters (p0977 = 1 or "copy RAM to ROM"). See also: p0977 (Save all parameters) |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| F01033 | Units changeover: Reference parameter value invalid |
| :---: | :---: |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0 <br> Fault value (r0949, parameter): <br> Reference parameter whose value is 0.0 . <br> See also: p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units), <br> p0595 (Technological unit selection) |
| Remedy: | Set the value of the reference parameter to a number different than 0.0. See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004 |

F01034 Units changeover: Calculation parameter values after reference value change unsuc- cessful

Message value: Parameter: \%1
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge: IMMEDIATELY
Cause:
The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored. Fault value (r0949, parameter):
Parameter whose value was not able to be re-calculated
See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004

| Remedy: | Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation. <br> See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004 |
| :---: | :---: |
| A01035 (F) | ACX: Parameter back-up file corrupted |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out. <br> It is possible that the backup was interrupted by switching off or withdrawing the memory card. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> aa $=01$ hex: <br> Power up was realized without data backup. The drive is in the factory setting. <br> aa $=02$ hex: <br> The last available backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again. <br> dd, cc, bb: <br> Only for internal Siemens troubleshooting. <br> See also: p0971 (Save drive object parameters), p0977 (Save all parameters) |
| Remedy: | - Download the project again with the commissioning software. <br> - save all parameters (p0977 = 1 or "copy RAM to ROM"). <br> See also: p0977 (Save all parameters) |
| Reaction upon F: | ```Infeed: NONE (OFF1, OFF2) Servo: NONE (OFF1, OFF2, OFF3) Vector: NONE (OFF1, OFF2, OFF3)``` |
| Acknowl. upon F: | IMMEDIATELY |

F01036 (A) ACX: Parameter back-up file missing

Message value: \%1
Drive object: All objects

| Reaction: | Infeed: NONE (OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| :---: | :---: |
| Acknowledge: | IMMEDIATELY |
| Cause: | When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found. <br> Fault value (r0949, interpret hexadecimal): <br> Byte 1: yyy in the file name PSxxxyyy.ACX <br> yyy = 000 --> consistency back-up file <br> yyy = 001 ... 062 --> drive object number <br> yyy = 099 --> PROFIBUS parameter back-up file <br> Byte 2, 3, 4: <br> Only for internal Siemens troubleshooting. |
| Remedy: | If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the non-volatile memory. <br> If you have not saved the project data, then first commissioning of the system has to be carried out again. |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F01038 (A) | ACX: Loading the parameter back-up file unsuccessful |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory. <br> Fault value (r0949, interpret hexadecimal): <br> Byte 1: yyy in the file name PSxxxyyy.ACX <br> yyy $=000$--> consistency back-up file <br> yyy $=001 \ldots 062$--> drive object number <br> yyy = 099 --> PROFIBUS parameter back-up file <br> Byte 2: <br> 255: Incorrect drive object type. <br> 254: Topology comparison unsuccessful -> drive object type was not able to be identified. <br> Reasons could be: <br> - Incorrect component type in the actual topology <br> - Component does not exist in the actual topology. <br> - Component not active. <br> Additional values: <br> Only for internal Siemens troubleshooting. <br> Byte 4, 3: <br> Only for internal Siemens troubleshooting. |
| Remedy: | - If you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with p0977 $=1$ so that all of the parameter files are again completely written to the non-volatile memory. <br> - replace the memory card or Control Unit. <br> Re byte $2=255$ : <br> - Correct the drive object type (see p0107). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F01039 (A) | ACX: Writing to the parameter back-up file was unsuccessful |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful. <br> - In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten. <br> - There is not sufficient free memory space available. <br> - The non-volatile memory is defective and cannot be written to. <br> Fault value (r0949, interpret hexadecimal): <br> dcba hex <br> a = yyy in the file names PSxxxyyy.*** <br> a = 000 --> consistency back-up file <br> a = 001 ... 062 --> drive object number <br> a = 070 --> FEPROM.BIN <br> $a=080$--> DEL4BOOT.TXT <br> a = 099 --> PROFIBUS parameter back-up file <br> $b=x x x$ in the file names PSxxxyyy.*** <br> $b=000$--> data save started with p0977 = 1 or p0971 $=1$ <br> $b=010$--> data save started with p0977 $=10$ <br> $b=011$--> data save started with p0977 $=11$ <br> b = 012 --> data save started with p0977 = 12 <br> d, c: <br> Only for internal Siemens troubleshooting. |


| Remedy: | - check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable". <br> - check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system. <br> - replace the memory card or Control Unit. |
| :---: | :---: |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F01040 | Save parameter settings and carry out a POWER ON |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: <br> Remedy: | A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot. <br> - save the parameters (p0971/p0977). <br> - carry out a POWER ON (power off/on) for all components. <br> Then: <br> - upload the drive unit (commissioning software). |
| F01040 | Save parameter settings and carry out a POWER ON |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot. Examples: <br> - p1810.2 (wobulation of the pulse frequency) and p1802 (edge modulation) <br> - p1750.5 (cl.-loop control mode PESM up to $\mathrm{f}=0 \mathrm{~Hz}$ with HF signal injection) |
| Remedy: | - save the parameters (p0971/p0977). <br> - carry out a POWER ON for all components (switch-on the Control Unit with or after the power units). <br> When changing p1750.5 or p1810.2 for edge modulation, a warm restart is sufficient (p0009 = 30, p0976 = 3). <br> Then: <br> - upload the drive unit (commissioning software). |
| F01041 | Parameter save necessary |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Defective or missing files were detected on the memory card when booting. Fault value (r0949, interpret decimal): <br> 1: Source file cannot be opened. <br> 2: Source file cannot be read. <br> 3: Target directory cannot be set up. <br> 4. Target file cannot be set up/opened. <br> 5. Target file cannot be written to. <br> Additional values: <br> Only for internal Siemens troubleshooting. |
| Remedy: | - save the parameters. <br> - download the project again to the drive unit. <br> - update the firmware <br> - if required, replace the Control Unit and/or memory card card. |

## F01042

Message value:
Drive object:
Reaction:

Acknowledge:
Cause:

## Parameter error during project download

Parameter: \%1, Index: \%2, fault cause: \%3
All objects
Infeed: OFF2 (NONE, OFF1)
Servo: OFF2 (NONE, OFF1, OFF3)
Vector: OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY
An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
bb = Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal
24: Number of values not consistent
25: Drive object does not exist.
101: Presently de-activated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset ( $\mathrm{p} 0010=30$ ).
115: Write access only in the Safety Integrated commissioning state ( $\mathrm{p} 0010=95$ ).
116: Write access only in the commissioning state, technological application/units ( $p 0010=5$ ).
117: Write access only in the commissioning state ( p 0010 not equal to 0 ).
118: Write access only in the commissioning state, download (p0010 = 29).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0 ).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.


| A01045 | CU: Configuring data invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408. <br> Alarm value (r2124, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - Check the parameters displayed in r9406 up to r9408, and correct these if required. <br> - Restore the factory setting using ( $\mathrm{p} 0976=1$ ) and re-load the project into the drive unit. <br> Then save the parameterization in STARTER using the "Copy RAM to ROM" function or with p0977 $=1$. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn. |


| A01049 | CU: It is not possible to write to file |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. <br> Alarm value (r2124, interpret decimal): |
|  | Drive object number. |
| Remedy: | Check whether the "write protected" atribute has been set for the files in the non-volatile memory under <br> ../USER/GINAMICS/DATA/... |
|  | When required, remove write protection and save again (e.g. set p0977 to 1). |

F01050 Memory card and device incompatible

## Message value:

Drive object: All objects
Reaction: Infeed: OFF2 (NONE, OFF1)
Servo: OFF2 (NONE, OFF1, OFF3)
Vector: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY

Cause: $\quad$ The memory card and the device type do not match (e.g. a memory card for SINAMICS $S$ is inserted in SINAMICS G).

Remedy: - insert the matching memory card. - use the matching Control Unit or power unit.

## F01054 CU: System limit exceeded

Message value: \%1

| Drive object: | All objects |
| :--- | :--- |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | At least one system overload has been identified. |
|  | Fault value (r0994, interpret decimal): |
|  | 1: Computing time load too high (r9976[1]). |
|  | 5: Peak load too high (r9976[5]). |
|  | See also: r9976 (System utilization) |
| Remedy: | Re fault value $=1,5:$ |

- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under $100 \%$.
- check the sampling times and adjust if necessary ( $\mathrm{p} 0115, \mathrm{p} 0799, \mathrm{p} 4099$ ).
- de-activate function modules
- de-activate drive objects.
- remove drive objects from the target topology.
- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.

When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies - the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or r20005 (FBLOCKS).

- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001).
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).

| F01055 | CU: Internal error (SYNO of port and application not identical) |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | All applications that operate with slaves at one port must be derived from the same SYNO clock cycle. The first application whose registration (log-on) connects a slave to a port defines the SYNO clock cycle that will be used as basis for the port. <br> Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01056 | CU: Internal error (clock cycle of parameter group already assigned differently) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The requested parameter group (IREG, NREG, ...) is already being used in a different clock cycle. Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01057 | CU: Internal error (different DRIVE-CLiQ type for the slave) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The requested DRIVE-CLiQ type (hps_ps, hps_enc, ...) has been specified differently for the same slave component. Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01058 | CU: Internal error (slave missing in topology) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The requested slave component does not exist in the topology. |


| Remedy: | Fault value (r0949, interpret hexadecimal): Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. Contact the Hotline. |
| :---: | :---: |
| F01059 | CU: Internal error (port does not exist) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The port object assigned according to the topology of the requested slave component does not exist. Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01060 | CU: Internal error (parameter group not available) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The requested parameter group (IREG, NREG, ...) is not offered by this slave type. Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01061 | CU: Internal error (application not known) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An application that is not registered with TSM has attempted to register with registerSlaves(). <br> The cause can be an unsuccessful TSM registration or an incorrect registration sequence. It is always necessary to log in to the TSM before registerSlaves() can be used. <br> Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Contact the Hotline. |
| F01063 | CU: Internal error (PDM) |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An internal software error has occurred. <br> Fault value (r0949, interpret hexadecimal): <br> Method ID. <br> Note: <br> Only for internal Siemens troubleshooting. |

Remedy: Contact the Hotline.

| A01064 (F) | CU: Internal error (CRC) |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | CRC error in the Control Unit program memory |
| Remedy: | - carry out a POWER ON (power off/on) for all components. |
|  | - upgrade firmware to later version. |
|  | - contact the Hotline. |
| Infeed: NONE (OFF1, OFF2) |  |
| Reaction upon F: |  |
|  | Servo NONE (OFF1, OFF2, OFF3, STOP2) <br> Vector: NONE (OFF1, OFF, OFF3, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


|  | Caution: |
| :---: | :---: |
|  | During the upgrade and while this fault is present, it is not permissible to switch off the Control Unit. If the operation is interrupted, this can destroy the file system on the memory card. The memory card will then no longer work properly and must be repaired. |
| Remedy: | Not necessary. <br> The fault automatically disappears after the upgrade has been completed. |
| A01099 | Tolerance window of time synchronization exited |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The time master exited the selected tolerance window for time synchronization. See also: p3109 (RTC real time synchronization, tolerance window) |
| Remedy: | Select the re-synchronization interval so that the synchronization deviation between the time master and drive system lies within the tolerance window. <br> See also: r3108 (RTC last synchronization deviation) |
| A01100 | CU: Memory card withdrawn |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The memory card (non-volatile memory) was withdrawn during operation. <br> Notice: <br> It is not permissible for the memory card to be withdrawn or inserted under voltage. |
| Remedy: | - power down the drive system. <br> - re-insert the memory card that was withdrawn - this card must match the drive system. <br> - power up the drive system again. |


| F01105 (A) | CU: Insufficient memory |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF1 |
| Acknowledge: | POWER ON |
| Cause: | Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> OA applications, blocks, etc). <br> Only for internal Siemens troubleshooting. <br> - change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, <br> blocks, etc). |
| Remedy: | - use an additional Control Unit. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

## F01106 CU: Insufficient memory

Message value: $\%$
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: $\quad$ There is not sufficient free memory space available.
Remedy: Not necessary.

| F01107 | CU: Data save in the non-volatile memory unsuccessful |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A data save in the non-volatile memory was not able to be successfully carried out. <br> - non-volatile memory is defective. <br> - insufficient space in the non-volatile memory. |
|  | Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
|  | - try to save again. |
| - replace the memory card or Control Unit. |  |

F01120 (A) Terminal initialization has failed

Message value: \%1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software error occurred while the terminal functions were being initialized. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.

| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. <br> - replace the Control Unit. |
| :---: | :---: |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F01122 (A) | Frequency at the measuring probe input too high |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The frequency of the pulses at the measuring probe input is too high. Fault value (r0949, interpret decimal): <br> 1: DI/DO 9 (X122.8) <br> 2: DI/DO 10 (X122.10) <br> 4: DI/DO 11 (X122.11) <br> 8: DI/DO 13 (X132.8) <br> 16: DI/DO 14 (X132.10) <br> 32: DI/DO 15 (X132.11) <br> 64: DI/DO 8 (X122.7) <br> 128: DI/DO 12 (X132.7) |
| Remedy: | Reduce the frequency of the pulses at the measuring probe input. |
| Reaction upon A: | NONE |
| Acknowl. upon A : | NONE |
| F01122 (A) | Frequency at the measuring probe input too high |
| Message value: | \%1 |
| Drive object: | CU_NX_CX, SERVO_AC, VECTOR_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The frequency of the pulses at the measuring probe input is too high. Fault value (r0949, interpret decimal): <br> 1: DI/DO 9 (X122.8) <br> 2: DI/DO 10 (X122.10) <br> 4: DI/DO 11 (X122.11) <br> 64: DI/DO 8 (X122.7) |
| Remedy: | Reduce the frequency of the pulses at the measuring probe input. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F01123 | Power unit does not support digital inputs/outputs |
| Message value: | - |
| Drive object: | SERVO |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Power unit does not support the activated "digital inputs/outputs" function module |
| Remedy: | De-activate the function module. |
| F01150 | CU: Number of instances of a drive object type exceeded |
| Message value: | Drive object type: \%1, number permitted: \%2, actual number: \%3 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum permissible number of instances of a drive object type was exceeded. |



| Remedy: | - reduce the number of drives. |
| :--- | :--- |
|  | - increase the sampling times. |
| F01221 | CU: Bas clk cyc too low |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The closed-loop control / monitoring cannot maintain the envisaged clock cycle. |
|  | The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time |
|  | remaining in the system is not sufficient for the closed-loop control/monitoring. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | Only for internal Siemens troubleshooting. |
|  | Increase the basic clock cycle of DRIVE-CLiQ communication. |
| Remedy: | See also: p0112 (Sampling times pre-setting p0115) |
|  |  |

42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $125 \mu \mathrm{~s}$.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
45: A chassis parallel unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $162.5 \mu \mathrm{~s}$ or $187.5 \mu \mathrm{~s}$ (for a 2 or 3 x parallel connection).
46: A node has been identified on the DRIVE-CLiQ line whose sampling time is not a multiple of the lowest sampling time on this line.
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $31.25 \mu \mathrm{~s}$.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $62.5 \mu \mathrm{~s}$.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $250 \mu \mathrm{~s}$.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
General note:
The topology rules should be noted when connecting up DRIVE-CLiQ (refer to the appropriate product documentation).
The parameters of the sampling times can also be changed with automatic calculations.
Example for highest common denominator: $125 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 62.5 \mu \mathrm{~s}-->62.5 \mu \mathrm{~s}$
Remedy: $\quad$ - check the DRIVE-CLiQ cables.

A01224 CU: Pulse frequency inconsistent
Message value: $\% 1$
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When changing the minimum pulse frequency ( p 0113 ) inconsistency between the pulse frequencies was identified. Alarm value (r2124, interpret decimal):
1: Value lower than minimum value.
2: Value higher than maximum value.
3: Resulting sampling time is not a multiple of $1.25 \mu \mathrm{~s}$.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
10: Special restriction of the drive object violated.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
Remedy: Set a valid pulse frequency.
See also: p0113 (Minimum pulse frequency, selection)

F01250
Message value:
Drive object:
Reaction:
Acknowledge:
CU: CU-EEPROM incorrect read-only data
\%1

POWe: POR ON
Cause: Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON.

- replace the Control Unit.

| A01251 | CU: CU-EEPROM incorrect read-write data |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when reading the read-write data of the EEPROM in the Control Unit. <br>  <br> Alarm value (r2124, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | For alarm value r2124 < 256, the following applies: <br> - carry out a POWER ON. |
|  | - replace the Control Unit. |
|  | For alarm value r2124 >= 256, the following applies: |
|  | - for the drive object with this alarm, clear the fault memory (p0952 = 0). |
|  | -as an alternative, clear the fault memory of all drive objects (p2147 = 1). |
|  | - replace the Control Unit. |


| A01256 | CU: Option Board EEPROM read-write data error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when reading the read-write data of the EEPROM in the Option Board. <br>  <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON. <br> - replace the Control Unit. |

F01303 DRIVE-CLiQ component does not support the required function
Message value: \%1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
Fault value (r0949, interpret decimal):
1: The component does not support the de-activation.
101: The Motor Module does not support an internal armature short-circuit.
102: The Motor Module does not support the de-activation.
201: The Sensor Module does not support actual value inversion ( $\mathrm{p} 0410.0=1$ ) when using a Hall sensor ( p 0404.6
= 1) for the commutation.
202: The Sensor Module does not support parking/unparking.
203: The Sensor Module does not support the de-activation.
204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
205: The Sensor Module does not support the selected temperature evaluation (r0458).
206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently nec-
essary to upgrade the firmware to ensure disturbance-free operation.
207: The power unit with this hardware version does not support operation with device supply voltages of less than
380 V.

|  | 208: The Sensor Module does not support de-selection of commutation with zero mark (via p0430.23). <br> 211: The Sensor Module does not support single-track encoders (r0459.10). <br> 212: The Sensor Module does not support LVDT sensors (p4677.0). <br> 213: The Sensor Module does not support the characteristic type (p4662). |
| :---: | :---: |
| Remedy: | Upgrade the firmware of the DRIVE-CLiQ component involved. <br> For fault value $=205$ : <br> Check parameter p0600 and p0601 and if required, adapt interpretation. <br> For fault value $=207$ : <br> Replace the power unit or if required set the device supply voltage higher (p0210). <br> For fault value = 208: <br> Check parameter p0430.23 and reset if necessary. |
| A01304 (F) | Firmware version of DRIVE-CLiQ component is not up-to-date |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The non-volatile memory has a more recent firmware version than the one in the connected DRIVE-CLiQ component. <br> Alarm value (r2124, interpret decimal): <br> Component number of the DRIVE-CLiQ component involved. |
| Remedy: | Update the firmware (p7828, p7829 and commissioning software). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| F01305 | Topology: Component number missing |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161). <br> Fault value (r0949, interpret decimal): <br> Data set number. <br> Note: <br> The fault also occurs if speed encoders have been configured ( p 0187 to p0189) but no component numbers exist for them. <br> In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. 3xx, if a component number was not entered in p0141 for the third encoder ( p 0189 )). <br> See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189 |
| Remedy: | Enter the missing component number or remove the component and restart commissioning. See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189 |
| A01306 | Firmware of the DRIVE-CLiQ component being updated |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Firmware update is active for at least one DRIVE-CLiQ component. Alarm value (r2124, interpret decimal): <br> Component number of the DRIVE-CLiQ component. |
| Remedy: | Not necessary. <br> This alarm automatically disappears after the firmware has been updated. |


| A01314 | Topology: Component must not be present |
| :---: | :---: |
| Message value: | Component number: \%1, Component class: \%2, Connection number: \%3 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For a component, "de-activate and not present" is set but this component is still in the topology. Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> aa = component number <br> $\mathrm{bb}=$ component class of the component <br> cc = connection number <br> Note: <br> Component class and connection number are described in F01375. |
| Remedy: | - remove the corresponding component. <br> - change the setting "de-activate and not present". <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). <br> See also: p0105, p0125, p0145, p0155, p0165 |
| A01315 | Drive object not ready for operation |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the active drive object involved, at least one activated component is missing. Note: <br> All other active and operational drive objects can be in the "RUN" state. |
| Remedy: | The alarm automatically disappears again with the following actions: <br> - de-activate the drive object involved ( $\mathrm{p} 0105=0$ ). <br> - de-activate the components involved ( $\mathrm{p} 0125=0, \mathrm{p} 0145=0, \mathrm{p} 0155=0, \mathrm{p} 0165=0$ ). <br> - re-insert the components involved. <br> See also: p0105, p0125, p0145, p0155, p0165 |


| A01316 | Drive object inactive and again ready for operation |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | If, when inserting a component of the target topology, an inactive, non-operational drive object becomes operational |
|  | again. The associated parameter of the component is, in this case, set to "activate" (p0125, p0145, p0155, p0165). |
|  | Note: |
|  | This is the only message that is displayed for a de-activated drive object. |
| Remedy: | The alarm automatically disappears again with the following actions: <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> - activate the drive object involved (p0105 = 1). <br> See also: p0105 (Activate/de-activate drive object) |

A01317 (N) De-activated component again present
Message value: -
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "de-activate" (p0125, p0145, p0155, p0165).
Note:
This is the only message that is displayed for a de-activated component.

| Remedy: | The alarm automatically disappears again with the following actions: <br> - activate the components involved ( $\mathrm{p} 0125=1, \mathrm{p} 0145=1, \mathrm{p} 0155=1, \mathrm{p} 0165=1$ ). <br> - again withdraw the components involved. <br> See also: p0125 (Activate/de-activate power unit components), p0145, p0155, p0165 (Activate/de-activate filter module) |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A01318 | BICO: De-activated interconnections present |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | This alarm is used in the following cases: <br> - If an inactive/non-operational drive object is active again/ready for operation <br> - If there are items in the list of BI/Cl parameters (r9498[0...29], r9499[0...29]) <br> - If the BICO interconnections saved in the list of BI/CI parameters (r9498[0...29], r9499[0...29]) have actually been changed |
| Remedy: | Reset alarm: <br> - Set p9496 to 1 or 2 <br> or <br> - de-activate the drive object again. |
| A01319 | Inserted component not initialized |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Initialization is required for at least one inserted component. This is only possible if the pulses are inhibited for all the drive objects. |
| Remedy: | Activate pulse inhibit for all drive objects. |

A01320 Topology: Drive object number does not exist in configuration
Message value: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: A drive object number is missing in p0978 Alarm value ( r 2124 , interpret decimal): Index of p0101 under which the missing drive object number can be determined.
Remedy: $\quad$ Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101).

- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

| A01321 | Topology: Drive object number does not exist in configuration |
| :--- | :--- |
| Message value: | \%1 |

## Remedy: $\quad$ Set p0009 to 1 and change p0978:

Rules:

- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

| A01322 | Topology: Drive object number present twice in configuration |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A drive object number is present more than once in p0978. <br> Alarm value ( r 2124 , interpret decimal): <br> Index of p0978 under which the involved drive object number is located. |
| Remedy: | Set parameter p0009 $=1$ and change p0978: <br> Rules: <br> - p0978 must include all of the drive object numbers (p0101). <br> - it is not permissible for a drive object number to be repeated. <br> - by entering a 0 , the drive objects with PZD are separated from those without PZD. <br> - only 2 partial lists are permitted. After the second 0 , all values must be 0 . <br> - dummy drive object numbers (255) are only permitted in the first partial list. |


| A01323 | Topology: More than two partial lists created |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Partial lists are available more than twice in p0978. After the second 0 , all must be 0 Alarm value ( r 2124 , interpret decimal): <br> Index of p0978 under which the illegal value is located. |
| Remedy: | Set p0009 to 1 and change p0978: <br> Rules: <br> - p0978 must include all of the drive object numbers (p0101). <br> - it is not permissible for a drive object number to be repeated. <br> - by entering a 0 , the drive objects with PZD are separated from those without PZD. <br> - only 2 partial lists are permitted. After the second 0 , all values must be 0 . <br> - dummy drive object numbers (255) are only permitted in the first partial list. |


| A01324 | Topology: Dummy drive object number incorrectly created |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In p0978, dummy drive object numbers (255) are only permitted in the first partial list Alarm value ( r 2124 , interpret decimal): <br> Index of p0978 under which the illegal value is located. |
| Remedy: | Set p0009 to 1 and change p0978: <br> Rules: <br> - p0978 must include all of the drive object numbers (p0101). <br> - it is not permissible for a drive object number to be repeated. <br> - by entering a 0 , the drive objects with PZD are separated from those without PZD. <br> - only 2 partial lists are permitted. After the second 0 , all values must be 0 . <br> - dummy drive object numbers (255) are only permitted in the first partial list. |



|  | aa $=07$ hex $=7 \mathrm{dec}$ : |
| :---: | :---: |
|  | The actual topology contains an illegal combination of components. |
|  | - bb = 01 hex = 1 dec: Active Line Module (ALM) and Basic Line Module (BLM). |
|  | - bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM). |
|  | - bb $=03$ hex $=3$ dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15). |
|  | - bb = 04 hex = 4 dec: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32). |
|  | - cccc: Not used. |
|  | Note: |
|  | Connection type and connection number are described in F01375. |
|  | See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology) |
| Remedy: | - adapt the output topology to the permissible requirements. <br> - carry out commissioning using the commissioning software. |
|  | - for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor |
|  | Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203). |
|  | $\operatorname{Re} a \mathrm{aa}=06 \mathrm{hex}=6 \mathrm{dec}$ and $\mathrm{bb}=01 \mathrm{hex}=1 \mathrm{dec}$ : |
|  | Correct the order number when commissioning using the commissioning software. |
|  | See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology) |


| A01331 | Topology: At least one component not assigned to a drive object |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | At least one component is not assigned to a drive object. |
|  | - when commissioning, a component was not able to be automatically assigned to a drive object. |
|  | - the parameters for the data sets are not correctly set. |
|  | Alarm value (r2124, interpret decimal): |
|  | Component number of the unassigned component. |
|  | This component is assigned to a drive object. |
| Remedy: | Check the parameters for the data sets. |
|  | Examples: |
|  | - power unit (p0121). |
|  | - motor (p0131, p0186). |
|  | - encoder interface (p0140, p0141, p0187 ... p0189). |
|  | - encoder (p0140, p0142, p0187 ... p0189). |
|  | - Terminal Module (p0151). |
|  | - option board (p0161). |


| F01340 | Topology: Too many components on one line |
| :--- | :--- |
| Message value: | Component number or connection number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the |
|  | Control Unit. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | xyy hex: $=$ fault cause, yy = component number or connection number. |
|  | 1yy: |
|  | The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read trans- |
|  | fers. |
|  | $2 y y:$ |
|  | The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write trans- |
|  | fers. |
|  | 3yy: |
|  | Cyclic communication is fully utilized. |
|  | 4yy: |
|  | The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to |
|  | the control. Sign-of-life errors can be expected. |
|  | The conditions of operation with a current controller sampling time of $31.25 \mu s$ have not been maintained. |


|  | 5yy: |
| :---: | :---: |
|  | Internal buffer overflow for net data of a DRIVE-CLiQ connection. |
|  | 6yy: |
|  | Internal buffer overflow for receive data of a DRIVE-CLiQ connection. |
|  | 7yy: |
|  | Internal buffer overflow for send data of a DRIVE-CLiQ connection. |
|  | 8yy: |
|  | The component clock cycles cannot be combined with one another |
|  | 900: |
|  | The lowest common multiple of the clock cycles in the system is too high to be determined. |
|  | 901: |
|  | The lowest common multiple of the clock cycles in the system cannot be generated with the hardware. |
| Remedy: | - check the DRIVE-CLiQ connection. |
|  | - Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the Control Unit. This means that communication is uniformly distributed over several lines. |
|  | Re fault value = 1yy-4yy in addition: |
|  | - increase the sampling times ( $00112, \mathrm{p} 0115, \mathrm{p} 4099$ ). If necessary, for DCC or FBLOCKS, change the assignment of the run-time group (p21000, p20000) so that the sampling time (r21001, r20001) is increased. |
|  | - if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS). |
|  | - reduce the function modules (r0108). |
|  | - establish the conditions for operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ (at the DRIVE-CLiQ line, only operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, this means a 3 at the last position of the order number)). |
|  | - For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a free DRIVE-CLiQ socket of the NX. |
|  | Re fault value $=8 \mathrm{yy}$ in addition: |
|  | - check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved. |
|  | Re fault value = 9yy in addition: |
|  | - check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles. |
| F01341 | Topology: Maximum number of DRIVE-CLiQ components exceeded |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Too many DRIVE-CLiQ components were defined in the actual topology. |
|  | Note: |
|  | Pulse enable is withdrawn and prevented. |
| Remedy: | - check the DRIVE-CLiQ connection. |
|  | - reduce the number components on the DRIVE-CLiQ line involved in order to maintain the maximum quantity structure. |
| F01354 | Topology: Actual topology indicates an illegal component |
| Message value: | Fault cause: \%1, component number: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The actual topology indicates at least one illegal component. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | yyxx hex: $\mathrm{yy}=$ component number, $x x=$ cause . |
|  | $x x=1$ : Component at this Control Unit not permissible. |
|  | $x x=2$ : Component in combination with another component not permissible. |
|  | Note: |
|  | Pulse enable is prevented. |
| Remedy: | Remove the illegal components and restart the system. |


| F01355 | Topology: Actual topology changed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The device target topology (p0099) does not correspond to the device actual topology (r0098). <br> The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning software. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. <br> See also: r0098 (Actual device topology), p0099 (Device target topology) |
| Remedy: | One of the following counter-measures can be selected if no faults have occurred in the topology detection itself: If commissioning is still not completed: <br> - carry out a self-commissioning routine (starting from p0009 = 1). <br> In general: <br> Set $\mathrm{p} 0099=\mathrm{r} 0098$, set $\mathrm{p} 0009=0$; for existing Motor Modules, this results in servo drives being automatically generated (p0107). <br> Generating servo drives: Set p0097 to 1, set p0009 to 0. <br> Generating vector drives: Set p0097 to 2, set p0009 to 0 . <br> Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0. <br> In order to set configurations in p0108, before setting p0009 to 0 , it is possible to first set p0009 to 2 and modify <br> p0108. The index corresponds to the drive object (p0107). <br> If commissioning has already been completed: <br> - re-establish the original connections and re-connect power to the Control Unit. <br> - restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again. <br> - change the device parameterization to match the connections (this is only possible using the commissioning software). <br> Notice: <br> Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning software and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting. <br> See also: r0098 (Actual device topology) |
| F01356 | Topology: There is a defective DRIVE-CLiQ component |
| Message value: | Fault cause: \%1, Component number: \%2, Connection number: \%3 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The actual topology indicates at least one defective DRIVE-CLiQ component. <br> Fault value (r0949, interpret hexadecimal): <br> zzyyxx hex: <br> $\mathrm{zz}=$ connection number of the component at which the defective component is connected <br> $\mathrm{yy}=$ component number of the component at which the defective component is connected <br> $\mathrm{xx}=$ fault cause <br> $x x=1$ : Component at this Control Unit not permissible. <br> $x x=2$ : component with communication defect. <br> Note: <br> Pulse enable is withdrawn and prevented. |
| Remedy: | Replace the defective component and restart the system. |
| F01357 | Topology: Two Control Units identified on the DRIVE-CLiQ line |
| Message value: | component number: \%1, connection number: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | In the actual topology, 2 Control Units are connected with one another through DRIVE-CLiQ. This is not permitted |



Re fault cause $=3,4,5$ :
Establish a valid combination.
Re fault cause $=6,7$ :
Connect the expansion module directly to a permitted Control Unit.
Re fault cause $=8$ :
Remove component or use a permissible component.
Re fault cause = 9:
Upgrade the firmware of the Control Unit to a later version.
Re fault cause = 10, 11:
Reduce the number of components.

| A01361 | Topology: Actual topology contains SINUMERIK and SIMOTION components |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The detected actual topology contains SINUMERIK and SIMOTION components. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: $\mathrm{cc}=$ fault cause, $\mathrm{bb}=$ component class of the actual topology, $\mathrm{aa}=$ component number of the component $c \mathrm{c}=01 \mathrm{hex}=1 \mathrm{dec}:$ <br> An NX10 or NX15 was connected to a SIMOTION control. $\text { cc = } 02 \text { hex = } 2 \text { dec: }$ <br> A CX32 was connected to a SINUMERIK control. |
| Remedy: | Re alarm value $=1$ : <br> Replace all NX10 or NX15 by a CX32. <br> Re alarm value $=2$ : <br> Replace all CX32 by an NX10 or NX15. |

A01362
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## Topology: Topology rule(s) broken

\%1
All objects
NONE
NONE
At least one topology rule for the SINAMICS S120 Combi has been broken. In the event of a fault, the ramping up of the drive system is aborted and closed-loop drive control is not enabled. Alarm value (r2124, interpret decimal):
The alarm value indicates which rule has been violated.
1: The S120 Combi may only be wired via DRIVE-CLiQ socket X200 to X100 on the NCU.
2: Only one Single Motor Module (SMM) or one Double Motor Module (DMM) may be connected via X200 to the DRIVE-CLiQ socket X101 on the NCU.
3: Only one Terminal Module 54F (TM54F) or one DRIVE-CLiQ Hub Module (hub) may be connected via X500 to the DRIVE-CLiQ socket X102 on the NCU.
4: Only Sensor Modules may be connected to DRIVE-CLiQ sockets X201 up to X203 (3-axis) or X204 (4-axis) on the S120 Combi.
5: Only one Sensor Module, type SMC20 or SME20 may be connected to DRIVE-CLiQ socket X205 (X204 is not available for 3-axis).
6: If a Single Motor Module is being used as the first expansion axis, only one more Single Motor Module may be connected (via X200 to X201 on the first Single Motor Module).
7: Only Sensor Modules may be connected to the corresponding DRIVE-CLiQ socket X202 on any Single Motor Modules which may be present.
8: For a second Single Motor Module or for a Double Motor Module, it is not permissible to connect anything at X201. 9: If a Double Motor Module is used as an expansion axis, only Sensor Modules may be connected to X202 and X203.
10: If a Terminal Module 54F (TM54F) is configured, only one DRIVE-CLiQ Hub Module (DMC20, DME20) may be connected to X501 of the TM54F module via DRIVE-CLiQ socket X500.
11: On the DRIVE-CLiQ Hub Module, only Sensor Modules Cabinet (SMC) and Sensor Modules External (SME) may be connected to X501 through X505.
12: Only certain Motor Modules may be used for expansion axes.
13: For an S120 Combi with 3 axes, nothing must be connected at the DRIVE-CLiQ Hub Module at X503.

| Remedy: | Evaluate the fault value and ensure compliance with the corresponding topology rule(s). |
| :---: | :---: |
| F01375 | Topology: Actual topology, duplicate connection between two components |
| Message value: | Preliminary component number: \%1, component class: \%2, connection number: \%3 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When detecting the actual topology, a ring-type connection was detected. <br> Fault value (r0949, interpret hexadecimal): <br> ccbbaaaa hex: <br> $\mathrm{cc}=$ connection number <br> $\mathrm{bb}=$ component class <br> aaaa $=$ preliminary component number of a component included in the ring <br> Component class: <br> 1: Control Unit. <br> 2: Motor Module. <br> 3: Line Module. <br> 4: Sensor Module (SM). <br> 5: Voltage Sensing Module (VSM). <br> 6: Terminal Module (TM). <br> 7: DRIVE-CLiQ Hub Module. <br> 8: Controller Extension 32 (CX32, NX10, NX15). <br> 9: Filter Module <br> 49: DRIVE-CLiQ components (non-listed components). <br> 50: Option Slot (e.g. Terminal Board 30). <br> 60: Encoder (e.g. EnDat). <br> 70: Motor with DRIVE-CLiQ. <br> Component type: <br> Precise designation within a component class (e.g. "SMC20"). <br> Connection number: <br> Consecutive numbers, starting from zero, of the appropriate connection or slot (e.g. DRIVE-CLiQ connection X100 on the Control Unit has the connection number 0 ). |
| Remedy: | Output the fault value and remove the specified connection. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |
| F01380 | Topology: Actual topology, defective EEPROM |
| Message value: | Preliminary component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | POWER ON |
| Cause: | When detecting the actual topology, a component with a defective EEPROM was detected. Fault value (r0949, interpret hexadecimal): bbbbaaaa hex: <br> aaaa $=$ preliminary component number of the defective components |
| Remedy: | Output the fault value and remove the defected component. |
| A01381 | Topology: Comparison power unit shifted |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a power unit in the actual topology that has been shifted with respect to the target topology. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number <br> $\mathrm{cc}=$ component number |



Remedy: Adapting the topologies:

- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

| A01384 | Topology: Comparison DRIVE-CLiQ Hub Module shifted |
| :---: | :---: |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been shifted with respect to the target topology. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number <br> cc = component number <br> bb = component class <br> aa = component number of the component shifted in the target topology <br> Note: <br> The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. <br> Component class and connection number are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. <br> - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. <br> - automatically remove the topology error (p9904). <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01385 | Topology: Comparison CX32 shifted |
| :---: | :---: |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been shifted with respect to the target topology. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number <br> cc = component number <br> bb = component class <br> $\mathrm{aa}=$ component number of the component shifted in the target topology <br> Note: <br> The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. <br> - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. <br> - automatically remove the topology error (p9904). <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01386 | Topology: Comparison DRIVE-CLiQ component shifted |
| :---: | :---: |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been shifted with respect to the target topology. |
|  | Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: |
|  | $\mathrm{dd}=$ connection number |
|  | $\mathrm{cc}=$ component number |
|  | $\mathrm{bb}=$ component class |
|  | aa = component number of the component shifted in the target topology |
|  | Note: |
|  | The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. |
|  | The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: |
|  | - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. |
|  | - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. |
|  | - automatically remove the topology error (p9904). |
|  | Note: |
|  | Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01387 | Topology: Comparison option slot component shifted |
| :---: | :---: |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a option slot component in the actual topology that has been shifted with respect to the target topology. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number <br> $\mathrm{cc}=$ component number <br> $\mathrm{bb}=$ component class <br> $\mathrm{aa}=$ component number of the component shifted in the target topology <br> Note: <br> The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. <br> - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. <br> - automatically remove the topology error (p9904). <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01388 | Topology: Comparison EnDat encoder shifted |
| :--- | :--- |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected an EnDat encoder in the actual topology that has been shifted with respect <br> to the target topology. |

```
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
cc = component number
bb = component class
aa = component number of the component shifted in the target topology
Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified
project.
- automatically remove the topology error (p9904).
Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capa-
bility (e.g. setpoint/actual value comparison).
```

| A01389 | Topology: Comparison motor with DRIVE-CLiQ shifted |
| :---: | :---: |
| Message value: | Component number: \%1, component class: \%2, component number: \%3, connection number: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been shifted with respect to the target topology. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> $\mathrm{dd}=$ connection number <br> $\mathrm{cc}=$ component number <br> $\mathrm{bb}=$ component class <br> $\mathrm{aa}=$ component number of the component shifted in the target topology <br> Note: <br> The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. <br> - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. <br> - automatically remove the topology error (p9904). <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capa- <br> bility (e.g. setpoint/actual value comparison). |

A01416
Message value: Component number: \%1, Component class: \%2, Connection number: \%3
Drive object:
Reaction:
Acknowledge:
Topology: Comparison additional component in actual topology
All objects
NONE
Cause: The topology comparison has found a component in the actual topology which is not specified in the target topology.
The alarm value includes the component number and connection number of the component with which the additional
component is connected.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
cc = connection number
$\mathrm{bb}=$ component class of the additional component
aa = component number
Note:

- component class and connection number are described in F01375.
- components that are connected to this additional component are not operational.
Remedy:
Adapting the topologies:
- remove the additional component in the actual topology.
- download the target topology that matches the actual topology (commissioning software).
Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capa-
bility (e.g. setpoint/actual value comparison).

| A01420 | Topology: Comparison a component is different |
| :---: | :---: |
| Message value: | Component number: \%1, component class target: \%2, component class actual: \%3, fault cause: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected differences in the actual and target topologies in relation to one component. There are differences in the electronic rating plate. <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: $\mathrm{aa}=$ component number of the component, $\mathrm{bb}=$ component class of the target topology, $\mathrm{cc}=\mathrm{com}-$ <br> ponent class of the actual topology, $\mathrm{dd}=$ fault cause <br> dd $=01$ hex $=1$ dec: <br> Different component type. <br> $\mathrm{dd}=02$ hex $=2 \mathrm{dec}$ : <br> Different Order No. <br> $\mathrm{dd}=03$ hex $=3 \mathrm{dec}$ : <br> Different manufacturer. <br> $\mathrm{dd}=04$ hex $=4 \mathrm{dec}$ : <br> Connection changed over for a multi-component slave (e.g. Double Motor Module), defective EEPROM data in the electronic rating plate, or only part of a multi-component slave set to "de-activate and not present". <br> $\mathrm{dd}=05$ hex $=5 \mathrm{dec}$ : <br> A CX32 was replaced by an NX10 or NX15. <br> $\mathrm{dd}=06$ hex $=6$ dec: <br> An NX10 or NX15 was replaced by a CX32. <br> Note: <br> Component class and component type are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences. <br> - parameterize the topology comparison of all components (p9906). <br> - parameterize the topology comparison of one components (p9907, p9908). <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |

A01421
Message value: Component number: \%1, component class target: \%2, component class actual: \%3, fault cause: \%4
Drive object:

Reaction:
Acknowledge:
Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. The component class, the component type or the number of connections differ.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex: $\mathrm{aa}=$ component number of the component, $\mathrm{bb}=$ component class of the target topology, cc $=c o m-$ ponent class of the actual topology, $\mathrm{dd}=$ fault cause
dd $=01$ hex $=1 \mathrm{dec}$ :
Different component class.
$\mathrm{dd}=02 \mathrm{hex}=2 \mathrm{dec}$ :
Different component type.
$\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}$ :
Different Order No.
$\mathrm{dd}=04$ hex $=4 \mathrm{dec}$ :
Different number of connections.


Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p9904 (Topology comparison, acknowledge differences)

| A01429 | Topology: Comparison connection is different for more than one component |
| :---: | :---: |
| Message value: | Component number: \%1, Component class: \%2, Connection number1: \%3, Connection number2: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A topology comparison has found differences between the actual and target topology for several components. A component was connected to another connection. <br> The different connections of a component are described in the alarm value: <br> Alarm value (r2124, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number of the target topology <br> cc = connection number of the actual topology <br> bb = component class <br> aa = component number <br> Note: <br> Component class and connection number are described in F01375. <br> The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. |
| Remedy: | Adapting the topologies: <br> - change over the actual topology to match the target topology. <br> - download the target topology that matches the actual topology (commissioning software). <br> Note: <br> In the software, a Double Motor Module behaves just like two separate DRIVE-CLiQ nodes. If a Double Motor Module is re-inserted, this can result in several differences in the actual topology. <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| F01451 | Topology: Target topology is invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error was detected in the target topology. <br> The target topology is invalid. <br> Fault value (r0949, interpret hexadecimal): <br> ccccbbaa hex: cccc = index error, bb = component number, $a \mathrm{a}=$ fault cause <br> $a \mathrm{a}=1 \mathrm{~B}$ hex $=27 \mathrm{dec}$ : Error not specified. <br> $a a=1 \mathrm{C}$ hex $=28 \mathrm{dec}$ : Value illegal. <br> aa $=1 \mathrm{D}$ hex $=29 \mathrm{dec}$ : Incorrect ID. <br> aa $=1 \mathrm{E}$ hex $=30 \mathrm{dec}$ : Incorrect ID length. <br> aa $=1 \mathrm{~F}$ hex $=31 \mathrm{dec}$ : Too few indices left. <br> aa $=20$ hex $=32$ dec: component not connected to Control Unit. |
| Remedy: | Reload the target topology using the commissioning software. |
| F01470 | Topology:Target topology ring-type connection detected |
| Message value: | Component number: \%1, Component class: \%2, Connection number: \%3 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A ring-type connection was detected when writing to the target topology. Fault value (r0949, interpret hexadecimal): <br> ddccbbaa hex: <br> cc = connection number <br> bb = component class <br> $\mathrm{aa}=$ component number of a component included in the ring |


|  | Note: <br> Component class and connection number are described in F01375. |
| :---: | :---: |
| Remedy: | Read out the fault value and remove one of the specified connections. <br> Then download the target topology again using the commissioning software. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |
| F01475 | Topology: Target topology duplicate connection between two components |
| Message value: | Component number: \%1, Component class: \%2, Connection number1: \%3, Connection number2: \%4 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When writing the target topology, a duplicate connection between two components was detected. Fault value (r0949, interpret hexadecimal): <br> ddccbbaa hex: <br> dd = connection number 2 of the duplicate connection <br> cc $=$ connection number 1 of the duplicate connection <br> $\mathrm{bb}=$ component class <br> aa = component number of one of the components connected twice <br> Note: <br> Component class and connection number are described in F01375. |
| Remedy: | Read out the fault value and remove one of the two specified connections. <br> Then download the target topology again using the commissioning software. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |
| A01481 | Topology: Comparison power unit missing in the actual topology |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a power unit in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - delete the drive belonging to the power unit in the commissioning software project and download the new configuration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check DRIVE-CLiQ cables for interruption and contact problems. <br> - check the 24 V supply voltage. <br> - check that the power unit is working properly. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |
| A01482 | Topology: Comparison Sensor Module missing in the actual topology |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a Sensor Module in the target topology that is not available in the actual topology. <br> Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - re-configure the drive belonging to the Sensor Module in the commissioning software project (encoder configuration) and download the new configuration to the drive unit. <br> - delete the drive belonging to the Sensor Module in the commissioning software project and download the new configuration to the drive unit. |

- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Sensor Module is working properly.

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

| A01483 | Topology: Comparison Terminal Module missing in the actual topology |
| :---: | :---: |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a Terminal Module in the target topology that is not available in the actual topology. <br> Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - delete the Terminal Module in the commissioning software project and download the new configuration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check DRIVE-CLiQ cables for interruption and contact problems. <br> - check the 24 V supply voltage. <br> - check that the Terminal Module is working properly. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01484 | Topology: Comparison DRIVE-CLiQ Hub Module missing in the actual topology |
| :---: | :---: |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a DRIVE-CLiQ Hub Module in the target topology that does not exist in the actual topology. <br> Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - delete the DRIVE-CLiQ Hub Module in the commissioning software project and download the new configuration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check DRIVE-CLiQ cables for interruption and contact problems. <br> - check the 24 V supply voltage. <br> - test the DRIVE-CLiQ Hub Module to ensure that it functions properly. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01485 | Topology: Comparison CX32 missing in the actual topology |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a controller extension 32 (CX32) in the target topology that is not available <br> in the actual topology. |
|  | Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - delete the CX32 / NX in the commissioning software project and download the new configuration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. |
|  | - check DRIVE-CLiQ cables for interruption and contact problems. |

- check the 24 V supply voltage.
- check that CX32/NX functions correctly.

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

| A01486 | Topology: Comparison DRIVE-CLiQ components missing in the actual topology |
| :---: | :---: |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a DRIVE-CLiQ component in the target topology that is not available in the actual topology. <br> Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - delete the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit. <br> - re-configure the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check DRIVE-CLiQ cables for interruption and contact problems. <br> - check the 24 V supply voltage. <br> - check that the component is working properly. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison). |


| A01487 | Topology: Comparison option slot components missing in the actual topology |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected an option slot module in the target topology that is not available in the actual |
| topology. |  |
|  | Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. <br> - delete the option board in the commissioning software project and download the new configuration to the drive unit. |
|  | - re-configure the drive unit in the commissioning software project and download the new configuration to the drive <br> unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check that the option board is functioning correctly |
|  | Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capa- <br> bility (e.g. setpoint/actual value comparison). |


| A01488 | Topology: Comparison EnDat encoder missing in the actual topology |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected an EnDat encoder in the target topology that is not available in the actual <br> topology. |
| Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |  |
| Remedy: | - re-configure the drive belonging to the encoder in the commissioning software project (encoder configuration) and <br> download the new configuration to the drive unit. <br> - delete the drive belonging to the encoder in the commissioning software project and download the new configura- <br> tion to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. |

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

| A01489 | Topology: Comparison motor with DRIVE-CLiQ missing in the actual topology |
| :--- | :--- |
| Message value: | Component number: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The topology comparison has detected a motor with DRIVE-CLiQ in the target topology that is not available in the <br> actual topology. <br> Alarm value (r2124, interpret decimal): <br> Component number of the additional target components. |
| Remedy: | - re-configure the drive belonging to this motor in the commissioning software project and download the new config- <br> uration to the drive unit. <br> - re-configure the drive belonging to this motor in the commissioning software project and download the new config- <br> uration to the drive unit. <br> - check that the actual topology matches the target topology and if required, change over. <br> - check DRIVE-CLiQ cables for interruption and contact problems. <br> - check that the motor is working properly. <br> Note: <br> Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capa- <br> bility (e.g. setpoint/actual value comparison). |


| F01505 (A) | BICO: Interconnection cannot be established |
| :--- | :--- |
| Message value: | Parameter: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A PROFIdrive telegram has been set (p0922). |
|  | An interconnection contained in the telegram was not able to be established. |
|  | Fault value (r0949, interpret decimal): |
|  | Parameter receiver that should be changed. |
| Remedy: | Establish another interconnection. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

F01506 (A) BICO: No standard telegram

Message value: Parameter: \%1

| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM31, TM41, VECTOR, |
| :--- | :--- |
| Reaction: | VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | IMMEDIATELY |
|  | The standard telegram in p0922 is not maintained and therefore p0922 is set to 999. <br>  <br> Fault value (r0949, interpret decimal): <br> BICO parameter for which the write attempt was unsuccessful. |
| Remedy: | Again set the required standard telegram (p0922). |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A01507 (F,N) | BICO: Interconnections to inactive objects present |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | There are BICO interconnections to an inactive/inoperable drive object. |
|  | The BI/CI parameters involved are listed in r9498. |


|  | The associated BO/CO parameters are listed in r9499. |
| :--- | :--- |
|  | The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the de-activated drive |
| object. |  |
|  | Note: |
| r9498 and r9499 are only written to, if p9495 is not set to 0. |  |


| Reaction upon A: | NONE |
| :--- | :--- |
| Acknowl. upon A: | NONE |
| F01512 | BICO: No scaling available |
| Message value: | \%1 |
| Drive object: | All objects <br> Infeed: OFF2 (OFF1) |
| Reaction: | Servo: OFF2 |
| Vector: OFF2 |  |


| F01515 (A) | BICO: Writing to parameter not permitted as the master control is active |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When changing the number of CDS or when copying from CDS, the master control is active. |
| Remedy: | If required, return the master control and repeat the operation. |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A01590 (F) | Drive: Motor maintenance interval expired |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected service/maintenance interval for this motor was reached. <br> Alarm value (r2124, interpret decimal): <br> Motor data set number. <br> See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval) |
| Remedy: | carry out service/maintenance and reset the service/maintenance interval (p0651). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| F01600 | SI CU: STOP A initiated |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a fault and initiated a STOP A (pulse suppression via the safety shutdown path of the Control Unit). <br> - forced checking procedure of the safety shutdown path of the Control Unit unsuccessful. <br> - subsequent response to fault F01611 (defect in a monitoring channel). <br> Fault value (r0949, interpret decimal): <br> 0 : Stop request from the Motor Module. <br> 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. <br> 1010: Pulses enabled although STO is selected or an internal STOP A is present. <br> 1015: Feedback of the safe pulse suppression for Motor Modules connected in parallel are different. <br> 9999: Subsequent response to fault F01611. |
| Remedy: | - select Safe Torque Off and de-select again. <br> - replace the Motor Module involved. <br> For fault value = 9999: <br> - carry out diagnostics for fault F01611. <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated <br> STO: Safe Torque Off / SH: Safe standstill |
| F01611 | SI CU: Defect in a monitoring channel |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a fault in the crosswise data comparison between the CU and Motor Module (MM) and initiated a STOP F. |

As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret decimal):
0 : Stop request from the Motor Module.
1 ... 999:
Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851).
10: SI delay time for pulse suppression for ESR (p9697, p9897).
11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
14: SI PROFIsafe telegram selection (p9611, p9811).
1000: Watchdog timer has expired.
Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:

- Too many switching operations have occurred at the EP terminal of the Motor Module.
- Via PROFIsafe/TM54F, STO was too frequently initiated (also as subsequent response).
- Safe pulse cancellation (r9723.9) was too frequently initiated (also as subsequent response).

1001, 1002: Initialization error, change timer / check timer.
1900: CRC error in the SAFETY sector.
1901: CRC error in the ITCM sector.
1902: Overloading in the ITCM sector has occurred in operation.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different (status of the timer in p9650/p9850).
2004: Status of the STO selection for modules connected in parallel are different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel are different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety message C01711.
Remedy:
Re fault value $=1 \ldots 5$ and $7 \ldots 999$ :

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=6$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=1000$ :

- check the EP terminal at the Motor Module (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).

Re fault value $=1001$, 1002:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value $=1900,1901,1902$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Control Unit software.
- replace Control Unit.

Re fault value $=2000,2001,2002,2004,2005$ :

- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.

Re fault value $=6000$... 6999:
Refer to the description of the message values in safety message C01711.
Note:
CU: Control Unit EP: Enable Pulses (pulse enable) ESR: Extended Stop and Retract MM: Motor Module SGE: Safety-relevant input SI: Safety Integrated SMM: Safe Motion Monitoring SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) STO: Safe Torque Off / SH: Safe standstill

F01612
Message value:
Drive object:
Reaction:
Acknowledge:
Cause: The drive-integrated "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret binary):
Binary image of the digital inputs of the Control Unit that are used as signal source for the function "Safe Torque Off".
Remedy:
SI CU: STO inputs for power units connected in parallel different
Fault cause: \%1 bin SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC NONE (OFF1, OFF2, OFF3) IMMEDIATELY (POWER ON)

- check the tolerance time SGE changeover and if required, increase the value (p9650).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).

Note:
CU: Control Unit
SGE: Safety-relevant input
SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill
N01620 (F, A) SI CU: Safe Torque Off active

Message value:

Drive object:
Reaction:
Acknowledge:
Cause: The "Safe Torque Off" (STO) function of the basic functions has been selected on the Control Unit (CU) using the input terminal and is active. Note:

- This message does not result in a safety stop response.
- This message is not output when STO is selected using the Extended Functions.

Remedy:
Not necessary.
Note:
CU: Control Unit
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill
Reaction upon F: OFF2
Acknowl. upon F: IMMEDIATELY (POWER ON)
Reaction upon A: NONE
Acknowl. upon A: NONE

| N01621 (F, A) | SI CU: Safe Stop 1 active |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active. Note: <br> This message does not result in a safety stop response. |
| Remedy: | Not necessary. <br> Note: <br> CU: Control Unit <br> SI: Safety Integrated <br> SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) |
| Reaction upon F: | NONE (OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F01625 | SI CU: Sign-of-life error in safety data |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the CU and Motor Module (MM) and initiated a STOP A. <br> - there is either a DRIVE-CLiQ communication error or communication has failed. <br> - a time slice overflow of the safety software has occurred. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - select Safe Torque Off and de-select again. <br> - carry out a POWER ON (power off/on) for all components. <br> - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module <br> involved and, if required, carry out a diagnostics routine for the faults identified. <br> - de-select all drive functions that are not absolutely necessary. <br> - reduce the number of drives. <br> - check the electrical cabinet design and cable routing for EMC compliance <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated |
| F01630 | SI CU: Brake control error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a brake control fault and initiated a STOP A. <br> Fault value (r0949, interpret decimal): <br> Re fault value $=10,11$ : <br> Fault in "open holding brake" operation. <br> - Parameter p1278 incorrectly set. <br> - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 $=0$ (SBC deactivated)). <br> - Ground fault in brake cable. <br> For fault value $=20$ : <br> Fault in "brake open" state. <br> - Short-circuit in brake winding. |



## F01650

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI CU: Acceptance test required

\%1
All objects
OFF2
IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function on the Control Unit requires an acceptance test. Note:
This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
130: Safety parameters for the Motor Module not available.
Note:
This fault value is always output when Safety Integrated is commissioned for the first time.
1000: Reference and actual checksum on the Control Unit are not identical (booting).

- as a result of the changed current controller sampling time (p0115[0]), the clock cycle time for the Safety Integrated Basic Functions (r9780) was adapted.
- at least one checksum-checked piece of data is defective.
- Safety parameters set offline and loaded into the Control Unit.

2000: Reference and actual checksum on the Control Unit are not identical (commissioning mode).

- reference checksum incorrectly entered into the Control Unit (p9799 not equal to r9798).
- when de-activating the safety functions, p9501 or p9503 were not deleted.

2001: Reference and actual checksum on the Motor Module are not identical (commissioning mode).

- reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
- when de-activating the safety functions, p9501 or p9503 are not deleted.

2002: Enable of safety-related functions between the Control Unit and Motor Module differ (p9601 not equal to p9801).
2003: Acceptance test is required as a safety parameter has been changed.
2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required.
2010: Safe Brake Control is enabled differently between the Control Unit and Motor Module (p9602 not equal to p9802).
2020: Error when saving the safety parameters for the Motor Module.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
3005: The Safety logbook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:
For fault value $=130$ :

- carry out safety commissioning routine.

For fault value = 1000:

- check the Safety Integrated Basic Functions (r9780) and adapt the reference checksum (p9799).
- again carry out safety commissioning routine.
- replace the memory card or Control Unit.
- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
For fault value $=2000$ :
- check the safety parameters in the Control Unit and adapt the reference checksum (p9799).

For fault value = 2001:

- check the safety parameters in the Motor Module and adapt the reference checksum (p9899).

For fault value = 2002:

- enable the safety-related functions in the Control Unit and check in the Motor Module (p9601 = p9801).

Re fault value $=2003,2004,2005$ :

- Carry out an acceptance test and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
For fault value = 2010:

- check enable of the safety-related brake control in the Control Unit and Motor Module (p9602 = p9802).

For fault value = 2020:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit

For fault value $=3003$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature: SINAMICS S120 Function Manual Safety Integrated
For fault value $=3005$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.
For fault value = 9999:

- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

| F01651 | SI CU: Synchronization safety time slices unsuccessful |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The "Safety Integrated" function requires a synchronization of the safety time slices between the Control Unit (CU) |
|  | and Motor Module (MM) and between the Control Unit and the higher-level control. This synchronization routine was |
|  | unsuccessful. |
|  | Note: |
|  | This fault results in a STOP A that cannot be acknowledged. |
|  | Fault value (r0949, interpret decimal): |
|  | 121: |
|  | - with SINUMERIK Safety Integrated enabled, a drive-side warm restart was performed on the CU/NX. |
|  | - with SINUMERIK Safety Integrated enabled, the function "restore factory setting" was selected on a drive object of |
|  | the CU and a drive-side warm restart was initiated. |
|  | 150: |
|  | - fault in the synchronization to the PROFIBUS master. |
|  | All other values: |
|  | - only for internal Siemens troubleshooting. |
|  | See also: p9510 (SI Motion clock-cycle synchronous PROFIBUS master) |
|  | For fault value = 121: |
| - carry out a common POWER ON/warm restart for the higher-level control and SINAMICS. |  |
|  | For fault value = 150: |
|  | - check the setting of p9510 (SI Motion clock-cycle synchronous PROFIBUS master) and if required, correct. |
|  | General: |
| - carry out a POWER ON (power off/on) for all components. |  |
| - upgrade the Motor Module software. |  |
| - upgrade the Control Unit software. |  |
| - upgrade the software of the higher-level control. |  |
|  | Note: |
|  | CU: Control Unit |
| MM: Motor Module |  |
|  | SI: Safety Integrated |

F01652 SI CU: Illegal monitoring clock cycle
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the Safety Integrated monitoring clock cycles is not permissible.

- the monitoring clock cycle integrated in the drive cannot be maintained due to the communication conditions required in the system.
- the monitoring clock cycle for safe motion monitoring functions is not permissible (p9500).
- the actual value sensing clock cycle for safe motion monitoring functions is not permissible (p9511).
- The sampling time for the current controller (p0112, p0115[0]) cannot be supported.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
For motion monitoring functions that are not enabled (p9601.2 $=$ p9801.2 $=0$, p9501 $=0$ ), the following applies:

- Minimum setting for the monitoring clock cycle (in $\mu \mathrm{s}$ ).

For motion monitoring functions that are enabled (p9601.2 = p9801.2 = 1 and/or p9501 > 0), the following applies: 100:

- No matching monitoring clock cycle was able to be found.

101:

- The monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle.

102:

- An error has occurred when transferring the actual value sensing clock cycle to the Motor Module (MM).

103:

- An error has occurred when transferring the actual value sensing clock cycle to the Sensor Module.

104, 105:

- four times the current controller sampling time (p0115[0]) is greater than 1 ms when operating with a non-isochronous PROFIBUS.
- four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ) is greater than the DP clock cycle when operating with an isochronous PROFIBUS.
- The DP clock cycle is not an integer multiple of the sampling time of the current controller ( $\mathrm{p} 0115[0]$ ).

106:

- The monitoring clock cycle does not match the monitoring clock cycle of the TM54F.

107:

- The actual value sensing clock cycle ( p 9511 ) is less than four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ).
- The actual value sensing clock cycle (p9511) is not an integer multiple of the sampling time of the current controller (p0115[0]).
108:
- The parameterized actual value sensing clock cycle cannot be set on this component

109:

- If the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle ( p 9511 ) and the current controller clock cycle ( $\mathrm{p} 0115[0]$ ) must be identical.
The following applies to SINAMICS S110:
- If the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle p9511 must be $=250 \mu \mathrm{~s}$.
110:
- The actual value sensing clock cycle (p9511) for safety with encoder (p9506 = 0) is less than 2 ms for this Control Unit (e.g. CU305).
111:
- The monitoring clock cycle is not an integer multiple of the sampling time of the current controller (p0115[0]).

200, 201:

- For the S120M the monitoring clock cycle cannot be maintained as a result of the conditions required in the system. 202:
- The current controller sampling time is set to zero (p0115[0]).

Remedy: $\quad$ For enabled SI monitoring integrated in the drive (p9601/p9801>0):

- Upgrade the firmware of the Control Unit to a later version.

For enabled motion monitoring function (p9501>0):

- correct the monitoring clock cycle (p9500) and carry out POWER ON.

For fault value = 101:

- actual value sensing clock cycle corresponds to position control clock cycle/DP clock cycle (factory setting).
- for motion monitoring functions integrated in the drive ( $\mathrm{p} 9601 / \mathrm{p} 9801$ bit $2=1$ ) the actual value sensing clock cycle can be directly parameterized in P9511/p9311.
Re fault value $=104,105$ :
- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard setting in p0112, p0115, the current controller sampling time is automatically reduced to $250 \mu \mathrm{~s}$. If the standard values were changed, then the current controller sampling time ( p 0112 , p0115) should be appropriately set.
- increase the DP clock cycle for operation with a clock-cycle synchronous PROFIBUS so that there is a multiple clock cycle ratio of at least $4: 1$ between the DP clock cycle and the current controller sampling time. A clock cycle ratio of at least $8: 1$ is recommended.
- With firmware version 2.5 , please ensure that parameter p9510 is set to 1 in the drive (clock cycle synchronous operation).

For fault value $=106$ :

- set the parameters for the monitoring clock cycles the same (p10000 and p9500 / p9300).

For fault value = 107:

- Set an actual value sensing clock cycle that matches the current controller clock cycle (p9511 >= 4 * p0115[0], 8 * p0115[0]) is recommended
Note:
An actual value sensing clock cycle (p9511) that is set too low, can sporadically mean that safety messages C01711/C30711 are output with message value 1020 or 1021. For fault value = 108:
- set a suitable actual value sensing clock cycle in p9511.
- if the DP clock cycle is used as the actual value sensing clock cycle for operation with isochronous PROFIBUS (p9511 = 0), then a suitable DP clock cycle must be configured. This must be set to less than 8 ms . If this is not possible, then p9511 must be set to the required actual value sensing clock cycle (<8 ms).
- For SIMOTION D410-2, a suitable multiple of the DP clock cycle (e.g. 1, 2, 3, 4, 5, 6, 8, 10) must be parameterized. Otherwise, the clock cycle must be set to less than 8 ms .
For fault value =109:
- set the actual value sensing clock cycle in p9511 to the same value as the current controller clock cycle (p0115[0]). The following applies to SINAMICS S110:
- set the actual value sensing clock cycle to p9511 = $250 \mu \mathrm{~s}$.

For fault value =110:

- set the actual value sensing clock cycle in p9511 to 2 ms or higher

For fault value $=111$ :

- set the monitoring clock cycle in p9500 as an integer multiple of the sampling time of the current controller (p0115[0]).
Re fault value $=200$, 201:
- Increase the current controller sampling time (p0115[0]).
- If required, reduce the number of components connected to the corresponding DRIVE-CLiQ line, or distribute the components across several DRIVE-CLiQ sockets.
For fault value $=202$ :
- Set the current controller sampling time to a sensible value (p0115[0]).

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

| F01653 | SI CU: PROFIBUS/PROFINET configuration error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | There is a PROFIBUS/PROFINET configuration error for using Safety Integrated monitoring functions with a higher level control (SINUMERIK or F-PLC). <br> Note: <br> For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret decimal): <br> 200: A safety slot for receive data from the control has not been configured. <br> 210, 220: The configured safety slot for the receive data from the control has an unknown format. <br> 230: The configured safety slot for the receive data from the F-PLC has the incorrect length. <br> 231: The configured safety slot for the receive data from the F-PLC has the incorrect length. <br> 240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length. <br> 250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive. <br> 300: A safety slot for the send data to the control has not been configured. <br> 310, 320: The configured safety slot for the send data to the control has an unknown format. <br> 330: The configured safety slot for the send data to the F-PLC has the incorrect length. <br> 331: The configured safety slot for the send data to the F-PLC has the incorrect length. <br> 340: The configured safety slot for the send data to the SINUMERIK has the incorrect length. |
| Remedy: | The following generally applies: <br> - check and, if necessary, correct the PROFIBUS/PROFINET configuration of the safety slot on the master side. <br> - upgrade the Control Unit software. <br> For fault value $=250$ : <br> - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. |

Re fault value $=231,331$ :

- configure the PROFIsafe telegram matching the parameterization in the F-PLC.

The following applies for p9501.30 $=1$ (F-DI via PROFIsafe is enabled):

- PROFIsafe telegram 900 must be configured.

For p9501.30 $=0$ (F-DI not enabled via PROFIsafe), the following applies:

- PROFIsafe telegram 30 must be configured.

| A01654 (F) | SI CU: Deviating PROFIsafe configuration |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The configuration of a PROFIsafe telegram in the higher-level control (F-PLC) does not match the parameterization in the drive. <br> Note: <br> This message does not result in a safety stop response. <br> Alarm value (r2124, interpret decimal): <br> 1: <br> A PROFIsafe telegram is configured in the higher-level control, however PROFIsafe is not enabled in the drive (p9601.3). <br> 2: <br> PROFIsafe is parameterized in the drive; however, a PROFIsafe telegram has not been configured in the higherlevel control. |
| Remedy: | The following generally applies: <br> - check and, if necessary, correct the PROFIsafe configuration in the higher-level control. <br> Re alarm value $=1$ : <br> - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. <br> Re alarm value $=2$ : <br> - configure the PROFIsafe telegram to match the parameterization in the higher-level F-control. |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| F01655 | SICU: Align monitoring functions |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions. <br> - there is either a DRIVE-CLiQ communication error or communication has failed. <br> - Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another. <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade the Motor Module software. <br> - upgrade the Control Unit software. <br> - check the electrical cabinet design and cable routing for EMC compliance <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated |


| F01656 | SI CU: Motor Module parameter error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | When accessing the Safety Integrated parameters for the Motor Module (MM) in the non-volatile memory, an error has occurred. <br> Note: <br> This fault results in a STOP A that can be acknowledged. <br> Fault value (r0949, interpret decimal): <br> 129: <br> - safety parameters for the Motor Module corrupted. <br> - drive with enabled safety functions was possibly copied offline using the commissioning software and the project downloaded. <br> 131: Internal Motor Module software error. <br> 132: Communication errors when uploading or downloading the safety parameters for the Motor Module. <br> 255: Internal software error on the Control Unit. |
| Remedy: | - re-commission the safety functions. <br> - upgrade the Control Unit software. <br> - upgrade the Motor Module software. <br> - replace the memory card or Control Unit. <br> For fault value = 129: <br> - activate the safety commissioning mode (p0010 = 95). <br> - adapt the PROFIsafe address (p9610). <br> - start the copy function for SI parameters (p9700 = D0 hex). <br> - acknowledge data change (p9701 = DC hex). <br> - exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ). <br> - save all parameters (p0977 = 1 or "copy RAM to ROM"). <br> - carry out a POWER ON (power off/on) for all components. <br> For fault value = 132: <br> - check the electrical cabinet design and cable routing for EMC compliance <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated |
| F01657 | SI CU: PROFIsafe telegram number invalid |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The PROFIsafe telegram number set in p9611 is not valid. <br> When PROFIsafe is enabled ( $\mathrm{p} 9601.3=1$ ), then a telegram number greater than zero must be entered in p 9611 . <br> Note: <br> This fault does not result in a safety stop response. <br> See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection) |
| Remedy: | Check the telegram number setting (p9611). |
| F01658 | SI CU: PROFIsafe telegram number not equal |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The PROFIsafe telegram number is set differently in p9611 and p60022. <br> For p9611 not equal to 998, the following applies: <br> The telegram number must be identically set in both parameters. <br> The following applies for p9611 $=998$ : <br> As a result of the compatibility to firmware versions <4.5, then only the values 0 and 30 are permitted in p 60022 . |



For fault value $=16$ :

- inhibit the internal voltage protection (p1231).

For fault value $=20$ :

- correct setting in p9601.

For fault value $=22$ :

- use a Power Module that supports the Safety Integrated functions.

For fault value = 24:

- set the power unit data set for the holding brake (p7015).

For fault value = 25:

- use a Power Module that supports the PROFIsafe telegram selection.
- Correct the telegram number setting (p9611).

For fault value $=26$ :

- check whether p10049 is set. Also check p10006 and p10009. Check whether in p10046, p10047
a test top of the FDO with a read back input is parameterized.
- correct the setting in p9611.

For fault value $=33$ :

- Deselect motion monitoring functions without selection integrated in drive (p9601.5, p9801.5) and select safety functions that are supported (see p9771/p9871), or:
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Note:
CU: Control Unit
ESR: Extended Stop and Retract
MM: Motor Module
SBA: Safe Brake Adapter
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
See also: p9501, p9601, p9620, p9761, p9801

## SI CU: Write request for parameter rejected

Message value:
\%1
Drive object:
Reaction:
TM54F_MA, TM54F_SL

Acknowledge:
Cause:

OFF2
IMMEDIATELY (POWER ON)
The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected. Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration (r9871.14).
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection ( p 1231 ) is enabled.
17: An attempt was made to enable the PROFIsafe function although this cannot be supported for a parallel circuit configuration.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
19: An attempt was made to enable the SBA (Safe Brake Adapter), although this cannot be supported.

|  | 20: An attempt was made to enable the motion monitoring functions integrated in the drive and the STO function, both controlled via F-DI. |
| :---: | :---: |
|  | 21: An attempt was made to enable the motion monitoring functions integrated in the drive for a parallel connection, although these cannot be supported. |
|  | 22: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module. |
|  | 23: For ESR, an attempt was made to enable the delay for pulse suppression, although this cannot be supported. 24: An attempt was made to enable the SBC function, although no power unit data set is set for the brake control (p7015 = 99). |
|  | 25: An attempt was made to parameterize a PROFIsafe telegram although this cannot be supported. <br> 26: At a digital input of the Control Unit, an attempt was made to activate the simulation mode ( p 0795 ), which is used by Safety Integrated (p10049). |
|  | 33: An attempt was made to enable the motion monitoring functions without selection integrated in the drive (p9601.5, p9801.5), although this cannot be supported. |
|  | See also: p0970, p3900, r9771, r9871 |
| Remedy: | For fault value = 1: |
|  | - set the Safety Integrated password (p10061). |
|  | For fault value $=2$ : |
|  | - Inhibit Safety Integrated (p9501, p9601) or reset safety parameters (p0970 = 5), then reset the drive parameters again. |
|  | For fault value $=3:$ |
|  | - end the simulation mode for the digital input (p0795). |
|  | Re fault value $=10,11,12,13,14,15,17,18,19,21,22,23$ : |
|  | - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved. |
|  | - use a Motor Module that supports the required function. |
|  | - upgrade the Motor Module software. |
|  | - upgrade the Control Unit software. |
|  | For fault value = 16: |
|  | - inhibit the internal voltage protection (p1231). |
|  | For fault value $=20$ : |
|  | - correct setting in p9601. |
|  | For fault value $=22$ : |
|  | - use a Power Module that supports the Safety Integrated functions. |
|  | Note: |
|  | CU: Control Unit |
|  | ESR: Extended Stop and Retract |
|  | MM: Motor Module |
|  | SBA: Safe Brake Adapter |
|  | SBC: Safe Brake Control |
|  | SI: Safety Integrated |
|  | SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) |
|  | STO: Safe Torque Off / SH: Safe standstill |
|  | See also: p9501, p9601, p9620, p9761, p9801 |
| F01660 | SI CU: Safety-related functions not supported |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The Motor Module (MM) does not support the safety-related functions (e.g. the Motor Module version is not the correct one). Safety Integrated cannot be commissioned. <br> Note: <br> This fault does not result in a safety stop response. |
| Remedy: | - use a Motor Module that supports the safety-related functions. |
|  | - upgrade the Motor Module software. |
|  | Note: |
|  | CU: Control Unit |
|  | MM: Motor Module |
|  | SI: Safety Integrated |


| F01661 | SI CU: Simulation of the safety inputs active |
| :--- | :--- |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The simulation of the digital inputs of the Control Unit (p0795) is active. <br> It is not permissible that safety inputs (refer to p9620, p10022 ... p10032) are simulated. <br>  <br>  <br>  <br>  <br>  <br> Fault value (ro949, interpret binary): <br> The display bits indicate which DIs may not be simulated. |
|  | Deactivate the simulation of the digital inputs of the Control Unit <br> for the safety inputs (refer to p795) and acknowledge the fault. |
| Remedy: |  |


| F01665 | SI CU: System is defective |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset). Fault value (r0949, interpret hexadecimal): <br> 200000 hex, 400000 hex, 8000 yy hex (yy any): <br> - Fault in the actual booting/operation. <br> 800004 hex: <br> - Parameters p9500/p9300 are, under certain circumstances, not the same. In addition, Safety message C01711/C30711 is displayed. <br> Additional values: <br> - defect before the last time that the system booted. |
| Remedy: | - carry out a POWER ON (power off/on). <br> - upgrade firmware to later version. <br> - contact the Hotline. <br> Re fault value $=200000$ hex, 400000 hex, $8000 y$ y hex (yy any): <br> - ensure that the Control Unit is connected to the Power Module. <br> Re fault value $=800004$ hex: <br> - Check that parameters p9500/p9300 are the same. |


$\overline{\text { A01666 (F) }}$| SI Motion CU: Steady-state (static) 1 signal at the F-DI for safety-relevant acknowl- |
| :--- |
| edgement |

## Message value

Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds. If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy: $\quad$ Set the fail-safe digital input (F-DI) to a logical 0 signal (p10006). Note: F-DI: Failsafe Digital Input
Reaction upon F: NONE
Acknowl. upon F: IMMEDIATELY

| A01669 (F, N) | SI Motion: Unfavorable combination of motor and power unit |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The combination of motor and power unit used is not suitable for using safe motion monitoring functions without an encoder. <br> The ratio between the power unit rated current (r0207[0]) and rated motor current (p0305) is greater than 5. <br> Alarm value (r2124, interpret decimal): <br> Number of the motor data set, which caused the fault. <br> Notice: <br> If this alarm is not observed, then message C01711 or C30711 - with the value 1041 ... 1044 - can sporadically occur. |
| Remedy: | Use a suitable power unit with a lower power rating or a motor with a higher power rating. |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F01670 | SI Motion: Invalid parameterization Sensor Module |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The parameterization of a Sensor Module used for Safety Integrated is not permissible. <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret decimal): <br> 1: No encoder was parameterized for Safety Integrated. <br> 2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine). <br> 3: The encoder data set selected for Safety Integrated is still not valid. <br> 4: A communication error with the encoder has occurred. <br> 5: Number of relevant bits in the encoder coarse position invalid. <br> 6: DRIVE-CLiQ encoder configuration invalid. <br> 7: Non-safety relevant component of the encoder coarse position for the linear DRIVE-CLiQ encoder not valid. <br> 8: Parameterized Safety comparison algorithm not supported. <br> 9: Relationship between the grid division and measuring step for linear DRIVE-CLiQ encoder is not binary. <br> 10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder <br> Data Set (EDS) (p0187 ... p0189). |
| Remedy: | Re fault value $=1,2$ : <br> - use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1). <br> For fault value $=3$ : <br> - check whether the drive or drive commissioning function is active and if required, exit this ( $p 0009=p 00010=0$ ), save the parameters (p0971 = 1) and carry out a POWER ON <br> For fault value $=4$ : <br> - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Sensor Module <br> involved and if required, carry out a diagnostics routine for the faults identified. <br> For fault value $=5$ : <br> - p9525 = 0 (not permissible). Check the encoder parameterization on the Sensor Modules involved. <br> For fault value $=6$ : <br> - check p9515.0 (for DRIVE-CLiQ encoders, the following applies: p9515.0 = 1). Check the encoder parameterization on the Sensor Modules involved. <br> For fault value $=7$ : <br> - p12033 for an encoder used for Safety Integrated is not equal to 1. Use a linear DRIVE-CLiQ and parameterize for p12033 = 1 . <br> For fault value $=8$ : <br> - check p9541. Use and parameterize an encoder that implements an algorithm supported by Safety Integrated. <br> For fault value $=9$ : <br> - check p9514 and p9522. Use an encoder and parameterize, where the ratio between p9514 and p9522 is binary. <br> For fault value $=10$ : <br> - align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189). <br> For fault value = 11: <br> - p12036 for an encoder used for Safety Integrated is not equal to 0 . Use a linear DRIVE-CLiQ and parameterize for p12036 $=0$. <br> Note: <br> SI: Safety Integrated |
| F01671 | SI Motion: Parameterization encoder error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder. <br> Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Parameter number of the non-corresponding safety parameter. |


| Remedy: | Align the encoder parameterization between the safety encoder and the standard encoder. Note: <br> SI: Safety Integrated |
| :---: | :---: |
| F01672 | SI CU: Motor Module software/hardware incompatible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module. <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret decimal): <br> 1: The existing Motor Module software does not support the safe motion monitoring function. <br> $2,3,6,8$ : There is a communications error between the Control Unit and Motor Module. <br> 4, 5, 7: The existing Motor Module software is not compatible to the software on the Control Unit. <br> $9,10,11,12$ : The actual Motor Module software does not support safe encoderless motion monitoring. <br> 13: At least one Motor Module in parallel operation does not support the safe motion monitoring function. |
| Remedy: | - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved. <br> For fault value =1: <br> - use a Motor Module that supports safe motion monitoring. <br> Re fault value $=2,3,6,8$ : <br> - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. <br> Re fault value $=4,5,7,9,13$ : <br> - upgrade the Motor Module software. <br> Note: <br> SI: Safety Integrated |
| F01673 | SI Motion: Sensor Module software/hardware incompatible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control. <br> Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - upgrade the Sensor Module software. <br> - use a Sensor Module that supports the safe motion monitoring function. <br> Note: <br> SI: Safety Integrated |
| F01674 | SI Motion CU: Safety function not supported by PROFIsafe telegram |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The monitoring function enabled in p9501 and p9601 is not supported by the currently set PROFIsafe telegram (p9611). <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret bitwise binary): <br> Bit $24=1$ : <br> Transfer SLS (SG) limit value via PROFIsafe not supported (p9501.24). |


xxxx = 9601:
yyyy = 1:
If motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection (p9601.5
$=1$ ) are enabled, then PROFIsafe ( $\mathrm{p} 9601.3=1$ ) or onboard F-DI ( $\mathrm{p} 9601.4=1$ ) is not possible.
yyyy = 2 :
Extended functions without selection (p9601.5 =1) are enabled, without enabling motion monitoring functions integrated in the drive (p9601.2).
yyyy = 3 :
Onboard F-DI are enabled, without enabling motion monitoring functions integrated in the drive (p9601.2).
yyyy = 4:
Onboard F-DI are enabled, then it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe (p9501.30).
yyyy = 5:
Transfer of the SLS limit value via PROFIsafe (p9501.24) has been enabled, without enabling PROFIsafe. yyyy = 6:
Transfer of the safe position via PROFIsafe (p9501.25) has been enabled, without enabling PROFIsafe.
Remedy:
Correct parameter (if required, also on the second monitoring channel, p9801).
xxxx: parameter,
yyyy: supplementary information.
xxxx = 9500:

- Transfer of the safe position via PROFIsafe (p9501.25) has been enabled, without enabling PROFIsafe. Set p9500 "SI Motion monitoring clock cycle" as an integer multiple of p115[0] "Current controller sampling time". Align parameters 9300 and 9500, backup parameters (p0971 = 1) and carry out a POWER ON. With hysteresis/filtering enabled (p9501.16 = 1), the following applies:
- Set parameters p9546/p9346 and p9547/p9347 acc. to the following rule: p9546 >= $2 \times$ p9547; p9346 >= $2 \times \mathrm{p} 9347$.
- The following rule must also be adhered to when actual value synchronization (p9501.3 = 1) is enabled: p9549 <= p9547; p9349 <= p9347.
xxxx = 9501:
- Correct parameters p9501.16 and p9301.16, or deselect the extended functions without selection (p9601.5). xxxx = 9505:
Correct parameter p9501.1 or p9505.
xxxx = 9507:
Set synchronous or induction motor according to p0300.
xxxx = 9511:
Align parameters p9311 and p9511, backup parameters (p0971 = 1) and carry out a POWER ON.
xxxx = 9517:
Also check p9516.0.
xxxx = 9522:
Correct parameters.
xxxx = 9544:
Correct parameter (for linear axes, the maximum value is limited to 1 mm ).
xxxx = 9585:
Correct parameter (if required, also on the second monitoring channel, p9385).
xxxx = 9601:
yyyy = 1:
Only enable motion monitoring functions integrated in the drive ( $\mathrm{p} 9601.2=1$ ) and extended functions without selection (p9601.5 = 1), or only enable PROFIsafe (p9601.3 = 1) or only onboard F-DI (p9601.4 = 1).
yyyy = 2, 3:
Enable motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy = 4:
If onboard F-DI are enabled, then it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe (p9501.30), deselect PROFIsafe functionality or onboard F-DI.
yyyy = 5:
To transfer the SLS limit values via PROFIsafe (p9501.24 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy $=6$ :
For the safe position via PROFIsafe (p9501.25 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).


## F01682

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

9589: Set value of p9589/p9389 is greater than the supported maximum value.
Remedy: - De-select the monitoring function involved (p9501, p9503, p9506, p9601, p9801, p9307, p9507).

- Reduce the set value (p9586, p9588, p9589).

Note:
ESR: Extended Stop and Retract
SCA: Safe Cam / SN: Safe software cam
SDI: Safe Direction (safe motion direction)
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
SLS: Safely-Limited Speed / SG: Safely reduced speed
SP: Safe Position
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit)), r9771 (SI common functions (Control Unit))

| F01683 | SI Motion CU: SOS/SLS enable missing |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The safety-relevant basic function "SOS/SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled. <br> Note: <br> This fault does not result in a safety stop response. |
| Remedy: | Enable the function "SOS/SLS" (p9501.0) and carry out a POWER ON. Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> SOS: Safe Operating Stop / SBH: Safe operating stop <br> See also: p9501 (SI Motion enable safety functions (Control Unit)) |
| F01684 | SI Motion: Safely limited position limit values interchanged |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the function "Safely-Limited Position" (SE), a lower value is in p9534 than in p9535. Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> 1: Limit values SLP1 interchanged. <br> 2: Limit values SLP2 interchanged. |
| Remedy: | Correct the limit values in p9534 and p9535 and carry out a POWER ON. Note: <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches |
| F01685 | SI Motion CU: Safely-limited speed limit value too high |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz . <br> Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Maximum permissible speed. |
| Remedy: | Correct the limit values for SLS and carry out a POWER ON. <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)) |
| F01686 | SI Motion: IIlegal parameterization cam position |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | At least one enabled "Safety Cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position. |


|  | The following conditions must be complied with to assign cams to a cam track: <br> - the cam length of cam $x=$ p9536[x]-p9537[x] must be greater or equal to the cam tolerance + the position tolerance ( $=$ p9540 + p9542). This also means that for cams on a cam track, the minus position value must be less than the plus position value. <br> - the distance between 2 cams $x$ and $y$ (minus position value[y] - plus position value $[x]=p 9537[y]-p 9536[x]$ ) on a cam track must be greater than or equal to the cam tolerance + position tolerance ( $=\mathrm{p} 9540+\mathrm{p} 9542$ ). <br> Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Number of the "Safe Cam" with an illegal position. <br> See also: p9501 (SI Motion enable safety functions (Control Unit)) |
| :---: | :---: |
| Remedy: | Correct the cam position and carry out a POWER ON. <br> Note: <br> SCA: Safe Cam / SN: Safe software cam <br> SI: Safety Integrated <br> See also: p9536 (SI Motion SCA (SN) plus cam position (Control Unit)), p9537 (SI Motion SCA (SN) plus cam position (Control Unit)) |
| F01687 | SI Motion: Illegal parameterization modulo value SCA (SN) |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360000 mDegrees. Note: <br> This fault does not result in a safety stop response. |
| Remedy: | Correct the modulo value for SCA and carry out a POWER ON. Note: <br> SCA: Safe Cam / SN: Safe software cam <br> SI: Safety Integrated <br> See also: p9505 (SI Motion SP modulo value (Control Unit)) |
| F01688 | SI Motion CU: Actual value synchronization not permissible |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | - It is not permissible to enable actual value synchronization for a 1-encoder system. <br> - It is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP). <br> - It is not permissible to simultaneously enable actual value synchronization and safe position via PROFIsafe. Note: <br> This fault results in a STOP A that cannot be acknowledged. |
| Remedy: | - Either select the "actual value synchronization" function or parameterize a 2-encoder system. <br> - Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference <br> (SCA/SLP) and carry out a POWER ON. <br> - Either deselect the "actual value synchronization" function or do not enable "Safe position via PROFIsafe". <br> Note: <br> SCA: Safe Cam / SN: Safe software cam <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches <br> SP: Safe Position <br> See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel) |


| C01689 | SI Motion: Axis re-configured |
| :--- | :--- |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The axis configuration was changed (e.g. changeover between linear axis and rotary axis). |
|  | Parameter p0108.13 is internally set to the correct value. |
|  | Note: |
|  | This fault does not result in a safety stop response. |
|  | Fault value (r0949, interpret decimal): |
|  | Parameter number of parameter that initiated the change. |
|  | See also: p9502 (SI Motion axis type (Control Unit)) |
|  | The following should be carried out after the changeover: |
|  | - exit the safety commissioning mode (p0010). |
|  | - save all parameters (p0977 = 1 or "copy RAM to ROM"). |
|  | - carry out a POWER ON. |
|  | Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in |
|  | r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out: |
|  | - activate safety commissioning mode again. |
|  | - complete safety commissioning of the drive. |
|  | - exit the safety commissioning mode (p0010). |
|  | - save all parameters (p0977 = 1 or "copy RAM to ROM"). |
|  | - carry out a POWER ON. |
|  | Note: |
|  | For the commissioning software, the units are only consistently displayed after a project upload. |


| F01690 | SI Motion: Data save problem for the NVRAM |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety log- |
|  | book). |
|  | Note: |
|  | This fault does not result in a safety stop response. |
|  | Fault value (r0949, interpret decimal): |
|  | 0: There is no physical NVRAM available in the drive. |
|  | 1: There is no longer any free memory space in the NVRAM. |
|  | For fault value = 0: |
|  | - use a Control Unit NVRAM. |
|  | For fault value = 1: |
|  | - de-select functions that are not required and that take up memory space in the NVRAM. |
|  | - contact the Hotline. |
|  | Note: |
|  | NVRAM: Non-Volatile Random Access Memory (non-volatile read and write memory) |


| A01691 (F) | SI Motion: Ti and To unsuitable for DP cycle |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions. <br> Isochronous PROFIBUS: |
|  | The sum of Ti and To is too high for the selected DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To. |


|  | No isochronous PROFIBUS: <br> The DP clock cycle must be at least $4 x$ the current controller clock cycle. <br> Notice: <br> If this alarm is not observed, then message C01711 or C30711 - with the value $1020 \ldots 1021$ - can sporadically occur. |
| :---: | :---: |
| Remedy: | Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time. <br> Alternative when SI monitoring integrated in the drive is enabled (p9601/p9801>0): <br> Use the actual value acquisition cycle p9511/p9311 and, in turn, set independently from DP cycle. The actual values sensing clock cycle must be at least $4 x$ the current controller clock cycle. A clock cycle ratio of at least $8: 1$ is recommended. <br> See also: p9511 (SI Motion actual value sensing cycle clock (Control Unit)) |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| F01692 | SI Motion CU: Parameter value not permitted for encoderless |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The parameter cannot be set to this value if encoderless motion monitoring functions have been selected in p9506. Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Parameter number with the incorrect value. <br> See also: p9501 (SI Motion enable safety functions (Control Unit)) |
| Remedy: | - Correct the parameter specified in the fault value. <br> - If necessary, de-select encoderless motion monitoring functions (p9506). See also: p9501 (SI Motion enable safety functions (Control Unit)) |
| A01693 (F) | SI CU: Safety parameter settings changed, warm restart/POWER ON required |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Safety parameters have been changed; these will only take effect following a warm restart or POWER ON. <br> Notice: <br> All changed parameters of the safety motion monitoring functions will only take effect following a warm restart or POWER ON. <br> Alarm value (r2124, interpret decimal): <br> Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON. |
| Remedy: | - carry out a warm restart (p0009 = 30, p0976 = 2, 3). <br> - carry out a POWER ON (power off/on) for all components. <br> Note: <br> Before performing an acceptance test, a POWER ON must be carried out for all components. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | POWER ON |
| F01694 (A) | SI Motion CU: Firmware version Motor Module older Control Unit |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The firmware version of the Motor Module is older than the version of the Control Unit. It is possible that safety functions are not available (r9771/r9871). |


|  | Note: <br> This message does not result in a safety stop response. <br> This message can also occur, if after an automatic firmware update, a POWER ON was not carried out (Alarm A01007). |
| :---: | :---: |
| Remedy: | Upgrade the firmware of the Motor Module to a later version. See also: r9390 (SI Motion version safety motion monitoring (Motor Module)), r9590 (SI Motion version safety motion monitoring (Control Unit)) |
| Reaction upon A : | NONE |
| Acknowl. upon A : | NONE |
| A01695 (F) | SI Motion: Sensor Module was replaced |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A Sensor Module, which is used for safe motion monitoring functions, was replaced. The hardware replacement must be acknowledged. An acceptance test must be subsequently performed. <br> Note: <br> This message does not result in a safety stop response. |
| Remedy: | Carry out the following steps using the STARTER commissioning software: <br> - press the "Acknowledge hardware replacement" button in the safety screen form. <br> - execute the function "Copy RAM to ROM". <br> - carry out a POWER ON (power off/on) for all components. <br> As an alternative, carry out the following steps in the expert list of the commissioning software: <br> - start the copy function for the node identifier on the drive (p9700 = 1D hex). <br> - acknowledge the hardware CRC on the drive (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> Then carry out an acceptance test (refer to the Safety Integrated Function Manual). <br> For SINUMERIK, the following applies: <br> HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.). <br> The precise procedure is given in the following document: <br> SINUMERIK Function Manual Safety Integrated <br> See also: p9700 (SI Motion copy function), p9701 (Acknowledge SI motion data change) |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| A01696 (F) | SI Motion: Testing of the motion monitoring functions selected when booting |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The test of the motion monitoring functions was already illegally active when booting. <br> This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705. <br> Note: <br> This message does not result in a safety stop response. <br> See also: p9705 (SI Motion: Test stop signal source) |
| Remedy: | De-select the forced checking procedure of the safety motion monitoring functions and then select again. The signal source for initiation is parameterized in binector input p9705. <br> Notice: <br> It is not permissible to use TM54F inputs to start the test stop. <br> Note: <br> SI: Safety Integrated <br> See also: p9705 (SI Motion: Test stop signal source) |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A01697 (F) | SI Motion: Motion monitoring functions must be tested |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The time set in p9559 for the forced checking procedure of the safety motion monitoring functions has been |
|  | exceeded. A new test is required. |
|  | After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the mon- |
| itoring time is reset. |  |

$\left.\begin{array}{ll} & \text { After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset. } \\ & \text { Note: } \\ & \text { - This message does not result in a safety stop response. } \\ & \text { - The test must be performed within a defined, maximum time interval (p9659, maximum of } 9000 \text { hours) in order to } \\ \text { comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate } \\ \text { the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can } \\ \text { be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are } \\ \text { depending on the safety functions correctly functioning. }\end{array}\right]$

|  | - subsequent response to the message C01711 "SI Motion CU: Defect in a monitoring channel". |
| :--- | :--- |
|  | - subsequent response to the message C01707 "SI Motion CU: tolerance for safe operating stop exceeded". |
|  | - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". |
|  | - subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded". |
| Remedy: | - remove the cause of the fault on the second monitoring channel. |
|  | - carry out a diagnostics routine for message C01714. |
|  | - carry out a diagnostics routine for message C01711. |
|  | - carry out a diagnostics routine for message C01707. |
|  | - carry out a diagnostics routine for message C01715. |
|  | - carry out a diagnostics routine for message C01716. |
|  | This message can be acknowledged without a POWER ON as follows: |
|  | - motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe |
| - motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only |  |


| C01708 | SI Motion CU: STOP C initiated |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | STOP2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP C (braking along the OFF3 deceleration ramp).  <br>  "Safe Operating Stop" (SOS) is activated after the parameterized time has expired. <br>  Possible causes: <br>  - stop request from the higher-level control. |
|  | - subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded". |
|  | - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". |
|  | - subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded". |
|  | See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit)) |
|  | - remove the cause of the fault at the control. |


| Remedy: | - remove the cause of the fault at the control. |
| :--- | :--- |
| - carry out a diagnostics routine for message C01714/C01715/C01716. |  |
| This message can be acknowledged as follows: |  |
| - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe |  |
| - motion monitoring functions with SINUMERIK: Via the machine control panel |  |
| Note: |  |
| SI: Safety Integrated |  |
| SOS: Safe Operating Stop / SBH: Safe operating stop |  |

## C01711

Message value:
Drive object:
Reaction:

SI Motion CU: Defect in a monitoring channel \%1
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY (POWER ON)
When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the message C 01701 "SI Motion: STOP B initiated" is output.
The message value that resulted in a STOP F is displayed in r9725. The described message values involve the crosswise data comparison between the Control Unit and Motor Module. If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK.
The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- cycle times not set uniformly (p9500/p9300 and p9511/p9311)
- differently parameterized axis types (p9502/p9302).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- for message values $3,44 \ldots 57,232$ and 1-encoder systems, differently parameterized encoder values (p9516/p9316, p9517/p9317, p9518/p9318, p9520/p9320, p9521/p9321, p9522/p9322, p9526/p9326). - incorrect synchronization.

