SIEMENS

SIMATIC S5

S5-135U
CPU 928B - Version -3UB21

Programming Guide

C79000-G8576-C870-01

Preface, Contents

Introduction

User Program

Program Execution

Operating Modes and Program
Processing Levels

Interrupt and Error Handling

Integrated Special Functions

Extended Data Block DX 0

Memory Assignment and Memory
Organization

Memory Access Using Absolute
Addresses

Multiprocessor Mode and
Communication

PG Interfaces and Functions

Appendix

Further Reading

List of Abbreviations

Glossary, Index

The CPU 928/CPU 928B/CPU 948, List of

Operations, order no. 6ES5 997-3UAZ23,
Rel. 01 is included with this manual.

© 0 N O OO B O N -

10

W = o

Safety Guidelines This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

ijt Danger
indicates that death, severe personal injury or substantial property damage will result if proper precautions are

not taken.

ijf Warning
indicates that death, severe personal injury or substantial property damage can result if proper precautions are

not taken.

iji Caution
indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly importantinformation onthe product, handling the product, orto a particular

part of the documentation.

Qualified Personnel The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Correct Usage Note the following:
iji Warning
This device and its components may only be used for the applications described in the catalog or the technical

description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safelyifitis transported, stored, setup, andinstalled correctly, and
operated and maintained as recommended.

Trademarks SIMATIC® and SINEC® are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

Copyright © Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design, are
reserved.

Siemens AG

Automation Group

Industrial Automation Systems
Postfach 4848, D-90327 Nurnberg

Disclaimer of Liability

We have checked the contents of this manual foragreementwith the
hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

© Siemens AG 1996
Technical data subject to change.

Siemens Aktiengesellschaft

6ES5998-2PR22

Preface

Scope of the This programming guide describes the CPU 928B-3UB21 and its system
Manual software.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Preface

Overview of the
Chapters

Chapter 1 informs you about the areas of application of the S5-135U
programmable controller with the CPU 928B and its device structure.

It explains the typical mode of operation of the CPU and illustrates how a CPU
program is structured.

The chapter also contains suggestions about how to tackle programming and
which characteristics of the CPU 928B-3UB21 are important for programming.

If you have already worked with the CPU 928B-3UB12 and want to know the
differences between this CPU and the CPU 928B-3UB21 you will find this
information in this chapter.

Chapter 2 explains the components of a STEP 5 user program and how the
program can be structured.

Chapter 3 is intended for readers who do not yet have much experience of using
the STEP 5 programming language. It therefore deals with the basics of STEP 5
programming and explains the STEP 5 operations in detail (with examples).

Experienced readers who may find that the information about specific operations
in the pocket guide is inadequate, can use Section 3.5 as a reference section.

Chapter 4 provides an overview of the modes and program execution levels of
the CPU 928B. It provides you with detailed information about various start-up
modes and the associated organization blocks in which you can program your
routines for differrent start-up situations.

The chapter also explains the differences between the program execution levels
"cyclic processing", "time-controlled processing" and "interrupt-driven
processing" and which blocks are available for your user program.

Chapter S informs you about errors to be avoided when planning and writing
your STEP 5 programs.

The chapter tells you about the help you can obtain from the system program for
diagnosing errors and which reactions can be expected and informs you about the
blocks in which you can program reactions to certain errors.

Chapter 6 covers the special functions integrated in the system program. It tells
you how to use the special functions and how to call and assign parameters to the
special function OBs.

The chapter also explains how to recognize and deal with errors in the processing
of a special function.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Preface

Chapter 7 describes the use of data block DX 0 and its structure. The chapter
informs you of the significance of the various DX 0 parameters. Based on examples,
you will learn how to create data block DX 0 or how to assign the parameters in a
screen form.

Chapter 8 is a reference section for experienced system users. It provides
information about the memory organization of the CPU 928B and certain system
data words which contain information that can be called up by the user.

You will also learn how you can switch software protection for your CPU on and

off via a system data word.

Chapter 9 is also for experienced system users. The chapter explains how to
address data in certain memory areas using absolute addresses.

Chapter 10 lists a number of points about using multiprocessor operation and
the possibility of using it to exchange data between CPUs and CPs.

The chapter provides information about programming for multiprocessor
operation.

The remainder of the chapter provides detailed information and application

examples for exchanging larger amounts of data in the multiprocessor mode
(multiprocessor communication).

Chapter 11 tells you how to connect your CPU to a PG and the functions
provided by the PG software to test your STEP 5 program.

Appendix A contains an overview of the characteristic technical data of the
CPUs 928A, 928B und 948 for camparison purposes.

Appendix B lists documentation for further reading.

Appendix C is intended to help you find themes quickly and contains a list of
abbreviations and a list of keywords.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Preface

Conventions Second-level section numbering

used in the text
Larger sub-chapters (e.g. 4.3) with second-level numbers start at the top of a new
page with a bold heading and appear in the list of contents.

Block labels

Bold headings (block labels) appear in the margin on the left of the page to make
it easier for you to find technical information.

Notes

Note
Important information is indicated in this format.

Tables for reference

Table 3-2 Binary logic operations

Operation Operand Function
A AND logic operation with scan for signal state "1"
o OR logic operation with scan for signal state "1"
I 0.0to127.7 of an input in the PII
Examples

Examples, some of which cover several pages, are highlighted by a gray frame.
‘When the examples cover more than one page this is clearly indicated.