Message value (r9749, interpret decimal):
0 to 999: Number of the cross-compared data that resulted in this fault.
Message values that are not subsequently listed are only for internal Siemens troubleshooting.
0 : Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or $n<n x$ (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential (r9713) between the two monitoring channels is greater than the tolerance in p9542/p9342. When actual value synchronization is enabled (p9501.3/p9301.3), the velocity differential (based on the position actual value) is greater than the tolerance in p9549/p9349.
4: Error when synchronizing the crosswise data comparison between the two channels.
5: Function enable signals (p9501/p9301)
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
10: Standstill tol. (p9530/p9330)
11: Upper limit value for SLP1 (p9534[0]/p9334[0]).
12: Lower limit value for SLP1 (p9535[0]/p9335[0]).
13: Upper limit value for SLP2 (p9534[1]/p9334[1]).
14: Lower limit value for SLP2 (p9535[1]/p9335[1]).
31: Position tolerance (p9542/p9342) or (p9549/p9349) when actual value synchronization is enabled
(p9501.3/p9301.3)
32: Position tolerance for safe referencing (p9544/p9344).
33: Time, velocity changeover (p9551/p9351)
35: Delay time, pulse canc. (p9556/p9356)
36: Checking time, pulse canc. (p9557/p9357)
37: Trans. time, STOP C to SOS (p9552/p9352)
38: Trans. time STOP D to SOS (p9553/p9353)
39: Trans. time, STOP E to SOS (p9554/p9354)
40: Stop response for SLS (p9561/p9361)
41: Stop response for SLP1 (p9562[0]/p9362[0])
42: Shutdown speed, pulse canc. (p9560/p9360)

43: Memory test, stop response (STOP A).
44 ... 57: General
Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring channels.
Possible cause 2 (during active operation)
The limit values are based on the actual value (r9713). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to fault value 3). This can be ascertained by checking the safe actual positions.
44: Position actual value (r9713) + limit value for SLS1 (p9531[0]/p9331[0]) * Safety monitoring clock cycle
45: Position actual value (r9713) - limit value for SLS1 (p9531[0]/p9331[0]) * Safety monitoring clock cycle
46: Position actual value (r9713) + limit value for SLS2 (p9531[1]/p9331[1]) * Safety monitoring clock cycle
47: Position actual value (r9713) - limit value for SLS2 (p9531[1]/p9331[1]) * Safety monitoring clock cycle
48: Position actual value (r9713) + limit value for SLS3 (p9531[2]/p9331[2]) * Safety monitoring clock cycle
49: Position actual value (r9713) - limit value for SLS3 (p9531[2]/p9331[2]) * Safety monitoring clock cycle
50: Position actual value (r9713) + limit value for SLS4 (p9531[3]/p9331[3]) * Safety monitoring clock cycle
51: Position actual value (r9713) - limit value for SLS4 (p9531[3]/p9331[3]) * Safety monitoring clock cycle
52: Standstill position + tolerance (p9530/9330)
53: Standstill position - tolerance (p9530/9330)
54: Position actual value (r9713) + limit value nx (p9546/p9346) + tolerance (p9542/p9342)
55: Position actual value (r9713) + limit value $n x$ (p9546/p9346)
56: Position actual value (r9713) - limit value $n x$ (p9546/p9346)
57: Position actual value (r9713) - limit value nx (p9546/p9346) - tolerance (p9542/p9342)
58: Actual stop request.
75: Velocity limit $n x$ (p9546, p9346).
When the function " $\mathrm{n}<\mathrm{nx}$ : hysteresis and filtering" ( $\mathrm{p} 9501.16=1$ ) is enabled, this fault value is also output for a different hysteresis tolerance ( $\mathrm{p} 9547 / \mathrm{p9347}$ ).
76: Stop response for SLS1 (p9563[0]/p9363[0])
77: Stop response for SLS2 (p9563[1]/p9363[1])
78: Stop response for SLS3 (p9563[2]/p9363[2])
79: Stop response for SLS4 (p9563[3]/p9363[3])
80: Modulo value for SP for rotary axes (p9505/p9305).
81: Velocity tolerance for SAM (p9548/p9348)
82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558/p9358)
84: Trans. time STOP F (p9555/p9355)
85: Trans. time bus failure (p9580/p9380)
86: ID 1-encoder system (p9526/p9326).
87: Encoder assignment, second channel (p9526/p9326)
89: Encoder limit freq.
230: Filter time constant for $n<n x$.
231: Hysteresis tolerance for $n<n x$.
232: Smoothed velocity actual value.
233: Limit value $n x$ / safety monitoring clock cycle + hysteresis tolerance.
234: Limit value $n x$ / Safety monitoring clock cycle.
235: -Limit value $n x /$ Safety monitoring clock cycle.
236: -Limit value $n x$ / safety monitoring clock cycle - hysteresis tolerance.
237: SGA $\mathrm{n}<\mathrm{nx}$.
238: Speed limit value for SAM (p9568/p9368).
239: Acceleration for SBR (p9581/p9381 and p9583/p9383).
240: Inverse value of acceleration for SBR (p9581/p9381 and p9583/p9383).
241: Deceleration time for SBR (p9582/p9382).
242: Encoderless safety (p9506/p9306).
243: Extended alarm acknowledgment (p9507/p9307).
244: Encoderless actual value sensing filter time (p9587/p9387).
245: Encoderless actual value sensing minimum current (p9588/p9388).
246: Voltage tolerance acceleration (p9589/p9389).
247: SDI tolerance (p9564/p9364).
248: SDI positive upper limit (0x7fffffff).
249: Position actual value (r9713) - SDI tolerance.
250: Position actual value (r9713) + SDI tolerance.
251: SDI negative lower limit (0x80000001).
252: SDI stop response (p9566/p9366).
253: SDI delay time (p9565/p9365).
254: Setting the evaluation delay for actual value sensing after pulse enable (p9586/p9386).

255: Setting, behavior during pulse suppression (p9509/p9309).
256: Status image of monitoring functions SOS, SLS, SLP, test stop, SBR, SDI (result list 1 ext) (r9710).
257: Safety functions for motion monitoring functions without selection (p9512/p9312) different.
258: Fault tolerance, actual value sensing encoderless (p9585/p9385).
259: Scaling factor for safe position via PROFIsafe (p9574/p9374) different.
260: Modulo value including scaling (p9505/p9305 and p9574/p9374) for SP with 16 bit.
261: Scaling factor for acceleration for SBR different.
262: Scaling factor for the inverse value of the acceleration for SBR different.
263: Stop response for SLP2 (p9562[1]/p9362[1])
264: Position tolerance including scaling (p9542/p9342 and p9574/p9374) for SP with 16 bit.
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 2 s has expired, the status of the user agreement is different in both monitoring channels.
1003:
Reference tolerance exceeded.
When the user agreement is set, the difference between the new reference point that has been determined after power up (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9544). In this case, the user agreement is withdrawn.
1004:
Plausibility error for user agreement.

1. If the user agreement has already been set, then setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005:

- For safe motion monitoring functions without encoder: pulses already suppressed for test stop selection.
- For safe motion monitoring functions with encoder: STO already active for test stop selection.

1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life error for DRIVE-CLiQ encoder CU
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1032: Sign-of-life error for DRIVE-CLiQ encoder MM
1033: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder CU
1034: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder MM
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
5000 ... 5140:
PROFIsafe message values.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions. $5000,5014,5023,5024,5030 \ldots 5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots 5087,5090,5091,5122$ ... 5125, 5132 ... 5135, 5140: An internal software error has occurred (only for internal Siemens troubleshooting). 5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred $F$ parameters do not match the expected values in the PROFIsafe driver.
5025: The result of the $F$ parameterization is different for the two controllers.
5026: CRC error for the $F$ parameters. The transferred CRC value of the $F$ parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
6000: A fatal PROFIsafe communication error has occurred.
6064 ... 6071: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).

6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the $F$ parameters (CRC1). The transferred CRC value of the $F$ parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
7000: Difference of the safe position is greater than the parameterized tolerance (p9542/p9342).
7001: Scaling value for the safe position in the 16 bit notation, too low (p9574/p9374).
7002: Cycle counter for transferring the safe position is different in both monitoring channels.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)
Remedy:
The following generally applies:
The monitoring clock cycles in both channels and the axis types should be checked for equality and the same setting applied if necessary. If the error continues to be identified, increasing the monitoring clock cycles may resolve it. Re message value $=0$ :

- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for MM: C30711).
Re message value $=3$ :
Commissioning phase:
Encoder evaluation for own or second channel has been set incorrectly --> Correct the encoder evaluation.
In operation:
Check the mechanical design and the encoder signals.
Re message value $=4$ :
The monitoring clock cycles in both channels should be checked for equality and if required, set the same. In combination with fault value 5 from the other monitoring channel (with MM: C30711), the monitoring clock cycle settings must be increased.
Re message value $=232$ :
-increase the hysteresis tolerance (p9547/p9347). Possibly set the filtering higher (p9545/p9345).
Re message value = 1 ... 999:
- if the message value is listed under cause: Check the crosswise-compared parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Re message value $=1000$ :
- investigate the signal associated with the safety-relevant input (contact problems).

Re message value $=1001$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re message value $=1002$ :

- Perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 2 s ).

Re message value = 1003:

- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- Increase the tolerance for the actual value comparison when referencing (p9544).

Then check the actual values, perform a POWER ON and set the user agreement again.
Re message value = 1004:
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.

Re message value $=1005$ :

- For safe motion monitoring functions without encoder: check the conditions for pulse enable.
- For safe motion monitoring functions with encoder: check the conditions for STO deselection.

Note:
For a power module, the test stop should always be performed for pulse enable (independent of whether with encoder or without encoder).
Re message value = 1011:

- for diagnostics, refer to parameter (r9571).

Re message value $=1012$ :

- upgrade the Sensor Module software.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- For DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance

Re message value $=1020,1021$ :

- check the communication link.
- increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (power off/on) for all components.
- replace the hardware.

Re message value $=1033$ :

- If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
Re message value $=1041$ :
- Check whether the motor has sufficient current (>r9785[0]).
- reduce the minimum current (p9588).
- for synchronous motors increase the absolute value of p9783.
- Check whether the function "Closed-loop controlled operation with HF signal injection" is activated (p1750.5 = 1) and if required, deactivate.
Re message value $=1042$ :
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- Check the absolute current and voltage values, and set the control behavior so that this is greater than $3 \%$ of the rated converter data in operation or in the case of a fault.
Re message value = 1043:
- increase the voltage tolerance (p9589).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

Re message value $=5000,5014,5023,5024,5030,5031,5032,5042,5043,5052,5053,5068,5072,5073,5082$
... 5087, 5090, 5091, 5122 ... 5125, 5132 ... 5135, 5140:

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re message value $=5012$ :

- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!
Re message value $=5013$, 5025:
- carry out a POWER ON (power off/on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re message value $=5022$ :
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length,

F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
Re message value $=5026$ :

- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.

Re message value $=5065$

- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re message value $=5066$ :
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the $F$ host.
- check PROFIsafe connection.

Re message value $=6000$ :

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- increase the monitoring cycle clock settings (p9500, p9511).
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re message value $=6064$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).

Re message value $=6065$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
Re message value $=6066$ :
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
Re message value $=6067$ :
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0!
Re message value $=6068$ :
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
Re message value $=6069$ :
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
Re message value $=6070$ :
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V 1 mode and 1 in the V 2 mode!
Re message value $=6071$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
Re message value $=6072$ :
- check the settings of the values for the $F$ parameters and, if required, correct.

The following combinations are permissible for F parameters $\mathrm{F}_{\mathbf{\prime}} \mathrm{CRC}$ _Length and $\mathrm{F}_{2}$ Par_Version:
F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
F_CRC_Length $=3$-byte CRC and F_Par_Version $=1$
Re message value $=6165$ :

- if the fault occurs after powering up the Control Unit or after plugging in the PROFIBUS/PROFINET cable, acknowledge the fault.
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re message value $=6166$ :
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the F host.
- check PROFIsafe connection.

Re message value $=7000$ :

- Increase the position tolerance (p9542/p9342).
- Determine the actual position of CU ( $\mathrm{r} 9713[0]$ and the second channel $\mathrm{r} 9713[1]$, and check the difference for plausibility.
- Reduce the difference of the actual position from CU (r9713[0] and the second channel r9713[1] for a 2-encoder system.

Re message value $=7001$ :

- Increase the scaling value for the safe position in the 16 bit notation (p9574/p9374).
- If required, reduce the traversing range.

Re message value $=7002$ :

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

## C01712

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion CU: Defect in F-IO processing

 \%1SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY (POWER ON)
When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
The safety message C01711 with message value 0 is also displayed due to initiation of STOP F.
If at least one monitoring function is active, the safety message C01701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
Message value (r9749, interpret decimal):
Number of the cross-compared data that resulted in this message.
1: SI discrepancy monitoring time inputs (p10002, p10102).
2: SI acknowledgement internal event input terminal (p10006, p10106).
3: SI STO input terminal (p10022, p10122).
4: SI SS1 input terminal (p10023, p10123).
5: SI SS2 input terminal (p10024, p10124).
6: SI SOS input terminal (p10025, p10125).
7: SI SLS input terminal (p10026, p10126).
8: SI SLS_Limit(1) input terminal (p10027, p10127).
9: SI SLS_Limit(2) input terminal (p10028, p10128).
10: SI Safe State signal selection (p10039, p10139).
11 SI F-DI input mode (p10040, p10140).
12: SI F-DO 0 signal sources (p10042, p10142).
13: Different states for static inactive signal sources (p10006, p10022 ... p10031).
14: SI discrepancy monitoring time outputs (p10002, p10102).
15: SI acknowledgment internal event (p10006, p10106).
16: SI test sensor feedback signal test mode selected for test stop (p10046, p10146, p10047, p10147).
17: SI delay time for test stop at DOs (p10001).
18 ... 25: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of internal readback signal, generated from the selected test stop mode.
26 ... 33: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of external readback signal, generated from the selected test stop mode.
34 ... 41: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of second internal readback signal, generated from the selected test stop mode.
42: Internal data for processing the second internal readback signal, generated from the selected test stop mode (p10047, p10147).
43: Internal data for processing the internal readback signal, generated from the selected test stop mode (p10047, p10147).
44: Internal data for processing the external readback signal, generated from the selected test stop mode (p10047, p10147).
45: Internal data for initialization state of test stop mode, dependent upon test stop parameters.
46: SI digital inputs debounce time (p10017, p10117)
47: Selection F-DI for PROFIsafe (p10050, p10150)
48: Screen form of the F-DIs used (p10006, p10022 ... p10031).
49: SI SDI positive input terminal (p10030, p10130).
50: SI SDI negative input terminal (p10031, p10131).
51: SI SLP input terminal (p10032, p10132).

|  | 52: SI SLP select input terminal (p10033, p10133). <br> 53: Internal data for retraction logic (p10009, p100109). <br> 54: SI F-DI for retraction SLP (p10009, p100109). |
| :---: | :---: |
| Remedy: | - check parameterization in the parameters involved and correct if required. <br> - ensure equality by copying the SI data to the second channel and then carry out an acceptance test. <br> - check monitoring clock cycle in p9500 and p9300 for equality. <br> Note: <br> This message can be acknowledged via F-DI or PROFIsafe. <br> See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit)) |
| C01714 | SI Motion CU: Safely-Limited Speed exceeded |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive has moved faster than that specified by the velocity limit value ( p 9531 ). The drive is stopped as a result of the configured stop response (p9563). <br> Message value (r9749, interpret decimal): <br> 100: SLS1 exceeded. <br> 200: SLS2 exceeded. <br> 300: SLS3 exceeded. <br> 400: SLS4 exceeded. <br> 1000: Encoder limit frequency exceeded. |
| Remedy: | - check the traversing/motion program in the control. <br> - check the limits for "Safely-Limited Speed (SLS) and if required, adapt (p9531). <br> This message can be acknowledged as follows: <br> - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe <br> - motion monitoring functions with SINUMERIK: Via the machine control panel <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)), p9563 (SI Motion SLS (SG)-specific stop response (Control Unit)) |
| C01715 | SI Motion CU: Safely-Limited Position exceeded |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The axis has moved past a parameterized position that is monitored by the "SLP" function. Message value (r9749, interpret decimal): <br> 10: SLP1 violated. <br> 20: SLP2 violated. |
| Remedy: | - check the traversing/motion program in the control. <br> - check the limits for "SLP" function and if required, adapt (p9534, p9535). <br> This message can be acknowledged as follows: <br> - motion monitoring functions with SINUMERIK: Via the machine control panel <br> Note: <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches <br> See also: p9534 (SI Motion SLP (SE) upper limit values (Control Unit)), p9535 (SI Motion SLP (SE) lower limit values (Control Unit)) |


| C01716 | SI Motion CU: Tolerance for safe motion direction exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9566). <br> Message value (r9749, interpret decimal): <br> 0 : Tolerance for the "safe motion direction positive" function exceeded. <br> 1: Tolerance for the "safe motion direction negative" function exceeded. |
| Remedy: | - check the traversing/motion program in the control. <br> - check the tolerance for "SDI" function and if required, adapt (p9564). <br> This message can be acknowledged as follows: <br> - Deselect the "SDI" function and select again. <br> - Perform a safe acknowledgment via F-DI or PROFIsafe. <br> Note: <br> SDI: Safe Direction (safe motion direction) <br> SI: Safety Integrated <br> See also: p9564 (SI Motion SDI tolerance (Control Unit)), p9565 (SI Motion SDI delay time (Control Unit)), p9566 (SI <br> Motion SDI stop response (Control Unit)) |
| $\overline{C 01730}$ | SI Motion CU: Reference block for dynamic safely limited speed invalid |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The reference block transferred via PROFIsafe is negative. <br> A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9531[0]). <br> The drive is stopped as a result of the configured stop response (p9563[0]). <br> Message value (r9749, interpret decimal): <br> requested, invalid reference block. |
| Remedy: | In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected. <br> This message can be acknowledged as follows: <br> - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe <br> - motion monitoring functions with SINUMERIK: Via the machine control panel <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed |
| $\overline{\mathrm{C01745}}$ | SI Motion CU: Checking braking torque for the brake test |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | POWER ON (IMMEDIATELY) |
| Cause: | The scaling of the brake torque for the brake test can be changed using parameter p2003. <br> An acceptance test must be carried out again for the braking test. This determines whether the braking test is still carried out with the correct braking torque. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - repeat the acceptance test for the safe brake test if the brake test is used. <br> See also: p2003 |


p 10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time) p10002 >= p9500 (discrepancy time must be no less than P9500)
p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply) td = possible actual discrepancy time (in ms ) that can occur with a switching operation. This must correspond to at least 1 SI sampling cycle (see p9500).
tp = period for a switching operation in ms .
When debounce p10017 is active, the discrepancy time is directly specified by the debounce time.
If the period of a cyclic switching pulse has the order of magnitude of twice the debounce time, then the following formulas should be checked.
p10002 < p10017 + 1 ms - td
p10002 > td
p10002 >= p9500
Example:
For a 12 ms SI sampling cycle and a switching frequency of 110 ms ( $\mathrm{p} 10017=0$ ), the maximum discrepancy time which can be set is as follows:
$\mathrm{p} 10002<=(110 / 2 \mathrm{~ms})-12 \mathrm{~ms}=43 \mathrm{~ms}$
Rounded-off, p10002 <= 36 ms is obtained (since the discrepancy time can only be accepted as a whole SI sampling cycle, the value will need to be rounded up or down to a whole SI sampling time value if the result is not an exact multiple of an SI sampling cycle).
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

A01772
Message value:
Drive object:
Reaction:
Acknowledge:
Cause: The test stop for the fail-safe digital inputs (F-DI) and/or fail-safe digital outputs (F-DO) is presently being performed. Note:
F-DI: Failsafe Digital Input F-DO: Failsafe Digital Output
Remedy: The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop.

## SI Motion CU: Test stop failsafe inputs/outputs active

Remedy:

SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
NONE
F01773 SI Motion CU: Test stop error

Message value:
\%1
Drive object:
Reaction:
Acknowledge:
Cause:
F01773
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY (POWER ON)
A fault has occurred on the CU side during the test stop for the fail-safe outputs.
Fault value (r0949, interpret hexadecimal):
RRRVWXYZ hex:
R: Reserved.
V : Actual state of the DO channel concerned (see X ) on the CU (corresponds to the states read back from the hardware, bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
W: Required state of the DO channel concerned (see $X$, bit $0=D O 0$, bit $1=D O 1$, etc.).
$X$ : DO channels involved, which indicate an error (bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
Y: Reason for the test stop fault.
Z: State of the test stop in which the fault has occurred.
Y : Reason for the test stop fault
$Y=1$ : $M M$ side in incorrect test stop state (internal fault).
$Y=2$ : Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 2).
$Y=3$ : Incorrect timer state on CU side (internal fault)
$Y=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on MM channel).
$Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on CU channel).
$X$ and $V$ indicate the DI or Diag-DO state dependent upon the reason for the fault ( 2,4 or 5 ).
In the event of multiple test stop faults, the first one that occurred is shown.
Z: Test stop state and associated test actions
$Z=0 \ldots 3$ : Synchronization phase of test stop between CU and Motor Module no switching operations
$Z=4: D O+O F F$ and DO - OFF
$Z=5$ : Check to see if states are as expected
$Z=6: D O+O N$ and DO - ON
$Z=7$ : Check to see if states are as expected
$\mathrm{Z}=8: \mathrm{DO}+\mathrm{OFF}$ and DO-ON
$Z=9$ : Check to see if states are as expected
$Z=10: D O+O N$ and DO - OFF
$Z=11$ : Check to see if states are as expected
$Z=12: D O+O F F$ and DO - OFF
$Z=13$ : Check to see if states are as expected
$Z=14$ : End of test stop
Diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: 0/-/-/1
7: 0/-/-/0
9: 0/-/-/0
11: 1/-/-/1
13: 0/-/-/1
Second diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/-/-/1
7: -/--/0
9: -/-/-/1
11: -/-/-/0
13: -/-/-/1
DI expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/1/1/-
7: -/0/0/-
9: -/0/1/-
11: -/0/1/-
13: -/1/1/-
Example:
Fault F01773 (CU) is signaled with fault value $=0001 \_0127$ and fault $\mathrm{F} 30773(\mathrm{MM})$ is signaled with fault value 0000_0127.
This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 $(X=1)$ was switched to ON/ON.
Fault value 0001_0127 indicates that 0 was expected $(\mathrm{W}=0)$ and $1(\mathrm{~V}=1)$ was read back from the hardware. Fault value 0000_0127 on the MM indicates that the states were as expected.
In the case of fault $\mathrm{F} 30773, \mathrm{~W}$ and V are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on the other channel (CU).
Check the wiring of the F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
In the event of multiple test stop faults, the first one that occurred is shown.
Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one).

## A01774

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion CU: Test stop necessary

- 

SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
NONE

- after powering up the drive, a test stop has still not been carried out.
- a new test stop is required after commissioning.
- the time to carry out the forced checking procedure (test stop) has expired (p10003).

Note:

- The test must be performed within a defined, maximum time interval ( p 10003 , maximum of 8760 hours) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
Remedy: Initiate test stop (BI: p10007).

| A01795 | SI Motion CU: Wait time after exiting the safe pulse cancellation expired |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | After exiting safe pulse cancellation, within the wait time of 5 seconds, encoderless actual value sensing was not <br> able to be activated for the extended functions without selection. |
|  | A change is again made into the "safe pulse cancellation" state. |
| Remedy: | - Check missing enable signals, which prevent the drive control from being commissioned (r0046). |
|  | - Evaluate possible fault messages of the encoderless actual value sensing and remove. |


| A01796 (F, N) | SI CU: Wait for communication |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The drive waits for communication to be established to execute the safety-relevant motion monitoring functions. <br> Note: <br> In this state, the pulses are safely suppressed. |
|  | Alarm value (r2124, interpret decimal): <br> 1: Wait for communication to be established to SINUMERIK. |
| 2: Wait for communication to be established to TM54F. |  |


| Remedy: | If safe automatic referencing is not possible the user must issue a user agreement for the new position using the softkey. This mean that this position is then designated as safety-relevant. <br> Note: <br> SI: Safety Integrated |
| :---: | :---: |
| C01798 | SI Motion CU: Test stop running |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The test stop is active. |
| Remedy: | Not necessary. <br> The message is withdrawn when the test stop is finished. Note: <br> SI: Safety Integrated |
| C01799 | SI Motion CU: Acceptance test mode active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the RESET button of the higher-level control. |
| Remedy: | Not necessary. <br> The message is withdrawn when exiting the acceptance test mode. Note: <br> SI: Safety Integrated |
| F01800 | DRIVE-CLiQ: Hardware/configuration error |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A DRIVE-CLiQ connection fault has occurred. <br> Fault value (r0949, interpret decimal): $100 \ldots 107:$ <br> Communication via DRIVE-CLiQ socket X100 ... X107 has not been switched to cyclic operation. The cause may be an incorrect structure or a configuration that results in an impossible bus timing. $10:$ <br> Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication. $11:$ <br> Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication. 12: <br> A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication. |
| Remedy: | Re fault value $=100 \ldots 107$ : <br> - ensure that the DRIVE-CLiQ components have the same firmware versions. <br> - avoid longer topologies for short current controller clock cycles. <br> For fault value $=10$ : <br> - check the DRIVE-CLiQ cables at the Control Unit. <br> - remove any short-circuit for motors with DRIVE-CLiQ. <br> - carry out a POWER ON. <br> For fault value $=11$ : <br> - check the electrical cabinet design and cable routing for EMC compliance |

For fault value $=12$ :

- replace the component involved.


| Remedy: | Check the bus configuration on the master and the slave sides. <br> Re alarm value $=1,2$ : <br> - Check the list of the drive objects with process data exchange (p0978). <br> Note: <br> With $p 0978[x]=0$, all of the following drive objects in the list are excluded from the process data exchange. <br> Re alarm value $=2$ : <br> - Check the number of data words for output and input to a drive object. <br> Re alarm value $=211$ : <br> - Ensure offline version <= online version. <br> Re alarm value $=223,500$ : <br> - Check the setting in p8839 and p8815. <br> - Check for inserted but not configured CBE20. <br> - Ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe. <br> Re alarm value $=255$ : <br> - Check configured drive objects. <br> Re alarm value = 501: <br> - Check the set PROFIsafe address (p9610). <br> Re alarm value $=502$ : <br> - Check the set PROFIsafe telegram (p60022, p9611). |
| :---: | :---: |
| Reaction upon F: | NONE (OFF1) |
| Acknowl. upon F: | IMMEDIATELY |


| A01902 | PB/PN clock cycle synchronous operation parameterization not permissible |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Parameterization for isochronous operation is not permissible. |
|  | Alarm value (r2124, interpret decimal): |
|  | 0 : Bus cycle time Tdp $<0.5 \mathrm{~ms}$. |
|  | 1: Bus cycle time Tdp > 32 ms . |
|  | 2: Bus cycle time Tdp is not an integer multiple of the current controller clock cycle. |
|  | 3: Instant of the actual value sensing $\mathrm{Ti}>$ Bus cycle time Tdp or $\mathrm{Ti}=0$. |
|  | 4: Instant of the actual value sensing Ti is not an integer multiple of the current controller clock cycle. |
|  | 5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To $=0$. |
|  | 6: Instant of the setpoint acceptance To is not an integer multiple of the current controller clock cycle. |
|  | 7: Master application cycle time Tmapc is not an integer multiple of the speed controller clock cycle. |
|  | 8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller clock cycles. |
|  | 10: Instant of the setpoint acceptance To <= data exchange time Tdx + current controller clock cycle |
|  | 11: Master application cycle time Tmapc > 14 x Tdp or Tmapc $=0$. |
|  | 12: PLL tolerance window Tpll_w > Tpll_w_max. |
|  | 13: Bus cycle time Tdp is not a multiple of all basic clock cycles p0110[x]. |
|  | 16: For COMM BOARD, the instant in time for the actual value sensing Ti is less than two current controller clock cycles. |
| Remedy: | - Adapt the bus parameterization Tdp, Ti, To. |
|  | - adapt the current and speed controller clock cycle. |
|  | Re alarm value = 10: |
|  | - Reduce Tdx by using fewer bus participants or shorter telegrams. |
|  | Note: |
|  | PB: PROFIBUS |
|  | PN: PROFINET |

A01903 (F) COMM INT: Receive configuration data invalid
Message value: \%1
Drive object: A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC,
TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The drive unit did not accept the receive configuration data.

|  | Alarm value (r2124, interpret decimal): |
| :--- | :--- |
|  | Return value of the receive configuration data check. |
| 1: Connection established to more drive objects than configured in the device. The drive objects for process data |  |
| exchange and their sequence are defined in p0978. |  |
| 2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object |  |
| is determined by the number of indices in r2050/p2051. |  |
| 3: Uneven number of bytes for input or output. |  |
| 4: Setting data for synchronization not accepted. For more information, see A01902. |  |


|  | PB: PROFIBUS PN: PROFINET |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F01912 (N, A) | PB/PN clock cycle synchronous operation sign-of-life failure |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 <br> Servo: OFF1 (OFF3) <br> Vector: OFF1 (OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum permissible number of errors in the controller sign-of-life (clock synchronous operation) has been exceeded in cyclic operation. |
| Remedy: | - physically check the bus (cables, connectors, terminating resistor, shielding, etc.). <br> - correct the interconnection of the controller sign-of-life (p2045). <br> - check whether the controller correctly sends the sign-of-life (e.g. create a trace with STW2.12 ... STW2.15 and trigger signal ZSW1.3). <br> - check the permissible telegram failure rate (p0925). <br> - check the bus and controller for utilization level (e.g. bus cycle time Tdp was set too short). <br> Note: <br> PB: PROFIBUS <br> PN: PROFINET |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F01913 (N, A) | COMM INT: Monitoring time sign-of-life expired |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The monitoring time for the sign-of-life counter has expired. <br> The connection between the drive and the higher-level control (SIMOTION, SINUMERIK) has been interrupted for the following reasons: <br> - the control was reset. <br> - the data transfer to the control was interrupted. |
| Remedy: | - wait until the control has re-booted. <br> - restore data transfer to the control. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F01914 (N, A) | COMM INT: Monitoring time configuration expired |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The monitoring time for the configuration has expired. <br> Fault value (r0949, interpret decimal): <br> 0 : The transfer time of the send configuration data has been exceeded. <br> 1: The transfer time of the receive configuration data has been exceeded. |
| Remedy: | - acknowledge faults that are present. <br> - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F01915 (N, A) | PB/PN clock cycle synchronous operation sign-of-life failure drive object 1 |
| Message value: | - All |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Group display for problems with the sign-of-life of the master (clock-cycle synchronous operation) on the drive object 1 (Control Unit). <br> For central measurements, synchronism with the central master is lost. |
| Remedy: | Note: <br> PB: PROFIBUS <br> PN: PROFINET |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A01920 (F) | PROFIBUS: Interruption cyclic connection |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The cyclic connection to the PROFIBUS master is interrupted. |
| Remedy: | Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode. |
| Reaction upon F: | NONE (OFF1) |
| Acknowl. upon F: | IMMEDIATELY |


| A01921 (F) | PROFIBUS: Receive setpoints after To |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle. |
| Remedy: | - check bus configuration. <br> - check parameters for clock cycle synchronization (ensure To > Tdx). <br> Note: <br> To: Time of setpoint acceptance <br> Tdx: Data exchange time |
| Reaction upon F: | NONE (OFF1) |
| Acknowl. upon F: | IMMEDIATELY |
| A01930 | PB/PN current controller clock cycle clock cycle synch. not equal |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The current controller clock cycle of all drives must be set the same for the clock cycle synchronous operation. Alarm value (r2124, interpret decimal): <br> Number of the drive object with different current controller clock cycle. |
| Remedy: | Set current controller clock cycles to identical values (p0115[0]). Note: <br> PB: PROFIBUS <br> PN: PROFINET <br> See also: p0115 |
| A01931 | PB/PN speed controller clock cycle clock cycle synch. not equal |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The speed controller clock cycle of all drives must be set the same for the clock cycle synchronous operation. Alarm value (r2124, interpret decimal): <br> Number of the drive object with the different speed controller clock cycle. |
| Remedy: | Set the speed controller clock cycles the same (p0115[1]). <br> Note: <br> PB: PROFIBUS <br> PN: PROFINET <br> See also: p0115 |
| A01932 | PB/PN clock cycle synchronization missing for DSC |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | There is no clock synchronization or clock synchronous sign of life and DSC is selected. Note: <br> DSC: Dynamic Servo Control <br> See also: p0922, p1190, p1191 |
| Remedy: | Set clock synchronization across the bus configuration and transfer clock synchronous sign-of-life. See also: r2064 (PB/PN diagnostics clock cycle synchronism) |


| A01940 | PB/PN clock cycle synchronism not reached |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master. <br> - the master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus. <br> - the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram. <br> - at least one drive object has a pulse enable (not controlled from PROFIBUS/PROFINET either). |
| Remedy: | - check the master application and bus configuration. <br> - check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master. <br> - check that no drive object has a pulse enable. Only enable the pulses after synchronizing the PROFIBUS/PROFI- <br> NET drives. <br> Note: <br> PB: PROFIBUS <br> PN: PROFINET |
| A01941 | PB/PN clock cycle signal missing when establishing bus communication |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received. |
| Remedy: | Check the master application and bus configuration. Note: <br> PB: PROFIBUS <br> PN: PROFINET |
| A01943 | PB/PN clock cycle signal error when establishing bus communication |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is being irregularly received. <br> -.the master is sending an irregular global control telegram. <br> - the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram. |
| Remedy: | - check the master application and bus configuration. <br> - check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master. <br> Note: <br> PB: PROFIBUS <br> PN: PROFINET |
| A01944 | PB/PN sign-of-life synchronism not reached |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. |


|  | Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life <br> is changing differently to how it was configured in the Tmapc time grid. |
| :--- | :--- |
| Remedy: | - ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc. |
| - correct the interconnection of the master sign-of-life (p2045). |  |
|  | Note: |
|  | PB: PROFIBUS |
|  | PN: PROFINET |

F01950 (N, A) PB/PN clock cycle synchronous operation synchronization unsuccessful
Message value:
Drive object: All objects
Reaction: OFF1 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)

| Cause: | Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits <br> an unexpected shift. |
| :--- | :--- |
| Remedy: | Only for internal Siemens troubleshooting. <br>  <br>  <br>  <br> Note: <br>  <br>  <br> PB: PROFIBUS |
| PN: PROFINET |  |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| Reaction upon A: <br> Acknowl. upon A: | NONE <br> NONE |
| :--- | :--- |
| F01951 | CU DRIVE-CLiQ: Synchronization application clock cycle missing |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | If DRIVE-CLiQ components with different application clock cycle are operated on a DRIVE-CLiQ port, this requires <br> synchronization with the Control Unit. This synchronization routine was unsuccessful. <br> Fault value (r0949, interpret decimal): |
|  | Only for internal Siemens troubleshooting. |
| - carry out a POWER ON (power off/on) for all components. |  |

## F01954

Message value: \%
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and was not able to be successfully completed (e.g. after switch-on).
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting

- restart the PROFIBUS master.
- switch-off the Control Unit and switch-on again.
- carry out a Control Unit hardware reset (RESET button, p0972).
- carry out a parameter reset and download the saved parameters ( $p 0009=30, p 0976=2,3$ ).

| A01955 | CU DRIVE-CLiQ: Synchronization DO not completed |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle <br> and application clock cycle was started but was not completed within the selected time tolerance. <br> Alarm value (r2124, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Cemedy: | Carry out a POWER ON (power off/on) for all components of the DO. |


| A01980 | PN: Interruption cyclic connection |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | NONE |
|  | The cyclic connection to a PROFINET controller is interrupted. |
|  | Alarm value (r2124, interpret decimal): |
| Remedy: | Number of the interrupted connection. |
|  | Establish the PROFINET connection and activate the PROFINET controller in the cyclic mode. |


| A01981 | PN: Maximum number of controllers exceeded |
| :--- | :--- |
| Message value: | Info. 1: \%1, info. 2: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | NONE |
|  | A controller attempts to establish a connection to the drive, and as a consequence exceeds the permitted number of |
|  | PROFINET connections. |
|  | The alarm disappears automatically after approx. 30 seconds. |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2 |
|  | Info 1 = 0: number of RT connections exceeded |
|  | Info 1 > 0: number of IRT connections exceeded |
| Remedy: | Info 2: permitted number of connections |
|  | Check the configuration of the PROFINET controllers as well as the p8929 setting. |
|  | See also: p8929 (PN remote controller number) |

A01982 PROFINET: Second controller missing
Message value:
Drive object:

Reaction:
Acknowledge:
A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_D̄O, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC NONE

Cause:
The PROFINET function "Shared Device" has been activated (p8929 = 2). However, only the connection to a PROFINET controller is present.

| Remedy: $\quad$ Check the configuration of the PROFINET controllers as well as the p8929 setting. |  |
| :--- | :--- |
|  | See also: p8929 (PN remote controller number) |


| A01989 | PROFINET: Internal cyclic data transfer error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The cyclic actual values and/or setpoints were not transferred within the specified times. |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | Only for internal Siemens troubleshooting. |
| Remedy: | Correctly set T_io_input or T_io_output. |


| A01990 (F) | USS: PZD configuration error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The configuration of the process data (PZD) for the USS protocol is incorrect. <br> Alarm value (r2124, interpret decimal): <br> 2: PZD amount (p2022) too great for the first drive object (p978[0]). <br> The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051. |
| Remedy: | Re alarm value $=2$ : <br> Check the amount of USS PZD (p2022) and the maximum PZD amount (r2050/p2051) for the first drive object (p0978[0]). |
| Reaction upon F: | NONE (OFF1) |
| Acknowl. upon F: | IMMEDIATELY |

A02000 Function generator: Start not possible
Message value:

| Drive object: | All objects |
| :--- | :--- |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The function generator has already been started. |
| Remedy: | Stop the function generator and restart again if necessary. |
|  | Note: |
|  | The alarm is reset as follows: |
|  | - remove the cause of this alarm. |
|  | - restart the function generator. |
|  | See also: p4800 (Function generator control) |


| A02005 | Function generator: Drive does not exist |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The drive object specified for connection does not exist. |
|  | See also: p4815 (Function generator drive number) |
| Remedy: | Use the existing drive object with the corresponding number. |
|  | Note: |
|  | The alarm is reset as follows: |
|  | - remove the cause of this alarm. |
|  | - restart the function generator. |
|  | See also: p4815 (Function generator drive number) |


| A02006 | Function generator: No drive specified for connection |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | No drive specified for connection in p4815. <br> See also: p4815 (Function generator drive number) |
| Remedy: | At least one drive to be connected must be specified in p4815. Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4815 (Function generator drive number) |
| A02007 | Function generator: Drive not SERVO / VECTOR / DC_CTRL |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The drive object specified for connection is not a SERVO / VECTOR or DC_CTRL See also: p4815 (Function generator drive number) |
| Remedy: | Use a SERVO / VECTOR / DC_CTRL drive object with the corresponding number Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |


| A02008 | Function generator: Drive specified a multiple number of times |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The drive object specified for connection is already specified. <br>  <br>  <br>  <br> Alarm value (r2124, interpret decimal): <br> Drive object number of the drive object that is specified a multiple number of times. <br>  <br> Specify a different drive object. <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |


| A02009 | Function generator: Illegal mode |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The set operating mode ( p 1300 ) of the drive object is not permissible when using the function generator. Alarm value (r2124, interpret decimal): <br> Number of the drive object involved. |
| Remedy: | Change the operating mode for this drive object to p1300 $=20$ (encoderless speed control) or p1300 $=21$ (speed control with encoder). <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |


| A02010 | Function generator: Speed setpoint from the drive is not zero |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226. |
| Remedy: | For all of the drives specified for connection, set the speed setpoints to zero. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |
| A02011 | Function generator: The actual drive speed is not zero |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226. |
| Remedy: | Set the relevant drives to zero speed before starting the function generator. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |
| A02015 | Function generator: Drive enable signals missing |
| Message value: | - Als |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The master control and/or enable signals are missing to connect to the specified drive. See also: p4815 (Function generator drive number) |
| Remedy: | Fetch the master control to the specified drive object and set all enable signals. Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |
| A02016 | Function generator: Magnetizing running |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Magnetizing has not yet been completed on a drive object specified for connection. Alarm value (r2124, interpret decimal): <br> Number of the drive object involved. <br> See also: p4815 (Function generator drive number) |
| Remedy: | Wait for magnetizing of the motor (r0056.4). <br> Note: <br> The alarm is reset as follows: <br> - restart the function generator. <br> See also: r0056 (Status word, closed-loop control) |


| A02020 | Function generator: Parameter cannot be changed |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | This parameter setting cannot be changed when the function generator is active ( $p 4800=1$ ). <br> See also: p4810, p4812, p4813, p4815, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829 |
| Remedy: | - stop the function generator before parameterizing ( $\mathrm{p} 4800=0$ ). <br> - if required, start the function generator ( $\mathrm{p} 4800=1$ ). <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4800 (Function generator control) |
| A02025 | Function generator: Period too short |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The value for the period is too short. See also: p4821 (Function generator period) |
| Remedy: | Check and adapt the value for the period. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4821 (Function generator period) |
| A02026 | Function generator: Pulse width too high |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected pulse width is too high. <br> The pulse width must be less than the period duration. See also: p4822 (Function generator pulse width) |
| Remedy: | Reduce pulse width. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4821 (Function generator period), p4822 (Function generator pulse width) |
| A02030 | Function generator: Physical address equals zero |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The specified physical address is zero. <br> See also: p4812 (Function generator physical address) |
| Remedy: | Set a physical address with a value other than zero. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4812 (Function generator physical address) |


| A02040 | Function generator: Illegal value for offset |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit. See also: p4826 (Function generator offset) |
| Remedy: | Adjust the offset value accordingly. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit) |
| A02041 | Function generator: Illegal value for bandwidth |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high. Depending on the time slice clock cycle, the bandwidth is defined as follows: <br> Bandwidth_max $=1 /(2 x$ time slice clock cycle $)$ <br> Bandwidth_min = Bandwidth_max / 100000 <br> Example: <br> Assumption: p4830 $=125 \mu \mathrm{~s}$ <br> --> Bandwidth_max $=1 /(2 \times 125 \mu \mathrm{~s})=4000 \mathrm{~Hz}$ <br> --> Bandwidth_min $=4000 \mathrm{~Hz} / 100000=0.04 \mathrm{~Hz}$ <br> Note: <br> p4823: Function generator bandwidth <br> p4830: Function generator time slice clock cycle <br> See also: p4823 (Function generator bandwidth), p4830 (Function generator time slice cycle) |
| Remedy: | Check the value for the bandwidth and adapt accordingly. <br> Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. |
| A02047 | Function generator: Time slice clock cycle invalid |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The time slice clock cycle selected does not match any of the existing time slices. See also: p4830 (Function generator time slice cycle) |
| Remedy: | Enter an existing time slice clock cycle. The existing time slices can be read out via p7901. Note: <br> The alarm is reset as follows: <br> - remove the cause of this alarm. <br> - restart the function generator. <br> See also: r7901 (Sampling times) |


| A02050 | Trace: Start not possible |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The trace has already been started. See also: p4700 (Trace control) |
| Remedy: | Stop the trace and, if necessary, start again. |
| A02055 | Trace: Recording time too short |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The trace duration is too short. <br> The minimum is twice the value of the trace clock cycle. See also: p4721 (Trace recording time) |
| Remedy: | Check the selected recording time and, if necessary, adjust. |
| A02056 | Trace: Recording cycle too short |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected recording cycle is shorter than the selected basic clock cycle 0 ( $\mathrm{p} 0110[0]$ ). See also: p4720 (Trace recording cycle) |
| Remedy: | Increase the value for the trace cycle. |
| A02057 | Trace: Time slice clock cycle invalid |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The time slice clock cycle selected does not match any of the existing time slices. See also: p4723 (Trace time slice cycle) |
| Remedy: | Enter an existing time slice clock cycle. The existing time slices can be read out via p7901. See also: r7901 (Sampling times) |
| A02058 | Trace: Time slice clock cycle for endless trace not valid |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected time slice clock cycle cannot be used for the endless trace See also: p4723 (Trace time slice cycle) |
| Remedy: | Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace. <br> The existing time slices can be read out via p7901. <br> See also: r7901 (Sampling times) |


| A02059 | Trace: Time slice clock cycle for $2 \times 8$ recording channels not valid |
| :---: | :---: |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected time slice clock cycle cannot be used for more than 4 recording channels. See also: p4723 (Trace time slice cycle) |
| Remedy: | Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels to 4 per trace. <br> The existing time slices can be read out via p7901. <br> See also: r7901 (Sampling times) |

A02060 Trace: Signal to be traced missing
Message value: -
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: - a signal to be traced was not specified.

- the specified signals are not valid.

See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy: - specify the signal to be traced. - check whether the relevant signal can be traced.

| A02061 | Trace: Invalid signal |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | - the specified signal does not exist. <br> - the specified signal can no longer be traced (recorded). <br> See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace <br> record signal 3) |
| Remedy: | - specify the signal to be traced. <br> - check whether the relevant signal can be traced. |


| A02062 | Trace: Invalid trigger signal |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | - a trigger signal was not specified. <br>  <br>  <br>  <br>  <br>  <br> - the specified signal does not exist. <br> - the speciified signal is not a fixed-point signal. <br> - the specified signal cannot be used as a trigger signal for the trace. <br> See als: p4711 (Trace trigger signal) |
| Specify a valid trigger signal. |  |


| A02063 | Trace: Invalid data type |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The specified data type to select a signal using a physical address is invalid. <br>  <br> See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace <br> record signal 2), p4733 (Trace record signal 3) |

Remedy: Use a valid data type.

| A02070 | Trace: Parameter cannot be changed |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The trace parameter settings cannot be changed when the trace is active. <br>  <br>  <br> See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, <br> p4733, p4780, p4781, p4782, p4783, p4789, p4795 |
| Remedy: | - stop the trace before parameterization. <br> - if required, start the trace. |


| A02075 | Trace: Pretrigger time too long |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The selected pretrigger time must be shorter than the trace time. <br>  <br> Semedy: |
| Check the pretrigger time setting and change if necessary. |  |

F02080 Trace: Parameterization deleted due to unit changeover
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY

| Cause: | The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference |
| :--- | :--- |
|  | parameters. |
| Remedy: | Restart trace. |

A02099 Trace: Insufficient Control Unit memory

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: $\quad$ The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy: Reduce the memory required, e.g. as follows:

- reduce the trace time
- increase the trace clock cycle.
- reduce the number of signals to be traced.

See also: r4708 (Trace memory space required), r4799 (Trace memory location free)

| A02100 | Drive: Computing dead time current controller too short |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability. |
|  | Possible causes: |
|  | - A parameter backup with a version higher than 4.3 was loaded to a version less than or equal to 4.3. |
|  | - The system properties after replacing a component no longer match the parameter assignment. |
|  | Alarm value (r2134, floating point): |
|  | The minimum value for p0118 where a dead time no longer occurs. |

```
Remedy: - set p0118 to zero.
    - set p0118 to a value greater than or equal to the alarm value (for p1810.11 = 1)
    - set p0117 (from the device) to an automatic setting (p0117 = 1).
    - check the firmware versions of the components involved.
    See also: p0117 (Current controller computing dead time mode), p0118 (Current controller computing dead time)
```

| A02150 | OA: Application cannot be loaded |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The system was not able to load an OA application. |
|  | Alarm value (r2124, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. |
|  | - upgrade firmware to later version. |
|  | - contact the Hotline. |
| Note: |  |


| F03000 | NVRAM fault on action |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault occurred during execution of action $p 7770=1,2$ for the NVRAM data. <br> Fault value (r0949, interpret hexadecimal): <br> yyxx hex: $y y=$ fault cause, $x x=$ application $I D$ <br> $y y=1$ : <br> The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned. yy = 2: <br> The data length of the specified application is not the same in the NVRAM and the backup. yy = 3: <br> The data checksum in p7774 is not correct. $\mathrm{yy}=4:$ <br> No data available to load. <br> See also: p7770 (NVRAM action) |
| Remedy: | Perform the remedy according to the results of the troubleshooting. If necessary, start the action again. |
| F03001 | NVRAM checksum incorrect |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit. The NVRAM data affected was deleted. |
| Remedy: | Carry out a POWER ON (power off/on) for all components. |
| F03500 (A) | TM: Initialization |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred. <br> Fault value (r0949, interpret decimal): <br> yxxx dex <br> $y=$ Only for internal Siemens troubleshooting <br> $x x x=$ component number (p0151) |
| Remedy: | - power down/power up the power supply for the Control Unit. <br> - check the DRIVE-CLiQ connection. <br> - if required, replace the Terminal Module. <br> The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit. If the fault occurs again, replace the Terminal Module. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| A03501 | TM: Sampling time change |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The sampling times of the inputs/outputs were changed. This change only becomes valid after the next boot. |
| Remedy: | Carry out a POWER ON. |


| F03505 (N, A) | TM: Analog input wire breakage |
| :--- | :--- |
| Message value: |  |
| Drive object: | \%1 |
|  | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HUB, S_INF, SERVO, SERVO_AC, SAR |
|  | TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, |
|  | VECTOR_I_AC |


| A03506 (F, N) | 24 V power supply missing |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 24 V power supply for the digital outputs ( X 124 ) is missing. |
| Remedy: | Check the terminals for the power supply voltage (X124, L1+, M). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A03510 (F, N) | TM: Calibration data not plausible |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility. At least one calibration data point was determined to be invalid. <br> Alarm value (r2124, interpret binary): <br> Bit 1: 10 V value, analog input 0 invalid. <br> Bit 3: 10 V value, analog input 1 invalid. <br> Bit 4: Offset, analog output 0 invalid. <br> Bit 5: 10 V value, analog output 0 invalid. <br> Bit 6: Offset, analog output 1 invalid. <br> Bit 7: 10 V value, analog input 1 invalid. |
| Remedy: | - power down/power up the power supply for the Control Unit. <br> - check the DRIVE-CLiQ connection. <br> Note: <br> If it reoccurs, then replace the module. <br> In principle, operation could continue. <br> The analog channel involved possibly does not achieve the specified accuracy. |
| Reaction upon F: | ```Infeed: NONE (OFF1, OFF2) Servo: NONE (OFF1, OFF2) Vector: NONE``` |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A03510 (F, N) | CU: Calibration data not plausible |
| Message value: | \%1 |
| Drive object: | CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | During booting, the calibration data for the analog inputs is read and checked with respect to plausibility. At least one calibration data point was determined to be invalid. |
| Remedy: | - power down/power up the power supply for the Control Unit. <br> - check the DRIVE-CLiQ connection. <br> Note: <br> If it reoccurs, then replace the module. <br> In principle, operation could continue. <br> The analog channel involved possibly does not achieve the specified accuracy. |


| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE |
| :---: | :---: |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A03550 | TM: Speed setpoint filter natural frequency > Shannon frequency |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The natural filter frequency of the speed setpoint filter (p1417) is greater than or equal to the Shannon frequency. The Shannon frequency is calculated according to the following formula: $\begin{aligned} & 0.5 / p 4099[3] \\ & \text { See also: p1417 } \end{aligned}$ |
| Remedy: | Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417). |
| F03590 (N, A) | TM: Module not ready |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | ```Infeed: OFF2 (NONE) Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)``` |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The Terminal Module involved does not send a ready signal and no valid cyclic data. Fault value (r0949, interpret decimal): Drive object number of the Terminal Module involved. |
| Remedy: | - check the 24 V power supply. <br> - check the DRIVE-CLiQ connection. <br> - check whether the sampling time of the drive object involved is not equal to zero (p4099[0]). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A05000 (N) | Power unit: Overtemperature heat sink AC inverter |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. <br> If the temperature of the heat sink increases by an additional 5 K , then fault F30004 is initiated. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - have the load conditions and the load duty cycle been appropriately dimensioned? <br> - has the cooling failed? |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A05001 (N) | Power unit: Overtemperature depletion layer chip |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. Note: <br> - The response is set using p0290. <br> - If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - have the load conditions and the load duty cycle been appropriately dimensioned? <br> - has the cooling failed? <br> - pulse frequency too high? <br> See also: r0037, p0290 (Power unit overload response) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A05001 (N) | Power unit: Overtemperature depletion layer chip |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. <br> Note: <br> - The response is set using p0290. <br> - If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - have the load conditions and the load duty cycle been appropriately dimensioned? <br> - has the cooling failed? <br> - pulse frequency too high? <br> Note: <br> If the alarm occurs after reducing the current controller sampling time ( $\mathrm{p} 0115[0]$ ) during the motor data identification (standstill measurement), then it is recommended that this is initially performed using the standard sampling time and then the sampling time should be subsequently changed over. <br> See also: r0037, p0290 (Power unit overload response) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A05002 (N) | Power unit: Air intake overtemperature |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is $42^{\circ} \mathrm{C}$ (hysteresis 2 K ). The response is set using p0290. <br> If the air intake temperature increases by an additional 13 K , then fault F30035 is output. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - has the fan failed? Check the direction of rotation. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A05003 (N) | Power unit: Internal overtemperature |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for internal overtemperature has been reached. If the temperature inside the power unit increases by an additional 5 K , then fault F30036 is triggered. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - has the fan failed? Check the direction of rotation. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A05004 (N) | Power unit: Rectifier overtemperature |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K , then fault F30037 is triggered. |
| Remedy: | Check the following: <br> - is the ambient temperature within the defined limit values? <br> - have the load conditions and the load duty cycle been appropriately dimensioned? <br> - has the fan failed? Check the direction of rotation. <br> - has a phase of the line supply failed? <br> - is an arm of the supply (incoming) rectifier defective? |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A05005 | Cooling unit: Cooling medium flow rate too low |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Cooling unit: Alarm - flow rate has fallen below the alarm value |
| Remedy: | Check the feedback signals and parameter assignment (p0260 ... p0267). Check the coolant feed. |
| A05006 (N) | Power unit: Overtemperature thermal model |
| Message value: | - |
| Drive object: | A_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only). <br> Depending on p0290, an appropriate overload response is initiated. <br> See also: r0037 |
| Remedy: | Not necessary. <br> The alarm disappears automatically once the limit value is undershot. <br> Note: <br> If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024. See also: p0290 (Power unit overload response) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| N05007 (A) | Power unit: Overtemperature thermal model (chassis PU) |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (chassis power units only). <br> Depending on p0290, an appropriate overload response is initiated. <br> See also: r0037, r0293 (Power unit alarm threshold model temperature) |
| Remedy: | Not necessary. <br> The alarm disappears automatically once the limit value is undershot. See also: p0290 (Power unit overload response) |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F05050 | Parallel circuit: Pulse enable in spite of pulse inhibit |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A power unit signals that the pulses are enabled although the pulses are inhibited. Fault value (r0949, interpret decimal): Number of the power unit involved. |
| Remedy: | The power unit is defective and must be replaced. |
| F05051 | Parallel circuit: Power unit pulse enable missing |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For one or several power units, the pulses were not able to be enabled. Fault value (r0949, interpret decimal): <br> Number of the power unit involved. |
| Remedy: | - acknowledge power unit faults that are still present. <br> - inhibit the pulses of the power unit involved (p7001). |
| A05052 (F) | Parallel circuit: Illegal current dissymmetry |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010. Alarm value (r2124, interpret decimal): <br> 1: Phase U. <br> 2: Phase V. <br> 3: Phase W. |
| Remedy: | - inhibit the pulses of the faulted power unit (p7001). <br> - check the connecting cables. Loose contacts can cause current spikes. <br> - the motor reactors are non-symmetrical or faulty and must be replaced. <br> - the CTs must be calibrated or replaced. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |


| A05053 (F) | Parallel circuit: Inadmissible DC link voltage dissymmetry |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011. |
| Remedy: | - inhibit the pulses of the faulted power unit (p7001). <br> - check the DC link connecting cables. <br> - the DC link voltage measurement is incorrect and must be calibrated or renewed. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| A05054 | Parallel circuit: Power unit de-activated |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the drive object involved, fewer power units connected in parallel are active than exist in the target topology. Operation is only possible at reduced power (power derating). |
| Remedy: | Re-activate the de-activated power units if required. <br> See also: p0125 (Activate/de-activate power unit components), p0895 (Activate/de-activate power unit components), p0897 (Parking axis selection) |
| F05055 | Parallel connection: Power units with illegal code numbers |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The code numbers of the power units are not permissible. <br> For parallel circuit configurations, only power units with identical power unit data may be used. Possible causes: <br> - The code numbers of the power units do not match. <br> For booksize drive units, the following additionally applies: <br> - a parallel connection is not possible for the power units being used. <br> - there are too many power units being used in the parallel connection. <br> Fault value (r0949, interpret decimal): <br> Parameter in which the inadmissible power unit code number was detected. |
| Remedy: | - Use power units with the same code number. <br> For booksize drive units, the following additionally applies: <br> - use power units which are permitted for a parallel connection. <br> - reduce the number of power units being used in the parallel connection. |
| F05055 | Parallel connection: Power units with illegal code numbers |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The code numbers of the power units do not match. <br> Fault value (r0949, interpret decimal): <br> Parameter in which the first different power unit code number was detected. |
| Remedy: | Use power units with the same code number. For parallel circuit configurations, only power units with identical power unit data may be used. |


| F05056 | Parallel circuit: Power unit EPROM versions differ |
| :---: | :---: |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The EEPROM versions of the power units do not match. <br> Fault value (r0949, interpret decimal): <br> Parameter in which the first different version number was detected. |
| Remedy: | Use power units with the same EPROM version. <br> For parallel circuit configurations, only power units with identical EEPROM versions may be used. |
| F05057 | Parallel circuit: Power unit firmware versions differ |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The firmware versions of the power units connected in parallel do not match. <br> Fault value (r0949, interpret decimal): <br> Parameter in which the first different version number was detected. |
| Remedy: | Use power units with the same firmware version. <br> For parallel circuit configurations, only power units with identical firmware versions may be used. |
| F05058 | Parallel circuit: VSM EEPROM versions differ |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The EEPROM versions of the Voltage Sensing Modules (VSM) do not match. Fault value (r0949, interpret decimal): <br> Parameter in which the first different version number was detected. |
| Remedy: | For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical EEPROM versions may be used. |
| F05059 | Parallel circuit: VSM firmware versions differ |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The firmware versions of the Voltage Sensing Module (VSM) do not match. <br> Fault value (r0949, interpret decimal): <br> Parameter in which the first different version number was detected. |
| Remedy: | For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used. |
| F05060 | Parallel circuit: Power unit firmware version does not match |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Firmware from version V02.30.01.00 is required when connecting the power units in parallel. |
| Remedy: | Update the firmware of the power units (at least V02.30.01.00). |


| F05061 | Infeed, number of VSM |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct. <br> For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration. <br> For S_Infeed, the active drive object, must be assigned at least one active VSM. <br> Fault value (r0949, interpret decimal): <br> Number of VSMs that are currently assigned to the drive object. |
| Remedy: | Adapts the number of active Voltage Sensing Modules (VSM). |
| F05064 | Parallel connection: Pulse synchronization error |
| Message value: | - Pall |
| Drive object: | A_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (OFF1) <br> Vector: OFF2 (OFF1, OFF3) |
| Acknowledge: | POWER ON (IMMEDIATELY) |
| Cause: | The pulse synchronization of at least one of the power units connected in parallel is incorrect. |
| Remedy: | Restart the drive system. |
| F06000 | Infeed: Precharging monitoring time expired |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | After the line contactor closes the power unit does not signal the READY state within the monitoring time (p0857). The end of the DC link pre-charging was not able to be completed for one of the following reasons: <br> 1) There is no line supply voltage connected. <br> 2) The line contactor/line side switch has not been closed. <br> 3) The line supply voltage is too low. <br> 4) Line supply voltage incorrectly set ( p 0210 ). <br> 5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit. <br> 6) The pre-charging resistors are overheated as the DC link capacitance is too high. <br> 7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link. <br> 8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module. <br> 9) The DC link has either a ground fault or a short-circuit. <br> 10) The pre-charging circuit is possibly defective (only for chassis units). <br> See also: p0210 (Drive unit line supply voltage), p0857 (Power unit monitoring time) |
| Remedy: | In general: <br> - check the line supply voltage at the connecting terminals. <br> - check the line supply voltage setting ( p 0210 ). <br> - check the monitoring time and, if required, increase ( p 0857 ). <br> - where relevant, observe additional power unit messages/signals (e.g. F30027). <br> - the following applies to booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply. <br> $\operatorname{Re} 5)$ : <br> - carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual). <br> $\operatorname{Re} 6$ ): <br> - check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual) <br> $\operatorname{Re} 7$ ): <br> - interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link <br> $\operatorname{Re} 8$ ): <br> - check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge. |

Re 9):

- check the DC link for ground faults or short circuits.

| F06010 | Infeed: Power unit EP 24 V missing in operation |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | In operation, the pulse enable via terminal EP at the Line Module (X21.3, X21.4) was withdrawn. <br>  <br>  <br>  <br> Nete: <br> EP: Enable Pulses (pulse enable) <br>  <br>  <br> - do not open the line side switch in operation - only when the pulses are inhibited. <br> - check the wiring of terminal EP (X21.3, X21.4) at the Line Module to exclude any poor contacts. |


| F06050 | Infeed: Smart Mode not supported |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The power unit does not support the Smart Mode. |
| Remedy: | - set the suitable sampling time $250 \mu \mathrm{~s}<=\mathrm{p} 0115[0]<=400 \mu \mathrm{~s}$ (e.g. by setting p0112 and p0115 to the factory setting). |
|  | - upgrade the power unit software and/or hardware for the Smart Mode. The availability of the Smart Mode function is displayed in $\mathrm{r0192}$. |
|  | - for A_INF the following applies: De-activate the Smart Mode with $\mathrm{p} 3400.0=0$ and activate the voltage control with $\mathrm{p} 3400.3=1$. For booksize power units, it must be noted that for a supply voltage p0210>415 V only the Smart Mode is possible in the pre-setting. If DC link voltages above 660 V are permissible in the application, then voltage-controlled operation can be activated with p0280, p0210, p3400 and p3510. The information regarding p0210 should be carefully noted. |
|  | See also: r0192 (Power unit firmware properties) |

F06052 Infeed: Filter temperature evaluation not supported
Message value:

| Drive object: | A_INF, S_INF |
| :--- | :--- |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit does not support filter temperature evaluation. |
|  | This feature (r0192.11) is required when an Active Interface Module is used as a line filter (p0220 = $41 \ldots 45$ ) |
| Remedy: | Upgrade the firmware for the power unit to a later version. <br>  |
|  | See also: r0192 (Power unit firmware properties), p0220 (Infeed line filter type) |

F06100 Infeed: Shutdown due to line supply undervoltage condition

Message value: \%1
Drive object: A_INF, B_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: $\quad$ The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283).
Fault condition: Vrms < p0283 * p0210
Fault value (r0949, floating point):
Actual steady-state line supply voltage.
See also: p0283 (Line supply undervoltage, shutdown (trip) threshold)
Remedy:

- check the line supply.
- check the line supply voltage (p0210).
- check the threshold value (p0283).

| A06105 (F) | Infeed: Line supply undervoltage |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p0282). |
|  | Alarm condition: Vrms < p0282 * p0210 |


|  | Bit 8: Smart Mode without VSM (p3400.5 = 0): Line angle deviation <br> Bit 9: Smart Mode: DC link voltage dip <br> Bit 10: Smart Mode: Line currents not symmetrical <br> Bit 11: Smart Mode: Line supply voltage detection fault <br> Bit 14: Recharging current fault |
| :---: | :---: |
| Remedy: | Generally, the following applies when an alarm message is output: <br> - check the line supply and fuses. <br> - check the line supply quality and system fault level. <br> - check the load. <br> Dependent on the alarm value in r2124, the following applies: <br> Bit $0=1$ : Line fault occurred or poor/incorrect controller setting. For poor line quality or frequent line supply changeover operations, when required, limit value p3463 can be increased until the alarm value no longer occurs. <br> Bit $2=1$ : Line fault occurred or poor/incorrect controller setting. - check the controller setting and load. <br> Bit $3=1$ : Line fault occurred. For poor line quality or frequent line changeover operations, when required, limit values p0284 and p0285 can be increased until the alarm value no longer occurs. <br> Bit 4 = 1: Line interrupted or line overvoltage has occurred. <br> Bit $5=1$ : Line interrupted or line undervoltage has occurred. <br> Bit $7=1$ : Peak current trip due to line fault or overload. Check the load. <br> Bit $8=1$ : Line fault occurred. <br> Bit $9=1$ : Line undervoltage or overload. Check the load. <br> Bit $10=1$ : Line supply interrupted in at least one line phase. Check the fuses. <br> Bit 11 = 1: Fault in at least one line phase. Check the fuses. <br> Bit 14 = 1: Supply/infeed overload or fault in at least one line phase. Check the load. Check the line supply and fuses. <br> See also: r3405, p3463 (Infeed, line angle change, phase failure detection) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| F06207 (N, A) | Infeed: Line currents not symmetrical |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Asymmetry of the currents in the line phase too high. The most probable cause is failure of a line phase. |
| Remedy: | - check the line supply and fuses. <br> - check the connection and size (rating) of the line reactor. <br> - check the previous alarm A06205 and the alarm value. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F06210 | Infeed: Summation current too high |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The smoothed total of the phase currents $(i 1+i 2+i 3)$ is greater than $4 \%$ of the maximum power unit current (r0209). Possible causes: <br> - the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter! <br> - the zero point calibration of the current measurement was not carried out (p3491, A06602). <br> - defective current measurement in the power unit. <br> Fault value (r0949, floating point): <br> Smoothed total of the phase currents. |
| Remedy: | - check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove. <br> - increase the monitoring time of the current offset measurement (p3491). <br> - replace the power unit if necessary. |


| F06211 | Infeed: Summation current impermissibly high |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The smoothed sum of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is impermissibly high. The summed current has exceeded the parameterized threshold for the ground fault monitoring (p0287). <br> Possible causes: <br> - there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter! <br> - the zero point calibration of the current measurement was not carried out (p3491, A06602). <br> - the current measurement in the power unit is defective. <br> Fault value (r0949, floating point): <br> Smoothed total of the phase currents. |
| Remedy: | - check the line supply for ground faults and remove any that are present. <br> - check the set threshold for the ground fault monitoring (p0287). <br> - if required, replace the power unit. |
| F06211 | Infeed: Summation current impermissibly high |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The smoothed sum of the phase currents ( $i 1+i 2+i 3$ ) is impermissibly high. The summed current has exceeded the parameterized threshold for the ground fault monitoring (p0287). <br> Possible causes: <br> - there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, reactor, filter or motor! <br> - the current measurement in the power unit is defective. <br> Fault value (r0949, floating point): <br> Smoothed total of the phase currents. |
| Remedy: | - check the line supply for ground faults and remove any that are present. <br> - check the set threshold for the ground fault monitoring (p0287). <br> - if required, replace the power unit. |
| A06215 (F) | Infeed: Summation current too high |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The smoothed total of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is greater than $3 \%$ of the maximum power unit current ( r 0209 ). Possible causes: <br> - the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter! <br> - the zero point calibration of the current measurement was not carried out (p3491, A06602). <br> - defective current measurement in the power unit. <br> Alarm value (r2124, floating point): <br> Smoothed total of the phase currents. |
| Remedy: | - check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove. <br> - increase the monitoring time of the current offset measurement (p3491). <br> - replace the power unit if necessary. |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A06250 (F, N) | Infeed: Defective capacitor(s) in at least one phase of line filter |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A change in the line filter capacitance was detected in at least one line phase. <br> The voltages and phase currents of the line filter, measured using a Voltage Sensing Module (VSM), indicate a deviation of the filter capacitances from the value parameterized in p0221. <br> A change or a defect of the line filter capacitors results in a shift of the resonant frequencies and can result in severe damage to the drive system. <br> Alarm value (r2124, floating point): <br> The calculated present capacitance in $\mu \mathrm{F}$ (rounded-off to an integer number). <br> The 1 st decimal point specifies the number of the phase $(1,2,3)$ where the capacitance deviates from the specified value. |
| Remedy: | - check the parameterized value of the filter capacitance (p0221). <br> - check the correct wiring of the Voltage Sensing Module (VSM): <br> Differential voltages u12 and u23 must be present at the $100 \mathrm{~V} / 690 \mathrm{~V}$ inputs of the VSM; the phase currents of the line filter must be connected to the 10 V inputs through a current - voltage converter. <br> - check the alarm limits for the permissible filter capacitance deviation (p3676). <br> - check the scaling of the line supply voltage measurement using the VSM (p3660). <br> - check the scaling of the filter current measurement using the VSM (p3670). <br> - check the line filter capacitors and if required, replace the line filter. <br> See also: p0221 (Infeed filter capacitance), p3660 (VSM input line supply voltage, voltage scaler), p3670 (VSM 10 V input CT gain), p3676 (VSM line filter capacitance alarm threshold) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A06260 | Infeed: Temperature in the line filter too high |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature monitoring in the line filter has responded. <br> If the temperature remains too high during the complete monitoring time, this results in fault F06261. Note: <br> The temperature monitoring is only available for an Active Interface Module. |
| Remedy: | - check whether the line filter type set in $00220[0]$ matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0]. - temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed. <br> - reduce the ambient temperature of the line filter. <br> - reduce the load on the infeed and the filter module. <br> - check the magnitude of the line supply voltage. <br> - the internal fan of the filter module is defective. Replace the fan if necessary. <br> - defective temperature switch of the filter module. Replace the filter module if necessary. |
| F06261 | Infeed: Temperature in the line filter permanently too high |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | After the temperature monitoring responded, the temperature in the line filter was permanently exceeded. Note: <br> The temperature monitoring is only available for an Active Interface Module (AIM). | line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0]. - temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the temperature switch in the line filter is correctly and reliably connected to input X21 of the infeed.

- reduce the ambient temperature of the line filter.
- reduce the load on the infeed and the line filter.
- check the magnitude of the line supply voltage.
- the internal fan of the line filter is defective. Replace the fan if necessary.
- defective temperature switch of the line filter. Replace the line filter if necessary.

| F06262 | Infeed: Temperature switch in the line filter open when powering up |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When powering up the infeed, the temperature in the line filter is too high. Powering up is prevented. <br> Remedy: |
|  | - check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the <br> line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0]. <br> - temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the temperature switch in the <br> line filter is correctly and reliably connected to input X21 of the infeed. <br> - the filter temperature is too high. Allow the system to cool down. <br> - the internal fan of the line filter is defective. Replace the fan if necessary. <br> - defective temperature switch of the line filter. Replace the line filter if necessary. |

F06300 Infeed: Line voltage too high at power on

Message value: \%1
Drive object: A_INF, S_INF
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: $\quad$ The RMS line supply voltage Vrms was so high when powering up that controlled operation is not possible without exceeding the permissible maximum voltage in the DC link (p0280).
Fault condition: Vrms * $1.5>\mathrm{p} 0280$.
Fault value (r0949, floating point):
Lowest possible controlled DC link voltage for the line supply voltage presently connected.
See also: p0280 (DC link voltage maximum steady-state)
Remedy:

- check the line supply voltage
- check the maximum DC link voltage and if required, increase (p0280).
- check the line supply voltage and compare with the actual line supply voltage ( p 0210 ).
- check whether the power unit is dimensioned for the line supply voltage actually being used.

See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state)

| A06301 (F) | Infeed: Line supply overvoltage |
| :--- | :--- |
| Message value: | Line supply voltage: \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281). |
|  | Alarm condition: Vrms > p0281 * p0210. <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Alarm value (r2124, floating point): <br> See also: p0281 (Line supply overvoltage, alarm threshold) <br> - check the line supply. |
|  | - check the line supply voltage (p0210). |
|  | - check the alarm threshold (p0281). |
| Remedy: | See also: p0210 (Drive unit line supply voltage), p0281 (Line supply overvoltage, alarm threshold) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| F06310 (A) | Infeed: Supply voltage (p0210) incorrectly parameterized |
| :---: | :---: |
| Message value: | Line supply voltage: \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | After pre-charging was completed, the line supply voltage Vrms was calculated using the measured DC link voltage. <br> This voltage Vrms is not within the tolerance range of the supply voltage. <br> The following applies for the tolerance range: 85 \% * p0210 < Vrms < 110 \% * p0210 <br> Fault value (r0949, floating point): <br> Line supply voltage Vrms present. <br> See also: p0210 (Drive unit line supply voltage) |
| Remedy: | - check the parameterized supply voltage and if required change (p0210). <br> - check the line supply voltage. <br> See also: p0210 (Drive unit line supply voltage) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F06310 (A) | Supply voltage (p0210) incorrectly parameterized |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been completed. <br> The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210 <br> Note: <br> The fault can only be acknowledged when the drive is powered down. <br> See also: p0210 (Drive unit line supply voltage) |
| Remedy: | - check the parameterized supply voltage and if required change (p0210). <br> - check the line supply voltage. <br> See also: p0210 (Drive unit line supply voltage) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F06311 | Infeed: Supply voltage (p0210) incorrect |
| Message value: | Line supply voltage: \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The line voltage nominal value indicated in p0210 is outside the nominal voltage range of the power unit. After pre-charging was completed, the actual line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms does not lie within the extended tolerance range of the supply voltage set in p0210. <br> The following applies for the extended tolerance range: 75 \% * p0210 < Vrms < 120 \% *p0210 <br> Alarm value (r2124, floating point): <br> Line supply voltage Vrms present. <br> See also: p0210 (Drive unit line supply voltage) |
| Remedy: | - check the parameterized supply voltage and if required change (p0210). <br> - check the line supply voltage. <br> See also: p0210 (Drive unit line supply voltage) |
| F06320 | Master/slave: 4-channel multiplexer control not valid |
| Message value: | \%1 |
| Drive object: | A_INF |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Values $0,1,2$, and 3 are valid to control the 4 -channel multiplexer via connector input p3572. In this case, an invalid value was identified. The control remains effective with the previous value. |


|  | Fault value (r0949, interpret decimal): |
| :--- | :--- |
|  | Invalid value to control the multiplexer. |
| See also: p3572 (Master/slave active current setpoint, multiplexer selection) |  |
| - check the interconnection to control the multiplexer (CI: p3572). |  |
| Remedy: | - check the signal source signal value of the BICO interconnection. |
|  | See also: p3572 (Master/slave active current setpoint, multiplexer selection) |

\(\left.\begin{array}{ll} \& Alarm value (r2124, floating point): <br>
\& Actual line frequency determined. <br>
\& See also: p0285 (Line supply frequency undershot, alarm threshold) <br>
Remedy: \& - check the parameterized line frequency and if required change (p0211). <br>
\& - check the alarm threshold (p0285). <br>
\& - check the line supply. <br>
\& - check the line supply quality. <br>

See also: p0211 (Rated line freq), p0285 (Line supply frequency undershot, alarm threshold)\end{array}\right]\)|  | NONE (OFF1, OFF2) |
| :--- | :--- |
| Reaction upon F: |  |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

Note:
In the case of chassis power units, the availability of correct VSM voltage measured values is imperative for line synchronization
See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold), p0285 (Line supply frequency undershot, alarm threshold)

| A06502 (F, N) | Infeed: Unable to achieve line synchronization in transformer magnetization |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Line synchronization is not possible within the monitoring time (p5481[2]). |
| Remedy: | - check the setting of the threshold value (p5485). <br> - check the setting of the maximum time (p5481[2]) <br> - check the line supply quality. <br> See also: p5481 (Transformer magnetization times), p5485 (Transf magnetization voltage thresholds) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

F06503 Infeed: Line black start unsuccessful
Message value: \%1
Drive object: A_INF, S_INF
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The line black start was unsuccessful. Fault value (r0949, interpret decimal): State of the black start (corresponds to r5482).
Remedy: - Check the conditions of a line black start.