Example 1: Calling and assigning parameters to a function block in the
methods of representation STL and LAD/CSF in a program block

Method of representation STL

CPU 928B-3UB21 Programming Guide
vi C79000-G8576-C870-01

Contents

1.1
1.2
1.3

14
1.5
1.6
1.7
1.8

22

23

24

INtroductioncveeieiieniiereieeeeeeesesossccscccnsssoscasssaasssanssssenns 11
Area of Application for the S5-135U withthe CPU928B., 1-2
Typical Mode of Operation of a CPUttt 1-3
The Programs in @ CPUttt e e i 1-5
1.3.1 System Programt i e 1-5
132 UserProgramt i i it it 1-7
Which Operands are available to the User Program?.o, 19
Accessing Operand Areas and MemoOry Areasooiutttttninnnrnnnnnnnnnns 1-12
How to Tackle Programming....... ... iiiiiimn i iiinnaeeeen 1-13
Programming TOOISot e 1-16
What is New with the CPU 928B (-3UB21)?.ottt eiieee e 1-17
USEr Programocviieerennseeeeaneeeeososssaaocanasosssssssssssssssssssasns 2-1
STEP 5 Programming Language oottt ittt iiieeenneeneeaneenans 2-2
2.1.1 The LAD, CSFE, STL Methods of Representation.coviiiiiinennn.. 2-2
2.1.2 Structured Programmingouutiuniiniiiintriirrtanerineeneennns 2-4
2.1.3 STEP 5 Operations. « . v vt vvtin et tiinn e iieeeeaeaaseeennaaeenennns 2-5
2.1.4 Number Representationoovniiiiin ittt 2-6
2.1.5 STEP 5 Blocks and Storing them in Memory.coviiiiiiiiiinnan.. 2-10
Program, Organization and Sequence Blocks.l 2-14
2.2.1 Organization Blocks as User Interfaces. 2-16
2.2.2 Organization Blocks for Special Functions............. 2-19
Function BIOCKS . . vt vt vttt et ettt et ittt et et e 2-21
2.3.1 Structure of Function BIOCKS ooiiii i e 2-22
2.3.2 Programming Function Blocks i 2-24
2.3.3 Calling Function Blocks and Assigning Parameterstothem 2-26
23.4 Special Function BIOCKS.ot e 2-31
Data BIOCKS . ..ottt ittt e e e e 2-33
24.1 Creating Data BlockS.ttt e 2-35
242 OpeningData BIOCKSooviii e 2-36
243 Special Data BIOCKS oo oo e 2-39

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 vii

Contents

31
32
33
34

35

4.1
4.2
4.3

4.4

4.1

5.1
52
53

54

viii

Program EXecution.ccouuuiiiiiiiiiieieieetereteeeererecasosssnsssoscncncnne 31
Principle of Program EXeCUtion.oiiuiiett it 32
Program Organizationeeuuuuiniiinoneneeineeeeeeereeeeeeeenenenenens 33
Storing Program and Data BIockscoiiiiiiiii i 3-8
Processing the User Program.ottt 3-10
3.4.1 Definition of Terms used in Program Execution...................coiiinann. 3-11
STEP 5 Operations with Examples. ...t 3-13
3.5.1 BasiC Operations.vuvuvn v it ettt ittt 3-17
3.5.2 Programming Examples in the STL, LAD and CSF Methods of Representation. 3-32
3.53 Supplementary Operations.ovutiiiiiiiineeeeiinnneennnneeeeeenns 3-47
354 Executive Operationsuvutiiiuiinnneiniineeeeuunnnneennnneneeeenns 3-54
3.55 Semaphore OPerationsuuve ettt eeeenuineeeennnneeeennnneeeennnns 3-67
Operating Modes and Program Processing Levels ..., 4-1
Introduction and OVEIVIEWttt ittt iiiiiee e eiiaeaaanns 4-2
Program Processing Levels e 4-5
T N0 1Y (6T L PP 4-11
43.1 Characteristics and Indication of the Operating Mode, 4-11
43.2 Requesting and Performing an OVERALL RESETcooiinit, 4-13
RESTART MOGE .o vtttiee et ettt ettt et ettt et eiaaanaas 4-15
441 MANUAL and AUTOMATIC COLD RESTART, 4-16
442 MANUAL and AUTOMATIC WARMRESTART ..., 4-16
443 Comparison of the Different Restart Types.............cooiiii i, 4-18
4.4.4 UserInterfaces for Restart..........coiiuiiiii it 4-19
4.4.5 Interruptions in the RESTART Mode ...ttt 4-22
2L\ 1Y (0 [P 4-24
4.1.1 Cyclic Program EXecutionoovuiiiiiiiiiii ittt 4-26
4.1.2 Time-Driven Program EXecution............coviiiiniiiiiinniiiinneennnn, 4-28
4.13 CLOSED LOOP CONTROLLER INTERRUPT: Processing Closed Loop Controllers 4-35
4.14 PROCESS INTERRUPT: Interrupt-Driven Program Execution................... 4-36
4.1.5 Nested Interrupt-Driven and Time-Driven Program Execution 4-39
Interrupt and Error Handlingooviiitiiiiiiiieenneeereneeeereocccannsenns 5-1
Frequent Errors in the User Programottt 52
Error Informationt it i i i e e e 53
Control Bits and Interrupt Stackt 5-7
531 Control BitSueer ettt e e 5-8
532 ISTACK CONMEENL. . . v oo et eeee ettt ettt ettt ieeeannnnns 5-13
5.3.3 Example of Error Diagnosis using the ISTACK.............. ... oo, 5-19
Error Handling using Organization Blocks.o i ittt 5-22