- Check the parameterization of the line black start.

| F06504 | Infeed: Island line supply synchronization unsuccessful |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The island line supply synchronization was unsuccessful <br>  <br>  <br> The alarm value (r2124, interpret decimal) specifies in which state (corresponds to 5 r5482) the island line supply syn- <br> chronization has remained. |
| Remedy: | - Check the conditions of an island line supply synchronization. |
|  | - Check the parameterization of the island line supply synchronization. |


| A06601 (F) | Infeed: Current offset measurement interrupted |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Defective current measurement or a DC current is present during the offset measurement. |
|  | Alarm value (r2124, interpret decimal):  <br>  1: Excessively high phase current has occurred during the current offset calibration. <br>  2: The measured current offset is greater than the $3 \%$ of the maximum permissible converter current (e.g. due to a <br> ground fault in the DC link).  |


| Remedy: | Re alarm value $=1$ : <br> - possible counter-measure if there is no line contactor: Power up an adequately long time before OFF1 = 1 . <br> Re alarm value $=2$ : <br> - defective current measurement or a DC current is present during the offset measurement. <br> - check the DC link for a ground fault. |
| :---: | :---: |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| A06602 (F) | Infeed: Current offset measurement not possible |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | After an OFF1 = 1 no valid current offset measurement was able to be made within the monitoring time (p3491) before closing the line contactor. The current offset is set to 0 . <br> See also: p3491 (Infeed l-offset measurement monitoring time) |
| Remedy: | - check the DC link for a ground fault. A ground fault can destroy parts and components! <br> - Check the monitoring time setting and if required increase (p3491). At least 100 ms is required for a valid measurement (p3491 > 100 ms ). <br> Notice: <br> If there is no valid measurement, then under certain circumstances the quality of the DC link control will be reduced. <br> See also: p3491 (Infeed I-offset measurement monitoring time) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| F06700 (A) | Infeed: Switch line contactor for load condition |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For an ON command, the infeed line contactor should be switched under load. |
| Remedy: | - do not load the DC link if the infeed has not issued an operating signal (r0863.0 = 1) . <br> - after the infeed has been powered down, all power units connected to the DC link should be powered down. To realize this, the operating signal of the infeed (r0863.0) must be suitably interconnected. |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| A06800 (F) | Infeed: Maximum steady-state DC link voltage reached |
| Message value: | - |
| Drive object: | A_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage setpoint has reached the maximum steady-state voltage parameterized in p0280. The DC link voltage is increased by the modulation depth reserve controller for the following reasons: - modulation depth reserve is too low (p3480). <br> - line supply voltage is too high. <br> - supply voltage ( p 0210 ) parameterized to be too low. <br> - excessively high setpoint for the reactive line current. |
| Remedy: | - check the line supply voltage setting (p0210). <br> - check the line supply for an overvoltage condition. <br> - reduce the modulation depth reserve (p3480). <br> - reduce the reactive current setpoint. <br> See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state), p3480 (Infeed modulation depth limit) |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A06810 (F) | Infeed: DC link voltage alarm threshold |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In operation, the DC link voltage has dropped to below the alarm threshold. The alarm threshold is obtained from the <br> sum of p0279 and r0296. <br> Possible causes include: |
|  | - line supply voltage dip or another line supply fault. |
|  | - overload of the infeed. |


| Remedy: | - check the line supply. <br> - Check the parameterization of the line monitoring (p5540-p5559). <br> See also: p5540 (Line monitoring configuration), r5542 (Line monitoring status word) |
| :--- | :--- |
| F06855 | Infeed: Line filter monitor responded |
| Message value: | \%1 |
| Drive object: | A_INF |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A threshold value parameterized in p3678 has been exceeded or undershot in the line filter. |
|  | Fault value (r0949, interpret decimal): |
|  | 0: Voltage threshold, alpha/beta voltage monitoring fallen below (p3678[0]). |
|  | 1: Current threshold value exceeded (p3678[1]). |
|  | 2: Voltage threshold value of the phase voltage monitoring fallen below (p3678[0]). |
|  | See also: p3678 (Filter monitoring threshold values), p3679 (Transformer filter monitoring times) |
|  | - check the parameterization of the threshold values for filter monitoring (p3678]). |
|  | - check filter. |
|  | Re fault value $=0$ : |
|  | - check parameterization of the smoothing time for voltage monitoring (3679[0]). |
|  | Re fault value = 1: |
|  | - check parameterization of the minimum time for voltage monitoring (3679[1]). |


| A06860 | Infeed: Function module activation not possible |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Function module activation is not possible. The power unit used does not have the "gating unit with current limitation <br> control" feature (r0192.19). |
|  | The affected function module is identified in fault value r0949 (the value of r0949 corresponds to the bit of parameter <br> p0108). <br> r0949 = "Dynamic grid support" function module <br> r0949 = 12: "Line droop control" function module |
|  | See also: r0192 (Power unit firmware properties), p5401 (Line droop control activation) <br> Remedy: |
|  | - check whether the power unit used has the "gating unit with current limitation control" feature (p0192.19). <br>  |
|  | - If required, replace the power unit being used by a power unit that has the "gating unit with current limitation control" |
| feature. |  |


| A06900 (F) | Braking Module: Fault (1 -> 0) |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Braking Module signals a fault ( 1 -> 0 ) via X21.4 ("booksize" format) or X21.5 ("chassis" format). <br> This signal is wired to a system digital input and correspondingly interconnected using binector input p3866[0...7]. <br> Possible causes: <br> - Wiring of the signal or BICO interconnection of the signal source incorrect. <br> - Overtemperature <br> - Electronics power supply missing. <br> - Ground fault/short-circuit. <br> - Internal component fault. <br> See also: p3866 (Braking Module fault) |
| Remedy: | - check binector input p3866[0...7] and the wiring from terminal X21.4 ("booksize" format) or X21.5 ("chassis" format). <br> - reduce the number of braking operations. <br> - Check the 24 V power supply of the component. <br> - Check for a ground fault or short circuit. <br> - Replace the component if necessary. |
| Reaction upon F: | NONE (OFF2) |
| Acknowl. upon F: | IMMEDIATELY |


| A06901 | Braking Module: Pre-alarm I2t shutdown |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Braking Module "Booksize" format signals "Pre-alarm I2t shutdown" via terminal X21.3. <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> This signal is wired to a system digital input and correspondingly interconnected using binector input p3865[0...7]. <br> This function is not supported for the "chassis" format. |
| Remedy: | - reduce the number of braking operations. <br> - check binector input p3865[0...7] and the wiring from terminal X21.3 of the particular Braking Module. |
|  |  |


| A06904 (N) | Braking Module internal is inhibited |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | B_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal Braking Module was inhibited via binector input p3680 $=1$ signal. <br>  <br>  <br> In the inhibited state, energy cannot be dissipated using the braking resistor. <br> See also: p3680 (Braking Module internal inhibit) |
| Remedy: | Release the internal Braking Module (BI: p3680 = 0 signal). |
| Reaction upon N: | NONE |
| Acknowl. upon $\mathrm{N}:$ | NONE |


| A06905 | Braking Module internal I2t shutdown alarm |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | B_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal Braking Module outputs an alarm due to the high I2t value. <br>  <br> Note: of the maximum switch-on duration of the braking resistor has been reached. <br> This message is also displayed via BO: p3685. <br> See also: r3685 (Digital Braking Module: Pre-alarm I2t shutdown) <br> Remedy:$\quad$Reduce the number of braking operations. |

F06906 (A) Braking Module internal fault

Message value: \%1
Drive object: B_INF
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause: The internal Braking Module outputs a fault due to overcurrent or an excessively high I2t value and is therefore inhibited. Note: This message is also displayed via BO: p3686. Fault value (r0949, interpret bitwise binary): Bit $0=1$ : 12 t exceeded Bit 1 = 1 : overcurrent See also: r3686 (Digital Braking Module Fault)
Remedy: Reduce the number of braking operations.
Reaction upon A: NONE
Acknowl. upon A: NONE

| F06907 | Braking Module internal overtemperature |
| :--- | :--- |
| Message value: | - |
| Drive object: | B_INF |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature sensor connected to the braking resistor signals an overtemperature. <br> The Braking Module is still active. If the overtemperature persists for more than 60 s, fault F06908 is output, and the <br> braking module is switched off. <br> See also: r3687 (Digital Braking Module pre-alarm overtemperature) |
|  | - reduce the temperature at the sensor. <br> - check the temperature sensor connection. |



|  | PTC or bimetallic NC contact: |
| :--- | :--- |
|  | The response threshold of 1650 Ohm was exceeded or the NC contact opened and the timer (p0606) has expired. |
| The response parameterized in p0610 becomes active. |  |
|  | Possible causes: |
|  | - Motor is overloaded |
|  | - motor ambient temperature too high. |
|  | - PTC / bimetallic NC contact: Wire breakage or sensor not connected. |
|  | Fault value (r0949, interpret decimal): |
| 200: The motor temperature model 1 (I2t) signals an overtemperature (p0612.0 = 1, p0611 > 0) |  |


| F07013 | Drive: Motor temperature model configuration fault |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred in the configuration of the motor temperature model. <br> Fault value (r0949, interpret decimal): <br> 300: <br> Motor temperature model 3: The sensor does not supply the necessary sensor temperature for the thermal model. <br> 301: <br> Motor temperature model 3: The sensor type is unknown. <br> 302: <br> Motor temperature model 3: At least one other temperature model was simultaneously activated. <br> 303: <br> Motor temperature model unknown in the actual firmware version. <br> See also: p0300, p0301, p0404, p0612 |
| Remedy: | - check the encoder type. <br> - check the motor type. <br> - check activation of the motor temperature model (p0612). <br> - check the parameters of the motor temperature model (p5350 and following). <br> See also: p0300, p0301, p0404, p0612 |
| A07014 (N) | Drive: Motor temperature model configuration alarm |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A fault has occurred in the configuration of the motor temperature model 3. <br> Alarm value (r2124, interpret decimal): <br> 300: <br> Motor temperature model 3: Threshold value for alarm (p5390) is higher than the threshold value for fault ( p 5391 ). |
| Remedy: | - check and correct the threshold values limits (p5390, p5391). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07015 | Drive: Motor temperature sensor alarm |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error was detected when evaluating the temperature sensor set in p0600 and p0601. <br> With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015. <br> Possible causes: <br> - wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm). <br> - measured resistance too low (PTC: $\mathrm{R}<20 \mathrm{Ohm}, \mathrm{KTY}: \mathrm{R}<50 \mathrm{Ohm}$ ). <br> Alarm value ( r 2124 , interpret decimal): <br> - if SME/TM120 is selected (p0601 = 10, 11), <br> this is the number of the temperature channel leading to the message. |
| Remedy: | - make sure that the sensor is connected correctly. <br> - check the parameterization (p0600, p0601). <br> See also: r0035, p0600, p0601, p0607 |


| F07016 | Drive: Motor temperature sensor fault |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error was detected when evaluating the temperature sensor set in p0600 and p0601. <br> Possible causes: <br> - wire breakage or sensor not connected (KTY: R > 1630 Ohm). <br> - measured resistance too low (PTC: R < 20 Ohm, KTY: $R<50$ Ohm). <br> Note: <br> If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then <br> fault F07016 is output; however, at the earliest, 50 ms after alarm A07015. <br> Fault value (r0949, interpret decimal): <br> - if SME/TM120 is selected ( $\mathrm{p} 0601=10,11$ ), <br> this is the number of the temperature channel leading to the message. <br> See also: p0607 (Temperature sensor fault timer) |
| Remedy: | - make sure that the sensor is connected correctly. <br> - check the parameterization (p0600, p0601). <br> - induction motors: De-activate temperature sensor fault (p0607 $=0$ ). <br> See also: r0035, p0600, p0601, p0607 |
| A07017 | Additional temperature alarm threshold exceeded |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The additional temperature has exceeded the alarm threshold in p4102[0] <br> The time in p4103 is also started with this alarm. Fault F07018 is output if the alarm is still active after this time has expired. <br> - Overtemperature (r4105 > p4102[0]). <br> See also: p4100, p4102, p4103, r4105 |
| Remedy: | - make sure that the sensor is connected correctly. <br> - Check parameterization (p4100). |
| F07018 | Additional temperature fault threshold exceeded |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 (ENCODER, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The additional temperature has exceeded the fault threshold in p4102[1] <br> Fault value (r0949, interpret decimal): <br> 0 : Overtemperature ( $\mathrm{r} 4105>\mathrm{p} 4102[1]$ or $\mathrm{r} 4105>\mathrm{p} 4102$ [0] for longer than the time in p 4103 ). <br> 1: Wire breakage or sensor not connected (KTY: $R>1630$ Ohm). Measured resistance too low (KTY: $R<50$ Ohm). <br> See also: p4100, p4102, p4103, r4105 |
| Remedy: | - make sure that the sensor is connected correctly. <br> - Check parameterization (p4100). |
| F07080 | Drive: Incorrect control parameter |
| Message value: | Parameter: \%1 |
| Drive object: | A INF, B INF, CU LINK, ENC, HUB, S INF, SERVO, SERVO AC, SERVO I AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 $=$ L_spread $=0$ ). <br> Fault value (r0949, interpret decimal): <br> The fault value includes the parameter number involved. <br> The following parameter numbers only occur as fault values for vector drives: <br> p0310, for synchronous motors: p0341, p0344, p0350, p0357 |


|  | The following parameter numbers do not occur as fault values for synchronous motors: p0354, p0358, p0360 <br> See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0404, p0408, p0640, p1082, r1082, p1300 |
| :---: | :---: |
| Remedy: | Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit >0). <br> See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082, r1082 |
| F07082 | Macro: Execution not possible |
| Message value: | Fault cause: \%1, supplementary information: \%2, preliminary parameter number: \%3 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The macro cannot be executed. <br> Fault value (r0949, interpret hexadecimal): ccccbbaa hex: <br> cccc $=$ preliminary parameter number, $b b=$ supplementary information, $a \mathrm{a}=$ fault cause <br> Fault causes for the trigger parameter itself: <br> 19: Called file is not valid for the trigger parameter. <br> 20: Called file is not valid for parameter 15. <br> 21: Called file is not valid for parameter 700. <br> 22: Called file is not valid for parameter 1000. <br> 23: Called file is not valid for parameter 1500. <br> 24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16). <br> Fault causes for the parameters to be set: <br> 25: Error level has an undefined value. <br> 26: Mode has an undefined value. <br> 27: A value was entered as string in the tag value that is not "DEFAULT". <br> 31: Entered drive object type unknown. <br> 32: A device was not able to be found for the determined drive object number. <br> 34: A trigger parameter was recursively called. <br> 35: It is not permissible to write to the parameter via macro. <br> 36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect. <br> 37: Source parameter for a BICO interconnection was not able to be determined. <br> 38: An index was set for a non-indexed (or CDS-dependent) parameter. <br> 39: No index was set for an indexed parameter. <br> 41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN. <br> 42: A value not equal to 0 or 1 was set for a BitOperation. <br> 43: Reading the parameter to be changed by the BitOperation was unsuccessful. <br> 51: Factory setting for DEVICE may only be executed on the DEVICE. <br> 61: The setting of a value was unsuccessful. |
| Remedy: | - check the parameter involved. <br> - check the macro file and BICO interconnection. <br> See also: p0015, p0700, p1000, p1500 |
| F07083 | Macro: ACX file not found |
| Message value: | Parameter: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The ACX file (macro) to be executed was not able to be found in the appropriate directory. Fault value (r0949, interpret decimal): <br> Parameter number with which the execution was started. <br> See also: p0015, p0700, p1000, p1500 |
| Remedy: | - check whether the file is saved in the appropriate directory on the memory card. <br> Example: <br> If p0015 is set to 1501 , then the selected ACX file must be located in the following directory: /PMACROS/DEVICE/P15/PM001501.ACX |


| F07084 | Macro: Condition for WaitUntil not fulfilled |
| :---: | :---: |
| Message value: | Parameter: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts. Fault value (r0949, interpret decimal): <br> Parameter number for which the condition was set. |
| Remedy: | Check and correct the conditions for the WaitUntil loop. |
| F07085 | Drive: Open-loop/closed-loop control parameters changed |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Open-loop/closed-loop control parameters have had to be changed for the following reasons: <br> 1. As a result of other parameters, they have exceeded the dynamic limits. <br> 2. They cannot be used due to the fact that the hardware detected not having certain features. <br> Fault value (r0949, interpret decimal): <br> Changed parameter number. <br> 340: <br> The motor and control parameters were automatically calculated ( $\mathrm{p} 0340=1$ ), because the vector control was subsequently activated as configuration (r0108.2). <br> See also: p0640, p1082, r1082, p1300, p1800 |
| Remedy: | Not necessary. <br> It is not necessary to change the parameters as they have already been correctly limited. |
| F07086 | Units changeover: Parameter limit violation due to reference value change |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation. <br> The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting. <br> Possible causes: <br> - the steady-state minimum limit/maximum limit or that defined in the application was violated. <br> Fault value (r0949, parameter): <br> Diagnostics parameter to display the parameters that were not able to be re-calculated. <br> See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004 |
| Remedy: | Check the adapted parameter value and if required correct. <br> See also: r9450 (Reference value change parameter with unsuccessful calculation) |
| F07087 | Drive: Encoderless operation not possible for the selected pulse frequency |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Encoderless operation is not possible for the selected pulse frequency (p1800). <br> Encoderless operation is activated under the following conditions: <br> - the changeover speed for encoderless operation ( p 1404 ) is less than the maximum speed ( p 0322 ). <br> - a control type with encoderless operation has been selected (p1300). <br> - encoder faults of the motor encoder result in a fault response with encoderless operation ( p 0491 ). <br> See also: p0491, p1300, p1404, p1800 |


| Remedy: | Increase the pulse frequency (p1800). <br> Note: <br> In encoderless operation, the pulse frequency must be at least as high as half the current controller clock cycle (1/p0115[0]). |
| :---: | :---: |
| F07088 | Units changeover: Parameter limit violation due to units changeover |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A changeover of units was initiated. This resulted in a violation of a parameter limit Possible causes for the violation of a parameter limit: <br> - When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated. <br> - inaccuracies for the data type "FloatingPoint". <br> In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down. <br> Fault value (r0949, interpret decimal): <br> Diagnostics parameter r9451 to display all parameters whose value had to be adapted. <br> See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Technological unit selection) |
| Remedy: | Check the adapted parameter values and if required correct. See also: r9451 (Units changeover adapted parameters) |
| A07089 | Changing over units: Function module activation is blocked because the units have been changed over |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An attempt was made to activate a function module. This is not permissible if the units have already been changed over. <br> See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units) |
| Remedy: | Restore units that have been changed over to the factory setting. |
| F07090 | Drive: Upper torque limit less than the lower torque limit |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The upper torque limit is lower than the lower torque limit. |
| Remedy: | P 1 must be >= P2 if parameter P1 is connected to p 1522 and parameter P2 to p1523. |
| F07100 | Drive: Sampling times cannot be reset |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115. Fault value (r0949, interpret decimal): <br> Parameter whose setting prevents the sampling times being reset. <br> See also: r0110 (Basic sampling times) |
| Remedy: | - continue to work with the set sampling times. <br> - before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value. <br> See also: r0110 (Basic sampling times) |


| F07110 | Drive: Sampling times and basic clock cycle do not match |
| :---: | :---: |
| Message value: | Parameter: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The parameterized sampling times do not match the basic clock cycle. Fault value (r0949, interpret decimal): <br> The fault value specifies the parameter involved. <br> See also: r0110, r0111, p0115 |
| Remedy: | Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112. <br> Note which basic clock cycle is selected in p0111. <br> The sampling times in p0115 can only be changed manually in the sampling times pre-setting "Expert" (p0112). <br> See also: r0110, r0111, p0112, p0115 |
| A07140 | Drive: Current controller sampling time for spindle does not match |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The parameterized current controller sampling time for the spindle has been set too high. |
| Remedy: | Set the sampling time equal to or less than the value in r5034 (p0112, p0115). See also: p0112, p0115, r5034 |
| A07200 | Drive: Master control ON command present |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The ON/OFF1 command is present (no 0 signal). <br> The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control. |
| Remedy: | Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0 . |
| F07220 (N, A) | Drive: Master control by PLC missing |
| Message value: |  |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2) <br> Vector: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The "master control by PLC" signal was missing in operation. <br> - interconnection of the binector input for "master control by PLC" is incorrect (p0854). <br> - the higher-level control has withdrawn the "master control by PLC" signal. <br> - data transfer via the fieldbus (master/drive) was interrupted. |
| Remedy: | - check the interconnection of the binector input for "master control by PLC" (p0854). <br> - check the "master control by PLC" signal and, if required, switch in. <br> - check the data transfer via the fieldbus (master/drive). <br> Note: <br> If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| F07300 (A) | Drive: Line contactor feedback signal missing |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | - the line contactor was not able to be closed within the time in p0861. <br> - the line contactor was not able to be opened within the time in p0861. <br> - the line contactor dropped out during operation <br> - the line contactor has closed although the drive converter is powered down. |
| Remedy: | - check the setting of p0860. <br> - check the feedback circuit from the line contactor. <br> - increase the monitoring time in p0861. <br> See also: p0860 (Line cont. fdbk sig), p0861 (Line contactor monitoring time) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07311 | Bypass motor switch |
| Message value: | Fault cause: \%1 bin |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault value (r0949, interpret bitwise binary): <br> Bit 1: Switch "Closed" feedback signal missing. <br> Bit 2: Switch "Open" feedback signal missing. <br> Bit 3: Switch feedback signal too slow. <br> After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued. <br> Bit 6: Drive switch feedback signal not consistent with the bypass state. <br> The drive switch is closed when switching-on or when switching-in the motor. <br> See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time) |
| Remedy: | - check the transfer of the feedback signals. <br> - check the switch. |
| F07312 | Bypass LSS: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault value (r0949, interpret bitwise binary): <br> Bit 1: Switch "Closed" feedback signal missing. <br> Bit 2: Switch "Open" feedback signal missing. <br> Bit 3: Switch feedback signal too slow. <br> After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued. <br> Bit 6: Line Side Switch feedback signal not consistent with the bypass state. <br> When switching-on or when switching-in the motor, the line side switch is closed without this having been requested from the bypass. <br> See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time) |
| Remedy: | - check the transfer of the feedback signals. <br> - check the switch. |


| F07320 | Drive: Automatic restart interrupted |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | - The specified number of restart attempts (p1211) has been completely used up because within the monitoring time |
| (p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at each |  |
| new start attempt. |  |
|  | - there is no active ON command. |
|  | - the monitoring time for the power unit has expired (p0857). |
|  | -when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the |
| drive unit is not automatically powered up again. |  |


|  | Fault value (r0949, interpret decimal): |
| :---: | :---: |
|  | $1 \ldots 3$ : The kT estimator is active ( $\mathrm{p} 1780.3=1$ ) without a functioning compensation of the voltage emulation error in the drive converter. This means that the accuracy is severely restricted. |
|  | 1: The drive converter voltage emulation error "final value" is 0 ( p 1952 ). |
|  | 2: The drive converter voltage emulation error "current offset" is 0 (p1953). |
|  | 3: The compensation of the voltage emulation error is disabled ( $\mathrm{p} 1780.8=0$ ). |
|  | 4: The kT estimator ( $\mathrm{p} 1780.3=1$ ), the $\mathrm{kT}(\mathrm{iq})$ characteristic ( $\mathrm{p} 1780.9=1$ ) or the compensation of the voltage emulation error ( $\mathrm{p} 1780.8=1$ ) was activated without activating the function module "extended torque control" (when the function module is activated, the following must apply: r0108.1 = 1). |
| Remedy: | Re fault value $=1,2$ : |
|  | - carry out an identification of the voltage emulation error in the drive converter (p1909.14 = 1, p1910 = 1). |
|  | - set the parameter to compensate the voltage emulation error in the drive converter (p1952, p1953). |
|  | For fault value = 3: |
|  | - enable the compensation of the voltage emulation error in the drive converter (p1780.8 = 1). |
|  | For fault value $=4$ : $\quad$ |
|  | - activate the function module "extended torque control" (r0108.1 = 1) or de-activate the corresponding functions $(p 1780.3=0, p 1780.8=0, p 1780.9=0)$. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07330 | Flying restart: Measured search current too low |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected. |
| Remedy: | Check the motor feeder cables. |
| F07331 | Flying restart: Function not supported |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported: |
|  | Permanent-magnet and separately-excited synchronous motors (PEM, FEM): Operation with U/f characteristic. |
|  | Permanent-magnet synchronous motor (PEM): Encoderless operation without a Voltage Sensing Module (VSM) being connected. |
| Remedy: | - de-activate the "flying restart" function (p1200 = 0). <br> - change the open-loop/closed-loop control mode (p1300). <br> - connect a Voltage Sensing Module (VSM) (voltage measurement). |
| A07350 (F) | Drive: Measuring probe parameterized to a digital output |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output. |
|  | Alarm value (r2124, interpret decimal): |
|  | 8: DI/DO 8 (X122.9/X132.1) |
|  | 9: DI/DO 9 (X122.10/X132.2) |
|  | 10: DI/DO 10 (X122.12/X132.3) |
|  | 11: DI/DO 11 (X122.13/X132.4) |
|  | 12: DI/DO 12 (X132.9) |
|  | 13: DI/DO 13 (X132.10) |
|  | 14: DI/DO 14 (X132.12) |
|  | 15: DI/DO 15 (X132.13) |


|  | To the terminal designation: <br> The first designation is valid for CU320, the second for CU305. |
| :---: | :---: |
| Remedy: | - set the terminal as input (p0728). <br> - de-select the measuring probe (p0488, p0489, p0580). |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |
| A07351 (F) | Drive: Measuring probe parameterized to a digital output |
| Message value: | \%1 |
| Drive object: | SERVO |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output. Alarm value (r2124, interpret decimal): <br> 0: DI/DO 0 distributed (X3.2) <br> 1: DI/DO 1 distributed (X3.4) |
| Remedy: | - set the terminal as input (p4028). <br> - de-select the probe (p0488, p0489). <br> See also: p0488, p0489, p4028 |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |
| A07400 (N) | Drive: DC link voltage maximum controller active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage controller has been activated because of the upper switch-in threshold (r1244). A system deviation can occur between the setpoint and actual speed. <br> See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration) |
| Remedy: | Not necessary. <br> This alarm automatically disappears after the upper threshold has been distinctly undershot. Otherwise, apply the following measures: <br> - use a Braking Module or regenerative feedback unit. <br> - increase the ramp-down times (p1121, p1135). <br> - shut down the Vdc_max controller (p1240 = 0). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07400 (N) | Drive: DC link voltage maximum controller active |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282). <br> The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds. <br> When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value. <br> See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 (Vdc controller or Vdc monitoring configuration (U/f)) |
| Remedy: | If the controller is not to intervene: <br> - increase the ramp-down times. <br> - switch-off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control). <br> If the ramp-down times are not to be changed: <br> - use a chopper or regenerative feedback unit. |


| Reaction upon N : Acknowl. upon N : | NONE NONE |
| :---: | :---: |
| A07401 (N) | Drive: DC link voltage maximum controller de-activated |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled). <br> - the line supply voltage is permanently higher than specified for the power unit. <br> - the motor is permanently in the regenerative mode as a result of a load that is driving the motor. |
| Remedy: | - check whether the input voltage is within the permissible range. <br> - check whether the load duty cycle and load limits are within the permissible limits. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07402 (N) | Drive: DC link voltage minimum controller active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage controller has been activated due to the lower switch-in threshold (r1248). <br> A system deviation can occur between the setpoint and actual speed. <br> A possible cause can be e.g. that the line supply has failed. <br> See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1248 <br> (DC link voltage threshold lower) |
| Remedy: | Not necessary. <br> This alarm automatically disappears after the lower threshold has been distinctly exceeded. Otherwise, apply the following measures: <br> - check the line supply and infeed. <br> - increase the ramp-up times (p1120). <br> - shut down the Vdc_min controller (p1240=0). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A07402 (N) | Drive: DC link voltage minimum controller active |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, |
|  | r1286). |
|  | The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked. <br>  <br>  <br>  <br> See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 <br> (Vdc controller or Vdc monitoring configuration (U/f)) |
| Remedy: | The alarm disappears when power supply returns. |
| Reaction upon N: | NONE |
| Acknowl. upon $\mathrm{N}:$ | NONE |

F07403 (N, A) Drive: Lower DC link voltage threshold reached
Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: $\quad$ The DC link voltage monitoring is active $(p 1240=5,6)$ and the lower DC link voltage threshold ( $p$ 1248) was reached in the "Operation" state.

| Remedy: | - check the line supply voltage. |
| :--- | :--- |
|  | - check the infeed. |
|  | - reduce the lower DC link threshold (p1248). |
|  | - switch out (disable) the DC link voltage monitoring (p1240 = 0) . |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

F07403 (N, A) Drive: Lower DC link voltage threshold reached
Message value: -

Drive object:
Reaction:
Acknowledge:
Cause: $\quad$ The DC link voltage monitoring is active $(p 1240, p 1280=5,6)$ and the lower DC link voltage threshold ( $r$ 1246, r1286) was reached in the "Operation" state.
Remedy: - check the line supply voltage.

- check the infeed.
- adapt the device supply voltage ( p 0210 ) or the switch-on level ( $\mathrm{p} 1245, \mathrm{p} 1285$ ).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

Reaction upon N : NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F07404 Drive: Upper DC link voltage threshold reached
Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The DC link voltage monitoring is active $(\mathrm{p} 1240=4,6)$ and the upper DC link voltage threshold ( p 1244 ) was reached in the "Operation" state.

Remedy:

- check the line supply voltage
- check the infeed module or the Braking Module.
- increase the upper DC link voltage threshold (p1244).
- switch out (disable) the DC link voltage monitoring (p1240 = 0)
F07404 Drive: Upper DC link voltage threshold reached

Message value:
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: $\quad$ The DC link voltage monitoring is active ( $\mathrm{p} 1240, \mathrm{p} 1280=4,6$ ) and the upper DC link voltage threshold ( r 1242 , r1282) was reached in the "Operation" state.
Remedy: - check the line supply voltage.

- check the infeed module
- adapt the device supply voltage (p0210).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

F07405 (N, A) Drive: Kinetic buffering minimum speed not reached
Message value:
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: During kinetic buffering the speed fell below minimum speed ( p 1257 or p 1297 for vector drives with U/f control) and the line supply did not return.

| Remedy: | Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297). <br> See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f)) |
| :--- | :--- |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

F07406 (N, A) Drive: Kinetic buffering maximum time exceeded
Message value: -
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge: IMMEDIATELY OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)

Cause: The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.
Remedy: $\quad$ Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295). See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

| F07407 | Drive: Vdc reduction not permissible |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | For chassis power units, the reduction of the line voltage (see r0212.0) is only possible for closed-loop control of the <br>  <br> Demedy: |
|  | - Activate DC link voltage control for the motor/generator. <br>  <br>  <br>  <br>  <br>  - de-activate line voltage reduction (p0212.0 $=0$ ).. |


| A07409 | Drive: U/f control, current limiting controller active |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The current limiting controller of the U/f control was activated because the current limit was exceeded. |
| Remedy: | The alarm automatically disappears after one of the following measures: <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> - increase current limit (p0640). <br> - slow down the ramp up to the setpoint speed. |

F07410 Drive: Current controller output limited
Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:

- motor not connected or motor contactor open.
- no DC link voltage present.
- Motor Module defective.

Remedy: - connect the motor or check the motor contactor.

- check the DC link voltage (r0070).
- check the Motor Module.

| F07410 | Drive: Current controller output limited |
| :---: | :---: |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: <br> - motor not connected or motor contactor open. <br> - motor data and motor configuration (star-delta) do not match. <br> - no DC link voltage present. <br> - power unit defective. <br> - the "flying restart" function is not activated. |
| Remedy: | - connect the motor or check the motor contactor. <br> - check the motor parameterization and the connection type (star-delta). <br> - check the DC link voltage (r0070). <br> - check the power unit. <br> - activate the "flying restart" function (p1200). |
| F07411 | Drive: Flux controller output limited |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The specified flux setpoint cannot be reached, although the set maximum field current is specified (p1603). <br> - incorrect motor data. <br> - motor data and motor configuration (star-delta) do not match. <br> - the current limit has been set too low for the motor (p0640, p0323, p1603). <br> - induction motor (encoderless, open-loop controlled) in 12 t limiting. <br> - the Motor Module is too small. |
| Remedy: | - correct the motor data. <br> - check the motor configuration. <br> - correct the current limits (p0640, p0323, p1603). <br> - reduce the induction motor load. <br> - if required, use a larger Motor Module. |
| F07412 | Drive: Commutation angle incorrect (motor model) |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. <br> Possible causes: <br> - The phase sequence of the output phases for the motor is incorrect (e.g. the phases are interchanged). <br> - the motor encoder is incorrectly adjusted with respect to the magnet position. <br> - the motor encoder is damaged. <br> - the angular commutation offset is incorrectly set (p0431). <br> - data to calculate the motor model has been incorrectly set (p0356 (motor-stator leakage inductance) and/or p0350 <br> (motor-stator resistance) and/or p0352 (cable resistance). <br> - the changeover speed for the motor model is too low (p1752). The monitoring function only becomes effective above the changeover speed. <br> - pole position identification might have calculated an incorrect value when activated (p1982 = 1). <br> - the motor encoder speed signal is faulted. <br> - the control loop is instable due to incorrect parameterization. <br> Fault value (r0949, interpret decimal): <br> SERVO: <br> 0 : The comparison of the pole position angle from the encoder and motor model resulted in an excessively high value (> $80^{\circ}$ electrical). <br> 1: - |


|  | VECTOR: <br> 0 : The comparison of the pole position angle from the encoder and motor model resulted in an excessively high value (> $45^{\circ}$ electrical). <br> 1: The change in the speed signal from the motor encoder has changed by > p0492 within a current controller clock cycle. |
| :---: | :---: |
| Remedy: | - Check the phase sequence for the motor, and if required, correct (wiring, p1820). <br> - if the encoder mounting was changed - re-adjust the encoder. <br> - replace the defective motor encoder. <br> - correctly set the angular commutation offset (p0431). If required, determine using p1990. <br> - correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance (p0350, p0352, p0356). <br> Calculate the cable resistance from the cross-section and length, check the inductance and stator resistance using the motor data sheet, measure the stator resistance, e.g. using a multimeter - and if required, again identify the values using the stationary motor data identification (p1910). <br> - increase the changeover speed for the motor model (p1752). The monitoring is completely de-activated for p1752 <br> > p1082 (maximum speed). <br> - with pole position identification activated ( $\mathrm{p} 1982=1$ ) check the procedure for pole position identification ( p 1980 ) and force a new pole position identification procedure by means of de-selection followed by selection (p1982 = 0 -> 1). <br> Note: <br> For High Dynamic Motors (1FK7xxx-7xxx), for applications with a higher current, if necessary, the monitoring should be disabled. |
| F07413 | Drive: Commutation angle incorrect (pole position identification) |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. Within the pole position identification routine (p1982 = 2): <br> - a difference of $>45^{\circ}$ electrical to the encoder angle was determined. <br> For VECTOR, within the encoder adjustment (p1990 = 2): <br> - a difference of $>6^{\circ}$ electrical to the encoder angle was determined. |
| Remedy: | - correctly set the angular commutation offset (p0431). <br> - re-adjust the motor encoder after the encoder has been replaced. <br> - replace the defective motor encoder. <br> - check the pole position identification routine. If the pole position identification routine is not suitable for this motor type, then disable the plausibility check (p1982 = 0). |
| F07414 (N, A) | Drive: Encoder serial number changed |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | ENCODER (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$ ) or third-party motors (p0300 = 2). <br> Cause 1: <br> - The encoder was replaced. <br> Cause 2: <br> - A third-party, built-in or linear motor was re-commissioned. <br> Cause 3: <br> - The motor with integrated and adjusted encoder was replaced. <br> Cause 4: <br> - The firmware was updated to a version that checks the encoder serial number. <br> Note: <br> With closed-loop position control, the serial number is accepted when starting the adjustment (p2507=2). <br> When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset ( $\mathrm{p} 2507=1$ ). |


|  | Proceed as follows to hide serial number monitoring: |
| :--- | :--- |
|  | - set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = $0, \mathrm{p} 0443=0, p 0444$ |
|  | $=0, p 0445=0$. |

Re fault cause $=3$ :

- Re-parameterize Rs identification (p0621 = 0, 1)
- Shut down quick magnetizing (p1401.6 = 0).

| F07417 | Drive: Pulse technique not plausible (motor model) |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The evaluation of the test pulse response indicated incorrect values. <br> Fault value (r0949, interpret decimal): <br> 0: <br> An impermissible pulse technique configuration was detected during ramp-up. <br> Possible causes: <br> - The pulse technique was initially selected when the system powered up (p1750.5 = 1) but the power unit component does not support the current oversampling required (see r0192.23). As a consequence, p1750.0 was de-selected automatically. <br> 10: <br> The pulse response is repeatedly implausible. <br> Possible causes: <br> - Incorrect configuration of the power unit component <br> - The power unit component is faulty. <br> 20: <br> For the specified pulse amplitude, the measured pulse response is much higher than the expected value. <br> Possible causes: <br> - Strong oscillations have occurred. <br> - The motor is short-circuited for high frequencies (output filter). <br> - The motor is damaged. |
| Remedy: | For fault value $=0$ : <br> Once the pulse technique has been de-selected automatically ( $p 1750.5=0$ ), there are two possible options: <br> - acknowledge the fault and save parameter p1750.5 = 0-> field-oriented control mode to standstill is not used and replaced by transition to open-loop control at low speeds. <br> - upgrade the power unit firmware (at least V04.30) -> field-oriented control mode to standstill is available. <br> For fault value $=10$ : <br> With active selection of the pulse technique (p1750.5 = 1): <br> - POWER ON (switch-off/switch-on) the Control Unit and the power unit together again. <br> or <br> - carry out a manual warm restart (p0009 = 30, p0976 = 2, 3). <br> If this does not solve the problem: Replace the power unit component. <br> For fault value $=20$ : <br> - control parameters might have been adjusted (factory setting, commissioning). <br> - filters must not be connected between motor and converter/inverter. <br> - check the motor. |
| F07420 | Drive: Current setpoint filter natural frequency > Shannon frequency |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | One of the filter natural frequencies is greater than the Shannon frequency. <br> The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0] <br> Fault value (r0949, interpret hexadecimal): <br> Bit 0: Filter 1 (p1658, p1660) <br> Bit 1: Filter 2 (p1663, p1665) <br> Bit 2: Filter 3 (p1668, p1670) <br> Bit 3: Filter 4 (p1673, p1675) <br> Bit 8 ... 15: Data set number (starting from zero) |
| Remedy: | - reduce the numerator or denominator natural frequency of the current setpoint filter involved. <br> - reduce the current controller sampling time (p0115[0]). <br> - switch out the filter involved ( p 1656 ). |


| F07421 | Drive: Speed filter natural frequency > Shannon frequency |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | One of the filter natural frequencies is greater than the Shannon frequency. <br> The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1] <br> Fault value (r0949, interpret hexadecimal): <br> Bit 0: Filter 1 (p1417, p1419) <br> Bit 1: Filter 2 (p1423, p1425) <br> Bit 4: Actual value filter (p1447, p1449) <br> Bit 8 ... 15: Data set number (starting from zero) |
| Remedy: | - reduce the numerator or denominator natural frequency of the speed setpoint filter involved. <br> - reduce the speed controller sampling time (p0115[1]). <br> - switch off the filter involved (p1413, p1414). |
| F07422 | Drive: Reference model natural frequency > Shannon frequency |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The natural filter frequency of the PT2 element for the reference model ( p 1433 ) is greater than the Shannon frequency. <br> The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1] |
| Remedy: | - reduce the natural frequency of PT2 element for reference model (p1433). <br> - reduce the speed controller sampling time (p0115[1]). |
| F07423 | Drive: APC filter natural frequency > Shannon frequency |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | One of the filter natural frequencies is greater than the Shannon frequency. <br> The Shannon frequency is calculated according to the following formula: 0.5 / (p0115[1] * x) <br> Fault value (r0949, interpret hexadecimal): <br> Bit 0: Filter 1.1 (p3711, p3713), $x=1$ <br> Bit 4: Filter 2.1 (p3721, p3723), $x=p 3706$ <br> Bit 5: Filter 2.2 (p3726, p3728), $x=p 3706$ <br> Bit 8: Filter 3.1 (p3731, p3733), $x=p 3707$ <br> Bit 9: Filter 3.2 (p3736, p3738), $x=$ p3707 <br> Bit 16 ... 32: Data set number (starting from zero) |
| Remedy: | - reduce the numerator or denominator natural frequency of the filter involved. <br> - reduce the speed controller sampling time (p0115[1]) or the sub-sampling (p3706, p3707). <br> - switch out the filter involved (p3704). |
| A07424 | Drive: Operating condition for APC not valid |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The APC function (Advanced Positioning Control) has identified an invalid operating condition. Alarm value (r2124, interpret hexadecimal): <br> Bit $0=1$ : <br> APC is operating without encoder <br> Bit $1=1$ : <br> Possible causes: <br> - The load measuring system for APC, selected using p3701, has a fault <br> - The load measuring system selected using p3701 is in the park state (r0481[0..2].14). |


|  | The APC function is disabled. <br> Bit $2=1$ : <br> Possible causes: <br> - The load measuring system for APC, selected using p3701, has a fault <br> - The load measuring system selected using p3701 is in the park state (r0481[0..2].14). <br> The pulse de-coupling is disabled, i.e. the speed of the motor measuring system is used as speed for the closedloop motor speed control. |
| :---: | :---: |
| Remedy: | Re bit 0: <br> Only use the APC function in operation with an encoder. Re bit 1, 2: <br> Check the load measuring system. |
| F07425 | Drive: APC monitoring time for speed limit expired |
| Message value: | - APC mon |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The limit value ( p 3778 ) for the speed/velocity was exceeded for a time longer than that set in the monitoring time (p3779). <br> Note: <br> APC: Advanced Positioning Control |
| Remedy: | - check the measured value. <br> - check the limit value and monitoring time (p3778, p3779). |
| F07426 (A) | Technology controller actual value limited |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The actual value for the technology controller, interconnected via connector input p2264, has reached a limit. Fault value (r0949, interpret decimal): <br> 1: upper limit reached. <br> 2: lower limit reached. |
| Remedy: | - adapt the limits to the signal level (p2267, p2268). <br> - Check the actual value normalization (p0595, p0596). <br> - Deactivate evaluation of the limits (p2252 bit 3) <br> See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| A07428 (N) | Technology controller parameterizing error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The technology controller has a parameterizing error. <br> Alarm value (r2124, interpret decimal): <br> 1: The parameter value for the upper output limit of the technology controller p2291 is less than the parameter value of the lower output limit p2292. |
| Remedy: | 1: Set p2291 to a higher value than p2292. <br> See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F07429 | Drive: DSC without encoder not possible |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The function DSC (Dynamic Servo Control) was activated although there is no encoder. See also: p1191 (DSC position controller gain KPC) |
| Remedy: | If there is no encoder and connector input p1191 (DSC position controller gain) is interconnected, then connector input p1191 must have a 0 signal. |
| F07430 | Drive: Changeover to open-loop torque controlled operation not possible |
| Message value: | - ${ }^{\text {d }}$ |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For encoderless operation, the converter cannot change over to closed-loop torque-controlled operation (BI: p1501). |
| Remedy: | Do not attempt to cover over to closed-loop torque-controlled operation. |
| F07431 | Drive: Changeover to encoderless operation not possible |
| Message value: | - ${ }^{\text {d }}$ |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For closed-loop torque control, the converter cannot change over to encoderless operation (p1404). |
| Remedy: | Do not attempt to change over to encoderless operation. |
| F07432 | Drive: Motor without overvoltage protection |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | In the case of a fault at maximum speed, the motor can generate an overvoltage that can destroy the drive system. Fault value (r0949, interpret hexadecimal): <br> Associated Drive Data Set (DDS). |
| Remedy: | Overvoltage protection can be implemented in the following ways: |
|  | 1. Limit the maximum speed (p1082) without any additional protection. |
|  | The maximum speed without protection is calculated as follows: |
|  | Rotary synchronous motors: p1082 [rpm] <= 11.695 * p0297/p0316 [Nm/A] |
|  | Linear motors: p1082 [m/min] <= 73.484 * p0297/p0316 [N/A] |
|  | Rotary synchronous motor connected to the high-frequency converter: <br> $\mathrm{p} 1082[\mathrm{rpm}]<=4.33165 \mathrm{E} 9$ * $\left(-\mathrm{p} 0316+\operatorname{root}\left(\mathrm{p} 0316^{\wedge} 2+4.86 \mathrm{E}-9\right.\right.$ * $(\mathrm{r0297}$ * r0313)^2 * (r0377-p0233) [mH] * p0234 <br> $[\mu \mathrm{F}]) /(\mathrm{r0297}$ * r0313^2 * (r0377-p0233) [mH] * p0234 [ $\mu \mathrm{F}]$ ) |
|  | Linear motor connected to the high-frequency converter: <br> $\mathrm{p} 1082[\mathrm{~m} / \mathrm{min}]<=689.403^{*} \mathrm{p} 0315^{*}\left(\operatorname{root}\left(\mathrm{p} 0316^{\wedge} 2^{*} \mathrm{p} 0315^{\wedge} 2+0.191865{ }^{*}\right.\right.$ r0297^2 * (r0377-p0233)$[\mathrm{mH}] * \mathrm{p} 0234$ <br> $[\mu \mathrm{F}]) /(\mathrm{rO297}$ * (r0377-p0233) [mH] * p0234 [ $\mu \mathrm{F}]$ ) |
|  | Rotary induction motor connected to the high-frequency converter: <br> p1082 [rpm] <= maximum (2.11383E5 / (r0313 * root((r0377 [mH] + r0382 [mH]) * p0234 [ HF F$)$ ) ; 0.6364 * r0297 * p0311[rpm] / p0304) |
|  | 2. Use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801 - only for synchronous motors). |
|  | When using a synchronous motor with VPM at the high-frequency converter, the following must apply: p 1082 [rpm] <= p0348 * (r0377 + p0233) / p0233 |
|  | When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" (STO) must be connected to the VPM. When using a VPM, p0643 must be set to 1 . |

3. Activate the internal voltage protection ( $\mathrm{p} 1231=3$, only for synchronous motors).

In so doing, the following hardware preconditions must be fulfilled:

- The infeed of the group must be capable of energy recovery (Active Line Module, Smart Line Module), and the energy recovery power of the infeed must not be less than the maximum utilized S1 power of the synchronous motor - For Control Unit and infeed, a 24 V power supply other than that for the Motor Module must be used with the voltage protection activated. The 24 V power supply of this Motor Module must be DC link buffered (e.g. CSM).
- A Braking Module with a correspondingly configured braking resistor must be available at the DC link.
- The synchronous motor must be short-circuit proof.

See also: p0643 (Overvoltage protection for synchronous motors), p1231 (Armature short-circuit / DC braking configuration)

| F07433 | Drive: Closed-loop control with encoder is not possible as the encoder has not been |
| :--- | :--- |
|  | unparked |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The changeover to closed-loop control with encoder is not possible as the encoder has not been unparked. |
| Remedy: | - check whether the encoder firmware supports the "parking" function (r0481.6 = 1). |
|  | - upgrade the firmware. |
|  | Note: |
|  | For long-stator motors (p3870.0 = 1), the following applies: |
|  | The encoder must have completed the unparking procedure (r3875.0 = 1) before a changeover can be made to |
|  | closed-loop control with encoder. The encoder is unparked using binector input p3876 = $0 / 1$ signal and remains until |
|  | a 0 signal in this state. |


| F07434 | Drive: It is not possible to change the direction of rotation with the pulses enabled |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A drive data set was selected - with the pulses enabled - which has a different parameterized direction of rotation <br> (p1821). <br> It is only possible to change the motor direction of rotation using p1821 when the pulses are inhibited. <br> - change over the drive data set with the pulses inhibited. |
| Remedy: | - ensure that the changeover to a drive data set does not result in the motor direction of rotation being changed (i.e. <br> for these drive data sets, the same value must be in p1821). <br> See also: p1821 |

F07435 (N) Drive: Setting the ramp-function generator for sensorless vector control
Message value: Parameter: \%1
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge: IMMEDIATELY
OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3)
Cause: During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped ( p 1141 ) or bypassed (p1122). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen or was not able to be realized.
Remedy: - de-activate the holding command for the ramp-function generator (p1141).

- do not bypass the ramp-function generator (p1122).
- suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6).
Note:
For sensorless vector control it is not practical to read in the main setpoint of the speed control via p1155 or p1160 (p0922). In this case, the main setpoint should be injected before the ramp-function generator ( p 1070 ). The reason for this is that the ramp-function generator output is automatically set when transitioning from closed-loop speed controlled into open-loop speed controlled operation.
Reaction upon N: NONE
Acknowl. upon N: NONE

| F07439 | Drive: Higher current controller dynamic performance not possible |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The function "Current controller dynamics higher" ( $\mathrm{p} 1810.11=1$ ) is selected, however is not supported by the power unit (r0192.27 $=0$ ) or by the safety technology without encoder $(9506=1,3)$. <br> Fault value (r0949, interpret decimal): <br> 1: <br> - firmware of the booksize power unit is not up-to-date. <br> - blocksize or S120 combi power unit was used. <br> 2: <br> - Encoderless safety technology is used. |
| Remedy: | In general: <br> - Deselect the function "Current controller dynamics higher" (p1810.11 = 0) and if required, set the current, speed and position controller again or calculate (p0340 $=4$ ). <br> For fault value $=1$ : <br> - If necessary, upgrade the firmware of the booksize power unit to a later version (version >=4.4). <br> Note: <br> If the firmware has already been automatically upgraded, then only a POWER ON (switch-off/switch-on) is required. <br> - Use a booksize power unit (version >=4.4). <br> For fault value $=2$ : <br> - If an encoder with Safety position actual values sensing is available (r0458[0...2]. $19=1$ ), reparameterize the encoderless safety technology ( $\mathrm{p} 9506=1,3$ ) to safety technology with encoder ( $\mathrm{p} 9506=0$ ). <br> See also: r0192 (Power unit firmware properties), p1810 (Modulator configuration), p9506 (SI Motion function specification (Control Unit)) |
| A07440 | EPOS: Jerk time is limited |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The calculation of the jerk time $\operatorname{Tr}=\max (\mathrm{p} 2572, \mathrm{p} 2573) / \mathrm{p} 2574$ resulted in an excessively high value so that the jerk time is internally limited to 1000 ms . <br> Note: <br> The alarm is also output if jerk limiting is not active. |
| Remedy: | - increase the jerk limiting (p2574). <br> - reduce maximum acceleration or maximum deceleration (p2572, p2573). <br> See also: p2572 (EPOS maximum acceleration), p2573 (EPOS maximum deceleration), p2574 (EPOS jerk limiting) |
| A07441 | LR: Save the position offset of the absolute encoder adjustment |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The status of the absolute encoder adjustment has changed. In order to permanently save the determined position offset ( p 2525 ) it must be saved in a non-volatile fashion (p0971, p0977). |
| Remedy: | Not necessary. <br> This alarm automatically disappears after the offset has been saved. <br> See also: p2507 (LR absolute encoder adjustment status), p2525 (LR encoder adjustment, offset) |


| F07442 (A) | LR: Multiturn does not match the modulo range |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The ratio between the multiturn resolution and the modulo range ( p 2576 ) is not an integer number. This results in the adjustment being set back, as the position actual value cannot be reproduced after power-off/power-on. |
| Remedy: | Make the ration between the multiturn resolution and the modulo range an integer number. The ratio $v$ is calculated as follows: <br> 1. Motor encoder without position tracking: $v=(p 0421 \text { * p2506 * p0433 * p2505) / (p0432 * p2504 * p2576) }$ <br> 2. Motor encoder with position tracking for the measuring gear: $v=(p 0412 \text { * p2506 * p2505) / (p2504 * p2576) }$ <br> 3. Motor encoder with position tracking for the load gear: $v=(p 2721 \text { * p2506 * p0433) / (p0432 * p2576) }$ <br> 4. Motor encoder with position tracking for the load and measuring gear: $v=(p 2721 * p 2506) / p 2576$ <br> 5. Direct encoder without position tracking: $v=(p 0421 * p 2506 * p 0433) /(p 0432 * p 2576)$ <br> 6 . Direct encoder with position tracking for the measuring gear: $v=(p 0412 * p 2506) / p 2576$ <br> Note: <br> With position tracking, it is recommended that p0412 and p2721 are changed <br> See also: p0412, p0432, p0433, p2504, p2505, p2506, p2576, p2721 |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07443 (A) | LR: Reference point coordinate not in the permissible range |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The reference point coordinate received when adjusting the encoder via connector input p2599 lies outside the half of the encoder range and cannot be set as actual axis position. <br> Fault value (r0949, interpret decimal): <br> Maximum permissible value for the reference point coordinate. |
| Remedy: | Set the reference point coordinate to a lower value than specified in the fault value. See also: p2598 (EPOS reference point coordinate, signal source), p2599 (EPOS reference point coordinate value) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07446 (A) | Load gear: Position tracking cannot be reset |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The position tracking cannot be reset. |
| Remedy: | Reset the position tracking as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset position tracking, position (p2720.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F07447 | Load gear: Position tracking, maximum actual value exceeded |
| :---: | :---: |
| Message value: | Component number: \%1, encoder data set: \%2, drive data set: \%3 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When the position tracking of the load gear is configured, the drive/encoder (motor encoder) identifies a maximum possible absolute position actual value (r2723) that can no longer be represented within 32 bits. <br> Maximum value: p0408 * p2721 * $2^{\wedge}$ p0419 <br> Fault value (r0949, interpret hexadecimal): <br> ccbbaa hex <br> aa $=$ encoder data set <br> bb = component number <br> $\mathrm{cc}=$ drive data set <br> See also: p0408, p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear, rotary absolute encoder, revolutions, virtual) |
| Remedy: | - reduce the fine resolution (p0419). <br> - reduce the multiturn resolution (p2721). <br> See also: p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear, rotary absolute encoder, revolutions, virtual) |
| F07448 (A) | Load gear: Position tracking, linear axis has exceeded the maximum range |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1 ) has exceeded the maximum possible traversing range. <br> For the configured linear axis, the maximum traversing range is defined to be $64 x(+/-32 x)$ of $p 0421$. It should be read in p2721 and interpreted as the number of load revolutions. <br> Note: <br> Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r} 0051$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$. |
| Remedy: | The fault should be resolved as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset position tracking, position (p2720.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and the absolute encoder adjusted. |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F07449 (A) | Load gear: Position tracking, actual position outside tolerance window |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When powered down, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder. <br> Note: <br> Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$. <br> Fault value (r0949, interpret decimal): <br> Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction. |


|  | Note: <br> The deviation (difference) found is also displayed in r2724. <br> See also: p2722 (Load gear, position tracking tolerance window), r2724 (Load gear position difference) |
| :---: | :---: |
| Remedy: | Reset the position tracking as follows: <br> - select encoder commissioning (p0010=4). <br> - reset position tracking, position (p2720.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). <br> See also: p0010, p2507 |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07450 (A) | LR: Standstill monitoring has responded |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | After the standstill monitoring time ( p 2543 ) expired, the drive left the standstill window ( p 2542 ). <br> - position actual value inversion incorrectly set (p0410). <br> - standstill window set too small (p2542). <br> - standstill monitoring time set too low (p2543). <br> - position loop gain too low (p2538). <br> - position loop gain too high (instability/oscillation, p2538). <br> - mechanical overload. <br> - Connecting cable, motor/drive converter incorrect (phase missing, interchanged). <br> - when selecting motor identification, select tracking mode (BI: p2655[0] = 1 signal). <br> - when selecting function generator, select tracking mode (BI: p2655[0] = 1 signal) and de-activate position control (BI:p2550 = 0 signal). |
| Remedy: | Check the causes and resolve. |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F07451 (A) | LR: Position monitoring has responded |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When the position monitoring time (p2545) expired, the drive had still not reached the positioning window (p2544). <br> - positioning window parameterized too small (p2544). <br> - position monitoring time parameterized too short (p2545). <br> - position loop gain too low (p2538). <br> - position loop gain too high (instability/oscillation, p2538). <br> - drive mechanically locked. |
| Remedy: | Check the causes and resolve. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F07452 (A) | LR: Following error too high |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The difference between the position setpoint position actual value (following error dynamic model, r2563) is greater than the tolerance (p2546). <br> - the drive torque or accelerating capacity exceeded. <br> - position measuring system fault. <br> - position control sense incorrect. |


|  | - mechanical system locked. |
| :--- | :--- |
| - excessively high traversing velocity or excessively high position reference value (setpoint) differences |  |
| Remedy: | Check the causes and resolve. <br> Reaction upon A: |
| NONE |  |
| Acknowl. upon A: | NONE |

F07453 LR: Position actual value preprocessing error

## Message value

Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction: OFF1 (OFF2, OFF3)
Acknowledge:
Cause:
IMMEDIATELY

Remedy: Check the encoder for the position actual value preprocessing.
See also: p2502 (LR encoder assignment)

| A07454 | LR: Position actual value preprocessing does not have a valid encoder |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | One of the following problems has occurred with the position actual value preprocessing: <br> - an encoder is not assigned for the position actual value preprocessing (p2502 = 0). <br> - an encoder is assigned, but no encoder data set (p0187 = 99 or p0188 = 99 or p0189 = 99). <br> - an encoder an an encoder data set have been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0). |
| Remedy: | Check the drive data sets, encoder data sets and encoder assignment. <br> See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment) |


| A07455 | EPOS: Maximum velocity limited |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The maximum velocity (p2571) is too high to correctly calculate the modulo correction. <br> Within the sampling time for positioning (p0115[5]), with the maximum velocity, a maximum of the half modulo length <br> must be moved through. p2571 was limited to this value. <br> - reduce the maximum velocity (p2571). <br> - increase the sampling time for positioning (p0115[5]). |

A07456
Message value:
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction:
NONE
Acknowledge:
Cause:
Remedy:
NONE

- check the entered setpoint velocity

The actual setpoint velocity is greater than the parameterized maximum velocity ( p 2571 ) and is therefore limited.

- reduce the velocity override (CI: p2646).
- increase the maximum velocity (p2571).
- check the signal source for the externally limited velocity (CI: p2594)

| A07457 | EPOS: Combination of input signals illegal |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An illegal combination of input signals that are simultaneously set was identified. Alarm value (r2124, interpret decimal): <br> 0: Jog 1 and jog 2 (p2589, p2590). <br> 1: Jog 1 or jog 2 and direct setpoint input/MDI (p2589, p2590, p2647). <br> 2: Jog 1 or jog 2 and start referencing ( p 2589 , p2590, p2595). <br> 3: Jog 1 or jog 2 and activate traversing task (p2589, p2590, p2631). <br> 4: Direct setpoint input/MDI and starting referencing (p2647, p2595). <br> 5: Direct setpoint input/MDI and activate traversing task (p2647, p2631). <br> 6: Start referencing and activate traversing task (p2595, p2631). |
| Remedy: | Check the appropriate input signals and correct. |
| F07458 | EPOS: Reference cam not found |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | After starting the search for reference, the axis moved through the maximum permissible distance to search for the reference cam without actually finding the reference cam. |
| Remedy: | - check the "reference cam" binector input (BI: p2612). <br> - check the maximum permissible distance to the reference cam (p2606). <br> - if axis does not have any reference cam, then set p2607 to 0 . <br> See also: p2606 (EPOS search for reference, reference cam, maximum distance), p2607 (EPOS search for reference, reference cam present), p2612 (EPOS search for reference, reference cam) |
| F07459 | EPOS: No zero mark |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | After leaving the reference cam, the axis has traversed the maximum permissible distance between the reference cam and zero mark without finding the zero mark. |
| Remedy: | - check the encoder regarding the zero mark <br> - check the maximum permissible distance between the reference cam and zero mark (p2609). <br> - use an external encoder zero mark (equivalent zero mark) (p0495). <br> See also: p0495 (Equivalent zero mark, input terminal), p2609 (EPOS search for reference, max. distance ref. cam and zero mark) |
| F07460 | EPOS: End of reference cam not found |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | During the search for reference, when the axis reached the zero mark it also reached the end of the traversing range without detecting an edge at the binector input "reference cam" (BI: p2612). <br> Maximum traversing range: -2147483648 [LU] ... -2147483647 [LU] |
| Remedy: | - check the "reference cam" binector input (BI: p2612). <br> - repeat the search for reference. <br> See also: p2612 (EPOS search for reference, reference cam) |


| A07461 | EPOS: Reference point not set |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When starting a traversing block/direct setpoint input, a reference point is not set (r2684.11 = 0). |
| Remedy: | Reference the system (search for reference, flying referencing, set reference point). |


| A07462 | EPOS: Selected traversing block number does not exist |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A traversing block selected via BI: p2625 to $\mathrm{BI}: \mathrm{p} 2630$ was started via $\mathrm{BI}: \mathrm{p} 2631=0 / 1$ edge "Activate traversing task". |
|  | - the number of the started traversing block is not contained in p2616[0...n]. <br> - the started traversing block is suppressed. |
|  | Alarm value (r2124, interpret decimal): <br> Number of the selected traversing block that is also not available. |
| Remedy: | - correct the traversing program. <br> - select an available traversing block number. |


| A07463 (F) | EPOS: External block change not requested in the traversing block |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For a traversing block with the block change enable CONTINUE_EXTERNAL_ALARM, the external block change was not requested. <br> Alarm value (r2124, interpret decimal): <br> Number of the traversing block. |
| Remedy: | Resolve the reason as to why the edge is missing at binector input (BI: p2632). |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |

F07464 EPOS: Traversing block is inconsistent
Message value: \%1

| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| :--- | :--- |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The traversing block does not contain valid information. |
|  | Alarm value (r2124, interpret decimal): |
|  | Number of the traversing block with invalid information. |
| Remedy: | Check the traversing block and where relevant, take into consideration alarms that are present. |


| A07465 | EPOS: Traversing block does not have a subsequent block |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | There is no subsequent block in the traversing block. <br>  <br>  <br> Alarm value (r2124, interpret decimal): <br> Number of the traversing block with the missing subsequent block. <br> Remedy: |
|  | - parameterize this traversing block with the block change enable END. <br> - parameterize additional traversing blocks with a higher block number and for the last block, using the block change <br> enable END. |


| A07466 | EPOS: Traversing block number assigned a multiple number of times |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The same traversing block number was assigned a multiple number of times. Alarm value (r2124, interpret decimal): <br> Number of the traversing block that was assigned a multiple number of times. |
| Remedy: | Correct the traversing blocks. |
| A07467 | EPOS: Traversing block has illegal task parameters |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The task parameter in the traversing block contains an illegal value. Alarm value (r2124, interpret decimal): <br> Number of the traversing block with an illegal task parameter. |
| Remedy: | Correct the task parameter in the traversing block. |
| A07468 | EPOS: Traversing block jump destination does not exist |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In a traversing block, a jump was programmed to a non-existent block. Alarm value (r2124, interpret decimal): <br> Number of the traversing block with a jump destination that does not exist. |
| Remedy: | - correct the traversing block. <br> - add the missing traversing block. |
| A07469 | EPOS: Traversing block < target position < software limit switch minus |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the traversing block the specified absolute target position lies outside the range limited by the software limit switch minus. <br> Alarm value ( r 2124 , interpret decimal): <br> Number of the traversing block with illegal target position. |
| Remedy: | - correct the traversing block. <br> - change software limit switch minus (CI: p2578, p2580). |
| A07470 | EPOS: Traversing block> target position > software limit switch plus |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the traversing block the specified absolute target position lies outside the range limited by the software limit switch plus. <br> Alarm value (r2124, interpret decimal): <br> Number of the traversing block with illegal target position. |
| Remedy: | - correct the traversing block. <br> - change software limit switch plus (CI: p2579, p2581). |


| A07471 | EPOS: Traversing block target position outside the modulo range |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the traversing block the target position lies outside the modulo range. Alarm value (r2124, interpret decimal): Number of the traversing block with illegal target position. |
| Remedy: | - in the traversing block, correct the target position. <br> - change the modulo range ( p 2576 ). |
| A07472 | EPOS: Traversing block ABS_POS/ABS_NEG not possible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the traversing block the positioning mode ABS_POS or ABS_NEG were parameterized with the modulo correction not activated. <br> Alarm value (r2124, interpret decimal): <br> Number of the traversing block with the illegal positioning mode. |
| Remedy: | Correct the traversing block. |
| A07473 (F) | EPOS: Beginning of traversing range reached |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When traversing, the axis has moved to the traversing range limit. |
| Remedy: | Move away in the positive direction. |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| A07474 (F) | EPOS: End of traversing range reached |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When traversing, the axis has moved to the traversing range limit. |
| Remedy: | Move away in the negative direction. |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| F07475 (A) | EPOS: Target position < start of traversing range |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The target position for relative traversing lies outside the traversing range. |
| Remedy: | Correct the target position. |
| Reaction upon A: | NONE |
| Acknowl. upon A : | NONE |


| F07476 (A) | EPOS: Target position > end of the traversing range |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The target position for relative traversing lies outside the traversing range. |
| Remedy: | Correct the target position. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| A07477 (F) | EPOS: Target position < software limit switch minus |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the actual traversing operation, the target position is less than the software limit switch minus. |
| Remedy: | - correct the target position. <br> - change software limit switch minus (Cl: p2578, p2580). <br> See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| A07478 (F) | EPOS: Target position > software limit switch plus |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the actual traversing operation, the target position is greater than the software limit switch plus. |
| Remedy: | - correct the target position. <br> - change software limit switch plus (CI: p2579, p2581). <br> See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| A07479 | EPOS: Software limit switch minus reached |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The axis is at the position of the software limit switch minus. An active traversing block was interrupted. |
| Remedy: | - correct the target position. <br> - change software limit switch minus (Cl: p2578, p2580). <br> See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation) |
| A07480 | EPOS: Software limit switch plus reached |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The axis is at the position of the software limit switch plus. An active traversing block was interrupted. |

$\left.\begin{array}{ll}\text { Remedy: } & \text { - correct the target position. } \\ & \text { - change software limit switch plus (CI: p2579, p2581). } \\ \text { See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 } \\ \text { (EPOS software limit switch activation) }\end{array}\right]$

| F07485 (A) | EPOS: Fixed stop not reached |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | In a traversing block with the task FIXED STOP, the end position was reached without detecting a fixed stop. |
| Remedy: | - check the traversing block and locate the target position further into the workpiece. |
|  | - check the "fixed stop reached" control signal (p2637). |
|  | - if required, reduce the maximum following error window to detect the fixed stop (p2634). |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| F07490 | EPOS: Enable signal withdrawn while traversing |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | - for a standard assignment, another fault may have occurred as a result of withdrawing the enable signals. <br> - the drive is in the "switching on inhibited" state (for a standard assignment). |
| Remedy: | - set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment). <br> - check the assignment to enable the basic positioning function. |
| F07491 (A) | EPOS: STOP cam minus reached |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF3 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A 0 signal was detected at binector input BI: p2569, i.e. the STOP cam minus was reached. <br> For a positive traversing direction, the STOP cam minus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2569 (EPOS STOP cam minus) |
| Remedy: | - leave the STOP cam minus in the positive traversing direction and return the axis to the valid traversing range. <br> - check the wiring of the STOP cam. |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F07492 (A) EPOS: STOP cam plus reached

Message value:
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction: OFF3

Acknowledge: IMMEDIATELY
Cause: A 0 signal was detected at binector input BI: p2570, i.e. the STOP cam plus was reached.
For a negative traversing direction, the STOP cam plus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2570 (EPOS STOP cam plus)
Remedy: - leave the STOP cam plus in the negative traversing direction and return the axis to the valid traversing range. - check the wiring of the STOP cam.

Reaction upon A: NONE
Acknowl. upon A: NONE
F07493 LR: Overflow of the value range for position actual value
Message value: $\% 1$
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction:
Acknowledge:
OFF1 (OFF2, OFF3)

Cause:
The value range ( -2147483648 ... 2147483647) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset. Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Note:
For a linear encoder, the following must be maintained:

- p0407 * p2503 / (2^p0418*10^7) < 1
- p0407 *p2503 / (2^p0419*10^7) < 1

| Remedy: | If required, reduce the traversing range or position resolution (p2506). |
| :--- | :--- |
|  | Increase the fine resolution of absolute position actual value (p0419). |
|  | Note for fault value = 3: |
|  | If the value for the maximum possible absolute position (LU) is greater than 4294967296, then it is not possible to |
|  | make an adjustment due to an overflow. |
|  | For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: |
|  | 1. Motor encoder without position tracking |
|  | p2506 * p0433 * p2505 / (p0432 * p2504) |
|  | p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders |
|  | 2. Motor encoder with position tracking for measuring gear: |
|  | p2506 * p0412 * p2505 / p2504 |
|  | 3. Motor encoder with position tracking for load gear |
|  | p2506 * p2721 * p0433 / p0432 |
|  | 4. Motor encoder with position tracking for load and measuring gear |
| p2506 * p2721 |  |

Remedy: Check the appropriate binector inputs and signals.

| A07497 | LR: Position setting value activated |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system <br> deviation cannot be corrected. |
| Remedy: | Not necessary. |
|  | The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal.. |


| A07498 (F) | LR: Measuring probe evaluation not possible |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the measuring probe, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 6: The input terminal for the measuring probe is not set. <br> 4098: Error when initializing the measuring probe. <br> 4100: The measuring pulse frequency is too high. <br> $>50000$ : The measuring clock cycle is not a multiple integer of the position controller clock cycle. |
| Remedy: | De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). <br> Re alarm value $=6$ : <br> Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). <br> Re alarm value $=4098$ : <br> Check the Control Unit hardware. <br> Re alarm value $=4100$ : <br> Reduce the frequency of the measuring pulses at the measuring probe. <br> Re alarm value > 50000: <br> Set the clock cycle ratio of the measuring clock cycle to the position controller clock cycle to an integer multiple. <br> To do this, the currently effective measuring clock cycle can be determined from the alarm value as follows: <br> Tmeas [125 $\mu \mathrm{s}$ ] = alarm value - 50000 <br> With PROFIBUS, the measuring clock cycle corresponds to the PROFIBUS clock cycle (r2064[1]). <br> Without PROFIBUS, the measuring clock cycle is an internal cycle time that cannot be influenced. |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |

F07499 (A) EPOS: Reversing cam approached with the incorrect traversing direction
Message value:
Drive object:
Reaction:
SERVO, SERVO_AC, VECTOR, VECTOR_AC

Acknowledge:
Cause: The reversing cam MINUS was approached in the positive traversing direction or the reversing cam PLUS was approached in the negative traversing direction.
See also: p2613 (EPOS search for reference reversing cam minus), p2614 (EPOS search for reference reversing cam plus)
Remedy: $\quad$ - check the wiring of the reversing cam (BI: p2613, BI: p2614).

- check the traversing direction to approach the reversing cam.

Reaction upon A: NONE
Acknowl. upon A: NONE

| F07500 | Drive: Power unit data set PDS not configured |
| :---: | :---: |
| Message value: | Drive data set: \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Only for controlled line supply infeed/regenerative feedback units: <br> The power unit data set was not configured - this means that a data set number was not entered into the drive data set. <br> Fault value (r0949, interpret decimal): <br> Drive data set number of p0185. |
| Remedy: | The index of the power unit data set associated with the drive data set should be entered into p0185. |
| F07501 | Drive: Motor Data Set MDS not configured |
| Message value: | Drive data set: \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Only for power units: <br> The motor data set was not configured - this means that a data set number was not entered into the associated drive data set. <br> Fault value (r0949, interpret decimal): <br> The fault value includes the drive data set number of p0186. |
| Remedy: | The index of the motor data set associated with the drive data set should be entered into p0186. See also: p0186 (Motor Data Sets (MDS) number) |
| F07502 | Drive: Encoder Data Set EDS not configured |
| Message value: | Drive data set: \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Only for power units: <br> The encoder data set was not configured - this means that a data set number was not entered into the associated drive data set. <br> Fault value (r0949, interpret decimal): <br> The fault value includes the drive data set number of p0187, p0188 and p0189. <br> The fault value is increased by 100 * encoder number (e.g. for p0189: Fault value $3 x x$ with $x x=$ data set number). |
| Remedy: | The index of the encoder data set associated with the drive data set should be entered into p0187 (1st encoder), p0188 (2nd encoder) and p0189 (3rd encoder). |
| F07503 | EPOS: STOP cam approached with the incorrect traversing direction |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | Servo: NONE (OFF1, OFF2, OFF3) Vector: NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The STOP cam MINUS was approached in the positive traversing direction or the STOP cam PLUS was approached in the negative traversing direction. |
| Remedy: | - check the wiring of the STOP cam (BI: p2569, BI: p2570). <br> - check the traversing direction to approach the STOP cam. |


| A07504 | Drive: Motor data set is not assigned to a drive data set |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A motor data set is not assigned to a drive object. <br> All of the existing motor data sets in the drive data sets must be assigned using the MDS number (p0186[0...n]). <br> There must be at least as many drive data sets as motor data sets. <br> Alarm value (r2124, interpret decimal): <br> Number of the motor data set that has not been assigned. |
| Remedy: | In the drive data sets, assign the non-assigned motor data set using the MDS number (p0186[0...n]). <br> - check whether all of the motor data sets are assigned to drive data sets. <br> - if required, delete superfluous motor data sets. <br> - if required, set up new drive data sets and assign to the corresponding motor data sets. <br> See also: p0186 (Motor Data Sets (MDS) number) |
| A07505 | EPOS: Task fixed stop not possible in the U/f/SLVC mode |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the U/f/SLVC mode, an attempt was made to execute a traversing block with the "fixed stop" task. This is not possible. <br> Alarm value (r2124, interpret decimal): <br> Number of the traversing block with an illegal task parameter. |
| Remedy: | - Check the traversing block and change the task. <br> - change the open-loop/closed-loop control mode (p1300). <br> See also: p1300 (Open-loop/closed-loop control operating mode), p2621 (EPOS traversing block task) |
| F07509 | Drive: Component number missing |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number. <br> Alarm value (r2124, interpret decimal): <br> nnmmmxxyyy <br> nn : Number of the MDS/EDS. <br> mmm : Parameter number of the missing component number. <br> xx : Number of the DDS that is assigned to the MDS/EDS. <br> yyy: Parameter number that references the MDS/EDS. <br> Example: <br> p0186[7] = 5: DDS 7 is assigned MDS 5. <br> p0131[5] = 0 : There is no component number set in MDS 5. <br> Alarm value $=0513107186$ |
| Remedy: | In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number. <br> See also: p0131, p0141, p0142, p0186, p0187, p0188, p0189 |
| F07510 | Drive: Identical encoder in the drive data set |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together. |




|  | The following parameterization therefore results results in an error: $\begin{aligned} & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0 \\ & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=1 \end{aligned}$ <br> Alarm value (r2124, interpret decimal): <br> The lower 16 bits indicate the first DDS and the upper 16 bits indicate the second DDS. |
| :---: | :---: |
| Remedy: | If you wish to operate a motor once with one motor encoder and then another time with the other motor encoder, then you must set up two different MDSs, in which the motor data are the same. <br> Example: $\begin{aligned} & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0 \\ & \mathrm{p} 0186[0]=1, \mathrm{p} 0187[0]=1 \end{aligned}$ |
| F07518 | Drive: Motor data set changeover incorrectly parameterized |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The system has identified that two motor data sets were incorrectly parameterized. Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors and/contactors. <br> It is not possible to toggle between motor data sets. <br> Alarm value (r2124, interpret hexadecimal): <br> xxxxyyyy: <br> xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS |
| Remedy: | Correct the parameterization of the motor data sets. |
| A07519 | Drive: Motor changeover incorrectly parameterized |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | With the setting p0833.0 $=1$, a motor changeover via the application is selected. This is the reason that p0827 must have different values in the appropriate motor data set. <br> Alarm value (r2124, interpret hexadecimal): <br> xxxxyyyy: <br> xxxx: First MDS, yyyy: Second MDS |
| Remedy: | - parameterize the appropriate motor data sets differently (p0827). <br> - select the setting p0833.0 $=0$ (motor changeover via the drive). |
| A07520 | Drive: Motor cannot be changed over |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The motor cannot be changed over. <br> Alarm value (r2124, interpret decimal): <br> 1: <br> The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed (r0063) is greater than the speed at the start of field weakening (p3048). As long as r0063>p0348, the current in the motor does not decay in spite of the pulses being suppressed. <br> 2: <br> The "contactor opened" feedback signal was not detected within 1 s . <br> 3: <br> The "contactor closed" feedback signal was not detected within 1 s . |
| Remedy: | Re alarm value $=1$ : <br> Set the speed lower than the speed at the start of field weakening ( $\mathrm{r} 0063<\mathrm{p} 0348$ ). Re alarm value $=2,3$ : <br> Check the feedback signals of the contactor involved. |

\(\left.$$
\begin{array}{ll}\hline \text { A07530 } & \text { Drive: Drive Data Set DDS not present } \\
\text { Message value: } & - \\
\text { Drive object: } & \text { A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC } \\
\text { Reaction: } & \text { NONE } \\
\text { Acknowledge: } & \text { NONE } \\
\text { Cause: } & \begin{array}{ll}\text { The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. } \\
\text { See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837 }\end{array}
$$ <br>

Remedy: \& - select the existing drive data set.\end{array}\right]\)|  | - set up additional drive data sets. |
| :--- | :--- |


| F07551 | Drive encoder: No commutation angle information |
| :---: | :---: |
| Message value: | Fault cause: \%1, drive data set: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The commutation angle information is missing. This means that synchronous motors cannot be controlled (closedloop control) |
|  | Fault value (r0949, interpret decimal): |
|  | yyyyxxxx dec: yyyy = fault cause, $x x x x=$ drive data set yyyy $=1$ dec: |
|  | The motor encoder used does not supply an absolute commutation angle. |
|  | yyyy $=2 \mathrm{dec}$ : |
|  | The selected ratio of the measuring gear does not match the motor pole pair number. |
| Remedy: | Re fault cause $=1$ : |
|  | - check the encoder parameterization (p0404). |
|  | - use an encoder with track C/D, EnDat interface of Hall sensors. |
|  | - use an encoder with sinusoidal $A / B$ track for which the motor pole pair number (r0313) is an integer multiple of the encoder pulse number (p0408). |
|  | - activate the pole position identification routine (p1982 = 1). |
|  | Re fault cause $=2$ : |
|  | - the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: ( p 0314 * p0433) / p0432. |
|  | Note: |
|  | For operation with track C/D, this quotient must be less than 8. |
|  | See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor, encoder revolutions), p0433 (Gearbox factor, motor/load revolutions) |
| F07552 (A) | Drive encoder: Encoder configuration not supported |
| Message value: | Fault cause: \%1, component number: \%2, encoder data set: \%3 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
|  | Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456. |
|  | Fault value (r0949, interpret decimal): |
|  | ccccbbaa hex: cccc = fault cause, $\mathrm{bb}=$ component number, $\mathrm{aa}=$ encoder data set |
|  | $\mathrm{cccc}=1$ : encoder sin/cos with absolute track (is supported by SME25). |
|  | cccc $=3$ : Squarewave encoder (this is supported by SMC30). |
|  | cccc $=4: \sin / c o s$ encoder (this is supported by SMC20, SMI20, SME20, SME25). |
|  | cccc $=10$ : DRIVE-CLiQ encoder (is supported by DQI). |
|  | $\operatorname{cccc}=12: \sin / \mathrm{cos}$ encoder with reference mark (this is supported by SME20). |
|  | cccc $=15$ : Commutation with zero mark for separately-excited synchronous motors with VECTORMV. |
|  | cccc = 23: Resolver (this is supported by SMC10, SMI10). |
|  | $\mathrm{cccc}=65535$ : Other function (compare r0456 and p0404). |
|  | See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported) |
| Remedy: | - check the encoder parameterization (p0400, p0404). <br> - use the matching encoder evaluation (r0456). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F07553 (A) | Drive encoder: Sensor Module configuration not supported |
| :---: | :---: |
| Message value: | Encoder data set: \%1, first incorrect bit: \%2, incorrect parameter: \%3 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The Sensor Module does not support the requested configuration. <br> For incorrect p0430 (cc = 0), the following applies: <br> - In p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: Bit 19, 28, 29, 30, 31). <br> - p1982 > 0 (pole position identification requested), but r0458.16 $=0$ (pole position identification not supported). <br> For incorrect p0437 (cc = 1), the following applies: <br> - In p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions). <br> Fault value (r0949, interpret hexadecimal): <br> ddccbbaa hex <br> aa: encoder data set number <br> bb: first incorrect bit <br> cc: incorrect parameter <br> $\mathrm{cc}=0$ : incorrect parameter is p0430 <br> $c c=1$ : incorrect parameter is p0437 <br> $\mathrm{cc}=2$ : incorrect parameter is r 0459 <br> dd: reserved (always 0) |
| Remedy: | - check the encoder parameterization (p0430, p0437). <br> - check the pole position identification routine (p1982). <br> - use the matching encoder evaluation (r0458, r0459). <br> See also: p0430, p0437, r0458, r0459, p1982 |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07555 (A) | Drive encoder: Configuration position tracking |
| Message value: | Component number: \%1, encoder data set: \%2, drive data set: \%3, fault cause: \%4 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For position tracking, the configuration is not supported. <br> Position tracking can only be activated for absolute encoders. <br> For linear axes, it is not possible to simultaneously activate the position tracking for load and measuring gears. <br> Fault value (r0949, interpret hexadecimal): <br> ddccbbaa hex <br> aa = encoder data set <br> bb = component number <br> $c c=$ drive data set <br> dd = fault cause <br> $d d=00$ hex $=0 \mathrm{dec}$ <br> An absolute encoder is not being used. <br> $\mathrm{dd}=01$ hex $=1 \mathrm{dec}$ <br> Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit <br> does not have an NVRAM. <br> $d d=02$ hex $=2$ dec <br> For a linear axis, the position tracking was activated for the load and measuring gear. $d d=03 \text { hex }=3 \mathrm{dec}$ <br> Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set. $d d=04 \text { hex }=4 \mathrm{dec}$ <br> A linear encoder is being used. <br> See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration) |


| Remedy: | - use an absolute encoder. <br> - if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear). <br> - use a Control Unit with sufficient NVRAM. <br> - Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p2720.1) and tolerance window (p2722) are also the same. |
| :---: | :---: |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07556 | Measuring gear: Position tracking, maximum actual value exceeded |
| Message value: | Component number: \%1, encoder data set: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits. <br> Maximum value: p0408 * p0412 * $2^{\wedge}$ p0419 <br> Fault value (r0949, interpret decimal): <br> aaaayyxx hex: $y y=$ component number, $x x=$ encoder data set <br> See also: p0408, p0412 (Measuring gear, absolute encoder, rotary, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits)) |
| Remedy: | - reduce the fine resolution ( p 0419 ). <br> - reduce the multiturn resolution (p0412). <br> See also: p0412 (Measuring gear, absolute encoder, rotary, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits)) |
| A07557 (F) | Encoder 1: Reference point coordinate not in the permissible range |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The reference point coordinate received when adjusting the encoder via connector input $\mathrm{Cl}: \mathrm{p} 2599$ lies outside the half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in the supplementary information. |
| Remedy: | Set the reference point coordinate less than the value from the supplementary information. See also: p2598 (EPOS reference point coordinate, signal source) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A07558 (F) | Encoder 2: Reference point coordinate not in the permissible range |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The reference point coordinate received when adjusting the encoder via connector input CI:p2599 lies outside the <br> half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in <br> the supplementary information. |
|  | Set the reference point coordinate less than the value from the supplementary information. |
| Remedy: | See also: p2598 (EPOS reference point coordinate, signal source) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A07559 (F) | Encoder 3: Reference point coordinate not in the permissible range |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The reference point coordinate received when adjusting the encoder via connector input CI:p2599 lies outside the <br> half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in <br> the supplementary information. |
| Remedy: | Set the reference point coordinate less than the value from the supplementary information. <br> See also: p2598 (EPOS reference point coordinate, signal source) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


|  | $\operatorname{cccc}=04$ hex $=4 \mathrm{dec}$ |
| :---: | :---: |
|  | A linear encoder is used that does not support the "position tracking" function. |
|  | See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration), r0456 (Encoder configuration supported) |
| Remedy: | - check the encoder parameterization (p0400, p0404). |
|  | - use a Control Unit with sufficient NVRAM. |
|  | - if required, de-select position tracking for the incremental encoder ( $\mathrm{p} 0411.3=0$ ). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07563 (A) | Drive encoder: XIST1_ERW configuration incorrect |
| Message value: | Fault cause: \%1, encoder data set: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
|  | Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | An incorrect configuration was identified for the "Absolute position for incremental encoder" function. |
|  | Fault value (r0949, interpret decimal): |
|  | Fault cause: |
|  | 1 (= 01 hex): |
|  | The "Absolute value for incremental encoder" function is not supported (r0459.13=0). |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | yyxx dec: $y y=$ fault cause, $x x=$ encoder data set <br> See also: r0459, p4652 |
| Remedy: | For fault value = 1: |
|  | - upgrade the Sensor Module firmware version. |
|  | - check the mode ( $\mathrm{p} 4652=1,3$ requires the property r0459.13 $=1$ ) . |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A07565 (F, N) | Drive: Encoder error in PROFIdrive encoder interface 1 |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15). |
|  | Alarm value (r2124, interpret decimal): |
|  | Error code from G1_XIST2, refer to the description regarding r0483. |
|  | Note: |
|  | This alarm is only output if p0480[0] is not equal to zero. |
|  | Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1). |
| Remedy: | Infeed: NONE (OFF1, OFF2) |
| Reaction upon F: | Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A07566 (F, N) | Drive: Encoder error in PROFIdrive encoder interface 2 |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15). |
|  | Alarm value (r2124, interpret decimal): |
|  | Error code from G2_XIST2, refer to the description regarding r0483. |


|  | Note: <br> This alarm is only output if p 0480 [1] is not equal to zero. |
| :---: | :---: |
| Remedy: | Acknowledge the encoder error using the encoder control word (G2_STW. $15=1$ ). |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07567 (F, N) | Drive: Encoder error in PROFldrive encoder interface 3 |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15). Alarm value (r2124, interpret decimal): <br> Error code from G3_XIST2, refer to the description regarding r0483. <br> Note: <br> This alarm is only output if $\mathrm{p} 0480[2]$ is not equal to zero. |
| Remedy: | Acknowledge the encoder error using the encoder control word (G3_STW. $15=1$ ). |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07569 (F) | Encoder could not be identified |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | During encoder identification (waiting) with $\mathrm{p} 0400=10100$, the encoder could not be identified. Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been connected or no encoder cable has been connected to the Sensor Module, or the DRIVE-CLiQ component has not been connected to DRIVE-CLiQ. <br> Note: <br> Encoder identification must be supported by the encoder and is possible in the following cases: <br> - Encoder with EnDat interface <br> - Motor with DRIVE-CLiQ |
| Remedy: | - check and, if necessary, connect the encoder and/or encoder cable. <br> - check and, if necessary, establish the DRIVE-CLiQ connection. <br> - in the case of encoders that cannot be identified (e.g. encoders without EnDat interface), the correct encoder type must be entered in p0400. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| F07575 | Drive: Motor encoder not ready |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 <br> Servo: OFF2 (ENCODER) <br> Vector: OFF2 (ENCODER) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The motor encoder signals that it is not ready. <br> - initialization of encoder 1 (motor encoder) was unsuccessful. <br> - the function "parking encoder" is active (encoder control word G1_STW. $14=1$ ). |


|  | - the encoder interface (Sensor Module) is de-activated (p0145). <br> - the Sensor Module is defective. <br> Remedy: |
| :--- | :--- |
| Evaluate other queued faults via encoder 1. |  | | A07576 | Drive: Encoderless operation due to a fault active |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Encoderless operation is active due to a fault (r1407.13 = 1). <br>  <br> Note: |
| The behavior for faults has been set to ENCODER fault response in p0491. |  |
|  | See also: p0491 (Motor encoder fault response ENCODER) <br> - remove the cause of a possible encoder fault. |
|  | - carry out a POWER ON (power off/on) for all components. |


| A07577 (F) | Encoder 1: Measuring probe evaluation not possible |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the measuring probe, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 6: The input terminal for the measuring probe is not set. <br> 4098: Error when initializing the measuring probe. <br> 4100: The measuring pulse frequency is too high. <br> 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle. |
| Remedy: | De-activate the measuring probe evaluation (BI: p2509 = 0 signal). <br> Re alarm value $=6$ : <br> Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). <br> Re alarm value $=4098$ : <br> Check the Control Unit hardware. <br> Re alarm value $=4100$ : <br> Reduce the frequency of the measuring pulses at the measuring probe. <br> Re alarm value $=4200$ : <br> Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple. |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |


| A07578 (F) | Encoder 2: Measuring probe evaluation not possible |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the measuring probe, an error occurred. |
|  | Alarm value (r2124, interpret decimal): |
|  | 6: The input terminal for the measuring probe is not set. |
|  | 4098: Error when initializing the measuring probe. |
|  | 4100: The measuring pulse frequency is too high. |
|  | 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle. |
|  | De-activate the measuring probe evaluation (BI: p2509 = 0 signal). |
|  | Re alarm value $=6:$ |
|  | Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). |
|  | Re alarm value $=4098:$ |
|  | Check the Control Unit hardware. |
|  | Re alarm value $=4100$ : |
|  | Reduce the frequency of the measuring pulses at the measuring probe.. |


|  | Re alarm value $=4200$ : <br> Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple. |
| :---: | :---: |
| Reaction upon F : | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |
| A07579 (F) | Encoder 3: Measuring probe evaluation not possible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the measuring probe, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 6: The input terminal for the measuring probe is not set. <br> 4098: Error when initializing the measuring probe. <br> 4100: The measuring pulse frequency is too high. <br> 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle. |
| Remedy: | De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). <br> Re alarm value $=6$ : <br> Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). <br> Re alarm value $=4098$ : <br> Check the Control Unit hardware. <br> Re alarm value $=4100$ : <br> Reduce the frequency of the measuring pulses at the measuring probe. <br> Re alarm value $=4200$ : <br> Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple. |
| Reaction upon F: | OFF1 |
| Acknowl. upon F: | IMMEDIATELY |
| A07580 (F, N) | Drive: No Sensor Module with matching component number |
| Message value: | Encoder data set: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A Sensor Module with the component number specified in p0141 was not found. Alarm value (r2124, interpret decimal): <br> Encoder data set involved (index of p0141). |
| Remedy: | Correct parameter p0141. |
| Reaction upon F: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) <br> Vector: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07581 (F) | Encoder 1: Position actual value preprocessing error |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred during the position actual value preprocessing. |
| Remedy: | Check the encoder for the position actual value preprocessing. See also: p2502 (LR encoder assignment) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A07582 (F) | Encoder 2: Position actual value preprocessing error |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred during the position actual value preprocessing. |
| Remedy: | Check the encoder for the position actual value preprocessing. See also: p2502 (LR encoder assignment) |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| A07583 (F) | Encoder 3: Position actual value preprocessing error |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred during the position actual value preprocessing. |
| Remedy: | Check the encoder for the position actual value preprocessing. See also: p2502 (LR encoder assignment) |
| Reaction upon F : | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| A07584 | Encoder 1: Position setting value activated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position actual value is set to the value received via CI: p2515while BI: $\mathrm{p} 2514=1$ signal. A possible system deviation cannot be corrected. |
| Remedy: | Not necessary. <br> The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal. |
| A07585 | Encoder 2: Position setting value activated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position actual value is set to the value received via CI: p 2515 while BI : $\mathrm{p} 2514=1$ signal. A possible system deviation cannot be corrected. |
| Remedy: | Not necessary. <br> The alarm automatically disappears with BI : $\mathrm{p} 2514=0$ signal. |


| A07586 | Encoder 3: Position setting value activated |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position actual value is set to the value received via $\mathrm{CI}: \mathrm{p} 2515 \mathrm{while} \mathrm{BI}: \mathrm{p} 2514=1$ signal. A possible system <br> deviation cannot be corrected. <br> Remedy: |
|  | Not necessary. |
|  | The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal. |


| A07587 | Encoder 1: Position actual value preprocessing does not have a valid encoder |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The following problem has occurred during the position actual value preprocessing. <br> - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 $=0$ ) or invalid data (e.g. p0408 = 0). |
| Remedy: | Check the drive data sets, encoder data sets. <br> See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment) |
| A07588 | Encoder 2: Position actual value preprocessing does not have a valid encoder |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The following problem has occurred during the position actual value preprocessing. <br> - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 $=0$ ) or invalid data (e.g. p0408=0). |
| Remedy: | Check the drive data sets, encoder data sets. <br> See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 <br> (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment) |


| A07589 | Encoder 3: Position actual value preprocessing does not have a valid encoder |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The following problem has occurred during the position actual value preprocessing. <br>  <br> - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 <br> = 0) or invalid data (e.g. p0408 = 0). <br> Check the drive data sets, encoder data sets. |
| Remedy: | See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 <br> (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment) |
|  |  |


| A07590 (F) | Encoder 1: Drive Data Set changeover in operation |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment <br> (p2502) was requested in operation. |
| Remedy: | To changeover the drive data set, initially, exit the "operation" mode. <br> Reaction upon F: <br> OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |

A07591 (F) Encoder 2: Drive Data Set changeover in operation
Message value:
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction: NONE
Acknowledge: NONE
Cause: A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment
(p2502) was requested in operation.
Remedy: To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY

| A07592 (F) | Encoder 3: Drive Data Set changeover in operation |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment <br> (p2502) was requested in operation. |
| Remedy: | To changeover the drive data set, initially, exit the "operation" mode. |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A07593 (F, N) | Encoder 1: Value range for position actual value exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The value range ( $-2147483648 \ldots 2147483647$ ) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset. <br> Fault value (r0949, interpret decimal): <br> 1: The position actual value ( r 2521 ) has exceeded the value range. <br> 2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range. <br> 3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value. |
| Remedy: | If required, reduce the traversing range or position resolution. <br> Re alarm value $=3$ : <br> Reducing the position resolution and conversion factor: <br> - reduce the length unit (LU) per load revolution for rotary encoders (p2506). <br> - increase the fine resolution of absolute position actual values (p0419). |
| Reaction upon F : | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A07594 (F, N) Encoder 2: Value range for position actual value exceeded
Message value: \%1
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Reaction: NONE
Acknowledge: NONE
Cause: The value range ( $-2147483648 \ldots 2147483647$ ) for the position actual value representation was exceeded.
When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.
Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Remedy: If required, reduce the traversing range or position resolution.
Re alarm value $=3$ :
Reducing the position resolution and conversion factor:

- reduce the length unit (LU) per load revolution for rotary encoders (p2506)
- increase the fine resolution of absolute position actual values (p0419).

Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY

| Reaction upon N: | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{N}:$ | NONE |


| A07595 (F, N) | Encoder 3: Value range for position actual value exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The value range ( $-2147483648 \ldots 2147483647$ ) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset. <br> Fault value (r0949, interpret decimal): <br> 1: The position actual value (r2521) has exceeded the value range. <br> 2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range. <br> 3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value. |
| Remedy: | If required, reduce the traversing range or position resolution. <br> Re alarm value $=3$ : <br> Reducing the position resolution and conversion factor: <br> - reduce the length unit (LU) per load revolution for rotary encoders (p2506). <br> - increase the fine resolution of absolute position actual values (p0419). |
| Reaction upon F: | OFF1 (OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A07596 (F) | Encoder 1: Reference function interrupted |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An activated reference function (reference mark search or measuring probe evaluation) was interrupted. <br>  <br> - an encoder fault has occurred (Gn_ZSW.15 = 1). <br> - position actual value was set during an activated reference function. <br> - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 sig- <br> nal). <br> - activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 <br> and BI: p2509 = 0 signal). |
| Remedy: | - check the causes and resolve. <br> - reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function. |
| Reaction upon F: | OFF1 (OFF2, OFF3) <br> Acknowl. upon F: |


| A07597 (F) | Encoder 2: Reference function interrupted |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An activated reference function (reference mark search or measuring probe evaluation) was interrupted. <br> - an encoder fault has occurred (Gn_ZSW. 15 = 1). <br> - position actual value was set during an activated reference function. <br> - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal). <br> - activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI : p2509 $=0$ signal). |
| Remedy: | - check the causes and resolve. |
|  | - reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function. |

Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY

| A07598 (F) | Encoder 3: Reference function interrupted |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An activated reference function (reference mark search or measuring probe evaluation) was interrupted.  <br>  - an encoder fault has occurred (Gn_ZSW.15 = 1). <br>  - position actual value was set during an activated reference function. |
|  | - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 sig- |
| nal). |  |


| Remedy: | If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow. <br> For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: <br> 1. Motor encoder without position tracking: p2506 * p0433 * p2505 / (p0432 * p2504) <br> p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders <br> 2. Motor encoder with position tracking for measuring gear: p2506 * p0412 * p2505 / p2504 <br> 3. Motor encoder with position tracking for load gear: p2506 * p2721 * p0433 / p0432 <br> 4. Motor encoder with position tracking for load and measuring gear: p2506 * p2721 <br> 5. Direct encoder without position tracking: p2506 * p0433 / p0432 <br> p2506 * p0433 * p0421 / p0432 for multiturn encoders <br> 6. Direct encoder with position tracking for measuring gear: p2506 * p0412 |
| :---: | :---: |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07601 (A) | Encoder 3: Adjustment not possible |
| Message value: | Drive data set: \%1 |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value. |
| Remedy: | If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow. <br> For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: <br> 1. Motor encoder without position tracking: p2506 * p0433 * p2505 / (p0432 * p2504) <br> p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders <br> 2. Motor encoder with position tracking for measuring gear: p2506 * p0412 * p2505 / p2504 <br> 3. Motor encoder with position tracking for load gear: p2506 * p2721 * p0433 / p0432 <br> 4. Motor encoder with position tracking for load and measuring gear: p2506 * p2721 <br> 5. Direct encoder without position tracking: p2506 * p0433 / p0432 <br> p2506 * p0433 * p0421 / p0432 for multiturn encoders <br> 6. Direct encoder with position tracking for measuring gear: p2506 * p0412 |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07800 | Drive: No power unit present |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit parameters cannot be read or no parameters are stored in the power unit. It is possible that the DRIVE-CLiQ cable between the Control Unit and power unit is interrupted or defective. <br> Note: <br> This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit. <br> See also: r0200 (Power unit code number actual) |

```
Remedy: - carry out a POWER ON (power off/on) for all components.
    - check the DRIVE-CLiQ cable between the Control Unit and power unit.
    - Check the power unit and replace if necessary.
    - check the Control Unit, and if required replace it.
    - after correcting the topology, the parameters must be again downloaded using the commissioning software.
```

| F07801 | Drive: Motor overcurrent |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The permissible motor limit current was exceeded. <br> - effective current limit set too low. <br> - current controller not correctly set. <br> - motor was braked with an excessively high stall torque correction factor. <br> - U/f operation: Up ramp was set too short or the load is too high. <br> - U/f operation: Short-circuit in the motor cable or ground fault. <br> - U/f operation: Motor current does not match the current of Motor Module. <br> Note: <br> Synchronous motor: Limit current $=1.3 \times \mathrm{p} 0323$ <br> Induction motor: Limit current $=1.3 \times$ r0209 |
| Remedy: | - check the current limits (p0323, p0640). <br> - check the current controller ( $\mathrm{p} 1715, \mathrm{p} 1717$ ). <br> - reduce the stall torque correction factor ( p 0326 ). <br> - increase the up ramp (p1318) or reduce the load. <br> - check the motor and motor cables for short-circuit and ground fault. <br> - check the Motor Module and motor combination. |

## F07801 Drive: Motor overcurrent

Message value:
Drive object:
Reaction:
Acknowledge:
Cause: The permissible motor limit current was exceeded.

- effective current limit set too low.
- current controller not correctly set.
- U/f operation: Up ramp was set too short or the load is too high.
- U/f operation: Short-circuit in the motor cable or ground fault.
- U/f operation: Motor current does not match current of power unit.
- Switch to rotating motor without flying restart function (p1200).

Note:
Limit current $=2 \times$ minimum (p0640, $4 \times p 0305 \times p 0306$ ) $>=2 \times p 0305 \times p 0306$
Remedy: $\quad$ - check the current limits ( p 0640 ).

- vector control: Check the current controller (p1715, p1717).
- U/f control: Check the current limiting controller (p1340 ... p1346).
- increase the up ramp (p1120) or reduce the load.
- check the motor and motor cables for short-circuit and ground fault.
- check the motor for the star-delta configuration and rating plate parameterization.
- check the power unit and motor combination.
- Choose "flying restart" function (p1200) if switched to rotating motor.
F07802 Drive: Infeed or power unit not ready

Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: After an internal power-on command, the infeed or drive does not signal ready.

- monitoring time is too short.
- DC link voltage is not present.

|  | - associated infeed or drive of the signaling component is defective. |
| :--- | :--- |
| - supply voltage incorrectly set. |  |
| Remedy: | - increase the monitoring time (p0857). |
| - ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed. |  |
| - - check the line supply voltage setting (p0210). |  |
| See also: p0857 (Power unit monitoring time) |  |


| A07805 (N) | Infeed: Power unit overload I2t |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Alarm threshold for I2t overload (p0294) of the power unit exceeded. |
| Remedy: | - reduce the continuous load. |
|  | - adapt the load duty cycle. |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A07805 (N) | Drive: Power unit overload I2t |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Alarm threshold for I2t overload (p0294) of the power unit exceeded. <br> The response parameterized in p0290 becomes active. |
|  | See also: p0290 (Power unit overload response) |
| - reduce the continuous load. |  |

F07807 Drive: Short-circuit/ground fault detected
Message value: \%1
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter.
Fault value (r0949, interpret decimal):
1: Short-circuit, phases U-V
2: Short-circuit, phases U-W
3: Short-circuit, phases V-W
4: Ground fault with overcurrent
1xxxx: Ground fault with current in phase U detected ( $x x x x=$ component of the current in phase V in per mille)
$2 x x x x$ : Ground fault with current in phase $V$ detected ( $x x x x=$ component of the current in phase $U$ in per mille)
Note:
Also when interchanging the line and motor cables is identified as a motor-side short circuit.
Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault.

Remedy:
- check the motor-side converter connection for a phase-phase short-circuit.
- rule-out interchanged line and motor cables.
- check for a ground fault.
For a ground fault:
- do not enable the pulses when connecting to a rotating motor without the "Flying restart" function activated (p1200).
- increase the de-energization time (p0347).
- If required, deactivate the monitoring (p1901).

| F07808 (A) | HF damping module: damping not ready |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When switching on or in the switched-on state, the HF damping module does not return a ready signal. |
| Remedy: | - Check the DRIVE-CLiQ wiring to the HF damping module. <br> - check the 24 V supply voltage. <br> - if required, replace the HF damping module. <br> Note: <br> HF Damping Module |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07810 | Drive: Power unit EEPROM without rated data |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | No rated data are stored in the power unit EEPROM. <br> See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit, maximum current) |
| Remedy: | Replace the power unit or inform Siemens Customer Service. |
| F07815 | Drive: Power unit has been changed |
| Message value: | Parameter: \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum). <br> Fault value (r0949, interpret decimal): <br> Number of the incorrect parameter. <br> See also: r0200 (Power unit code number actual), p0201 (Power unit code number) |
| Remedy: | Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$. <br> For infeeds, the following applies: <br> Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 $=5$ ) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units. <br> For inverters, the following applies: <br> If the new power unit is accepted, then if required, the current limit (p0640) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same). <br> If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 $=1$ ). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ. <br> See also: r0200 (Power unit code number actual) |
| F07815 | Drive: Power unit has been changed |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum). |


|  | Fault value (r0949, interpret decimal): |
| :--- | :--- |
|  | Number of the incorrect parameter. |
|  | See also: r0200 (Power unit code number actual), p0201 (Power unit code number) |
| Remedy: | Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit |
|  | commissioning with p0010 = 0. |
|  | For infeeds, the following applies: |
|  | Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identifi- |
|  | cation routine (p3410 = 5) must then be carried out. It is not possible to change the power unit without re-commis- |
| sioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, |  |
| chassis) or the voltage class differ between the old and new power units. |  |

Re alarm value $=5$ :

- connect the component with the temperature sensor. Check the DRIVE-CLiQ connection.