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Contents

55 Errors during RESTARTo i i it
551 DBO-FE(DBOEITOIS). ..ottt ettt
552 DBI-FE(DB LEITOIS). . ottt ettt ittt e
553 DB2-FE(DB 2 EITOIS). . oo ttittttteteeii et iiiiiiiie e,
554 DXO-FE (DX O00rDX 2ZEIOrs) .o vvvvvuuriitein it i,
5.5.5 MOD-FE (Memory Card EITOrIS).o vvivveieiiiiiiiii e
5.6 Errors in RUN and in RESTART.ot i i i it
5.6.1 BCF (Operation Code EITOIS)vvvnntieiiiiiiiii i
562 LZF (Runtime EIrors)oouueinnitiiii i,
5.63 ADF (Addressing Error)ooiiiiiiiiiiiiiiiiii i
5.6.4 QVZ (Timeout EITOr). ouutvntt ittt
5.6.5 ZYK (Cycle Time Exceeded Error).cooiiviiiiiiiiiiii...
5.6.6 WECK-FE (Collision of Time Interrupts).oooveviiieinii
5.6.7 REG-FE (Controller Error)coiuuitiiiiiiiiiiii ...
5.6.8 ABBR (ADOI) ..ottt ittt e
5.6.9 Communication Errors (FE-3)........oooiiiiiii i
6 Integrated Special Functionscccoiiiieeieiiiiiiinentetieeiinnenceccnens
6.1 INtrodUCHONvuu ettt i i i
6.2 OB 110: Accessing the Condition Code Bytecoiiiiiiiiie i,
63 OB111: Clear ACCUs 1,2,3and 4......oovniiniiiiiiiiiiiiiiiiiinnnnnn
6.4 OB 112/113: Roll Up ACCU and Roll Down ACCU.t
6.5 OB 120: Enabling/Disabling of INtEITuptsoouuieteeniniiieeeenenannnnn
6.6 OB 121: Enable/Disable Individual Time-Driven Interruptsoooovviiin ..
6.7 OB 122: Enable/Disable "Delay of All Interrupts"o o iiiiiiiiiiiiie,
6.8 OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts"
69 OB 134,135,136 and 139.\ un ittt e e
6.10 Setting/Reading the System Time (OB 150).........oouiiiiiiiiiiiiiiiiiiiiiennn
6.11 OB 151: Setting/Reading the Time for Clock-Driven Interrupts.............ouut.
6.12 OB 152: Cycle StatiStiCs « .o v vveie ittt it ettt
6.13 OB 153: Set/Read Time for Delay Interrupt.oovvuvn it
6.14 OB 160 t0 163: LoOP COUNLETS . « « v vv vt ttiiae e tiee e eeiaesaaennaneeeennnnnns
6.15 OB 170: Read Block Stack (BSTACK).t voiit it
6.16 OB 180: Accessing Variable Data BIOCKS.oiiiiiiii i
6.17 OB 181: Testing Data Blocks (DB/DX)ottt
6.18 OB 182: Copying aData Ar€a.c.uuirininnninininenerereeeeeerenentuennnns
6.19 OB 185: Setting Write Protectioncoviii i in it
6.20 OB 186: Compressing MemMOTY. . .« oo vt ttttiiee e iiiee e iiiieeeeteneeeetennnnenns
6.21 OB 190/0B 192: Transferring FlagstoaDataBlock oot
6.22 OB 191/OB 193: Transferring Data Fieldstoa Flag Area............... ... enat..
6.23 OB 200 and OB 202 to 205: Multiprocessor Communication.coveeen..