Re alarm value $=6$ :

- update the Motor Module firmware. Connect temperature sensor via encoder.

See also: p0600 (Motor temperature sensor for monitoring), p0601

| A07825 (N) | Drive: Simulation mode activated |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The simulation mode is activated. |
|  | The drive can only be powered up if the DC link voltage is less than 40 V. |
| Remedy: | Not necessary. |
|  | The alarm automatically disappears if simulation mode is de-activated with p1272 = 0. |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

F07826 Drive: DC link voltage for simulation operation too high
Message value:
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: $\quad$ The simulation mode is activated and the DC link voltage is greater than the permissible value of 40 V .
Remedy: - switch out (disable) simulation mode $(\mathrm{p} 1272=0)$ and acknowledge the fault.

- reduce the input voltage in order to reach a DC link voltage below 40 V .

| F07840 | Drive: Infeed operation missing |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The signal "infeed operation" is not present although the enable signals for the drive have been present for longer <br> than the parameterized monitoring time (p0857). <br>  <br> - infeed not operational. <br> - interconnection of the binector input for the ready signal is either incorrect or missing (p0864). |
| - infeed is presently carrying out a line supply identification routine. |  |
| Remedy: | - bring the infeed into an operational state. |
|  | - check the interconnection of the binector input for the signal "infeed operation" (p0864). <br> - increase the monitoring time (p0857). <br> - wait until the infeed has completed the line supply identification routine. <br> See also: p0857 (Power unit monitoring time), p0864 (Infeed operation) |
|  |  |

F07841 (A) Drive: Infeed operation withdrawn

Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The signal "infeed operation" was withdrawn in operation.

- interconnection of the binector input for the signal "infeed operation" is either incorrect or missing (p0864).
- the enable signals of the infeed were disabled.
- due to a fault, the infeed withdraws the signal "infeed operation".

Remedy: - check the interconnection of the binector input for the "infeed operation" signal (p0864).

- check the enable signals of the infeed and if required, enable.
- remove and acknowledge an infeed fault.

Note:
If this drive is intended to back up the DC link regeneratively, then the fault response must be parameterized for NONE, OFF1 or OFF3. so that the drive can continue to operate even after the infeed fails.

| Reaction upon A: | NONE |
| :--- | :--- |
| Acknowl. upon A: | NONE |


| A07850 (F) | External alarm 1 |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The BICO signal for "external alarm 1" was triggered. |
|  | The condition for this external alarm is fulfilled. |
|  | See also: p2112 (External alarm 1) |
| Remedy: | Eliminate the causes of this alarm. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br>  <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A07851 (F) | External alarm 2 |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The BICO signal for "external alarm 2" was triggered. |
|  | The condition for this external alarm is fulfilled. |
|  | See also: p2116 (External alarm 2) |
| Remedy: | Eliminate the causes of this alarm. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br>  <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Acknowl. upon F: |
|  | Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | IMMEDIATELY (POWER ON) |


| A07852 (F) | External alarm 3 |
| :--- | :--- |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The BICO signal for "external alarm 3" was triggered. |
|  | The condition for this external alarm is fulfilled. |
|  | See also: p2117 (External alarm 3) |
| Remedy: | Eliminate the causes of this alarm. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br>  <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

F07860 (A) External fault 1
Message value: -

| Drive object: | All objects |
| :--- | :--- |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
|  | Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The BICO signal "external fault 1" was triggered. <br>  <br> Semedy: |
|  | Eliminate the causes of this fault. |


| Reaction upon A : Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| F07861 (A) | External fault 2 |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The BICO signal "external fault 2" was triggered. See also: p2107 (External fault 2) |
| Remedy: | Eliminate the causes of this fault. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F07862 (A) | External fault 3 |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The BICO signal "external fault 3 " was triggered. See also: p2108, p3111, p3112 |
| Remedy: | Eliminate the causes of this fault. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F07890 | Internal voltage protection / internal armature short-circuit with STO active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The internal armature short-circuit ( $\mathrm{p} 1231=4$ ) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled. |
| Remedy: | Switch out the internal armature short-circuit ( $\mathrm{p} 1231=0$ ) or de-activate Safe Torque Off ( $\mathrm{p} 9501=\mathrm{p} 9561=0$ ). Note: <br> STO: Safe Torque Off / SH: Safe standstill |
| A07899 (N) | Drive: Stall monitoring not possible |
| Message value: | Parameter: \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Stall monitoring is not possible, because a change was made into the open-loop speed controlled mode before the wait time p2177 had expired. <br> This situation can only occur, if the following conditions apply: $\begin{aligned} & \text { p1300 }=20 \\ & \text { p2177 > p1758 } \\ & \text { p1750.2 }=0 \\ & \text { p1750.6 }=0 \end{aligned}$ |
| Remedy: | - Deactivate the changeover into open-loop speed controlled operation when operating at the torque limit (p1750.6 $=0$ ). |


|  | Condition: <br> No slow reversing through the open-loop speed controlled operating range p1755 within the time p1758 when operating at the torque limit. <br> - shorten the stall detection wait time (p2177 < p1758). <br> - Activate closed-loop controlled operation from standstill and higher (p1750.2 = 1). <br> Condition: <br> There is no active load, for example, a hoisting gear <br> - Use an operating mode with encoder (p1300 = 21). |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07900 (N, A) | Drive: Motor blocked/speed controller at its limit |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175. <br> This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit. <br> See also: p2175, p2177 (Motor blocked delay time) |
| Remedy: | - check that the motor can freely move. <br> - check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539. <br> - check the parameter, message "Motor blocked" and if required, correct (p2175, p2177). <br> - check the inversion of the actual value (p0410). <br> - check the motor encoder connection. <br> - check the encoder pulse number (p0408). <br> - for SERVO with encoderless operation and motors with low power ratings (<300 W), increase the pulse frequency (p1800). <br> - after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring (p1528) and regenerative (p1529) torque limit and modify again. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F}} 07900$ (N, A) | Drive: Motor blocked |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175. <br> This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit. <br> If the simulation mode is enabled $(\mathrm{p} 1272=1)$ and the closed-loop control with speed encoder activated (p1300 = 21), then the inhibit signal is generated if the encoder signal is not received from a motor that is driven with the torque setpoint of the closed-loop control. <br> See also: p2175, p2177 (Motor blocked delay time) |
| Remedy: | - check that the motor can freely move. <br> - check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539. <br> - check the parameter, message "Motor blocked" and if required, correct (p2175, p2177). <br> - check the inversion of the actual value (p0410). <br> - check the motor encoder connection. <br> - check the encoder pulse number (p0408). <br> - for SERVO with encoderless operation and motors with low power ratings (<300 W), increase the pulse frequency (p1800). <br> - after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring (p1528) and regenerative (p1529) torque limit and modify again. |


|  | - in the simulation mode and operation with speed encoder, the power unit to which the motor is connected must be powered up and must be supplied with the torque setpoint of the simulated closed-loop control. Otherwise, change over to encoderless control (see p1300). |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F07901 | Drive: Motor overspeed |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum permissible speed was either positively or negatively exceeded. <br> The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162 <br> The maximum permissible negative speed is formed as follows: Maximum (-p1082, $\mathrm{Cl}: 1088$ ) - p2162 |
| Remedy: | The following applies for a positive direction of rotation: - check r1084 and if required, correct p1082, CI:p1085 and p2162. The following applies for a negative direction of rotation: - check r1087 and if required, correct p1082, CI:p1088 and p2162. |
| F07901 | Drive: Motor overspeed |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum permissible speed was either positively or negatively exceeded. <br> The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162 <br> The maximum permissible negative speed is formed as follows: Maximum (-p1082, $\mathrm{Cl}: 1088$ ) - p2162 |
| Remedy: | The following applies for a positive direction of rotation: <br> - check r1084 and if required, correct p1082, CI:p1085 and p2162. <br> The following applies for a negative direction of rotation: <br> - check r1087 and if required, correct p1082, CI:p1088 and p2162. <br> Activate pre-control of the speed limiting controller (p1401.7 = 1). <br> Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel. |


| F07902 (N, A) | Drive: Motor stalled |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The system has identified that the motor has stalled for a time longer than is set in p2178. |
|  | Fault value (r0949, interpret decimal): |
|  | 1: Stall detection using r1408.11 (p1744 or p0492). |
|  | 2: Stall detection using r1408.12 (p1745). |
|  | 3: Stall detection using r0056.11 (only for separately excited synchronous motors). |
|  | See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time) |
| Remedy: | For closed-loop speed and torque control with speed encoder, the following applies: |
|  | - check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft). |
|  | - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be con- |
| nected to the same motor that is controlled for the data set changeover. |  |
|  | If there is no fault, then the fault tolerance (p1744 and p0492) can be increased. |
|  | For closed-loop speed and torque control without speed encoder, the following applies: |
| - check whether the drive in the open-loop controlled mode (r1750.0) stalls under load. If yes, then increase the cur- |  |
| rent setpoint using p1610. |  |


|  | - check the current limits (p0640, r0067). If the current limits are too low, then the drive cannot be magnetized. |
| :--- | :--- |
|  | - check the current controller (p1715, p1717) and the speed adaptation controller (p1764, p1767). If the dynamic |
|  | response was significantly reduced, then this should be increased again. |
|  | - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be con- |
|  | nected to the motor that is controlled for the data set changeover. |
| If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased. |  |
|  | For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies: |
| - check the speed signal (interrupted cable, polarity, pulse number). |  |
|  | - ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters). |
|  | - check the excitation equipment and the interface to the closed-loop control. |
|  | - encoder the highest possible dynamic response of the closed-loop excitation current control. |


|  | For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies: <br> - check the speed signal (interrupted cable, polarity, pulse number). <br> - ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters). <br>  <br> - check the excitation equipment and the interface to the closed-loop control. <br> - encoder the highest possible dynamic response of the closed-loop excitation current control. <br> - check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter. <br> - do not exceed the maximum speed (p2162). <br> If there is no fault, then the delay time can be increased (p2178). |
| :--- | :--- |


| Remedy: | - check that the contactor feedback signal is correctly connected (p1235). <br> - check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open"). <br> - increase the monitoring time (p1236). <br> - if required, set the external armature short-circuit without contactor feedback signal (p1231 = 2). |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A : | NONE |
| F07906 | Armature short-circuit / internal voltage protection: Parameterization error |
| Message value: | Fault cause: \%1, motor data set: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The armature short-circuit is incorrectly parameterized. <br> Fault value (r0949, interpret decimal): <br> zzzzyyxx: zzzz = fault cause, $x x=$ motor data set <br> $z z z z=0001$ hex $=1 \mathrm{dec}$ : <br> A permanent-magnet synchronous motor has not been selected. <br> zzzz $=0002$ hex $=2$ dec: <br> No induction motor selected. <br> zzzz $=0065$ hex $=101 \mathrm{dec}$ : <br> External armature short-circuit: Output (r1239.0) not wired. <br> zzzz = 0066 hex = 102 dec: <br> External armature short-circuit with contactor feedback signal: No feedback signal connected (BI:p1235). <br> zzzz $=0067$ hex $=103 \mathrm{dec}$ : <br> External armature short-circuit without contactor feedback signal: Wait time when opening ( p 1237 ) is 0 . <br> zzzz = 00C9 hex = 201 dec: <br> Internal voltage protection: The maximum output current of the Motor Module (r0209) is less than $1.8 \times$ motor shortcircuit current (r0331). <br> $z z z z=00 \mathrm{CA}$ hex $=202 \mathrm{dec}:$ <br> Internal voltage protection: A Motor Module in booksize or chassis format is not being used. <br> zzzz = 00CB hex = 203 dec : <br> Internal voltage protection: The motor short-circuit current ( p 0320 ) is greater than the maximum motor current (p0323). <br> zzzz = 00CC hex $=204 \mathrm{dec}:$ <br> Internal voltage protection: The activation $(\mathrm{p} 1231=4)$ is not given for all motor data sets with synchronous motors (p0300 = 2xx, 4xx). |
| Remedy: | For fault value $=1$ : <br> - an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4 . <br> For fault value $=101$ : <br> - the contactor for the external armature short-circuit configuration should be controlled using output signal r1239.0. <br> The signal can, e.g. be connected to an output terminal via binector input p0738. Before this fault can be acknowledged, p1231 must be set again. <br> For fault value $=102$ : <br> - if the external armature short-circuit with contactor feedback signal ( $\mathrm{p} 1231=1$ ) is selected, this feedback signal must be connected to an input terminal (e.g. r722.x) and then connected to BI: p1235. <br> - alternatively, the external armature short-circuit without contactor feedback signal (p1231=2) can be selected. <br> For fault value = 103: <br> - if the external armature short-circuit without contactor feedback signal ( $\mathrm{p} 1231=2$ ) is selected, then a delay time must be parameterized in p 1237 . This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited! <br> For fault value =201: <br> - a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than 1.8 x short-circuit current of the motor. <br> For fault value $=202$ : <br> - for internal voltage protection, use a Motor Module in booksize or chassis format. <br> For fault value $=203$ : <br> - for internal voltage protection, only use short-circuit proof motors. |

For fault value $=204$ :

- The internal voltage protection must either be activated for all motor data sets with synchronous motors (p0300 = $2 x x, 4 x x)(p 1231=3)$ or it must be de-activated for all motor data sets ( p 1231 not equal to 3 ). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

| F07907 | Internal armature short-circuit: Motor terminals are not at zero potential after pulse suppression |
| :---: | :---: |
| Message value: | - ${ }^{\text {c }}$ |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The function "Internal voltage protection" (p1231 = 3) was activated. <br> The following must be observed: <br> - when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)! <br> - it is only permissible to use motors that are short-circuit proof ( $\mathrm{p} 0320<\mathrm{p} 0323$ ). <br> - the Motor Module must be able to continually conduct $180 \%$ short-circuit current (r0331) of the motor (r0289). <br> - the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor. <br> - if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components. <br> - if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module. <br> - if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor). |
| Remedy: | Not necessary. <br> This a note for the user. |
| A07908 | Internal armature short-circuit active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal armature short-circuit is selected (p1231 = 4): |
| Remedy: | For synchronous motors, the armature short-circuit braking is activated with binector input p1230 $=1$ signal. See also: p1230 (Armature short-circuit / DC braking activation), p1231 (Armature short-circuit / DC braking configuration) |
| F07909 | Internal voltage protection: De-activation only effective after POWER ON |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | POWER ON |
| Cause: | The de-activation of the internal voltage protection (p1231 not equal to 3) only becomes effective after POWER ON. The status signal r1239.6 = 1 indicates that the internal voltage protection is ready. |
| Remedy: | Not necessary. <br> This a note for the user. |


| A07910 (N) | Drive: Motor overtemperature |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | KTY: <br> The motor temperature has exceeded the alarm threshold (p0604, p0616). <br> PTC: <br> The response threshold of 1650 Ohm was exceeded. <br> Alarm value (r2124, interpret decimal): <br> this is the number of the temperature channel leading to the message. <br> See also: p0604, p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628 |
| Remedy: | - check the motor load. <br> - check the motor ambient temperature and cooling. <br> - check PTC or bimetallic NC contact. <br> See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07910 (N) | Drive: Motor overtemperature |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | KTY or no sensor: <br> The measured motor temperature or temperature of motor temperature model 2 has exceeded the alarm threshold (p0604, p0616). The response parameterized in p0610 becomes active. <br> PTC or bimetallic NC contact: <br> The response threshold of 1650 Ohm was exceeded or the NC contact opened. <br> Alarm value (r2124, interpret decimal): <br> - SME not selected in p0601: <br> 11: No output current reduction. <br> 12: Output current reduction active. <br> - SME or TM120 selected in p0601 (p0601 = 10, 11): <br> this is the number of the temperature channel leading to the message. <br> See also: p0604 (Mot_temp_mod 1/KTY alarm threshold), p0610 (Motor overtemperature response) |
| Remedy: | - check the motor load. <br> - check the motor ambient temperature and cooling. <br> - check PTC or bimetallic NC contact. <br> See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07913 | Excitation current outside the tolerance range |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The difference between the excitation current actual value and setpoint has exceeded the tolerance: abs (r1641-r1626) > p3201 + p3202 <br> The cause of this fault is again reset for abs(r1641-r1626) < p3201. |
| Remedy: | - check the parameterization (p1640, p3201, p3202). <br> - check the interfaces to the excitation equipment (r1626, p1640). <br> - check the excitation equipment. |

\(\left.$$
\begin{array}{ll}\hline \text { F07914 } & \text { Flux out of tolerance } \\
\text { Message value: } & \text { - } \\
\text { Drive object: } & \text { SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC } \\
\text { Reaction: } & \text { OFF2 } \\
\text { Acknowledge: } & \text { IMMEDIATELY } \\
\text { Cause: } & \begin{array}{l}\text { The difference between the flux actual value and setpoint has exceeded the tolerance: } \\
\text { abs(r0084 - r1598) > p3204 + p3205 }\end{array}
$$ <br>
The cause of this fault is again reset for abs(r0084 - r1598) < p3204. <br>

The fault is only issued after the delay time in p3206 has expired.\end{array}\right]\)|  | - check the parameterization (p3204, p3205). |
| :--- | :--- |
| - check the interfaces to the excitation equipment (r1626, p1640). |  |
| Remedy: | - check the excitation equipment. |


| A07922 | Drive: Torque/speed out of tolerance |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The torque deviates from the torque/speed envelope characteristic. |
| Remedy: | - check the connection between the motor and load. |
|  | - adapt the parameterization corresponding to the load. |


| A07927 | DC braking active |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The motor is braked with DC current. DC braking is active. <br> 1) <br> A message with response DCBRK is active. The motor is braked with the braking current set in p 1232 for the duration set in in p 1233 . If the standstill threshold p 1226 is undershot, then braking is prematurely canceled. <br> 2) <br> DC braking has been activated at binector input p1230 with the DC braking set ( $\mathrm{p} 1230=4$ ). Braking current p1232 is injected until this binector input becomes inactive. |
| Remedy: | Not necessary. <br> The alarm automatically disappears once DC braking has been executed. |
| F07928 | Internal voltage protection initiated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal voltage protection is selected (p1231 = 3). |
| Remedy: | If the Motor Module supports the autonomous internal voltage protection ( $\mathrm{r} 0192.10=1$ ), then the Motor Module automatically decides - using the DC link voltage - as to whether the armature short-circuit should be activated. <br> The armature short-circuit is activated and response OFF2 is initiated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the armature short-circuit is withdrawn. <br> If the motor is still in a critical speed range, the armature short-circuit is re-activated once the DC link voltage exceeds the threshold of 800 V . <br> If the autonomous (independent) internal voltage protection is active (r1239.5 = 1) and the line supply returns (450 $\mathrm{V}<\mathrm{DC}$ link voltage $<800 \mathrm{~V}$ ), the armature short-circuit is withdrawn after 3 minutes. |
| F07930 | Drive: Brake control error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The Control Unit has detected a brake control error. |
|  | Fault value (r0949, interpret decimal): |
|  | 10, 11: Fault in "open holding brake" operation. |
|  | - No brake connected or wire breakage (check whether brake releases for p1278 = 1). <br> - Ground fault in brake cable. |
|  | 20: Fault in "brake open" state. |
|  | - Short-circuit in brake winding. |
|  | 30, 31: Fault in "close holding brake" operation. |
|  | - No brake connected or wire breakage (check whether brake releases for p1278 = 1). <br> - Short-circuit in brake winding. |
|  | 40: Fault in "brake closed" state. |
|  | 50: Fault in the brake control circuit of the Control Unit or communication fault between Control Unit and Motor Module (brake control diagnostics). |
|  | 80: When using the Safe Brake Adaptor (SBA), a fault has occurred in the brake control of the Control Unit. 90: Brake released for service purposes (X4). |
|  | Note: |
|  | The following causes may apply to fault values: - motor cable is not shielded correctly. |
|  | - defect in control circuit of the Motor Module. |
|  | See also: p1278 (Brake control, diagnostics evaluation) |

- for a parallel connection, check the setting of the power unit data set to control the holding brake (p7015).
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing)
- replace the Motor Module involved.

Operation with Safe Brake Module:

- check the Safe Brake Modules connection
- replace the Safe Brake Module.

Operation with Safe Brake Module (SBA):

- check the SBA connection and if required, replace the SBA.

See also: p1215 (Motor holding brake configuration), p1278 (Brake control, diagnostics evaluation)

| A07931 (F, N) | Brake does not open |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | This alarm is output for r1229.4 = 1. <br>  <br> See also: p1216 (Motor holding brake, opening time), r1229 (Motor holding brake status word) <br> - check the functionality of the motor holding brake. |
| - check the feedback signal (p1223). |  |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A07932 | Brake does not close |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | This alarm is output for $\mathrm{r} 1229.5=1$. <br> For r1229.5 = 1, OFF1/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor whereby OFF2 remains effective. <br> See also: p1217 (Motor holding brake closing time), r1229 (Motor holding brake status word) |
| Remedy: | - check the functionality of the motor holding brake. <br> - check the feedback signal (p1222). |

F07934 (N) Drive: S120 Combi motor holding brake configuration

Message value: \%1

| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :--- | :--- |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |

Cause: A connected motor holding brake has been detected with an S120 Combi. However, this brake has not been assigned to just one Combi feed drive and, therefore, brake control is not configured (correctly). It is also not permitted to assign the brake to the spindle.
Fault value (r0949, interpret decimal):
0 : No motor holding brake is assigned (p1215 = 0 or 3 on all S120 Combi feed drives).
1: More than one motor holding brake has been assigned (p1215 = 1 or 2 on more than one S120 Combi feed drive)

- or there is more than one DRIVE-CLiQ motor with motor holding brake.

2: Brake was accidentally assigned to the spindle (p1215 = 1); this is not permitted.
3: An attempt was made to enable the function "Safe brake control" (SBC, p9602 = p9802 = 1) for the spindle. This is not permitted.

| Remedy: | Check whether the motor holding brake has been assigned to one S120 Combi feed drive exclusively ( $\mathrm{p} 1215=1$ or <br> 2) and not the spindle. <br> The fault will only be withdrawn once the motor holding brake has been assigned to just one of the S120 Combi feed drives and not the spindle (p1215 = 1 or 2 for this one drive). From this point, the motor holding brake will be controlled by this drive. <br> See also: p1215 (Motor holding brake configuration) |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07935 (N) | Drive: Incorrect motor holding brake configuration |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An incorrect motor holding brake configuration was detected. <br> Fault value (r0949, interpret decimal): <br> 0 : <br> A motor holding brake was detected where the brake control has not been configured ( $\mathrm{p} 1215=0$ ). <br> The brake control configuration was set to "motor holding brake the same as sequence control" (p1215 = 1) (only <br> when commissioning for the first time). <br> For a chassis unit with Safe Brake Adapter (SBA), the interconnection p9621 = r9872.3 was established (only when commissioning for the first time). <br> For a parallel connection, the power unit was set in p7015, to which the motor holding brake is connected (only when commissioning for the first time). <br> 1: <br> A motor holding brake was detected where the brake control has not been configured ( $\mathrm{p} 1215=0$ ). <br> The brake control configuration was left at "No motor holding brake available" (p1215 = 0). <br> 11: <br> The identification had detected more than one motor holding brake for a parallel connection. <br> 12: <br> For the parallel connection, in p0121 there is no valid component number for the power unit data set that is set in p7015. <br> 13: <br> With the "Safe brake control" (SBC) function activated, an attempt was made to change the value in p7015. <br> 14: <br> For a parallel connection, the power units set in p7015 cannot be addressed. |
| Remedy: | For fault value $=0$ : <br> - No remedy required. <br> For fault value =1: <br> - If required change the motor holding brake configuration (p1215 = 1, 2). <br> - If this fault value unexpectedly occurs, then the motor connections should be checked in order to rule out that they have been interchanged. <br> For fault value = 11: <br> For a parallel connection, only connect one motor holding brake. <br> For fault value = 12: <br> Check the setting of the power unit data set for a parallel connection (p7015). <br> For fault value = 13: <br> Before changing p7015, deactivate the "Safe brake control" function (SBC) (p9602). <br> For fault value $=14$ : <br> Check whether the power unit supports the brake control for a parallel connection (r9771.14). <br> Check whether there is a DRIVE-CLiQ communication error between the Control Unit and the power unit involved and, if required, carry out a diagnostics routine for the faults identified. <br> See also: p1215 (Motor holding brake configuration) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F07937 (N) | Drive: Speed deviation between motor model and external speed |
| :---: | :---: |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The absolute value of the speed difference from the two actual values ( $\mathrm{r} 2169, \mathrm{r} 1443$ ) exceeds the tolerance threshold (p3236) for longer than permitted (p3238). <br> Possible causes: <br> - the interconnection or scaling of the external encoder signal is incorrect (p1440, p2000). <br> - speed encoder for external encoder signal faulty. <br> - encoder signal's polarity or gain incorrect. <br> - smoothing time constant for model speed for monitoring too high (p2157). <br> - smoothing time constant or threshold values for monitoring too low ( $\mathrm{p} 3236, \mathrm{p} 3238$ ). <br> See also: p2149 (Monitoring configuration) |
| Remedy: | - check that the external speed matches the motor speed ( $\mathrm{p} 1440, \mathrm{r} 1443$ ). <br> - check the polarity of the external speed (r1443). <br> - check the interconnection of the connector input and the scaling of the signal (p1440, p2000). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07940 | Sync-line-drive: Synchronizing error |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | After synchronization has been completed, the phase difference ( r 3808 ) is greater than the threshold value, phase synchronism (p3813). <br> OFF1 or OFF3 response, while the closed-loop phase control is active (r3819.6 $=1$ ) or synchronism reached (r3819.2 = 1). <br> Enable signal withdrawn $(\mathrm{p} 3802=0)$, while the closed-loop phase control was active $(\mathrm{r} 3819.6=1)$. |
| Remedy: | If required increase the threshold value phase synchronism ( p 3813 ) for synchronizing the line supply to the drive. <br> Before OFF1 or OFF3, complete synchronizing (r03819.0 $=0$ ). <br> Before withdrawing the enable signal $(\mathrm{p} 3802=0)$, reach synchronism ( $\mathrm{r} 3819.2=1$ ). <br> See also: p3813 (Sync-line-drive phase synchronism threshold value) |
| A07941 | Sync-line-drive: Target frequency not permissible |
| Message value: | Parameter: \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The target frequency is outside the permissible value range. <br> Alarm value (r2124, interpret decimal): <br> 1084: Target frequency greater than the positive speed limit, f_sync > f_max (r1084). <br> 1087: Target frequency less than the negative speed limit, f_sync < f_min (r1087). |
| Remedy: | Fulfill the conditions for the target frequency for line-drive synchronization. See also: r1084, r1087 |
| A07942 | Sync-line-drive: Setpoint frequency is completely different than the target frequency |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | There is a considerable difference between the setpoint frequency and the target frequency (f_set <> f_target). The deviation that can be tolerated is set in p3806. |
| Remedy: | The alarm automatically disappears after the difference that can be tolerated between the setpoint and target frequencies (p3806) is reached. <br> See also: p3806 (Sync-line-drive frequency difference threshold value) |


| A07943 | Sync-line-drive: Synchronization not permitted |
| :---: | :---: |
| Message value: | Parameter: \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Synchronization is not permitted. <br> Alarm value (r2124, interpret decimal): <br> 1300: The control mode ( p 1300 ) has not been set to encoderless closed-loop speed control or U/f characteristic. <br> 1910: Motor data identification activated. <br> 1960: Speed controller optimization activated. <br> 1990: Encoder adjustment activated. <br> 3801: Voltage Sensing Module (VSM) not found. <br> 3845: Friction characteristic record activated. |
| Remedy: | Fulfill the conditions for the line-drive synchronization. <br> Re alarm value $=1300$ : <br> Set the control mode ( p 1300 ) to encoderless closed-loop speed control $(\mathrm{p} 1300=20)$ or U/f characteristic $(\mathrm{p} 1300=$ $0 . .19$ ). <br> Re alarm value $=1910$ : <br> Exit the motor data identification routine (p1910). <br> Re alarm value $=1960$ : <br> Exit the speed controller optimization routine (p1960). <br> Re alarm value = 1990: <br> Exit the encoder adjustment (p1990). <br> Re alarm value $=3801$ : <br> Connect the Voltage Sensing Module (VSM), assign it to the synchronizing drive (see p9910, p0151) and enter the drive object number of the synchronizing drive in p3801. When connecting the VSM to a neighboring drive object, ensure that the same current controller clock cycle $\mathrm{p} 0115[0]$ exists as the one in the synchronizing drive. <br> Re alarm value $=3845$ : <br> Exit the friction characteristic record (p3845). |
| F07950 (A) | Drive: Incorrect motor parameter |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | - the motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor) <br> - The braking resistor (p6811) has still not been parameterized - commissioning cannot be completed. <br> Fault value (r0949, interpret decimal): <br> Parameter number involved. <br> The following motor parameters can be incorrect for fault value 307: p0304, p0305, p0307, p0308, p0309 <br> See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p0316, p0320, p0322, p0323 |
| Remedy: | Compare the motor data with the rating plate data and if required, correct. See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323 |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F07955 | Drive: Motor has been changed |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The code number of the actual motor with DRIVE-CLiQ does not match the saved number. <br> Fault value (r0949, interpret decimal): <br> Number of the incorrect parameter. <br> See also: p0301 (Motor code number selection), r0302 (Motor code number of motor with DRIVE-CLiQ) |


| Remedy: | Connect the original motor, power up the Control Unit again (POWER ON) and exit quick commissioning with p0010 $=0$. <br> Or set p0300 = 10000 (load the parameters from the motor with DRIVE-CLiQ) and re-commission. <br> Quick commissioning ( $\mathrm{p} 0010=1$ ) is automatically exited with p3900 $>0$. <br> If quick commissioning was exited with p0010 $=0$, then an automatic controller calculation ( $p 0340=1$ ) is not carried out. |
| :---: | :---: |
| F07956 (A) | Drive: Motor code does not match the list (catalog) motor |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The motor code of the connected motor with DRIVE-CLiQ does not match the possible list motor types (see selection in p0300). <br> The connected motor with DRIVE-CLiQ might not be supported by this firmware version. <br> Fault value (r0949, interpret decimal): <br> Motor code of the connected motor with DRIVE-CLiQ. <br> Note: <br> The first three digits of the motor code generally correspond to the list motor type. |
| Remedy: | Use a motor with DRIVE-CLiQ and the matching motor code. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| A07960 | Drive: Incorrect friction characteristic |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The friction characteristic is incorrect. <br> Alarm value (r2124, interpret decimal): <br> 1538: <br> The friction torque is greater than the maximum from the upper effective torque limit ( p 1538 ) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value. 1539: <br> The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value. $3820 \text {... 3829: }$ <br> Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition: $0.0<\text { p3820 < p3821 < } \ldots<\text { p3829 <= p0322 or p1082, if p0322 }=0$ <br> Therefore the output of the friction characteristic (r3841) is set to zero. $3830 \ldots 3839:$ <br> Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition: $0<=\text { p3830, p3831 } \ldots \text { p3839 <= p0333 }$ <br> Therefore the output of the friction characteristic (r3841) is set to zero. <br> See also: r3840 (Friction characteristic, status word) |
| Remedy: | Fulfill the conditions for the friction characteristic. <br> Re alarm value $=1538$ : <br> Check the upper effective torque limit (e.g. in the field weakening range). <br> Re alarm value $=1539$ : <br> Check the lower effective torque limit (e.g. in the field weakening range). <br> Re alarm value $=3820 \ldots 3839$ : <br> Fulfill the conditions to set the parameters of the friction characteristic. <br> If the motor data (e.g. the maximum speed p0322) are changed during commissioning (p0010 = 1, 3), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340=5). |


| A07961 | Drive: Friction characteristic record activated |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The automatic friction characteristic record is activated. The friction characteristic is recorded at the next power-on command. |
| Remedy: | Not necessary. <br> The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is de-activated ( $\mathrm{p} 3845=0$ ). |
| F07963 | Drive: Friction characteristic record interrupted |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The conditions to record the friction characteristic are not fulfilled. <br> Fault value (r0949, interpret decimal): <br> 0046: Missing enable signals (r0046). <br> 1082: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed ( p 1082 ). <br> 1084: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed (r1084, p1083, p1085). <br> 1087: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed ( $\mathrm{r} 1087, \mathrm{p} 1086, \mathrm{p} 1088$ ). <br> 1110: Friction characteristic record, negative direction selected ( p 3845 ) and negative direction inhibited (p1110). <br> 1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (p1111). <br> 1198: Friction characteristic record selected ( $\mathrm{p} 3845>0$ ) and negative ( p 1110 ) and positive directions ( p 1111 ) inhibited (r1198). <br> 1300: The control mode ( p 1300 ) has not been set to closed-loop speed control. <br> 1755: For encoderless closed-loop control ( $p 1300=20$ ), the lowest speed value to be approached ( $p 3820$ ) is less than or equal to the changeover speed, open-loop controlled operation (p1755). <br> 1910: Motor data identification activated. <br> 1960: Speed controller optimization activated. <br> 3820 ... 3829: Speed (p382x) cannot be approached. <br> 3840: Friction characteristic incorrect. <br> 3845: Friction characteristic record de-selected. |
| Remedy: | Fulfill the conditions to record the friction characteristic. <br> Re fault value $=0046$ : <br> - establish missing enable signals. <br> Re fault value $=1082$, 1084, 1087: <br> - Select the highest speed value to be approached (p3829) less than or equal to the maximum speed (p1082, r1084, r1087). <br> - Re-calculate the speed points along the friction characteristic (p0340 = 5). <br> For fault value = 1110: <br> - Select the friction characteristic record, positive direction (p3845). <br> For fault value = 1111: <br> - Select the friction characteristic record, negative direction (p3845). <br> For fault value $=1198$ : <br> - Enable the permitted direction (p1110, p1111, r1198). <br> For fault value = 1300: <br> - Set the control mode (p1300) on the closed-loop speed control (p1300 = 20, 21). <br> For fault value $=1755$ : <br> - For encoderless closed-loop speed control $(\mathrm{p} 1300=20)$ select the lowest speed value to be approached $(\mathrm{p} 3820)$ <br> greater than the changeover speed of open-loop controlled operation (p1755). <br> - Re-calculate the speed points along the friction characteristic (p0340 = 5). <br> For fault value = 1910: <br> - Exit the motor data identification routine (p1910). <br> For fault value = 1960: <br> - Exit the speed controller optimization routine (p1960). |

Re fault value 3820 ... 3829 :

- check the load at speed p382x.
- check the speed signal (r0063) for oscillation at speed p382x. Check the settings of the speed controller if applicable.
For fault value $=3840$ :
- Make the friction characteristic error-free (p3820 ... p3829, p3830 ... p3839, p3840).

For fault value $=3845$ :

- Activate the friction characteristic record (p3845).

| A07965 (N) | Drive: Save required |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The angular commutation offset (p0431) was re-defined and has still not been saved. <br> In order to permanently accept the new value, it must be saved in a non-volatile fashion (p0971, p0977). <br> See also: p0431 (Angular commutation offset), p1990 (Encoder adjustment, determine angular commutation offset) |
|  | Not necessary. |
| Remedy: | This alarm automatically disappears after the data has been saved. |
| See also: p0971 (Save drive object parameters), p0977 (Save all parameters) |  |


|  | For fault value $=12$ : <br> Check whether motor data have been correctly entered. <br> De-activate technique (p1909). <br> For fault value $=16$ : <br> De-activate technique (p1909). <br> For fault value =17: <br> Repeat technique. |
| :---: | :---: |
| F07969 | Drive: Incorrect pole position identification |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred during the pole position identification routine. <br> Fault value (r0949, interpret decimal): <br> 1: Current controller limited <br> 2: Motor shaft locked. <br> 4: Encoder speed signal not plausible. <br> 10: Stage 1: The ratio between the measured current and zero current is too low. <br> 11: Stage 2: The ratio between the measured current and zero current is too low. <br> 12: Stage 1: The maximum current was exceeded. <br> 13: Stage 2: The maximum current was exceeded. <br> 14: Current difference to determine the $+d$ axis too low. <br> 15: Second harmonic too low. <br> 16: Drive converter too small for the measuring technique. <br> 17: Abort due to pulse inhibit. <br> 18: First harmonic too low. <br> 20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function. |
| Remedy: | For fault value $=1$ : $\quad$, |
|  | Check whether the motor is correctly connected. |
|  | Check whether motor data have been correctly entered. |
|  | Replace the Motor Module involved. |
|  | For fault value $=2$ : |
|  | Open the motor holding brake ( $\mathrm{p} 1215=2$ ) and bring the motor into a no-load condition. For fault value $=4$ : |
|  | Check whether the encoder pulse number ( p 0408 ) and gearbox factor ( $\mathrm{p} 0432, \mathrm{p} 0433$ ) are correct. Check whether the motor pole pair number is correct (p0314). |
|  | For fault value $=10$ : |
|  | When selecting p1980 $=4$ : Increase the value for p0325. |
|  | When selecting p1980 $=1$ : Increase the value for p 0329 . |
|  | Check whether the motor is correctly connected. |
|  | Replace the Motor Module involved. |
|  | For fault value = 11: |
|  | Increase the value for p0329. |
|  | Check whether the motor is correctly connected. |
|  | Replace the Motor Module involved. |
|  | For fault value = 12: |
|  | When selecting p1980 $=4$ : Reduce the value for p0325. |
|  | When selecting p1980 $=1$ : Reduce the value for p0329. |
|  | Check whether motor data have been correctly entered. |
|  | For fault value $=13$ : |
|  | Reduce the value for p0329. |
|  | Check whether motor data have been correctly entered. |
|  | For fault value = 14: |
|  | Increase the value for p0329. |
|  | Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10). |
|  | For fault value $=15$ : |
|  | Increase the value for p0325. |
|  | Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10). |
|  | For fault value = 16: |
|  | De-activate technique (p1982). |

For fault value = 17:
Repeat technique.
For fault value $=18$
Increase the value for p0329
Saturation not sufficient, change the technique (p1980 = 10) .
For fault value $=20$ :
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

| F07970 | Drive: Automatic encoder adjustment incorrect |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred during the automatic encoder adjustment. <br> Fault value (r0949, interpret decimal): <br> 1: Current controller limited <br> 2: Motor shaft locked. <br> 4: Encoder speed signal not plausible. <br> 5: Deselect U/f (p1300) or deactivate encoder calibration (p1990). <br> 10: Stage 1: The ratio between the measured current and zero current is too low. <br> 11: Stage 2: The ratio between the measured current and zero current is too low. <br> 12: Stage 1: The maximum current was exceeded. <br> 13: Stage 2: The maximum current was exceeded. <br> 14: Current difference to determine the $+d$ axis too low. <br> 15: Second harmonic too low. <br> 16: Drive converter too small for the measuring technique. <br> 17: Abort due to pulse inhibit. |
| Remedy: | For fault value = 1: |
|  | Check whether the motor is correctly connected. |
|  | Check whether motor data have been correctly entered. |
|  | Replace the power unit involved. |
|  | For fault value $=2$ : |
|  | Open the motor holding brake $(\mathrm{p} 1215=2)$ and bring the motor into a no-load condition. |
|  | For fault value = 4: |
|  | Check whether the speed actual value inversion is correct (p0410.0). |
|  | Check whether the motor is correctly connected. |
|  | Check whether the encoder pulse number ( p 0408 ) and gearbox factor ( p 0432 , p 0433 ) are correct. Check whether the motor pole pair number is correct ( p 0314 ). |
|  | For fault value = 5: |
|  | Deselect U/f (p1300) or deactivate encoder calibration (p1990). |
|  | For fault value = 10: |
|  | Increase the value for p 0325. |
|  | Check whether the motor is correctly connected. |
|  | Replace the power unit involved. |
|  | For fault value = 11: |
|  | Increase the value for 00329. |
|  | Check whether the motor is correctly connected. |
|  | Replace the power unit involved. |
|  | For fault value = 12: |
|  | Reduce the value for p 0325. |
|  | Check whether motor data have been correctly entered. |
|  | For fault value = 13: |
|  | Reduce the value for p 0329. |
|  | Check whether motor data have been correctly entered. |
|  | For fault value = 14: |
|  | Increase the value for p0329. |
|  | For fault value = 15: |
|  | Increase the value for p0325. |
|  | For fault value = 16: |
|  | De-activate technique (p1982). |

For fault value $=17$ :
Repeat technique.

| A07971 (N) | Drive: Angular commutation offset determination activated |
| :---: | :---: |
| Message value: | - ${ }^{\text {a }}$ |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1). <br> The automatic determination is carried out at the next power-on command. <br> For SERVO and fault F07414 present, the following applies: <br> The determination of the angular commutation offset is automatically activated (p1990 = 1), if a pole position identification technique is set in p1980. <br> See also: p1990 (Encoder adjustment, determine angular commutation offset) |
| Remedy: | Not necessary. <br> The alarm automatically disappears after determination or for the setting p1990 $=0$. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07971 (N) | Drive: Angular commutation offset determination activated |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The automatic determination of the angular commutation offset (encoder adjustment) is activated ( $p 1990=1,3$ ). The automatic determination is carried out at the next power-on command. <br> See also: p1990 (Encoder adjustment, determine angular commutation offset) |
| Remedy: | Not necessary. <br> The alarm automatically disappears after determination or for the setting p1990 $=0$. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07975 (N) | Drive: Travel to the zero mark - setpoint input expected |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The zero mark must be evaluated in order to adjust the encoder. It is expected that a speed or torque setpoint is entered. See also: p1990 (Encoder adjustment, determine angular commutation offset) |
| Remedy: | Not necessary. <br> The alarm disappears once the zero mark has been detected. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07976 | Drive: Fine encoder calibration activated |
| Message value: | Parameter: \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm indicates the phases of the fine encoder calibration using an alarm value. <br> Alarm value (interpret decimal): <br> 1: Fine encoder calibration active. <br> 2: Rotating measurement started (set the setpoint speed $>40 \%$ rated motor speed) <br> 3: Rotating measurement lies within the speed and torque range. <br> 4: Rotating measurement successful: pulse inhibit can be initiated to accept the values. <br> 5: Fine encoder calibration is calculated. |


|  | 10: Speed too low, rotating measurement interrupted. <br> 12: Torque too high, rotating measurement interrupted. <br> See also: p1905 (Parameter tuning selection) |
| :--- | :--- |
| Remedy: | Re alarm value = 10: <br> Increase the speed. <br> Re alarm value = 12: <br> Bring the drive into a no-load condition. |
| A07980 | Drive: Rotating measurement activated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The rotating measurement is activated. For the rotating measurement, the motor can accelerate up to the maximum <br> speed and with maximum torque. Only the parameterized current limit (p0640) and the maximum speed (p1082) are <br> effective. The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp- <br> up/ramp-down time (p1958). |
| The rotating measurement is carried out at the next power-on command. |  |
| Semedy: | Se also: p1960 <br> Not necessary. <br> The alarm automatically disappears after the rotating measurement has been successfully completed or for the set- <br> ting p1960 = 0. <br> Note: <br> If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification <br> request will be lost. If motor data identification is required, it will need to be selected again manually following ramp- <br> up. |


| A07980 | Drive: Rotating measurement activated |
| :---: | :---: |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The rotating measurement (automatic speed controller optimization) is activated. The rotating measurement is carried out at the next power-on command. <br> See also: p1960 |
| Remedy: | Not necessary. <br> The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$. |


| A07981 | Drive: Enable signals for the rotating measurement missing |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The rotating measurement cannot be started due to missing enable signals. |
| Remedy: | - acknowledge faults that are present. <br>  <br>  <br>  <br>  <br>  <br> - establish missing enable signals. |
|  | See also: r0002, r0046 |

F07982 Drive: Rotating measurement encoder test
Message value: \%1
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY

Cause: A fault has occurred during the encoder test.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.

|  | 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. <br> 4: The speed setpoint was not able to be approached as the maximum limiting is active. <br> 5: The encoder does not supply a signal. <br> 6: Incorrect polarity. <br> 7: Incorrect pulse number. <br> 8: Noise in the encoder signal or speed controller unstable. <br> 9: Voltage Sensing Module (VSM) incorrectly connected. |
| :---: | :---: |
| Remedy: | For fault value =1: <br> - check the motor parameters. <br> - carry out a motor data identification routine (p1910). <br> - if required, reduce the dynamic factor (p1967 < $25 \%$ ). <br> For fault value $=2$ : <br> - adapt the speed setpoint ( p 1965 ) or adapt the minimum limit ( p 1080 ). <br> For fault value = 3: <br> - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). <br> For fault value $=4$ : <br> - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). <br> For fault value $=5$ : <br> - check the encoder connection. If required, replace the encoder. <br> For fault value $=6$ : <br> - check the connection assignment of the encoder cable. Adapt the polarity (p0410). <br> For fault value $=7$ : <br> - adapt the pulse number (p0408). <br> For fault value $=8$ : <br> - check the encoder connection and encoder cable. It is possible that there is a problem associated with the ground connection. <br> - reduce the dynamic response of the speed controller (p1460, p1462 and p1470, p1472). <br> For fault value = 9: <br> - check the connections of the Voltage Sensing Module (VSM). <br> Note: <br> The encoder test can be switched out (disabled) using p1959.0. <br> See also: p1959 |
| F07983 | Drive: Rotating measurement saturation characteristic |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred while determining the saturation characteristic. <br> Fault value (r0949, interpret decimal): <br> 1: The speed did not reach a steady-state condition. <br> 2: The rotor flux did not reach a steady-state condition. <br> 3: The adaptation circuit did not reach a steady-state condition. <br> 4: The adaptation circuit was not enabled. <br> 5: Field weakening active. <br> 6: The speed setpoint was not able to be approached as the minimum limiting is active. <br> 7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. <br> 8: The speed setpoint was not able to be approached as the maximum limiting is active. <br> 9: Several values of the determined saturation characteristic are not plausible. <br> 10: Saturation characteristic could not be sensibly determined because load torque too high. |
| Remedy: | For fault value $=1$ : <br> - the total drive moment of inertia is far higher than that of the motor (p0341, p0342). <br> De-select rotating measurement ( p 1960 ), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. <br> Re fault value = 1 ... 2: <br> - increase the measuring speed (p1961) and repeat the measurement. <br> Re fault value = $1 \ldots 4$ : <br> - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. <br> - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 . <br> - carry out a motor data identification routine (p1910). <br> - if required, reduce the dynamic factor (p1967<25\%). |

For fault value $=5$ :

- the speed setpoint ( p 1961 ) is too high. Reduce the speed.

For fault value $=6$ :

- adapt the speed setpoint (p1961) or minimum limiting (p1080).

For fault value $=7$ :

- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=8$ :

- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value $=9,10$ :

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959

| F07984 | Drive: Speed controller optimization, moment of inertia |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred while identifying the moment of inertia. |
|  | Fault value (r0949, interpret decimal): |
|  | 1: The speed did not reach a steady-state condition. |
|  | 2: The speed setpoint was not able to be approached as the minimum limiting is active. |
|  | 3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. |
|  | 4. The speed setpoint was not able to be approached as the maximum limiting is active. |
|  | 5: It is not possible to increase the speed by $10 \%$ as the minimum limiting is active. |
|  | 6: It is not possible to increase the speed by $10 \%$ as the suppression (skip) bandwidth is active. |
|  | 7: It is not possible to increase the speed by $10 \%$ as the maximum limiting is active. |
|  | 8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia. |
|  | 9: Too few data to be able to reliably identify the moment of inertia. |
|  | 10: After the setpoint step, the speed either changed too little or in the incorrect direction. |
|  | 11: The identified moment of inertia is not plausible. |
| Remedy: | For fault value = 1: |
|  | - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. |
|  | - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. |
|  | - carry out a motor data identification routine (p1910). |
|  | - if required, reduce the dynamic factor (p1967<25\%). |
|  | Re fault value $=2,5$ : |
|  | - adapt the speed setpoint (p1965) or adapt the minimum limit (p1080). |
|  | Re fault value $=3,6$ : |
|  | - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). |
|  | Re fault value $=4,7$ : |
|  | - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). |
|  | For fault value $=8$ : |
|  | - the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement ( p 1960 ), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. |
|  | For fault value = 9: |
|  | - check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4). |
|  | For fault value = 10: |
|  | - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. |
|  | Note: |
|  | The moment of inertia identification routine can be disabled using p1959.2. |
|  | See also: p1959 |


| F07985 | Drive: Speed controller optimization (oscillation test) |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred during the vibration test. <br> Fault value (r0949, interpret decimal): <br> 1: The speed did not reach a steady-state condition. <br> 2: The speed setpoint was not able to be approached as the minimum limiting is active. <br> 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. <br> 4: The speed setpoint was not able to be approached as the maximum limiting is active. <br> 5: Torque limits too low for a torque step. <br> 6: No suitable speed controller setting was found. |
| Remedy: | For fault value $=1$ : <br> - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. <br> - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 . <br> - carry out a motor data identification routine ( p 1910 ). <br> - if required, reduce the dynamic factor (p1967 < $25 \%$ ). <br> For fault value $=2$ : <br> - adapt the speed setpoint ( p 1965 ) or adapt the minimum limit ( p 1080 ). <br> For fault value $=3$ : <br> - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). <br> For fault value $=4$ : <br> - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). <br> For fault value $=5$ : <br> - increase the torque limits (e.g. p1520, p1521). <br> For fault value $=6$ : <br> - reduce the dynamic factor (p1967). <br> - disable the vibration test (p1959.4 = 0) and repeat the rotating measurement. <br> See also: p1959 |
| F07986 | Drive: Rotating measurement ramp-function generator |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | During the rotating measurements, problems with the ramp-function generator occurred. Fault value (r0949, interpret decimal): <br> 1: The positive and negative directions are inhibited. |
| Remedy: | For fault value =1: <br> Enable the direction (p1110 or p1111). |
| A07987 | Drive: Rotating measurement, no encoder available |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | No encoder available. The rotating measurement was carried out without encoder. |
| Remedy: | Connect encoder or select p1960 = 1, 3 . |
| F07988 | Drive: Rotating measurement, no configuration selected |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When configuring the rotating measurement (p1959), no function was selected. |
| Remedy: | Select at least one function for automatic optimization of the speed controller (p1959). See also: p1959 |


| F07989 | Drive: Rotating measurement leakage inductance (q-axis) |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error has occurred while measuring the dynamic leakage inductance. <br> Fault value (r0949, interpret decimal): <br> 1: The speed did not reach a steady-state condition. <br> 2: The speed setpoint was not able to be approached as the minimum limiting is active. <br> 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. <br> 4: The speed setpoint was not able to be approached as the maximum limiting is active. <br> 5: The $100 \%$ flux setpoint was not reached. <br> 6: No Lq measurement possible because field weakening is active. <br> 7: Speed actual value exceeds the maximum speed p 1082 or $75 \%$ of the rated motor speed. <br> 8: Speed actual value is below $2 \%$ of the rated motor speed. |
| Remedy: | For fault value $=1$ : <br> - check the motor parameters. <br> - carry out a motor data identification routine (p1910). <br> - if required, reduce the dynamic factor (p1967 < 25 \%). <br> For fault value $=2$ : <br> - adapt the speed setpoint (p1965) or adapt the minimum limit ( $p 1080$ ). <br> For fault value = 3: <br> - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). <br> For fault value $=4$ : <br> - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). <br> For fault value $=5$ : <br> - flux setpoint p1570 = $100 \%$ and current setpoint p1610 $=0 \%$ kept during the Lq measurement. <br> For fault value $=6$ : <br> - reduce the regenerative load so that the drive does not reach field weakening when accelerating. <br> - reduce p1965 so that the q leakage inductance is recorded at lower speeds. <br> For fault value $=7$ : <br> - increase p1082 if this is technically permissible. <br> - reduce p1965 so that the q leakage inductance is recorded at lower speeds. <br> For fault value $=8$ : <br> - reduce the load when motoring so that the drive is not braked. <br> - increase p1965 so that the measurement may be taken at higher speeds. <br> Note: <br> The measurement of the q leakage inductance can be disabled using p1959.5. If only p1959.5 is set, then only this measurement is carried out if $p 1960$ is set to 1,2 and the drive is powered up. <br> See also: p1959 |
| F07990 | Drive: Incorrect motor data identification |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred during the identification routine. <br> Fault value (r0949, interpret decimal): <br> 1: Current limit value reached. <br> 2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . <br> 3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . <br> 4: Identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn . <br> 5: Identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn . <br> 6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} \ldots 5 \mathrm{~s}$. <br> 7: Identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn . <br> 8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . <br> 9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . <br> 10: Data set changeover during motor data identification. <br> 11: Motor shaft rotates. <br> 20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$. <br> 30: Current controller in voltage limiting. |

40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies. 50: With the selected current controller sampling rate, the pulse frequency cannot be implemented.
Note:
Percentage values are referred to the rated motor impedance:
$\mathrm{Zn}=$ Vmot.nom / sqrt(3) / Imot,nom
101: Voltage amplitude even at $30 \%$ maximum current amplitude is too low to measure the inductance.
102, 104: Voltage limiting while measuring the inductance.
103: Maximum frequency exceeded during the rotating inductance measurement.
110: Motor not finely synchronized before the rotating measurement.
111: The zero mark is not received within 2 revolutions.
112:Fine synchronization is not realized within 8 seconds after the zero mark has been passed.
113: The power, torque or current limit is zero.
115: U/f control is active.
120: Error when evaluating the magnetizing inductance.
125: Cable resistance greater than the total resistance.
126: Series inductance greater than the total leakage inductance.
127: Identified leakage inductance negative.
128: Identified stator resistance negative.
129: Identified rotor resistance negative.
130: Drive data set changeover during the motor data identification routine.
140: The setpoint channel inhibits both directions.
160: Accelerating when determining kT, moment of inertia or reluctance torque too short or the accelerating time is too long.
173: Internal problem.
180: Identification speed (maximum speed, rated speed, $0.9 \times p 0348$ ) less than p 1755.
190: Speed setpoint not equal to zero.
191: An actual speed of zero is not reached.
192: Speed setpoint not reached.
193: Inadmissible motion of the motor when identifying the voltage emulation error.
194: Supplementary torque (r1515) not equal to zero.
195: Closed-loop torque control active.
200, 201: Not possible to identify the voltage emulation error characteristic of the drive converter (p1952, p1953).
Remedy:
Re fault value = $1 . .40$ :

- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the

Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4.

- check configuration (star-delta).

For fault value $=2$ :

- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system ( $\mathrm{p} 7003=0$ ), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value $=4,7$ :
- check whether inductances are correctly entered in p0233 and p0353.
- check whether motor has been correctly connected (star-delta).

For fault value $=50$ :

- reduce the current controller sampling rate.

For fault value =101:

- increase current limit (p0640) or torque limit (p1520, p1521).
- check current controller gain (p1715).
- reduce current controller sampling time (p0115).

It may be impossible to completely identify the $L$ characteristic, as required current amplitude is too high.

- suppress meas. (p1909, p1959).

Re fault value $=102,104$ :

- reduce current limit (p0640).
- check current controller P gain.
- suppress meas. (p1909, p1959).

For fault value = 103:

- increase external moment of inertia (if possible).
- reduce current controller sampling time (p0115).
- suppress meas. (p1909, p1959).

For fault value = 110:

- before rotating measurement, traverse motor over zero mark.

For fault value $=111$ :

- it is possible that encoder does not have zero mark. Correct setting in p0404.15.
- encoder pulse number was incorrectly entered. Correct setting in p0408.
- if zero mark signal is defective, replace encoder.

For fault value $=112$ :

- upgrade encoder software.

For fault value =113:

- check the limits (p0640, p1520, p1521, p1530, p1531), correct the zero values.

For fault value = 115:

- de-select U/f control (p1317 = 0).

For fault value =120:

- check current controller P gain ( p 1715 ) and if required, reduce.
- increase the pulse frequency ( p 1800 ).

For fault value = 125:

- reduce cable resistance (p0352).

For fault value = 126:

- reduce series inductance (p0353).

Re fault = 127, 128, 129:

- it is possible that current controller is oscillating. Reduce p1715 before next measurement.

For fault value = 130:

- do not initiate a drive data set changeover during motor ident. routine.

For fault value = 140:

- before the measurement, enable at least one direction (p1110 $=0$ or p1111 = 0 or p1959.14 = 1 or p1959.15 = 1).

For fault value = 160:

- extend accelerating time when determining kT , moment of inertia and reluctance torque, e.g. by increasing max. speed ( p 1082 ), increasing moment of inertia or reducing max. current (p0640).
- in encoderless operation with load moment of inertia, parameterize the load moment of inertia (p1498).
- reduce the ramp-up time (p1958).
- increase speed controller P-gain (p1460).
- suppress meas. (p1959).

For fault value $=173$ :

For fault value = 180:

- increase max. speed (p1082).
- reduce p1755.
- suppress meas. (p1909, p1959).

For fault value $=190$ :

- set speed setpoint to zero.

For fault value $=191$ :

- do not start motor data identification routine while motor is still rotating.

For fault value = 192:

- check closed-loop speed control (motor rotor may be locked or closed-loop speed control is not functioning).
- for p1215 = 1, 3 (brake the same as the sequence control) check the control sense ( p 0410.0 ).
- ensure that enable signals are present during measurement.
- remove any pulling loads from motor.
- increase max. current (p0640).
- reduce max. speed (p1082).
- suppress meas. (p1959).

For fault value = 193:

- the motor has moved through more than $5^{\circ}$ electrical (r0093). Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}\left(+/-5^{\circ}\right)$ and then start identification.
For fault value $=194$ :
- switch out all supplementary torques (e.g. CI: p1511).
- for hanging/suspended axes: Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}(+/-$
$1^{\circ}$ ) and then start identification.
For fault value = 195:
- de-select closed-loop torque control ( $\mathrm{p} 1300=21$ or 20 , or set the signal source in p 1501 to a 0 signal).

Re fault value = 200, 201:

- set pulse frequency to $0.5 \times$ current controller frequency (e.g. 4 kHz for a current controller clock cycle of 125 us).
- reduce cable length between Motor Module and motor.
- read-out measured values (r1950, r1951) and therefore determine suitable values for p1952, p1953 according to your own estimation.


## F07990

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## Drive: Incorrect motor data identification

\%1
VECTOR, VECTOR_AC, VECTOR_I_AC
OFF2 (NONE, OFF1)

## IMMEDIATELY

A fault has occurred during the identification routine.
Fault value (r0949, interpret decimal):
1: Current limit value reached.
2: Identified stator resistance lies outside the expected range 0.1 ... $100 \%$ of Zn .
3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . Separately excited synchronous motors: damping resistance outside $1.0 \ldots 15 \%$ of Zn .
4: Identified stator reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: stator reactance outside $20 \ldots 500 \%$ of Zn .
5: Identified magnetizing reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: magnetizing reactance outside $20 \ldots 500 \%$ of Zn .
6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . .5 \mathrm{~s}$. Separately-excited synchronous motors: damping time constant outside of $5 \mathrm{~ms} . . .1 \mathrm{~s}$.
7: Identified total leakage reactance lies outside the expected range $4 \ldots 100 \%$ of Zn .
8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: stator leakage reactance outside $2 \ldots . .40 \%$ of Zn .
9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: damping leakage reactance outside $1.5 \ldots 20$ \% of Zn .
10: Motor has been incorrectly connected.
11: Motor shaft rotates.
12: Ground fault detected.
20: Identified threshold voltage of the semiconductor devices lies outside the expected range 0 ... 10 V .
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50 : The selected sampling time is too low for the motor identification ( $\mathrm{p} 0115[0]$ ).
Note:
Percentage values are referred to the rated motor impedance:
Zn = Vmot.nom / sqrt(3) / Imot,nom
Remedy:
Re fault value $=1$... 40:

- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4 .
- check configuration (star-delta).

Re fault value $=11$ in addition:

- Deactivate oscillation monitoring (p1909.7 = 1).

For fault value $=2$ :

- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system (p7003 $=0$ ), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value $=4,7$ :
- check whether inductances are correctly set in p0233 and p0353.
- check whether motor has been correctly connected (star-delta).
- Set p1909.0 = 1 .

For fault value $=12$ :

- check the power cable connections.
- check the motor.
- check the CT.

For fault value $=50$ :

- Perform a motor data identification with a higher sampling time, and after this, change to the required higher sampling time ( $\mathrm{p} 0115[0]$ ).

| A07991 (N) | Drive: Motor data identification activated |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The motor data identification routine is activated. <br> The motor data identification routine is carried out at the next power-on command. See also: p1910, p1960 |
| Remedy: | Not necessary. <br> The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1910 $=0$ or p1960 $=0$. <br> If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following rampup. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A07991 (N) | Drive: Motor data identification activated |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The motor data identification routine is activated. <br> The motor data identification routine is carried out at the next power-on command. <br> If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or de-activated, the option to save the parameter assignment will be made available again. <br> See also: p1910 |
| Remedy: | Not necessary. <br> The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F07993 | Drive: Incorrect direction of rotation of the field or encoder actual value inversion |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Either the direction of the rotating field or the encoder actual value has an incorrect sign. The motor data identification automatically changed the actual value inversion ( p 0410 ) in order to correct the control sense. This can result in a direction of rotation change. <br> Note: <br> To acknowledge this fault, the correctness of the direction of rotation must first be acknowledged with p1910 $=-2$. |
| Remedy: | Check the direction of rotation (also for the position controller, if one is being used). If the direction of rotation is correct, the following applies: <br> No additional measures are required (except set p1910 $=-2$ and acknowledge fault). <br> If the direction of rotation is incorrect, the following applies: <br> To change the direction of rotation, two phases must be interchanged and the motor identification routine must be repeated. |


| A07994 (F, N) | Drive: motor data identification not performed |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The "vector control" mode has been selected and a motor data identification has still not been performed. |
|  | The alarm is initiated when changing the drive data set (see roos1) in the following cases: |
|  | - vector control is parameterized in the actual drive data set (p1300 >= 20). |
|  | and |
|  | - motor data identification has still not been performed in the actual drive data set (see r3925). |
|  | Note: |
|  | For SINAMICs G120, a check is made and an alarm is output also when exiting commissioning and when the system |
| powers up. |  |

210: Elasticity-based pole position identification without encoder
250 ... 260:
Elasticity-based pole position identification, more than 3 attempts have been made and fault value 200 ... 210 output.
Example:
Fault value= 253 --> more than 3 attempts have been made and fault value 203 output.
Remedy:
For fault value = 1 :

- check the motor connection and DC link voltage.
- for the following parameters, set practical values that are not zero (p0325, p0329).

Re fault value $=1,2$ :

- in the case of a large computing time load (e.g., 6 drives with Safety Integrated), set the computing dead time of the current controller to late transfers ( $\mathrm{p} 0117=3$ ).
For fault value $=3$ :
- increase the max. distance (p1981).
- reduce the currents for the pole position identification routine (p0325, p0329).
- stop the motor in order to carry out the pole position identification routine.

For fault value $=5$ :

- reduce the currents for the pole position identification routine (p0325, p0329).

For fault value = 6:

- re-calibrate the Motor Module.

For fault value $=8$ :

- reduce the currents for the pole position identification routine (p0329, p0325, p1993).
- the power unit cannot provide the necessary pole position identification routine current (p0209 < p0329, p0325, p1993), replace the power unit with a power unit with a higher max. current.
For fault value $=9$ :
- enter a value not equal to zero in the pole position identification routine current (p0329, p0325, p1993).

For fault value $=10$ :

- do not initiate a data set changeover during the pole position identification.

For fault value = 11:

- for incremental encoders without commutation with zero mark ( $\mathrm{p} 0404.15=0$ ), it does not make sense to adjust the encoder to determine the commutation angle (p1990 = 1). In this case, the function should be de-selected (p1990 = 0 ) or, for an encoder with suitable zero mark, commutation with zero mark should be selected ( $p 0404.15=1$ ).
- for absolute encoders, only adjust the encoder to determine the commutation angle (p1990 = 1) if the encoder supplies commutation information and is finely synchronized ( $p 1992.8=1$ and $p 1992.10=1$ ). The encoder is possibly parked, de-activated (p0145), not ready for operation or signals a fault condition.
- de-select the encoder adjustment to determine the commutation angle (set p1990 to 0).

Re fault value $=40 \ldots 49$ :

- increase the currents for the pole position identification routine (p0325, p0329).
- stop the motor in order to carry out the pole position identification routine.
- select another technique for pole position identification routine (p1980).
- use another motor, absolute encoder or Hall sensors.

Re fault value = 70 ... 79:

- upgrade the software in the Sensor Module.

Re fault value $=100,101$ :

- check and ensure that the motor is free to move.
- increase the current for motion-based pole position identification (p1993).

For fault value $=102$ :

- if the motor is to be operated with a brake: Select a different technique to identify the pole position (p1980).
- if the motor can be operated without a brake: Open the brake (p1215 = 2).

For fault value = 103:

- the motion-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
For fault value = 104:
- pole position identification, increase the smoothing time, motion-based (p1997).
- pole position identification, increase the rise time, motion-based (p1994).
- pole position identification, check the gain, motion-based (p1995).
- pole position identification, check the integral time, motion-based (p1996).
- for motor encoders with track A/B sq-wave ( $p 0404.3=1$ ) and flank time measurement ( $p 0430.20=0$ ), disable the integral time ( $\mathrm{p} 1996=0$ ).
For fault value = 200:
- check parameter setting (p3090 ... p3096).

For fault value $=201$ :

- check parameter setting (p3090 ... p3096).
- reduce p3094.

```
For fault value \(=202\) :
- check parameter setting (p3090 ... p3096).
- fault has occurred during the identification. Repeat the measurement.
- check the brake or brake control.
For fault value = 203:
- check the brake or brake control.
- check the measuring current (p3096).
- increase p3094.
For fault value = 204:
- check parameter setting (p3090 ... p3096).
For fault value = 205:
- check parameter setting (p3090 ... p3096).
For fault value = 206:
- check parameter setting (p3090 ... p3096).
- fault has occurred during the identification. Repeat the measurement.
- check the brake or brake control.
For fault value \(=207\) :
- reduce the expected deflection (p3094).
- increase the measuring current (p3096).
For fault value \(=208\) :
- set the measuring current (p3096).
For fault value \(=209\) :
- check parameter setting p3095.
- check the brake or brake control.
For fault value = 210:
- the elasticity-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
Re fault value \(=250 \ldots 260\) :
- check parameter setting (p3090 ... p3096, p1980).
```


## F07996

## Drive: Pole position identification routine not carried out

```
Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: ENCODER (OFF2)
```


## Acknowledge: IMMEDIATELY

```
Cause: In operation, the operating mode that requires a pole position identification was changed over, which is not possible in this state.
- the drive was changed over, flying, from encoderless operation to operation with encoder without having previously carried out a pole position identification for the encoder. p1404 is then at a value between zero and the max. speed and the pulses in the speed range above p 1404 were enabled without a pole position ident. routine having been previously carried out in operation with encoder.
- in operation, an EDS changeover was made to an encoder where it is necessary to carry out a pole position identification. However, this has still not been carried out (p1982 = 1 or 2 and p1992.7 = 0).
Remedy: - for a flying changeover between operation with and without encoder with pole position identification after POWER ON or commissioning (p0010 not equal to zero) enable the pulses once at zero speed. This means that the pole position identification routine is carried out and the result is available for operation.
- carry out the EDS changeover with the pulses inhibited, or, before the changeover, carry out a pole position identification using this data set.
\begin{tabular}{ll}
\hline A07998 & Drive: Motor data identification active on another drive \\
Message value: & \%1 \\
Drive object: & SERVO, SERVO_AC, SERVO_I_AC \\
Reaction: & NONE \\
Acknowledge: & NONE \\
Cause: & \begin{tabular}{l} 
The motor data identification is activated on the drive object specified in the fault value and interlocks the other drive \\
objects so they cannot be powered up. \\
\\
\\
\\
\\
\\
Fault value (r0949, interpret decimal): \\
Drive object with the active motor data identification. \\
See also: p1910, p1960
\end{tabular} \\
- wait for the complete execution of the motor data identification of the drive object designated in the fault value. \\
- de-select the motor data identification for the drive object designated in the fault value ( \(\mathrm{p} 1910=0\) or \(\mathrm{p} 1960=0\) ).
\end{tabular}
```

| A07999 | Drive: Motor data identification cannot be activated |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Closed-loop control is enabled on a SERVO drive object type. To select motor data identification, pulses must be suppressed for all SERVO drive objects. <br> Fault value (r0949, interpret decimal): <br> Drive object with enabled closed-loop control. |
| Remedy: | Withdraw the pulse enable on all drives and re-activate the motor data identification. |
| F08000 (N, A) | TB: +/-15 V power supply faulted |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Terminal Board 30 detects an incorrect internal power supply voltage. Fault value (r0949, interpret decimal): <br> 0 : Error when testing the monitoring circuit. <br> 1: Fault in normal operation. |
| Remedy: | - replace Terminal Board 30. <br> - replace Control Unit. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F08010 (N, A) | TB: Analog-digital converter |
| Message value: | - |
| Drive object: | All objects |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The analog/digital converter on Terminal Board 30 has not supplied any converted data. |
| Remedy: | - check the power supply. <br> - replace Terminal Board 30 . |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F08500 (A) | COMM BOARD: Monitoring time configuration expired |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150-PN, ENC̄, HUB, S_INF, SERRVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (OFF2) <br> Servo: OFF1 (OFF2, OFF3) <br> Vector: OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The monitoring time for the configuration has expired. |


|  | Fault value (r0949, interpret decimal): |
| :--- | :--- |
|  | 0: The transfer time of the send configuration data has been exceeded. |
| 1: The transfer time of the receive configuration data has been exceeded. |  |
| Remedy: | Check communications link. |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

F08501 (N, A) COMM BOARD: Setpoint timeout

Message value:

| Drive object: | A INF, B INF, CU LINK, CU S AC DP, CU S AC PN, CU S120 DP, CU S120 PN, CU S150 DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :---: | :---: |
| Reaction: | Infeed: OFF1 (OFF2) <br> Servo: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) <br> Vector: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The reception of setpoints from the COMM BOARD has been interrupted. <br> - bus connection interrupted. <br> - controller switched off. <br> - controller set into the STOP state. <br> - COMM BOARD defective. <br> See also: p8840 (COMM BOARD monitoring time) |
| Remedy: | - Restore the bus connection and set the controller to RUN. <br> - check the set monitoring time if the error persists. <br> See also: p8840 (COMM BOARD monitoring time) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F08502 (A)
Message value:

| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :---: | :---: |
| Reaction: | Infeed: OFF1 (OFF2) <br> Servo: OFF1 (OFF2, OFF3) <br> Vector: OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The monitoring time for the sign-of-life counter has expired. The connection to the COMM BOARD was interrupted. |
| Remedy: | - check communications link. <br> - check COMM BOARD. |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A08504 (F) | COMM BOARD: Internal cyclic data transfer error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The cyclic actual and/or setpoint values were not transferred within the specified times. |
|  | Alarm value (r2124, interpret decimal): |
|  | Only for internal Siemens troubleshooting. |
| Remedy: | Check the parameterizing telegram (Ti, To, Tdp, etc.). |


| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| :--- | :--- |
|  | Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| F08510 (A) | COMM BOARD: Send configuration data invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (OFF2) <br> Servo: OFF1 (OFF2, OFF3) <br> Vector: OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | COMM BOARD did not accept the send-configuration data. Fault value (r0949, interpret decimal): Return value of the send-configuration data check. |
| Remedy: | Check the send configuration data. |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A08511 (F) | COMM BOARD: Receive configuration data invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The drive unit did not accept the receive configuration data. <br> Alarm value (r2124, interpret decimal): <br> Return value of the receive configuration data check. <br> 1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978. <br> 2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051 for PZD IF1, and in r8850/p8851 for PZD IF2. <br> 3: Uneven number of bytes for input or output. <br> 4: Setting data for synchronization not accepted. For more information, see A01902. <br> 5: Cyclic operation not active. <br> 17: CBE20 Shared Device: Configuration of the F-CPU has been changed. <br> 223: Illegal clock synchronization for the PZD interface set in p8815[0]. <br> 500: Illegal PROFIsafe configuration for the interface set in p8815[1]. <br> 501: PROFIsafe parameter error (e.g. F_dest). <br> 503: PROFIsafe connection is rejected as long as there is no isochronous connection (p8969). <br> Additional values: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Check the receive configuration data. <br> Re alarm value $=1,2$ : <br> - Check the list of the drive objects with process data exchange ( $p 0978$ ). With $p 0978[x]=0$, all of the following drive objects in the list are excluded from the process data exchange. <br> Re alarm value $=2$ : <br> - Check the number of data words for output and input to a drive object. <br> Re alarm value = 17: <br> - CBE20 Shared Device: Unplug/plug A-CPU. <br> Re alarm value $=223,500$ : <br> - Check the setting in p8839 and p8815. <br> - Ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe. <br> Re alarm value $=501$ : <br> - Check the set PROFIsafe address (p9610). |


| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| :--- | :--- |
|  | Servo: NONE (OFF1, OFF2, OFF3) |
| Vector: NONE (OFF1, OFF2, OFF3) |  |
| Acknowl. upon F: | IMMEDIATELY |


| A08520 (F) | COMM BOARD: Non-Cyclic channel error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The memory or the buffer status of the non-cyclic channel has an error. |
|  | Alarm value (r2124, interpret decimal): <br>  <br> O: Error in the buffer status. |
|  | 1: Error in the memory. |
| Remedy: | Check communications link. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br>  <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A08526 (F) | COMM BOARD: No cyclic connection |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |


| A08530 (F) | COMM BOARD: Message channel error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The memory or the buffer status of the message channel has an error. |
|  | Alarm value (r2124, interpret decimal): <br>  <br> O: Error in the buffer status. |
|  | 1: Error in the memory. |
| Remedy: | Check communications link. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br>  <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A08550 | PZD Interface Hardware assignment error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150-PN, ENC̄, HUB, S_INF, SERRVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The assignment of the hardware to the PZD interface has been incorrectly parameterized. Alarm value ( r 2124 , interpret decimal): <br> 1: Only one of the two indices is not equal to 99 (automatic). <br> 2: Both PZD interfaces are assigned to the same hardware. <br> 3: Assigned COMM BOARD missing. <br> 4: CBC10 is assigned to interface 1. <br> See also: p8839 (PZD interface hardware assignment) |
| Remedy: | Check the parameterization and if required, correct (p8839). |
| A08560 | IE: Syntax error in configuration file |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A syntax error has been detected in the ASCII configuration file for the Industrial Ethernet interface (X127). The saved configuration file has not been loaded. <br> Note: <br> IE: Industrial Ethernet |
| Remedy: | - Check the interface configuration (p8900 and following), correct if necessary, and activate (p8905 = 1). <br> - Save the parameters for interface configuration (e.g. p8905 = 2) <br> or <br> - Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). <br> See also: p8905 (IE Interface configuration) |
| A08561 | IE: Consistency error affecting adjustable parameters |
| Message value: | - |
| Drive object: | A INF, B INF, CU LINK, CU S AC DP, CU S AC PN, CU S120 DP, CU S120 PN, CU S150 DP, CU_S150-PN, ENC̄, HUB, S_INF, SERRVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A consistency error was detected when activating the configuration (p8905 = 1) for the Industrial Ethernet interface (X127). The currently set configuration has not been activated. <br> Possible causes: <br> - IP address, subnet mask or default gateway is not correct <br> - IP address or station name used twice in the network <br> - station name contains invalid characters, etc. <br> Note: <br> IE: Industrial Ethernet <br> See also: p8900 (IE Name of Station), p8901 (IE IP Address of Station), p8902 (IE Default Gateway of Station), p8903 (IE Subnet Mask of Station) |
| Remedy: | - Check the required interface configuration (p8900 and following), correct if necessary, and activate ( $\mathrm{p} 8905=1$ ). or <br> - Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8905 (IE Interface configuration) |


| A08562 | PROFINET: Syntax error in configuration file |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150 DP, CU_S150_PN, ENC $, ~ H U B, ~ S \_I N F, ~ S E R V O, ~ S E R V O-A C, ~ S E R V O \_I I A C, ~ T B 30, ~ T M 120, ~ T M 15, ~ T M 150, ~$ TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A syntax error has been detected in the ASCII configuration file for the onboard PROFINET interface. The saved configuration file has not been loaded. |
| Remedy: | - Check the interface configuration (p8920 and following), correct if necessary, and activate (p8925 = 1). <br> - Save the parameters for interface configuration (e.g. p8925 = 2). <br> or <br> - Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). <br> See also: p8925 (PN interface configuration) |
| A08563 | PROFINET: Consistency error affecting adjustable parameters |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A consistency error was detected when activating the configuration (p8925 = 1) for the onboard PROFINET interface. The currently set configuration has not been activated. <br> Possible causes: <br> - IP address, subnet mask or default gateway is not correct <br> - IP address or station name used twice in the network <br> - station name contains invalid characters, etc. <br> See also: p8920 (PN Name of Station), p8921 (PN IP address of station), p8922 (PN Default Gateway of Station), p8923 (PN Subnet Mask of Station) |
| Remedy: | - Check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945 = 1). or <br> - Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8925 (PN interface configuration) |

## A08564

## Message value:

Drive object:
tion
Acknowledge:
Cause:

## Remedy:

CBE20: Syntax error in configuration file

A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_D̄O, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC NONE
NONE
A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet 20 (CBE20). The saved configuration file has not been loaded.

- Check the CBE20 configuration (p8940 and following), correct if necessary, and activate (p8945 = 2). Note:
The configuration is not applied until the next POWER ON!
- reconfigure the CBE20 (e.g. using the STARTER commissioning software)

See also: p8945 (CBE20 interface configuration)

| A08565 | CBE20: Consistency error affecting adjustable parameters |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A consistency error was detected when activating the configuration ( $\mathrm{p} 8945=1$ ) for the Communication Board Ethernet 20 (CBE20). <br> The currently set configuration has not been activated. <br> Possible causes: <br> - IP address, subnet mask or default gateway is not correct <br> - IP address or station name used twice in the network <br> - station name contains invalid characters, etc. <br> See also: p8940 (CBE20 Name of Station), p8941 (CBE20 IP Address of Station), p8942 (CBE20 Default Gateway of Station), p8943 (CBE20 Subnet Mask of Station), p8944 (CBE20 DHCP Mode) |
| Remedy: | Check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945 = 1). See also: p8945 (CBE20 interface configuration) |
| F08700 (A) | CAN: Communications error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: OFF3 (NONE, OFF1, OFF2) <br> Vector: OFF3 (NONE, OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A CAN communications error has occurred. <br> Fault value (r0949, interpret decimal): <br> 1: The error counter for the send telegrams has exceeded the BUS OFF value 255 . The bus disables the CAN controller. <br> - bus cable short circuit. <br> - incorrect baud rate. <br> - incorrect bit timing. <br> 2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]). <br> - bus cable interrupted. <br> - bus cable not connected. <br> - incorrect baud rate. <br> - incorrect bit timing. <br> - master fault. <br> Note: <br> The fault response can be set as required using p8641. <br> See also: p8604 (CAN node guarding), p8641 (CAN Abort Connection Option Code) |
| Remedy: | - check the bus cable <br> - check the baud rate (p8622). <br> - check the bit timing (p8623). <br> - check the master. <br> The CAN controller must be manually restarted with p8608 = 1 after the cause of the fault has been resolved! See also: p8608 (CAN Clear Bus Off Error), p8622 (CAN bit rate), p8623 (CAN Bit Timing selection) |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F08701 | CAN: NMT state change |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 <br> Servo: OFF3 <br> Vector: OFF3 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped". <br> Fault value (r0949, interpret decimal): <br> 1: CANopen NMT state transition from "operational" to "pre-operational". <br> 2: CANopen NMT state transition from "operational" to "stopped". <br> Note: <br> In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred. |
| Remedy: | Not necessary. <br> Acknowledge the fault and continue operation. |
| F08702 (A) | CAN: RPDO Timeout |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF3 (NONE, OFF1, OFF2) <br> Vector: OFF3 (NONE, OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off. <br> See also: p8699 (CAN: RPDO monitoring time) |
| Remedy: | - check the bus cable <br> - check the master. <br> - If required, increase the monitoring time (p8699). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F08703 (A) | CAN: Maximum number of drive objects exceeded |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF3 (NONE, OFF1, OFF2) <br> Vector: OFF3 (NONE, OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The maximum number of 8 drive objects with the "CAN" function module was exceeded. <br> Note: <br> In the CANopen standard only a maximum of 8 drive objects are defined for each CANopen slave. |
| Remedy: | - New commissioning of maximum 8 drive objects with the "CAN" function module in the topology. <br> - For the drive objects, if required, deselect the "CAN" function module (r0108.29). |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A08751 | CAN: Telegram loss |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The CAN controller has lost a receive message (telegram). |
| Remedy: | Reduce the cycle times of the receive messages. |

A08752 CAN: Error counter for error passive exceeded

## Message value:

| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
| :--- | :--- |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | NONE |
| Remedy: | The error counter for the send or receive telegrams has exceeded the value 127. |
|  | - check the bus cable |
|  | - set a higher baud rate (p8622). |
|  | - check the bit timing and if required optimize (p8623). |
|  | See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection) |


| A08753 | CAN: Message buffer overflow |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | A message buffer overflow. |
|  | Alarm value (r2124, interpret decimal): |
|  | 1: Non-cyclic send buffer (SDO response buffer) overflow. |
|  | 2: Non-cyclic receive buffer (SDO receive buffer) overflow. |
|  | 3: Cyclic send buffer (PDO send buffer) overflow. |
|  | - check the bus cable. |
|  | - set a higher baud rate (p8622). |
|  | - check the bit timing and if required optimize (p8623). |
|  | Re alarm value = $2:$ |
|  | - reduce the cycle times of the SDO receive messages. |
|  | - SDO request from master only after SDO feedback for previous SDO request. |
|  | See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection) |

A08754
Message value:

| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
| :--- | :--- |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the "operational" mode, an attempt was made to change parameters p8700 ... p8737. |
| Remedy: | Change to the "pre-operational" or "stopped" mode. |



| A08756 | CAN: Number of mapped bytes exceeded |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC,TB30,TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible. |
| Remedy: | Map fewer objects or objects with a smaller data type. |
|  | See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, <br> p8736, p8737 |


| A08757 | CAN: Set COB-ID invalid |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For online operation, the appropriate COB-ID must be set invalid before mapping. <br> Example: <br> Mapping for RPDO 1 should be changed ( $\mathrm{p} 8710[0]$ ). <br> --> set p8700[0] = C00006E0 hex (invalid COB-ID) <br> --> set p8710[0] as required. <br> --> p8700[0] enter a valid COB-ID |
| Remedy: | Set the COB-ID to invalid. |


| A08758 | CAN: Number of PDO channels too low |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |

There are 2 possibilities:
Increase the number of channels in p8740 and confirm the selection using p8741.
Reduce the number of PDOs by setting the COB-ID to invalid.
See also: p8740 (CAN channel distribution), p8741 (CAN PDO configuration acknowledgement)

| A08759 | CAN: PDO COB-ID already available |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC,TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An existing PDO COB-ID was allocated. |
| Remedy: | Select another PDO COB-ID. |


| A08800 | PROFlenergy energy-saving mode active |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The PROFlenergy energy-saving mode is active |
|  | Alarm value (r2124, interpret decimal): |
|  | Mode I of the active PROFlenergy energy-saving mode. |
|  | See also: r5600 (Pe energy saving mode ID) |
| Remedy: | The alarm automatically disappears when the energy-saving mode is exited. |
|  | Note: |
|  | After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited. |


| A08802 | PROFlenergy not possible to switch off incremental encoder supply |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, <br>  <br>  <br> CU_S15_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | NONE |
|  | The incremental encoder is used for the closed-loop position control. This means that its power supply cannot be <br> switched off during the PROFlenergy energy-saving mode, otherwise it would lose its position actual value. |
|  | Alarm value (r2124, interpret decimal): |
| Remedy: | Encoder number <br> The alarm automatically disappears when the energy-saving mode is exited. |
|  | Note: <br> After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited. |
|  |  |


| A13000 | License not adequate |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_SI50_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_IAC, TB30,TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | - for the drive unit, the options that require a license are being used but the licenses are not sufficient. |
|  | -an error occurred when checking the existing licenses. |
|  | Alarm value (r2124, interpret decimal): |
|  | $0:$ |
|  | The existing license is not sufficient. |



| Remedy: | - enter and activate the license key for function modules under license (p9920, p9921). |
| :--- | :--- |
|  | - if necessary, de-activate unlicensed function modules (p0108, r0108). |
|  | See also: p9920 (Licensing, enter license key), p9921 (Licensing, activate license key) |


| F13020 | Licensing not sufficient in the control |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, |
|  | TM120,TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, |
|  | VECTOR_I_AC |
| Reaction: | OFF1 |
| Acknowledge: | IMMEDIATELY |
| Cause: | For the drive unit, the options that require a license are being used but the licenses are not sufficient. |
| Remedy: | - enter and activate the license key for options that require a license. <br>  |
|  | - if necessary, de-activate unlicensed options. |

F13100 Know-how protection: Copy protection error
Message value: \%1
Drive object: All objects
Reaction: OFF1

Acknowledge: IMMEDIATELY
Cause: The know-how protection with copy protection for the memory card is active. An error has occurred when checking the memory card.
Fault value (r0949, interpret decimal):
0 : A memory card is not inserted.
2: An invalid memory card is inserted.
3: The memory card is being used in another Control Unit.
12: An invalid memory card is inserted (OEM input incorrect, p7769).
13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
See also: p7765 (KHP memory card copy protection)
Remedy:

- Insert the correct memory card and carry out POWER ON.

Re fault value $=2,3,12,13$ :

- contact the responsible OEM
- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
- Deactivate know-how protection (p7766-p7768) and acknowledge the fault (p3981).

Note:
In general, the copy protection can only be changed when know-how protection is deactivated.
KHP: Know-How Protection
See also: p3981 (Faults, acknowledge drive object), p7765 (KHP memory card copy protection)
F13101 Know-how protection: Copy protection cannot be activated
Message value: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: An error occurred when attempting to activate the copy protection for the memory card.
Fault value (r0949, interpret decimal):
0 : A memory card is not inserted.
Note:
KHP: Know-How Protection
Remedy: - insert the memory card and carry out POWER ON.

- Try to activate copy protection again (p7765).

See also: p7765 (KHP memory card copy protection)

| F13102 | Know-how protection: Consistency error of the protected data |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF1 |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: yyyy = object number, xxxx = fault cause <br> $x x x x=1$ : <br> A file has a checksum error. $\text { xxxx = } 2$ <br> The files are not consistent with one another. <br> Note: <br> KHP: Know-How Protection |
| Remedy: | - Replace the project on the memory card. <br> - Restore the factory setting and download again. |
| F30001 | Power unit: Overcurrent |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has detected an overcurrent condition. <br> - closed-loop control is incorrectly parameterized. <br> - motor has a short-circuit or fault to ground (frame). <br> - U/f operation: Up ramp set too low. <br> - U/f operation: Rated motor current is significantly greater than that of the Motor Module. <br> - infeed: High discharge and post-charging currents for voltage dip. <br> - infeed: High post-charging currents for overload when motoring and DC link voltage dip. <br> - infeed: Short-circuit currents at power-up due to the missing line reactor. <br> - power cables are not correctly connected. <br> - the power cables exceed the maximum permissible length. <br> - power unit defective. <br> - line phase interrupted. <br> Additional causes for a parallel switching device (r0108.15 = 1): <br> - a power unit has tripped (powered down) due to a ground fault. <br> - the closed-loop circulating current control is either too slow or has been set too fast. <br> Fault value (r0949, interpret bitwise binary): <br> Bit 0: Phase U. <br> Bit 1: Phase V. <br> Bit 2: Phase W. <br> Bit 3: Overcurrent in the DC link. <br> Note: <br> Fault value $=0$ means that the phase with overcurrent is not recognized (e.g. for blocksize device). |
| Remedy: | - check the motor data - if required, carry out commissioning. <br> - check the motor circuit configuration (star/delta). <br> - U/f operation: Increase up ramp. <br> - U/f operation: Check the assignment of the rated currents of the motor and Motor Module. <br> - infeed: Check the line supply quality. <br> - infeed: Reduce the motor load. <br> - infeed: Check the correct connection of the line filter and the line commutating reactor. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. <br> - replace power unit. <br> - check the line supply phases. <br> For a parallel switching device (r0108.15 = 1) the following additionally applies: <br> - check the ground fault monitoring thresholds (p0287). <br> - check the setting of the closed-loop circulating current control (p7036, p7037). |


| F30002 | Power unit: DC link voltage, overvoltage |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has detected overvoltage in the DC link. <br> - motor regenerates too much energy. <br> - device connection voltage too high. <br> - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit. <br> - line phase interrupted. <br> Fault value (r0949, interpret decimal): <br> DC link voltage at the time of trip $[0.1 \mathrm{~V}]$. |
| Remedy: | - increase the ramp-down time <br> - activate the DC link voltage controller <br> - use a brake resistor or Active Line Module <br> - increase the current limit of the infeed or use a larger module (for the Active Line Module) <br> - check the device supply voltage <br> - check and correct the phase assignment at the VSM and at the power unit <br> - check the line supply phases. <br> See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration) |
| F30002 | Power unit: DC link voltage, overvoltage |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has detected overvoltage in the DC link. <br> - motor regenerates too much energy. <br> - device connection voltage too high. <br> - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit. <br> - line phase interrupted. <br> Fault value (r0949, interpret decimal): <br> DC link voltage at the time of trip $[0.1 \mathrm{~V}]$. |
| Remedy: | - increase the ramp-down time <br> - activate the DC link voltage controller <br> - use a brake resistor or Active Line Module <br> - increase the current limit of the infeed or use a larger module (for the Active Line Module) <br> - check the device supply voltage <br> - check and correct the phase assignment at the VSM and at the power unit <br> - check the line supply phases. <br> - set the rounding times (p1130, p1136). This is particularly recommended in U/f operation to relieve the DC link voltage controller with rapid ramp-down times of the ramp-function generator. <br> See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration) |
| F30003 | Power unit: DC link voltage, undervoltage |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has detected an undervoltage condition in the DC link. <br> - line supply failure <br> - line supply voltage below the permissible value. <br> - line supply infeed failed or interrupted. <br> - line phase interrupted. <br> Note: <br> The monitoring threshold for undervoltage in the DC link is indicated in r0296. |


| Remedy: | - check the line supply voltage |
| :--- | :--- |
|  | - check the line supply infeed and observe the fault messages relating to it (if there are any) |
|  | - check the line supply phases. |
|  | - check the line supply voltage setting (p0210). |
|  | - booksize units: check the setting of p0278. |
|  | Note: |
|  | The ready signal for the infeed (r0863) must be interconnected to the associated drive inputs (p0864). |
|  | See also: p0210 (Drive unit line supply voltage) |

- check the motor and power unit rated currents.
- increase p0294

See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)

## F30006

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge:
Cause:
Power unit: Thyristor Control Board OFF2
IMMEDIATELY
The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.

- there is no line supply voltage.
- the line contactor is not closed.
- the line supply voltage is too low.
- line supply frequency outside the permissible range ( $45 \ldots 66 \mathrm{~Hz}$ ).
- there is a DC link short-circuit.
- there is a DC link short-circuit (during the pre-charging phase).
- voltage supply for the Thyristor Control Board outside the nominal range ( $5 \ldots 18 \mathrm{~V}$ ) and line voltage $>30 \mathrm{~V}$.
- there is an internal fault in the Thyristor Control Board.

Remedy: The faults must be saved in the Thyristor Control Board and must be acknowledged. To do this, the supply voltage of the Thyristor Control Board must be switched out for at least 10 s !

- check the line supply voltage
- check or energize the line contactor.
- check the monitoring time and, if required, increase (p0857).
- if required, observe additional power unit messages/signals.
- check the DC link regarding short-circuit or ground fault.
- evaluate diagnostic LEDs for the Thyristor Control Board.


## F30008

## Power unit: Sign-of-life error cyclic data

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

## Reaction:

Acknowledge:
Cause:

Remedy:

Infeed: NONE (OFF1, OFF2)
Servo: NONE (OFF1, OFF2, OFF3)
Vector: NONE (OFF1, OFF2, OFF3)

## IMMEDIATELY

The Control Unit has not punctually updated the cyclic setpoint telegram. The number of consecutive sign-of-life errors has exceeded the fault threshold (p7789).

- check the electrical cabinet design and cable routing for EMC compliance
- for projects with the VECTOR drive object, check whether p0117 $=6$ has been set on the Control Unit.
- increase the fault threshold (p7789).

See also: p0117 (Current controller computing dead time mode)

| A30010 (F) | Power unit: Sign-of-life error cyclic data |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A DRIVE-CLiQ communication error has occurred between the Control Unit and the power unit involved. <br> The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock <br> cycle. |
| Remedy: | Check the electrical cabinet design and cable routing for EMC compliance. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| F30011 | Power unit: Line phase failure in main circuit |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (OFF1) |
| Acknowledge: | IMMEDIATELY |
| Cause: | At the power unit, the DC link voltage ripple has exceeded the permissible limit value. <br> Possible causes: <br> - A line phase has failed. <br> - The 3 line phases are inadmissibly unsymmetrical. <br> - the fuse of a phase of a main circuit has ruptured. <br> - A motor phase has failed. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - check the main circuit fuses. <br> - Check whether a single-phase load is distorting the line voltages. <br> - check the motor feeder cables. |
| F30012 | Power unit: Temperature sensor heat sink wire breakage |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The connection to a heat sink temperature sensor in the power unit is interrupted. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | Bit 0: Module slot (electronics slot) |
|  | Bit 1: Air intake |
|  | Bit 2: Inverter 1 |
|  | Bit 3: Inverter 2 |
|  | Bit 4: Inverter 3 |
|  | Bit 5: Inverter 4 |
|  | Bit 6: Inverter 5 |
|  | Bit 7: Inverter 6 |
|  | Bit 8: Rectifier 1 |
|  | Bit 9: Rectifier 2 |
| Remedy: | Contact the manufacturer. |
| F30013 | Power unit: Temperature sensor heat sink short-circuit |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The heat sink temperature sensor in the power unit is short-circuited. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | Bit 0: Module slot (electronics slot) |
|  | Bit 1: Air intake |
|  | Bit 2: Inverter 1 |
|  | Bit 3: Inverter 2 |
|  | Bit 4: Inverter 3 |
|  | Bit 5: Inverter 4 |
|  | Bit 6: Inverter 5 |
|  | Bit 7: Inverter 6 |
|  | Bit 8: Rectifier 1 |
|  | Bit 9: Rectifier 2 |
| Remedy: | Contact the manufacturer. |


| F30015 (N, A) | Power unit: Phase failure motor cable |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A phase failure in the motor feeder cable was detected. <br> The signal can also be output in the following case: <br> - the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated. <br> Note: <br> Chassis power units do not feature phase failure monitoring. |
| Remedy: | - check the motor feeder cables. <br> - check the speed controller settings. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F30015 (N, A) | Power unit: Phase failure motor cable |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A phase failure in the motor feeder cable was detected. <br> The signal can also be output in the following cases: <br> - The motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents. <br> - the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated. <br> Note: <br> Chassis power units do not feature phase failure monitoring. |
| Remedy: | - check the motor feeder cables. <br> - increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control. <br> - check the speed controller settings. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A30016 (N) | Power unit: Load supply switched out |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DC link voltage is too low. Alarm value (r2124, interpret decimal): DC link voltage at the time of trip [0.1 V]. |
| Remedy: | - switch on load supply. <br> - check the line supply if necessary. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F30017 | Power unit: Hardware current limit has responded too often |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit. <br> For infeed units, the following applies: <br> - closed-loop control is incorrectly parameterized. <br> - load on the infeed is too high. <br> - Voltage Sensing Module incorrectly connected. <br> - line reactor missing or the incorrect type. <br> - power unit defective. <br> The following applies to Motor Modules: <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Fault value (r0949, interpret binary): <br> Bit 0: Phase U <br> Bit 1: Phase V <br> Bit 2: Phase W |
| Remedy: | For infeed units, the following applies: <br> - check the controller settings and reset and identify the controller if necessary (p0340=2, p3410=5) <br> - reduce the load and increase the DC-link capacitance or use a higher-rating infeed if necessary <br> - check the connection of the optional Voltage Sensing Module <br> - check the connection and technical data of the line reactor <br> - check the power cables for short-circuit or ground fault. <br> - replace power unit. <br> The following applies to Motor Modules: <br> - check the motor data and if required, recalculate the controller parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a <br> motor data identification (p1910 $=1$, p1960 $=1$ ). <br> - check the motor circuit configuration (star-delta). <br> - check the motor load. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. <br> - replace power unit. |
| F30020 | Power unit: Configuration not supported |
| Message value: | fault cause: \%1, additional information: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A configuration is requested that is not supported by the power unit. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: $x x x x=$ fault cause, yyyy = additional information (siemensintern) <br> $\mathrm{xxxx}=0$ : Autonomous operation is requested but is not supported. <br> $x x x x=1$ : The requested DRIVE-CLiQ timing is not permissible. <br> xxxx = 2: A PM260 has been detected with PS-ASIC version 2. This combination is not supported. <br> xxxx = 3: Initialization was not able to be successfully completed. It is possible that the Control Unit was withdrawn <br> from the power module before or during power-up. <br> xxxx = 4: The combination of power unit and Control Unit or Control Unit Adapter is not supported. <br> $x x x x=5$ : The higher current controller dynamic performance is not supported. |
| Remedy: | Re fault cause $=0$ : <br> If required, deactivate an active internal voltage protection (p1231). <br> Re fault cause $=1$ : <br> Update the Control Unit firmware or change the DRIVE-CLiQ topology. |


|  | Re fault cause = 2: |
| :--- | :--- |
|  | Replace the power unit with a PM260 with PS-ASIC version 3 (or higher). |
|  | Re fault cause = 3, 4: |
|  | Insert a Control Unit or Control Unit Adapter (CUAxx) on an appropriate Power Module and perform a POWER ON |
|  | for the Control Unit or the Control Units Adapter. |
|  | Re fault cause = 5: |
|  | - use a booksize format power unit. |
|  | - for a Double Motor Module operate the two drive controls with the same current controller sampling time (p0115[0]). |
|  | Otherwise, the higher current controller dynamics can only be activated on the drive with the longer sampling time. |
|  | - If required, de-select the higher current controller dynamic performance (p1810.11 = 0). After deselecting the com- |
|  | puting dead time, recalculate the controller gains (p0340 = 4). If required, optimize the speed controller. |
|  | See also: p0115, p1231, p1810 |


| Remedy: | - check the fiber-optic cable and if required, replace. <br> - check the power supply of the IGBT gating module ( 24 V ). <br> - check the power cable connections. <br> - select the defective semiconductor and replace. |
| :---: | :---: |
| F30024 | Power unit: Overtemperature thermal model |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature difference between the heat sink and chip has exceeded the permissible limit value. <br> - the permissible load duty cycle was not maintained. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - pulse frequency too high. <br> See also: r0037 |
| Remedy: | - adapt the load duty cycle. <br> - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> - reduce the pulse frequency if this is higher than the rated pulse frequency. |
| F30024 | Power unit: Overtemperature thermal model |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature difference between the heat sink and chip has exceeded the permissible limit value. <br> - the permissible load duty cycle was not maintained. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - pulse frequency too high. <br> See also: r0037 |
| Remedy: | - adapt the load duty cycle. <br> - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> - reduce the pulse frequency if this is higher than the rated pulse frequency. <br> - if DC braking is active: reduce braking current (p1232). |
| F30025 | Power unit: Chip overtemperature |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The chip temperature of the semiconductor has exceeded the permissible limit value. <br> - the permissible load duty cycle was not maintained. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - pulse frequency too high. <br> Fault value (r0949, interpret decimal): <br> Temperature difference between the heat sink and chip $\left[0.01^{\circ} \mathrm{C}\right]$. |

## - adapt the load duty cycle.

- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot. See also: r0037

F30027
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit: Precharging DC link time monitoring

Enable signals: \%1, Status: \%2
A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
OFF2
IMMEDIATELY
The power unit DC link was not able to be pre-charged within the expected time.

1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).
11) Infeed is defective and/or fuse has ruptured in the Motor Module (only Booksize units).

Fault value (r0949, interpret binary):
yyyyxxxx hex:
yyyy = power unit state
0: Fault status (wait for OFF and fault acknowledgement).
1: Restart inhibit (wait for OFF).
2: Overvoltage condition detected -> change into the fault state.
3: Undervoltage condition detected -> change into the fault state.
4: Wait for bridging contactor to open -> change into the fault state.
5: Wait for bridging contactor to open -> change into restart inhibit.
6: Commissioning.
7: Ready for pre-charging.
8: Pre-charging started, DC link voltage less than the minimum switch-on voltage.
9: Pre-charging, DC link voltage end of pre-charging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed.
11: Pre-charging completed, ready for pulse enable.
12: It was detected that the STO terminal was energized at the power unit.
xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: I2t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed pre-charging, ready for pulse enable.
Bit 9: STO terminal missing.
Bit 10: Overcurrent detected.
Bit 11: Armature short-circuit active.
Bit 12: DRIVE-CLiQ fault active.

|  | Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit. <br> Bit 14: Undervoltage detected. <br> See also: p0210 (Drive unit line supply voltage) |
| :---: | :---: |
| Remedy: | In general: <br> - check the line supply voltage at the input terminals. <br> - check the line supply voltage setting (p0210). <br> For booksize drive units, the following applies: <br> - wait (approx. 8 minutes) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply. <br> $\operatorname{Re} 5):$ <br> - carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual). <br> Re 6): <br> - check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual) <br> $\operatorname{Re} 7$ ): <br> - interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link <br> Re 8): <br> - check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge. <br> $\operatorname{Re} 9)$ : <br> - check the DC link for ground faults or short circuits. <br> Re 11): <br> - Check the DC link voltage of the infeed (r0070) and Motor Modules (r0070). <br> If the DC link voltage generated by the infeed (or external) is not displayed for the Motor Modules (r0070), then a fuse has ruptured in the Motor Module. <br> See also: p0210 (Drive unit line supply voltage) |
| A30031 | Power unit: Hardware current limiting, phase U |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Hardware current limit for phase $U$ responded. The pulsing in this phase is inhibited for one pulse period. <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Note: <br> Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase $\mathrm{U}, \mathrm{V}$ or W responds. |
| Remedy: | - check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). <br> - check the motor circuit configuration (star/delta). <br> - check the motor load. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. |
| A30032 | Power unit: Hardware current limiting, phase V |
| Message value: |  |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Note: <br> Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds. |

```
Remedy: Check the motor data and if required, recalculate the control parameters (p0340 = 3). As an alternative, run a motor
data identification (p1910 = 1, p1960 = 1).
- check the motor circuit configuration (star/delta)
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
```

| A30033 | Power unit: Hardware current limiting, phase W |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period. <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Note: <br> Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase $\mathrm{U}, \mathrm{V}$ or W responds. |
| Remedy: | - check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification $(p 1910=1, p 1960=1)$. <br> - check the motor circuit configuration (star/delta). <br> - check the motor load. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. |


| A30034 | Power unit: Internal overtemperature |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for internal overtemperature has been reached. <br> If the temperature inside the unit continues to increase, fault F30036 may be triggered. <br>  <br>  <br>  <br>  <br>  <br>  <br> - ambient temperature might be too high. <br> - insufficient cooling, fan failure. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. <br> - check the ambient temperature. <br> - check the fan for the inside of the unit. |

## F30035

## Power unit: Air intake overtemperature

Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY

Cause: The air intake in the power unit has exceeded the permissible temperature limit.
For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.

- ambient temperature too high.
- insufficient cooling, fan failure.

Fault value (r0949, interpret decimal):
Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.
Remedy: - check whether the fan is running.

- check the fan elements
- check whether the ambient temperature is in the permissible range.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.

| F30036 | Power unit: Internal overtemperature |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature inside the drive converter has exceeded the permissible temperature limit. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> Notice: <br> This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below. |
| F30037 | Power unit: Rectifier overtemperature |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature in the rectifier of the power unit has exceeded the permissible temperature limit. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - line supply phase failure. <br> Fault value (r0949, interpret decimal): <br> Temperature $\left[0.01^{\circ} \mathrm{C}\right]$. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> - check the line supply phases. <br> Notice: <br> This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot. |
| A30038 | Power unit: Capacitor fan monitoring |
| Message value: | \%1 |
| Drive object: | B_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The capacitor fan signals a faul. |
| Remedy: | Replace the capacitor fan in the power unit. |
| F30039 | Power unit: Failure capacitor fan |
| Message value: | \%1 |
| Drive object: | B_INF |
| Reaction: | OFF1 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The capacitor fan has failed. |
| Remedy: | Replace the capacitor fan in the power unit. |


| F30040 | Power unit: Undervolt 24 V |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Failure of the 24 V power supply for the power unit. <br> - The undervoltage threshold was undershot for longer than 3 ms Fault value (r0949, interpret decimal): <br> 24 V voltage [ 0.1 V ]. |
| Remedy: | - Check the power supply of the power unit. <br> - carry out a POWER ON (power off/on) for the component. |


| F30040 | Power unit: Undervolt 24/48 V |
| :---: | :---: |
| Message value: | Channel: \%1, voltage: \%2 [0.1 V] |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Failure of the power supply for the power unit. <br> - The undervoltage threshold was undershot for longer than 3 ms <br> Fault value (r0949, interpret hexadecimal): <br> yyxxxx hex: yy = channel, xxxx = voltage [0.1 V] <br> yy = 0: 24 V power supply <br> yy $=1: 48 \mathrm{~V}$ power supply |
| Remedy: | - Check the power supply of the power unit. <br> - carry out a POWER ON (power off/on) for the component. |


| A30041 (F) | Power unit: Undervoltage 24 V alarm |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the power unit power supply, the lower threshold has been violated. <br> Alarm value (r2124, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - Check the power supply of the power unit. <br> - carry out a POWER ON (power off/on) for the component. <br> Reaction upon F: <br>  <br> Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A30041 (F) | Power unit: Undervolt 24/48 V alarm |
| :--- | :--- |
| Message value: | Channel: \%1, voltage: \%2 [0.1 V] |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the power unit power supply, the lower threshold has been violated. |
|  | Alarm value (r2124, interpret hexadecimal): <br> yyxxx hex: yy = channel, xxxx = voltage [0.1 V] <br> yy $=0: 24 \mathrm{~V}$ power supply <br> $y y=1: 48 ~ V ~ p o w e r ~ s u p p l y ~$ |
|  | yy <br> - Check the power supply of the power unit. |
| Remedy: | - carry out a POWER ON (power off/on) for the component. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A30041 (F) | Power unit: Undervoltage 24 V alarm |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the power unit power supply, the lower threshold has been violated.  <br>  Alarm value (r2124, interpret decimal): <br> 24 V voltage [0.1 V].  <br> - Check the power supply of the power unit.  |
| Remedy: | - carry out a POWER ON (power off/on) for the component. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| Servo: NONE (OFF1, OFF2) |  |


|  | Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. |
| :---: | :---: |
| Remedy: | Check the power supply of the power unit. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| A30044 (F) | Power unit: Overvolt 24/48 V alarm |
| Message value: | Channel: \%1, voltage: \%2 [0.1 V] |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the power unit power supply, the upper threshold has been violated. Alarm value (r2124, interpret hexadecimal): <br> yyxxxx hex: $y=$ channel, $x x x x=$ voltage $[0.1 \mathrm{~V}]$ <br> yy $=0: 24 \mathrm{~V}$ power supply <br> $y y=1: 48 \mathrm{~V}$ power supply |
| Remedy: | Check the power supply of the power unit. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A30044 (F) | Power unit: Overvoltage 24 V alarm |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the power unit power supply, the upper threshold has been violated. |
|  | Alarm value (r2124, interpret decimal): <br>  <br> 24 V voltage [0.1 V]. |
| Remedy: | Check the power supply of the power unit. <br> Infeed: NONE (OFF1, OFF2) |
| Reaction upon F: | Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |

F30045 Power unit: Supply undervoltage
Message value: \%1
Drive object: A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Power supply fault in the power unit
- The voltage monitor signals an undervoltage fault on the module.
The following applies for CU31x:
- the voltage monitoring on the DAC board signals an undervoltage fault on the module.
Remedy: - Check the power supply of the power unit.
- carry out a POWER ON (power off/on) for the component.
- replace the module if necessary.

| F30045 | Power unit: Supply undervoltage |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) <br> Cause: |
|  | Power supply fault in the power unit. <br> - The voltage monitor signals an undervoltage fault on the module. <br> The following applies for CU31x: <br> - the voltage monitoring on the DAC board signals an undervoltage fault on the module. <br>  <br>  <br> For S120M, the following applies: <br> - This message is displayed for undervoltage or overvoltage. |
| - Check the power supply of the power unit. |  |
| Remedy: | - carry out a POWER ON (power off/on) for the component. <br> - replace the module if necessary. |


| A30046 (F) | Power unit: Undervoltage, alarm |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Before the last restart, a problem occurred at the power unit power supply. - the voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module. Alarm value only for internal diagnostics |
| Remedy: | - check the 24 V DC voltage supply to power unit. <br> - carry out a POWER ON (power off/on) for the component. <br> - replace the module if necessary. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A30046 (F) | Power unit: Undervoltage, alarm |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Before the last restart, a problem occurred at the power unit power supply. <br> - the voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module. |
|  | Fault talue (r0949, interpret decimal): <br> Register value of the voltage fault register. |
| Remedy: | - check the 24 V DC voltage supply to power unit. <br> - carry out a POWER ON (power off/on) for the component. <br> - replace the module if necessary. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

F30047 Cooling unit: Cooling medium flow rate too low
Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The flowrate of the cooling unit has fallen below the fault threshold.
Remedy: - Check the feedback signals and parameter assignment (p0260 ... p0267).

- Check the coolant feed.

| A30048 | Power unit: External fan faulty |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The feedback signal from the external fan indicates a fault. - fan faulty, blocked. <br> - feedback signal inaccurate. |
| Remedy: | - check the external fan and replace if necessary. <br> - if you are using an external fan with feedback, check its wiring (X12.2 or X13.2). <br> Note: <br> If you are using an external fan without feedback, check that the feedback terminal wiring on the power unit is connected to ground and make this connection if necessary (X12.1/2 or X13.1/2). |
| A30049 | Power unit: Internal fan faulty |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal fan has failed. |
| Remedy: | Check the internal fan and replace if necessary. |
| F30050 | Power unit: 24 V supply overvoltage |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The voltage monitor signals an overvoltage fault on the module. |
| Remedy: | - check the 24 V power supply. <br> - replace the module if necessary. |
| F30052 | EEPROM data error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | EEPROM data error of the power unit module. <br> Fault value (r0949, interpret decimal): $0,2,3,4$ <br> The EEPROM data read in from the power unit module are incorrect. 1: <br> EEPROM data is not compatible to the firmware of the power unit application. <br> Additional values: <br> Only for internal Siemens troubleshooting. |
| Remedy: | Re fault value $=0,2,3,4$ : <br> Replace the power unit module or update the EEPROM data. <br> For fault value =1: <br> The following applies for CU31x and CUA31: <br> Update the firmware $\operatorname{ISIEMENSISINAMICSICODE\ SAClcu31xi.ufw~(cua31.ufw)~}$ |

## F30053

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## FPGA data faulty

\%1
All objects
NONE
POWER ON
The FPGA data of the power unit are faulty.
Remedy: $\quad$ Replace the power unit or update the FPGA data.

| A30054 (F) | Power unit: Undervoltage when opening the brake |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When the brake is being opened, it is detected that the power supply voltage is less than $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$ <br> Alarm value (r2124, interpret decimal): <br> Supply voltage fault [ 0.1 V ]. <br> Example: <br> Alarm value $=195$--> voltage $=19.5 \mathrm{~V}$ |
| Remedy: | Check the 24 V voltage for stability and value. |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |

## F30055

## Power unit: Braking chopper overcurrent

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge:
Cause: IMMEDIATELY

Remedy:
An overcurrent condition has occurred in the braking chopper.

- check whether the braking resistor has a short circuit.
- for an external braking resistor, check whether the resistor may have been dimensioned too small. Note:
The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.

| A30057 | Power unit: Line asymmetry |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase. It is also possible that a motor phase has failed. <br> Fault F30011 is output if the alarm is present and at the latest after 5 minutes. <br> The precise duration depends on the power unit type and the particular frequencies. <br> Alarm value (r2124, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - check the line phase connection. <br> - check the motor feeder cable connections. <br> If there is no phase failure of the line or motor, then line asymmetry is involved. <br> - reduce the power in order to avoid fault F30011. |

## F30059 Power unit: Internal fan faulty

Message value:

| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :--- | :--- |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The internal power unit fan has failed and is possibly defective. |
| Remedy: | Check the internal fan and replace if necessary. |


| F30060 (A) | Pre-charge contactor state monitoring |
| :--- | :--- |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE, OFF1) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A feedback signal for the pre-charging contactor (ALM, SLM, BLM diode) or the line contactor (BLM thyristor) inter- <br> connected and the monitoring activated. |
|  | After switching-in/switching-out the contactor, a correct feedback signal was not received within the monitoring time <br> set in p0255[0]. |
|  | Fault value (r0949, interpret binary): <br> Bit 0: The time set in p0255[0] was exceeded when switching-in/switching-out the contactor. |
|  | Bit 1: The pre-charging contactor was opened while pre-charging or in the infeed mode (BLM thyristor). |
|  | Bit 2: The pre-charging contactor was switched-in in the OFF state or during infeed operation. |


| F30071 | No new actual values received from the power unit module |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The number of actual value telegrams from the power unit module that have failed has exceeded the permissible number. |
| Remedy: | Check the interface (adjustment and locking) to the power unit module. |
| F30072 | Setpoints are no longer being transferred to the power unit |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The following applies for CU31x and CUA31: <br> More than one setpoint telegram was not able to be transferred to the power unit module. |
| Remedy: | The following applies for CU31x and CUA31: Check the interface (adjustment and locking) to the power unit module. |
| A30073 (N) | Actual value/setpoint preprocessing no longer synchronous |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Communication with the power unit module is no longer in synchronism with the current control cycle. |
| Remedy: | Wait until synchronization is re-established. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F30074 (A) | Communication error between the Control Unit and Power Module |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted. <br> Fault value (r0949, interpret hexadecimal): <br> 0 hex: <br> The Control Unit was withdrawn from the Power Module during operation. <br> 1 hex: <br> The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible. <br> 20A hex: <br> The Control Unit was inserted on a Power Module, which has another code number. <br> 20B hex: <br> The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number. <br> 601 hex: <br> The Control Unit was inserted on a Power Module, whose power/performance class (chassis unit) is not supported. |
| Remedy: | Reinsert the Control Unit (CU) or the Control Unit adapter (CUAxx) onto the original Power Module and continue operation. If required, carry out a POWER ON for the CU and/or the CUA. |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F30080 | Power unit: Current increasing too quickly |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has detected an excessive rate of rise in the overvoltage range. <br> - closed-loop control is incorrectly parameterized. <br> - motor has a short-circuit or fault to ground (frame). <br> - U/f operation: Up ramp set too low. <br> - U/f operation: rated current of motor much greater than that of power unit. <br> - infeed: High discharge and post-charging currents for voltage dip. <br> - infeed: High post-charging currents for overload when motoring and DC link voltage dip. <br> - infeed: Short-circuit currents at power-up due to the missing line reactor. <br> - power cables are not correctly connected. <br> - power cables exceed the maximum permissible length. <br> - power unit defective. <br> Additional causes for a parallel switching device (r0108.15 = 1): <br> - a power unit has tripped (powered down) due to a ground fault. <br> - the closed-loop circulating current control is either too slow or has been set too fast. <br> Fault value (r0949, interpret bitwise binary): <br> Bit 0: Phase U. <br> Bit 1: Phase V. <br> Bit 2: Phase W. |
| Remedy: | - check the motor data - if required, carry out commissioning. <br> - check the motor circuit configuration (star-delta) <br> - U/f operation: Increase up ramp. <br> - U/f operation: Check assignment of rated currents of motor and power unit. <br> - infeed: Check the line supply quality. <br> - infeed: Reduce the motor load. <br> - infeed: Correct connection of the line reactor. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. <br> - replace power unit. <br> For a parallel switching device $(r 0108.15=1)$ the following additionally applies: <br> - check the ground fault monitoring thresholds (p0287). <br> - check the setting of the closed-loop circulating current control (p7036, p7037). |
| F30081 | Power unit: Switching operations too frequent |
| Message value: | Fault cause: \%1 bin |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The power unit has executed too many switching operations for current limitation. <br> - closed-loop control is incorrectly parameterized. <br> - motor has a short-circuit or fault to ground (frame). <br> - U/f operation: Up ramp set too low. <br> - U/f operation: rated current of motor much greater than that of power unit. <br> - infeed: High discharge and post-charging currents for voltage dip. <br> - infeed: High post-charging currents for overload when motoring and DC link voltage dip. <br> - infeed: Short-circuit currents at power-up due to the missing line reactor. <br> - power cables are not correctly connected. <br> - power cables exceed the maximum permissible length. <br> - power unit defective. <br> Additional causes for a parallel switching device (r0108.15 = 1): <br> - a power unit has tripped (powered down) due to a ground fault. <br> - the closed-loop circulating current control is either too slow or has been set too fast. <br> Fault value (r0949, interpret bitwise binary): <br> Bit 0: Phase U. <br> Bit 1: Phase V. <br> Bit 2: Phase W. |

Remedy: | - check the motor data - if required, carry out commissioning. |
| :--- | :--- |
| - check the motor circuit configuration (star-delta) |
| - U/f operation: Increase up ramp. |
| - U/f operation: Check assignment of rated currents of motor and power unit. |
| - infeed: Check the line supply quality. |
| - infeed: Reduce the motor load. |
| - infeed: Correct connection of the line reactor. |
| - check the power cable connections. |
| - check the power cables for short-circuit or ground fault. |
| - check the length of the power cables. |
| - replace power unit. |
| For a parallel switching device (r0108.15 = 1) the following additionally applies: |
| - check the ground fault monitoring thresholds (p0287). |
| - check the setting of the closed-loop circulating current control (p7036, p7037). |

| F30105 | PU: Actual value sensing fault |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). |
|  | The incorrect actual value channels are displayed in the following diagnostic parameters. |
| Remedy: | Evaluate the diagnostic parameters. <br>  |
|  | If the actual value channel is incorrect, check the components and if required, replace. |

F30314 Power unit: 24 V power supply overloaded by PM

Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The 24 V power supply through the Power Module (PM) is overloaded. An external 24 V power supply via X124 on the Control Unit is not connected.
Remedy: Connect an external 24 V power supply via X124 at the Control Unit.

| A30315 (F) | Power unit: 24 V power supply overloaded by PM |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 24 V power supply through the Power Module (PM) is overloaded. |
|  | An external 24 V power supply via X124 on the Control Unit is not connected. |
| Remedy: | Connect an external 24 V power supply via X124 at the Control Unit. |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A30502 | Power unit: DC link overvoltage |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The power unit has detected overvoltage in the DC link on a pulse inhibit. |
|  | - device connection voltage too high. |
|  | - line reactor incorrectly dimensioned. |
|  | Alarm value (r0949, interpret decimal): |
|  | DC link voltage [1 bit = 100 mV]. |
|  | See also: r0070 (Actual DC link voltage) |


| Remedy: | - check the device supply voltage (p0210). <br> - check the dimensioning of the line reactor. <br> See also: p0210 (Drive unit line supply voltage) |
| :---: | :---: |
| F30600 | SI MM: STOP A initiated |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The "Safety Integrated" function integrated in the drive in the Motor Module (MM) has detected a fault and initiated STOP A (pulse suppression via the safety shutdown path of the Motor Module). <br> - forced checking procedure of the safety shutdown path of the Motor Module unsuccessful. <br> - subsequent response to fault F30611 (defect in a monitoring channel). <br> Fault value (r0949, interpret decimal): <br> 0 : Stop request from the Control Unit. <br> 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. <br> 1010: Pulses enabled although STO is selected or an internal STOP A is present. <br> 1020: Internal software error in the "Internal voltage protection" function. The "internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated. <br> 9999: Subsequent response to fault F30611. |
| Remedy: | - select Safe Torque Off and de-select again. <br> - replace the Motor Module involved. <br> For fault value = 1020: <br> - carry out a POWER ON (power off/on) for all components. <br> - upgrade the Motor Module software. <br> - replace the Motor Module. <br> For fault value = 9999: <br> - carry out diagnostics for fault F30611. <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated <br> STO: Safe Torque Off / SH: Safe standstill |
| F30611 | SI MM: Defect in a monitoring channel |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ```Infeed: NONE (OFF1, OFF2) Servo: NONE (OFF1, OFF2, OFF3) Vector: NONE (OFF1, OFF2, OFF3)``` |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The "Safety Integrated" function integrated in the drive in the Motor Module (MM) has detected a fault in the crosswise data comparison between the Control Unit (CU) and MM and initiated a STOP F. <br> As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated). <br> Fault value (r0949, interpret decimal): <br> 0 : Stop request from the Control Unit. <br> 1 ... 999: <br> Number of the cross-compared data that resulted in this fault. This number is also displayed in r9895. <br> 1: SI monitoring clock cycle (r9780, r9880). <br> 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. <br> 3: SI SGE changeover tolerance time (p9650, p9850). <br> 4: SI transition period STOP F to STOP A (p9658, p9858). <br> 5: SI enable Safe Brake Control (p9602, p9802). <br> 6: SI Motion enable, safety-relevant functions (p9501, internal value). <br> 7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852). <br> 8: SI PROFIsafe address (p9610, p9810). <br> 9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851). <br> 10: SI delay time for pulse suppression for ESR (p9697, p9897). <br> 11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821). <br> 12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]). |

```
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
14: SI PROFIsafe telegram selection (p9611, p9811).
1000: Watchdog timer has expired.
Within the time of approx. 5 x p9650, alternatively, the following was defined:
- Too many switching operations have occurred at the EP terminal of the Motor Module.
- Via PROFIsafe/TM54F, STO was too frequently initiated (also as subsequent response).
- Safe pulse cancellation (r9723.9) was too frequently initiated (also as subsequent response).
1001, 1002: Initialization error, change timer / check timer.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different (status of the timer in
p9650/p9850).
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety message C01711.
Remedy: Re fault value = 1 .. 5 and 7 ... 999:
- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
For fault value = 6:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
For fault value = 1000:
- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).
Re fault value = 1001, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 2000, 2001, 2002:
- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the cause of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be
selected using these functions.
- replace the Motor Module involved.
Re fault value = 6000 ... 6999:
Refer to the description of the message values in safety message C01711.
Note:
CU: Control Unit
EP: Enable Pulses (pulse enable)
ESR: Extended Stop and Retract
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SMM: Safe Motion Monitoring
SS1: Safe Stop }1\mathrm{ (corresponds to Stop Category }1\mathrm{ acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
N30620 (F, A) SI MM: Safe Torque Off active
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
NONE
Acknowledge: NONE
Cause: The function "Safe Torque Off" (STO) of the basic functions was selected on the Motor Module (MM) via the input
    terminal and is active.
```

|  | Note: |
| :--- | :--- |
|  | - This message does not result in a safety stop response. |
|  | - This message is not output when STO is selected using the Extended Functions. |
| Remedy: | Not necessary. |
|  | Note: |
|  | MM: Motor Module |
|  | SI: Safety Integrated |
|  | STO: Safe Torque Off / SH: Safe standstill |
| OFF |  |


| F30630 | SI MM: Brake control error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The "Safety Integrated" function integrated in the drive on the Motor Module (MM) has detected a brake control error and initiated a STOP A. <br> Fault value (r0949, interpret decimal): <br> 10: <br> Fault in "open holding brake" operation. <br> - Parameter p1278 incorrectly set. <br> - No brake connected or wire breakage (check whether brake releases for p1278=1 and p9602/p9802 = 0 (SBC deactivated)). <br> - Ground fault in brake cable. <br> 30: <br> Fault in "close holding brake" operation. <br> - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)). <br> - Short-circuit in brake winding. <br> 40: <br> Fault in "brake closed" state. <br> 60, 70: <br> Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control). <br> 81: Safe Brake Adapter: Fault in "brake closed" state. <br> 82: Safe Brake Adapter: Fault in "open brake" state. <br> 83: Safe Brake Adapter: Fault in "close brake" state. <br> 84,85: <br> Safe Brake Adapter: Fault in the brake control circuit of the Control Unit or communication fault between Control Unit and Motor Module (brake control). <br> Note: <br> The following causes may apply to fault values: <br> - motor cable is not shielded correctly. <br> - defect in control circuit of the Motor Module. |
| Remedy: | - check parameter p1278 (for SBC, only p1278 = 0 is permissible). <br> - select Safe Torque Off and de-select again. <br> - check the motor holding brake connection. <br> - check the function of the motor holding brake. <br> - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. <br> - check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing). <br> - replace the Motor Module involved. <br> Operation with Safe Brake Module or Safe Brake Adapter: <br> - check the Safe Brake Module or Safe Brake Adapter connection. <br> - Replace the Safe Brake Module or Safe Brake Adapter. <br> Note: <br> MM: Motor Module <br> SBC: Safe Brake Control <br> SI: Safety Integrated |
| F30631 | Brake control: external release active |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For service purposes, the brake is supplied with voltage at terminal X4.1. |
| Remedy: | Remove the power supply at terminal X4.1. |


| A30640 (F) | SI MM: Fault in the shutdown path of the second channel |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Motor Module has detected a communication error with the higher-level control or the TM54F to transfer the safety-relevant information or there is a communication error between Motor Modules connected in parallel. <br> Note: <br> This fault results in a STOP A that can be acknowledged. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | For the higher-level control, the following applies: <br> - check the PROFIsafe address in the higher-level control and Motor Modules and if required, align. <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> For TM54F, carry out the following steps: <br> - start the copy function for the node identifier (p9700 = 1D hex). <br> - acknowledge hardware CRC (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> For a parallel connection, the following applies: <br> - check the PROFIsafe address in the Control Unit and Motor Module and if required, align. <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> The following generally applies: <br> - upgrade the Motor Module software. <br> Note: <br> MM: Motor Module <br> SI: Safety Integrated <br> See also: p9810 (SI PROFIsafe address (Motor Module)) |
| Reaction upon F: | NONE (OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| F30649 | SI MM: Internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | An internal error in the Safety Integrated software on the Motor Module has occurred. Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - re-commission the Safety Integrated function and carry out a POWER ON. <br> - upgrade the Motor Module software. <br> - contact the Hotline. <br> - replace the Motor Module. <br> Note: <br> MM: Motor Module <br> SI: Safety Integrated |
| F30650 | SI MM: Acceptance test required |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The "Safety Integrated" function on the Motor Module requires an acceptance test. |



|  | Note: <br> MM: Motor Module SI: Safety Integrated |
| :---: | :---: |
| F30652 | SI MM: Illegal monitoring clock cycle |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The Safety Integrated monitoring clock cycle cannot be maintained due to the communication conditions requested in the system. <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - if fault F01652 simultaneously occurs, apply the remedy/countermeasure described there. <br> - Upgrade the firmware of the Motor Module to a later version. <br> Note: <br> MM: Motor Module <br> SI: Safety Integrated |
| F30655 | SI MM: Align monitoring functions |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions. <br> - there is either a DRIVE-CLiQ communication error or communication has failed. <br> - Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another. Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade the Motor Module software. <br> - upgrade the Control Unit software. <br> - check the electrical cabinet design and cable routing for EMC compliance <br> Note: <br> CU: Control Unit <br> MM: Motor Module <br> SI: Safety Integrated |
| F30656 | SI MM: Motor Module parameter error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | When accessing the Safety Integrated parameters for the Motor Module (MM) in the non-volatile memory, an error has occurred. <br> Note: <br> This fault results in a STOP A that can be acknowledged. <br> Fault value (r0949, interpret decimal): 129: <br> - safety parameters for the Motor Module corrupted. <br> - drive with enabled safety functions was possibly copied offline using the commissioning software and the project downloaded. <br> 131: Internal software error on the Control Unit. <br> 255: Internal Motor Module software error. |


| Remedy: | - re-commission the safety functions. <br> - upgrade the Control Unit software. <br> - upgrade the Motor Module software. <br> - replace the memory card or Control Unit. <br> For fault value = 129: <br> - activate the safety commissioning mode (p0010 = 95). <br> - adapt the PROFIsafe address (p9610). <br> - start the copy function for SI parameters (p9700 = D0 hex) <br> - acknowledge data change (p9701 = DC hex). <br> - exit the safety commissioning mode ( $p 0010=0$ ). <br> - save all parameters (p0977 = 1 or "copy RAM to ROM"). <br> - carry out a POWER ON (power off/on) for all components. <br> Note: <br> MM: Motor Module <br> SI: Safety Integrated |
| :---: | :---: |

## F30657 SI CU: PROFIsafe telegram number invalid

Message value:

| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :--- | :--- |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The PROFIsafe telegram number set in p9811 is not valid. |
|  | When PROFIsafe is enabled (p9801.3 = 1), then a telegram number greater than zero must be entered in p9811. |
|  | Note: |
|  | This fault does not result in a safety stop response. |
|  | See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection) |
| Remedy: | Check the telegram number setting (p9811). |


| F30659 | SI MM: Write request for parameter rejected |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The write request for one or several Safety Integrated parameters on the Motor Module (MM) was rejected. |
|  | Note: |
|  | This fault does not result in a safety stop response. |
|  | Fault value (r0949, interpret decimal): |
|  | 10: An attempt was made to enable the STO function although this cannot be supported. |
|  | 11: An attempt was made to enable the SBC function although this cannot be supported. |
|  | 13: An attempt was made to enable the SS1 function although this cannot be supported. |
|  | 14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this |
|  | cannot be supported. |
|  | 15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be |
| supported. |  |
|  | 16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version |
| of the PROFIsafe driver used on the CU and MM is different. |  |
|  | 18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported. |
|  | 19: For ESR, an attempt was made to enable the delay for pulse suppression, although this cannot be supported. |
|  | 33: An attempt was made to enable the motion monitoring functions without selection integrated in the drive |
| (p9601.5, p9801.5), although this cannot be supported. |  |
| See also: r9771 (SI common functions (Control Unit)), r9871 (SI common functions (Motor Module) |  |

For fault value $=33$ :

- Deselect motion monitoring functions without selection integrated in drive (p9601.5, p9801.5) and select safety functions that are supported (see p9771/p9871), or:
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Note:
CU: Control Unit
ESR: Extended Stop and Retract
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill

| F30662 | Error in internal communications |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
|  | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | A module-internal communication error has occurred. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - upgrade firmware to later version. |
|  | - contact the Hotline. |


| F30664 | Error while booting |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An error has occurred during booting. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. |
| Remedy: | - carry out a POWER ON (power off/on). <br> - upgrade firmware to later version. <br> - contact the Hotline. |

## F30665

## SI MM: System is defective

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
Fault value (r0949, interpret hexadecimal):
200000 hex, 400000 hex

- Fault in the actual booting/operation.

2 hex:

- parameters p9500 and p9300 are not the same (if Safety message C30711 is displayed at the same time).

Additional values:

- defect before the last time that the system booted.

Remedy: - carry out a POWER ON (power off/on)

- upgrade firmware to later version.
- contact the Hotline.

For fault value $=2$ :

- check parameters p9500 and p9300 to see if they are the same (if Safety message C30711 is displayed at the same time).
Re fault value $=400000$ hex:
- ensure that the Control Unit is connected to the Power Module.

| A30666 (F) | SI Motion MM: Steady-state (static) 1 signal at the F-DI for safety-relevant acknowledgement |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A logical 1 signal is present at the F-DI configured in p10106 for more than 10 seconds. <br> If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces. |
| Remedy: | Set the fail-safe digital input (F-DI) to a logical 0 signal (p10106). Note: <br> F-DI: Failsafe Digital Input |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| F30672 | SI CU: Control Unit software incompatible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The existing Control Unit software does not support the safe drive-based motion monitoring function. Note: <br> This fault results in a STOP A that cannot be acknowledged. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module (F01655, F30655) and if required, carry out diagnostics for the faults involved. <br> - use a Control Unit that supports the safe motion monitoring function. <br> - upgrade the Control Unit software. <br> Note: <br> SI: Safety Integrated |
| F30674 | SI Motion MM: Safety function not supported by PROFIsafe telegram |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The monitoring function enabled in p9301 and p9801 is not supported by the currently set PROFIsafe telegram (p9811). <br> Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret bitwise binary): <br> Bit $24=1$ : <br> Transfer SLS (SG) limit value via PROFIsafe not supported (p9301.24). <br> Bit $25=1$ : <br> Transfer safe position via PROFIsafe is not supported (p9301.25). |
| Remedy: | - deselect the monitoring function involved (p9301, p9801). <br> - set the matching PROFIsafe telegram (p9811). <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed <br> SP: Safe Position |


| F30680 | SI Motion MM: Checksum error safety monitoring functions |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The actual checksum calculated by the Motor Module and entered in r9398 over the safety-relevant parameters does |
|  | not math the reference checksum saved in p9399 at the last machine acceptance. |
|  | Safety-relevant parameters have been changed or a fault is present. |
|  | Note: |
|  | This fault results in a STOP A that can be acknowledged. |
|  | Fault value (r0949, interpret decimal): |
|  | 0: Checksum error for SI parameters for motion monitoring. |
|  | 1: Checksum error for SI parameters for component assignment. |
|  | - check the safety-relevant parameters and if required, correct. |
|  | - set the reference checksum to the actual checksum. |
|  | - execute the function "Copy RAM to ROM". |
|  | - perform a POWER ON if safety parameters requiring a POWER ON have been modified. |
|  | - carry out an acceptance test. |

yyyy $=1$ :
Only enable motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection (p9801.5 = 1) - or only PROFIsafe (p9801.3 = 1).
yyyy = 2, 3:
Enable motion monitoring functions integrated in the drive $($ p9801.2 $=1$ ).
yyyy = 5:
To transfer the SLS limit values via PROFIsafe (p9301.24 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive (p9801.2 = 1).
yyyy = 6:
For the safe position via PROFIsafe (p9301.25 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive (p9801.2 = 1).

| F30682 | SI Motion MM: Monitoring function not supported |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The monitoring function enabled in p9301, p9501, p9601, p9801, p9307 or p9507 is not supported in this firmware version. <br> Note: <br> This message does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> 1: Monitoring function SLP not supported (p9301.1). <br> 2: Monitoring function SCA not supported (p9301.7 and p9301.8 ... 15). <br> 3: Monitoring function SLS override not supported (p9301.5). <br> 4: Monitoring function external ESR activation not supported (p9301.4). <br> 5: Monitoring function F-DI in PROFIsafe not supported (p9301.30). <br> 6: Enable actual value synchronization not supported (p9301.3). <br> 9: Monitoring function not supported by the firmware or enable bit not used. <br> 12: This Control Unit does not support operation of safety functions with a higher-level control (e.g. SINUMERIK). <br> 24: Monitoring function SDI not supported. <br> 26: Hysteresis and filtering for SSM monitoring function without an encoder not supported (p9301.16). <br> 27: This hardware does not support onboard F-DI and F-DO. <br> 30: The firmware version of the Motor Module is older than the version of the Control Unit. <br> 33: Safety functions without selection not supported (p9601.5, p9801.5). <br> 34: This module does not support safe position via PROFIsafe. <br> 36: Function "SS1 without OFF3" not supported. |
| Remedy: | - de-select the monitoring function involved (p9301, p9501, p9601, p9801, p9307, p9507). <br> - Upgrade the Motor Module firmware. <br> Note: <br> ESR: Extended Stop and Retract <br> SCA: Safe Cam / SN: Safe software cam <br> SDI: Safe Direction (safe motion direction) <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> SP: Safe Position <br> SS1: Safe Stop 1 <br> See also: p9301, p9501, p9503, p9601, p9801, r9871 |
| F30683 | SI Motion MM: SOS/SLS enable missing |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The safety-relevant basic function "SOS/SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled. <br> Note: <br> This message does not result in a safety stop response. |


| Remedy: | Enable the function "SOS/SLS" (p9301.0) and carry out a POWER ON. <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> SOS: Safe Operating Stop / SBH: Safe operating stop <br> See also: p9301 (SI Motion enable safety functions (Motor Module)) |
| :---: | :---: |
| F30684 | SI Motion MM: Safely limited position limit values interchanged |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the function "Safely-Limited Position" (SE), a lower value is in p9534 than in p9535. Note: <br> This fault does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> 1: Limit values SLP1 interchanged. <br> 2: Limit values SLP2 interchanged. |
| Remedy: | Correct the limit values in p9534 and p9535 and carry out a POWER ON. <br> Note: <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches |
| F30685 | SI Motion MM: Safely-Limited Speed limit value too high |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz . <br> Note: <br> This message does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Maximum permissible speed. |
| Remedy: | Correct the limit values for SLS and carry out a POWER ON. <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> See also: p9331 (SI Motion SLS limit values (Motor Module)) |
| F30688 | SI Motion MM: Actual value synchronization not permissible |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | - It is not permissible to enable actual value synchronization for a 1-encoder system. <br> - It is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP). <br> - It is not permissible to simultaneously enable actual value synchronization and safe position via PROFIsafe. <br> Note: <br> This fault results in a STOP A that cannot be acknowledged. |
| Remedy: | - Either select the "actual value synchronization" function or parameterize a 2-encoder system. <br> - Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON. <br> - Either deselect the "actual value synchronization" function or do not enable "Safe position via PROFIsafe". <br> Note: <br> SCA: Safe Cam / SN: Safe software cam <br> SI: Safety Integrated |


|  | SLP: Safely-Limited Position / SE: Safe software limit switches <br> SP: Safe Position <br> See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel) |
| :---: | :---: |
| F30692 | SI Motion MM: Parameter value not permitted for encoderless |
| Message value: | Parameter: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The parameter cannot be parameterized with this value if encoderless motion monitoring functions have been parameterized in p9306. <br> Note: <br> This message does not result in a safety stop response. <br> Fault value (r0949, interpret decimal): <br> Parameter number with the incorrect value. <br> See also: p9301 (SI Motion enable safety functions (Motor Module)) |
| Remedy: | Correct the parameter value or de-select encoderless motion monitoring functions. See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit)) |
| A30693 (F) | SI MM: Safety parameter settings changed, warm restart/POWER ON required |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Safety parameters have been changed; these will only take effect following a warm restart or POWER ON. <br> Notice: <br> All changed parameters of the safety motion monitoring functions will only take effect following a warm restart or POWER ON. <br> Alarm value (r2124, interpret decimal): <br> Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON. |
| Remedy: | - carry out a warm restart (p0009 = 30, p0976 = 2, 3). <br> - carry out a POWER ON (power off/on) for all components. <br> Note: <br> Before performing an acceptance test, a POWER ON must be carried out for all components. |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | POWER ON |
| C30700 | SI Motion MM: STOP A initiated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit). Possible causes: <br> - stop request from the Control Unit. <br> - pulses not suppressed after a parameterized time (p9357) after test stop selection. <br> - subsequent response to the message C30706 "SI Motion MM: SAM/SBR limit exceeded". <br> - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". <br> - subsequent response to the message C30701 "SI Motion MM: STOP B initiated". <br> - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". <br> - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded". |
| Remedy: | - remove the cause to the fault on the Control Unit. <br> - check the value in p9357, if required, increase the value. <br> - check the shutdown path of the Control Unit (check DRIVE-CLiQ communication). <br> - carry out a diagnostics routine for message C30706. <br> - carry out a diagnostics routine for message C30714. <br> - carry out a diagnostics routine for message C30701. |

- carry out a diagnostics routine for message C30715.
- carry out a diagnostics routine for message C30716.
- replace the Motor Module/Power Module
- replace Control Unit.

This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe brake ramp monitoring)
SI: Safety Integrated

| C30701 | SI Motion MM: STOP B initiated |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP B (braking along the OFF3 ramp). <br> As a result of this fault, after the time parameterized in p9356 has expired or after the speed threshold parameterized in p9360 has been fallen below, message C30700 "SI Motion MM: STOP A initiated" is output. <br> Possible causes: <br> - stop request from the Control Unit. <br> - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". <br> - subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel". <br> - subsequent response to the message C30707 "SI Motion MM: tolerance for safe operating stop exceeded". <br> - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". <br> - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded". |
| Remedy: | - remove the cause to the fault on the Control Unit. <br> - carry out a diagnostics routine for message C30714. <br> - carry out a diagnostics routine for message C30711. <br> - carry out a diagnostics routine for message C30707. <br> - carry out a diagnostics routine for message C30715. <br> - carry out a diagnostics routine for message C30716. <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. Note: <br> SI: Safety Integrated |


| C30706 | SI Motion MM: SAM/SBR limit exceeded |
| :---: | :---: |
| Message value: |  |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Motion monitoring functions with encoder (p9306 = 0) or encoderless with set acceleration monitoring (p9306 = 3): SAM - safe acceleration monitoring. After initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance. <br> Motion monitoring functions encoderless with set brake ramp monitoring (p9306 = 1): <br> SBR - Safe brake ramp monitoring. After initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance. <br> - via F-DI or PROFIsafe. <br> The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated". |
| Remedy: | Check the braking behavior and, if necessary, adapt the tolerance for the "SAM" function or modify the parameter settings for the "SBR" function. <br> This message can be acknowledged without a POWER ON as follows: <br> - motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe <br> Note: <br> SAM: Safe Acceleration Monitor (safe acceleration monitoring) <br> SBR: Safe Brake Ramp (safe ramp monitoring) <br> SI: Safety Integrated <br> See also: p9348, p9381, p9382, p9383, p9548 |


| C30707 | SI Motion MM: Tolerance for safe operating stop exceeded |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C30701 "SI Motion MM: STOP B initiated". |
| Remedy: | - check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults. <br> - check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis. <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. <br> Note: <br> SI: Safety Integrated <br> SOS: Safe Operating Stop / SBH: Safe operating stop <br> See also: p9530 (SI Motion standstill tolerance (Control Unit)) |
| C30708 | SI Motion MM: STOP C initiated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | STOP2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP C (braking along the OFF3 ramp). <br> "Safe Operating Stop" (SOS) is activated after the parameterized time has expired. <br> Possible causes: <br> - stop request from the higher-level control. <br> - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". <br> - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". <br> - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded". <br> See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit)) |
| Remedy: | - remove the cause of the fault at the control. <br> - carry out a diagnostics routine for messages C30714, C30715, C30716. <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. <br> Note: <br> SI: Safety Integrated <br> SOS: Safe Operating Stop / SBH: Safe operating stop |
| C30709 | SI Motion MM: STOP D initiated |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP D (braking along the path). <br> "Safe Operating Stop" (SOS) is activated after the parameterized time has expired. <br> Possible causes: <br> - stop request from the Control Unit. <br> - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". <br> - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". <br> - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded". <br> See also: p9353 (SI Motion transition time STOP D to SOS (Motor Module)), p9553 (SI Motion transition time STOP <br> D to SOS (SBH) (Control Unit)) |
| Remedy: | - remove the cause of the fault at the control. <br> - carry out a diagnostics routine for messages C30714, C30715, C30716. <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. <br> Note: <br> SI: Safety Integrated <br> sOS: Safe Operating Stop / SBH: Safe operating stop |


| C30710 | SI Motion MM: STOP E initiated |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive is stopped via a STOP E (retraction motion). |
|  | "Safe Operating Stop" (SOS) is activated after the parameterized time has expired. |
|  | Possible causes: |
|  | - stop request from the higher-level control. |
|  | - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". |
|  | - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded". |
|  | - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded". |
|  | See also: p9354 (SI Motion transition time STOP E to SOS (Motor Module)), p9554 (SI Motion transition time STOP |
|  | E to SOS (SBH) (Control Unit)) |
|  | - remove the cause of the fault at the control. |
|  | - carry out a diagnostics routine for messages C30714, C30715, C30716. |
|  | This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. |
| Remedy: | Note: |
|  | SI: Safety Integrated |
|  | SOS: Safe Operating Stop / SBH: Safe operating stop |

```
1043: Too many acceleration phases
1044: Actual current values plausibility error.
1045: CRC of the standstill position incorrect.
5000 ... 5140:
PROFIsafe message values.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
7000 ... 7002:
Message values of the "Safe position via PROFIsafe" function.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)
Remedy:
Re message value = 1002:
- Perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 2 s).
Re message value = 1003:
- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last
saved actual position no longer corresponds with the new actual position after the system has been powered up
again.
- Increase the tolerance for the actual value comparison when referencing (p9344).
Then check the actual values, perform a POWER ON and set the user agreement again.
Re message value = 1004:
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been
referenced.
Re message value = 1030:
- check the encoder connection.
- if required, replace the encoder.
Re message value = 1031:
When replacing a Sensor Module, carry out the following steps:
- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- check the encoder connection.
- if required, replace the encoder.
Re message value = 1040:
- de-select encoderless monitoring functions, select and de-select STO.
- if monitoring function is active, issue "SLS" pulse enable within 5s of de-selecting STO.
Re other message values:
- the significance of the individual message values is described in safety message C01711.
Note:
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control
Unit))
```

C30712
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion MM: Defect in F-IO processing

 \%1SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY (POWER ON)
When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
The safety message C30711 with message value 0 is also displayed due to initiation of STOP F.
If at least one monitoring function is active, the safety message C30701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
Message value (r9749, interpret decimal):
Number of the cross-compared data that resulted in this message.
Refer to the description of the message values in safety message C01712.

```
Remedy: - check parameterization in the parameters involved and correct if required.
    - ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
    - check monitoring clock cycle for equality (p9500, p9300).
    Note:
This message can be acknowledged via F-DI or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control
Unit))
```

| C30714 | SI Motion MM: Safely-Limited Speed exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The drive had moved faster than that specified by the velocity limit value ( p 9331 ). The drive is stopped as a result of the configured stop response (p9363). <br> Message value (r9749, interpret decimal): <br> 100: SLS1 exceeded. <br> 200: SLS2 exceeded. <br> 300: SLS3 exceeded. <br> 400: SLS4 exceeded. <br> 1000: Encoder limit frequency exceeded. |
| Remedy: | - check the traversing/motion program in the control. <br> - check the limits for "SLS" function and if required, adapt (p9331). <br> Note: <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed / SG: Safely reduced speed <br> See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module)) |


| C30715 | SI Motion MM: Safely-limited position exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The axis has moved past a parameterized position that is monitored by the "SLP" function. Message value (r9749, interpret decimal): <br> 10: SLP1 violated. <br> 20: SLP2 violated. |
| Remedy: | - check the traversing/motion program in the control. <br> - check the limits for "SLP" function and if required, adapt (p9534, p9535). <br> This message can be acknowledged as follows: <br> - motion monitoring functions with SINUMERIK: Via the machine control panel <br> Note: <br> SI: Safety Integrated <br> SLP: Safely-Limited Position / SE: Safe software limit switches <br> See also: p9334 (SI Motion SLP upper limit values (Motor Module)), p9335 (SI Motion SLP lower limit values (Motor <br> Module)) |


| C30716 | SI Motion MM: Tolerance for safe motion direction exceeded |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) <br> Cause: |
|  | The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the config- <br> ured stop response (p9366). <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> 0essage value (r9749, interpret decimal): <br> 1: Tolerance for the "safe motion dor the "safe motion direction negative" function exceeded. function exceeded. |


| Remedy: | - check the traversing/motion program in the control. <br> - check the tolerance for "SDI" function and if required, adapt (p9364). <br> This message can be acknowledged as follows: <br> - Deselect the "SDI" function and select again. <br> - Perform a safe acknowledgment via F-DI or PROFIsafe. <br> Note: <br> SDI: Safe Direction (safe motion direction) <br> SI: Safety Integrated <br> See also: p9364 (SI Motion SDI tolerance (Motor Module)), p9365 (SI Motion SDI delay time (Motor Module)), p9366 <br> (SI Motion SDI stop response (Motor Module)) |
| :---: | :---: |
| C30730 | SI Motion MM: Reference block for dynamic safely limited speed invalid |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The reference block transferred via PROFIsafe is negative. <br> A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9331[0]). <br> The drive is stopped as a result of the configured stop response (p9363[0]). <br> Message value (r9749, interpret decimal): <br> requested, invalid reference block. |
| Remedy: | In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected. <br> This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. <br> Note: <br> SI: Safety Integrated <br> SLS: Safely-Limited Speed |
| C30770 | SI Motion MM: Discrepancy error affecting the fail-safe inputs/outputs |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The fail-safe digital inputs/digital outputs (F-DI/F-DO) show a different state longer than that parameterized in p10002 / p10102. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex <br> xxxx: Discrepancy error for fail-safe digital inputs (F-DI). <br> Bit 0: Discrepancy error for F-DI 0 <br> Bit 1: Discrepancy error for F-DI 1 <br> yyyy: Discrepancy error for fail-safe digital outputs (F-DO). <br> Bit 0: Discrepancy error for F-DO 0 <br> Note: <br> If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs. |
| Remedy: | - check the wiring of the F-DI (contact problems). <br> Note: <br> This message can be acknowledged via F-DI or PROFIsafe. <br> Discrepancy errors of an F-DI can only be completely acknowledged if safe acknowledgement was carried out once the cause of the error was resolved ( p 10006 or acknowledgment via PROFIsafe). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state internally. <br> For cyclic switching operations at the F-DI, it may be necessary to adapt the discrepancy time to the switching frequency. <br> If the period of a cyclic switching pulse has the order of magnitude of double the value of p 10002 , then the following formulas must be checked. <br> p10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time) <br> p10002 >= p9500 (discrepancy time must be no less than P9500) <br> p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply) <br> $\mathrm{td}=$ possible actual discrepancy time (in ms ) that can occur with a switching operation. This must correspond to at <br> least 1 SI sampling cycle (see p9500). |

tp = period for a switching operation in ms.
When debounce p10017 is active, the discrepancy time is directly specified by the debounce time.
If the period of a cyclic switching pulse has the order of magnitude of twice the debounce time, then the following formulas should be checked.
p10002 < p10017 + 1 ms - td
p10002 > td
p10002 >= p9500
Example:
For a 12 ms SI sampling cycle and a switching frequency of $110 \mathrm{~ms}(\mathrm{p} 10017=0)$, the maximum discrepancy time which can be set is as follows:
p 10002 <= ( $110 / 2 \mathrm{~ms}$ ) - $12 \mathrm{~ms}=43 \mathrm{~ms}$
Rounded-off, p10002 <= 36 ms is obtained (since the discrepancy time can only be accepted as a whole SI sampling cycle, the value will need to be rounded up or down to a whole SI sampling time value if the result is not an exact multiple of an SI sampling cycle).
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

| A30772 | SI Motion MM: Test stop failsafe inputs/outputs active |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The test stop for the fail-safe digital inputs (F-DI) and/or fail-safe digital outputs (F-DO) is presently being performed. <br> Note: <br> F-DI: Failsafe Digital Input <br> F-DO: Failsafe Digital Output |
| Remedy: | The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop. |
| F30773 | SI Motion MM: Test stop fault Motor Module |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault has occurred on the MM side during the test stop for the fail-safe outputs. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | RRRVWXYZ hex: |
|  | R : Reserved. |
|  | V: Actual state of the DO channel concerned (see X) on the CU (corresponds to the states read back from the hardware, bit $0=$ DO 0, bit $1=$ DO 1, etc.). |
|  | W: Required state of the DO channel concerned (see X , bit $0=\mathrm{DO} 0$, bit $1=$ DO 1, etc.). |
|  | X: DO channels involved, which indicate an error (bit $0=$ DO 0 , bit $1=$ DO 1, etc.). |
|  | Y: Reason for the test stop fault. |
|  | Z : State of the test stop in which the fault has occurred. |
|  | Y : Reason for the test stop fault |
|  | $Y=1: M M$ side in incorrect test stop state (internal fault). |
|  | $Y=$ 2: Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 2). |
|  | $\mathrm{Y}=3$ : Incorrect timer state on CU side (internal fault) |
|  | $Y=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on MM channel). |
|  | $Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on CU channel). |
|  | X and V indicate the DI or Diag-DO state dependent upon the reason for the fault (2,4 or 5). |
|  | In the event of multiple test stop faults, the first one that occurred is shown. |
|  | Z: Test stop state and associated test actions |
|  | $\mathrm{Z}=0 \ldots 3$ : Synchronization phase of test stop between CU and Motor Module no switching operations |
|  | $Z=4: D O+O F F$ and DO - OFF |
|  | $Z=5$ : Check to see if states are as expected |
|  | $\mathrm{Z}=6$ : $\mathrm{DO}+\mathrm{ON}$ and DO-ON |
|  | $\mathrm{Z}=7$ : Check to see if states are as expected |
|  | $\mathrm{Z}=8: \mathrm{DO}+\mathrm{OFF}$ and DO-ON |
|  | $\mathrm{Z}=9$ : Check to see if states are as expected |


|  | $Z=10: D O+O N$ and DO-OFF |
| :---: | :---: |
|  | $Z=11$ : Check to see if states are as expected |
|  | $Z=12: D O+O F F$ and DO-OFF |
|  | $Z=13:$ Check to see if states are as expected |
|  | $Z=14$ : End of test stop |
|  | Diag expected states in table format: |
|  | Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4 |
|  | 5: 0/-/-/1 |
|  | 7: 0/-/-/0 |
|  | 9: 0/-/-/0 |
|  | 11: 1/-/-/1 |
|  | 13: 0/-/-/1 |
|  | Second diag expected states in table format: |
|  | Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4 |
|  | 5: -/--/1 |
|  | 7: -/--/0 |
|  | 9: -/--/1 |
|  | 11: -/--/0 |
|  | 13: --/-/1 |
|  | DI expected states in table format: |
|  | Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4 |
|  | 5: -/1/1/- |
|  | 7: -/0/0/- |
|  | 9: -/0/1/- |
|  | 11: -/0/1/- |
|  | 13: -/1/1/- |
|  | Example: |
|  | Fault F01773 (CU) is signaled with fault value $=0001 \_0127$ and fault $\mathrm{F} 30773(\mathrm{MM})$ is signaled with fault value 00000127. |
|  | This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 ( $\mathrm{X}=1$ ) was switched to ON/ON. |
|  | Fault value 0001_0127 indicates that 0 was expected ( $\mathrm{W}=0$ ) and $1(\mathrm{~V}=1)$ was read back from the hardware. |
|  | Fault value 0000_0127 on the MM indicates that the states were as expected. |
|  | In the case of fault $F 30773, \mathrm{~W}$ and V are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on the other channel (CU). |
| Remedy: | Check the wiring of the F-DOs and restart the test stop. |
|  | Note: |
|  | The fault is withdrawn if the test stop is successfully completed. |
|  | In the event of multiple test stop faults, the first one that occurred is shown. |
|  | Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one). |
| C30797 | SI Motion MM: Axis not safely referenced |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The standstill position saved before powering down does not match the actual position determined at power-up. Message value (r9749, interpret decimal): <br> 1: Axis not referenced. <br> 2: User agreement missing. |
| Remedy: | If safe automatic referencing is not possible the user must issue a user agreement for the new position using the softkey. This mean that this position is then designated as safety-relevant. <br> Note: <br> SI: Safety Integrated |
| C30798 | SI Motion MM: Test stop running |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The test stop is active. |


| Remedy: | Not necessary. <br> The message is withdrawn when the test stop is finished. Note: <br> SI: Safety Integrated |
| :---: | :---: |
| C30799 | SI Motion MM: Acceptance test mode active |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the acknowledgement functions of the higher-level control. |
| Remedy: | Not necessary. <br> The message is withdrawn when exiting the acceptance test mode. Note: <br> SI: Safety Integrated |
| N30800 (F) | Power unit: Group signal |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | NONE |
| Cause: | The power unit has detected at least one fault. |
| Remedy: | Evaluate the other messages that are presently available. |
| Reaction upon F: | OFF2 |
| Acknowl. upon F: | IMMEDIATELY |
| F30801 | Power unit DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The computing time load might be too high. <br> Fault cause: $10 \text { (= OA hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the electrical cabinet design and cable routing for EMC compliance <br> - remove DRIVE-CLiQ components that are not required. <br> - de-select functions that are not required. <br> - if required, increase the sampling times (p0112, p0115). <br> - replace the component involved. |
| F30802 | Power unit: Time slice overflow |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A time slice overflow has occurred. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. <br> - contact the Hotline. |


| F30804 (N, A) | Power unit: CRC |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (OFF1)  <br>  Servo: OFF2 (OFF1, OFF3) <br>  Vector: OFF2 (OFF1, OFF3) |
| Acknowledge: IMMEDIATELY |  |
| Cause: | A CRC error has occurred for the power unit. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. |
|  | - upgrade firmware to later version. |


| F30820 | Power unit DRIVE-CLiQ: Telegram error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. <br> Fault cause: $1 \text { (= } 01 \text { hex): }$ <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. 7 (= 07 hex): <br> A SYNC telegram is expected - but the received telegram is not a SYNC telegram. $8 \text { (= } 08 \text { hex): }$ <br> No SYNC telegram is expected - but the received telegram is one. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F30835 | Power unit DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The nodes do not send and receive in synchronism. <br> Fault cause: <br> 33 (= 21 hex): <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. <br> 64 (= 40 hex): <br> Timeout in the telegram send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |


| F30836 | Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. Data were not able to be sent. <br> Fault cause: <br> 65 (= 41 hex): <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | Carry out a POWER ON. |
| F30837 | Power unit DRIVE-CLiQ: Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. <br> Fault cause: $32 \text { ( }=20 \mathrm{hex}):$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \mathrm{hex} \text { ): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| F30845 | Power unit DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON (power off/on). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |


| F30850 | Power unit: Internal software error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred in the power unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. |
| Remedy: | - replace power unit. <br> - if required, upgrade the firmware in the power unit. <br> - contact the Hotline. |
| F30851 | Power unit DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |
| A30853 | Power unit: Sign-of-life error cyclic data |
| Message value: | - Porror |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The power unit has detected that the cyclic setpoint telegrams of the Control Unit have not been updated on time. At least two sign-of-life errors have occurred within the window set in p7788. |
| Remedy: | - check the electrical cabinet design and cable routing for EMC compliance <br> - reduce the size of the window (p7788) for monitoring. |
| F30860 | Power unit DRIVE-CLiQ (CU): Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. |


|  | 6 (= 06 hex): |
| :---: | :---: |
|  | The address of the power unit in the telegram and in the receive list do not match. |
|  | 9 (= 09 hex): |
|  | The error bit in the receive telegram is set. |
|  | 16 (= 10 hex): |
|  | The receive telegram is too early. |
|  | 17 (= 11 hex): |
|  | CRC error and the receive telegram is too early. |
|  | 18 (= 12 hex): |
|  | The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. 19 (= 13 hex): |
|  | The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early |
|  | $20 \text { (= } 14 \text { hex): }$ |
|  | The length of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 21 (= 15 hex): |
|  | The type of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 22 (= 16 hex): |
|  | The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early. |
|  | 25 (= 19 hex): |
|  | The error bit in the receive telegram is set and the receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F30875 | Power unit DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. |
|  | Fault cause: |
|  | 9 (= 09 hex): |
|  | The power supply voltage for the components has failed. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |
| F30885 | CU DRIVE-CLiQ (CU): Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. |
|  | The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 26 (= 1A hex): |
|  | Sign-of-life bit in the receive telegram not set and the receive telegram is too early. |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |


|  | 64 (= 40 hex): |
| :---: | :---: |
|  | Timeout in the telegram send list. |
|  | 98 (= 62 hex): |
|  | Error at the transition to cyclic operation. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. |
|  | - carry out a POWER ON. |
|  | - replace the component involved. |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F30886 | PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. |
|  | Data were not able to be sent. |
|  | Fault cause: |
|  | 65 (= 41 hex): |
|  | Telegram type does not match send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | Carry out a POWER ON. |
| F30887 | Power unit DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded. |
|  | Fault cause: |
|  | 32 (= 20 hex): |
|  | Error in the telegram header. |
|  | 35 (= 23 hex): |
|  | Receive error: The telegram buffer memory contains an error. |
|  | 66 (= 42 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | 67 (= 43 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | 96 (= 60 hex): |
|  | Response received too late during runtime measurement. |
|  | 97 (= 61 hex): |
|  | Time taken to exchange characteristic data too long. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - if required, use another DRIVE-CLiQ socket (p9904). |
|  | - replace the component involved. |


| F30895 | PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM 31 , TM 41 , VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F30896 | Power unit DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): <br> Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |


| F30899 (N, A) | Power unit: Unknown fault |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware. |
|  | This can occur if the firmware on this component is more recent than the firmware on the Control Unit. |
|  | Fault value (r0949, interpret decimal): |
|  | Fault number. |
|  | Note: |
|  | If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the power unit by an older firmware version (r0128). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon N : | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F30903 | Power unit: I2C bus error occurred |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Communications error with an EEPROM or A/D converter. <br> Fault value (r0949, interpret hexadecimal): <br> 80000000 hex: <br> - internal software error. <br> 00000001 hex ... 0000FFFF hex: <br> - module fault. |
| Remedy: | Re fault value $=80000000$ hex: <br> - upgrade firmware to later version. <br> Re fault value $=00000001$ hex.. .0000 FFFF hex: - replace the module. |
| F30907 | Power unit: FPGA configuration unsuccessful |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | During initialization within the power unit, an internal software error has occurred. |
| Remedy: | - if required, upgrade the firmware in the power unit. <br> - replace power unit. <br> - contact the Hotline. |
| A30919 | Power unit: Temperature monitoring failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature monitoring in the power unit has failed. <br> Fault-free operation of the drive system is no longer guaranteed. <br> Fault value (r0949, interpret hexadecimal): <br> Bit 0 : A sensor for the internal temperature can no longer be evaluated. |
| Remedy: | Replace the power unit immediately. |
| A30920 (F) | Power unit: Temperature sensor fault |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm, PT100: $\mathrm{R}>375 \mathrm{Ohm}$ ). <br> 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT100: $R<30$ Ohm). <br> Note: <br> A temperature sensor is connected to the following terminals: <br> - "Booksize" format: X21.1/.2 or X22.1/.2 <br> - "Chassis" format: X41.4/.3 <br> Information on temperature sensors is provided in the following literature for example: <br> SINAMICS S120 Function Manual Drive Functions |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |


| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| :---: | :---: |
|  | Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| F30950 | Power unit: Internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. |
|  | Fault value (r0949, interpret decimal): |
|  | Information about the fault source. |
|  | Only for internal Siemens troubleshooting. |
| Remedy: | - If necessary, upgrade the firmware in the power unit to a later version. |


| A30999 (F, N) | Power unit: Unknown alarm |
| :--- | :--- |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware. <br> This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Alarm value (r2124, interpret decimal): |
|  | Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| - replace the firmware on the power unit by an older firmware version (r0128). |  |
| Remedy: | - upgrade the firmware on the Control Unit (r0018). <br> Infeed: NONE (OFF1, OFF2) |
| Reaction upon F: | Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Acknowl. upon F: |
| Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |  |
| IMMEDIATELY (POWER ON) |  |

F31100 (N, A) Encoder 1: Zero mark distance error

Message value: \%1
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: NONE (OFF1, OFF2)
Servo: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Vector: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check that the encoder cables are routed in compliance with EMC.

- check the plug connections
. check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).

|  | - if message output above speed threshold, reduce filter time if necessary (p0438). <br> - replace the encoder or encoder cable |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31101 (N, A) | Encoder 1: Zero mark failed |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The $1.5 \times$ parameterized zero mark distance was exceeded. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). <br> Fault value (r0949, interpret decimal): <br> Number of increments after POWER ON or since the last zero mark that was detected ( 4 increments $=1$ encoder pulse). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the clearance between zero marks (p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). <br> - when p0437.1 is active, check p4686. <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F31103 (N, A) }}$ | Encoder 1: Amplitude error, track R |
| Message value: | R track: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 1. The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: yyyy $=0$, xxxx $=$ Signal level, track $R$ (16 bits with sign) <br> The response thresholds of the unipolar signal levels of the encoder are between $<1400 \mathrm{mV}$ and $>3500 \mathrm{mV}$. <br> The response threshold for the differential signal level of the encoder is $<-1600 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. <br> Note: <br> The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module. <br> The fault value can only be represented between $-32767 \ldots 32767$ dec ( $-770 \ldots 770 \mathrm{mV}$ ). <br> The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range <br> - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections and contacts of the encoder cable. |


|  | - check whether the zero mark is connected and the signal cables RP and RN have been connected correctly <br> - replace the encoder cable. <br> - if the coding disk is soiled or the lighting aged, replace the encoder. |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F31110 (N, A) | Encoder 1: Serial communications error |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | Serial communication protocol transfer error between the encoder and evaluation module. <br> Fault value (r0949, interpret binary): <br> Bit 0: Alarm bit in the position protocol. <br> Bit 1: Incorrect quiescent level on the data line. <br> Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ). <br> Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. <br> Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. <br> Bit 5: Internal error in the serial driver: An illegal mode command was requested. <br> Bit 6: Timeout when cyclically reading. <br> Bit 7: Timeout for the register communication. <br> Bit 8: Protocol is too long (e.g. > 64 bits). <br> Bit 9: Receive buffer overflow. <br> Bit 10: Frame error when reading twice. <br> Bit 11: Parity error. <br> Bit 12: Data line signal level error during the monoflop time. <br> Bit 13: Data line incorrect. <br> Bit 14: Fault for the register communication. |
| Remedy: | Re fault value, bit $0=1$ : <br> - Enc defect F31111 may provide additional details. <br> Re fault value, bit $1=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $2=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $3=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable. <br> Re fault value, bit $4=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. <br> Re fault value, bit $5=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. <br> Re fault value, bit $6=1$ : <br> - Update Sensor Module firmware. <br> Re fault value, bit $7=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $8=1$ : <br> - Check parameterization (p0429.2). <br> Re fault value, bit $9=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. <br> Re fault value, bit $10=1$ : <br> - Check parameterization (p0429.2, p0449). <br> Re fault value, bit $11=1$ : <br> - Check parameterization (p0436). <br> Re fault value, bit $12=1$ : <br> - Check parameterization (p0429.6). <br> Re fault value, bit $13=1$ : <br> - Check data line. |

Re fault value, bit $14=1$ :

- Incorrect encoder type / replace the encoder or encoder cable.

Reaction upon N :
Acknowl. upon N :
NONE
NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F31111 (N, A) Encoder 1: Absolute encoder internal fault
Message value: Fault cause: \%1 bin, additional information: \%2
Drive object:
Reaction:

Acknowledge: PULSE INHIBIT
Cause: The absolute encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
yyyy $=0$ :
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
yyyy $=1$ :
Bit 0: Signal amplitude outside the control range.
Bit 1: Error multiturn interface
Bit 2: Internal data error (singleturn/multiturn not with single steps).
Bit 3: Error EEPROM interface.
Bit 4: SAR converter error.
Bit 5: Fault for the register data transfer.
Bit 6: Internal error identified at the error pin (nErr).
Bit 7: Temperature threshold exceeded or fallen below.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: $\quad$ For yyyy $=0$ :
Re fault value, bit $0=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $1=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $2=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $3=1$ :
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit $4=1$ :
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit $5=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $6=1$ :
The battery must be changed (only for encoders with battery back-up).
For yyyy = 1 :
Encoder is defective. Replace encoder.

| Reaction upon N : | NONE |
| :---: | :---: |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31112 (N, A) | Encoder 1: Error bit set in the serial protocol |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The encoder sends a set error bit via the serial protocol. Fault value (r0949, interpret binary): <br> Bit 0: Fault bit in the position protocol. |
| Remedy: | For fault value, bit $0=1$ : <br> In the case of an EnDat encoder, F31111 may provide further details. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31115 (N, A) | Encoder 1: Amplitude error track A or B ( $\left.\mathbf{A}^{\wedge} \mathbf{2}+\mathrm{B}^{\wedge} 2\right)$ |
| Message value: | A track: \%1, B-track: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 1 exceeds the permissible tolerance. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Signal level, track B (16 bits with sign). <br> xxxx = Signal level, track A (16 bits with sign). <br> The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$. <br> The response thresholds are $<170 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. <br> Note for sensors modules for resolvers (e. g. SMC10): <br> The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response thresholds are $<1070 \mathrm{mV}$ and $>3582 \mathrm{mV}$. <br> A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). <br> The following applies to measuring systems without their own bearing system: - adjust the scanning head and check the bearing system of the measuring wheel. The following applies for measuring systems with their own bearing system: - ensure that the encoder housing is not subject to any axial force. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F31116 (N, A) | Encoder 1: Amplitude error monitoring track A + B |
| :---: | :---: |
| Message value: | A track: \%1, B-track: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The amplitude of the rectified encoder signals $A$ and $B$ and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 1 are not within the tolerance bandwidth. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy $=$ Signal level, track $B$ (16 bits with sign). <br> $\mathrm{xxxx}=$ Signal level, track $\mathrm{A}(16$ bits with sign $)$. <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response thresholds are $<130 \mathrm{mV}$ (observe the frequency response of the encoder) and $>955 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31117 (N, A) | Encoder 1: Inversion error signals A/B/R |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and $R$. <br> Fault value (r0949, interpret binary): <br> Bits 0 ... 15: Only for internal Siemens troubleshooting. <br> Bit 16: Error track A. <br> Bit 17: Error track B. <br> Bit 18: Error track R. <br> Note: <br> For SMC30 (order no.. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies: <br> A square-wave encoder without track $R$ is used and track monitoring ( $p 0405.2=1$ ) is activated. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - Check the encoder/cable. <br> - Does the encoder supply signals and the associated inverted signals? <br> Note: <br> For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies: <br> - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520). <br> For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310): <br> - pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground) <br> - pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| Reaction upon A: | NONE |
| :--- | :--- |
| Acknowl. upon A: | NONE |
|  |  |
| F31118 (N, A) | Encoder 1: Speed difference outside the tolerance range |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |


|  | Re fault value, bit $5=1$ : <br> - Measuring unit correctly connected at the converter? <br> - Replace the measuring unit or the cable to the measuring unit. <br> Re fault value, bit 6, $7=1$ : <br> - Replace the defective EnDat 2.2 converter. |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F31121 (N, A) | Encoder 1: Coarse position error |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (NONE) <br> Vector: ENCODER (NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31122 | Encoder 1: Internal power supply voltage faulty |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER <br> Vector: ENCODER |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault in internal reference voltage of ASICs for encoder 1. Fault value (r0949, interpret decimal): <br> 1: Reference voltage error. <br> 2: Internal undervoltage. <br> 3: Internal overvoltage. |
| Remedy: | Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module. |
| $\overline{\mathrm{F} 31123 \text { (N, A) }}$ | Encoder 1: Signal level A/B unipolar outside tolerance |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Either AP or AN outside the tolerance. <br> Bit $16=1$ : Either BP or BN outside the tolerance. <br> The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. <br> The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. <br> Note: <br> The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). <br> See also: p0491 (Motor encoder fault response ENCODER) |


| Remedy: | - make sure that the encoder cables and shielding are installed in an EMC-compliant manner. <br> - check the plug connections and contacts of the encoder cable. <br> - check the short-circuit of a signal cable with mass or the operating voltage. |
| :--- | :--- |
| - replace the encoder cable. |  |

F31126 (N, A) Encoder 1: Amplitude AB too high

Message value: Amplitude: \%1, Angle: \%2
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: NONE
Servo: ENCODER (IASC/DCBRAKE, NONE)
Vector: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: $\quad$ The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\left.|A|+|B|\right)$ for encoder 1 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$.
The response threshold for $(|A|+|B|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
See also: p0491 (Motor encoder fault response ENCODER)

| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - replace the encoder or encoder cable |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31129 (N, A) | Encoder 1: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429. <br> Fault value (r0949, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle ( 16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31130 (N, A) | Encoder 1: Zero mark and position error from the coarse synchronization |
| Message value: | Angular deviation, electrical: \%1, angle, mechanical: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out. <br> When initializing via track $C / D(p 0404)$ then it is checked whether the zero mark occurs in an angular range of $+/-18$ ${ }^{\circ}$ mechanical. <br> When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex <br> yyyy: Determined mechanical zero mark position (can only be used for track C/D). <br> xxxx: Deviation of the zero mark from the expected position as electrical angle. <br> Scaling: $32768 \mathrm{dec}=180^{\circ}$ <br> See also: p0491 (Motor encoder fault response ENCODER) |


| Remedy: | - Check p0431 and, if necessary, correct (trigger via p1990 = 1 if necessary). <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - if the Hall sensor is used as an equivalent for track C/D, check the connection. <br> - Check the connection of track C or D. <br> - replace the encoder or encoder cable |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F31131 (N, A) }}$ | Encoder 1: Deviation, position incremental/absolute too large |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | Absolute encoder: <br> When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected. <br> Limit value for the deviation: <br> - EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants). <br> - other encoders: 15 pulses = 60 quadrants. <br> Incremental encoder: <br> When the zero pulse is passed, a deviation in the incremental position was detected. <br> For equidistant zero marks, the following applies: <br> - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have <br> n times the distance referred to the first zero mark. <br> For distance-coded zero marks, the following applies: <br> - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair. <br> Fault value (r0949, interpret decimal): <br> Deviation in quadrants (1 pulse $=4$ quadrants). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check whether the coding disk is dirty or there are strong ambient magnetic fields. <br> - adapt the parameter for the clearance between zero marks (p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31135 | Encoder 1: Fault when determining the position |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. |

```
    Fault value (r0949, interpret binary):
    Bit 0: F1 (safety status display)
    Bit 1: F2 (safety status display)
    Bit 2: Lighting (reserved)
    Bit 3: Signal amplitude (reserved)
    Bit 4: Position value (reserved)
    Bit 5: Overvoltage (reserved)
    Bit 6: Undervoltage (reserved)
    Bit 7: Overcurrent (reserved)
    Bit 8: Battery (reserved)
    Bit 16: Lighting (--> F3x135, x = 1, 2, 3)
    Bit 17: Signal amplitude (--> F3x135, x = 1, 2, 3)
    Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
    Bit 19: Overvoltage (--> F3x135, x=1, 2, 3)
    Bit 20: Undervoltage (--> F3x135,x = 1, 2, 3)
    Bit 21: Overcurrent (--> F3x135,x=1, 2, 3)
    Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3)
    Bit 23: Singleturn position 2 (safety status display)
    Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
    Bit 25: Singleturn power down (--> F3x135, x=1, 2, 3)
    Bit 26: Multiturn position 1 (--> F3x136, x = 1, 2, 3)
    Bit 27: Multiturn position 2 (--> F3x136,x=1, 2, 3)
    Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3)
    Bit 29: Multiturn power down (--> F3x136,x=1, 2, 3)
    Bit 30: Multiturn overflow/underflow (--> F3x136, x=1, 2, 3)
    Bit 31: Multiturn battery (reserved)
Remedy: Replace DRIVE-CLiQ encoder.
```

F31136
Message value:
Drive object:
Reaction:

Acknowledge:
Cause:

Encoder 1: Error when determining multiturn information
Fault cause: \%1 bin
A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC Infeed: NONE
Servo: ENCODER (IASC/DCBRAKE, NONE)
Vector: ENCODER (IASC/DCBRAKE, NONE)
PULSE INHIBIT
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (--> F3x135, $x=1,2,3$ )
Bit 17: Signal amplitude (--> F3x135, x $=1,2,3$ )
Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3)
Bit 19: Overvoltage (--> F3x135, $x=1,2,3$ )
Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ )
Bit 21: Overcurrent (--> F3x135, $x=1,2,3$ )
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$ )
Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3)
Bit 27: Multiturn position 2 (--> F3x136, x=1, 2, 3)
Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ )
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3)

|  | Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3) |
| :--- | :--- |
|  | Bit 31: Multiturn battery (reserved) |
| Remedy: | Replace DRIVE-CLiQ encoder. |
| F31137 | Encoder 1: Internal fault when determining the position |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |


| Remedy: | Reduce the speed of the encoder accordingly during initialization. <br> If necessary, de-activate monitoring (p0437.29). <br> See also: p0437 (Sensor Module configuration extended) |
| :--- | :--- |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

F31161 (N, A) Encoder 1: Analog sensor channel B failed
Message value: \%1
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: ENCODER (NONE)
Servo: ENCODER (IASC/DCBRAKE, NONE)
Vector: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.

|  | Fault value (r0949, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| :---: | :---: |
| Remedy: | For fault value $=1$ : <br> - check the output voltage of the analog sensor. <br> For fault value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> For fault value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 31163 \text { (N, A) }}$ | Encoder 1: Analog sensor position value exceeds limit value |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: ENCODER (NONE) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal): <br> 1: Position value from the LVDT sensor. <br> 2: Position value from the encoder characteristic. |
| Remedy: | For fault value =1: <br> - Check the LVDT ratio (p4678). <br> - check the reference signal connection at track $B$. <br> For fault value $=2$ : <br> - check the coefficients of the characteristic (p4663 ... p4666). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| A31400 (F, N) | Encoder 1: Alarm threshold zero mark distance error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal): <br> Last measured zero mark distance in increments (4 increments = 1 encoder pulse). <br> The sign designates the direction of motion when detecting the zero mark distance. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |


| Reaction upon N: | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{N}:$ | NONE |


| A31401 (F, N) | Encoder 1: Alarm threshold zero mark failed |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 1.5 x parameterized zero mark distance was exceeded. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (lineear encoder). <br>  <br>  <br>  <br> Alarm value (r2124, interpret decimal): <br> Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder <br> pulse). |
| - check that the encoder cables are routed in compliance with EMC. |  |

F31405 (N, A) Encoder 1: Temperature in the encoder evaluation inadmissible

## Message value: \%1

Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: NONE (OFF1, OFF2)
Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
The fault threshold is $125^{\circ} \mathrm{C}$.
Alarm value (r2124, interpret decimal):
Measured board/module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy: Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

| A31407 (F, N) | Encoder 1: Function limit reached |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The encoder has reached one of its function limits. A service is recommended. |
|  | Alarm value (r2124, interpret decimal): |
|  | 1: Incremental signals |
|  | $3:$ Absolute track |
|  | 4 : Code connection |
| Remedy: | Perform service. Replace the encoder if necessary. |
|  | Note: |
|  | The actual functional reserve of an encoder can be displayed via r4651. |
|  | See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve) |



| Remedy: | Replace encoder. <br> Reaction upon F: <br> Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| :--- | :--- |
|  | Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A31412 (F, N) | Encoder 1: Error bit set in the serial protocol |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE <br> Cause: |
|  | The encoder sends a set error bit via the serial protocol. <br> Alarm value (r2124, interpret binary): <br> Bit 0: Fault bit in the position protocol. <br> Bit 1: Alarm bit in the position protocol. |
|  | - carry out a POWER ON (power off/on) for all components. |
| - check that the encoder cables are routed in compliance with EMC. |  |
| - check the plug connections |  |

A31414 (F, N) Encoder 1: Amplitude error track C or D (C^2 + D^2)
Message value: C track: \%1, D track: \%2
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude $\left(\mathrm{C}^{\wedge} 2+\mathrm{D}^{\wedge} 2\right)$ of track C or D of the encoder or from the Hall signals, is not within the tolerance band-
width.
Alarm value (r2124, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track D (16 bits with sign)
xxxx = Signal level, track C (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$.
The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
Note:
If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy: - check that the encoder cables are routed in compliance with EMC
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts)
- check the Hall sensor box
Reaction upon F: Infeed: NONE (OFF1, OFF2)
Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:
IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

| A31415 (F, N) | Encoder 1: Amplitude alarm track A or B (A^2 + $\mathbf{B}^{\wedge} \mathbf{2}$ ) |
| :---: | :---: |
| Message value: | Amplitude: \%1, Angle: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 1 exceeds the permissible tolerance. |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | yyyyxxxx hex: |
|  | yyyy = Angle |
|  | $x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign) |
|  | The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). |
|  | The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder). |
|  | A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$. |
|  | The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B. |
|  | Note for sensors modules for resolvers (e. g. SMC10): |
|  | The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms). |
|  | A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$. |
|  | Note: |
|  | The analog values of the amplitude error are not measured at the same time with the hardware fault output by the |
|  | Sensor Module. |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range. |
|  | - check that the encoder cables and shielding are routed in compliance with EMC. |
|  | - check the plug connections |
|  | - replace the encoder or encoder cable |
|  | - check the Sensor Module (e.g. contacts). |
|  | - if the coding disk is soiled or the lighting aged, replace the encoder. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31418 (F, N) | Encoder 1: Speed difference per sampling rate exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492. |
|  | The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. |
|  | Alarm value (r2124, interpret decimal): |
|  | Only for internal Siemens troubleshooting. |
|  | See also: p0492 |
| Remedy: | - check the tachometer feeder cable for interruptions. |
|  | - check the grounding of the tachometer shielding. |
|  | - if required, increase the setting of p0492. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A31419 (F, N) | Encoder 1: Track A or B outside tolerance |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude/phase/offset correction for track $A$ or B is at the limit. |
|  | Amplitude error correction: Amplitude B/Amplitude $\mathrm{A}=0.78$... 1.27 |
|  | Phase: <84 degrees or >96 degrees |
|  | SMC20: Offset correction: +/-140 mV |
|  | SMC10: Offset correction: +/-650 mV |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | xxxx1: Minimum of the offset correction, track B |
|  | xxxx2: Maximum of the offset correction, track B |
|  | xxx1x: Minimum of the offset correction, track A |
|  | xxx2x: Maximum of the offset correction, track A |
|  | $x \times 1 \mathrm{xx}$ : Minimum of the amplitude correction, track B/A |
|  | xx2xx: Maximum of the amplitude correction, track B/A |
|  | $x 1 \mathrm{xxx}$ : Minimum of the phase error correction |
|  | x2xxx: Maximum of the phase error correction |
|  | 1xxxx: Minimum of the cubic correction |
|  | $2 x x x x$ : Maximum of the cubic correction |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). <br> - check the plug connections (also the transition resistance). <br> - check the encoder signals. <br> - replace the encoder or encoder cable |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31421 (F, N) | Encoder 1: Coarse position error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. <br> Alarm value (r2124, interpret decimal): |
|  | 3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse. |
| Remedy: | Re alarm value $=3$ : <br> - For a standard encoder with cable, contact the manufacturer where relevant. <br> - correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with $A^{*}$ and $B$ with $B^{*}$ ) or, for a programmable encoder, check the zero offset of the position. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A31422 (F, N) | Encoder 1: Pulses per revolution square-wave encoder outside tolerance bandwidth |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. <br> The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder). <br> Alarm value (r2124, interpret decimal): <br> accumulated differential pulses in encoder pulses. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31429 (F, N) | Encoder 1: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> Alarm value (r2124, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle ( 16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track $C / D$. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A31431 (F, N) | Encoder 1: Deviation, position incremental/absolute too large |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When the zero pulse is passed, a deviation in the incremental position was detected. <br> For equidistant zero marks, the following applies: <br> - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have <br> n times the distance referred to the first zero mark. <br> For distance-coded zero marks, the following applies: <br> - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair. <br> Alarm value ( r 2124 , interpret decimal): <br> Deviation in quadrants ( 1 pulse $=4$ quadrants). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - Clean coding disk or remove strong magnetic fields. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31432 (F, N) | Encoder 1: Rotor position adaptation corrects deviation |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal): <br> Last measured deviation of zero mark in increments ( 4 increments $=1$ encoder pulse). <br> The sign designates the direction of motion when detecting the zero mark distance. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check encoder limit frequency. <br> - adapt the parameter for the distance between zero marks (p0424, p0425). |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31442 (F, N) | Encoder 1: Battery voltage pre-alarm |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information. |
| Remedy: | Replace battery. |


| Reaction upon F: | ```Infeed: NONE (OFF1, OFF2) Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)``` |
| :---: | :---: |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31443 (F, N) | Encoder 1: Unipolar CD signal level outside specification |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance. <br> Alarm value (r2124, interpret binary): <br> Bit $0=1$ : Either $C P$ or $C N$ outside the tolerance. <br> Bit 16 = 1: Either DP or DN outside the tolerance. <br> The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. <br> The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. <br> Note: <br> The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections and contacts of the encoder cable. <br> - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? <br> - replace the encoder cable. |
| Reaction upon F: | ```Infeed: NONE Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)``` |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31460 (N) | Encoder 1: Analog sensor channel A failed |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside measuring range set in p4673. <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4673). <br> Re alarm value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A31461 (N) | Encoder 1: Analog sensor channel B failed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit ( $p 4676$ ). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> Re alarm value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31462 (N) | Encoder 1: Analog sensor, no channel active |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Channel $A$ and $B$ are not activated for the analog sensor. |
| Remedy: | - activate channel A and/or channel B (p4670). <br> - check the encoder configuration ( p 0404.17 ). <br> See also: p4670 (Analog sensor configuration) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31463 (N) | Encoder 1: Analog sensor position value exceeds limit value |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal): <br> 1: Position value from the LVDT sensor. <br> 2: Position value from the encoder characteristic. |
| Remedy: | Re alarm value $=1$ : <br> - Check the LVDT ratio (p4678). <br> - check the reference signal connection at track B. <br> Re alarm value $=2$ : <br> - check the coefficients of the characteristic (p4663 ... p4666). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31470 (F, N) | Encoder 1: Soiling detected |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7. |