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Contents

6.24

6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37

6.38
6.39
6.40

7.1
7.2
73
7.4

8.1
8.2

8.3

OB 21610 218: PagE ACCESS - ¢« ottt it ttie ittt teeaaeesaeaaneeenaeenneenns 6-71
6.24.1 OB 216: WritingtoaPageot 6-74
6242 OB217:Reading fromaPagecoiiiiiiiiiiiiiiiiiiiiiii e, 6-76
6243 OB218: ReservingaPagecooiiiiiiiiiiin i 6-78
6.24.4 Program EXample.ottt i i 6-80
OB 220: Sign EXtENSION . .. oottt it ittt iiiiee e iiaae e 6-82
OB 221: Setting the Cycle Monitoring Timeooviiiiiiiiii i 6-83
OB 222: Restarting the Cycle Monitoring Time.t 6-84
OB 223: Comparing Restart TYPES . .. oo vvvii it it e iiee e e 6-84
OB 224: Transferring Blocks of Interprocessor Communication Flags. 6-85
OB 226, OB 227 . oottt ee ettt et et e e e 6-86
OB 228: Reading Status Information of a Program Processing Level..................... 6-87
OB 230 to 237: Functions for Standard Function Blocks oo it 6-89
OB 240 to 242: Special Functions for Shift Registers................coooiiiiiioL. 6-90
OB 240: Initializing Shift REGISIETSot i it i i i i iiaaee e 6-94
OB 241: Processing Shift REGISIETSt i it ees 6-97
OB 242: Deleting a Shift REIStErvunn it i et eeeenns 6-98
OB 250/251: Closed-Loop Control/ PID Algorithm.coiiiiiiiiinini ... 6-99
6.37.1 Functional Description of the PID Controller............. 6-99
6.37.2 PID AIGOTIthIM ..\ evt ittt i e 6-101
OB 250: Initializing the PID Algorithmo i i 6-106
OB 251: Processing the PID Algorithmot 6-107
OB 254, OB 255: Transferring a Data Block tothe DB-RAM 6-113
Extended Data Block DX 0.iitiiiiiiieiieteiiieneeeacetosccanscsssasssssans 7-1
APPHCAtION .« « .« v vttt e 72
Structure of DX 0. ..ottt i i e i e 7-3
Parameters for DX 0ottt i i i i e e e 7-6
Examples of Parameter ASSIGNMENtottt iiiineeeeeenenenns 7-10
Memory Assignment and Organization.c.cooieiiiiiiiiiiiiiiieceeaennes 81
Structure of the MemOry AT€a.ottt it e i iiiieeeiianaeeennns 8-2
Address Distribution in the CPU 928B-3UB21ottt 8-3
82.1 Address Distribution.ttt i e 8-4
8.2.2 Address Distribution of the Peripherals. i, 8-5
User Memory Organization in the CPU 928B-3UB21..............cciiiiiiiiinnennnnn. 87
8.3.1 Block Headers inthe User MEMOTYcooviuniiiniiiniiiiiiiinrnaaannnns 8-8
8.3.2 Block Address Lists in Data Block DB O.............o ity 89
o T T 1 L0 N (<. 8-12
834 RS/ RT AIEA ..ttt ettt ettt et aiaenas 8-13
8.3.5 Bit Assignment of the System Data Words.............o i, 8-16

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Contents

9.1
9.2

9.3

94

10
10.1

10.2

10.3
10.4

10.5

10.6

10.7

Memory Access using Absolute Addressescovveeteeeeiieetieetsscrcacscncannss 9-1
INtrodUCtion . .. oottt e e e i e e et 9-2
Access using the Address in ACCU 1. ... i iiiieenes 9-6
9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 9-7
9.2.2 Examples of using the Registersoooiviiiiiii i, 9-14
Transferring Fields of MemOIyo vt e e 9-16
9.3.1 Example of Transferring Memory Fields, 9-19
Operations with the Base Address Register (BR Register)oooiiiiiiatn, 9-24
9.4.1 Operations for Transfer between Registers..........., 9-25
942 Accessingthe Local MEMOTYovuuiniiiiiiinii i iiiianeennnn. 9-27
943 Accessing the Global Memory.ttt 9-28
944 Accessingthe Page Memory i i 9-31
Multiprocessor Mode and Communicationcceeeeiiiieieeenieeerannacaannns 10-1
Multiprocessor MOAEottt it i e 10-3
10.1.1 Exchanging Data via IPCFlags. ...t 10-4
10.1.2 T/O Flag Assignment and IPC Flag Assignment in Multiprocessor Mode (DB 1) 10-8
10.1.3 How to Create Data Block DB 1.ttt it 109
Multiprocessor COMMUNICAtION. « ..o vt vttii ittt iieaeeeaennnes 10-13
10.2.1 How the Transmitter and Receiver are Identified..................., 10-15
10.2.2 Why Datais Buffered.o 10-16
10.2.3 How the Buffer is Processed and Managed., 10-17
10.2.4 System Start-Upv it i i i i e 10-20
10.2.5 Calling Communication OBS.coi ittt 10-21
10.2.6 How to Assign Parameters to Communication OBs..................conl... 10-22
10.2.7 How to Evaluate the Output Parameterso, 10-24
Runtimes of the Communication OBS.ot i i it 10-29
INITIALIZE Function (OB 200).o ittt eaiee e 10-30
10.4.1 FUNCHON .« vttt ettt ettt et ettt e e iiae it nnaeennn 10-30
1042 Call Parameters. oottt ittt i iit e i et i e 10-32
1043 Input Parameters.o vttt i i i i e 10-33
10.4.4 Output Parametersttt ittt it 10-36
SEND Function (OB 202)ot iuuttt ittt ei e eae i e e 10-38
10.5.1 FUNCHON .« vttt ettt it et et it et iae ittt 10-38
1052 Call Parameters.ot et et i ee ittt iit i i i e 10-38
10.5.3 Input ParameterS. oottt it i i i e 10-39
10.5.4 Output Parameterso i i e e 10-41
SEND TEST Function (OB 203)ottt 10-43
10.6.1 FUNCHOM . vt v ittt e ettt et et it ittt et i e e iiae e iae e ineennns 10-43
10.6.2 Call Parameters. . .« .o o v vviit ettt ittt e 10-43
10.6.3 Input ParameterS.o v ittt ittt iiie it ittt it i 10-43
10.6.4 Output Parametersoovunii ittt it it ittt 10-44
RECEIVE Function (OB 204).ttt i e eaeiieieeeenns 10-45
10.7.1 FUNCHOM vttt ettt it et et it ittt it iiae e iae e nineeanns 10-45
10.7.2 Call Parameters. . .« .o o v vvit et iiie e ittt 10-45
10.7.3 Input Parameters.oovintiin ittt it it e 10-45
10.7.4 Output Parametersouvuni ittt it it i 10-46