$\left.\left.\begin{array}{ll}\text { Remedy: } & \text { - check the plug connections } \\ \text { - replace the encoder or encoder cable }\end{array}\right] \begin{array}{ll}\text { Reaction upon F: } \\ \text { Infeed: NONE (OFF1, OFF2) } \\ \text { Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) } \\ \text { Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) }\end{array}\right]$

| F31502 (N, A) | Encoder 1: Encoder with measuring gear, without valid signals |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (OFF2) |
|  | Servo: OFF1 (OFF2, OFF3) |
|  | Vector: OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The encoder with measuring gear no longer provides any valid signals. |
| Remedy: | It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31503 (N, A) | Encoder 1: Position tracking cannot be reset |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) |
|  | Servo: OFF1 (NONE, OFF2, OFF3) |
|  | Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The position tracking for the measuring gear cannot be reset. |
| Remedy: | The fault should be resolved as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows (p0411.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and the absolute encoder adjusted. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| A31700 | Encoder 1: Effectivity test does not supply the expected value |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Bit $\mathrm{x}=1$ : Effectivity test x unsuccessful. |
| Remedy: | Replace encoder. |
| N31800 (F) | Encoder 1: Group signal |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | NONE |
| Cause: | The motor encoder has detected at least one fault. See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | Evaluate the other messages that are presently available. |
| Reaction upon F: | Infeed: OFF2 (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowl. upon F: | IMMEDIATELY |


| F31801 (N, A) | Encoder 1 DRIVE-CLiQ: Sign-of-life missing |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. |
|  | Fault cause: |
|  | 10 (= 0A hex): |
|  | The sign-of-life bit in the receive telegram is not set. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check the electrical cabinet design and cable routing for EMC compliance <br> - replace the component involved. |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31802 (N, A) | Encoder 1: Time slice overflow |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A time slice overflow has occurred in encoder 1. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved |
|  | $x=9$ : |
|  | Time slice overflow of the fast (current controller clock cycle) time slice. |
|  | Time slice overflow of the average time slice. |
|  | $\mathrm{x}=\mathrm{C}$ |
|  | Time slice overflow of the slow time slice. $y x=3 E 7$ : |
|  | Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation). |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | Increase the current controller sampling time |
|  | Note: |
|  | For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with order number 6SL3055-0AA00-5xA3 . |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31804 (N, A) | Encoder 1: Checksum error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | POWER ON (IMMEDIATELY) |
| Cause: | A checksum error has occurred when reading-out the program memory on the Sensor Module. |


|  | Fault value (r0949, interpret hexadecimal): |
| :--- | :--- |
|  | yyyyxxxx hex |
|  | yyyy: Memory area involved. |
|  | xxxx: Difference between the checksum at POWER ON and the actual checksum. |
|  | See also: p0491 (Motor encoder fault response ENCODER) |



| Reaction upon F: | Infeed: OFF2 (NONE) <br> Servo: NONE (ENCODER, OFF2) <br> Vector: NONE (ENCODER, OFF2) |
| :---: | :---: |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F31812 (N, A) | Encoder 1: Requested cycle or RX-/TX timing not supported |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A cycle requested from the Control Unit or RX/TX timing is not supported. Fault value (r0949, interpret decimal): <br> 0 : Application cycle is not supported. <br> 1: DRIVE-CLiQ cycle is not supported. <br> 2: Distance between RX and TX instants in time too low. <br> 3: TX instant in time too early. |
| Remedy: | Carry out a POWER ON (power off/on) for all components. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31813 | Encoder 1: Hardware logic unit failed |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Bit 0: ALU watchdog has responded. <br> Bit 1: ALU has detected a sign-of-life error. |
| Remedy: | Replace encoder. |
| F31820 (N, A) | Encoder 1 DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. |


|  | 7 (= 07 hex): |
| :---: | :---: |
|  | A SYNC telegram is expected - but the received telegram is not a SYNC telegram. |
|  | 8 (= 08 hex): |
|  | No SYNC telegram is expected - but the received telegram is one. |
|  | 9 (= 09 hex): |
|  | The error bit in the receive telegram is set. |
|  | 16 (= 10 hex): |
|  | The receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 31835 \text { (N, A) }}$ | Encoder 1 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |
|  | 64 (= 40 hex): |
|  | Timeout in the telegram send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, $x x=$ error cause |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - carry out a POWER ON. <br> - replace the component involved. |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31836 (N, A) | Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent. |


|  | Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, xx = error cause <br> See also: p0491 (Motor encoder fault response ENCODER) |
| :---: | :---: |
| Remedy: | Carry out a POWER ON. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F31837 (N, A) | Encoder 1 DRIVE-CLiQ: Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F31845 (N, A) | Encoder 1 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ```Infeed: OFF2 Servo: ENCODER (IASC/DCBRAKE, NONE) Vector: ENCODER (IASC/DCBRAKE, NONE)``` |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. <br> Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause <br> See also: p0491 (Motor encoder fault response ENCODER) |


| Remedy: | Carry out a POWER ON. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31850 (N, A) | Encoder 1: Encoder evaluation, internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred in the Sensor Module of encoder 1. <br> Fault value (r0949, interpret decimal): <br> 1: Background time slice is blocked. <br> 2: Checksum over the code memory is not OK. <br> 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. <br> 11000 ... 11499: Descriptive data from EEPROM incorrect. <br> 11500 ... 11899: Calibration data from EEPROM incorrect. <br> 11900 ... 11999: Configuration data from EEPROM incorrect. <br> 12000 ... 12008: Communication with AD converter faulted. <br> 16000: DRIVE-CLiQ encoder initialization application error. <br> 16001: DRIVE-CLiQ encoder initialization ALU error. <br> 16002: DRIVE-CLiQ encoder HISI / SISI initialization error. <br> 16003: DRIVE-CLiQ encoder safety initialization error. <br> 16004: DRIVE-CLiQ encoder internal system error. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - replace the Sensor Module. <br> - if required, upgrade the firmware in the Sensor Module. <br> - contact the Hotline. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31851 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: $10 \text { (= OA hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |
| Reaction upon N: | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F31860 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Telegram error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. |
|  | 1 (= 01 hex): |
|  | Checksum error (CRC error). |
|  | 2 (= 02 hex): |
|  | Telegram is shorter than specified in the length byte or in the receive list. |
|  | 3 (= 03 hex): |
|  | Telegram is longer than specified in the length byte or in the receive list. |
|  | 4 (= 04 hex): |
|  | The length of the receive telegram does not match the receive list. |
|  | 5 (= 05 hex): |
|  | The type of the receive telegram does not match the receive list. |
|  | 6 (= 06 hex): |
|  | The address of the power unit in the telegram and in the receive list do not match. |
|  | 9 (= 09 hex): |
|  | The error bit in the receive telegram is set. |
|  | 16 (= 10 hex): |
|  | The receive telegram is too early. |
|  | 17 (= 11 hex): |
|  | CRC error and the receive telegram is too early. |
|  | 18 (= 12 hex): |
|  | The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. 19 (= 13 hex): |
|  | The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex): |
|  | The length of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 21 (= 15 hex): |
|  | The type of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 22 (= 16 hex): |
|  | The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early. |
|  | 25 (= 19 hex): |
|  | The error bit in the receive telegram is set and the receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A : | NONE |


| F31875 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Supply voltage failed |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. |
|  | Fault cause: |
|  | 9 (= 09 hex): |
|  | The power supply voltage for the components has failed. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31885 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 26 (= 1A hex): |
|  | Sign-of-life bit in the receive telegram not set and the receive telegram is too early. |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |
|  | 64 (= 40 hex): |
|  | Timeout in the telegram send list. |
|  | 98 (= 62 hex): |
|  | Error at the transition to cyclic operation. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. <br> - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| F31886 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Data were not able to be sent. <br> Fault cause: <br> 65 (= 41 hex): <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. <br> - check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31887 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded. <br> Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $96 \text { (= } 60 \text { hex): }$ <br> Response received too late during runtime measurement. $97 \text { (= } 61 \text { hex): }$ <br> Time taken to exchange characteristic data too long. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| $\overline{\mathrm{F} 31895 \text { (N, A) }}$ | Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: ENCODER (IASC/DCBRAKE, NONE) <br> Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. <br> Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F31896 (N, A) | Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) <br> Servo: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31899 (N, A) | Encoder 1: Unknown fault |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ```Infeed: OFF2 (NONE, OFF1) Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)``` |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Fault value (r0949, interpret decimal): <br> Fault number. <br> Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. See also: p0491 (Motor encoder fault response ENCODER) |


| Remedy: | - replace the firmware on the Sensor Module by an older firmware version (r0148). <br> - upgrade the firmware on the Control Unit (r0018). |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| A31902 (F, N) | Encoder 1: SPI-BUS error occurred |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal SPI bus. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. |
| Remedy: | - replace the Sensor Module. <br> - if required, upgrade the firmware in the Sensor Module. <br> - contact the Hotline. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A31903 (F, N) | Encoder 1: I2C-BUS error Occurred |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal I2C bus. <br>  <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| - replace the Sensor Module. |  |
| Remedy: | - if required, upgrade the firmware in the Sensor Module. |
| - contact the Hotline. |  |

F31905 (N, A) Encoder 1: Parameterization error
Message value: Parameter: \%1, supplementary information: \%2
Drive object: A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction: Infeed: OFF2 (NONE, OFF1)
Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 1 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

|  | Fault value (r0949, interpret decimal): |
| :---: | :---: |
|  | yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter |
|  | For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits. |
|  | yyyy $=0$ : |
|  | No information available. |
|  | yyyy = 1: |
|  | The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$. yyyy $=2$ : |
|  | A code number for an identified encoder has been entered into p0400, however, no identification was carried out. |
|  | Please start a new encoder identification. |
|  | yyyy = 3: |
|  | A code number for an identified encoder has been entered into p0400, however, no identification was carried out. |
|  | Please select a listed encoder in p0400 with a code number < 10000. |
|  | yyyy = 4: |
|  | This component does not support SSI encoders (p0404.9 = 1) without track A/B. |
|  | yyyy = 5: |
|  | For SQW encoder, value in p4686 greater than in p0425. |
|  | yyyy = 6: |
|  | DRIVE-CLiQ encoder cannot be used with this firmware version. |
|  | yyyy = 7: |
|  | For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks. |
|  | yyyy = 8: |
|  | The motor pole pair width is not supported by the linear scale being used. |
|  | yyyy = 9: |
|  | The length of the position in the EnDat protocol may be a maximum of 32 bits. |
|  | yyyy = 10: |
|  | The connected encoder is not supported. |
|  | See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - check whether the connected encoder type matches the encoder that has been parameterized. |
|  | - correct the parameter specified by the fault value (r0949) and p0187. |
|  | - re parameter number $=314$ : |
|  | - check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F31912 | Encoder 1: Device combination is not permissible |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: ENCODER (NONE) |
|  | Servo: ENCODER (IASC/DCBRAKE, NONE) |
|  | Vector: ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The selected device combination is not supported. |
|  | Fault value (r0949, interpret decimal): |
|  | 1003: |
|  | The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$. |
|  | 1005: |
|  | The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. |
|  | 1006: |
|  | The maximum duration ( $31.25 \mu \mathrm{~s}$ ) of the EnDat transfer was exceeded. |
|  | 2001: |
|  | The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter. |
|  | 2002: |
|  | The resolution of the linear measuring unit does not match the pole pair width of the linear motor |

```
Remedy: Re fault value = 1003, 1005, 1006:
    - Use a measuring unit that is permissible
    For fault value = 2001:
    - Set a permissible cycle combination (if required, use standard settings).
    For fault value = 2002:
    - Use a measuring unit with a lower resolution (p0422).
```

| A31915 (F, N) | Encoder 1: Configuration error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The configuration for encoder 1 is incorrect. <br> Alarm value (r2124, interpret decimal): <br> 1: <br> Re-parameterization between fault/alarm is not permissible. <br> 419: <br> When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits. |
| Remedy: | Re alarm value $=1$ : <br> No re-parameterization between fault/alarm. <br> Re alarm value $=419$ : <br> Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not required. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE) <br> Vector: NONE (ENCODER, IASC/DCBRAKE) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

F31916 (N, A) Encoder 1: Parameterization fault

Message value: Parameter: \%1, supplementary information: \%2
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: OFF2 (NONE, OFF1)
Servo: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Vector: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY

Cause: A parameter of encoder 1 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
Parameter number.
Note:
This fault is only output for encoders where r0404.10 $=1$ or r0404.11 = 1. It corresponds to A31905 with encoders where r0404.10 $=0$ and r0404.11 $=0$. See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check whether the connected encoder type matches the encoder that has been parameterized.

- correct the parameter specified by the fault value (r0949) and p0187.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE


| A31930 (N) | Encoder 1: Data logger has saved data |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the activated function "Data logger" (p0437.0 $=1$ ) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card. <br> The diagnostics data is saved in the following folder: <br> /USER/SINAMICS/DATA/SMTRC00.BIN |
|  |  |
|  | /USER/SINAMICS/DATA/SMTRC07.BIN |
|  | /USER/SINAMICS/DATA/SMTRCIDX.TXT |
|  | The following information is contained in the TXT file: |
|  | - Display of the last written BIN file. |
|  | - Number of write operations that are still possible (from 10000 downwards). |
|  | Note: |
|  | Only Siemens can evaluate the BIN files. |
| Remedy: | Not necessary. |
|  | The alarm disappears automatically. |
|  | The data logger is ready to record the next fault case. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A31940 (F, N) | Encoder 1: Spindle sensor S1 voltage incorrect |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The voltage of analog sensor S1 is outside the permissible range. |
|  | Fault value (r0949, interpret decimal): |
|  | Signal level from sensor S1. |
|  | Note: |
|  | A signal level of 500 mV corresponds to the numerical value 500 dec . |
| Remedy: | - Check the clamped tool. |
|  | - Check the tolerance and if required, adapt (p5040). |
|  | - Check the thresholds and if required, adapt (p5041). |
|  | - Check analog sensor S1 and connections. |
|  | See also: p5040 (Spindle voltage threshold values tolerance), p5041 (Spindle voltage threshold values) |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F31950 | Encoder 1: Internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (OFF2) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. |
|  | Fault value (r0949, interpret decimal): |
|  | The fault value contains information regarding the fault source. |
|  | Only for internal Siemens troubleshooting. |
| Remedy: | - If necessary, upgrade the firmware in the Sensor Module to a later version. <br> - contact the Hotline. |


| A31999 (F, N) | Encoder 1: Unknown alarm |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, ENC, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Alarm value (r2124, interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. <br> See also: p0491 (Motor encoder fault response ENCODER) |
| Remedy: | - replace the firmware on the Sensor Module by an older firmware version ( r 0148 ). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) Vector: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F32100 (N, A) | Encoder 2: Zero mark distance error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): <br> Last measured zero mark distance in increments ( 4 increments $=1$ encoder pulse). <br> The sign designates the direction of motion when detecting the zero mark distance. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F32101 (N, A) | Encoder 2: Zero mark failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The $1.5 \times$ parameterized zero mark distance was exceeded. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): <br> Number of increments after POWER ON or since the last zero mark that was detected (4increments = 1 encoder pulse). |

$\left.\begin{array}{ll}\text { Remedy: } & \text { - check that the encoder cables are routed in compliance with EMC. } \\ \text { - check the plug connections } \\ \text { - check the encoder type (encoder with equidistant zero marks). } \\ \text { - adapt the parameter for the clearance between zero marks (p0425). } \\ \text { - if message output above speed threshold, reduce filter time if necessary (p0438). } \\ \text { - when p0437.1 is active, check p4686. } \\ \text { - replace the encoder or encoder cable }\end{array}\right]$

## F32110 (N, A) Encoder 2: Serial communications error

Message value: Fault cause: \%1 bin
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Fault value (r0949, interpret binary):
Bit 0: Alarm bit in the position protocol
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading
Bit 7: Timeout for the register communication.


F32111 (N, A) Encoder 2: Absolute encoder internal fault
Message value: Fault cause: \%1 bin, additional information: \%2
Drive object: SERVO, SERVO AC, SERVO I AC, VECTOR, VECTOR AC, VECTOR I AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The absolute encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
yyyyxxxx hex: yyyy = supplementary information, $x x x x=$ fault cause
yyyy = 0:
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
yyyy = 1:
Bit 0: Signal amplitude outside the control range.
Bit 1: Error multiturn interface

|  | Bit 2: Internal data error (singleturn/multiturn not with single steps). <br> Bit 3: Error EEPROM interface. <br> Bit 4: SAR converter error. <br> Bit 5: Fault for the register data transfer. <br> Bit 6: Internal error identified at the error pin ( nErr ). <br> Bit 7: Temperature threshold exceeded or fallen below. |
| :---: | :---: |
| Remedy: | For yyyy = 0: <br> Re fault value, bit $0=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $1=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $2=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $3=1$ : <br> 5 V power supply voltage fault. <br> When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. <br> When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor. <br> Re fault value, bit $4=1$ : <br> 5 V power supply voltage fault. <br> When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. <br> When using a motor with DRIVE-CLiQ: Replace the motor. <br> Re fault value, bit $5=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $6=1$ : <br> The battery must be changed (only for encoders with battery back-up). <br> For yyyy = 1 : <br> Encoder is defective. Replace encoder. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F32112 (N, A) Encoder 2: Error bit set in the serial protocol

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
Bit 0: Fault bit in the position protocol.
Remedy: $\quad$ For fault value, bit $0=1$ :
In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F32115 (N, A) Encoder 2: Amplitude error track A or B (A^2 + B^2)
Message value: A track: \%1, B-track: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 2 exceeds the permissible tolerance.

|  | Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: |
| :---: | :---: |
|  | yyyy = Signal level, track B (16 bits with sign). |
|  | xxxx = Signal level, track A (16 bits with sign). |
|  | The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). |
|  | The response thresholds are < 170 mV (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. |
|  | A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. |
|  | Note for sensors modules for resolvers (e. g. SMC10): |
|  | The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response thresholds are $<1070 \mathrm{mV}$ and $>3582 \mathrm{mV}$. |
|  | A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$. |
|  | Note: |
|  | The analog values of the amplitude error are not measured at the same time with the hardware fault output by the |
|  | Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. |
|  | - check the plug connections |
|  | - replace the encoder or encoder cable |
|  | - check the Sensor Module (e.g. contacts). |
|  | The following applies to measuring systems without their own bearing system: |
|  | - adjust the scanning head and check the bearing system of the measuring wheel. |
|  | The following applies for measuring systems with their own bearing system: |
|  | - ensure that the encoder housing is not subject to any axial force. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32116 \text { (N, A) }}$ | Encoder 2: Amplitude error monitoring track A + B |
| Message value: | A track: \%1, B-track: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The amplitude of the rectified encoder signals $A$ and $B$ and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 2 are not within the tolerance bandwidth. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | yyyyxxxx hex: |
|  | yyyy = Signal level, track B (16 bits with sign). |
|  | xxxx = Signal level, track A (16 bits with sign). |
|  | The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). |
|  | The response thresholds are $<130 \mathrm{mV}$ (observe the frequency response of the encoder) and $>955 \mathrm{mV}$. |
|  | A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. |
|  | Note: |
|  | The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. |
|  | - check the plug connections |
|  | - replace the encoder or encoder cable |
|  | - check the Sensor Module (e.g. contacts). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32117 (N, A) | Encoder 2: Inversion error signals A/B/R |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and R. |


|  | Fault value (r0949, interpret binary): |
| :--- | :--- |
|  | Bits 0 ... 15: Only for internal Siemens troubleshooting. |
|  | Bit 16: Error track A. |
|  | Bit 17: Error track B. |
|  | Bit 18: Error track R. |
|  | Note: |
|  | For SMC30 (order no.. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following |
| applies: |  |
|  | A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated. |
|  | - Check the encoder/cable. |
|  | - Does the encoder supply signals and the associated inverted signals? |


| Remedy: | Re fault value, bit $0=1$ : <br> - correct encoder cable connected? <br> - check the plug connections of the encoder cable. <br> - SMC30: Check the parameterization (p0404.22). <br> Re fault value, bit $1=1$ : <br> - correct encoder cable connected? <br> - replace the encoder or encoder cable <br> Re fault value, bit $2=1$ : <br> - correct encoder cable connected? <br> - replace the encoder or encoder cable <br> Re fault value, bit $3=1$ : <br> - correct encoder cable connected? <br> - replace the encoder or encoder cable <br> Re fault value, bit $5=1$ : <br> - Measuring unit correctly connected at the converter? <br> - Replace the measuring unit or the cable to the measuring unit. <br> Re fault value, bit 6, $7=1$ : <br> - Replace the defective EnDat 2.2 converter. |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32121 (N, A) | Encoder 2: Coarse position error |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | For the actual value sensing, an error was detected on the module. <br> As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. |
| Remedy: | Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32122 | Encoder 2: Internal power supply voltage faulty |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault in internal reference voltage of ASICs for encoder 2. Fault value (r0949, interpret decimal): <br> 1: Reference voltage error. <br> 2: Internal undervoltage. <br> 3: Internal overvoltage. |
| Remedy: | Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module. |
| F32123 (N, A) | Encoder 2: Signal level A/B unipolar outside tolerance |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Either AP or AN outside the tolerance. <br> Bit 16 = 1: Either BP or BN outside the tolerance. <br> The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. |


|  | The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. <br> Note: <br> The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). |
| :---: | :---: |
| Remedy: | - make sure that the encoder cables and shielding are installed in an EMC-compliant manner. <br> - check the plug connections and contacts of the encoder cable. <br> - check the short-circuit of a signal cable with mass or the operating voltage. <br> - replace the encoder cable. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F32125 (N, A) }}$ | Encoder 2: Amplitude error track A or B overcontrolled |
| Message value: | A track: \%1, B-track: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude of track A or B for encoder 2 exceeds the permissible tolerance band. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Signal level, track B (16 bits with sign). <br> xxxx = Signal level, track A (16 bits with sign). <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the $A / D$ converter is overcontrolled. <br> A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. <br> Note for sensors modules for resolvers (e. g. SMC10): <br> The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $>3582 \mathrm{mV}$. <br> A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F32126 (N, A) }}$ | Encoder 2: Amplitude AB too high |
| Message value: | Amplitude: \%1, Angle: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\left.\|A\|+\|B\|\right)$ for encoder 2 exceeds the permissible tolerance. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Angle <br> $x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign) <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$. <br> The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative <br> zero crossover of track $B$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |


| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - replace the encoder or encoder cable |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32129 (N, A) | Encoder 2: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429. <br> Fault value (r0949, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F32130 (N, A) Encoder 2: Zero mark and position error from the coarse synchronization

Message value: Angular deviation, electrical: \%1, angle, mechanical: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: After initializing the pole position using track $C / D$, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
When initializing via track $C / D(p 0404)$ then it is checked whether the zero mark occurs in an angular range of $+/-18$ ${ }^{\circ}$ mechanical.
When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.
Scaling: $32768 \mathrm{dec}=180^{\circ}$

| Remedy: | - check that the encoder cables are routed in compliance with EMC. |
| :--- | :--- |
| - check the plug connections |  |
| - if the Hall sensor is used as an equivalent for track C/D, check the connection. |  |
| - Check the connection of track C or D. |  |
| - replace the encoder or encoder cable |  |


| Reaction upon $A$ : <br> Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| F32131 (N, A) | Encoder 2: Deviation, position incremental/absolute too large |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | Absolute encoder: <br> When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected. <br> Limit value for the deviation: <br> - EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants). <br> - other encoders: 15 pulses = 60 quadrants. <br> Incremental encoder: <br> When the zero pulse is passed, a deviation in the incremental position was detected. <br> For equidistant zero marks, the following applies: <br> - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have <br> n times the distance referred to the first zero mark. <br> For distance-coded zero marks, the following applies: <br> - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair. <br> Fault value (r0949, interpret decimal): <br> Deviation in quadrants (1 pulse $=4$ quadrants). |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check whether the coding disk is dirty or there are strong ambient magnetic fields. <br> - adapt the parameter for the clearance between zero marks (p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32135 | Encoder 2: Fault when determining the position |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. <br> Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. <br> Fault value (r0949, interpret binary): <br> Bit 0: F1 (safety status display) <br> Bit 1: F2 (safety status display) <br> Bit 2: Lighting (reserved) <br> Bit 3: Signal amplitude (reserved) <br> Bit 4: Position value (reserved) <br> Bit 5: Overvoltage (reserved) <br> Bit 6: Undervoltage (reserved) <br> Bit 7: Overcurrent (reserved) <br> Bit 8: Battery (reserved) <br> Bit 16: Lighting (--> F3x135, $x=1,2,3$ ) <br> Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$ ) <br> Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3) <br> Bit 19: Overvoltage (--> F3x135, $x=1,2,3$ ) <br> Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ) <br> Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3) |


|  | Bit 22: Temperature exceeded (--> F3x405, x=1,2,3) <br> Bit 23: Singleturn position 2 (safety status display) <br> Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3) <br> Bit 25: Singleturn power down (--> F3x135, x=1,2,3) <br> Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ) <br> Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ) <br> Bit 28: Multiturn system (--> F3x136, x=1, 2, 3) <br> Bit 29: Multiturn power down (--> F3x136, x $=1,2,3$ ) <br> Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3) <br> Bit 31: Multiturn battery (reserved) |
| :---: | :---: |
| F32136 | Encoder 2: Error when determining multiturn information |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. <br> Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. <br> Fault value (r0949, interpret binary): <br> Bit 0: F1 (safety status display) <br> Bit 1: F2 (safety status display) <br> Bit 2: Lighting (reserved) <br> Bit 3: Signal amplitude (reserved) <br> Bit 4: Position value (reserved) <br> Bit 5: Overvoltage (reserved) <br> Bit 6: Undervoltage (reserved) <br> Bit 7: Overcurrent (reserved) <br> Bit 8: Battery (reserved) <br> Bit 16: Lighting (--> F3x135, x = 1, 2, 3) <br> Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$ ) <br> Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3) <br> Bit 19: Overvoltage (--> F3x135, x=1, 2, 3) <br> Bit 20: Undervoltage (--> F3x135, x=1, 2, 3) <br> Bit 21: Overcurrent (--> F3x135, x=1, 2, 3) <br> Bit 22: Temperature exceeded (--> F3x405, x=1,2,3) <br> Bit 23: Singleturn position 2 (safety status display) <br> Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3) <br> Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3) <br> Bit 26: Multiturn position 1 (--> F3x136, x $=1,2,3$ ) <br> Bit 27: Multiturn position $2(-->F 3 \times 136, x=1,2,3)$ <br> Bit 28: Multiturn system (--> F3x136, x=1,2,3) <br> Bit 29: Multiturn power down (--> F3x136, x $=1,2,3$ ) <br> Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3) <br> Bit 31: Multiturn battery (reserved) |
| Remedy: | Replace DRIVE-CLiQ encoder. |
| F32137 | Encoder 2: Internal fault when determining the position |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Only for internal Siemens troubleshooting. |
| Remedy: | Replace encoder. |


| F32138 | Encoder 2: Internal error when determining multiturn information |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Only for internal SIEMENS troubleshooting. |
| Remedy: | Replace encoder. |
| F32150 (N, A) | Encoder 2: Initialization error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | Encoder functionality selected in p0404 is not operating correctly. <br> Fault value (r0949, interpret hexadecimal): <br> Encoder malfunction. <br> The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D). |
| Remedy: | - Check that p0404 is correctly set. <br> - check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable. <br> - if relevant, note additional fault messages that describe the fault in detail. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32151 (N, A) | Encoder 2: Encoder speed for initialization AB too high |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The encoder speed is too high during while initializing the sensor. |
| Remedy: | Reduce the speed of the encoder accordingly during initialization. If necessary, de-activate monitoring (p0437.29). <br> See also: p0437 (Sensor Module configuration extended) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32152 (N, A) | Encoder 2: Maximum input frequency exceeded |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The maximum input frequency of the encoder evaluation has been exceeded. Fault value (r0949, interpret decimal): <br> Actual input frequency in Hz . <br> See also: p0408 |
| Remedy: | - Reduce the speed. <br> - Use an encoder with a lower pulse number (p0408). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| Reaction upon A: <br> Acknowl. upon A: | NONE <br> NONE |
| :---: | :---: |
| F32160 (N, A) | Encoder 2: Analog sensor channel A failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Fault value (r0949, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4673). <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | For fault value $=1$ : <br> - check the output voltage of the analog sensor. <br> For fault value $=2$ : <br> - check the voltage setting for each encoder period (p4673). <br> For fault value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32161 (N, A) | Encoder 2: Analog sensor channel B failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Fault value (r0949, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | For fault value $=1$ : <br> - check the output voltage of the analog sensor. <br> For fault value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> For fault value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32163 (N, A) | Encoder 2: Analog sensor position value exceeds limit value |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal): <br> 1: Position value from the LVDT sensor. <br> 2: Position value from the encoder characteristic. |
| Remedy: | For fault value $=1$ : <br> - Check the LVDT ratio (p4678). <br> - check the reference signal connection at track B. |


|  | For fault value $=2:$ |
| :--- | :--- |
|  | - check the coefficients of the characteristic (p4663 ... p4666). |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A32400 (F, N) | Encoder 2: Alarm threshold zero mark distance error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that <br> if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the |
|  | system. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). |
|  | Alarm value (r2124, interpret decimal): <br> Last measured zero mark distance in increments (4 increments = 1 encoder pulse). |
| The sign designates the direction of motion when detecting the zero mark distance. |  |


| A32401 (F, N) | Encoder 2: Alarm threshold zero mark failed |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 1.5 x parameterized zero mark distance was exceeded. <br>  <br>  <br>  <br>  <br>  <br>  <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). <br>  <br>  <br> Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder <br> pulse). |
|  | - check that the encoder cables are routed in compliance with EMC. |
| - check the plug connections |  |


| F32405 (N, A) | Encoder 2: Temperature in the encoder evaluation inadmissible |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature. |
|  | The fault threshold is $125^{\circ} \mathrm{C}$. |


|  | Alarm value (r2124, interpret decimal): Measured board/module temperature in $0.1^{\circ} \mathrm{C}$. |
| :---: | :---: |
| Remedy: | Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A32407 (F, N) | Encoder 2: Function limit reached |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The encoder has reached one of its function limits. A service is recommended. <br> Alarm value (r2124, interpret decimal): <br> 1 : Incremental signals <br> 3 : Absolute track <br> 4 : Code connection |
| Remedy: | Perform service. Replace the encoder if necessary. <br> Note: <br> The actual functional reserve of an encoder can be displayed via r4651. <br> See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve) |
| Reaction upon F: | NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A32410 (F, N) | Encoder 2: Serial communications |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Serial communication protocol transfer error between the encoder and evaluation module. <br> Alarm value (r2124, interpret binary): <br> Bit 0: Alarm bit in the position protocol. <br> Bit 1: Incorrect quiescent level on the data line. <br> Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ). <br> Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. <br> Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. <br> Bit 5: Internal error in the serial driver: An illegal mode command was requested. <br> Bit 6: Timeout when cyclically reading. <br> Bit 8: Protocol is too long (e.g. > 64 bits). <br> Bit 9: Receive buffer overflow. <br> Bit 10: Frame error when reading twice. <br> Bit 11: Parity error. <br> Bit 12: Data line signal level error during the monoflop time. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32411 (F, N) | Encoder 2: Absolute encoder signals internal alarms |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin, additional information: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The absolute encoder fault word includes alarm bits that have been set. Alarm value (r2124, interpret binary): |
|  | yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause yyyy $=0$ : |
|  | Bit 0: Frequency exceeded (speed too high). |
|  | Bit 1: Temperature exceeded. |
|  | Bit 2: Control reserve, lighting system exceeded. |
|  | Bit 3: Battery discharged. |
|  | Bit 4: Reference point passed. |
|  | yyyy $=1$ : |
|  | Bit 0: Signal amplitude outside the control range. |
|  | Bit 1: Error multiturn interface |
|  | Bit 2: Internal data error (singleturn/multiturn not with single steps). |
|  | Bit 3: Error EEPROM interface. |
|  | Bit 4: SAR converter error. |
|  | Bit 5: Fault for the register data transfer. |
|  | Bit 6: Internal error identified at the error pin (nErr). |
|  | Bit 7: Temperature threshold exceeded or fallen below. |
| Remedy: | Replace encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A32412 (F, N) Encoder 2: Error bit set in the serial protocol
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol. Alarm value (r2124, interpret binary): Bit 0: Fault bit in the position protocol. Bit 1: Alarm bit in the position protocol

| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections |
| :--- | :--- |
| - replace encoder. |  |

Acknowl. upon N : NONE

| A32414 (F, N) | Encoder 2: Amplitude error track Cor D (C^2 + D^2) |
| :---: | :---: |
| Message value: | C track: \%1, D track: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude $\left(C^{\wedge} 2+D^{\wedge} 2\right)$ of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth. |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | yyyyxxxx hex: |
|  | yyyy = Signal level, track D (16 bits with sign). |
|  | xxxx = Signal level, track C (16 bits with sign). |


|  | The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$. <br> The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value 5333 hex $=21299$ dec. <br> Note: <br> If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). <br> - check the Hall sensor box |
| :--- | :--- |
| Reaction upon $\mathrm{F}: \quad$NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Acknowl. upon $\mathrm{F}:$ <br> IMMEDIATELY |  |
| Reaction upon $\mathrm{N}: \quad \mathrm{NONE}$ |  |
| Acknowl. upon $\mathrm{N}: \quad \mathrm{NONE}$ |  |


| A32415 (F, N) | Encoder 2: Amplitude alarm track A or B ( $\mathbf{A}^{\wedge} \mathbf{2}+\mathrm{B}^{\wedge} \mathbf{2}$ ) |
| :---: | :---: |
| Message value: | Amplitude: \%1, Angle: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 2 exceeds the permissible tolerance. <br> Alarm value (r2124, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Angle <br> xxxx $=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign) <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder). <br> A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$. <br> The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative <br> zero crossover of track B. <br> Note for sensors modules for resolvers (e. g. SMC10): <br> The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is $<1414 \mathrm{mV}(1.0 \mathrm{Vrms})$. <br> A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range. <br> - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). <br> - if the coding disk is soiled or the lighting aged, replace the encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32418 (F, N) | Encoder 2: Speed difference per sampling rate exceeded |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492. |
|  | The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. |
|  | Alarm value (r2124, interpret decimal): <br>  <br>  <br>  <br>  <br>  <br>  <br> Only for internal Siemens troubleshooting. <br> See also: p0492 |


| Remedy: | - check the tachometer feeder cable for interruptions. |
| :--- | :--- |
|  | - check the grounding of the tachometer shielding. |
| - if required, increase the setting of p0492. |  |


| A32419 (F, N) | Encoder 2: Track A or B outside tolerance |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude/phase/offset correction for track A or B is at the limit. |
|  | Amplitude error correction: Amplitude B / Amplitude $\mathrm{A}=0.78 \ldots 1.27$ |
|  | Phase: <84 degrees or >96 degrees |
|  | SMC20: Offset correction: $+/-140 \mathrm{mV}$ |
|  | SMC10: Offset correction: +/-650 mV |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | xxxx1: Minimum of the offset correction, track B |
|  | xxxx2: Maximum of the offset correction, track B |
|  | $x \mathrm{xx1x}$ : Minimum of the offset correction, track $A$ |
|  | $x x x 2 x$ : Maximum of the offset correction, track $A$ |
|  | $x \times 1 x x$ : Minimum of the amplitude correction, track B/A |
|  | $x \times 2 x x$ : Maximum of the amplitude correction, track B/A |
|  | $x 1 x x x$ : Minimum of the phase error correction |
|  | x2xxx: Maximum of the phase error correction |
|  | 1xxxx: Minimum of the cubic correction |
|  | 2 xxxx : Maximum of the cubic correction |
| Remedy: | - check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). <br> - check the plug connections (also the transition resistance). <br> - check the encoder signals. <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32421 (F, N) | Encoder 2: Coarse position error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. <br> Alarm value (r2124, interpret decimal): <br> 3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse. |
| Remedy: | Re alarm value $=3$ : <br> - For a standard encoder with cable, contact the manufacturer where relevant. <br> - correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with $A^{*}$ and $B$ with $B^{*}$ ) or, for a programmable encoder, check the zero offset of the position. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32422 (F, N) | Encoder 2: Pulses per revolution square-wave encoder outside tolerance bandwidth |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. <br> The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder). <br> Alarm value (r2124, interpret decimal): <br> accumulated differential pulses in encoder pulses. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A32429 (F, N) | Encoder 2: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> Alarm value (r2124, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32431 (F, N) | Encoder 2: Deviation, position incremental/absolute too large |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When the zero pulse is passed, a deviation in the incremental position was detected. |
|  | For equidistant zero marks, the following applies: |
|  | - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have |
|  | n times the distance referred to the first zero mark. |
|  | For distance-coded zero marks, the following applies: |
|  | - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have |
|  | the expected distance to the first zero mark pair. |


|  | Alarm value (r2124, interpret decimal): <br> Deviation in quadrants (1 pulse = 4 quadrants). <br> Remedy: <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable |
| :--- | :--- |
| - Clean coding disk or remove strong magnetic fields. |  |
| Reaction upon F: $\quad$ NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |  |
| Acknowl. upon F: $\quad$ IMMEDIATELY |  |
| Reaction upon N: | NONE |
| Acknowl. upon $\mathrm{N}: \quad$ NONE |  |

\(\left.$$
\begin{array}{ll}\hline \text { A32432 (F, N) } & \text { Encoder 2: Rotor position adaptation corrects deviation } \\
\text { Message value: } & \text { \%1 } \\
\text { Drive object: } & \text { SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC } \\
\text { Reaction: } & \text { NONE } \\
\text { Acknowledge: } & \text { NONE } \\
\text { Cause: } & \begin{array}{l}\text { For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. } \\
\text { Alarm value (r2124, interpret decimal): }\end{array} \\
& \begin{array}{l}\text { Last measured deviation of zero mark in increments (4 increments = } 1 \text { encoder pulse). }\end{array} \\
& \begin{array}{l}\text { The sign designates the direction of motion when detecting the zero mark distance. }\end{array}
$$ <br>

- check that the encoder cables are routed in compliance with EMC.\end{array}\right]\)| - check the plug connections |
| :--- | :--- |

A32442 (F, N) Encoder 2: Battery voltage pre-alarm
Message value:
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE

Acknowledge: NONE
Cause: When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information

Remedy: Replace battery.
Reaction upon F: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

| A32443 (F, N) | Encoder 2: Unipolar CD signal level outside specification |
| :--- | :--- |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance. |
|  | Alarm value (r2124, interpret binary): |
|  | Bit $0=1:$ Either CP or CN outside the tolerance. |
|  | Bit $16=1:$ Either DP or DN outside the tolerance. |
|  | The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. |
|  | The response thresholds are < 1700 mV and $>3300 \mathrm{mV}$. |


|  | Note: |
| :---: | :---: |
|  | The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections and contacts of the encoder cable. <br> - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? <br> - replace the encoder cable. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32460 (N) | Encoder 2: Analog sensor channel A failed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside measuring range set in p4673. <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4673). <br> Re alarm value $=3$ : <br> - check the range limit setting and increase it if necessary ( $p 4676$ ). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32461 (N) | Encoder 2: Analog sensor channel B failed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit (p4676). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> Re alarm value $=3$ : <br> - check the range limit setting and increase it if necessary ( $p 4676$ ). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32462 (N) | Encoder 2: Analog sensor, no channel active |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Channel A and B are not activated for the analog sensor. |


| Remedy: | - activate channel A and/or channel B (p4670). <br> - check the encoder configuration (p0404.17). <br> See also: p4670 (Analog sensor configuration) |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A32463 (N) | Encoder 2: Analog sensor position value exceeds limit value |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal): <br> 1: Position value from the LVDT sensor. <br> 2: Position value from the encoder characteristic. |
| Remedy: | Re alarm value $=1$ : <br> - Check the LVDT ratio (p4678). <br> - check the reference signal connection at track B. <br> Re alarm value $=2$ : <br> - check the coefficients of the characteristic (p4663 ... p4666). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32470 (F, N) | Encoder 2: Soiling detected |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE <br> In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling <br> is signaled via a 0 signal at terminal X521.7. |
| Remedy: | - check the plug connections |
| - replace the encoder or encoder cable |  |$\quad$| Reaction upon $\mathrm{F}:$ | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| :--- | :--- |
| Acknowl. upon $\mathrm{F}:$ | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

F32500 (N, A) Encoder 2: Position tracking traversing range exceeded

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

Reaction upon N :
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
NONE

SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions.
For p0411.0 = 1, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of p0421. For $\mathrm{p} 0411.3=1$, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is $+/-\mathrm{p} 0412 / 2$ (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
The fault should be resolved as follows:

- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).

The fault should then be acknowledged and the absolute encoder adjusted.

| F32501 (N, A) | Encoder 2: Position tracking encoder position outside tolerance window |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder. <br> Fault value (r0949, interpret decimal): <br> Deviation (difference) to the last encoder position in increments of the absolute value. <br> The sign designates the traversing direction. <br> Note: <br> The deviation (difference) found is also displayed in r0477. <br> See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference) |
| Remedy: | Reset the position tracking as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows (p0411.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). <br> See also: p0010, p2507 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32502 \text { (N, A) }}$ | Encoder 2: Encoder with measuring gear, without valid signals |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The encoder with measuring gear no longer provides any valid signals. |
| Remedy: | It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32503 \text { (N, A) }}$ | Encoder 2: Position tracking cannot be reset |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The position tracking for the measuring gear cannot be reset. |
| Remedy: | The fault should be resolved as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows (p0411.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and the absolute encoder adjusted. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A32700 | Encoder 2: Effectivity test does not supply the expected value |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Bit $x=1$ : Effectivity test $x$ unsuccessful. |
| Remedy: | Replace encoder. |
| N32800 (F) | Encoder 2: Group signal |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | NONE |
| Cause: | The motor encoder has detected at least one fault. |
| Remedy: | Evaluates other actual messages. |
| Reaction upon F: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| $\overline{\mathrm{F} 32801 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the electrical cabinet design and cable routing for EMC compliance <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |

F32802 (N, A) Encoder 2: Time slice overflow
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred in encoder 2.
Fault value (r0949, interpret hexadecimal): $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$ :
Time slice overflow of the fast (current controller clock cycle) time slice.
$x=A$ :
Time slice overflow of the average time slice.
$x=C$ :
Time slice overflow of the slow time slice.
$y x=3 E 7$ :
Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).

| Remedy: | Increase the current controller sampling time <br> Note: |
| :--- | :--- |
|  | For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with order number 6SL3055-0AA00-5xA3. |

F32804 (N, A) Encoder 2: Checksum error

Message value: \%
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge:
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the actual checksum.

## Remedy:

- carry out a POWER ON (power off/on).
- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
- check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

| F32805 (N, A) | Encoder 2: EPROM checksum error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Internal parameter data is corrupted. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | 01: EEPROM access error. |
|  | 02: Too many blocks in the EEPROM. |
| Remedy: | Replace the module. |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

## F32806 (N, A) Encoder 2: Initialization error

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
Bit 2: Mid-voltage matching for track A unsuccessful.
Bit 3: Mid-voltage matching for track B unsuccessful.
Bit 4: Mid-voltage matching for acceleration input unsuccessful.
Bit 5: Mid-voltage matching for track safety $A$ unsuccessful.
Bit 6: Mid-voltage matching for track safety B unsuccessful.
Bit 7: Mid-voltage matching for track $C$ unsuccessful.

|  | Bit 8: Mid-voltage matching for track D unsuccessful. |
| :---: | :---: |
|  | Bit 9: Mid-voltage matching for track R unsuccessful. |
|  | Bit 10: The difference in mid-voltages between $A$ and $B$ is too great (>0.5 V) |
|  | Bit 11: The difference in mid-voltages between $C$ and $D$ is too great ( $>0.5 \mathrm{~V}$ ) |
|  | Bit 12: The difference in mid-voltages between safety $A$ and safety $B$ is too great (>0.5 V ) |
|  | Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ ) |
|  | Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great (>0.5 V) |
|  | Bit 15: The standard deviation of the calculated mid-voltages is too great (>0.3 V) |
|  | Bit 16: Internal fault - fault when reading a register (CAFE) |
|  | Bit 17: Internal fault - fault when writing a register (CAFE) |
|  | Bit 18: Internal fault: No mid-voltage matching available |
|  | Bit 19: Internal error - ADC access error. |
|  | Bit 20: Internal error - no zero crossover found. |
|  | Bit 28: Error while initializing the EnDat 2.2 measuring unit. |
|  | Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit. |
|  | Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect. |
|  | Bit 31: Data of the EnDat 2.2 measuring unit inconsistent. |
|  | Note: |
|  | Bit 0, 1: Up to 6SL3055-0AA00-5*A0 |
|  | Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher |
| Remedy: | Acknowledge fault. |
|  | If the fault cannot be acknowledged: |
|  | Bits $2 . . .9$ : Check encoder power supply. |
|  | Bits $2 \ldots$ 14: Check the corresponding cable. |
|  | Bit 15 with no other bits: Check track R, check settings in p0404. |
|  | Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit. |
|  | Bit 29 ... 31: Replace the defective measuring unit. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32811 (N, A) | Encoder 2: Encoder serial number changed |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders). |
|  | - The encoder was replaced. |
|  | Note: |
|  | With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2). |
|  | When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1 ). |
|  | Proceed as follows to hide serial number monitoring: |
|  | - set the following serial numbers for the corresponding Encoder Data Set: p0441=FF, p0442 = 0, p0443 = 0, p0444 $=0, \mathrm{p} 0445=0$. |
| Remedy: | Mechanically adjust the encoder. Accept the new serial number with p0440 = 1 . |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |

F32812 (N, A) Encoder 2: Requested cycle or RX-/TX timing not supported
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.

|  | Fault value (r0949, interpret decimal): <br> 0 : Application cycle is not supported. <br> 1: DRIVE-CLiQ cycle is not supported. <br> 2: Distance between RX and TX instants in time too low. <br> 3: TX instant in time too early. |
| :---: | :---: |
| Remedy: | Carry out a POWER ON (power off/on) for all components. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32813 | Encoder 2: Hardware logic unit failed |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Bit 0: ALU watchdog has responded. <br> Bit 1: ALU has detected a sign-of-life error. |
| Remedy: | Replace encoder. |
| F32820 (N, A) | Encoder 2 DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. <br> Fault cause: $1 \text { (= } 01 \text { hex): }$ <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. $7 \text { (= } 07 \text { hex): }$ <br> A SYNC telegram is expected - but the received telegram is not a SYNC telegram. $8 \text { (= } 08 \text { hex): }$ <br> No SYNC telegram is expected - but the received telegram is one. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| Reaction upon A: <br> Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| $\overline{\mathrm{F} 32835 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism. <br> Fault cause: $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32836 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32837 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ: Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \mathrm{hex} \text { ): }$ <br> Receive error: The telegram buffer memory contains an error. |


|  | 66 (= 42 hex): |
| :---: | :---: |
|  | Send error: The telegram buffer memory contains an error. |
|  | 67 (= 43 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - if required, use another DRIVE-CLiQ socket (p9904). |
|  | - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32845 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault cause: |
|  | 11 (= 0B hex): |
|  | Synchronization error during alternating cyclic data transfer. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | Carry out a POWER ON. |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32850 (N, A) | Encoder 2: Encoder evaluation, internal software error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred in the Sensor Module of encoder 2. |
|  | Fault value (r0949, interpret decimal): |
|  | 1: Background time slice is blocked. |
|  | 2: Checksum over the code memory is not OK. |
|  | 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. |
|  | 11000 ... 11499: Descriptive data from EEPROM incorrect. |
|  | 11500 ... 11899: Calibration data from EEPROM incorrect. |
|  | 11900 ... 11999: Configuration data from EEPROM incorrect. |
|  | 12000 ... 12008: Communication with AD converter faulted. |
|  | 16000: DRIVE-CLiQ encoder initialization application error. |
|  | 16001: DRIVE-CLiQ encoder initialization ALU error. |
|  | 16002: DRIVE-CLiQ encoder HISI / SISI initialization error. |
|  | 16003: DRIVE-CLiQ encoder safety initialization error. |
|  | 16004: DRIVE-CLiQ encoder internal system error. |
| Remedy: | - replace the Sensor Module. |
|  | - if required, upgrade the firmware in the Sensor Module. |
|  | - contact the Hotline. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |



|  | Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, xx = error cause |
| :---: | :---: |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32875 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: $9 \text { (= } 09 \text { hex): }$ <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 32885 \text { (N, A) }}$ | Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. The nodes do not send and receive in synchronism. <br> Fault cause: $26 \text { (= 1A hex): }$ <br> Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. $98 \text { (= } 62 \text { hex): }$ <br> Error at the transition to cyclic operation. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. <br> - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |


| Reaction upon N : | NONE |
| :---: | :---: |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F32886 (N, A) | Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F32887 (N, A) }}$ | Encoder 2 DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded. <br> Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $96 \text { (= } 60 \text { hex): }$ <br> Response received too late during runtime measurement. $97 \text { (= } 61 \text { hex): }$ <br> Time taken to exchange characteristic data too long. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F32895 (N, A) | Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32896 (N, A) | Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32899 (N, A) | Encoder 2: Unknown fault |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Fault value (r0949, interpret decimal): <br> Fault number. <br> Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Sensor Module by an older firmware version (r0148). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A32902 (F, N) | Encoder 2: SPI-BUS error occurred |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal SPI bus. <br>  <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| - replace the Sensor Module. |  |
| Remedy: | - if required, upgrade the firmware in the Sensor Module. |
| - contact the Hotline. |  |


| A32903 (F, N) | Encoder 2: I2C-BUS error occurred |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal I2C bus. <br>  <br>  <br>  <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. <br> - replace the Sensor Module. <br> - if required, upgrade the firmware in the Sensor Module. <br> Remedy: <br>  <br> - contact the Hotline. |
| Reaction upon F: | NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

## F32905 (N, A) Encoder 2: Parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 2 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
xxxx $=421$ :
For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
yyyy $=0$ :
No information available.
yyyy = 1:
The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$. yyyy = 2:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
yyyy = 3:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
yyyy = 4:
This component does not support SSI encoders $(\mathrm{p} 0404.9=1)$ without track A/B.

|  | yyyy = 5: |
| :---: | :---: |
|  | For SQW encoder, value in p4686 greater than in p0425. |
|  | yyyy = 6: |
|  | DRIVE-CLiQ encoder cannot be used with this firmware version. |
|  | yyyy $=7$ : |
|  | For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks. |
|  | yyyy = 8: |
|  | The motor pole pair width is not supported by the linear scale being used. |
|  | yyyy = 9: |
|  | The length of the position in the EnDat protocol may be a maximum of 32 bits. |
|  | yyyy = 10: |
|  | The connected encoder is not supported. |
| Remedy: | - check whether the connected encoder type matches the encoder that has been parameterized. |
|  | - correct the parameter specified by the fault value (r0949) and p0187. |
|  | - re parameter number $=314$ : |
|  | - check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F32912 | Encoder 2: Device combination is not permissible |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The selected device combination is not supported. |
|  | Fault value (r0949, interpret decimal): |
|  | 1003: |
|  | The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$. |
|  | 1005: |
|  | The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. |
|  | 1006: |
|  | The maximum duration ( $31.25 \mu \mathrm{~s}$ ) of the EnDat transfer was exceeded. |
|  | 2001: |
|  | The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter. |
|  | 2002: |
|  | The resolution of the linear measuring unit does not match the pole pair width of the linear motor |
| Remedy: | Re fault value = 1003, 1005, 1006: |
|  | - Use a measuring unit that is permissible. |
|  | For fault value = 2001: |
|  | - Set a permissible cycle combination (if required, use standard settings). |
|  | For fault value = 2002: |
|  | - Use a measuring unit with a lower resolution (p0422). |

## A32915 (F, N) Encoder 2: Configuration error

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The configuration for encoder 2 is incorrect.
Alarm value (r2124, interpret decimal):
1:
Re-parameterization between fault/alarm is not permissible.
419:
When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value ( r 0483 ) that can no longer be represented within 32 bits.

| Remedy: | Re alarm value = 1: <br> No re-parameterization between fault/alarm. <br> Re alarm value = 419: <br> Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not <br> required. |
| :--- | :--- |
| Reaction upon F: |  |
| NONE (IASC/DCBRAKE) |  |
| Acknowl. upon F: |  |
| Reaction upon N: | IMMEDIATELY |
| NONE |  |
| Acknowl. upon N: | NONE |


| A32920 (F, N) | Encoder 2: Temperature sensor fault |
| :---: | :---: |
| Message value: | Fault cause: \%1, channel number: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Fault cause: <br> 1 (= 01 hex): <br> Wire breakage or sensor not connected (KTY: R > 1630 Ohm). <br> 2 (= 02 hex): <br> Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm). <br> Additional values: <br> Only for internal Siemens troubleshooting. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ channel number, $x x=$ error cause |
| Remedy: | - check that the encoder cable is the correct type and is correctly connected. <br> - check the temperature sensor selection in p0600 to p0603. <br> - replace the Sensor Module (hardware defect or incorrect calibration data). |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A32930 (N) | Encoder 2: Data logger has saved data |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card. <br> The diagnostics data is saved in the following folder: <br> /USER/SINAMICS/DATA/SMTRC00.BIN <br> /USER/SINAMICS/DATA/SMTRC07.BIN <br> /USER/SINAMICS/DATA/SMTRCIDX.TXT <br> The following information is contained in the TXT file: <br> - Display of the last written BIN file. <br> - Number of write operations that are still possible (from 10000 downwards). <br> Note: <br> Only Siemens can evaluate the BIN files. |
| Remedy: | Not necessary. <br> The alarm disappears automatically. <br> The data logger is ready to record the next fault case. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A32940 (F, N) | Encoder 2: Spindle sensor S1 voltage incorrect |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The voltage of analog sensor S1 is outside the permissible range. <br> Fault value (r0949, interpret decimal): <br> Signal level from sensor S1. <br> Note: <br> A signal level of 500 mV corresponds to the numerical value 500 dec . |
| Remedy: | - Check the clamped tool. <br> - Check the tolerance and if required, adapt (p5040). <br> - Check the thresholds and if required, adapt (p5041). <br> - Check analog sensor S1 and connections. <br> See also: p5040 (Spindle voltage threshold values tolerance), p5041 (Spindle voltage threshold values) |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F32950 | Encoder 2: Internal software error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (OFF2) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret decimal): Information about the fault source. Only for internal Siemens troubleshooting. |
| Remedy: | - If necessary, upgrade the firmware in the Sensor Module to a later version. <br> - contact the Hotline. |


| A32999 (F, N) | Encoder 2: Unknown alarm |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Alarm value (r2124, interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Sensor Module by an older firmware version (r0148). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F33100 (N, A) | Encoder 3: Zero mark distance error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). <br> Fault value (r0949, interpret decimal): <br> Last measured zero mark distance in increments (4 increments = 1 encoder pulse). <br> The sign designates the direction of motion when detecting the zero mark distance. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F33101 (N, A) | Encoder 3: Zero mark failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The $1.5 \times$ parameterized zero mark distance was exceeded. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). <br> Fault value (r0949, interpret decimal): <br> Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse). |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the clearance between zero marks (p0425). <br> - if message output above speed threshold, reduce filter time if necessary (p0438). |


|  | - when p0437.1 is active, check p4686. |
| :--- | :--- |
|  | - replace the encoder or encoder cable |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F33103 (N, A) | Encoder 3: Amplitude error, track R |


|  | Bit 13: Data line incorrect. <br> Bit 14: Fault for the register communication. |
| :---: | :---: |
| Remedy: | Re fault value, bit $0=1$ : <br> - Enc defect F31111 may provide additional details. <br> Re fault value, bit $1=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $2=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $3=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable. <br> Re fault value, bit $4=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace <br> Re fault value, bit $5=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace <br> Re fault value, bit $6=1$ : <br> - Update Sensor Module firmware. <br> Re fault value, bit $7=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. <br> Re fault value, bit $8=1$ : <br> - Check parameterization (p0429.2). <br> Re fault value, bit $9=1$ : <br> - EMC / connect the cable shield, replace the encoder or encoder cable, replace <br> Re fault value, bit $10=1$ : <br> - Check parameterization (p0429.2, p0449). <br> Re fault value, bit $11=1$ : <br> - Check parameterization (p0436). <br> Re fault value, bit $12=1$ : <br> - Check parameterization (p0429.6). <br> Re fault value, bit $13=1$ : <br> - Check data line. <br> Re fault value, bit $14=1$ : <br> - Incorrect encoder type / replace the encoder or encoder cable. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33111 (N, A) | Encoder 3: Absolute encoder internal fault |
| Message value: | Fault cause: \%1 bin, additional information: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The absolute encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> yyyyxxxx hex: yyyy = supplementary information, $x x x x=$ fault cause yyyy = 0: <br> Bit 0 : Lighting system failed. <br> Bit 1: Signal amplitude too low. <br> Bit 2: Position value incorrect. <br> Bit 3: Encoder power supply overvoltage condition. <br> Bit 4: Encoder power supply undervoltage condition. <br> Bit 5: Encoder power supply overcurrent condition. <br> Bit 6: The battery must be changed. $\text { yyyy = } 1 \text { : }$ <br> Bit 0: Signal amplitude outside the control range. <br> Bit 1: Error multiturn interface <br> Bit 2: Internal data error (singleturn/multiturn not with single steps). <br> Bit 3: Error EEPROM interface. <br> Bit 4: SAR converter error. <br> Bit 5: Fault for the register data transfer. |


|  | Bit 6: Internal error identified at the error pin (nErr). <br> Bit 7: Temperature threshold exceeded or fallen below. |
| :---: | :---: |
| Remedy: | For yyyy = 0: <br> Re fault value, bit $0=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $1=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $2=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $3=1$ : <br> 5 V power supply voltage fault. <br> When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. <br> When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor. <br> Re fault value, bit $4=1$ : <br> 5 V power supply voltage fault. <br> When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. <br> When using a motor with DRIVE-CLiQ: Replace the motor. <br> Re fault value, bit $5=1$ : <br> Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. <br> Re fault value, bit $6=1$ : <br> The battery must be changed (only for encoders with battery back-up). <br> For yyyy = 1 : <br> Encoder is defective. Replace encoder. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F33112 (N, A) Encoder 3: Error bit set in the serial protocol

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:
The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
Bit 0: Fault bit in the position protocol.
Remedy:
For fault value, bit $0=1$ : In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

## F33115 (N, A) Encoder 3: Amplitude error track A or B (A^2 + B^2)

Message value: A track: \%1, B-track: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 3 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response thresholds are $<170 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.

|  | A signal level of 500 mV peak value corresponds to the numerical value 5333 hex $=21299$ dec. |
| :--- | :--- |
|  | Note for sensors modules for resolvers (e. g. SMC10): |
|  | The nominal signal level is at $2900 \mathrm{mV}(2.0$ Vrms). The response thresholds are $<1070 \mathrm{mV}$ and $>3582 \mathrm{mV}$. |
|  | A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex $=26214$ dec. |
|  | Note: |
|  | The analog values of the amplitude error are not measured at the same time with the hardware fault output by the |
| Sensor Module. |  |



F33123 (N, A) Encoder 3: Signal level A/B unipolar outside tolerance
Message value: Fault cause: \%1 bin
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Cause:
IMMEDIATELY
The unipolar level (AP/AN or BP/BN) for encoder 3 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit $0=1$ : Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.

|  | Note: |
| :---: | :---: |
|  | The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). |
| Remedy: | - make sure that the encoder cables and shielding are installed in an EMC-compliant manner. <br> - check the plug connections and contacts of the encoder cable. <br> - check the short-circuit of a signal cable with mass or the operating voltage. <br> - replace the encoder cable. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33125 (N, A) | Encoder 3: Amplitude error track A or B overcontrolled |
| Message value: | A track: \%1, B-track: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude of track A or B for encoder 3 exceeds the permissible tolerance band. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Signal level, track B (16 bits with sign). <br> xxxx = Signal level, track A (16 bits with sign). <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled. <br> A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. <br> Note for sensors modules for resolvers (e. g. SMC10): <br> The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $>3582 \mathrm{mV}$. <br> A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex $=26214 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F33126 (N, A) | Encoder 3: Amplitude AB too high |
| Message value: | Amplitude: \%1, Angle: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\|A\|+\|B\|$ ) for encoder 3 exceeds the permissible tolerance. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Angle <br> xxxx = Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign) <br> The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$. <br> The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$. <br> A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$. <br> The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative <br> zero crossover of track $B$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - replace the encoder or encoder cable |


| Reaction upon N : | NONE |
| :---: | :---: |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33129 (N, A) | Encoder 3: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A33429. <br> Fault value (r0949, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F33130 (N, A) | Encoder 3: Zero mark and position error from the coarse synchronization |
| Message value: | Angular deviation, electrical: \%1, angle, mechanical: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out. <br> When initializing via track $C / D(p 0404)$ then it is checked whether the zero mark occurs in an angular range of $+/-18$ ${ }^{\circ}$ mechanical. <br> When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical. <br> Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex <br> yyyy: Determined mechanical zero mark position (can only be used for track C/D). <br> xxxx: Deviation of the zero mark from the expected position as electrical angle. <br> Scaling: $32768 \mathrm{dec}=180^{\circ}$ |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - if the Hall sensor is used as an equivalent for track $C / D$, check the connection. <br> - Check the connection of track C or D. <br> - replace the encoder or encoder cable |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |



|  | Bit 25: Singleturn power down (--> F3x135, x=1,2,3) <br> Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ) <br> Bit 27: Multiturn position $2(-->F 3 x 136, x=1,2,3)$ <br> Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ) <br> Bit 29: Multiturn power down (--> F3x136, x=1,2,3) <br> Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3) <br> Bit 31: Multiturn battery (reserved) <br> Replace DRIVE-CLiQ encoder. |
| :---: | :---: |
| F33136 | Encoder 3: Error when determining multiturn information |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. <br> Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. <br> Fault value (r0949, interpret binary): <br> Bit 0: F1 (safety status display) <br> Bit 1: F2 (safety status display) <br> Bit 2: Lighting (reserved) <br> Bit 3: Signal amplitude (reserved) <br> Bit 4: Position value (reserved) <br> Bit 5: Overvoltage (reserved) <br> Bit 6: Undervoltage (reserved) <br> Bit 7: Overcurrent (reserved) <br> Bit 8: Battery (reserved) <br> Bit 16: Lighting (--> F3x135, $x=1,2,3$ ) <br> Bit 17: Signal amplitude (--> F3x135, x $=1,2,3$ ) <br> Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3) <br> Bit 19: Overvoltage (--> F3x135, $x=1,2,3$ ) <br> Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3) <br> Bit 21: Overcurrent (--> F3x135, x=1, 2, 3) <br> Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$ ) <br> Bit 23: Singleturn position 2 (safety status display) <br> Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3) <br> Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$ ) <br> Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ) <br> Bit 27: Multiturn position 2 (--> F3x136, x=1, 2, 3) <br> Bit 28: Multiturn system (--> F3x136, x=1, 2, 3) <br> Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3) <br> Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ) <br> Bit 31: Multiturn battery (reserved) |
| Remedy: | Replace DRIVE-CLiQ encoder. |
| F33137 | Encoder 3: Internal fault when determining the position |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Only for internal Siemens troubleshooting. |
| Remedy: | Replace encoder. |


| F33138 | Encoder 3: Internal error when determining multiturn information |
| :--- | :--- |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. <br> Fault value (r0949, interpret binary): |
|  | Only for internal SIEMENS troubleshooting. |
| Remedy: | Replace encoder. |


| Reaction upon A: Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| F33160 (N, A) | Encoder 3: Analog sensor channel A failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Fault value (r0949, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4673). <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | For fault value $=1$ : <br> - check the output voltage of the analog sensor. <br> For fault value $=2$ : <br> - check the voltage setting for each encoder period (p4673). <br> For fault value = 3: <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 33161 \text { (N, A) }}$ | Encoder 3: Analog sensor channel B failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Fault value (r0949, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | For fault value $=1$ : <br> - check the output voltage of the analog sensor. <br> For fault value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> For fault value $=3$ : <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |

F33163 (N, A) Encoder 3: Analog sensor position value exceeds limit value
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: $\quad$ The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
Fault value (r0949, interpret decimal):
1: Position value from the LVDT sensor.
2: Position value from the encoder characteristic.
Remedy:
For fault value $=1$ :

- Check the LVDT ratio (p4678).
- check the reference signal connection at track $B$.

|  | For fault value $=2$ : <br> - check the coefficients of the characteristic (p4663 ... p4666). |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A : | NONE |
| A33400 (F, N) | Encoder 3: Alarm threshold zero mark distance error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal): <br> Last measured zero mark distance in increments ( 4 increments $=1$ encoder pulse). <br> The sign designates the direction of motion when detecting the zero mark distance. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33401 (F, N) | Encoder 3: Alarm threshold zero mark failed |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The $1.5 \times$ parameterized zero mark distance was exceeded. <br> The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal): <br> Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse). |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the clearance between zero marks (p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F33405 (N, A) | Encoder 3: Temperature in the encoder evaluation inadmissible |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature. |


|  | The fault threshold is $125^{\circ} \mathrm{C}$. <br> Alarm value (r2124, interpret decimal): <br> Measured board/module temperature in $0.1^{\circ} \mathrm{C}$. |
| :---: | :---: |
| Remedy: | Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| A33407 (F, N) | Encoder 3: Function limit reached |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The encoder has reached one of its function limits. A service is recommended. <br> Alarm value (r2124, interpret decimal): <br> 1 : Incremental signals <br> 3 : Absolute track <br> 4 : Code connection |
| Remedy: | Perform service. Replace the encoder if necessary. <br> Note: <br> The actual functional reserve of an encoder can be displayed via r4651. <br> See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve) |
| Reaction upon F: | NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33410 (F, N) | Encoder 3: Serial communications |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Serial communication protocol transfer error between the encoder and evaluation module. <br> Alarm value (r2124, interpret binary): <br> Bit 0: Alarm bit in the position protocol. <br> Bit 1: Incorrect quiescent level on the data line. <br> Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ). <br> Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. <br> Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. <br> Bit 5: Internal error in the serial driver: An illegal mode command was requested. <br> Bit 6: Timeout when cyclically reading. <br> Bit 8: Protocol is too long (e.g. > 64 bits). <br> Bit 9: Receive buffer overflow. <br> Bit 10: Frame error when reading twice. <br> Bit 11: Parity error. <br> Bit 12: Data line signal level error during the monoflop time. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33411 (F, N) | Encoder 3: Absolute encoder signals internal alarms |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin, additional information: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The absolute encoder fault word includes alarm bits that have been set. Alarm value (r2124, interpret binary): <br> yyyyxxxx hex: yyyy = supplementary information, $x x x x=$ fault cause yyyy $=0$ : <br> Bit 0: Frequency exceeded (speed too high). <br> Bit 1: Temperature exceeded. <br> Bit 2: Control reserve, lighting system exceeded. <br> Bit 3: Battery discharged. <br> Bit 4: Reference point passed. yyyy = 1: <br> Bit 0: Signal amplitude outside the control range. <br> Bit 1: Error multiturn interface <br> Bit 2: Internal data error (singleturn/multiturn not with single steps). <br> Bit 3: Error EEPROM interface. <br> Bit 4: SAR converter error. <br> Bit 5: Fault for the register data transfer. <br> Bit 6: Internal error identified at the error pin (nErr). <br> Bit 7: Temperature threshold exceeded or fallen below. |
| Remedy: | Replace encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33412 (F, N) | Encoder 3: Error bit set in the serial protocol |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The encoder sends a set error bit via the serial protocol. Alarm value (r2124, interpret binary): <br> Bit 0: Fault bit in the position protocol. <br> Bit 1: Alarm bit in the position protocol. |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace encoder. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A33414 (F, N) Encoder 3: Amplitude error track C or D (C^2 + D^2)
Message value: $\quad$ C track: \%1, D track: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude $\left(C^{\wedge} 2+D^{\wedge} 2\right)$ of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance band-
width.
Alarm value (r2124, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track D (16 bits with sign).
xxxx $=$ Signal level, track $C$ (16 bits with sign).

|  | The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$. <br> The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV . <br> A signal level of 500 mV peak value corresponds to the numerical value 5333 hex $=21299$ dec. <br> Note: <br> If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). |
| :--- | :--- |
| Remedy: check the Hall sensor box |  |


| A33415 (F, N) | Encoder 3: Amplitude alarm track A or B (A^2 + $\mathbf{B}^{\wedge} \mathbf{2}$ ) |
| :---: | :---: |
| Message value: | Amplitude: \%1, Angle: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 3 exceeds the permissible tolerance. <br> Alarm value (r2124, interpret hexadecimal): <br> yyyyxxxx hex: <br> yyyy = Angle <br> $x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign) <br> The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ). <br> The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder). <br> A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$. <br> The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative <br> zero crossover of track $B$. <br> Note for sensors modules for resolvers (e. g. SMC10): <br> The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $<1414 \mathrm{mV}$ ( 1.0 Vrms ). <br> A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$. <br> Note: <br> The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range. <br> - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections <br> - replace the encoder or encoder cable <br> - check the Sensor Module (e.g. contacts). <br> - if the coding disk is soiled or the lighting aged, replace the encoder. |
| Reaction upon F : | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A33418 (F, N) Encoder 3: Speed difference per sampling rate exceeded
Message value: \%1
Drive object:
Reaction:
Acknowledge: NONE
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
Cause: For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting
See also: p0492

| Remedy: | - check the tachometer feeder cable for interruptions. <br> - check the grounding of the tachometer shielding. <br> - if required, increase the setting of p0492. |
| :--- | :--- |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A33419 (F, N) | Encoder 3: Track A or B outside tolerance |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The amplitude/phase/offset correction for track A or B is at the limit. |
|  | Amplitude error correction: Amplitude B/Amplitude A $=0.78$... 1.27 |
|  | Phase: <84 degrees or >96 degrees |
|  | SMC20: Offset correction: $+/-140 \mathrm{mV}$ |
|  | SMC10: Offset correction: +/-650 mV |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | xxxx1: Minimum of the offset correction, track B |
|  | xxxx2: Maximum of the offset correction, track B |
|  | $x \mathrm{xx} 1 \mathrm{x}$ : Minimum of the offset correction, track A |
|  | xxx2x: Maximum of the offset correction, track $A$ |
|  | $x \times 1 \mathrm{xx}$ : Minimum of the amplitude correction, track B/A |
|  | xx 2 xx : Maximum of the amplitude correction, track B/A |
|  | x1xxx: Minimum of the phase error correction |
|  | x2xxx: Maximum of the phase error correction |
|  | 1 xxxx : Minimum of the cubic correction |
|  | $2 x x x x$ : Maximum of the cubic correction |
| Remedy: | - check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). <br> - check the plug connections (also the transition resistance). <br> - check the encoder signals. <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33421 (F, N) | Encoder 3: Coarse position error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. <br> Alarm value ( r 2124 , interpret decimal): <br> 3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse. |
| Remedy: | Re alarm value $=3$ : <br> - For a standard encoder with cable, contact the manufacturer where relevant. <br> - correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange $A$ with $A^{*}$ and $B$ with $B^{*}$ ) or, for a programmable encoder, check the zero offset of the position. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33422 (F, N) | Encoder 3: Pulses per revolution square-wave encoder outside tolerance bandwidth |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The measured zero mark distance does not correspond to the parameterized zero mark distance. <br> This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. <br> The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder). <br> Alarm value (r2124, interpret decimal): <br> accumulated differential pulses in encoder pulses. |
| Remedy: | - check that the encoder cables are routed in compliance with EMC. <br> - check the plug connections <br> . check the encoder type (encoder with equidistant zero marks). <br> - adapt the parameter for the distance between zero marks (p0424, p0425). <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33429 (F, N) | Encoder 3: Position difference, hall sensor/track C/D and A/B too large |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. <br> One period of track C/D corresponds to $360^{\circ}$ mechanical. <br> One period of the Hall signal corresponds to $360^{\circ}$ electrical. <br> The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. <br> Alarm value (r2124, interpret decimal): <br> For track C/D, the following applies: <br> Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). <br> For Hall signals, the following applies: <br> Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ). |
| Remedy: | - track C or D not connected. <br> - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. <br> - check that the encoder cables are routed in compliance with EMC. <br> - check the adjustment of the Hall sensor. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33431 (F, N) | Encoder 3: Deviation, position incremental/absolute too large |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When the zero pulse is passed, a deviation in the incremental position was detected. |
|  | For equidistant zero marks, the following applies: |
|  | - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have |
|  | n times the distance referred to the first zero mark. |
|  | For distance-coded zero marks, the following applies: |
|  | - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have |
|  | the expected distance to the first zero mark pair. |

\(\left.$$
\begin{array}{ll} & \begin{array}{l}\text { Alarm value (r2124, interpret decimal): } \\
\text { Deviation in quadrants (1 pulse }=4 \text { quadrants). } \\
\text { - check that the encoder cables are routed in compliance with EMC. }\end{array} \\
\text { Remedy: } & \begin{array}{l}\text { - check the plug connections } \\
\text { - replace the encoder or encoder cable } \\
\text { - Clean coding disk or remove strong magnetic fields. }\end{array}
$$ <br>
Reaction upon F: \& NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br>
Acknowl. upon F: <br>

IMMEDIATELY\end{array}\right]\)| Reaction upon N: | NONE |
| :--- | :--- |
| Acknowl. upon N: | NONE |


| A33442 (F, N) | Encoder 3: Battery voltage pre-alarm |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer <br> sufficient to check the multiturn information. |
| Remedy: | Replace battery. |
| Reaction upon F: | NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

A33443 (F, N) Encoder 3: Unipolar CD signal level outside specification
Message value: Fault cause: \%1 bin
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: $\quad$ The unipolar level (CP/CN or DP/DN) for encoder 3 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit $0=1$ : Either $C P$ or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.

|  | Note: |
| :---: | :---: |
|  | The signal level is not evaluated unless the following conditions are satisfied: <br> - Sensor Module properties available (r0459.31 = 1). <br> - Monitoring active (p0437.31 = 1). |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. <br> - check the plug connections and contacts of the encoder cable. <br> - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? <br> - replace the encoder cable. |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33460 (N) | Encoder 3: Analog sensor channel A failed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside measuring range set in p4673. <br> 3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4673). <br> Re alarm value = 3: <br> - check the range limit setting and increase it if necessary (p4676). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33461 (N) | Encoder 3: Analog sensor channel B failed |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The input voltage of the analog sensor is outside the permissible limits. <br> Alarm value (r2124, interpret decimal): <br> 1: Input voltage outside detectable measuring range. <br> 2: Input voltage outside the measuring range set in (p4675). <br> 3: The absolute value of the input voltage has exceeded the range limit (p4676). |
| Remedy: | Re alarm value $=1$ : <br> - check the output voltage of the analog sensor. <br> Re alarm value $=2$ : <br> - check the voltage setting for each encoder period (p4675). <br> Re alarm value $=3$ : <br> - check the range limit setting and increase it if necessary ( $p 4676$ ). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33462 (N) | Encoder 3: Analog sensor, no channel active |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Channel A and B are not activated for the analog sensor. |


| Remedy: | - activate channel A and/or channel B (p4670). <br> - check the encoder configuration (p0404.17). <br> See also: p4670 (Analog sensor configuration) |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33463 (N) | Encoder 3: Analog sensor position value exceeds limit value |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal): <br> 1: Position value from the LVDT sensor. <br> 2: Position value from the encoder characteristic. |
| Remedy: | Re alarm value $=1$ : <br> - Check the LVDT ratio (p4678). <br> - check the reference signal connection at track $B$. <br> Re alarm value $=2$ : <br> - check the coefficients of the characteristic (p4663 ... p4666). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33470 (F, N) | Encoder 3: Soiling detected |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7. |
| Remedy: | - check the plug connections <br> - replace the encoder or encoder cable |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F33500 (N, A) | Encoder 3: Position tracking traversing range exceeded |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions. <br> For p0411.0 $=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of p0421. For $p 0411.3=1$, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is $+/-$ p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number ( p 0408 ) and the fine resolution ( p 0419 ). |
| Remedy: | The fault should be resolved as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows (p0411.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and the absolute encoder adjusted. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| F33501 (N, A) | Encoder 3: Position tracking encoder position outside tolerance window |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder. Fault value (r0949, interpret decimal): <br> Deviation (difference) to the last encoder position in increments of the absolute value. <br> The sign designates the traversing direction. <br> Note: <br> The deviation (difference) found is also displayed in r0477. <br> See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference) |
| Remedy: | Reset the position tracking as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows ( $\mathrm{p} 0411.2=1$ ). <br> - de-select encoder commissioning ( $\mathrm{p} 0010=0$ ). <br> The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). <br> See also: p0010, p2507 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F33502 (N, A) }}$ | Encoder 3: Encoder with measuring gear, without valid signals |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The encoder with measuring gear no longer provides any valid signals. |
| Remedy: | It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F33503 (N, A) }}$ | Encoder 3: Position tracking cannot be reset |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The position tracking for the measuring gear cannot be reset. |
| Remedy: | The fault should be resolved as follows: <br> - select encoder commissioning (p0010 = 4). <br> - reset the position tracking as follows (p0411.2 = 1). <br> - de-select encoder commissioning (p0010 = 0). <br> The fault should then be acknowledged and the absolute encoder adjusted. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A33700 | Encoder 3: Effectivity test does not supply the expected value |
| :---: | :---: |
| Message value: | Fault cause: \%1 bin |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): <br> Bit $x=1$ : Effectivity test $x$ unsuccessful. |
| Remedy: | Replace encoder. |
| N33800 (F) | Encoder 3: Group signal |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | NONE |
| Cause: | The motor encoder has detected at least one fault. |
| Remedy: | Evaluate the other messages that are presently available. |
| Reaction upon F: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| F33801 (N, A) | Encoder 3 DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the electrical cabinet design and cable routing for EMC compliance <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F33802 (N, A) Encoder 3: Time slice overflow
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred in encoder 3.
Fault value (r0949, interpret hexadecimal): $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$ :
Time slice overflow of the fast (current controller clock cycle) time slice.
$x=A$ :
Time slice overflow of the average time slice.
$\mathrm{x}=\mathrm{C}$ :
Time slice overflow of the slow time slice.
$y x=3 E 7$ :
Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).

| Remedy: | Increase the current controller sampling time <br> Note: |
| :--- | :--- |
|  | For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with order number 6SL3055-0AA00-5xA3. |

## F33804 (N, A) Encoder 3: Checksum error

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
Acknowledge:
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the actual checksum.

| Remedy: | - carry out a POWER ON (power off/on). |
| :--- | :--- |
|  | - upgrade firmware to later version ( $>=\mathrm{V} 2.6 \mathrm{HF} 3,>=\mathrm{V} 4.3 \mathrm{SP} 2,>=\mathrm{V} 4.4$ ). |
|  | - check whether the permissible ambient temperature for the component is maintained. |
| - replace the Sensor Module. |  |

F33805 (N, A) Encoder 3: EPROM checksum error
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error
02: Too many blocks in the EEPROM.
Remedy: Replace the module.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

| F33806 (N, A) | Encoder 3: Initialization error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | PULSE INHIBIT |
| Cause: | The encoder was not successfully initialized. |
|  | Fault value (r0949, interpret hexadecimal): |
|  | Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in |
|  | encoder pulses/4). |
|  | Bit 2: Mid-voltage matching for track A unsuccessful. |
|  | Bit 3: Mid-voltage matching for track B unsuccessful. |
|  | Bit 4: Mid-voltage matching for acceleration input unsuccessful. |
|  | Bit 5: Mid-voltage matching for track safety A unsuccessful. |
|  | Bit 6: Mid-voltage matching for track safety B unsuccessful. |
|  | Bit 7: Mid-voltage matching for track C unsuccessful. |

Bit 8: Mid-voltage matching for track $D$ unsuccessful.
Bit 9: Mid-voltage matching for track R unsuccessful.
Bit 10: The difference in mid-voltages between $A$ and $B$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 11: The difference in mid-voltages between $C$ and $D$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 12: The difference in mid-voltages between safety $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great (>0.5 V)
Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 15: The standard deviation of the calculated mid-voltages is too great (>0.3 V)
Bit 16: Internal fault - fault when reading a register (CAFE)
Bit 17: Internal fault - fault when writing a register (CAFE)
Bit 18: Internal fault: No mid-voltage matching available
Bit 19: Internal error - ADC access error.
Bit 20: Internal error - no zero crossover found.
Bit 28: Error while initializing the EnDat 2.2 measuring unit.
Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
Note:
Bit 0, 1: Up to 6SL3055-0AA00-5*A0
Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher
Remedy:
Acknowledge fault.
If the fault cannot be acknowledged:
Bits 2 ... 9: Check encoder power supply.
Bits 2 ... 14: Check the corresponding cable.
Bit 15 with no other bits: Check track R, check settings in p0404.
Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
Bit 29 ... 31: Replace the defective measuring unit.
Reaction upon N :
NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F33811 (N, A) Encoder 3: Encoder serial number changed
Message value:
Drive object:
Reaction:
Acknowledge:
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Cause:

## Remedy:

Reaction upon N : OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
Acknowl. upon N
The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).