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 xi

Contents

10.8

10.9

11
111
11.2

11.3
114
11.5

Al
A2
A3
A4
A5

Xii

RECEIVE TEST Function (OB 205)ottt it 10-48
10.8.1 FUunCHOM ..ottt i it it et 10-48
10.8.2 Call Parameters. . .. covvvvtit it e i e 10-48
10.8.3 Input Parameters.ttt i i i i e i i e 10-48
10.8.4 Output Parametersoovviiin ittt ittt i i e i e 10-49
APPHCALIONS . .« ottt e e e 10-50
10.9.1 Calling the Special Function OB using Function Blocks....................... 10-50
10.9.2 Transferring Data Blocks oot e 10-58
10.9.3 Extending the IPCFlag Area.ovuuiiiniiitnn i inneennennnn. 10-64
PG Interfaces and Functionsccoeetieeiieerroseeserroscesssssscesananss 11-1
OVEIVIEW. & o ettt ettt e it i e e e 11-2
o 0 1 T3) 1 11-3
1121 Information.couit ittt ittt it et ittt 11-5
11.2.2 Memory Functions and Transfer Functions............ ..., 11-5
1123 Program Test. . .. ovt i i i i i i i et i e i e 11-7
Activities at CheckpointS.ottt i i e e e e 11-15
Serial Link PG - PLC via 1st or 2nd Serial Interface. oitt. 11-16
Parallel Operation of Two Serial PG Interfaces it in.n. 11-17
1151 Installationconiei ittt ittt et 11-19
1152 OPeration cvnttntit ittt ittt it ettt teeeeaeeeneeennes 11-19
11.5.3 Sequence in Certain Operating Situations.coeiieiineenneennnnnn.. 11-21
N 1] 121 14 1. G A-1
Runtime Comparison between CPU 928-3UA21, CPU 928B-3UB21 and CPU 948.......... A-2
Error Identifiersottt i e A-5
STEP 5 Operations not Contained inthe CPU 928B........... i, A-13
Identifiers for the Program Processing Levelso iiiiiiiiiiiiiiinnnn... A-14
Example "ISTACK Evaluation".ttt iieeieeeennnn A-15
Further readingcooiiieiineeeenseeesesessrocsssescsoecsosccssscansansns B-1
List of Abbreviationsccovueititiiiiiiiiiiiiiiiieteteeeeeceereeeecacacasnnns C1

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

Contents of the
chapter

Overview of the
chapter

This chapter explains how to use the manual and deals with the areas of

application of the S5-135U programmable controller with the CPU 928B and its
structure. The chapter explains the typical mode of operation of a CPU and the
structure of the CPU program.

You will also find a few suggestions about how to tackle programming and will
learn some of the features of the CPU 928B (-3UB21) which are important for
programming.

If you have already worked with the CPU 928B (-3UBL11 or -3UB12)
and would like to know the differences between these modules and the

CPU 928B (-3UB21), refer to Section 1.8.

Section Description Page
1.1 Area of Application for the S5-135U with the CPU 928B 1-2
1.2 Typical Mode of Operation of a CPU 1-3
13 The Programs in a CPU 1-5
13.1 System Program 1-5
132 User Program 1-7
1.4 Which Operands are available to the User Program? 1-9
1.5 Accessing Operand Areas and Memory Areas 1-12
1.6 How to Tackle Programming? 1-13
1.7 Programming Tools 1-16
1.8 What is New with the CPU 928B (-3UB21)? 1-17

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.1 Area of Application for the S5-135U with the CPU 928B

Introduction to The S5-135U programmable controller belongs to the family of SIMATIC S5
the SIMATIC S5 programmable controllers. With the CPU 928B, it is the most powerful
family multiprocessor unit for process automation (open and closed loop control,

signalling, monitoring, logging).

Owing to its modularity and high performance, it can be used for medium to
extremely large control systems as well as for complex automation tasks at the
plant and process supervision level.

Suitability The S5-135U with the CPU 928B is particularly suitable for the following:

¢ Tasks requiring fast bit and word-oriented processing and fast reaction times,
i.e. with extremely fast open and closed loop controls.

Examples of this are fast processes in mechanical engineering (bottling plant,
packing machines or similar systems) and in the automobile industry.

¢ Tasks requiring an extremely high storage capacity and fast access times,
e.g. in the automobile industry, process and plant engineering.

¢ Tasks requiring fast communication with other CPUs installed in the PLC
and operating in the multiprocessor mode and with CP modules (e.g. when
connected to bus systems, host computers, for visualization, operation and
monitoring).

¢ Complex tasks which can be handled efficiently and clearly using the high
level languages C and SCL.

CPU 928B-3UB21 Programming Guide
1-2 C79000-G8576-C870-01

Introduction

1.2 Typical Mode of Operation of a CPU

Mode of

operation
ofa CPU

Cyclic
processing

Cyclic processing

Time-controlled processing

The following modes of operation are possible in a CPU:

C)

Interrupt-driven processing

This is the main part of all activities in the CPU. As the name already says, the

O

same operations are repeated in an endless cycle.