- The encoder was replaced.
Note:
With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset ( $\mathrm{p} 2507=1$ ).
Proceed as follows to hide serial number monitoring:
- set the following serial numbers for the corresponding Encoder Data Set: p0441=FF, p0442 = 0, p0443 = 0, p0444
$=0, \mathrm{p} 0445=0$.
Mechanically adjust the encoder. Accept the new serial number with p0440 = 1 .
Reaction upon A: NONE
Acknowl. upon A: NONE

F33812 (N, A) Encoder 3: Requested cycle or RX-/TX timing not supported
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.

|  | Fault value (r0949, interpret decimal): |
| :--- | :--- |
|  | O: Application cycle is not supported. |
|  | 1: DRIVE-CLiQ cycle is not supported. |
|  | 2: Distance between RX and TX instants in time too low. |
|  | 3: TX instant in time too early. |


| Reaction upon A : <br> Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| F33835 (N, A) | Encoder 3 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism. <br> Fault cause: $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33836 (N, A) | Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F33837 (N, A) | Encoder 3 DRIVE-CLiQ: Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. |


|  | $66 \text { (= } 42 \text { hex): }$ |
| :---: | :---: |
|  | Send error: The telegram buffer memory contains an error. |
|  | 67 (= 43 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\mathrm{F} 33845 \text { (N, A) }}$ | Encoder 3 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault cause: |
|  | 11 (= 0B hex): |
|  | Synchronization error during alternating cyclic data transfer. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F33850 (N, A) | Encoder 3: Encoder evaluation, internal software error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred in the Sensor Module of encoder 3. |
|  | Fault value (r0949, interpret decimal): |
|  | 1: Background time slice is blocked. |
|  | 2: Checksum over the code memory is not OK. |
|  | 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. |
|  | 11000 ... 11499: Descriptive data from EEPROM incorrect. |
|  | 11500 ... 11899: Calibration data from EEPROM incorrect. |
|  | 11900 ... 11999: Configuration data from EEPROM incorrect. |
|  | 12000 ... 12008: Communication with AD converter faulted. |
|  | 16000: DRIVE-CLiQ encoder initialization application error. |
|  | 16001: DRIVE-CLiQ encoder initialization ALU error. |
|  | 16002: DRIVE-CLiQ encoder HISI / SISI initialization error. |
|  | 16003: DRIVE-CLiQ encoder safety initialization error. |
|  | 16004: DRIVE-CLiQ encoder internal system error. |
| Remedy: | - replace the Sensor Module. |
|  | - if required, upgrade the firmware in the Sensor Module. |
|  |  |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |



|  | Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| :---: | :---: |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33875 (N, A) | Encoder 3 DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: $9 \text { (= } 09 \text { hex): }$ <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F33885 (N, A) }}$ | Encoder 3 DRIVE-CLiQ (CU): Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. The nodes do not send and receive in synchronism. <br> Fault cause: $26 \text { (= 1A hex): }$ <br> Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. $98 \text { (= } 62 \text { hex): }$ <br> Error at the transition to cyclic operation. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. <br> - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |


| Reaction upon N : | NONE |
| :---: | :---: |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33886 (N, A) | Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F33887 (N, A) | Encoder 3 DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded. <br> Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $96 \text { (= } 60 \text { hex): }$ <br> Response received too late during runtime measurement. $97 \text { (= } 61 \text { hex): }$ <br> Time taken to exchange characteristic data too long. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |


| F33895 (N, A) | Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. <br> Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33896 (N, A) | Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F33899 (N, A) | Encoder 3: Unknown fault |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Fault value (r0949, interpret decimal): <br> Fault number. <br> Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Sensor Module by an older firmware version (r0148). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A33902 (F, N) | Encoder 3: SPI-BUS error occurred |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal SPI bus. <br>  <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - replace the Sensor Module. <br> - if required, upgrade the firmware in the Sensor Module. |
| - contact the Hotline. |  |


| A33903 (F, N) | Encoder 3: I2C-BUS error occurred |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error when operating the internal I2C bus. <br>  <br>  <br>  <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| - replace the Sensor Module. |  |
| Remedy: | - if required, upgrade the firmware in the Sensor Module. |
| - contact the Hotline. |  |

## F33905 (N, A) Encoder 3: Parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 3 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
xxxx $=421$ :
For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
yyyy $=0$ :
No information available.
yyyy = 1:
The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$. yyyy = 2:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
yyyy = 3:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
yyyy = 4:
This component does not support SSI encoders $(\mathrm{p} 0404.9=1)$ without track A/B.

|  | yyyy = 5: |
| :--- | :--- |
|  | For SQW encoder, value in p4686 greater than in p0425. |
|  | yyyy = 6: |
|  | DRIVE-CLiQ encoder cannot be used with this firmware version. |
|  | yyyy = 7: |
|  | For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks. |
|  | yyyy = 8: |
|  | The motor pole pair width is not supported by the linear scale being used. |
|  | yyyy = 9: |
|  | The length of the position in the EnDat protocol may be a maximum of 32 bits. |
|  | yyyy $=10$ : |

## A33915 (F, N) Encoder 3: Configuration error

Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The configuration for encoder 3 is incorrect.
Alarm value (r2124, interpret decimal):
1:
Re-parameterization between fault/alarm is not permissible.
419:
When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.

| Remedy: | Re alarm value $=1$ : <br> No re-parameterization between fault/alarm. <br> Re alarm value $=419$ : <br> Reduce the fine resolution ( p 0419 ) or deactivate the monitoring ( p 0437.25 ), if the complete multiturn range is not required. |
| :---: | :---: |
| Reaction upon F: | NONE (IASC/DCBRAKE) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| $\overline{\text { F33916 (N, A) }}$ | Encoder 3: Parameterization fault |
| Message value: | Parameter: \%1, supplementary information: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A parameter of encoder 3 was detected as being incorrect. <br> It is possible that the parameterized encoder type does not match the connected encoder. <br> The parameter involved can be determined as follows: <br> - determine the parameter number using the fault value (r0949). <br> - determine the parameter index (p0187). <br> Fault value (r0949, interpret decimal): <br> Parameter number. <br> Note: <br> This fault is only output for encoders where r0404.10 $=1$ or r0404.11 $=1$. It corresponds to A 33905 with encoders where $\mathrm{r} 0404.10=0$ and $\mathrm{r} 0404.11=0$. |
| Remedy: | - check whether the connected encoder type matches the encoder that has been parameterized. <br> - correct the parameter specified by the fault value (r0949) and p0187. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A33920 (F, N) | Encoder 3: Temperature sensor fault |
| Message value: | Fault cause: \%1, channel number: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Fault cause: <br> 1 (= 01 hex): <br> Wire breakage or sensor not connected (KTY: R > 1630 Ohm). $2 \text { (= } 02 \text { hex): }$ <br> Measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm). <br> Additional values: <br> Only for internal Siemens troubleshooting. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ channel number, $x x=$ error cause |
| Remedy: | - check that the encoder cable is the correct type and is correctly connected. <br> - check the temperature sensor selection in p0600 to p0603. <br> - replace the Sensor Module (hardware defect or incorrect calibration data). |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A33930 (N) | Encoder 3: Data logger has saved data |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card. <br> The diagnostics data is saved in the following folder: <br> /USER/SINAMICS/DATA/SMTRC00.BIN <br> /USER/SINAMICS/DATA/SMTRC07.BIN <br> /USER/SINAMICS/DATA/SMTRCIDX.TXT <br> The following information is contained in the TXT file: <br> - Display of the last written BIN file. <br> - Number of write operations that are still possible (from 10000 downwards). <br> Note: <br> Only Siemens can evaluate the BIN files. |
| Remedy: | Not necessary. <br> The alarm disappears automatically. <br> The data logger is ready to record the next fault case. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A33940 (F, N) | Encoder 3: Spindle sensor S1 voltage incorrect |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The voltage of analog sensor S1 is outside the permissible range. Fault value (r0949, interpret decimal): <br> Signal level from sensor S1. <br> Note: <br> A signal level of 500 mV corresponds to the numerical value 500 dec . |
| Remedy: | - Check the clamped tool. <br> - Check the tolerance and if required, adapt (p5040). <br> - Check the thresholds and if required, adapt (p5041). <br> - Check analog sensor S1 and connections. <br> See also: p5040 (Spindle voltage threshold values tolerance), p5041 (Spindle voltage threshold values) |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F33950 | Encoder 3: Internal software error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ENCODER (OFF2) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret decimal): Information about the fault source. Only for internal Siemens troubleshooting. |
| Remedy: | - If necessary, upgrade the firmware in the Sensor Module to a later version. <br> - contact the Hotline. |


| A33999 (F, N) | Encoder 3: Unknown alarm |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A alarm has occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Alarm value (r2124, interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Sensor Module by an older firmware version (r0148). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F34207 (N, A) | VSM: Temperature fault threshold exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668). <br> Note: <br> This fault can only be initiated if the temperature evaluation was activated (p3665 = 2 for a KTY sensor or p3665 = 1 for a PTC sensor). <br> Fault value (r0949, interpret decimal): <br> yyxxxx dec: <br> yy: Component number of the component which detected the fault. |
| Remedy: | - check the fan. <br> - reduce the power. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A34211 (F, N) | VSM: Temperature alarm threshold exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667). <br> Alarm value (r2124, interpret decimal): <br> The hundred-thousands and ten-thousands position specifies the component number of the VSM which detected the fault. |
| Remedy: | - check the fan. <br> - reduce the power. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) Vector: NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| N34800 (F) | VSM: Group signal |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | NONE |
| Cause: | The Voltage Sensing Module (VSM) has detected at least one fault. |
| Remedy: | Evaluates other actual messages. |
| Reaction upon F: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| F34801 | VSM DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM). <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ connection. <br> - replace the Voltage Sensing Module (VSM). |
| F34801 | VSM DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM). <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ connection. <br> - replace the component involved. |
| F34802 | VSM: Time slice overflow |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A time slice overflow has occurred on the Voltage Sensing Module. |
| Remedy: | Replace the Voltage Sensing Module. |


| F34803 | VSM: Memory test |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | An error has occurred during the memory test on the Voltage Sensing Module. |
| Remedy: | - check whether the permissible ambient temperature for the Voltage Sensing Module is being maintained. <br> - replace the Voltage Sensing Module. |
| F34804 (N, A) | VSM: CRC |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM). |
| Remedy: | - check whether the permissible ambient temperature for the component is maintained. <br> - replace the Voltage Sensing Module. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F34805 | VSM: EPROM checksum error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Internal parameter data is corrupted. <br> Fault value (r0949, interpret hexadecimal): <br> 01: EEPROM access error. <br> 02: Too many blocks in the EEPROM. |
| Remedy: | - check whether the permissible ambient temperature for the component is maintained. <br> - replace the Voltage Sensing Module (VSM). |
| F34806 | VSM: Initialization |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | For the Voltage Sensing Module (VSM), a fault has occurred while initializing. |
| Remedy: | Replace the Voltage Sensing Module. |

A34807 (F, N) VSM: Sequence control time monitoring
Message value: -

| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :--- | :--- |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error, timeout in the sequence control on the Voltage Sensing Module (VSM). |
| Remedy: | Replace the Voltage Sensing Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| Reaction upon N : Acknowl. upon N : | NONE NONE |
| :---: | :---: |
| F34820 | VSM DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. $7 \text { (= } 07 \text { hex): }$ <br> A SYNC telegram is expected - but the received telegram is not a SYNC telegram. $8 \text { (= } 08 \text { hex): }$ <br> No SYNC telegram is expected - but the received telegram is one. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F34835 | VSM DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved. The nodes do not send and receive in synchronism. <br> Fault cause: $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. <br> - replace the component involved. |


| F34836 | VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. |
| F34837 | VSM DRIVE-CLiQ: Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| F34845 | VSM DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM). <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |


| F34850 | VSM: Internal software error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error in the Voltage Sensing Module (VSM) has occurred. Fault value (r0949, interpret decimal): <br> 1: Background time slice is blocked. <br> 2: Checksum over the code memory is not OK. |
| Remedy: | - replace the Voltage Sensing Module (VSM). <br> - if required, upgrade the firmware in the Voltage Sensing Module. <br> - contact the Hotline. |
| F34851 | VSM DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM 31 , TM 41 , VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit. <br> The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |
| F34860 | VSM DRIVE-CLiQ (CU): Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM 31 , TM 41 , VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). <br> 2 (= 02 hex): <br> Telegram is shorter than specified in the length byte or in the receive list. <br> 3 (= 03 hex): <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the power unit in the telegram and in the receive list do not match. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. |


|  | 16 (= 10 hex): |
| :---: | :---: |
|  | The receive telegram is too early. |
|  | 17 (= 11 hex): |
|  | CRC error and the receive telegram is too early. |
|  | 18 (= 12 hex): |
|  | The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. |
|  | 19 (= 13 hex): |
|  | The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex): |
|  | The length of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 21 (= 15 hex): |
|  | The type of the receive telegram does not match the receive list and the receive telegram is too early. |
|  | 22 (= 16 hex): |
|  | The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early. |
|  | 25 (= 19 hex): |
|  | The error bit in the receive telegram is set and the receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F34875 | VSM DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. |
|  | Fault cause: |
|  | 9 (= 09 hex): |
|  | The power supply voltage for the components has failed. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |
| F34885 | VSM DRIVE-CLiQ (CU): Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit. |
|  | The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 26 (= 1A hex): |
|  | Sign-of-life bit in the receive telegram not set and the receive telegram is too early. |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |


|  | $64 \text { (= } 40 \text { hex): }$ |
| :---: | :---: |
|  | Timeout in the telegram send list. |
|  | 98 (= 62 hex): |
|  | Error at the transition to cyclic operation. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. |
|  | - carry out a POWER ON. |
|  | - replace the component involved. |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F34886 | VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit. |
|  | Data were not able to be sent. |
|  | Fault cause: |
|  | 65 (= 41 hex): |
|  | Telegram type does not match send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | Carry out a POWER ON. |
| F34887 | VSM DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded. |
|  | Fault cause: |
|  | 32 (= 20 hex): |
|  | Error in the telegram header. |
|  | 35 (= 23 hex): |
|  | Receive error: The telegram buffer memory contains an error. |
|  | 66 (= 42 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | 67 (= 43 hex): |
|  | Send error: The telegram buffer memory contains an error. |
|  | 96 (= 60 hex): |
|  | Response received too late during runtime measurement. |
|  | 97 (= 61 hex): |
|  | Time taken to exchange characteristic data too long. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |


| F34895 | VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: NONE (OFF1, OFF2) <br> Vector: NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit. <br> Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F34896 | VSM DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): <br> Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |


| F34899 (N, A) | VSM: Unknown fault |
| :--- | :--- |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware. |
|  | This can occur if the firmware on this component is more recent than the firmware on the Control Unit. |
|  | Fault value (r0949, interpret decimal): |
|  | Fault number. |
|  | Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
|  | - replace the firmware on the Voltage Sensing Module by an older firmware version (r0158). <br> - upgrade the firmware on the Control Unit (r0018). |
| Remedy: |  |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A34903 (F, N) | VSM: I2C bus error occurred |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred when accessing the module-internal I2C bus. |
| Remedy: | Replace the Voltage Sensing Module (VSM). |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Vector: NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A34903 (F, N) | VSM: I2C bus error occurred |
| :--- | :--- |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred when accessing the module-internal I2C bus. |
| Remedy: | Replace the Terminal Module. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br> Vector: NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A34904 (F, N) | VSM: EEPROM |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred accessing the non-volatile memory on the Terminal Module. |
| Remedy: | Replace the Voltage Sensing Module (VSM). |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br>  <br> Vector: NONE |
| Reanowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A34905 (F, N) | VSM: Parameter access |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM). |
| Remedy: | - check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018). <br>  <br>  <br>  <br>  <br>  <br> - if required, replace the Voltage Sensing Module. <br> Note: <br> The firmware versions that match each other are in the readme.txt file on the memory card. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| Vector: NONE |  |


| A34920 (F, N) | VSM: Temperature sensor fault |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm). <br> 2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm). |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
| Vector: NONE |  |


| A34999 (F, N) | VSM: Unknown alarm |
| :--- | :--- |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A fault occurred on the Voltage Sensing Module (VSM) an alarm has occurred that cannot be interpreted by the Con- <br> trol Unit firmware. |
|  | This can occur if the firmware on this component is more recent than the firmware on the Control Unit. |
|  | Alarm value (r2124, interpret decimal): <br> Alarm number. |
|  | Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Voltage Sensing Module by an older firmware version (r0148). |
| - upgrade the firmware on the Control Unit (r0018). |  |


| F35000 | TM54F: Sampling time invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | POWER ON |
| Cause: | The set sampling time is invalid. <br> - not a multiple integer of the DP clock cycle. <br> Fault value (r0949, floating point): <br> Recommended valid sampling time. |
| Remedy: | Adapt the sampling time (e.g. set the recommended valid sampling time). See also: p10000 (SI sampling time) |
| F35001 | TM54F: Parameter value invalid |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The entered value is invalid. Fault value (r0949, interpret decimal): Parameter number with the invalid value. |
| Remedy: | Correct the parameter value. |
| F35002 | TM54F: Commissioning not possible |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The commissioning mode activation was rejected because the pulses had not been suppressed for at least one drive belonging to the TM54F. <br> Fault value (r0949, interpret decimal): <br> Drive object number of the first drive found without pulse suppression. |
| Remedy: | Set pulse suppression for the drive specified in the fault value. |
| F35003 | TM54F: Acknowledgement on the Control Unit is required |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault on the Terminal Module 54F (TM54) was acknowledged using the safe acknowledgement (P10006). An additional acknowledgement is also required at the Control Unit. |
| Remedy: | Acknowledge the fault at the Control Unit. |
| F35011 | TM54F: Drive object number assignment illegal |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A drive object number was assigned twice. Each drive object number can be assigned only once. |
| Remedy: | Correct the assignment of the drive object numbers. See also: p10010 (SI drive object assignment) |


| A35012 | TM54F: Test stop active |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The test stop for the Terminal Module 54F (TM54F) is presently being executed. Note: <br> Fault F35013 is output if a fault occurs during the test stop. |
| Remedy: | The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop. |
| F35013 | TM54F: Test stop error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | An error was detected when carrying out the test stop on the TM54F. Failsafe control signals (failsafe values) are transferred to the safety functions. |
|  | Fault value (r0949, interpret hexadecimal): aaaabbcc hex: |
|  | aaaa: DO or F-DI (dependent on test step cc), where the expected state was not assumed (bit $0=F-D I O$ or F-DO |
|  | bb: Fault cause |
|  | $\mathrm{bb}=01$ hex: Internal fault. |
|  | $\mathrm{bb}=02$ hex: Fault when comparing the switching signals of the two channels (F-DI or DI). $\mathrm{bb}=03$ hex: Internal fault. |
|  | $\mathrm{bb}=04$ hex: Fault when comparing the switching signals of the two channels (Diag-DO). |
|  | cc: State of the test stop in which the fault has occurred. |
|  | The display format is as follows: |
|  | Slave fault state: (test actions)(test actions) \| corresponding step for the master: (test actions)(test actions) | Description |
|  | 00 hex: (L1+OFF)(L2+ON) \| OA hex: ( ) () | Synchronization / switching step |
|  | OA hex: (L1+OFF)(L2+ON) \| 15 hex: ( )( ) | Wait step |
|  | 15 hex: (L1+OFF)(L2+OFF) \| 20 hex : () () | 1.) F-DI $0 . . .4$ check for 0 V 2.$)$ Switch step to new level |
|  | 20 hex: (L1+OFF)(L2+OFF)\| 2B hex: () ()| Wait step |
|  | 2B hex: (L1+ON)(L2+ON)\| 36 hex: ( )( )| 1.) F-DI $5 . . .9$ check for 0 V 2.$)$ Switch step to new level |
|  | 36 hex: (DO OFF)()\|41 hex: (DO OFF)()| Wait step / switching step |
|  | 41 hex: (DO OFF)( ) \| 4C hex: (DO OFF)( ) W Wait step |
|  | 4C hex: (DO ON () ) 57 hex: (DO ON)( ) \| 1.) Check diag-DO or diag-DI 2.) Switch step to new level |
|  | 57 hex: (DO ON)( )\| 62 hex: (DO ON)( ) | Wait step |
|  | 62 hex: (DO OFF)( )\| 6D hex: (DO ON)( ) | 1.) Check diag-DO or diag-DI 2.) Switch step |
|  | 6D hex: (DO OFF)( ) 78 hex: (DO ON)( ) \| Wait step |
|  | 78 hex: (DO ON)( ) \| 83 hex: (DO OFF)( ) | 1.) Check diag-DO or diag-DI 2.) Switch step |
|  | 83 hex: (DO ON)( )\| 8 E hex: ( DO OFF)() | Wait step |
|  | 8E hex: (DO OFF)()\| 99 hex: (DO OFF)( )| 1.) Check diag-DO or diag-DI 2.) Switch step |
|  | 99 hex: (DO OFF)( ) \| A 4 hex: (DO OFF)( ) | Wait step |
|  | A4 hex: (DO OFF)()\|AF hex: (DO OFF)( )| Check Diag-DO or Diag-DI |
|  | AF hex: ( DO original state)()\| C5 hex: (DO original state)() | Switching step |
|  | C5 hex: End of test |
|  | The expected states to be checked depend on the parameterized test mode ( p 10047 ). |
|  | The following expected states are tested in the test steps when testing the F-DOs: |
|  | The display format is as follows: |
|  | Test step (SL MA): Expected Diag-DO mode 1 \| Expected DI 20 ... 23 mode 2 | Expected DI 20 ... 23 mode 3 (4C hex 57 hex): Diag-DO $=0 \mathrm{~V}\|\mathrm{DI}=24 \mathrm{~V}\| \mathrm{DI}=24 \mathrm{~V}$ |
|  | ( 62 hex 6D hex): Diag-DO $=0 \mathrm{~V}\|\mathrm{DI}=0 \mathrm{~V}\| \mathrm{DI}=0 \mathrm{~V}$ |
|  | ( 78 hex 83 hex): Diag-DO $=0 \mathrm{~V}\|\mathrm{DI}=0 \vee\| \mathrm{DI}=24 \mathrm{~V}$ |
|  | ( 8 E hex 99 hex): $\mathrm{Diag}-\mathrm{DO}=24 \mathrm{~V}\|\mathrm{DI}=0 \mathrm{~V}\| \mathrm{DI}=24 \mathrm{~V}$ |
|  | (A4 hex AF hex): Diag-DO $=0 \mathrm{~V}\|\mathrm{DI}=24 \mathrm{~V}\| \mathrm{DI}=24 \mathrm{~V}$ |

```
Example:
If an error with fault causes bb = 02 hex or 04 hex occurs in a test stop step, the test action for the fault took place
in the previous test stop step. The expected states are tested in the next step.
Master signals fault value 0001_04AF and slave signals fault value 0001_04A4.
aaaa = 1 --> F-DO 0 is involved.
bb}=04\mathrm{ hex --> the test of the Diag-DO was unsuccessful.
cc= The expected states were tested in test stop step AF on the master and A4 on the slave.
The expected state Diag-DO = 0 V was checked in the table, i.e. Diag-DO was at 0 V instead of the expected 24 V.
The associated test action took place in the previous step (99 hex DO OFF, A4 hex DO OFF). Both DOs were
switched to OFF.
Remedy: \(\quad\) Check the wiring of the F-Dls and F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
For fault value = CCCCCCCC hex, DDDDDDDD hex, EEEEEEEE hex the following applies:
These fault values occur together with fault F35152. In this case, all parameters for the test stop should be checked. You should also check whether the firmware version of the TM54F matches that of the Control Unit.
You also need to check p10001, p10017, p10046 and p10047.
A POWER ON must be carried out after correcting the parameters.
```

| A35014 | TM54F: Test stop required |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | - after powering up the drive, a test stop has still not been carried out. <br> - a new test stop is required after commissioning. <br> - the time to carry out the forced checking procedure (test stop) has expired (p10003). |
| Remedy: | Initiate test stop (BI: p10007). |
| A35015 | TM54F: Motor Module replaced or configuration inconsistent |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Cyclic communication of at least one drive with the Terminal Module 54F (TM54F) is not active. |
|  | Possible causes: |
|  | - at least one Motor Module was replaced (e.g. hardware was replaced). |
|  | - The parameterization of theTM54F (p10010) is inconsistent with the number of axes, which have drive-based motion monitoring functions activated with TM54F. |
|  | - For the signaled axis, it is not permissible that the "Safe motion monitoring without selection" (p9601.5 = 1) is parameterized. |
|  | - And activated drive has no communication via DRIVE-CLiQ. <br> - p10010 of the TM54F master module is not the same as p10010 of the TM54F slave module (in this case, F35051 is also output). |
|  | - In p10010 of the TM54F master or slave module, the number of a drive object was entered twice or several times. Fault value (r0949, interpret binary): |
|  | yyyy yyyy xxxx xxxx bin |
|  | xxxx xxxx bin: inconsistent configuration |
|  | Bit $0=1$ : No communication with drive 1 . |
|  |  |
|  | Bit $5=1$ : No communication with drive 6. |
|  | yyyy yyyy bin: Motor Module replaced or a DRIVE-CLiQ cable of a Motor Module not inserted. |
|  | Bit $8=1$ : Motor Module from drive 1 was replaced or does not communicate. |
|  |  |
|  | Bit $13=1$ : Motor Module from drive 6 was replaced or does not communicate. |
|  | Note: |
|  | When this fault is present, none of the drives listed in the fault value, which have drive-based motion monitoring functions operating with TM54F, are enabled. |


|  | For fault value $=0$ : <br> The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled. <br> See also: p10010 (SI drive object assignment) |
| :---: | :---: |
| Remedy: | For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601). <br> Check as to whether F35051 is also output and remove the cause. <br> Check whether each drive object number is listed only once in the indices of p10010. <br> Note: <br> If a drive was deactivated and activated without first having established the DRIVE-CLiQ connection, then this alarm is also output. <br> When replacing a Motor Module, carry out the following steps: <br> - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). <br> - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> For SINUMERIK, the following applies: <br> HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.). <br> The precise procedure is given in the following document: <br> SINUMERIK Function Manual Safety Integrated |
| A35016 | TM54F: Net data communication with drive not established |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active. <br> This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established. <br> If a drive does not communicate with the TM54F, then none of the drives parameterized in p10010 are enabled. |
| Remedy: | When replacing a Motor Module, carry out the following steps: <br> - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). <br> - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> The following always applies: <br> - for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601). <br> - check whether fault F35150 is present and if required, remove the cause of the fault. <br> See also: r10055 (SI TM54F communication status drive-specific) |
| F35040 | TM54F: 24 V undervoltage |
| Message value: | Fault cause: \%1 bin |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Power supply undervoltage at connection X524. <br> Bit $1=1$ : Power supply undervoltage at connection X514. |
| Remedy: | - check the 24 V DC power supply for the TM54F. <br> - carry out safe acknowledgement (p10006). |


| F35043 | TM54F: 24 V overvoltage |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VĒCTOR_IAC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | For the 24 V power supply for the Terminal Module 54 F (TM54F) an overvoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. |
| Remedy: | - check the 24 V DC power supply for the TM54F. <br> - carry out safe acknowledgement (p10006). |
| F35051 | TM54F: Defect in a monitoring channel |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The Terminal Module 54F (TM54F) has identified an error in the crosswise data comparison between the two control channels. |
|  | As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. |
|  | Fault value (r0949, interpret hexadecimal): aaaabbcc hex |
|  | aaaa: A value greater than zero indicates an internal software error. |
|  | bb: Data to be cross-compared that resulted in the error. |
|  | $\mathrm{bb}=00$ hex: p10000 |
|  | $\mathrm{bb}=01$ hex: p10001 |
|  | bb $=02$ hex: p10002 |
|  | bb $=03$ hex: p10006 |
|  | $\mathrm{bb}=04$ hex: p10008 |
|  | $\mathrm{bb}=05$ hex: p10010 |
|  | $\mathrm{bb}=06$ hex: p10011 |
|  | $\mathrm{bb}=07$ hex: p10020 |
|  | $\mathrm{bb}=08$ hex: p10021 |
|  | $\mathrm{bb}=09$ hex: p10022 |
|  | $\mathrm{bb}=0 \mathrm{~A}$ hex: p10023 |
|  | bb $=0 \mathrm{~B}$ hex: p10024 |
|  | bb $=0 \mathrm{C}$ hex: p10025 |
|  | $\mathrm{bb}=0 \mathrm{D}$ hex: p10026 |
|  | $\mathrm{bb}=0 \mathrm{E}$ hex: p10027 |
|  | $\mathrm{bb}=0 \mathrm{~F}$ hex: p10028 |
|  | $\mathrm{bb}=10$ hex: p10036 |
|  | $\mathrm{bb}=11$ hex: p10037 |
|  | $\mathrm{bb}=12$ hex: p10038 |
|  | $\mathrm{bb}=13$ hex: p 10039 |
|  | $\mathrm{bb}=14$ hex: p10040 |
|  | $\mathrm{bb}=15$ hex: p10041 |
|  | bb = 16 hex: p10042 |
|  | $\mathrm{bb}=17$ hex: p10043 |
|  | $\mathrm{bb}=18$ hex: p10044 |
|  | $\mathrm{bb}=19$ hex: p10045 |
|  | $\mathrm{bb}=1 \mathrm{~A}$ hex: p 10046 |
|  | $b b=1 B$ hex: Test stop internal p10041 |
|  | $b b=1 C$ hex: Test stop internal p10046 |
|  | $\mathrm{bb}=1 \mathrm{D} . . .1 \mathrm{1F}$ hex: internal test stop p10017, p10002, p10000 |
|  | $\mathrm{bb}=20 \ldots$ 2A hex: internal test stop p10040, p10046, p10047 |
|  | $\mathrm{bb}=2 \mathrm{~B}$ hex: Test stop initialization |
|  | $\mathrm{bb}=2 \mathrm{C}$ hex: Input/output calculation initialization |
|  | $\mathrm{bb}=2 \mathrm{D} . . .45$ hex: internal data for the output calculation p10042 ... p10045 |
|  | $\mathrm{bb}=46 \ldots 63$ hex: data for the calculation of drive group 1 |
|  | $\mathrm{bb}=64 \ldots 81$ hex: data for the calculation of drive group 2 |
|  | $\mathrm{bb}=82 \ldots 9 \mathrm{~h}$ hex: data for the calculation of drive group 3 |


| Remedy: | $\mathrm{bb}=\mathrm{A} 0 \ldots$... BD hex: data for the calculation of the drive group 4 <br> $\mathrm{bb}=\mathrm{BE}$ hex: debounce time of the fail-safe inputs (F-DI) p10017 <br> $\mathrm{bb}=\mathrm{BF}$ hex: debounce time of the single-channel inputs (DI) p10017 <br> $\mathrm{bb}=\mathrm{C} 0$ hex: debounce time of the Diag inputs p10017 <br> $\mathrm{bb}=\mathrm{C} 1$ hex: Internal data to p 10030 SDI positive <br> $b b=C 2$ hex: Internal data to p10031 SDI negative <br> $\mathrm{bb}=\mathrm{C} 3 \ldots$... CA hex: new data to calculate the drive groups p10030 ... p10031 <br> bb = CB hex: p10032 <br> bb = CC hex: p10033 <br> bb = CD hex: p10009 <br> bb = CE ... CF drive group 1 SLP parameter p10032 ... p10033 <br> bb = D0 ... D1 drive group 2 SLP parameter p10032 ... p10033 <br> bb = D2 ... D3 drive group 3 SLP parameter p10032 ... p10033 <br> bb = D4 ... D5 drive group 4 SLP parameter p10032 ... p10033 <br> $\mathrm{bb}=\mathrm{D} 6$ initialize retraction <br> bb = D7 retraction, SLP <br> cc : Index of the data to be cross-compared that resulted in the error. <br> Carry out the following steps on the TM54F: <br> - activate the safety commissioning mode (p0010 = 95). <br> - start the copy function for SI parameters (p9700 = 57 hex). <br> - acknowledge complete data change (p9701 = AC hex). <br> - exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ). <br> - save all parameters (p0977 = 1). <br> - carry out safe acknowledgement (p10006). <br> For an internal software error (aaaa > 0): <br> - For TM54F, upgrade the firmware to a later version. <br> - contact the Hotline. <br> - replace the TM54F. |
| :---: | :---: |
| F35052 (A) <br> Message value: <br> Drive object: | TM54F: Internal hardware error ```%1 A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC``` |
| Reaction: <br> Acknowledge: <br> Cause: | NONE <br> IMMEDIATELY (POWER ON) <br> An internal software/hardware error has been detected on the Terminal Module 54F (TM54F). <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: <br> Reaction upon A: <br> Acknowl. upon A: | - check the electrical cabinet design and cable routing for EMC compliance <br> - upgrade TM54F firmware to more recent version. <br> - contact the Hotline. <br> - replace the TM54F. <br> NONE <br> NONE |
| F35053 <br> Message value: <br> Drive object: | TM54F: Temperature fault threshold exceeded \%1 <br> A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: <br> Acknowledge: <br> Cause: | NONE <br> IMMEDIATELY <br> The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this fault. <br> As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | - allow the TM54F to cool down. <br> - carry out safe acknowledgement (p10006). |


| A35054 | TM54F: Temperature alarm threshold exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this alarm. |
| Remedy: | - allow the TM54F to cool down. <br> - carry out safe acknowledgement (p10006). |
| A35075 (F) | TM54F: Error during internal communication |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An internal communications error has occurred in the Terminal Module 54F (TM54F). This alarm is also output: <br> - If TM54F exists and no safety function of the TM54F has yet been parameterized. <br> - If p10000 of the TM54F master is not set the same as p10000 of the TM54F slave. <br> Alarm value (r2124, interpret decimal): <br> Only for internal Siemens diagnostics. |
| Remedy: | If TM54F exists and no safety function has yet been parameterized: <br> - Not necessary. The alarm disappears automatically after a safety function of the TM54F has been parameterized. <br> For p10010 from the TM54F master not equal to the TM54F slave: <br> - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). <br> - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> For internal communication errors: <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - upgrade the software on the TM54F. <br> - contact the Hotline. <br> - replace the TM54F. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| A35080 (F) | TM54F: Checksum error safety parameters |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Checksum error for functional SI parameters. <br> Bit 1 = 1: Checksum error for SI parameters for component assignment. |
| Remedy: | - check the safety-relevant parameters and if required, correct. <br> - set the reference checksum to the actual checksum. <br> - acknowledge the hardware replacement. <br> - carry out a POWER ON (power off/on). <br> - carry out an acceptance test. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| A35081 (F) | TM54F: Static (steady state) 1 signal at the F-Dl for safety-relevant acknowledgement |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds. <br> If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces. |
| Remedy: | Set the fail-safe digital input (F-DI) to a logical 0 signal (p10006). Note: <br> F-DI: Failsafe Digital Input |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| F35150 | TM54F: Communication error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor Module was detected. <br> Fault value (r0949, interpret hexadecimal): <br> Only for internal Siemens troubleshooting. |
| Remedy: | When replacing a Motor Module, carry out the following steps: <br> - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). <br> - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). <br> - save all parameters (p0977 = 1). <br> - carry out a POWER ON (power off/on) for all components. <br> The following always applies: <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - upgrade the software on the TM54F. <br> - contact the Hotline. <br> - replace the TM54F. |
| F35151 | TM54F: Discrepancy error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The safety input terminals or output terminals show a different state longer than that parameterized in p10002. Fault value (r0949, interpret hexadecimal): <br> yyyyxxxx hex <br> xxxx: The safety-relevant input terminals F-DI indicate a discrepancy. <br> Bit 0: Discrepancy for F-DI 0 <br> Bit 9: Discrepancy for F-DI 9 <br> yyyy: The safety-relevant output terminals F-DO indicate a discrepancy. <br> Bit 0: Discrepancy for F-DO 0 <br> Bit 3: Discrepancy for F-DO 3 <br> Note: <br> If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs. |


|  | The following options are available to analyze all of the discrepancy errors: <br> - Using the commissioning software, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here. <br> - Compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy. |
| :---: | :---: |
| Remedy: | Check the wiring of the corresponding F-DI (contact problems). <br> Discrepancy errors in the fail-safe digital inputs (F-DI) can only be completely acknowledged if, after the cause of the error was resolved, safe acknowledgement was carried out (see p10006). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state internally. <br> For cyclic switching operations at the fail-safe digital inputs (F-DI), it may be necessary to adapt the discrepancy time to the switching frequency: <br> If the period of a cyclic switching pulse has the order of magnitude of double the value of p10002, then the following formulas must be checked. <br> p10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time) <br> p10002 >= p10000 (discrepancy time must be no less than p10000) <br> p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply) <br> td: possible actual discrepancy time (in ms) that can occur with a switching operation. This must correspond to at <br> least 1 SI sampling cycle (see p10000). <br> tp : period for a switching operation in ms . <br> For cyclic switching operations and when debounce ( p 10017 ) is active, the discrepancy time is directly specified by the debounce time. <br> If the period of a cyclic switching pulse has the order of magnitude of twice the debounce time, then the following formulas should be checked. $\begin{aligned} & \mathrm{p} 10002<\mathrm{p} 10017+1 \mathrm{~ms}-\mathrm{td} \\ & \mathrm{p} 10002>\mathrm{td} \\ & \text { p10002 >= p10000 } \\ & \text { Example: } \end{aligned}$ <br> If the SI sampling cycle is 12 ms and the switching frequency is $110 \mathrm{~ms}(\mathrm{p} 10017=0)$, the maximum discrepancy time which can be set is as follows: <br> $\mathrm{p} 10002<=110 / 2 \mathrm{~ms}-12 \mathrm{~ms}=43 \mathrm{~ms}$--> rounded-off, the following is obtained p10002<=36 ms <br> Since the discrepancy time can only be accepted as a whole SI sampling time, the value will need to be rounded up or down to a whole SI sampling time value if it is not an exact integer multiple of an SI sampling time. <br> F-DI: Failsafe Digital Input <br> F-DO: Failsafe Digital Output |
| F35152 | TM54F: Internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | An internal software error has occurred in the Terminal Module 54F (TM54F). <br> The fail-safe digital inputs and digital outputs (F-DI, F-DO) on the TM54F have been set to the safe state. <br> Fault value (r0949, interpret decimal): <br> Only for internal Siemens troubleshooting. <br> Note: <br> F-DI: Failsafe Digital Input <br> F-DO: Failsafe Digital Output |
| Remedy: | Check that the firmware version of the TM54F matches the Control Unit's firmware version. <br> The automatic firmware update must be activated in the project. <br> Note: <br> This signal will also appear, for example, in conjunction with fault F35013. In this case you should check all the parameters for the test stop on the TM54F (p10001, p10003, p10007, p10041, p10046, p10047). In this case, a POWER ON is required after the parameters have been corrected. |


| A35200 (F, N) | TM: Calibration data |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, |
|  | TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error was detected in the calibration data of the Terminal Module. |


|  | Alarm value (r2124, interpret decimal): <br> ddcbaa dec: $d d=$ component number, $c=A I / A O, b=$ fault type, $a=$ number <br> $c=0$ : analog input (AI, Analog Input) <br> $c=1$ : analog output (AO, Analog Output) <br> $b=0$ : No calibration data available. <br> $b=1$ : Offset too high (> 100 mV ). |
| :---: | :---: |
| Remedy: | - carry out a POWER ON (power off/on) for all components. <br> - Replace the component if necessary. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F35207 (N, A) | TM: Temperature fault/alarm threshold channel 0 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[0], p4103[0]). <br> or <br> - fault threshold exceeded (p4102[1]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0] = 1, 4), the following applies: <br> - if r 4101 [0] > 1650 ohms, the temperature $\mathrm{r} 4105[0]=250{ }^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[0]<=1650$ ohms, the temperature $\mathrm{r} 4105[0]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[0] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[1] - hysteresis (5 K, for TM150, can be set using p4118[0]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| $\overline{\text { F35208 (N, A) }}$ | TM: Temperature fault/alarm threshold channel 1 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[2], p4103[1]). <br> or <br> - fault threshold exceeded (p4102[3]). |


|  | Note: |
| :---: | :---: |
|  | For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies: - if r 4101 [1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250{ }^{\circ} \mathrm{C}$ |
|  | - if $\mathrm{r} 4101[1]<=1650$ ohms, the temperature $\mathrm{r} 4105[1]=-50^{\circ} \mathrm{C}$ |
|  | The temperature actual value is displayed via connector output r4105[1] and can be interconnected. |
|  | Notice: $\quad$ le |
|  | This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the |
|  | Fault value (r0949, interpret decimal): |
|  | Temperature actual value at the time of initiation [ $0.1^{\circ} \mathrm{C}$ ]. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[3] - hysteresis ( 5 K , for TM150, can be set using p4118[1]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F35209 (N, A) | TM: Temperature fault/alarm threshold channel 2 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | $\begin{aligned} & \text { Infeed: OFF2 (NONE, OFF1) } \\ & \text { Servo: OFF2 (NONE, OFF1, OFF3) } \\ & \text { Vector: OFF2 (NONE, OFF1, OFF3) } \end{aligned}$ |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[4], p4103[2]). <br> or <br> - fault threshold exceeded (p4102[5]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies: <br> - if r 4101 [2] > 1650 ohms, the temperature $\mathrm{r} 4105[2]=250^{\circ} \mathrm{C}$ <br> - if r4101[2] <= 1650 ohms, the temperature r4105[2] $=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[2] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation [ $0.1^{\circ} \mathrm{C}$ ]. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[5] - hysteresis ( 5 K , for TM150, can be set using p4118[2]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| $\overline{\mathrm{F} 35210 \text { (N, A) }}$ | TM: Temperature fault/alarm threshold channel 3 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | ```Infeed: OFF2 (NONE, OFF1) Servo: OFF2 (NONE, OFF1, OFF3) Vector: OFF2 (NONE, OFF1, OFF3)``` |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[6], p4103[3]). <br> or <br> - fault threshold exceeded (p4102[7]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies: <br> - if r 4101 [3] > 1650 ohms, the temperature $\mathrm{r} 4105[3]=250^{\circ} \mathrm{C}$ <br> - if $r 4101[3]<=1650$ ohms, the temperature $r 4105[3]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[3] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[7] - hysteresis (5 K, for TM150, can be set using p4118[3]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A35211 (F, N) | TM: Temperature alarm threshold channel 0 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[0]) has exceeded the threshold value to initiate this alarm (p4102[0]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0] = 1, 4), the following applies: <br> - if r 4101 [0] > 1650 ohms, the temperature $\mathrm{r} 4105[0]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[0]<=1650$ ohms, the temperature $\mathrm{r} 4105[0]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[0] - hysteresis ( 5 K ); for TM150, can be set using p4118[0]. <br> See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35212 (F, N) | TM: Temperature alarm threshold channel 1 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[1]) has exceeded the threshold value to initiate this alarm ( $\mathrm{p} 4102[2 \mathrm{]}$ ). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies: <br> -if r4101[1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[1]$ < $=1650$ ohms, the temperature $\mathrm{r} 4105[1]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K); for TM150, can be set using p4118[1]. <br> See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35213 (F, N) | TM: Temperature alarm threshold channel 2 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[2]) has exceeded the threshold value to initiate this alarm ( $\mathrm{p} 4102[4]$ ). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] $=1,4$ ), the following applies: <br> -if r4101[2]> 1650 ohms, the temperature $\mathrm{r} 4105[2]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[2]<=1650$ ohms, the temperature $\mathrm{r} 4105[2]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[4] - hysteresis ( 5 K ); for TM150, can be set using p4118[2]. <br> See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35214 (F, N) | TM: Temperature alarm threshold channel 3 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[3]) has exceeded the threshold value to initiate this alarm ( $\mathrm{p} 4102[6]$ ). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] $=1,4$ ), the following applies: <br> -if r4101[3] > 1650 ohms, the temperature $\mathrm{r} 4105[3]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[3]<=1650$ ohms, the temperature $\mathrm{r} 4105[3]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |

\(\left.$$
\begin{array}{ll}\text { Remedy: } & \begin{array}{l}\text { - allow the temperature sensor to cool down to below p4102[6] - hysteresis ( } 5 \mathrm{~K} \text { ); for TM150, can be set using } \\
\text { p4118[3]. }\end{array}
$$ <br>

\& See also: p4102\end{array}\right\}\)| Reaction upon F: | NONE |
| :--- | :--- |

F35220 (N, A) TM: Frequency limit reached for signal output

Message value:

| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :---: | :---: |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The signals output from the Terminal Module 41 (TM41) for tracks $A / B$ have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint. <br> Note: <br> If with SIMOTION the TM41 has been configured as the technology project, this fault is also output in response to short-circuited A/B signals in X520. |
| Remedy: | SIMOTION ( $p 4400=0$ ) operating mode: <br> - enter a lower speed setpoint (p1155). <br> - reduce the encoder pulse number (p0408). <br> - check track $A / B$ for short-circuits. <br> SINAMICS (p4400 = 1) operating mode: <br> - the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at P4420 <br> - the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |

F35221 (N, A) TM: Setpoint - actual value deviation, outside the tolerance range

Message value: -

| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| :---: | :---: |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The deviation between the setpoint and the output signals (track $A / B$ ) exceeds the tolerance of $+/-3 \%$. The deviation between the internal and external measured value is too high. |
| Remedy: | - reduce the basic clock cycle (p0110, p0111). <br> - replace the module. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |


| A35222 (F, N) | TM: Encoder pulse number not permissible |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The encoder pulse number entered does not match the permissible pulse number from a hardware perspective. <br> Fault value (r0949, interpret decimal): <br> 1: Encoder pulse number is too high. <br> 2: Encoder pulse number is too low. <br> 4: Encoder pulse number is less than the zero mark offset ( p 4426 ). |
| Remedy: | - enter the encoder pulse number in the permissible range ( p 0408 ). <br> - if necessary, replace TM41 SAC with TM41 DAC. <br> Note: <br> TM41 SAC: order no. $=6$ SL3055-0AA00-3PA0 <br> TM41 DAC: order no. $=6$ SL3055-0AA00-3PA1 <br> The following applies for TM41 SAC: <br> - minimum/maximum value for p0408: 1000/8192 <br> The following applies for TM41 DAC: <br> - minimum/maximum value for p0408: 1000/16384 <br> See also: p0408 |
| Reaction upon F: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35223 (F, N) | TM: Zero mark offset not permissible |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, |
|  | VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The entered zero mark offset is not permissible. |
|  | Fault value (r0949, interpret decimal): |
|  | 1: Zero mark offset is too high. |
|  | See also: p4426 (TM41 encoder emulation pulses for zero mark) |
| Remedy: | Enter the zero mark offset in the permissible range (p4426). |
| Reaction upon F: | Infeed: OFF1 (NONE, OFF2) |
|  | Servo: OFF1 (NONE, OFF2, OFF3) |
| Acknowl. upon F: | Vector: OFF1 (NONE, OFF2, OFF3) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

A35224 (N) $\quad$ TM: Zero mark synchronization interrupted
Message value: \%
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The zero mark synchronization with the encoder to be emulated was interrupted.
Alarm value (r2124, interpret decimal):
0 : The encoder is not in the ready state (e.g. encoder parked)
1: An absolute encoder was connected.
2: The encoder r0479[0...2] interconnected via connector input: p4420 is already communicating with another TM41
(precisely one TM41 can be interconnected with a specific r0479[0...2]).
3: The BICO interconnection to Terminal Module 41 (TM41) was removed ( CI : $\mathrm{p} 4420=0$ signal).

|  | 4: The encoder interconnected via connector input: p4420 has carried out an EDS changeover or has been re- <br> parameterized (this operation is not supported, set p4420 to 0 and interconnect again). <br> 5: The maximum number of revolutions of the encoder was exceeded. |
| :--- | :--- |
|  | 6: Encoder in an invalid state. |
| 7: Encoder in an invalid state. |  |
|  | 8: Encoder in an invalid state (the encoder is not parameterized or the interconnected signal source is not in the cyclic |
| state). |  |
|  | Not necessary. |
| - if the encoder changes into the ready state, then a synchronization operation that was previously interrupted is car- |  |
| ried out again. |  |


| A35228 (F, N) | TM: Sampling time p4099[3] invalid |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The sampling time set in p4099[3] for incremental encoder emulation in Terminal Module 41 (TM41) does not correspond to the valid value. To resolve the problem, correct the setting of $p 4099[3]$. The system automatically performs a warm restart/sub-boot. <br> Alarm value (r2124, interpret decimal): <br> 1: <br> A sampling time $p 4099[3]<125 \mu$ s was set. <br> 2: <br> An integer multiple of the DRIVE-CLiQ clock cycle was not entered in p4099[3]. <br> 3: <br> - In the SINAMICS mode ( $\mathrm{p} 4400=1$ ), the sampling time in $p 4099[3]$ is not an integer multiple of the current controller sampling time ( $\mathrm{p} 0115[0]$ ) of the drive object, which supplies the position setpoint ( Cl : p 4420 ) for the incremental encoder simulation. <br> - The encoder interconnected via connector input p4420 (e.g. an SSI encoder) is sampled in a slower clock cycle. |
| Remedy: | - if necessary, cancel the BICO interconnection via connector input p4420. <br> - check the rules specified under cause for setting the sampling time in p4099[3]. <br> - if necessary, set the BICO interconnection via connector input p4420 again. <br> Note: <br> Every time the BICO interconnection is reset via connector input p4420, the sampling time is checked in p4099[3] and, where necessary, this message is output. |
| Reaction upon F: | OFF1 (NONE, OFF2) |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F35229 | TM: Time slice de-activated |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: NONE <br> Vector: NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The required value of a cycle time in $p 4099[0 \ldots 2]$ is invalid. The corresponding time slice was not activated. <br> Alarm value (r2124, interpret decimal): <br> 0: Digital input/outputs (p4099[0]) <br> 1: Analog inputs (p4099[1]) <br> 3: Encoder emulation (p4099[3]). <br> 4: Encoder emulation speed setpoint (p4099[3]). <br> 5: Encoder emulation speed setpoint (p4099[3]). <br> 6: Internal sequence control of the TM41 (internal error) |
| Remedy: | Change the sampling time according to the alarm value. <br> Note: <br> The sampling time p4099[0] may not be zero. |
| F35230 | TM: Hardware fault |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: NONE <br> Vector: NONE |
| Acknowledge: | POWER ON |
| Cause: | The Terminal Module (TM) used has signaled internal errors. |

Signals from this module may not be evaluated because they are very likely to be incorrect.
Remedy: If required, replace the Terminal Module.

| A35231 | TM: Master control by PLC missing |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The "master control by PLC" signal was missing in operation. <br> - interconnection of the binector input for "master control by PLC" is incorrect (p0854). <br> - the higher-level control has withdrawn the "master control by PLC" signal. <br> - data transfer via the fieldbus (master/drive) was interrupted. <br> Note: <br> This alarm is only decisive in the "SIMOTION" operating mode ( $p 4400=0$ ). <br> In the "SINAMICS" operating mode ( $\mathrm{p} 4400=1$ ), the setpoints at p4420 are evaluated independent of binector input p0854. |
| Remedy: | - check the interconnection of the binector input for "master control by PLC" (p0854). <br> - check the "master control by PLC" signal and, if required, switch in. <br> - check the data transfer via the fieldbus (master/drive). <br> - check the setting of parameter p2037. |


| A35232 | TM41: Zero mark no longer synchronous POWER ON required |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | SINAMICS (p4400 = 1) operating mode: <br> When parameterizing a Terminal Module 41 (TM41) or when operating a TM41 Module, an operating state was reached which required a POWER ON. <br> These include: <br> - changing the encoder pulse number (p0408). <br> - changing the fine resolution ( p 0418 ). <br> - withdrawing the DRIVE-CLiQ cable without first de-activating TM41 via p0105. <br> If this alarm was output, then the zero mark of the TM41 can no longer be output in synchronism to that of the encoder interconnected at p 4420 . <br> SIMOTION ( $p 4400=0$ ) operating mode: <br> A previously set zero mark position (p4426) no longer matches encoder position (r0479) due to the change in the pulse number (p0408). |
| Remedy: | The incremental position at output X520 of TM41 can still be evaluated independent of the zero mark. A POWER ON must be carried out if the TM41 zero mark is evaluated. |
| F35233 | DRIVE-CLiQ component does not support function |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A function requested by the Control Unit is not supported by a DRIVE-CLiQ component. <br> Fault value (r0949, interpret decimal): <br> 1: Terminal Module 31 does not support the function "Timer for temperature evaluation" (X522.7/8, p4103>0.000). <br> 4: The improved actual value resolution is not supported ( p 4401.4 ). <br> 5: The improved setpoint resolution is not supported ( p 4401.5 ). <br> 6: The residual value handling in the setpoint channel cannot be deactivated ( $p 4401.6$ ). <br> 7: Output frequencies greater than 750 kHz cannot be activated (p4401.7). |
| Remedy: | For fault value $=1$ : <br> - De-activate timer for temperature evaluation (X522.7/8) (p4103 = 0.000). <br> - Use Terminal Module 31 and the relevant firmware version to enable the "Timer for temperature evaluation" function (Order No. 6SL3055-0AA00-3AA1, firmware version 2.6 and higher). <br> See also: p4103, p4401 (TM41 encoder emulation mode) |


| F35400 (N, A) | TM: Temperature fault/alarm threshold channel 4 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[8], p4103[4]). <br> or <br> - fault threshold exceeded (p4102[9]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies: <br> - if r4101[4] > 1650 ohms, the temperature $\mathrm{r} 4105[4]=250^{\circ} \mathrm{C}$ <br> - if r 4101 [4] <= 1650 ohms, the temperature $\mathrm{r} 4105[4]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output $\mathrm{r} 4105[4]$ and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[9] - hysteresis (p4118[4]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F35401 (N, A) | TM: Temperature fault/alarm threshold channel 5 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) Servo: OFF2 (NONE, OFF1, OFF3) Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[10], p4103[5]). <br> or <br> - fault threshold exceeded (p4102[11]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies: <br> - if r4101[5] > 1650 ohms, the temperature $\mathrm{r} 4105[5]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[5]<=1650$ ohms, the temperature $\mathrm{r} 4105[5]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[5] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[11] - hysteresis (p4118[5]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| Reaction upon A : <br> Acknowl. upon A: | NONE NONE |
| :---: | :---: |
| F35402 (N, A) | TM: Temperature fault/alarm threshold channel 6 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[12], p4103[6]). <br> or <br> - fault threshold exceeded (p4102[13]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies: <br> - if r 4101 [6] > 1650 ohms, the temperature $\mathrm{r} 4105[6]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[6]<=1650$ ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[6] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right.$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[13] - hysteresis (p4118[6]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F35403 (N, A) | TM: Temperature fault/alarm threshold channel 7 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[14], p4103[7]). <br> or <br> - fault threshold exceeded (p4102[15]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies: <br> - if r 4101 [7] > 1650 ohms, the temperature $\mathrm{r} 4105[7]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[7]<=1650$ ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[7] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[15] - hysteresis (p4118[7]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |


| Reaction upon N : | NONE |
| :---: | :---: |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F35404 (N, A) | TM: Temperature fault/alarm threshold channel 8 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[16], p4103[8]). <br> or <br> - fault threshold exceeded (p4102[17]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies: <br> - if r 4101 [8] > 1650 ohms, the temperature $\mathrm{r} 4105[8]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[8]<=1650$ ohms, the temperature $\mathrm{r} 4105[8]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output $\mathrm{r} 4105[8]$ and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[17] - hysteresis (p4118[8]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| F35405 (N, A) | TM: Temperature fault/alarm threshold channel 9 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[18], p4103[9]). <br> or <br> - fault threshold exceeded (p4102[19]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies: <br> - if r 4101 [9] > 1650 ohms, the temperature $\mathrm{r} 4105[9]=250{ }^{\circ} \mathrm{C}$ <br> - if r 4101 [9] <= 1650 ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[9] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |


| Remedy: | - allow the temperature sensor to cool down to below p4102[19] - hysteresis (p4118[9]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| :---: | :---: |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F35406 ( $\mathrm{N}, \mathrm{A}$ ) | TM: Temperature fault/alarm threshold channel 10 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[20], p4103[10]). <br> or <br> - fault threshold exceeded (p4102[21]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies: <br> - if r 4101 [10] > 1650 ohms, the temperature $\mathrm{r} 4105[10]=250{ }^{\circ} \mathrm{C}$ <br> - if $r 4101[10]<=1650$ ohms, the temperature $r 4105[10]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output r4105[10] and can be interconnected. <br> Notice: <br> This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. <br> Fault value (r0949, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[21] - hysteresis (p4118[10]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A : | NONE |
| Acknowl. upon A: | NONE |
| F35407 (N, A) | TM: Temperature fault/alarm threshold channel 11 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (NONE, OFF1, OFF3) <br> Vector: OFF2 (NONE, OFF1, OFF3) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled: <br> - alarm threshold has been exceeded longer than that set in the timer (p4102[22], p4103[11]). or <br> - fault threshold exceeded (p4102[23]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $\mathrm{p} 4100[11$ ] = 1, 4), the following applies: <br> - if $\mathrm{r} 4101[11]>1650$ ohms, the temperature $\mathrm{r} 4105[11]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[11]<=1650$ ohms, the temperature $\mathrm{r} 4105[11]=-50^{\circ} \mathrm{C}$ <br> The temperature actual value is displayed via connector output $\mathrm{r} 4105[11$ ] and can be interconnected. |


|  | Notice: |
| :---: | :---: |
|  | This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module. |
|  | Fault value (r0949, interpret decimal): |
|  | Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | - allow the temperature sensor to cool down to below p4102[23] - hysteresis (p4118[11]). <br> - if required, set the fault response to NONE (p2100, p2101). <br> See also: p4102 |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A35410 (F, N) | TM: Temperature alarm threshold channel 4 exceeded |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature ( $\mathrm{r} 4105[4]$ ) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[8]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies: <br> - if $\mathrm{r} 4101[4]>1650$ ohms, the temperature $\mathrm{r} 4105[4]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[4]<=1650$ ohms, the temperature $\mathrm{r} 4105[4]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | Allow the temperature sensor to cool down to below p4102[8] - hysteresis (p4118[4]). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35411 (F, N) | TM: Temperature alarm threshold channel 5 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r4105[5]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[10]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies: <br> - if r 4101 [5] > 1650 ohms, the temperature $\mathrm{r} 4105[5]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[5]<=1650$ ohms, the temperature $\mathrm{r} 4105[5]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | Allow the temperature sensor to cool down to below p4102[10] - hysteresis (p4118[5]). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35412 (F, N) | TM: Temperature alarm threshold channel 6 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r4105[6]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[12]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies: <br> - if r 4101 [6] > 1650 ohms, the temperature $\mathrm{r} 4105[6]=250^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[6]<=1650$ ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | Allow the temperature sensor to cool down to below p4102[12] - hysteresis (p4118[6]). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35413 (F, N) | TM: Temperature alarm threshold channel 7 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r4105[7]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[14]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies: <br> - if r 4101 [7] > 1650 ohms, the temperature $\mathrm{r} 4105[7]=250{ }^{\circ} \mathrm{C}$ <br> - if $\mathrm{r} 4101[7]<=1650$ ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| Remedy: | Allow the temperature sensor to cool down to below p4102[14] - hysteresis (p4118[7]). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A35414 (F, N) TM: Temperature alarm threshold channel 8 exceeded
Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC,
VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The temperature (r4105[8]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
exceeded the threshold value to initiate this alarm (p4102[16]).
Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies:
- if r4101[8] > 1650 ohms, the temperature r4105[8] = $250^{\circ} \mathrm{C}$
- if r 4101 [8] <= 1650 ohms, the temperature $\mathrm{r} 4105[8]=-50^{\circ} \mathrm{C}$
Alarm value (r2124, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.

| Remedy: | Allow the temperature sensor to cool down to below p4102[16] - hysteresis (p4118[8]). |
| :--- | :--- |
| Reaction upon F: | NONE |
| Rest102 |  |


| A35415 (F, N) | TM: Temperature alarm threshold channel 9 exceeded |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r4105[9]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[18]). <br> Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies: <br> - if r 4101 [9] > 1650 ohms, the temperature $\mathrm{r} 4105[9]=250^{\circ} \mathrm{C}$ <br> - if r 4101 [ 9$]<=1650$ ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right.$ ]. |
| Remedy: | Allow the temperature sensor to cool down to below p4102[18] - hysteresis (p4118[9]). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

A35416 (F, N) TM: Temperature alarm threshold channel 10 exceeded
Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC,
VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The temperature (r4105[10]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
exceeded the threshold value to initiate this alarm (p4102[20]).
Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies:
- if $\mathrm{r} 4101[10]>1650$ ohms, the temperature $\mathrm{r} 4105[10]=250^{\circ} \mathrm{C}$
- if r 4101 [10] <= 1650 ohms, the temperature $\mathrm{r} 4105[10]=-50^{\circ} \mathrm{C}$
Alarm value (r2124, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy: Allow the temperature sensor to cool down to below p4102[20] - hysteresis (p4118[10]).
See also: p4102
Reaction upon F: NONE
Acknowl. upon F: IMMEDIATELY (POWER ON)
Reaction upon N: NONE
Acknowl. upon N: NONE

| A35417 (F,N) | TM: Temperature alarm threshold channel 11 exceeded |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, |
|  | VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature (r4105[11]) measured using the temperature sensing of the Terminal Module 150 (TM150) has <br> exceeded the threshold value to initiate this alarm (p4102[22]). |


|  | Note: <br> For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[11] = 1, 4), the following applies: <br> - if $\mathrm{r} 4101[11]>1650$ ohms, the temperature $\mathrm{r} 4105[11]=250^{\circ} \mathrm{C}$ <br> - if $r 4101[11]<=1650$ ohms, the temperature $r 4105[11]=-50^{\circ} \mathrm{C}$ <br> Alarm value (r2124, interpret decimal): <br> Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$. |
| :---: | :---: |
| Remedy: | Allow the temperature sensor to cool down to below p4102[22] - hysteresis ( $\mathrm{p} 4118[11]$ ). See also: p4102 |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| N35800 (F) | TM: Group signal |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | NONE |
| Cause: | The Terminal Module has detected at least one fault. |
| Remedy: | Evaluates other actual messages. |
| Reaction upon F: | Infeed: OFF2 (NONE, OFF1) <br> Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) <br> Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY |
| A35801 (F, N) | TM DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. <br> Fault cause: $10 \text { (= 0A hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ connection. <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35802 (F, N) | TM: Time slice overflow |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A time slice overflow has occurred on the Terminal Module. |
| Remedy: | Replace the Terminal Module. |


| Reaction upon $\mathrm{F}:$ | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{F}:$ | IMMEDIATELY (POWER ON) |
| Reaction upon $\mathrm{N}:$ | NONE |
| Acknowl. upon N: | NONE |


| A35803 (F, N) | TM: Memory test |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred during the memory test on the Terminal Module. |
| Remedy: | - check whether the permissible ambient temperature for the Terminal Module is being maintained. <br> - replace the Terminal Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F35804 (N, A) | TM: CRC |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A checksum error has occurred when reading-out the program memory on the Terminal Module. Fault value (r0949, interpret hexadecimal): <br> Difference between the checksum at POWER ON and the actual checksum. |
| Remedy: | - check whether the permissible ambient temperature for the component is maintained. <br> - replace the Terminal Module. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon $A$ : | NONE |
| Acknowl. upon A: | NONE |
| A35805 (F, N) | TM: EPROM checksum error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Internal parameter data is corrupted. <br> Alarm value (r2124, interpret hexadecimal): <br> 01: EEPROM access error. <br> 02: Too many blocks in the EEPROM. |
| Remedy: | - check whether the permissible ambient temperature for the component is maintained. <br> - replace the Terminal Module 31 (TM31). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35807 (F, N) | TM: Sequence control time monitoring |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM 41 , TM $54 F$ FMA, TM54F_SL, VECTOR, VECTOR_A $\bar{C}$, VECTOR_IAC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Error, timeout, sequence control on the Terminal Module. |
| Remedy: | Replace the Terminal Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F35820 | TM DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). <br> 2 (= 02 hex): <br> Telegram is shorter than specified in the length byte or in the receive list. <br> 3 (= 03 hex): <br> Telegram is longer than specified in the length byte or in the receive list. <br> 4 (= 04 hex): <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. $7 \text { (= } 07 \text { hex): }$ <br> A SYNC telegram is expected - but the received telegram is not a SYNC telegram. $8 \text { (= } 08 \text { hex): }$ <br> No SYNC telegram is expected - but the received telegram is one. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F35835 | TM DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_A $\bar{C}$, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. The nodes do not send and receive in synchronism. |



| F35845 | TM DRIVE-CLiQ: Cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the encoder involved. <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F35850 | TM: Internal software error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF1 (NONE, OFF2) <br> Servo: OFF1 (NONE, OFF2, OFF3) <br> Vector: OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error in the Terminal Module (TM) has occurred. Fault value (r0949, interpret decimal): <br> 1: Background time slice is blocked. <br> 2: Checksum over the code memory is not OK. |
| Remedy: | - replace the Terminal Module (TM). <br> - if required, upgrade the firmware in the Terminal Module. <br> - contact the Hotline. |
| F35851 | TM DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM 31 , TM 41 , TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: <br> 10 (= OA hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |
| F35860 | TM DRIVE-CLiQ (CU): Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM 41 , TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). |



| F35885 | TM DRIVE-CLiQ (CU): Cyclic data transfer error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM $31, T \bar{M} 41, T M 54 F$ MA, $\bar{T} M 54 F$ SL, VECTOR, $\overline{\text { VECTOR AC, }}$, VECTOR I AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. The nodes do not send and receive in synchronism. <br> Fault cause: <br> 26 ( $=1$ A hex): <br> Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. $98 \text { (= } 62 \text { hex): }$ <br> Error at the transition to cyclic operation. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the power supply voltage of the component involved. <br> - carry out a POWER ON. <br> - replace the component involved. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F35886 | TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. Data were not able to be sent. <br> Fault cause: <br> 65 (= 41 hex): <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | Carry out a POWER ON. |
| F35887 | TM DRIVE-CLiQ (CU): Component fault |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded. <br> Fault cause: <br> 32 (= 20 hex): <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. |


|  | $96 \text { (= } 60 \text { hex): }$ |
| :---: | :---: |
|  | Response received too late during runtime measurement. |
|  | 97 (= 61 hex): |
|  | Time taken to exchange characteristic data too long. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - if required, use another DRIVE-CLiQ socket (p9904). |
|  | - replace the component involved. |
| F35895 | TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. Fault cause: |
|  | 11 (= 0B hex): |
|  | Synchronization error during alternating cyclic data transfer. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: |  |
|  | See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F35896 | TM DRIVE-CLiQ (CU): Inconsistent component properties |
| Message value: | Component number: \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
|  | Vector: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): <br> Component number. |
| Remedy: | - carry out a POWER ON. |
|  | - when a component is replaced, the same component type and if possible the same firmware version should be used. |
|  | - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). |
| F35899 ( $\mathrm{N}, \mathrm{A}$ ) | TM: Unknown fault |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
|  | Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. |


|  | Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. <br> - replace the firmware on the Terminal Module by an older firmware version (r0158). <br> Remedy: |
| :--- | :--- |
| - upgrade the firmware on the Control Unit (rO018). |  |
| Reaction upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A35903 (F, N) | TM: I2C bus error occurred |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, |
|  | TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred while accessing the internal I2C bus of the Terminal Module. |
| Remedy: | Replace the Terminal Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35904 (F, N) | TM: EEPROM |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, |
|  | TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An error has occurred accessing the non-volatile memory on the Terminal Module. |
| Remedy: | Replace the Terminal Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35905 (F, N) | TM: Parameter access |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, |
| Reaction: | TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | The Control Unit attempted to write an illegal parameter value to the Terminal Module. |
| Remedy: | - check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit <br> (r0018). |
|  | -if required, replace the Terminal Module. |
|  | Note: |
| Reaction upon $\mathrm{F}:$ | The firmware versions that match each other are in the readme.txt file on the memory card. |
| Acknowl. upon $\mathrm{F}:$ | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35906 (F, N) | TM: 24 V power supply missing |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 24 V power supply for the digital outputs is missing. Alarm value (r2124, interpret hexadecimal): <br> 01: TM17 24 V power supply for DI/DO 0 ... 7 missing. <br> 02: TM17 24 V power supply for DI/DO 8 ... 15 missing. <br> 04: TM15 24 V power supply for DI/DO 0 ... 7 (X520) missing. <br> 08: TM15 24 V power supply for DI/DO 8 ... 15 (X521) missing. <br> 10: TM15 24 V power supply for DI/DO $16 \ldots 23$ (X522) missing. <br> 20: TM41 24 V power supply for DI/DO 0 ... 3 missing. |
| Remedy: | Check the terminals for the power supply voltage (L1+, L2+, L3+, M or +24 V_1 for TM41). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35907 (F, N) | TM: Hardware initialization error |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The Terminal Module was not successfully initialized. Alarm value (r2124, interpret hexadecimal): <br> 01: TM17 or TM41 - incorrect configuration request. <br> 02: TM17 or TM41 - programming not successful. <br> 04: TM17 or TM41 - invalid time stamp |
| Remedy: | Carry out a POWER ON. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

## A35910 (F, N) TM: Module overtemperature

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM- 41 , VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The temperature in the module has exceeded the highest permissible limit.
Remedy: - reduce the ambient temperature.

- replace the Terminal Module.

Reaction upon F: NONE
Acknowl. upon F: IMMEDIATELY (POWER ON)
Reaction upon N: NONE
Acknowl. upon N: NONE

| $\overline{\text { A35911 (F, N) }}$ | TM: Clock synchronous operation sign-of-life missing |
| :---: | :---: |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation. <br> When the alarm is output, the module outputs are reset up to the next synchronization. |
| Remedy: | - check the physical bus configuration (terminating resistor, shielding, etc.). <br> - check the interconnection of the master sign-of-life (r4201 via p0915). <br> - check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9). <br> - check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short). |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35920 (F, N) | TM: Error temperature sensor channel 0 |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| A35921 (F, N) | TM: Error temperature sensor channel 1 |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| Reaction upon $\mathrm{N}:$ | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{N}:$ | NONE |


| A35922 (F, N) | TM: Error temperature sensor channel 2 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: $\mathrm{R}>1630$ Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35923 (F, N) | TM: Error temperature sensor channel 3 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR I AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: $\mathrm{R}>1630$ Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35924 (F, N) | TM: Error temperature sensor channel 4 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_IAC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: R < 603 Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |


| Reaction upon F: | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{F}:$ | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35925 (F, N) | TM: Error temperature sensor channel 5 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: R < 603 Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35926 (F, N) | TM: Error temperature sensor channel 6 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35927 (F, N) | TM: Error temperature sensor channel 7 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |


| Reaction upon $F:$ | NONE |
| :--- | :--- |
| Acknowl. upon $F:$ | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35928 (F, N) | TM: Error temperature sensor channel 8 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: R < 603 Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35929 (F, N) | TM: Error temperature sensor channel 9 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| A35930 (F, N) | TM: Error temperature sensor channel 10 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |


| Reaction upon F: | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{F}:$ | IMMEDIATELY (POWER ON) |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |


| A35931 (F, N) | TM: Error temperature sensor channel 11 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When evaluating the temperature sensor, an error occurred. <br> Alarm value (r2124, interpret decimal): <br> 1: Wire breakage or sensor not connected. <br> KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm <br> 2: Measured resistance too low. <br> PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: R < 603 Ohm |
| Remedy: | - make sure that the sensor is connected correctly. <br> - replace the sensor. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F35950 | TM: Internal software error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. |
|  | Fault value (r0949, interpret decimal): <br> Information about the fault source. <br>  <br>  <br> Only for internal Siemens troubleshooting. <br> - If necessary, upgrade the firmware in the Terminal Module to a later version. <br> Remedy: |


| A35999 (F, N) | TM: Unknown alarm |
| :---: | :---: |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the Terminal Module by an older firmware version (r0158). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) <br> Vector: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |


| F36207 (N, A) | Hub: Overtemperature component |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The temperature on the DRIVE-CLiQ Hub Module has exceeded the fault threshold. <br> Fault value (r0949, interpret decimal): <br> Actual temperature in $0.1^{\circ} \mathrm{C}$ resolution. |
| Remedy: | - Check ambient temperature at component installation location. <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| A36211 (F, N) | Hub: Overtemperature alarm component |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature on the DRIVE-CLiQ Hub Module has exceeded the alarm threshold. <br> Alarm value (r2124, interpret decimal): <br> Actual temperature in $0.1^{\circ} \mathrm{C}$ resolution. |
| Remedy: | - Check ambient temperature at component installation location. <br> - replace the component involved. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F36214 (N, A) | Hub: overvoltage fault 24 V supply |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The 24 V power supply on the DRIVE-CLiQ Hub Module has exceeded the fault threshold. Fault value (r0949, interpret decimal): <br> Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution |
| Remedy: | - check the supply voltage of the component involved. <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F36216 (N, A) | Hub: undervoltage fault 24 V supply |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE (OFF1, OFF2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the fault threshold. Fault value (r0949, interpret decimal): <br> Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution |
| Remedy: | - check the supply voltage of the component involved. <br> - replace the component involved. |


| Reaction upon $\mathrm{N}:$ | NONE |
| :--- | :--- |
| Acknowl. upon $\mathrm{N}:$ | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| A36217 (N) | Hub: undervoltage alarm 24 V supply |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the alarm threshold. Alarm value (r2124, interpret decimal): <br> Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution |
| Remedy: | - check the supply voltage of the component involved. <br> - replace the component involved. |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| N36800 (F) | Hub: Group signal |
| Message value: | - |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The DRIVE-CLiQ Hub Module has detected at least one fault. |
| Remedy: | Evaluates other actual messages. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |


| A36801 (F, N) | Hub DRIVE-CLiQ: Sign-of-life missing |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. <br> Fault cause: $10 \text { (= 0A hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ connection. <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |

F36802 (N, A) Hub: Time slice overflow
Message value: \%1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: Infeed: OFF2 (NONE)
Servo: NONE
Vector: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A time slice overflow has occurred on the DRIVE-CLiQ Hub Module.

|  | Fault value (r0949, interpret decimal): <br> xx: Time slice number xx |
| :--- | :--- |
| Remedy: | - reduce the current controller frequency. <br> - carry out a POWER ON (power off/on) for all components. <br> - upgrade firmware to later version. |
| Reaction upon N: | - contact the Hotline. |
| NONE |  |
| Reknowl. upon N: | NONE |
| Acknowl. upon A: | NONE |
|  | NONE |

F36804 (N, A) Hub: Checksum error
Message value: \%1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A checksum error has occurred when reading out the program memory on the DRIVE-CLiQ Hub Module. Alarm value (r2124, interpret hexadecimal): Difference between the checksum at POWER ON and the actual checksum.
Remedy: - check whether the permissible ambient temperature for the component is maintained

- replace the DRIVE-CLiQ Hub Module.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

| A36805 (F, N) | Hub: EEPROM checksum incorrect |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal parameter data on the DRIVE-CLiQ Hub Module is incorrect. Alarm value (r2124, interpret hexadecimal): <br> 01: EEPROM access error. <br> 02: Too many blocks in the EEPROM. |
| Remedy: | - check whether the permissible ambient temperature for the component is maintained. <br> - replace the DRIVE-CLiQ Hub Module. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F36820 | Hub DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. |


|  | 5 (= 05 hex): |
| :---: | :---: |
|  | The type of the receive telegram does not match the receive list. |
|  | 6 ( $=06$ hex): |
|  | The address of the component in the telegram and in the receive list do not match. |
|  | 7 (= 07 hex): |
|  | A SYNC telegram is expected - but the received telegram is not a SYNC telegram. |
|  | 8 (= 08 hex): |
|  | No SYNC telegram is expected - but the received telegram is one. |
|  | 9 (= 09 hex): |
|  | The error bit in the receive telegram is set. |
|  | 16 (= 10 hex): |
|  | The receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: y y = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F36835 | Hub DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |
|  | 64 (= 40 hex): |
|  | Timeout in the telegram send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | - carry out a POWER ON. |
|  | - replace the component involved. |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F36836 | Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. |
|  | Data were not able to be sent. |
|  | Fault cause: |
|  | 65 (= 41 hex): |
|  | Telegram type does not match send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | Carry out a POWER ON. |


| F36837 | Hub DRIVE-CLiQ: Component fault |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| F36845 | Hub DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. <br> Fault cause: <br> 11 (= OB hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F36851 | Hub DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. <br> The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: <br> 10 (= 0A hex): <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |


| F36860 | Hub DRIVE-CLiQ (CU): Telegram error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. <br> Fault cause: $1 \text { (= } 01 \text { hex): }$ <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the power unit in the telegram and in the receive list do not match. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. $17 \text { (= } 11 \text { hex): }$ <br> CRC error and the receive telegram is too early. $18 \text { (= } 12 \text { hex): }$ <br> The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $19 \text { (= } 13 \text { hex): }$ <br> The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. $20 \text { (= } 14 \text { hex): }$ <br> The length of the receive telegram does not match the receive list and the receive telegram is too early. $21 \text { (= } 15 \text { hex): }$ <br> The type of the receive telegram does not match the receive list and the receive telegram is too early. $22 \text { (= } 16 \text { hex): }$ <br> The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early. $25 \text { (= } 19 \text { hex): }$ <br> The error bit in the receive telegram is set and the receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
| F36875 | HUB DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: $9 \text { (= } 09 \text { hex): }$ <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |

```
Remedy: - carry out a POWER ON (power off/on).
    - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
    - check the dimensioning of the power supply for the DRIVE-CLiQ component.
```

Message value:
Drive object: A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:
Acknowledge:
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to the Control Unit.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: - check the supply voltage of the component involved.

- carry out a POWER ON.
- replace the component involved.


## F36886

## Message value:

Drive object:

Reaction:
Acknowledge:
Cause:

Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Component number: \%1, fault cause: \%2
A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Data were not able to be sent.
Fault cause:
65 (= 41 hex):
Telegram type does not match send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: Carry out a POWER ON.

## Hub DRIVE-CLiQ (CU): Component fault

Component number: \%1, fault cause: \%2
A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM 31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
NONE
IMMEDIATELY
Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
Fault cause:
32 (= 20 hex):
Error in the telegram header.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.


|  | Fault value (r0949, interpret decimal): <br> Fault number. <br> Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
| :--- | :--- |
| Remedy: | - replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158). <br> - upgrade the firmware on the Control Unit (r0018). |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |


| F36950 | Hub: Internal software error |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 (NONE) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. <br>  <br>  <br>  <br>  <br>  <br> Fault value (r0949, interpret decimal): <br> Information about the fault source. <br> Only for internal Siemens troubleshooting. <br> Remedy:- if required, upgrade the firmware in the DRIVE-CLiQ hub module to a more recent version. <br>  - contact the Hotline. |


| A36999 (F, N) | Hub: Unknown alarm |
| :--- | :--- |
| Message value: | New message: \%1 |
| Drive object: | A_INF, B_INF, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware. <br> This can occur if the firmware on this component is more recent than the firmware on the Control Unit. |
|  | Alarm value (r2124, interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158). |
| - upgrade the firmware on the Control Unit (r0018). |  |

F37001 HF damping module: overcurrent

Message value: Fault cause: \%1 bin
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected an overcurrent condition.

- HF Choke Module or HF Damping Module defective.
- Resonance frequency of the output filter was excited.

Fault value (r0949, interpret bitwise binary):
Bit 0: Phase U.
Bit 1: Phase V.
Bit 2: Phase W.
Remedy: - Check HF Choke Module and HF Damping Module and if required, replace.

- Reduce the motor power in the proximity of the fault-generating frequency.

|  | Note: <br> HF choke module (reactor module) <br> HF Damping Module |
| :---: | :---: |
| F37002 | HF damping module: Damping voltage too high |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The damping voltage has reached an inadmissibly high value. <br> - A motor harmonic with a high amplitude has coincided with the resonance frequency of the output filter. <br> - The current controller excessively excites the resonance of the output filter. <br> Fault value (r0949, interpret decimal): <br> Damping voltage in the case of a fault [mV]. <br> See also: r5171 (HF damping voltage actual value) |
| Remedy: | - Reduce the motor power in the proximity of the fault-generating frequency. <br> - Check the current controller and if required, adapt. <br> - If required, use another motor. <br> Note: <br> HF Damping Module |
| F37004 | HF damping module: Heat sink overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature of the heat sink in the HF damping module has exceeded the permissible limit value. - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret decimal): <br> Temperature $\left[0.01^{\circ} \mathrm{C}\right]$. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> Notice: <br> This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot. <br> Note: <br> HF Damping Module |
| F37005 | HF damping module: I2t overload |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The filter capacitor of the HF damping module was overloaded (r5173 = $100 \%$ ). <br> - The filter resonance frequency was excessively excited. <br> - The HF Choke Module is defective. <br> Fault value (r0949, interpret decimal): <br> I2t [100 \% = 16384]. |
| Remedy: | - Reduce the motor power in the proximity of the fault-generating frequency. <br> - The system should not stay in a steady-state condition in the vicinity of the fault-generating frequency. <br> - Check the HF Choke Module and if required replace. <br> Note: <br> HF choke module (reactor module) <br> HF Damping Module <br> See also: r5173 (HF Damping Module I2t overload) |


| F37012 | HF damping module: Heat sink temperature sensor wire breakage |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The connection to one of the heat sink temperature sensors in the HF Damping Module is interrupted. Fault value (r0949, interpret hexadecimal): <br> Bit 0: HF Damping Module <br> Bit 1: HF Choke Module |
| Remedy: | Contact the manufacturer. <br> Note: <br> HF choke module (reactor module) <br> HF Damping Module |
| F37013 | HF Damping Module: Heat sink temperature sensor short-circuit |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The heat sink temperature sensor in the HF Damping Module is short-circuited. Fault value (r0949, interpret hexadecimal): <br> Bit 0: HF Damping Module <br> Bit 1: HF Choke Module |
| Remedy: | Contact the manufacturer. <br> Note: <br> HF choke module (reactor module) <br> HF Damping Module |
| F37024 | HF Damping Module: Overtemperature thermal model |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature difference between the heat sink and chip has exceeded the permissible limit value. <br> - the permissible load duty cycle was not maintained. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - pulse frequency too high. <br> See also: r0037 |
| Remedy: | - adapt the load duty cycle. <br> - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> - reduce the pulse frequency if this is higher than the rated pulse frequency. |
| F37025 | HF Damping Module: Chip overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The chip temperature has exceeded the permissible limit value. <br> - the permissible load duty cycle was not maintained. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> - pulse frequency too high. |


|  | Fault value (r0949, interpret decimal): <br> Temperature difference between the heat sink and chip $\left[0.01^{\circ} \mathrm{C}\right]$. |
| :---: | :---: |
| Remedy: | - adapt the load duty cycle. <br> - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> - reduce the pulse frequency if this is higher than the rated pulse frequency. <br> Note: <br> HF Damping Module <br> See also: r0037 |
| A37034 | HF Damping Module: Internal overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for internal overtemperature has been reached. <br> If the temperature inside the unit continues to increase, fault F37036 may be triggered. <br> - ambient temperature might be too high. <br> - insufficient cooling, fan failure. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Control electronics range. <br> Bit 1 = 1: Power electronics range. |
| Remedy: | - check the ambient temperature. <br> - check the fan for the inside of the unit. <br> Note: <br> HF Damping Module |
| F37036 | HF Damping Module: Internal overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature inside the HF Damping Module has exceeded the permissible temperature limit. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret binary): <br> Bit $0=1$ : Control electronics range. <br> Bit 1 = 1: Power electronics range. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> Notice: <br> This fault can only be acknowledged once the permissible temperature limit minus 5 K has been undershot. <br> Note: <br> HF Damping Module |
| F37040 | HF Damping Module: 24 V undervoltage |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Failure of the 24 V power supply for the HF Damping Module. <br> - The undervoltage threshold was undershot for longer than 3 ms . <br> Fault value (r0949, interpret decimal): <br> 24 V voltage [0.1 V ]. |


| Remedy: | - check the 24 V DC voltage supply of the HF Damping Module. <br> - carry out a POWER ON (power off/on) for the component. <br> Note: <br> HF Damping Module |
| :---: | :---: |
| A37041 (F) | HF Damping Module: 24 V undervoltage alarm |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Fault in the 24 V power supply for the HF Damping Module. <br> - the 16 V threshold was undershot.. <br> Fault value (r0949, interpret decimal): <br> 24 V voltage [ 0.1 V ]. |
| Remedy: | - check the 24 V DC voltage supply of the HF Damping Module. <br> - carry out a POWER ON (power off/on) for the component. <br> Note: <br> HF Damping Module |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

F37043 HF Damping Module: 24 V overvoltage

## Message value:

Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2
Acknowledge: POWER ON

| Cause: | Overvoltage of the 24 V power supply for the HF Damping Module. |
| :--- | :--- |
| Remedy: | - the 31.5 V threshold was exceeded for more than 3 ms. |
|  | Check the 24 V DC voltage supply of the HF Damping Module. |
| Note: |  |
| HF Damping Module |  |


| A37044 (F) | HF Damping Module: 24 V overvoltage alarm |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Fault in the 24 V power supply for the HF Damping Module. |
|  | - the 32.0 V threshold was exceeded. |
| Remedy: | Check the 24 V DC voltage supply of the HF Damping Module. <br>  <br>  <br> Note: <br> Heaction upon F: |
| NONE (OFF1, OFF2, OFF3) |  |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

F37045 HF Damping Module: Supply undervoltage
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)
Cause: Power supply fault in the HF Damping Module. - The voltage monitor signals an undervoltage fault on the module. Fault value (r0949, interpret decimal): 24 V voltage [ 0.1 V ].
Remedy: - check the 24 V DC voltage supply of the HF Damping Module. - carry out a POWER ON (power off/on) for the component. - replace the module if necessary.

Note:
HF Damping Module

| A37049 | HF Damping Module: Internal fan defective |
| :---: | :---: |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal fan of the HF Damping Module has failed. |
| Remedy: | Check the internal fan of the HF Damping Module and replace if necessary. |
| F37050 | HF Damping Module: 24 V overvoltage fault |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | The voltage monitor signals an overvoltage fault on the module. |
| Remedy: | - check the 24 V power supply. <br> - replace the module if necessary. |
| F37052 | HF Damping Module: EEPROM data error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | POWER ON |
| Cause: | EEPROM data error of the HF Damping Module. <br> Fault value (r0949, interpret hexadecimal): <br> 0 : The EEPROM data read in from the HF Damping Module is inconsistent. <br> 1: EEPROM data is not compatible to the firmware of the HF Damping Module. <br> Additional values: <br> Only for internal Siemens troubleshooting. |
| Remedy: | For fault value $=0$ : <br> Replace the HF Damping Module or update the EEPROM data. <br> For fault value $=1$ : <br> If necessary, upgrade the firmware to a later version. <br> Note: <br> HF Damping Module |
| A37056 (F) | HF damping module: Heat sink overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature of the HF Damping Module heat sink has exceeded the permissible limit value. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret decimal): <br> Temperature $\left[0.01^{\circ} \mathrm{C}\right]$. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> Notice: <br> This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot. Note: <br> HF Damping Module |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A37310 (F) | HF Choke Module: Overtemperature |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The temperature of the HF Choke Module heat sink has exceeded the permissible limit value. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret decimal): <br> Temperature $\left[0.01^{\circ} \mathrm{C}\right]$. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> Notice: <br> This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot. Note: <br> HF choke module (reactor module) |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |
| F37311 | HF Choke Module: Heat sink overtemperature |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The temperature of the HF Choke Module heat sink has exceeded the permissible limit value. <br> - insufficient cooling, fan failure. <br> - overload. <br> - ambient temperature too high. <br> Fault value (r0949, interpret decimal): <br> Temperature $\left[0.01^{\circ} \mathrm{C}\right]$. |
| Remedy: | - check whether the fan is running. <br> - check the fan elements. <br> - check whether the ambient temperature is in the permissible range. <br> - check the motor load. <br> Notice: <br> This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot. <br> Note: <br> HF choke module (reactor module) |
| A37312 (F) | HF Choke Module: Overtemperature or fan failure |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The HF Choke Module signals an overtemperature or fan failure. Fault F37313 is output if the alarm is present for longer than 30 s. |
| Remedy: | - The cable between the HF Choke Module and the HF Damping Module has been withdrawn or is defective (X21). <br> - Check the fan of the HF Choke Module and replace if necessary. <br> - check whether the ambient temperature is in the permissible range. <br> Note: <br> HF choke module (reactor module) <br> HF Damping Module |
| Reaction upon F: | NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |


| F37313 | HF Choke Module: Overtemperature or fan failure |
| :--- | :--- |
| Message value: | - |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | Alarm A37312 to display overtemperature or fan failure in the HF Choke Module was signaled for longer than 30 s. |
| Remedy: | - The cable between the HF Choke Module and the HF Damping Module has been withdrawn or is defective (X21). |
|  | - Check the fan of the HF Choke Module and replace if necessary. |
|  | - check whether the ambient temperature is in the permissible range. |
|  | Note: |
| HF choke module (reactor module) |  |


| Remedy: | - check the DRIVE-CLiQ connection. |
| :--- | :--- |
|  | - replace the component involved. |
|  | Note: |
|  | HF Damping Module |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

F37804 (N, A) HF Damping Module: CRC
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2 (OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A CRC error has occurred for the HF Damping Module.
Remedy: - carry out a POWER ON (power off/on) for all components.

- upgrade firmware to later version.
- contact the Hotline.

Note: HF Damping Module
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F37805 HF Damping Module: EPROM checksum incorrect
Message value: \%1
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal):
01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy: Replace the module. Note: HF Damping Module

Message value: Component number: \%1, fault cause: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the damping module.
Fault cause
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.

|  | 7 (= 07 hex): |
| :---: | :---: |
|  | A SYNC telegram is expected - but the received telegram is not a SYNC telegram. |
|  | 8 (= 08 hex): |
|  | No SYNC telegram is expected - but the received telegram is one. |
|  | 9 (= 09 hex): |
|  | The error bit in the receive telegram is set. |
|  | 16 (= 10 hex): |
|  | The receive telegram is too early. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). |
|  | - check the electrical cabinet design and cable routing for EMC compliance |
|  | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
|  | Note: |
|  | HF Damping Module |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F37835 | HF Damping Module: Cyclic data transmission error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module. The nodes do not send and receive in synchronism. |
|  | Fault cause: |
|  | 33 (= 21 hex): |
|  | The cyclic telegram has not been received. |
|  | 34 (= 22 hex): |
|  | Timeout in the telegram receive list. |
|  | 64 (= 40 hex): |
|  | Timeout in the telegram send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON. |
|  | - replace the component involved. |
|  | Note: |
|  | HF Damping Module |
|  | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F37836 | HF Damping Module: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module. Data were not able to be sent. |
|  | Fault cause: |
|  | 65 (= 41 hex): |
|  | Telegram type does not match send list. |
|  | Note regarding the message value: |
|  | The individual information is coded as follows in the message value (r0949/r2124): |
|  | 0000yyxx hex: yy = component number, xx = error cause |
| Remedy: | Carry out a POWER ON. |
|  | Note: |
|  | HF Damping Module |


| F37837 | HF Damping Module: Component faulted |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. <br> Fault cause: $32 \text { (= } 20 \mathrm{hex} \text { ): }$ <br> Error in the telegram header. $35 \text { (= } 23 \mathrm{hex} \text { ): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. <br> Note: <br> HF Damping Module |
| F37845 | HF Damping Module: Cyclic data transmission error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module. Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> Note: <br> HF Damping Module <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F37850 | HF Damping Module: Internal software error |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 (NONE, OFF2, OFF3) |
| Acknowledge: | POWER ON |
| Cause: | An internal software error in the HF Damping Module has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. |
| Remedy: | - Replace the HF Damping Module <br> - If required, upgrade the firmware in the HF Damping Module. <br> - contact the Hotline. <br> Note: <br> HF Damping Module |



| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> Note: <br> HF Damping Module |
| :---: | :---: |
| F37875 | HF Damping Module (CU): Supply voltage has failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: $9 \text { (= } 09 \text { hex): }$ <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the power supply for the DRIVE-CLiQ component. |

## F37885

HF Damping Module (CU): Cyclic data transmission error
Message value: Component number: \%1, fault cause: \%2
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Reaction:
NONE
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from the damping module to the Control Unit.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex)
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, $x x=$ error cause
Remedy: - check the supply voltage of the component involved.

- carry out a POWER ON.
- replace the component involved.

Note:
HF Damping Module

| F37886 | HF Damping Module (CU): Error when sending DRIVE-CLiQ data |
| :--- | :--- |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit. |
|  | Data were not able to be sent. |
|  | Fault cause: |
|  | $65(=41$ hex): |
|  | Telegram type does not match send list. |


|  | Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| :---: | :---: |
| Remedy: | Carry out a POWER ON. Note: <br> HF Damping Module |
| F37887 | HF Damping Module (CU): Component faulted |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component (HF Damping Module) involved. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $96 \text { (= } 60 \text { hex): }$ <br> Response received too late during runtime measurement. $97 \text { (= } 61 \text { hex): }$ <br> Time taken to exchange characteristic data too long. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. <br> Note: <br> HF Damping Module |
| F37895 | HF Damping Module (CU): Alternating cyclic data transmission error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit. <br> Fault cause: <br> 11 (= 0B hex): <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON. <br> Note: <br> HF Damping Module <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |


| F37896 | HF Damping Module (CU): Component properties inconsistent |
| :---: | :---: |
| Message value: | Component number: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The properties of the DRIVE-CLiQ component (HF Damping Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. <br> Fault value (r0949, interpret decimal): Component number. |
| Remedy: | - carry out a POWER ON. <br> - when a component is replaced, the same component type and if possible the same firmware version should be used. <br> - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length). <br> Note: <br> HF Damping Module |
| F37899 (N, A) | HF Damping Module: Unknown fault |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY (POWER ON) |
| Cause: | A fault has occurred on the HF Damping Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Fault value (r0949, interpret decimal): <br> Fault number. <br> Note: <br> If required, the significance of this new fault can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the HF Damping Module by an older firmware version (r0168). <br> - upgrade the firmware on the Control Unit (r0018). <br> Note: <br> HF Damping Module |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |
| F37903 | HF Damping Module: I2C bus error occurred |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | Communications error with an EEPROM or A/D converter. Fault value (r0949, interpret hexadecimal): 80000000 hex: <br> - internal software error. <br> 00000001 hex ... 0000FFFF hex: <br> - module fault. |
| Remedy: | Re fault value $=80000000$ hex: <br> - upgrade firmware to later version. <br> Re fault value $=00000001$ hex.. 0000FFFF hex: <br> - replace the module. <br> Note: <br> HF Damping Module |


| F37950 | HF Damping Module: Internal software error |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | An internal software error has occurred. Fault value (r0949, interpret decimal): Information about the fault source. Only for internal Siemens troubleshooting. |
| Remedy: | - If necessary, upgrade the firmware in the HF Damping Module to a later version. <br> - contact the Hotline. <br> Note: <br> HF Damping Module |
| A37999 (F, N) | HF Damping Module: Unknown alarm |
| Message value: | New message: \%1 |
| Drive object: | SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An alarm has occurred on the HF Damping Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. <br> Alarm value ( r 2124 , interpret decimal): <br> Alarm number. <br> Note: <br> If required, the significance of this new alarm can be read about in a more recent description of the Control Unit. |
| Remedy: | - replace the firmware on the HF Damping Module by an older firmware version (r0168). <br> - upgrade the firmware on the Control Unit (r0018). <br> Note: <br> HF Damping Module |
| Reaction upon F: | NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| Reaction upon N : | NONE |
| Acknowl. upon N : | NONE |
| F40000 | Fault at DRIVE-CLiQ socket X100 |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred at the drive object at the DRIVE-CLiQ socket X 100 . Fault value (r0949, interpret decimal): <br> First fault that has occurred for this drive object. |
| Remedy: | Evaluate the fault buffer of the specified object. |
| F40001 | Fault at DRIVE-CLiQ socket X101 |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred at the drive object at the DRIVE-CLiQ socket X101. Fault value (r0949, interpret decimal): <br> First fault that has occurred for this drive object. |
| Remedy: | Evaluate the fault buffer of the specified object. |


| F40002 | Fault at DRIVE-CLiQ socket X102 |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | A fault has occurred at the drive object at the DRIVE-CLiQ socket X102. <br>  <br>  <br> Fault value (r0949, interpret decimal): <br> Remedy: |
| First fault that has occurred for this drive object. |  |
| F4001uate the fault buffer of the specified object. |  |


| A40101 | Alarm at DRIVE-CLiQ socket X101 |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | All objects |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101. <br>  <br>  <br> Alarm value (r2124, interpret decimal): <br> Remedy: |
| First alarm that has occurred for this drive object. |  |
| Evaluate the alarm buffer of the specified object. |  |

## F40799

## CX32: Configured transfer end time exceeded

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The configured transfer end time when transferring the cyclic actual values was exceeded.
Remedy: - carry out a POWER ON (power off/on) for all components.

- contact the Hotline.

| F40801 | CX32 DRIVE-CLiQ: Sign-of-life missing |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. <br> Fault cause: $10 \text { (= OA hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F40820 | CX32 DRIVE-CLiQ: Telegram error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the component in the telegram and in the receive list do not match. $7 \text { (= } 07 \text { hex): }$ <br> A SYNC telegram is expected - but the received telegram is not a SYNC telegram. $8 \text { (= } 08 \text { hex): }$ <br> No SYNC telegram is expected - but the received telegram is one. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |


| F40825 | CX32 DRIVE-CLiQ: Supply voltage failed |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: <br> 9 (= 09 hex): <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...). <br> - check the dimensioning of the DRIVE-CLiQ component power supply. |
| F40835 | CX32 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism. <br> Fault cause: <br> 33 (= 21 hex): <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - replace the component involved. <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F40836 | CX32 DRIVE-CLiQ: Send error for DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Data were not able to be sent. <br> Fault cause: <br> 65 (= 41 hex): <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON (power off/on). |


| F40837 | CX32 DRIVE-CLiQ: Component fault |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded. Fault cause: $32 \text { (= } 20 \text { hex): }$ <br> Error in the telegram header. $35 \text { (= } 23 \text { hex): }$ <br> Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$ <br> Send error: The telegram buffer memory contains an error. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - if required, use another DRIVE-CLiQ socket (p9904). <br> - replace the component involved. |
| F40845 | CX32 DRIVE-CLiQ: Cyclic data transfer error |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. <br> Fault cause: $11 \text { (= 0B hex): }$ <br> Synchronization error during alternating cyclic data transfer. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON (power off/on). <br> See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
| F40851 | CX32 DRIVE-CLiQ (CU): Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. <br> Fault cause: $10 \text { (= OA hex): }$ <br> The sign-of-life bit in the receive telegram is not set. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Upgrade the firmware of the component involved. |


| F40860 | CX32 DRIVE-CLiQ (CU): Telegram error |
| :---: | :---: |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. <br> Fault cause: <br> 1 (= 01 hex): <br> Checksum error (CRC error). $2 \text { (= } 02 \text { hex): }$ <br> Telegram is shorter than specified in the length byte or in the receive list. $3 \text { (= } 03 \text { hex): }$ <br> Telegram is longer than specified in the length byte or in the receive list. $4 \text { (= } 04 \text { hex): }$ <br> The length of the receive telegram does not match the receive list. $5 \text { (= } 05 \text { hex): }$ <br> The type of the receive telegram does not match the receive list. $6 \text { (= } 06 \text { hex): }$ <br> The address of the power unit in the telegram and in the receive list do not match. $9 \text { (= } 09 \text { hex): }$ <br> The error bit in the receive telegram is set. $16 \text { (= } 10 \text { hex): }$ <br> The receive telegram is too early. $17 \text { (= } 11 \text { hex): }$ <br> CRC error and the receive telegram is too early. $18 \text { (= } 12 \text { hex): }$ <br> The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $19 \text { (= } 13 \text { hex): }$ <br> The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex): <br> The length of the receive telegram does not match the receive list and the receive telegram is too early. $21 \text { (= } 15 \text { hex): }$ <br> The type of the receive telegram does not match the receive list and the receive telegram is too early. $22 \text { (= } 16 \text { hex): }$ <br> The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early. $25 \text { (= } 19 \text { hex): }$ <br> The error bit in the receive telegram is set and the receive telegram is too early. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| Remedy: | - carry out a POWER ON (power off/on). <br> - check the electrical cabinet design and cable routing for EMC compliance <br> - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F40875 | CX32 DRIVE-CLiQ (CU): Supply voltage failed |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF1 (OFF2) |
| Acknowledge: | IMMEDIATELY |
| Cause: | The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed. <br> Fault cause: $9 \text { (= } 09 \text { hex): }$ <br> The power supply voltage for the components has failed. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |

```
Remedy: - carry out a POWER ON (power off/on).
    - check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).
    - check the dimensioning of the DRIVE-CLiQ component power supply.
```


## F40885

## CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: \%1, fault cause: \%2
Drive object: All objects

Reaction: OFF2
Acknowledge: IMMEDIATELY

| Cause: | A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The nodes do not send and receive in synchronism. <br> Fault cause: $26 \text { (= 1A hex): }$ <br> Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $33 \text { (= } 21 \text { hex): }$ <br> The cyclic telegram has not been received. $34 \text { (= } 22 \text { hex): }$ <br> Timeout in the telegram receive list. $64 \text { (= } 40 \text { hex): }$ <br> Timeout in the telegram send list. $98 \text { (= } 62 \text { hex): }$ <br> Error at the transition to cyclic operation. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: yy = component number, $x x=$ error cause |
| :---: | :---: |
| Remedy: | - check the power supply voltage of the component involved. <br> - carry out a POWER ON (power off/on). <br> - replace the component involved. <br> See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master) |
| F40886 | CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | All objects |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Data were not able to be sent. <br> Fault cause: $65 \text { (= } 41 \text { hex): }$ <br> Telegram type does not match send list. <br> Note regarding the message value: <br> The individual information is coded as follows in the message value (r0949/r2124): <br> 0000yyxx hex: $y y=$ component number, $x x=$ error cause |
| Remedy: | Carry out a POWER ON (power off/on). |

F40887

## CX32 DRIVE-CLiQ (CU): Component fault

Message value: Component number: \%1, fault cause: \%2
Drive object: All objects

Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault cause:
32 (= 20 hex):
Error in the telegram header.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.


| F49153 | Cooling unit: Liquid flow too low |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | The drive converter cooling unit signals that the cooling liquid flow is too low. |
|  | - after the ON command, the feedback signal has not been received within the selected starting time (p0260). |
| - in operation, the feedback signal has failed for longer than the permitted failure time (p0263). |  |
| See also: p0260 (Cooling unit, starting time 1), p0263 (Cooling unit fault liquid flow, delay time), r0267 (Cooling unit |  |
| status word) |  |

A49170 Cooling unit: Alarm has occurred

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction: NONE
Acknowledge: NONE
Cause: The cooling unit signals a general alarm.
Remedy: - check the wiring between the cooling unit and the input terminal (Terminal Module).

- check the external control device for the cooling unit.

| A49171 | Cooling unit: Conductivity has exceeded the alarm threshold |
| :--- | :--- |
| Message value: | - |
| Drive object: | A_INF, B_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The conductivity of the cooling liquid has exceeded the selected alarm threshold (p0269[1]). <br>  <br> Remedy: |
|  | Check the device to de-ionize the cooling liquid. |


| A49201 (F) | Excitation group signal alarm |
| :---: | :---: |
| Message value: | - |
| Drive object: | VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The "excitation group signal alarm" signal is present. |
| Remedy: | Check the excitation equipment. |
| Reaction upon F: | NONE |
| Acknowl. upon F: | IMMEDIATELY |
| A50001 (F) | COMM BOARD: Alarm 1 |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | CBE20: <br> A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The "Shared Device" function has been activated (p8829 = 2). <br> Alarm value (r2124, interpret decimal): <br> 10: A CPU sends a PROFIsafe telegram. <br> 11: F CPU sends a PZD telegram. <br> 12: F CPU without an A CPU. <br> 13: F CPU with more PROFIsafe subslots than activated with p9601.3. <br> 14: F CPU with fewer PROFIsafe subslots than activated with p9601.3. <br> 15: PROFIsafe telegram of the F-CPU does not match the setting in p60022. <br> See also: p8829 (CBE20 remote controller number), p9601 (SI enable, functions integrated in the drive (Control Unit)) |
| Remedy: | CBE20: <br> Check the configuration of the PROFINET controllers as well as the p 8829 and p 9601.3 setting. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A50002 (F) | COMM BOARD: Alarm 2 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI Do, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the case of CBE20 SINAMICS Link: <br> A specific telegram word (send) is being used twice. <br> Alarm value (r2124, interpret decimal): <br> Telegram word used twice <br> See also: p8871 (SINAMICS Link send telegram word PZD) |
| Remedy: | In the case of CBE20 SINAMICS Link: <br> Correct the parameter assignment. <br> See also: p8871 (SINAMICS Link send telegram word PZD) |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A50003 (F) | COMM BOARD: Alarm 3 |
| :---: | :---: |
| Message value: | Info. 1: \%1, info. 2: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the case of CBE20 SINAMICS Link: |
|  | A specific telegram word (receive) is being used twice. |
|  | Alarm value (r2124, interpret hexadecimal): |
|  | yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2 |
|  | Info. 1 (decimal) = Address of sender |
|  | Info. 2 (decimal) = Receive telegram word |
|  | See also: p8870 (SINAMICS Link receive telegram word PZD), p8872 (SINAMICS Link address receive PZD) |
| Remedy: | In the case of CBE20 SINAMICS Link: |
|  | Correct the parameter assignment. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) |
|  | Servo: NONE (OFF1, OFF2, OFF3) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A50004 (F) | COMM BOARD: Alarm 4 |
| :---: | :---: |
| Message value: | Info. 1: \%1, info. 2: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | In the case of CBE20 SINAMICS Link: <br> Telegram word (receive) and address of sender inconsistent. Both values have to be either equal to zero or not equal to zero. <br> Alarm value (r2124, interpret hexadecimal): <br> yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2 <br> Info. 1 (decimal) $=$ Drive object number from p8870, p8872 <br> Info. 2 (decimal) $=$ Index from p8870, p8872 <br> See also: p8870 (SINAMICS Link receive telegram word PZD), p8872 (SINAMICS Link address receive PZD) |
| Remedy: | In the case of CBE20 SINAMICS Link: Correct the parameter assignment. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |


| A50005 (F) | COMM BOARD: Alarm 5 |
| :--- | :--- |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, |
|  | CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| Reaction: | TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Acknowledge: | NONE |
| Cause: | NONE |
|  | In the case of CBE20 SINAMICS Link: |
|  | Sender not found on SINAMICS Link. |
|  | Alarm value (r2124, interpret decimal): <br> Address of sender that cannot be located <br>  <br>  <br>  <br> See also: p8872 (SINAMICS Link address receive PZD) <br> In the case of CBE20 SINAMICS Link: <br> Remedy: |
|  | Check the connection to the sender. |


| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) <br> IMMEDIATELY |
| :--- | :--- |
| Acknowl. upon F: |  |
| A50006 (F) | COMM BOARD: Alarm 6 |
| Message value: | Info. 1: \%1, info. 2: \%2 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, <br> CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, |
| TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |  |


| A50010 (F) | COMM BOARD: Alarm 10 |
| :---: | :---: |
| Message value: | \%1 |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | CBE20: <br> PROFINET Name of Station is invalid. |
| Remedy: | CBE20: <br> Correct the name of the station (p8940) and activate (p8945 = 2). See also: p8940 (CBE20 Name of Station) |
| Reaction upon F: | ```Infeed: NONE (OFF1, OFF2) Servo: NONE (OFF1, OFF2, OFF3) Vector: NONE (OFF1, OFF2, OFF3)``` |
| Acknowl. upon F: | IMMEDIATELY |
| A50020 (F) | COMM BOARD: Alarm 20 |
| Message value: | - |
| Drive object: | A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | CBE20: The PROFINET "Shared Device" function has been activated (p8829 = 2). However, only the connection to a PROFINET controller is present. <br> See also: p8829 (CBE20 remote controller number) |
| Remedy: | CBE20: Check the configuration of the PROFINET controllers, as well as the p8829 setting. |
| Reaction upon F: | Infeed: NONE (OFF1, OFF2) <br> Servo: NONE (OFF1, OFF2, OFF3) <br> Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowl. upon F: | IMMEDIATELY |

## Appendix

## Contents

A. 1 ASCII table (excerpt)
A-2534

## A. 1 <br> ASCII table (excerpt)

The following table includes the decimal and hexadecimal notation of selected ASCII characters.

Table A-1 ASCII table (excerpt)

| Character | Decimal | Hexadecimal | Character | Decimal | Hexadecimal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Blank | 32 | 20 | G | 71 | 47 |
| * | 42 | 2A | H | 72 | 48 |
| + | 43 | 2B | 1 | 73 | 49 |
| - | 45 | 2D | J | 74 | 4A |
| 0 | 48 | 30 | K | 75 | 4B |
| 1 | 49 | 31 | L | 76 | 4 C |
| 2 | 50 | 32 | M | 77 | 4D |
| 3 | 51 | 33 | N | 78 | 4E |
| 4 | 52 | 34 | 0 | 79 | 4F |
| 5 | 53 | 35 | P | 80 | 50 |
| 6 | 54 | 36 | Q | 81 | 51 |
| 7 | 55 | 37 | R | 82 | 52 |
| 8 | 56 | 38 | S | 83 | 53 |
| 9 | 57 | 39 | T | 84 | 54 |
| A | 65 | 41 | U | 85 | 55 |
| B | 66 | 42 | V | 86 | 56 |
| C | 67 | 43 | W | 87 | 57 |
| D | 68 | 44 | X | 88 | 58 |
| E | 69 | 45 | Y | 89 | 59 |
| F | 70 | 46 | Z | 90 | 5A |

## List of abbreviations

## Note:

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

| Abbreviation | Source of abbreviation | Meaning |
| :---: | :---: | :---: |
| A |  |  |
| A... | Alarm | Warning |
| AC | Alternating Current | Alternating current |
| ADC | Analog Digital Converter | Analog-digital converter |
| AI | Analog Input | Analog input |
| AIM | Active Interface Module | Active Interface Module |
| ALM | Active Line Module | Active Line Module |
| AO | Analog Output | Analog output |
| AOP | Advanced Operator Panel | Advanced Operator Panel |
| APC | Advanced Positioning Control | Advanced Positioning Control |
| AR | Automatic Restart | Automatic restart |
| ASC | Armature Short-Circuit | Armature short-circuit |
| ASCII | American Standard Code for Information Interchange | American Standard Code for Information Interchange |
| ASM | Induction motor | Induction motor |
| B |  |  |
| BB | Operating condition | Operating condition |
| BERO | - | Contact-free proximity switch |
| BI | Binector Input | Binector input |
| BIA | Germany's Institute for Occupational Safety and Health | Germany's Institute for Occupational Safety and Health |
| BICO | Binector Connector Technology | Binector connector technology |
| BLM | Basic Line Module | Basic Line Module |
| BO | Binector Output | Binector output |
| BOP | Basic Operator Panel | Basic Operator Panel |
| C |  |  |
| C | Capacitance | Capacitance |
| C... | - | Safety message |
| CAN | Controller Area Network | Serial bus system |


| Abbreviation | Source of abbreviation | Meaning |
| :--- | :--- | :--- |
| CBC | Communication Board CAN | Communication Board CAN |
| CD | Compact disk | Compact disk |
| CDS | Command Data Set | Command data set |
| CF Card | CompactFlash Card | CompactFlash memory card |
| CI | Connector Input | Connector input |
| CLC | Clearance Control | Clearance control |
| CNC | Computer Numerical Control | Computerized numerical control |
| CO | Connector Output | Connector output |
| CO/BO | Connector Output/Binector Output | Connector output/binector output |
| COB ID | CAN object identification | CAN object identification |
| COM | Common contact of a changeover relay | Center contact on a changeover contact |
| COMM | Commissioning | Commissioning |
| CP | Communications Processor | Communication processor |
| CPU | Central Processing Unit | Central processing unit |
| CRC | Cyclic Redundancy Check | Cyclic redundancy check |
| CSM | Control Supply Module | Control Supply Module |
| CU | Control Unit | Control Unit |
| CUA | Control Unit Adapter | Control Unit Adapter |
| CUD | Control Unit DC MASTER | Control Unit DC MASTER |
| D |  |  |
| DAC | Digital Analog Converter | Distributed I/Os |
| DC | Direct Current | Demory with dual access |
| DCB | Drive Control Block | Dynamic memory |
| DCBRK | DC Brake | Digital Time Clock |


| Abbreviation | Source of abbreviation |
| :---: | :---: |
| E |  |
| EASC | External Armature Short-Circuit |
| EDS | Encoder Data Set |
| EGB | Electrostatic sensitive devices |
| ELCB | Earth Leakage Circuit Breaker |
| ELP | Earth Leakage Protection |
| EMC | Electromagnetic Compatibility |
| EMF | Electromagnetic Force |
| EMK | Electromagnetic force |
| EMV | Electromagnetic compatibility (EMC) |
| EN | European standard |
| EnDat | Encoder Data Interface |
| EP | Enable Pulses |
| EPOS | Basic positioner |
| ES | Engineering system |
| ESB | Equivalent circuit diagram |
| ESD | Electrostatic Sensitive Devices |
| ESR | Extended Stop and Retract |
| F |  |
| F... | Fault |
| FAQ | Frequently Asked Questions |
| FBL | Free Blocks |
| FCC | Function Control Chart |
| FCC | Flux Current Control |
| FD | Function Diagram |
| F-DI | Fail-safe Digital Input |
| F-DO | Fail-safe Digital Output |
| FEM | Separately excited synchronous motor |
| FEPROM | Flash EPROM |
| FG | Function Generator |
| FI | - |
| FOC | Fiber-Optic Cable |
| FP | Function diagram |
| FPGA | Field Programmable Gate Array |
| FW | Firmware |
| G |  |
| GB | Gigabyte |
| GC | Global Control |
| GND | Ground |

## Meaning

External armature short-circuit
Encoder data set
Electrostatic sensitive devices
Residual current operated circuit breaker
Ground-fault monitoring
Electromagnetic compatibility (EMC)
Electromagnetic force
Electromagnetic force
Electromagnetic compatibility (EMC)
European standard
Encoder interface
Pulse enable
Basic positioner
Engineering system
Equivalent circuit diagram
Electrostatic sensitive devices
Extended stop and retract

Fault
Frequently asked questions
Free function blocks
Function Control Chart
Flux current control
Function diagram
Fail-safe digital input
Fail-safe digital output
Separately excited synchronous motor
Non-volatile read/write memory
Function generator
Fault current
Fiber-optic cable
Function diagram
Field Programmable Gate Array
Firmware

## Gigabyte

Global Control Telegram (broadcast telegram)
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as G)

| Abbreviation | Source of abbreviation | Meaning |
| :---: | :---: | :---: |
| GSD | Gerätestammdatei | Generic station description: Describes the characteristics of a PROFIBUS slave |
| GSV | Gate supply voltage | Gate supply voltage |
| GUID | Globally unique identifier | Globally unique identifier |
| H |  |  |
| HF | High Frequency | High frequency |
| HFD | High-frequency reactor | High-frequency reactor |
| HLG | Ramp-function generator | Ramp-function generator |
| HMI | Human Machine Interface | Human Machine Interface |
| HTL | High-Threshold Logic | Logic with a high fault threshold |
| HW | Hardware | Hardware |
| 1 |  |  |
| i. V. | In Vorbereitung | Under development: This feature is not currently available |
| I/O | Input/Output | Input/output |
| I2C | Inter-Integrated Circuit | Internal serial data bus |
| IASC | Internal Armature Short-Circuit | Internal armature short-circuit |
| IBN | Commissioning | Commissioning |
| ID | Identifier | Identification |
| IE | Industrial Ethernet | Industrial Ethernet |
| IEC | International Electrotechnical Commission | International Electrotechnical Commission |
| IF | Interface | Interface |
| IGBT | Insulated Gate Bipolar Transistor | Insulated gate bipolar transistor |
| IGCT | Integrated Gate-Controlled Thyristor | Semiconductor circuit breaker with integrated control electrode |
| IL | Pulse suppression | Pulse suppression |
| IP | Internet Protocol | Internet Protocol |
| IPO | Interpolator | Interpolator |
| IT | Isolé Terré | Non-grounded three-phase power supply |
| IVP | Internal Voltage Protection | Internal voltage protection |
| J |  |  |
| JOG | Jogging | Jogging |
| K |  |  |
| KDV | Crosswise data comparison | Crosswise data comparison |
| KHP | Know-how protection | Know-how protection |
| KIP | Kinetic buffering | Kinetic buffering |
| Kp | - | Proportional gain |
| KTY | - | Special temperature sensor |
| L |  |  |
| L | - | Formula symbol for inductance |
| LED | Light Emitting Diode | Light emitting diode |
| LIN | Linear motor | Linear motor |


| Abbreviation | Source of abbreviation | Meaning |
| :---: | :---: | :---: |
| LR | Position controller | Position controller |
| LSB | Least Significant Bit | Least significant bit |
| LSC | Line-Side Converter | Line-side converter |
| LSS | Line-Side Switch | Line-side switch |
| LU | Length Unit | Length unit |
| LWL | Fiber-optic cable | Fiber-optic cable |
| M |  |  |
| M | - | Formula symbol for torque |
| M | Masse | Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND) |
| MB | Megabyte | Megabyte |
| MCC | Motion Control Chart | Motion Control Chart |
| MDI | Manual Data Input | Manual data input |
| MDS | Motor Data Set | Motor data set |
| MLFB | Machine-readable product code | Machine-readable product code |
| MMC | Man-Machine Communication | Man-machine communication |
| MMC | Micro Memory Card | Micro memory card |
| MSB | Most Significant Bit | Most significant bit |
| MSC | Motor-Side Converter | Motor-side converter |
| MSCY_C1 | Master Slave Cycle Class 1 | Cyclic communication between master (Class 1) and slave |
| MSR | Motor-side converter | Motor-side converter |
| MT | Probe | Probe |
| N |  |  |
| N. C. | Not Connected | Not connected |
| N... | No Report | No message or internal message |
| NAMUR | Standardization association for measurement and control in chemical industries | Standardization association for measurement and control in chemical industries |
| NC | Normally Closed (contact) | NC contact |
| NC | Numerical Control | Numerical control |
| NEMA | National Electrical Manufacturers Association | Standardization body in the USA (United States of America) |
| NM | Zero mark | Zero mark |
| NO | Normally Open (contact) | NO contact |
| NSR | Line-side converter | Line-side converter |
| NVRAM | Non-Volatile Random Access Memory | Non-volatile read/write memory |
| 0 |  |  |
| OA | Open Architecture | Open Architecture |
| OC | Operating Condition | Operating condition |
| OEM | Original equipment manufacturer | Original equipment manufacturer |
| OLP | Optical Link Plug | Fiber-optic bus connector |


| Abbreviation | Source of abbreviation | Meaning |
| :---: | :---: | :---: |
| OMI | Option module interface | Option module interface |
| P |  |  |
| p... | - | Adjustable parameter |
| P1 | Processor 1 | Processor 1 |
| P2 | Processor 2 | Processor 2 |
| PB | PROFIBUS | PROFIBUS |
| PcCtrl | PC Control | Control for master |
| PD | PROFIdrive | PROFIdrive |
| PDS | Power Unit Data Set | Power unit data set |
| PE | Protective Earth | Protective earth (ground) |
| PELV | Protective Extra Low Voltage | Protective extra low voltage |
| PEM | Permanent-magnet synchronous motor | Permanent-magnet synchronous motor |
| PG | Programming device | Programming device |
| PI | Proportional integral | Proportional integral |
| PID | Proportional integral differential | Proportional integral differential |
| PLC | Programmable Logic Controller | Programmable logic controller |
| PLL | Phase-locked loop | Phase-locked loop |
| PN | PROFINET | PROFINET |
| PNO | PROFIBUS user organization | PROFIBUS user organization |
| PPI | Point-to-Point Interface | Point-to-point interface |
| PRBS | Pseudo Random Binary Signal | White noise |
| PROFIBUS | Process Field Bus | Serial data bus |
| PS | Power Supply | Power supply |
| PSA | Power Stack Adapter | Power Stack Adapter |
| PTC | Positive Temperature Coefficient | Positive temperature coefficient |
| PTP | Point-To-Point | Point-to-point |
| PWM | Pulse Width Modulation | Pulse width modulation |
| PZD | Process data | Process data |
| Q |  |  |
| R |  |  |
| r... | - | Display parameter (read-only) |
| RAM | Random Access Memory | Read/write memory |
| RCCB | Residual Current Circuit Breaker | Residual current operated circuit breaker |
| RCD | Residual Current Device | Residual current operated circuit breaker |
| RCM | Residual Current Monitor | Residual current monitor |
| RFG | Ramp-Function Generator | Ramp-function generator |
| RJ45 | Registered Jack 45 | Term for an 8-pin socket system for data transmission with shielded or non-shielded multi-wire copper cables |
| RKA | Cooling unit | Cooling unit |
| RO | Read Only | Read only |
| RPDO | Receive process data object | Receive process data object |


| Abbreviation | Source of abbreviation |
| :---: | :---: |
| RS232 | Recommended Standard 232 |
| RS485 | Recommended Standard 485 |
| RTC | Real Time Clock |
| RZA | Space vector approximation |
| S |  |
| S1 | - |
| S3 | - |
| SAM | Safe Acceleration Monitor |
| SBC | Safe Brake Control |
| SBH | Safe operating stop |
| SBR | Safe Brake Ramp |
| SCA | Safe Cam |
| SD Card | Secure Digital Card |
| SDI | Safe Direction |
| SE | Safe software limit switch |
| SG | Safely reduced speed |
| SGA | Safety-related output |
| SGE | Safety-related input |
| SH | Safe standstill |
| SI | Safety Integrated |
| SIL | Safety Integrity Level |
| SLM | Smart Line Module |
| SLP | Safely-Limited Position |
| SLS | Safely-Limited Speed |
| SLVC | Sensorless Vector Control |
| SM | Sensor Module |
| SMC | Sensor Module Cabinet |
| SME | Sensor Module External |
| SMI | SINAMICS Sensor Module Integrated |
| SN | Sicherer Software-Nocken |
| SOS | Safe Operating Stop |
| SP | Service pack |
| SPC | Setpoint Channel |
| SPI | Serial Peripheral Interface |
| SPS | Programmable logic controller |

## Meaning

Interface standard for cable-connected serial data transmission between a sender and receiver (also known as EIA232)

Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known as EIA485)

Real-time clock
Space vector approximation

Continuous operation
Intermittent operation
Safe acceleration monitoring
Safe brake control
Safe operating stop
Safe brake ramp monitoring
Safe cam
Secure digital memory card
Safe motion direction
Safe software limit switch
Safely reduced speed
Safety-related output
Safety-related input
Safe standstill
Safety Integrated
Safety Integrity Level
Smart Line Module
Safely-limited position
Safely-limited speed
Vector control without encoder (sensorless)
Sensor Module
Sensor Module Cabinet
Sensor Module External
SINAMICS Sensor Module Integrated
Safe software cam
Safe operating stop
Service pack
Setpoint channel
Serial interface for connecting peripherals
Programmable logic controller

| Abbreviation | Source of abbreviation | Meaning |
| :---: | :---: | :---: |
| SS1 | Safe Stop 1 | Safe stop 1 (monitored for time and ramping up) |
| SS2 | Safe Stop 2 | Safe stop 2 |
| SSI | Synchronous Serial Interface | Synchronous serial interface |
| SSM | Safe Speed Monitor | Safe feedback from speed monitor |
| SSP | SINAMICS support package | SINAMICS support package |
| STO | Safe Torque Off | Safe torque off |
| STW | Control word | Control word |
| T |  |  |
| TB | Terminal Board | Terminal Board |
| TIA | Totally Integrated Automation | Totally Integrated Automation |
| TM | Terminal Module | Terminal Module |
| TN | Terre Neutre | Grounded three-phase power supply |
| Tn | - | Integral time |
| TPDO | Transmit process data object | Transmit process data object |
| TT | Terre Terre | Grounded three-phase power supply |
| TTL | Transistor-Transistor Logic | Transistor-transistor logic |
| Tv | - | Rate time |
| U |  |  |
| UL | Underwriters Laboratories Inc. | Underwriters Laboratories Inc. |
| UPS | Uninterruptible Power Supply | Uninterruptible power supply |
| USV | Uninterruptible power supply | Uninterruptible power supply |
| UTC | Universal Time Coordinated | Universal time coordinated |
| V |  |  |
| VC | Vector Control | Vector control |
| Vdc | - | DC link voltage |
| VdcN | - | Partial DC link voltage, negative |
| VdcP | - | Partial DC link voltage, positive |
| VDE | Association of German Electrical Engineers | Association of German Electrical Engineers |
| VDI | Association of German Engineers | Association of German Engineers |
| VPM | Voltage Protection Module | Voltage Protection Module |
| Vpp | Volt peak to peak | Volt peak to peak |
| VSM | Voltage Sensing Module | Voltage Sensing Module |
| W |  |  |
| WEA | Automatic restart | Automatic restart |
| WZM | Machine tool | Machine tool |
| X |  |  |
| XML | Extensible Markup Language | Standard language for Web publishing and document management |


| Abbreviation | Source of abbreviation | Meaning |
| :--- | :--- | :--- |
| $\mathbf{Y}$ |  |  |
| $\mathbf{Z}$ |  |  |
| ZK | DC link | DC link |
| ZM | Zero Mark | Zero mark |
| ZSW | Status word | Status word |

## List of references

Documentation for SINAMICS

## Catalogs

ID 31/ SINAMICS and Motors for Single-axis Drives
Order number: E86060-K5531-A101-A1
Edition: 2012
ID 11/ SINAMICS G130 Drive Converter Chassis Units SINAMICS G150 Drive Converter Cabinet Units

Order number: E86060-K5511-A101-A5
Edition: 2011
IPM 21/ SIMOTION, SINAMICS S120 and Motors for Production Machines
Order number: E86060-K4921-A101-A2
Edition: 2011
$\begin{array}{ll}\text { ID 21.3/ } & \text { SINAMICS S120 Chassis Format Units and Cabinet Modules } \\ & \text { SINAMICS S150 Converter Cabinet Units }\end{array}$
SINAMICS S150 Converter Cabinet Units
Order number: E86060-K5521-A131-A3 Edition: 2011

## Related catalogs

IST 70/ SIMATIC Products for Totally Integrated Automation and Micro Automation Ordering information
Order number: E86060-K4670-A101-B3
Edition: 2011
/NC 61/ SINUMERIK \& SINAMICS, Equipment for Machine Tools
Ordering information
Order number: E86060-K4461-A101-A3 Edition: 2010

Interactive catalogs
/CA 01/ Products for Automation and Drives
DVD
Order number:
E86060-D4001-A500-D1
Edition: 10/2011


| /GH7/ | SINAMICS S120 |  |  |
| :---: | :---: | :---: | :---: |
|  | Equipment Manual for Chassis Liquid Cooled Power Units |  |  |
|  | Order number: | 6SL3097-4AM00-0?P2 | Edition: 01/2012 |
| /GS1/ | SINAMICS S120 |  |  |
|  | Getting Started |  |  |
|  | Order number: | 6SL3097-4AG00-0?P1 | Edition: 01/2012 |
| /IH1/ | SINAMICS S120 |  |  |
|  | Commissioning Manual |  |  |
|  | Order number: | 6SL3097-4AF00-0?P2 | Edition: 01/2012 |
| /IH2/ | SINAMICS S120 |  |  |
|  | Commissioning Manual for CANopen |  |  |
|  | Order number: | 6SL3097-4AA00-0?P0 | Edition: 11/2009 |
| /FH1/ | SINAMICS S120 |  |  |
|  | Function Manual for Drive Functions |  |  |
|  | Order number: | 6SL3097-4AB00-0?P2 | Edition: 01/2012 |
| /FHS/ | SINAMICS S120 |  |  |
|  | Function Manual for Safety Integrated |  |  |
|  | Order number: | 6SL3097-4AR00-0?P3 | Edition: 01/2012 |
| /FH4/ | SINAMICS/SIMOTION |  |  |
|  | Function Manual for DCC Standard Blocks |  |  |
|  | Order number: | 6SL3097-4AQ00-0?P2 | Edition: 02/2012 |
| /PB1/ | SINAMICS/SIMOTION |  |  |
|  | Programming and Operating Manual for DCC Editor Description |  |  |
|  | Order number: | 6SL3097-4AN00-0?P1 | Edition: 02/2012 |
| /LH1/ | SINAMICS S120/S150 |  |  |
|  | List Manual |  |  |
|  | Order number: | 6SL3097-4AP00-0?P3 | Edition: 01/2012 |
| /MA1/ | SINAMICS/SINUMERIK |  |  |
|  | Guidelines for Machine Configuration |  |  |
|  | Order number: | 6FC5397-6CP10-0?A1 | Edition: 10/2009 |
| /SH1/ | SINAMICS S120 and SIMODRIVE 611 |  |  |
|  | Guidelines for Control Cabinet Integration |  |  |
|  | Order number: | 6SL3097-0AT00-0?P1 | Edition: 10/2009 |


| /PFK7S/ | SINAMICS 1FK7 Synchronous Motors |  |
| :---: | :---: | :---: |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD16-0?P4 | Edition: 10/2011 |
| /PFT6S/ | SINAMICS 1FT6 Synchronous Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD12-0?P0 | Edition: 12/2004 |
| /PFT7S/ | SINAMICS 1FT7 Synchronous Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6 6SN1197-0AD13-0?P4 | Edition: 07/2011 |
| IAPH4S/ | SINAMICS 1PH4 Induction Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD64-0?P1 | Edition: 08/2008 |
| [APH7P/ | SINAMICS 1PH7 Induction Motors (PM) |  |
|  | Configuration Manual for Production Machines |  |
|  | Order number: 6SN1197-0AC71-0?P0 | Edition: 05/2007 |
| /APH7W/ | SINAMICS 1PH7 Induction Motors (MT) |  |
|  | Configuration Manual for Machine Tools |  |
|  | Order number: 6SN1197-0AD72-0?P0 | Edition: 04/2009 |
| /PPMS/ | SINAMICS 1PM4/1PM6 Hollow-Shaft Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD23-0?P0 | Edition: 04/2008 |
| /PKTS/ | SINAMICS 1FW3 Complete Torque Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD70-0?P5 | Edition: 07/2011 |
| /PMH2/ | SINAMICS SIMAG H2 Hollow-Shaft Measuring System Configuration Manual |  |
|  |  |  |
|  | Order number: 6SN1197-0AB31-0?P8 | Edition: 01/2011 |
| /PH8S/ | SINAMICS 1PH8 Synchronous/Induction Motors |  |
|  | Configuration Manual |  |
|  | Order number: 6SN1197-0AD74-0?P1 | Edition: 04/2010 |
| /PH1/ | EMC Installation Guidelines |  |
|  | Configuration Manual |  |
|  | Order number: 6FC5297-0AD30-0?P3 | Edition: 01/2012 |

Documentation for PROFIBUS
/P1/ PROFIBUS-DP/DPV1 IEC 61158
Basics, Tips and Tricks for Users
Hüthig; Manfred Popp, 2nd Edition
ISBN 3-7785-2781-9
/P2/ PROFIBUS-DP, Getting StartedPROFIBUS Nutzerorganisation e.V.; Manfred Popp
Order number: ..... 4.071
P3/ Distributed Layouts using PROFIBUS-DP
Architecture and Fundamentals, Configuration and Use of PROFIBUS-DP withSIMATIC S7SIEMENS; Publicis MCD Verlag; Josef Weigmann, Gerhard Kilian
Order number: A19100-L531-B714ISBN 3-89578-074-X
/P4/ Manual for PROFIBUS Networks, SIEMENS
Order number: 6GK1970-5CA20-0BA0
/P5/ PROFIBUS and PROFINET, PROFIdrive Profile Drive Technology
PROFIBUS Nutzerorganisation e. V.
Haid-und-Neu-Straße 7, D-76131 Karlsruhe, Germanyhttp://www.profibus.com
Order number: ..... 3.172
Version 4.0 August 2005
Industrial Communication for Automation and Drives
Catalog
Order number: E86060-K6710-A101-B4 ..... Edition: 2005
/PDP/ PROFIBUS Installation Guidelines
Installation Guideline for PROFIBUS FMS/DPInstallation and Wiring Recommendation for RS 485 TransmissionOrder number 2.111 (German)2.112 (English)Version 1.0

## Documentation for Safety Equipment

## Note

For more information on technical documentation in and around the topic of "Safety Integrated", please follow the link below:
http://www.siemens.de/safety
The following list contains some of the safety-related documentation available.
/LV1/ SIRIUS-SENTRON-SIVACON Low-Voltage Controls and Distribution
Catalog
Order number: E86060-K1002-A101-A5 Edition: 2006
/MRL/ Directive 2006/42/EU of the European Parliament and Council Machinery Directive

Bundesanzeiger-Verlags GmbH Edition: 2006
/SISH/ Safety Integrated
System Manual
Order number: 6ZB5000-0AA01-0BA1 5th Edition
System Manual Appendix to 5th Edition
Order number: 6ZB5000-0AB01-0BA0
ISICD/ Safety Integrated
CD-ROM
Order number: E20001-F500-P210 Edition: 04/2008

## Index

## Numbers

1020
Explanation of the symbols (Part 1), 2-1640
1021
Explanation of the symbols (Part 2), 2-1641
1022
Explanation of the symbols (Part 3), 2-1642
1030
Handling BICO technology, 2-1643
1508
CU310-2 input/output terminals, 2-1645
1510
CU320-2 input/output terminals, 2-1646
1512
CX32-2 input/output terminals, 2-1647
1520
PROFIdrive, 2-1648
1530
Internal control/status words, data sets, 2-1649
1550
Setpoint channel, 2-1650
1580
Servo control, encoder evaluations (position, speed, temperature), 2-1651
1590
Servo control, speed control and U/f-
control, 2-1652
1610
Servo control, generation of the torque limits, 2-1653
1630
Servo control, current control, 2-1654
1680
Vector control, encoder evaluations
(position, speed, temperature), 2-1655
1690
Vector control, V/f control, 2-1656

## 1700

Vector control, speed control and generation of the torque limits, 2-1657
1710
Vector control, current control, 2-1658
1750
Monitoring functions, faults, alarms, 2-1659
1773
Basic Infeed, 2-1660
1774
Active Infeed, 2-1661
1775
Smart Infeed, 2-1662
1780
Terminal Module 15 (TM15), 2-1663
1781
Terminal Module 15 for SINAMICS
(TM15DI/DO), 2-1664
1782
Terminal Module 17 High Feature
(TM17 High Feature), 2-1665
1790
Terminal Board 30 (TB30), 2-1666
1840
Terminal Module 31 (TM31), 2-1667
1842
Terminal Module 41 (TM41), 2-1668
1850
Terminal Module 54F (TM54F), 2-1669
2020
CU310-2 digital inputs electrically isolated
(DI 0 ... DI 3, DI 22), 2-1671
2021
CU310-2 digital inputs, electrically isolated (DI 16 ... DI 21), 2-1672
2030
CU310-2 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1673
2031
CU310-2 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1674

```
2032
    CU310-2 digital inputs/outputs,
        bidirectional (DI/DO 12 ... DI/DO 13),
        2-1675
2033
    CU310-2 digital inputs/outputs,
        bidirectional (DI/DO 14 ... DI/DO 15),
        2-1676
2038
    CU310-2 digital output (DO 16), 2-1677
2040
    CU310-2 analog input (AI 0), 2-1678
2120
    CU320-2 digital inputs, electrically
        isolated (DI 0 ... DI 3, DI 16, DI 17),
        2-1680
2121
    CU320-2 digital inputs, electrically
        isolated (DI 4 ... DI 7, DI 20, DI 21),
        2-1681
2130
    CU320-2 digital inputs/outputs,
        bidirectional (DI/DO 8 ... DI/DO 9),
        2-1682
2131
    CU320-2 digital inputs/outputs,
        bidirectional (DI/DO 10 ... DI/DO 11),
        2-1683
2132
    CU320-2 digital inputs/outputs,
        bidirectional (DI/DO 12 ... DI/DO 13),
        2-1684
2133
    CU320-2 digital inputs/outputs,
        bidirectional (DI/DO 14 ... DI/DO 15),
        2-1685
2201
    S120M digital inputs/outputs, bidirectional
        (DI/DO 0 ... DI/DO 1), 2-1687
2211
    CU_LINK data transfer, 2-1689
2220
    CX32-2 digital inputs, electrically isolated
        (DI 0 ... DI 3. DI 16, DI17), 2-1691
2230
    CX32-2 digital inputs/outputs,
        bidirectional (DI/DO 8 ... DI/DO 9),
        2-1692
2231
    CX32-2 digital inputs/outputs
        bidirectional (DI/DO 10 ... DI/DO 11),
        2-1693
```

2410
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2-1697
2415
Standard telegrams and process data 1, 2-1698
2416
Standard telegrams and process data 2, 2-1699
2419
Manufacturer-specific telegrams and process data 1, 2-1700
2420
Manufacturer-specific telegrams and process data 2, 2-1701
2421
Manufacturer-specific telegrams and process data 3, 2-1702
2422
Manufacturer-specific telegrams and process data 4, 2-1703
2423
Manufacturer-specific/free telegrams and process data, 2-1704
2425
STW1_BM control word metal industry interconnection, 2-1705
2426
STW2_BM control word metal industry interconnection, 2-1706
2427
E_STW1_BM control word infeed metal industry interconnection, 2-1707
2428
ZSW1_BM status word metal industry interconnection, 2-1708
2429
ZSW2_BM status word metal industry interconnection, 2-1709
2430
E_ZSW1_BM status word infeed metal industry interconnection, 2-1710 2433

STW2_ENC control word ENCODER interconnection, 2-1711
2434
ZSW2_ENC status word ENCODER interconnection, 2-1712
2439
PZD receive signals, interconnection, profile-specific, 2-1713

## 2440

PZD receive signals, interconnection, manufacturer-specific, 2-1714
2441
STW1 control word interconnection (p2038 = 2), 2-1715
2442
STW1 control word interconnection (p2038 = 0), 2-1716
2443
STW1 control word interconnection (p2038 = 1), 2-1717
2444
STW2 control word interconnection (p2038 = 0), 2-1718
2445
STW2 control word interconnection (p2038 = 1), 2-1719
2447
E_STW1 control word infeed interconnection, 2-1720
2449
PZD send signals, interconnection, profile-specific, 2-1721
2450
PZD send signals, interconnection, manufacturer-specific, 2-1722
2451
ZSW1 status word interconnection (p2038 = 2), 2-1723
2452
ZSW1 status word interconnection (p2038 = 0), 2-1724
2453
ZSW1 status word interconnection (p2038 = 1), 2-1725
2454
ZSW2 status word interconnection (p2038 = 0), 2-1726
2455
ZSW2 status word interconnection (p2038 = 1), 2-1727
2456
MELDW status word interconnection, 2-1728
2457
E_ZSW1 status word infeed interconnection, 2-1729
2462
POS_STW positioning control word interconnection (r0108.4 = 1), 2-1730

2463
POS_STW1 positioning control word 1 interconnection (r0108.4 = 1), 2-1731
2464
POS_STW2 positioning control word 2 interconnection (r0108.4 = 1), 2-1732
2466
POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1), 2-1733
2467
POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1), 2-1734
2468
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2-1735
2470
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2-1736
2472
IF1 status words, free interconnection, 2-1737
2475
STW1 control word 1 interconnection (r0108.4 = 1), 2-1738
2476
SATZANW block selection interconnection (r0108.4 = 1), 2-1739
2479
ZSW1 status word 1 interconnection (r0108.4 = 1), 2-1740
2480
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2-1741
2481
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2-1742
2483
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2-1743
2485
IF2 receive telegram, free
interconnection, 2-1744
2487
IF2 send telegram, free interconnection, 2-1745
2489
IF2 status words, free interconnection, 2-1746
2491
IF2 receive telegram, free interconnection, 2-1747

2493
IF2 send telegram, free interconnection, 2-1748
2495
CU_STW1 control word 1, Control Unit interconnection, 2-1749
2496
CU_ZSW1 status word 1, Control Unit interconnection, 2-1750
2497
A _DIGITAL interconnection, 2-1751
2498
E_DIGITAL interconnection, 2-1752
2499
A_DIGITAL_1 interconnection, 2-1753
2500
E DIGITAL 1 interconnection, 2-1754
2501
Control word, sequence control, 2-1756 2503

Status word, sequence control, 2-1757
2505
Control word, setpoint channel, 2-1758 2520

Control word, speed controller, 2-1759 2522

Status word, speed controller, 2-1760 2526

Status word, closed-loop control, 2-1761 2530

Status word, current control, 2-1762
2534
Status word, monitoring functions 1, 2-1763
2536
Status word, monitoring functions 2 , 2-1764
2537
Status word, monitoring functions 3, 2-1765
2546
Control word, faults/alarms, 2-1766 2548

Status word, faults/alarms 1 and 2, 2-1767
2610
Sequencer, 2-1769
2634
Missing enable signals, line contactor control, logic operation, 2-1770
2701
Basic brake control (r0108.14 = 0), 2-1772

2704
Extended brake control, zero-speed detection (r0108.14 = 1), 2-1773
2707
Extended brake control, open/close brake (r0108.14 = 1), 2-1774
2711
Extended brake control, signal outputs (r0108.14 = 1), 2-1775
2800
SI Basic Functions, parameter manager, 2-1777
2802
Monitoring and
faults/alarms, 2-1778
2804
Status words, 2-1779
2810
STO (Safe Torque Off),
SS1 (Safe Stop 1), 2-1780
2811
STO (Safe Torque Off), safe pulse suppression, 2-1781
2814
SBC (Safe Brake Control), SBA (Safe Brake Adapter), 2-1782
2820
SLS (Safely-Limited Speed), 2-1784
2822
SLP (Safely-Limited Position), 2-1785
2825
SS1, SS2, SOS, internal STOP B, C, D, F, 2-1786
2840
Control word and status word, 2-1787
2846
SI Extended Functions, parameter manager, 2-1788
2847
TM54F parameter manager, 2-1789
2848
TM54F configuration, F-DI/F-DO test, 2-1790
2850
TM54F (F-DI 0 ... F-DI 4), 2-1791
2851
TM54F (F-DI 5 ... F-DI 9), 2-1792
2853
TM54F (F-DO 0 ... F-DO 3,
DI 20 ... DI 23), 2-1793
2855
TM54F control interface
(p9601.2 = 1 \& p9601.3 = 0), 2-1794

2856
TM54F Safe State selection, 2-1795
2857
TM54F assignment (F-DO 0 ... F-DO 3), 2-1796
2858
Control via PROFIsafe
(p9601.2 = p9601.3 = 1), 2-1797
2860
SSM (Safe Speed Monitor), 2-1798
2861
SDI (Safe Direction), 2-1799
2870
CU310-2 (F-DI 0 ... F-DI 2), 2-1800
2873
CU310-2 fail-safe digital output (F-DO 0), 2-1801
2875
CU310-2 control interface, 2-1802
2876
CU310-2 Safe State selection, 2-1803
2877
CU310-2 assignment (F-DO 0), 2-1804
3010
Fixed speed setpoints, 2-1806
3020
Motorized potentiometer, 2-1807
3030
Main/supplementary setpoint, setpoint
scaling, jogging, 2-1808
3040
Direction limitation and direction reversal, 2-1809
3050
Skip frequency bands and speed limitations, 2-1810
3060
Basic ramp-function generator, 2-1811 3070

Extended ramp-function generator, 2-1812
3080
Ramp-function generator selection, status word, tracking, 2-1813
3082
Extended Stop and Retract (ESR, r0108.9 = 1), 2-1814
3090
Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1), 2-1815
3095
Generating the speed limits $(r 0108.8=0)$, 2-1817

3610
Jog mode (r0108.4 = 1), 2-1819
3612
Referencing/reference point approach mode (r0108.4 = 1)
(p2597 = 0-signal), 2-1820
3614
Flying referencing mode (r0108.4 = 1)
(p2597 = 1 signal), 2-1821
3615
Traversing block mode, external block change (r0108.4 = 1), 2-1822
3616
Traversing block mode (r0108.4 = 1), 2-1823
3617
Travel to fixed stop (r0108.4 = 1), 2-1824
3618
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2-1825
3620
Direct setpoint input/MDI mode (r0108.4 = 1), 2-1826
3625
Mode control (r0108.4 = 1), 2-1827
3630
Traversing range limits (r0108.4 = 1), 2-1828
3635
Interpolator (r0108.4 = 1), 2-1829
3640
Control word block selection/MDI
selection (r0108.4 = 1), 2-1830
3645
Status word 1 (r0108.3 = 1, r0108.4 = 1), 2-1831
3646
Status word $2(r 0108.3=1, r 0108.4=1)$, 2-1832
3650
Status word, active traversing block/MDI active (r0108.4 = 1), 2-1833
4010
Position actual value preprocessing (r0108.3 = 1), 2-1835
4015
Position controller (r0108.3 = 1), 2-1836
4020
Standstill monitoring / positioning monitoring (r0108.3 = 1), 2-1837
4025
Dynamic following error monitoring, cam controllers (r0108.3 = 1), 2-1838

## 4704

Position and temperature sensing, encoders 1 ... 3, 2-1840
4710
Speed actual value and pole position sensing, motor encoder (encoder 1), 2-1841
4711
Speed actual value sensing,
encoders 2, 3 (r0108.7 = 1, APC activated), 2-1842
4715
Speed actual value and pole position sensing, motor encoder ASM/SM (encoder 1), 2-1843
4720
Encoder interface, receive signals, encoders 1 ... 3, 2-1844
4730
Encoder interface, send signals, encoders 1 ... 3, 2-1845
4735
Reference mark search with equivalent zero mark, encoders 1 ... 3, 2-1846
4740
Measuring probe evaluation, measured value memory, encoders 1 ... 3, 2-1847
4750
Absolute value for incremental encoder, 2-1848
5020
Speed setpoint filter and speed pre-control, 2-1850
5030
Reference model/pre-control balancing/speed limitation, 2-1851
5040
Speed controller with encoder, 2-1852
5042
Speed controller, torque/speed precontrol with encoder (p1402 = 1), 2-1853
5050
Speed controller adaptation
(Kp_n/Tn_n adaptation), 2-1854
5060
Torque setpoint, control type changeover, 2-1855
5210
Speed controller without encoder, 2-1856

5300
V/f control for diagnostics, 2-1857
5301
Variable signaling function, 2-1858
5490
Speed control configuration, 2-1859
5610
Torque limiting/reduction/interpolator, 2-1860
5620
Motoring/generating torque limit, 2-1861
5630
Upper/lower torque limit, 2-1862
5640
Mode changeover,
power/current limiting, 2-1863
5650
Vdc_max controller and Vdc_min controller, 2-1864
5710
Current setpoint filter, 2-1865
5714
Iq and Id controller, 2-1866
5722
Field current/flux input, flux reduction, flux controller, 2-1867
5730
Interface to the Motor Module (gating signals, current actual values), 2-1868
6030
Speed setpoint, droop, 2-1871
6031
Pre-control balancing, reference/ acceleration model, 2-1872
6040
Speed controller with/without encoder, 2-1873
6050
Speed controller adaptation (Kp_n/Tn_n adaptation), 2-1874
6060
Torque setpoint, 2-1875
6220
Vdc_max controller and Vdc_min controller, 2-1876
6300
V/f characteristic and voltage boost, 2-1877
6310
Resonance damping and slip compensation, 2-1878

6320
Vdc_max controller and Vdc_min controller (U/f), 2-1879
6490
Speed control configuration, 2-1880
6491
Flux control configuration, 2-1881
6495
Excitation (FEM, p0300 = 5), 2-1882
6630
Upper/lower torque limit, 2-1883
6640
Current/power/torque limits
, 2-1884
6710
Current setpoint filter, 2-1885
6714
Iq and Id controller, 2-1886
6721
Id setpoint (PEM, p0300 = 2), 2-1887
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2-1888
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 2-1889
6724
Field weakening controller (PEM, p0300 = 2), 2-1890
6725
Flux setpoint, field weakening controller (FEM, p0300 = 5), 2-1891
6726
Field weakening controller, flux controller (FEM, p0300 = 5), 2-1892
6727
Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5), 2-1893
6730
Interface to the Motor Module (ASM, p0300 = 1), 2-1894
6731
Interface to the Motor Module (PEM, p0300 = 2), 2-1895
6732
Interface to the Motor Module (FEM, p0300 = 5), 2-1896
6733
Motor model selection (FEM and

```
p1300 = 20, p0300 = 5), 2-1897
```

6799
Display signals, 2-1898

7008
kT estimator, 2-1900
7010
Friction characteristic, 2-1901
7012
Advanced Positioning Control (APC, r0108 = 1), 2-1902
7014
External Armature Short-Circuit (EASC, p0300 $=2 x x$ or $4 x x$ ), 2-1903
7016
Internal Armature Short-Circuit (IASC, p0300 $=2 \mathrm{xx}$ or 4 xx ), 2-1904
7017
DC braking (p0300 = 1xx), 2-1905
7020
Synchronization, 2-1906
7950
Fixed values, binary selection
(r0108.16 = 1 and p2216[D] = 2),
2-1908
7951
Fixed values, direct selection
(r0108.16 = 1 and p2216 = 1), 2-1909
7954
Motorized potentiometer (r0108.16 = 1), 2-1910
7958
Closed-loop control (r0108.16 = 1), 2-1911
7960
DC-link voltage controller (r0108.16 = 1), 2-1912
8010
Speed signals 1, 2-1914
8011
Speed signals 2, 2-1915
8012
Torque signals, motor locked/stalled, 2-1916
8013
Load monitoring (r0108.17 = 1), 2-1917
8014
Thermal monitoring, power unit, 2-1918 8016

Thermal monitoring, motor, 2-1919
8017
Thermal motor models (p0300 = xxx), 2-1920
8018
Separately excited synchronous motor (FEM, p0300 = 5), 2-1921

8060
Fault buffer, 2-1923
8065
Alarm buffer, 2-1924
8070
Fault/alarm trigger word (r2129), 2-1925
8075
Fault/alarm configuration, 2-1926
8134
Measuring sockets, 2-1927
8560
Command Data Sets (CDS), 2-1929
8565
Drive Data Sets (DDS), 2-1930
8570
Encoder Data Sets (EDS), 2-1931
8575
Motor Data Sets (MDS), 2-1932
8580
Power unit Data Sets, PDS, 2-1933
8720
Control word
sequence control infeed, 2-1935
8726
Status word
sequence control infeed, 2-1936
8732
Sequencer, 2-1937
8734
Missing enable signals, line contactor control, 2-1938
8750
Interface to the Basic Infeed power unit
(control signals, actual values), 2-1939
8760
Signals and monitoring functions
(p3400 = 0), 2-1940
8820
Control word
sequence control infeed, 2-1942
8826
Status word
sequence control infeed, 2-1943
8828
Status word, infeed, 2-1944
8832
Sequencer, 2-1945
8834
Missing enable signals, line contactor control, 2-1946
8850
Interface to the Smart Infeed (control signals, actual values), 2-1947

8860
Signals and monitoring functions, line supply voltage monitoring, 2-1948
8864
Signals and monitoring functions, line
frequency and Vdc monitoring, 2-1949
8920
Control word
sequence control infeed, 2-1951
8926
Status word
sequence control infeed, 2-1952
8928
Status word, infeed, 2-1953
8932
Sequencer, 2-1954
8934
Missing enable signals, line contactor control, 2-1955
8940
Controller modulation depth reserve /
controller DC link voltage
(p3400.0 = 0), 2-1956
8946
Current pre-control / current controller /
gating unit (p3400.0 = 0), 2-1957
8948
Master/slave (r0108.19 = 1), 2-1958
8950
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0), 2-1959
8960
Signals and monitoring functions, line
supply voltage monitoring
(p3400.0 = 0), 2-1960
8964
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2-1961
9100
TB30 digital inputs, electrically isolated
(DI 0 ... DI 3), 2-1963
9102
TB30 digital outputs, electrically isolated
(DO 0 ... DO 3), 2-1964
9104
TB30 analog inputs (AI $0 \ldots$ AI 1), 2-1965 9106

TB30 analog outputs (AO $0 \ldots$ AO 1), 2-1966

## 9204

Receive telegram, free PDO mapping (p8744 = 2), 2-1968
9206
Receive telegram, Predefined Connection Set (p8744 = 1), 2-1969
9208
Send telegram, free PDO mapping (p8744 = 2), 2-1970
9210
Send telegram, Predefined Connection Set (p8744 = 1), 2-1971
9220
Control word, CANopen, 2-1972
9226
Status word, CANopen, 2-1973
9400
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2-1975
9401
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2-1976
9402
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2-1977
9550
TM31 digital inputs, electrically isolated (DI 0 ... DI 3), 2-1979
9552
TM31 digital inputs, electrically isolated (DI 4 ... DI 7), 2-1980
9556
TM31 digital relay outputs, electrically isolated (DO $0 \ldots$ DO 1), 2-1981
9560
TM31 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1982
9562
TM31 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1983
9566
TM31 analog input 0 (AI 0), 2-1984 9568

TM31 analog input 1 (AI 1), 2-1985
9572
TM31 analog outputs (AO 0 ... AO 1), 2-1986
9576
TM31 temperature evaluation (KTY/PTC), 2-1987

9605
TM120 temperature evaluation channel 1 and 2 (KTY/PTC/bimetal), 2-1989
9606
TM120 temperature evaluation channel
3 and 4 (KTY/PTC/bimetal), 2-1990
9625
TM150 Temperature evaluation structure (channel 0 ... 11), 2-1992
9626
TM150 Temperature evaluation $1 \times 2$, 3, 4wire (channel 0 ... 5), 2-1993
9627
TM150 Temperature evaluation $2 \times 2$-wire (channel 0 ... 11), 2-1994
9660
TM41 digital inputs (DI $0 \ldots$ DI 3), 2-1996 9661

TM41 digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2-1997
9662
TM41 digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3), 2-1998
9663
TM41 analog input 0 (AI 0), 2-1999
9674
TM41 incremental encoder emulation $(\mathrm{p} 4400=0), 2-2000$
9676
TM41 incremental encoder emulation ( $\mathrm{p} 4400=1$ ), 2-2001
9677
STW1 control word interconnection (p0922 = 3), 2-2002
9678
TM41 control word, sequence control (p4400 = 0), 2-2003
9679
STW2 control word interconnection (p0922 = 3), 2-2004
9680
TM41 status word, sequence control, 2-2005
9681
ZSW1 status word interconnection (p0922 = 3), 2-2006
9682
TM41 sequencer ( $\mathrm{p} 4400=0$ ), 2-2007
9683
ZSW2 status word interconnection (p0922 = 3), 2-2008

9794
Cooling unit, control and feedback signals (r0108.28 = 1), 2-2010
9795
Cooling unit, sequence control (r0108.28 = 1), 2-2011
9880
VSM analog inputs (AI 0 ... AI 3), 2-2013 9886

VSM temperature evaluation, 2-2014 9912

BOP20 control word interconnection, 2-2016
9951
Braking Module External sequencer (r0108.26 = 1), 2-2018

## A

Access level (parameter), 1-22
Acknowledgement
Adjustable, 3-2026
Default, 3-2026
IMMEDIATELY, 3-2023
POWER ON, 3-2023
PULSE DISABLE, 3-2023
Active (parameter, C1(x), C2(x), U, T), 1-21
Active Infeed, 2-1950
Control word, sequence control, 2-1951
Line contactor control, 2-1955
Sequencer, 2-1954
Signals and monitoring functions, 2-1950
Status word, sequence control, 2-1952
Table of contents, 2-1950
Address
PROFIBUS, 2-1697
PROFINET, 2-1697
Technical Support, Preface-7
Adjustable parameter, 1-13
Advanced Positioning Control (APC, r0108 = 1), 2-1902
Alarm buffer, 2-1922
Alarm value, 3-2027
Analog inputs
Terminal Board 30 (TB30), 2-1962
Terminal Module 31 (TM31), 2-1978
Analog outputs
Terminal Board 30 (TB30), 2-1962
Terminal Module 31 (TM31), 2-1978
ASCII table, A-2534

Auxiliaries, 2-2009
Axxxx, 3-2025

## B

Basic Infeed, 2-1934
Control word, sequence control, 2-1935
Interface (control signals, actual values), 2-1939
Missing enable signals, line contactor control, 2-1938
Sequencer, 2-1937
Signals and monitoring functions, 2-1934, 2-1940
Status word, sequence control, 2-1936
Table of contents, 2-1934
Basic Operator Panel (BOP), 2-2015
Basic positioner (EPOS), 2-1818
Basic/extended brake control, 2-1771
BI, Binector Input, 1-14
BICO technology, 2-1643
Binector
Input (BI), 1-14
Output (BO), 1-14
Bit array (parameter), 1-30
BO, Binector Output, 1-14
Brake control
Basic, 2-1771
Extended, 2-1771
Braking Module External, 2-2017

## C

C1(x) - Device commissioning state, 1-21
C2(x) - Drive commissioning state, 1-21
Calculated (parameter), 1-22
Can be changed (parameter, C1(x), C2(x), U, T), 1-21

Catalogs, C-2545
CDS, Command Data Set, 1-24, 2-1928, 2-1929
CI, Connector Input, 1-14
CO, Connector Output, 1-14
CO/BO, Connector/Binector Output, 1-14
Command data sets, 2-1928
Communication
CANopen, 2-1967
Communication Board CAN 10 (CBC10), 2-1967
Configuring messages, 2-1922
Connector
Input (CI), 1-14
Output (CO), 1-14

Control
Active Infeed, 2-1950
Basic Infeed, 2-1934
Servo, 2-1849
Smart Infeed, 2-1941
Technology controller, 2-1911
Vector, 2-1869
Control type, 2-1855
Control Unit 310-2 (CU310-2)
Digital inputs, 2-1670
Digital inputs/outputs, 2-1670
Control Unit 320-2 (CU320-2)
Digital inputs, 2-1679
Digital inputs/outputs, 2-1679
Control words, 2-1694
Internal, 2-1755
Standard telegrams, 2-1694
Controller Extension 32-2 (CX32-2)
Digital inputs, 2-1690
Digital inputs/outputs, 2-1690

## Converter

Binector/connector, 2-1737, 2-1746
Connector-binector, 2-1735, 2-1742, 2-1744, 2-1747
CU_LINK, 2-1688
Cxxxxx, 3-2025

## D

Data set, 1-24, 2-1928
Command data set, 1-24
Command data set, CDS, 1-24
Drive data set, 1-24
Drive data set, DDS, 1-24
Encoder data set, 1-24
Encoder data set, EDS, 1-24
Motor data set, 1-24
Motor data set, MDS, 1-24
Power unit data set, 1-24
Power unit data set, PDS, 1-24
Data type (parameter, signal source), 1-23
DC link voltage controller, 2-1950
DCBRAKE, 3-2022
DDS, Drive Data Set, 1-24, 2-1928, 2-1930
Dependency (parameter), 1-30
Description (parameter), 1-29

Digital inputs
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
Terminal Board 30 (TB30), 2-1962
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1974
Terminal Module 31 (TM31), 2-1978
Digital inputs/outputs
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
S120M, 2-1686
Terminal Module 31 (TM31), 2-1978
Digital outputs
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
Terminal Board 30 (TB30), 2-1962
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1974
Terminal Module 31 (TM31), 2-1978
Direction limitation, 2-1805
Direction reversal, 2-1805
Display
Alarms, 3-2020
Faults, 3-2020
Display parameter, 1-13
DO, Drive Object, 1-14
Drive data sets, 2-1928
Drive object, 1-14
DSC (Dynamic Servo Control), 2-1805, 2-1815

## E

EC Declaration of Conformity, Preface-7
EDS, Encoder Data Set, 1-24, 2-1928, 2-1931
ENCODER, 3-2022
Encoder data sets, 2-1928
Encoder evaluation, 2-1839
Expert list, 1-29
Explanations
on function diagrams, 2-1639

## F

Factory setting, 1-28
Fault
Acknowledgement, 3-2023, 3-2026
Cause, 3-2027
Display, 3-2020
Drive object, 3-2026
Explanation of list, 3-2025
Fault location, 3-2026
Fault reaction, 3-2021, 3-2026
General information, 3-2020
How to distinguish a fault from an alarm, 3-2020
List of all faults, 3-2030
Message value, 3-2026
Name, 3-2026
Number, 3-2025
Number range, 3-2030
Remedy, 3-2027
Saving when switching off, 3-2024
Fault buffer, 2-1922
Saving when switching off, 3-2024
Structure, 2-1923
Fault value, 3-2027
Fixed speed setpoints, 2-1805
Fixed values, 2-1641, 2-1908, 2-1909
Free interconnection via BICO, 2-1694
Free interconnection, status words, 2-1737, 2-1746
Friction characteristic, 2-1901
Function (parameter), 1-29

Function diagrams, Active Infeed
Control word sequence control infeed, 2-1951
Controller modulation depth reserve / controller DC link voltage (p3400.0 = 0), 2-1956
Current pre-control / current controller / gating unit (p3400.0 = 0), 2-1957
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0), 2-1959
Master/slave (r0108.19 = 1), 2-1958
Missing enable signals, line contactor control, 2-1955
Sequencer, 2-1954
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2-1961
Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0), 2-1960
Status word sequence control infeed, 2-1952
Status word, infeed, 2-1953
Function diagrams, auxiliaries
Cooling unit, control and feedback signals (r0108.28 = 1), 2-2010
Cooling unit, sequence control (r0108.28 = 1), 2-2011
Function diagrams, Basic Infeed
Control word sequence control infeed, 2-1935
Interface to the Basic Infeed power unit (control signals, actual values), 2-1939
Missing enable signals, line contactor control, 2-1938
Sequencer, 2-1937
Signals and monitoring functions (p3400 = 0), 2-1940
Status word sequence control infeed, 2-1936
Function diagrams, Basic Operator Panel 20
(BOP20)
Control word BOP20 interconnection, 2-2016

Function diagrams, basic positioner (EPOS)
Control word block selection/MDI selection (r0108.4 = 1), 2-1830
Direct setpoint input/MDI mode (r0108.4 = 1), 2-1826
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2-1825
Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal), 2-1821
Interpolator (r0108.4 = 1), 2-1829
Jog mode (r0108.4 = 1), 2-1819
Mode control (r0108.4 = 1), 2-1827
Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0-signal), 2-1820
Status word 1 (r0108.3 = 1, r0108.4 = 1), 2-1831
Status word $2(r 0108.3=1, r 0108.4=1)$, 2-1832
Status word, active traversing block/MDI active (r0108.4 = 1), 2-1833
Travel to fixed stop (r0108.4 = 1), 2-1824
Traversing block mode (r0108.4 = 1), 2-1823
Traversing block mode, external block change (r0108.4 = 1), 2-1822
Traversing range limits (r0108.4 = 1), 2-1828
Function diagrams, brake control
Basic brake control (r0108.14 = 0), 2-1772
Extended brake control, open/close brake (r0108.14 = 1), 2-1774
Extended brake control, signal outputs (r0108.14 = 1), 2-1775
Extended brake control, zero-speed detection (r0108.14 = 1), 2-1773
Function diagrams, Braking Module External
Sequencer (r0108.26 = 1), 2-2018
Function diagrams, Communication Board
CAN
Control word, CANopen, 2-1972
Receive telegram, free PDO mapping (p8744 = 2), 2-1968
Receive telegram, Predefined Connection Set (p8744 = 1), 2-1969
Send telegram, free PDO mapping (p8744 = 2), 2-1970
Send telegram, Predefined Connection Set (p8744 = 1), 2-1971
Status word, CANopen, 2-1973

Function diagrams, CU_LINK
CU_LINK data transfer, 2-1689
Function diagrams, CU310-2 input/output terminals
Analog input (AI 0), 2-1678
Digital inputs, electrically isolated (DI 0 ... DI 21), 2-1672
Digital inputs, electrically isolated (DI 0 ... DI 3, DI 22), 2-1671
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1674
Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2-1675
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2-1676
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1673
Digital output (DO 16), 2-1677
Function diagrams, CU320-2 input/output terminals
Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17), 2-1680
Digital inputs, electrically isolated (DI 4 ... DI 7, DI 20, DI 21), 2-1681
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1683
Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2-1684
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2-1685
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1682
Function diagrams, CX32-2 input/output
terminals
Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17), 2-1691
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1693
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1692
Function diagrams, data sets
Command Data Sets (CDS), 2-1929
Drive Data Sets (DDS), 2-1930
Encoder Data Sets (EDS), 2-1931
Motor Data Sets (MDS), 2-1932
Power unit Data Sets, PDS, 2-1933
Function diagrams, diagnostics
Alarm buffer, 2-1924
Fault buffer, 2-1923
Fault/alarm configuration, 2-1926
Fault/alarm trigger word (r2129), 2-1925
Measuring sockets, 2-1927

Function diagrams, encoder evaluation
Absolute value for incremental encoder, 2-1848
Encoder interface, receive signals, encoders 1 ... 3, 2-1844
Encoder interface, send signals, encoders 1 ... 3, 2-1845
Measuring probe evaluation, measured value memory, encoders 1 ... 3, 2-1847
Position and temperature sensing, encoders 1 ... 3, 2-1840
Reference mark search with equivalent zero mark, encoders 1 ... 3, 2-1846
Speed actual value and pole position sensing, motor encoder (encoder 1), 2-1841
Speed actual value and pole position sensing, motor encoder ASM/SM (encoder 1), 2-1843
Speed actual value sensing, encoders 2, 3 (r0108.7 = 1, APC activated), 2-1842
Function diagrams, explanations
Explanation of the symbols (Part 1), 2-1640
Explanation of the symbols (Part 2), 2-1641
Explanation of the symbols (Part 3), 2-1642
Handling BICO technology, 2-1643
Function diagrams, internal control/status words
Control word, faults/alarms, 2-1766
Control word, sequence control, 2-1756
Control word, setpoint channel, 2-1758
Control word, speed controller, 2-1759
Status word, closed-loop control, 2-1761
Status word, current control, 2-1762
Status word, faults/alarms 1 and 2, 2-1767
Status word, monitoring functions 1 , 2-1763
Status word, monitoring functions 2 , 2-1764
Status word, monitoring functions 3 , 2-1765
Status word, sequence control, 2-1757
Status word, speed controller, 2-1760

Function diagrams, overviews
Active Infeed, 2-1661
Basic Infeed, 2-1660
CU310-2 input/output terminals, 2-1645
CU320-2 input/output terminals, 2-1646
CX32-2 input/output terminals, 2-1647
Internal control/status words, data sets, 2-1649
Monitoring functions, faults, alarms, 2-1659
PROFIdrive, 2-1648
Servo control, current control, 2-1654
Servo control, encoder evaluations (position, speed, temperature), 2-1651
Servo control, generation of the torque limits, 2-1653
Servo control, speed control and U/fcontrol, 2-1652
Setpoint channel, 2-1650
Smart Infeed, 2-1662
Terminal Board 30 (TB30), 2-1666
Terminal Module 15 (TM15), 2-1663
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1664
Terminal Module 17 High Feature (TM17 High Feature), 2-1665
Terminal Module 31 (TM31), 2-1667
Terminal Module 41 (TM41), 2-1668
Terminal Module 54F (TM54F), 2-1669
Vector control, current control, 2-1658
Vector control, encoder evaluations (position, speed, temperature), 2-1655
Vector control, speed control and generation of the torque limits, 2-1657
Vector control, V/f control, 2-1656
Function diagrams, position control
Cam controller (r0108.3 = 1), 2-1838
Dynamic following error monitoring (r0108.3 = 1), 2-1838
Position actual value preprocessing (r0108.3 = 1), 2-1835
Position controller (r0108.3 = 1), 2-1836
Standstill monitoring / positioning monitoring (r0108.3 = 1), 2-1837

Function diagrams, PROFIdrive
A_DIGITAL interconnection, 2-1751
A_DIGITAL_1 interconnection, 2-1753
CU_STW1 control word 1, Control Unit interconnection, 2-1749
CU_ZSW1 status word 1, Control Unit interconnection, 2-1750
E_DIGITAL interconnection, 2-1752
E_DIGITAL_1 interconnection, 2-1754
E_STW1 control word infeed interconnection, 2-1720
E_STW1_BM control word infeed metal industry interconnection, 2-1707
E_ZSW1 status word infeed interconnection, 2-1729
E_ZSW1_BM status word infeed metal industry interconnection, 2-1710
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2-1735, 2-1742
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2-1736, 2-1743
IF1 status words, free interconnection, 2-1737
IF2 receive telegram, free interconnection, 2-1744, 2-1747
IF2 send telegram, free interconnection, 2-1745, 2-1748
IF2 status words, free interconnection, 2-1746
Manufacturer-specific telegrams and process data 1, 2-1700
Manufacturer-specific telegrams and process data 2, 2-1701
Manufacturer-specific telegrams and process data 3, 2-1702
Manufacturer-specific telegrams and process data 4, 2-1703
Manufacturer-specific/free telegrams and process data, 2-1704
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2-1741
MELDW status word interconnection, 2-1728
POS_STW positioning control word interconnection (r0108.4 = 1), 2-1730
POS_STW1 positioning control word 1 interconnection (r0108.4 = 1), 2-1731
POS_STW2 positioning control word 2 interconnection (r0108.4 = 1), 2-1732
POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1), 2-1733

POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1), 2-1734
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2-1697
PZD receive signals, interconnection, manufacturer-specific, 2-1714
PZD receive signals, interconnection, profile-specific, 2-1713
PZD send signals, interconnection, manufacturer-specific, 2-1722
PZD send signals, interconnection, profile-specific, 2-1721
SATZANW block selection interconnection (r0108.4 = 1), 2-1739
Standard telegrams and process data 1, 2-1698
Standard telegrams and process data 2, 2-1699
STW1 control word 1 interconnection (r0108.4 = 1), 2-1738
STW1 control word interconnection (p2038 = 0), 2-1716
STW1 control word interconnection ( p 2038 = 1), 2-1717
STW1 control word interconnection (p2038 = 2), 2-1715
STW1_BM control word metal industry interconnection, 2-1705
STW2 control word interconnection (p2038 = 0), 2-1718
STW2 control word interconnection (p2038 = 1), 2-1719
STW2_BM control word metal industry interconnection, 2-1706
STW2_ENC control word ENCODER interconnection, 2-1711
ZSW1 status word 1 interconnection (r0108.4 = 1), 2-1740
ZSW1 status word interconnection (p2038 = 0), 2-1724
ZSW1 status word interconnection (p2038 = 1), 2-1725
ZSW1 status word interconnection ( p 2038 = 2), 2-1723
ZSW1_BM status word metal industry interconnection, 2-1708
ZSW2 status word interconnection (p2038 = 0), 2-1726
ZSW2 status word interconnection ( p 2038 = 1), 2-1727
ZSW2_BM status word metal industry interconnection, 2-1709

ZSW2_ENC status word ENCODER interconnection, 2-1712
Function diagrams, S120M input/output terminals
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2-1687
Function diagrams, sequence control
Missing enable signals, line contactor control, logic operation, 2-1770
Sequencer, 2-1769
Function diagrams, servo control
Current setpoint filter, 2-1865
Field current/flux input, flux reduction, flux controller, 2-1867
Interface to the Motor Module (gating signals, current actual values), 2-1868
Iq and Id controller, 2-1866
Mode changeover, power/current limiting, 2-1863
Motoring/generating torque limit, 2-1861
Reference model/pre-control balancing/speed limitation, 2-1851
Speed control configuration, 2-1859
Speed controller adaptation (Kp_n/Tn_n adaptation), 2-1854
Speed controller with encoder, 2-1852
Speed controller without encoder, 2-1856
Speed controller, torque/speed precontrol with encoder (p1402 = 1), 2-1853
Speed setpoint filter and speed pre-control, 2-1850
Torque limiting/reduction/interpolator, 2-1860
Torque setpoint, control type changeover, 2-1855
Upper/lower torque limit, 2-1862
V/f control for diagnostics, 2-1857
Variable signaling function, 2-1858
Vdc_max controller and Vdc_min controller, 2-1864

Function diagrams, setpoint channel
Direction limitation and direction reversal, 2-1809
Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1), 2-1815
Extended Stop and Retract (ESR, r0108.9 = 1), 2-1814
Fixed speed setpoints, 2-1806
Main/supplementary setpoint, setpoint scaling, jogging, 2-1808
Motorized potentiometer, 2-1807
Ramp-function generator (basic), 2-1811
Ramp-function generator (extended), 2-1812
Ramp-function generator selection, status word, tracking, 2-1813
Skip frequency bands and speed limitations, 2-1810
Function diagrams, setpoint channel not
activated
Generating the speed limits $(r 0108.8=0)$, 2-1817
Function diagrams, SI Basic Functions
Monitoring and faults/alarms, 2-1778
Parameter manager, 2-1777
SBC (Safe Brake Control), SBA (Safe Brake Adapter), 2-1782
Status words, 2-1779
STO (Safe Torque Off), safe pulse suppression, 2-1781
STO (Safe Torque Off), SS1 (Safe Stop 1), 2-1780

Function diagrams, SI Extended Functions
Control via PROFIsafe
(p9601.2 = p9601.3 = 1), 2-1797
Control word and status word, 2-1787
CU310-2 (F-DI 0 ... F-DI 2), 2-1800
CU310-2 assignment (F-DO 0), 2-1804
CU310-2 control interface, 2-1802
CU310-2 fail-safe digital output (F-DO 0), 2-1801
CU310-2 Safe State selection, 2-1803
Parameter manager, 2-1788
SDI (Safe Direction), 2-1799
SLP (Safely-Limited Position), 2-1785
SLS (Safely-Limited Speed), 2-1784
SS1, SS2, SOS, internal STOP B, C, D, F, 2-1786
SSM (Safe Speed Monitor), 2-1798
TM54F (F-DI 0 ... F-DI 4), 2-1791
TM54F (F-DI 5 ... F-DI 9), 2-1792
TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23), 2-1793
TM54F assignment (F-DO $0 \ldots$ F-DO 3), 2-1796
TM54F configuration, F-DI/F-DO test, 2-1790
TM54F control interface (p9601.2 = 1 \& p9601.3 = 0), 2-1794
TM54F parameter manager, 2-1789
TM54F Safe State selection, 2-1795
Function diagrams, signals and monitoring
functions
Load monitoring (r0108.17 = 1), 2-1917
Separately excited synchronous motor (FEM, p0300 = 5), 2-1921
Speed signals 1, 2-1914
Speed signals 2, 2-1915
Thermal monitoring, motor, 2-1919
Thermal monitoring, power unit, 2-1918
Thermal motor models (p0300 = xxx), 2-1920
Torque signals, motor locked/stalled, 2-1916

Function diagrams, Smart Infeed
Control word sequence control infeed, 2-1942
Interface to the Smart Infeed (control signals, actual values), 2-1947
Missing enable signals, line contactor control, 2-1946
Sequencer, 2-1945
Signals and monitoring functions, line frequency and Vdc monitoring, 2-1949
Signals and monitoring functions, line supply voltage monitoring, 2-1948
Status word sequence control infeed, 2-1943
Status word, infeed, 2-1944
Function diagrams, TB30
Analog inputs (AI $0 \ldots \mathrm{Al}$ 1), 2-1965
Analog outputs (AO $0 \ldots$ AO 1), 2-1966
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1963
Digital outputs, electrically isolated (DO 0 ... DO 3), 2-1964
Function diagrams, technology controller
Closed-loop control (r0108.16 = 1), 2-1911
DC-link voltage controller (r0108.16 = 1), 2-1912
Fixed values, binary selection (r0108.16 = 1 and p2216[D] = 2), 2-1908
Fixed values, direct selection (r0108.16 = 1 and p2216 = 1), 2-1909
Motorized potentiometer (r0108.16 = 1), 2-1910
Function diagrams, technology functions
Advanced Positioning Control (APC), 2-1902
DC braking (p0300 = 1xx), 2-1905
External Armature Short-Circuit (EASC, p0300 $=2 x x$ or $4 x x$ ), 2-1903
Friction characteristic, 2-1901
Internal Armature Short-Circuit (IASC, p0300 $=2 x x$ or $4 x x$ ), 2-1904
kT estimator, 2-1900
Synchronization, 2-1906
Function diagrams, TM120
Temperature evaluation channel 1 and 2 (KTY/PTC/bimetal), 2-1989
Temperature evaluation channel 3 and 4 (KTY/PTC/bimetal), 2-1990

Function diagrams, TM150
Temperature evaluation 1x2, 3, 4-wire (channel 0 ... 5), 2-1993
Temperature evaluation $2 \times 2$-wire (channel 0 ... 11), 2-1994
Temperature evaluation structure (channel 0 ... 11), 2-1992
Function diagrams, TM15DI/DO
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2-1975
Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2-1977
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2-1976
Function diagrams, TM31
Analog input 0 (AI 0), 2-1984
Analog input 1 (AI 1), 2-1985
Analog outputs (AO 0 ... AO 1), 2-1986
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1979
Digital inputs, electrically isolated (DI 4 ... DI 7), 2-1980
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1983
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1982
Digital relay outputs, electrically isolated (DO 0 ... DO 1), 2-1981
Temperature evaluation (KTY/PTC), 2-1987
Function diagrams, TM41
Analog input 0 (AI 0), 2-1999
Control word, sequence control (p4400 = 0), 2-2003
Digital inputs (DI 0 ... DI 3), 2-1996
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2-1997
Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3), 2-1998
Incremental encoder emulation (p4400 = 0), 2-2000
Incremental encoder emulation (p4400 = 1), 2-2001
Sequencer (p4400 = 0), 2-2007
Status word, sequence control, 2-2005
STW1 control word interconnection (p0922 = 3), 2-2002
STW2 control word interconnection (p0922 = 3), 2-2004
ZSW1 status word interconnection (p0922 = 3), 2-2006
ZSW2 status word interconnection (p0922 = 3), 2-2008

Function diagrams, vector control
Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5), 2-1893
Current setpoint filter, 2-1885
Current/power/torque limits , 2-1884
Display signals, 2-1898
Excitation (FEM, p0300 = 5), 2-1882
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2-1888
Field weakening controller (PEM, p0300 = 2), 2-1890
Field weakening controller, flux controller (ASM, p0300 = 1), 2-1889
Field weakening controller, flux controller (FEM, p0300 = 2), 2-1892
Flux control configuration, 2-1881
Flux setpoint, field weakening controller (FEM, p0300 = 5), 2-1891
Id setpoint (PEM, p0300 = 2), 2-1887
Interface to the Motor Module (ASM, p0300 = 1), 2-1894
Interface to the Motor Module (FEM, p0300 = 5), 2-1896
Interface to the Motor Module (PEM, p0300 = 2), 2-1895
Iq and Id controller, 2-1886
Motor model selection (FEM and p1300 = 20, p0300 = 5), 2-1897
Pre-control balancing, reference/ acceleration model, 2-1872
Resonance damping and slip compensation, 2-1878
Speed control configuration, 2-1880
Speed controller adaptation (Kp_n/Tn_n adaptation), 2-1874
Speed controller with/without encoder, 2-1873
Speed setpoint, droop, 2-1871
Torque setpoint, 2-1875
Upper/lower torque limit, 2-1883
V/f characteristic and voltage boost, 2-1877
Vdc_max controller and Vdc_min controller, 2-1876
Vdc_max controller and Vdc_min controller (U/f), 2-1879
Function diagrams, Voltage Sensing Module (VSM)
Analog inputs (AI 0 ... AI 3), 2-2013
Temperature evaluation, 2-2014

Function module, 1-14
Fxxxx, 3-2025

## G

General information
About parameters, 1-12
on faults and alarms, 3-2020
on function diagrams, 2-1639

## H

Holding brake, 2-1771
Hotline, Preface-7

## I

IASC, 3-2022
Incremental encoder emulation, 2-1995 Index

Factory setting, 1-29
Parameter, 1-13, 1-29
Input terminals
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
Terminal Board 30 (TB30), 2-1962
Terminal Module 31 (TM31), 2-1978
Internal control/status words, 2-1755

## J

Jogging, 2-1805, 2-1808

## K

kT estimator, 2-1900

## L

Line contactor control, 2-1770, 2-1934, 2-1941, 2-1946, 2-1950, 2-1955
Linked parameter, 1-13

List
Abbreviations, B-2535
ASCII table, A-2534
Complete table of contents, Contents-9
Faults and alarms, 3-2030
List of abbreviations, B-2535
List of references, C-2545
Message ranges, 3-2030
Parameter ranges, 1-31
Parameters for command data sets, 1-1596
Parameters for drive data sets, 1-1599
Parameters for encoder data sets, 1-1612
Parameters for motor data sets, 1-1614
Parameters for power unit data sets, 1-1618
Parameters for write protection and knowhow protection, 1-1620
Parameters, all, 1-34
References, C-2545
Table of contents, function diagrams, 2-1627
List of abbreviations, B-2535
List of references, C-2545
Load monitoring (r0108.17 = 1), 2-1913

## M

Main/supplementary setpoint, 2-1805
Manufacturer-specific telegrams, 2-1694
MDS, Motor Data Set, 1-24, 2-1928, 2-1932
Measuring sockets, 2-1922
Message buffer, 2-1922
Message value, 3-2026
Messages, 2-1913
Missing enable signals
Active Infeed, 2-1955
Basic Infeed, 2-1938
Drive, 2-1770
Smart Infeed, 2-1946
Monitoring functions, 2-1913
Motor data sets, 2-1928
Motor holding brake, 2-1771
Motorized potentiometer, 2-1805, 2-1910

## N

Name
Fault, 3-2026
Parameter, 1-14
Warning, 3-2026
Not for motor type, 1-28

Notes
Hotline, Preface-7
Product information, Preface-5
Technical Support, Preface-7
Number
Fault, 3-2025
Parameter, 1-13
Warning, 3-2025
Number range
Alarms, 3-2030
Faults, 3-2030
Parameter, 1-31

## 0

Object, 1-14
OFF1, 3-2021
OFF1_DELAYED, 3-2021
OFF2, 3-2021
OFF3, 3-2022
Output terminals
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
Terminal Board 30 (TB30), 2-1962
Terminal Module 31 (TM31), 2-1978

## P

P group (parameter), 1-25
Parameter
Access level, 1-22
Calculated, 1-22
Can be changed, 1-21
Data type, 1-23
Description, 1-29
Dynamic index, 1-24
Expert list, 1-29
Full name, 1-14
Function, 1-29
Index, 1-13, 1-29
Linked parameter, 1-13
List of all parameters, 1-34
List of parameters for command data sets, 1-1596
List of parameters for drive data sets, 1-1599
List of parameters for encoder data sets, 1-1612
List of parameters for motor data sets, 1-1614
List of parameters for power unit data sets, 1-1618

Name, 1-14
Not for motor type, 1-28
Number, 1-13
Number range, 1-31
P group, 1-25
Safety notices, 1-30
Scaling, 1-28
Short name, 1-14
Unit, 1-25
Unit group, 1-25
Unit selection, 1-25
Values, 1-29
Password for access level 4, 1-22
PDS, Power unit Data Set, 1-24, 2-1928, 2-1933
PID controller (p0108.16 = 1), 2-1907
Position control, 2-1834
Power unit data sets, 2-1928
Process data, 2-1694
Product information, Preface-5
PROFIdrive, 2-1694
pxxxx, 1-13

## R

Ramp-function generator, 2-1805
Reaction to faults, 3-2021
Relay outputs, 2-1978
Resetting faults, 3-2026
rxxxx, 1-13

## S

S120M distributed drive, 2-1686
Safety Integrated
Basic Functions, 2-1776
Extended functions, 2-1783
Safety notices (parameter), 1-30
Scaling, 1-28
Search tools for manual, Preface-7
Sequence control, 2-1768
Servo control
Control type changeover, 2-1855
Current setpoint filter, 2-1865
Encoder evaluation, 2-1839
Iq and Id controller, 2-1866
Kp_n-/Tn_n adaptation, 2-1854
Speed controller, 2-1852
Speed controller without encoder, 2-1856
Speed setpoint filter and pre-control, 2-1850
Table of contents, 2-1849
Torque setpoint, 2-1855
V/f control for diagnostics, 2-1857
Variable signaling function, 2-1858

Setpoint channel, 2-1805
Setpoint channel not activated, 2-1816
Signal path in function diagrams, 2-1640
Signals, 2-1913
Skip frequency bands, 2-1805
Smart Infeed, 2-1941
Control word, sequence control, 2-1942
Interface (control signals, actual values), 2-1947
Line contactor control, 2-1946
Line supply voltage monitoring, 2-1948
Sequencer, 2-1945
Signals and monitoring functions, 2-1941
Status word, sequence control, 2-1943
Table of contents, 2-1941
Speed control
Servo, 2-1849
Vector, 2-1869
Speed signals, 2-1913
Status words
Internal, 2-1755
Standard telegrams, 2-1694
STOP1, 3-2022
STOP2, 3-2022
Support, Preface-7
Support Request, Preface-7
Synchronization, 2-1906

## T

T - Ready for operation state, 1-21
Target group, Preface-6
Technical Support, Preface-7
Technology controller (p0108.16 = 1), 2-1907
Technology functions, 2-1899
Telegrams, 2-1694
Temperature evaluation
Terminal Module 120 (TM120), 2-1988
Terminal Module 150 (TM150), 2-1991
Terminal Module 31 (TM31), 2-1978
Terminal Board 30 (TB30), 2-1962
Terminal Module 120 (TM120), 2-1988
Terminal Module 15 for SINAMICS
(TM15DI/DO), 2-1974
Terminal Module 150 (TM150), 2-1991
Terminal Module 31 (TM31), 2-1978
Terminal Module 41 (TM41), 2-1995
Terminals
Control Unit 310-2 (CU310-2), 2-1670
Control Unit 320-2 (CU320-2), 2-1679
Controller Extension 32-2 (CX32-2), 2-1690
Terminal Board 30 (TB30), 2-1962
Terminal Module 31 (TM31), 2-1978

Thermal monitoring, 2-1913
Torque signals, 2-1913
Triggering when messages are issued (r2129), 2-1922

## U

U - Operation state, 1-21
Unit (parameter), 1-25
Usage phases, Preface-6

## V

V/f control
Servo, 2-1857
Vector, 2-1877
Values (parameter), 1-29
Variable signaling function, 2-1858
Vector control
Current setpoint filter, 2-1885
Droop, 2-1871
Encoder evaluation, 2-1839
Field weakening characteristic, Id setpoint, 2-1888
Flux control, 2-1881
Iq and Id controller, 2-1886
Kp_n-/Tn_n adaptation, 2-1874
Resonance damping and slip compensation, 2-1878
Speed control configuration, 2-1880
Speed controller with/without encoder, 2-1873
Table of contents, 2-1869
Torque setpoint, 2-1875
V/f characteristic, 2-1877
Vdc_max controller and Vdc_min controller, 2-1876, 2-1879
Version
List of all parameters, 1-34
List of faults and alarms, 3-2030
List of parameters for command data sets, 1-1596
List of parameters for drive data sets, 1-1599
List of parameters for encoder data sets, 1-1612
List of parameters for motor data sets, 1-1614
List of parameters for power unit data sets, 1-1618
Voltage Sensing Module (VSM)
Analog inputs, 2-2012
Sensor monitoring KTY/PTC, 2-2012
Temperature evaluation, 2-2012

## W

Warning
Cause, 3-2027
Display, 3-2020
Drive object, 3-2026
Explanation of list, 3-2025
Fault location, 3-2026
General information, 3-2020
How to distinguish an alarm from a fault, 3-2020
List of all alarms, 3-2030
Message value, 3-2026
Name, 3-2026
Number, 3-2025
Number range, 3-2030
Remedy, 3-2027

## SINAMICS documentation overview

## General documentation / catalogs

| SINAMICS |
| :---: | :---: |
| G110 SINAMICS |

D11.1
Converter chassis units
0.12 kW to 3 kW

D11
Converter chassis units
Converter cabinet units


PM21
SIMOTION, SINAMICS S120 and Motors for Production Machines


D21.3
SINAMICS S120
Chassis Format Units and Cabinet Modules SINAMICS S150
Converter cabinet units

## Manufacturer / service documentation

SINAMICS

Getting Started
Operating Instructions List Manual


Getting Started
Operating Instructions
Hardware Installation Manual
Function Manual Safety Integrated List Manual


Operating Instructions List Manual


Operating Instructions List Manua


Operating Instructions List Manual

Manufacturer / service documentation

| SINAMICS |
| :--- |
| S110 |
|  |

Equipment Manual
Getting Started
Function Manual List Manual


Getting Started
Commissioning Manual
Commissioning Manual for CANopen
Function Manual for Drive Functions
Function Manual for Safety Integrated Function Manual DCC
List Manual


Equipment Manual for Control Units and
Supplementary Components
Equipment Manual for Booksize Power Units
Equipment Manual for Chassis Power Units
Equipment Manual for Chassis Liquid
Cooled Power Units
Manual for Cabinet Modules
Manual for AC Drives

## Manufacturer / service documentation



SINAMICS
Manual Collection


Configuration Manuals Motors


Configuration Manual
EMC Guidelines

Siemens AG
Industry Sector
Drive Technologies
Motion Control Systems Postfach 3180
91050 ERLANGEN
GERMANY


[^0]:    Note:
    A "function module" is a functional expansion of a drive object that can be activated when commissioning.

[^1]:    Description: You can change the number of topology components using this parameter. Index 0:
    The values 2 ... 199 are permissible.
    Index 1:
    The values 2 ... 199 are permissible.
    Index 2:
    =0: Ready.
    = 1: Reset (only indices $0 \ldots 2$ ).
    = 2: Reset all (indices $0 \ldots 2$ and flagged entries).
    $=3$ : Check and flag for modification.
    Index:
    [0] = Component number old
    [1] = Component number new
    [2] = Reset or check and flag for modification
    Note: Only for internal Siemens use.
    The parameter is not displayed for the STARTER commissioning software.

[^2]:    งМə!ルəィО
    Function diagrams

[^3]:    

[^4]:    © Siemens AG 2012 All Rights Reserved
    SINAMICS S120/S150 List Manual (LH1), 01/2012, 6SL3097-4AP00-0BP3

[^5]:    ノоұиоэ ィоџวəィ

[^6]:    ノ๐циоэ ィоџวəィ

[^7]:    ノ๐џиоэ лоғэәィ

[^8]:    Function diagrams
    Vector contro

[^9]:    

[^10]:    рәәци әл!џ৩ト

[^11]:    

[^12]:    Function diagrams
    Terminal Module 15 for SINAMICS (TM15DI/DO)

[^13]:    (LEWL) LE әпрроW Ieu!шлә」

    ## Function diagrams

[^14]:    © Siemens AG 2012 All Rights Reserved
    SINAMICS S120/S150 List Manual (LH1), 01/2012, 6SL3097-4AP00-0BP3

[^15]:    © Siemens AG 2012 All Rights Reserved
    SINAMICS S120/S150 List Manual (LH1), 01/2012, 6SL3097-4AP00-OBP3

[^16]:    

[^17]:    sә!иe!!!xn $\forall$
    Function diagrams

[^18]:    © Siemens AG 2012 All Rights Reserved
    SINAMICS S120／S150 List Manual（LH1），01／2012，6SL3097－4AP00－OBP3