Cyclic processing can be divided into three main phases, as follows:

Phase

Sequence

CPU

All the input modules assigned to the CPU
are scanned by the system program and the
values read in are stored in the process
image of the inputs (PII).

Process

Read in process image
of the inputs

The values contained in the PII are
processed by the user program and the
values to be output are entered in the
process image of the outputs (PIQ).

Input | 1.3

4—/% Input | 1.4

Input | 1.5

Evaluate input signals,
set output signals

115

116 '

114 I

113 - Qa1

The values contained in the process image
of the outputs are output by the system
program to the output modules assigned to
the CPU.

Output process image
of the outputs

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Output Q 2.0
Output Q 3.1
Output Q 4.7

I

Introduction

Time-controlled In addition to the cyclic processing, time-controlled processing is also available
processing for processes requiring control signals at constant intervals, e.g. non-time critical

monitoring functions performed every second.

Interrupt-driven If the reaction to a particular process signal must be particularly fast, this
processing should be handled with interrupt-driven processing. With, for example, a

process interrupt, triggered via an interrupt generating module, you can
((j ! b))

activate aspecial processing section within your program.

I
Processing The types of processing listed above are handled by the CPU according to their
according priority.
to priority

Since a fast reaction is required to a time or interrupt event, the CPU interrupts
<<> cyclic processing to handle a time or interrupt event. Cyclic processing therefore

has the lowest priority.

CPU 928B-3UB21 Programming Guide
1-4 C79000-G8576-C870-01

Introduction

1.3 The Programs in a CPU

Introduction The program existing on every CPU is divided into the following:
¢ the system program
and

¢ the user program.

1.3.1 System Program

Overview The system program organizes all the functions and sequences of the CPU which
do not involve a specific control task (refer to Fig. 1-1).

Execute start-up I

Update process image
of the inputs

T O
Call
Output process image
of the outputs : user
% processing
(inter-
Manage memory u}) , ¢)
aces

Handle communications Q Handle errors
via 2nd serial interface

Execute communications
with the programmer

Fig. 1-1 Tasks of the system program

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 1-5

Introduction

Tasks

User interfaces

Default system
reaction

Modifying the
defaults

The tasks include the following: b

cold and warm restart,

¢ updating the process image of the inputs and outputting the process image of
the outputs,

¢ calling the cyclic, time-controlled and interrupt-driven programs,
¢ detection and handling of errors,
¢ memory management,

¢ communication with the programmer (PG).

As the user, you can influence the reaction of the CPU to particular situations
and errors via special interfaces to the system program.

The following chapters, except for Chapter 7, describe the default system
reaction to process events or errors. Depending on the defaults, the CPU
changes to the stop mode if an operation code error occurs and the error
organization block is not loaded.

You can modify the system response by assigning parameters for the data block
DX 0.

Chapter 7 describes the system response following modification.

D' When operating with several CPUs (multiprocessing) further tasks are involved.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

1.3.2 User Program

Figure 1-2 shows the general structure of a STEP 5 user program.

Structure
User program
Code blocks
Organization Program Function Sequence
blocks blocks blocks blocks
oB PB FB/FX SB
STEP 5 STEP 5 STEP 5 STEP 5
operations operations operations operations
FB 8
' ﬂ SEGMENT 1
F 502 NAME :TRANS
; as3 LB 3
0006
:C_ DB
0008
0009 L DW
Data blocks
DB
static or dynamic data
(bits, bytes, words, double words)
DX KH = FFFF;
static or dynamic data
(bits, bytes, words, double words)
Fig. 1-2 Structure of a STEP 5 user program
CPU 928B-3UB21 Programming Guide
1-7

C79000-G8576-C870-01

Introduction

Tasks

Storing the user
program

Interfaces to the
system program

The user program contains all the functions required for processing a specific
control task. In general terms, these functions can be assigned to the interface
provided by the system program for the various types of processing, as follows:

Type of processing Task

Cold and warm restart To provide the conditions under which the other
processing functions can start from a defined status
following a cold or warm restart of the control system
(e.g. assigning specific values to signals).

Cyclic processing Constantly repeated signal processing (e.g. logic
operations on binary signals, reading in and analyzing
analog values, specifying binary signals for output,
outputting analog values).

Time-controlled processing Time-dependent processing with the following time
conditions:

- faster than the average cycle,

- at a time interval greater than the average cycle time,
- at a specified point in time.

Interrupt-driven processing Fast reactions to certain process signals.
Error reaction Handling problems within the normal sequence of the
program.

The CPU 928B has two areas for storing blocks:
¢ User memory: max. 64 Kbytes

The user memory is located on the main board (CPU).
¢ Data block RAM (DB RAM): max. 46 Kbytes

The DB RAM makes up an additional memory area for storing data
blocks and is located on the main board (CPU).

Organization blocks are available as interfaces to the system program for the
special types of processing.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

1.4 Which Operands are available to the User Program?

Overview The CPU 928B provides the following operand areas for programming:
* process image and I/Os
¢ flags (F flags and S flags)
* timers/counters

e data blocks

Process image of
the inputs and
outputs PII/PIQ
Characteristics Size
The user program can access the following data types in the process 128 bytes
image extremely quickly: each for
- single bits, inputs and
- bytes, outputs
- words,
- double words
1/O area (P area)
Characteristics Size
The user program can access the I/O modules directly via the S5 bus. 256 bytes
each for
The following data types are possible: inputs and
- bytes, outputs
- words.
Extended I/O
area (O area)
Characteristics Size

The user program can access the I/O modules directly via the S5 bus. 256 bytes

each for
The following data types are possible: inputs and
- bytes, outputs

- words.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 1-9

Introduction

F flags
Characteristics Size
The flag area is a memory area which the user program can access 2048 bits
extremely quickly with certain operations. (256 bytes)

The flag area should be used ideally for working data required often.

The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

Single flag bytes can be used as interprocessor communication flags
(IPC flags) to exchange data between the CPUs in the multiprocessor
mode (refer to Chapter 10).

IPC flags are updated by the system program at the end of the cycle via
a buffer in the coordinator or CP/IP.

S flags (extended

flag area)
Characteristics Size
The CPU 928B also contains an additional flag area, the S flag area. 8192 bits
The user program can also access this area extremely quickly as with (1024 bytes)

the F flags.

S flags cannot however by used as actual operands with function
block calls nor as IPC flags for data exchange between the CPUs. The
bit test operations of the CPU 948 can also not be used with the S flags.

These flags can only be used with the PG system software "S5-DOS"
from version 3.0 upwards or "S5-DOS/MT" from version 1.0 upwards.

CPU 928B-3UB21 Programming Guide
1-10 C79000-G8576-C870-01

Introduction

Timers (T)

Counters (C)

Data words in
the current data
block

Characteristics Size
The user program loads timer cells with a time value between 10 ms and 256 timer
9990 s and by means of a start operation, decrements the timer from this cells
value at the preselected intervals until it reaches the value zero.

Characteristics Size

The user program loads counter cells with a start value (max. 999) and
then increments or decrements them.

256 counters

The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

Characteristics Size
A data block contains constants and/or variables in the byte, word or 256 words
double word format. With STEP 5 operations, you can always access the
"current" data block (refer to Section 2.4). b

)

In data blocks with a length greater than 256 words, you can only access data words with the

numbers > 255 with operations for absolute memory access (refer to Chapter 9) or with OB 180

(refer to Chapter 6).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

1-11

Introduction

1.5 Accessing Operand Areas and Memory Areas

Introduction

Relative
addressing

Absolute
addressing

Current data
block

1-12

STEP 5 operations use two different mechanisms for accessing operand areas
and the entire memory:

¢ relative adressing

¢ absolute addressing

The majority of STEP 5 operations address a memory location relative to the
beginning of the operand area. If these operations are used exclusively, code and
data areas of the user program are protected against unintentional overwriting. At
the same time, the user program is dependent on the CPU as long as the CPU has
an appropriate operand area.

Some STEP 5 operations work with absolute addresses. These operations can be
used to access the entire memory area. They can only be used in function blocks
and should only be used with great care due to the danger of data corruption.
These operations are dependent on the CPU used.

Data blocks are loaded into the user memory or the DB-RAM by the system
program. Their location depends on the memory space available in each case.
The lengths of the individual data blocks can vary and are set when
programming the data blocks.

The current data block is the data block whose starting address and length are
entered in special registers. This entry is made via a special STEP 5 operation for
calling or "opening" a data block (like the page of book). Unless operations with
absolute addressing are used, the user program can only access the current data
block. The following data types are possible: single bits, bytes, words and double
words.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

1.6 How to Tackle Programming

Introduction

Implementation
stages

Recursive
procedure

Implementation
stage 1

If you are an experienced user, you have probably found the most suitable
method for creating programs for yourself and you can skip this section.

Less experienced readers will find tips for designing, programming, testing and
starting up the STEP 5 program.

The implementation of the STEP 5 control program can be divided into three
stages:

1. determining the technological task
2. designing the program

3. creating, testing and starting the program

In practice, you will recognize that certain steps must be repeated (recursive
procedure), e.g. when you realize that more signals are required to improve the
handling of the task.

Determining the technological task

This stage can be divided into three steps:
1. creating a general block diagram outlining the control tasks of your process
2. creating a list of the input and output signals required for the task

3. improving the block diagram by assigning the signals and any particular time
conditions and/or counter statuses to the individual blocks

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

1-13

Introduction

Implementation
stage 2

1-14

Desiening i

We recommend you proceed as follows:

1.

Based on the improved block diagram, decide on the types of processing
required of your program (cyclic processing, time-controlled processing etc.)
and select the OBs required for this.

Divide the types of processing into technological and/or functional units.

Check whether the units can be assigned to a program or function block and
select the blocks you require (PB x, FB y etc.)

Find out which timers, counters and data or results memory you require.
Specify the tasks for each of the proposed code blocks and the data for flags

and data blocks which may be required. Create flow diagrams for the code
blocks.

Notes on the scope of cyclic processing:

When deciding on the types of processing, keep the following conditions in
mind:

The cycle must run through quickly enough. The process statuses must not
change more quickly than the CPU can react. Otherwise the process can get
out of control.

The maximum reaction time should be taken as twice the cycle time.

The cycle time is determined by the cyclic processing of the system program
and the type and scope of the user program. It is often not constant, since the
cyclic user program may be interrupted when time and interrupt-driven
program sections are called.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

Implementation
stage 3

Creati . i . |

This stage should consist of the following steps:

1.

Decide on the type of representation for the code blocks
(LAD, CSF or STL, refer to Chapter 2).

Remember that function blocks can only be created in the STL method of
representation.

Program all code and data blocks (please refer to your STEP 5 manual).

Start up the blocks one after the other (you may have to program a different
OB for each individual step, to call the code blocks):

— load the block(s)
— test the block(s)

(For more detailed information please refer to your STEP 5 manual and
Chapter 11).

When you are certain that all the code blocks run correctly and all the data
can be correctly calculated and stored, you can start up your whole program.

Note on test strategies:

When you actually start up your program for the first time in genuine process
operation, i.e. with real input and more importantly output signals, is a decision
that must be left up to yourself or to a team of experts.

The more complex the process, the greater the risk and therefore the greater the
care required when starting up.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

1-15

Introduction

1.7 Programming Tools

Suitable PGs The following programmers are available for creating your user program,
PG 685, PG 710, PG 730, PG 750 and PG 770.

You can check on the performance and characteristics of these devices in the
catalog ST 59.

Note

Enter the CPU ID for CPU 922 (0010B) in system data word

RS 29 (see Chapter 8) in order to be able to use a PG 615 or a CP 3xx.
In this case, you cannot use S flags.

If you do not change the ID, this will lead to erroneous indicators, e.g. in
the case of ISTACK output, or to the loss of some debugging aids.

In all programmers, the STATUS test function operates without restriction
only at scan times of < 2.5 s. This value is halved in the case of parallel
operation of 2 programmer interfaces (see Chapter 11).

Suitable software You can create user programs for SIMATIC S5 programmable controllers as
follows:

¢ Inthe STEP 5 programming language,

Here you require the STEP 5 programming package along with the system
software STEP 5/ST or STEP 5/MT (description, refer to /3/ in Chapter 13),

or
¢ In a higher programming language:

If you are familiar with programming in higher programming languages, you
can also formulate your STEP 5 program for the CPU 928B as follows:

— SCL (refer to /12/ in Further Reading, the SCL compiler is contained in
the PG software "S5-DOS/MT" from version 6 upwards.)

You can also create programs for sequence control systems in a graphic
representation using the GRAPH § programming package (description, refer
to /4/ in Further Reading).

Depending on the task, you can also incorporate "off-the-shelf" standard function
blocks in your user program. The performance and characteristics of these blocks
are described in the catalog STS 7/11/.

CPU 928B-3UB21 Programming Guide
1-16 C79000-G8576-C870-01

Introduction

1.8 What is New with the CPU 928B (-3UB21)?

Introduction

Slot assignment
Integrated RAM

Memory card

DB 0 structure

Floating point math

Extended cycle
statistics

Software
protection

Programming the
memory card

Reloading the
memory card

EPROM mode

The CPU 928B (-3UB21) offers you the following new functions and
characteristics compared to the CPU 928B (-3UB12).

CPU 928B (-3UB21)

CPU 928B (-3UB1L2)

The CPU requires only one slot

RAM (internal RAM) integrated in the
CPU with a capacity of 64 Kbytes

SIMATIC memory card (Flash EPROM)

The user program is copied from the
memory card to the internal RAM for
processing and is then read-only

Only after overall reset of CPU

Mantissa with 24 bits

The CPU requires two slots

Pluggable RAM submodules with
different memory capacities

Pluggable EPROM submodules

The user program remains on the EPROM
submodule for processing

After power on or overall reset of CPU

Mantissa with 16 or 24 bits

The functions of the cycle statistics (OB 152) have been extended compared to
the -3UB12 version, to include higher resolutions of the timers.

Via RS 139, a password can be assigned with which you can prevent
unauthorized reading and editing of the user program in the CPU.

A PG 7xx with S5-DOS from V6.x onwards is required to program the Flash
EPROM memory cards. A program on an old memory submodule can be

reprogrammed to a memory card.

If a Flash EPROM memory card is plugged when an overall reset is performed,
the operating system copies the contents to the internal RAM and creates DB 0.
The memory card is no longer required for operation.

Once the memory card has been reloaded (via overall reset), the user memory
(address 0000H to 7FFFH) is write-protected for PG access and for write access
by the user program. This corresponds to the behavior of a CPU 928B when an

EPROM submodule is plugged.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

1-17

Introduction

Influencing the
write protection
(RS 138) (OB 185)

Compressing
memory by
means of user
program (OB 186)

Cycle time
statistics
(OB 152)

Accessing the
condition code
byte OB 110

EPROM memory
check

New special
function OBs

1-18

The write protection can be set or removed specifically using two methods:

by setting/resetting RS 138 before a cold restart of the CPU is completed (e-
valuated at the end of OB 20)

* by calling OB 185 in OB 20 (only possible here), the write protection is
activated/deactivated immediately.

By calling OB 186, the PG function "compress memory" can be started by the
user program. As the function may then collide with active PG jobs, OB 186 and
PG functions are each blocked if the other is active.

¢ The cycle time statistics are no longer linked to the cycle time monitoring,
which means that there is no influence caused by restarting cycle time
monitoring.

* As an alternative to the 1-ms resolution, the resolution can now be increased
to 10 ms by means of a new function number.

OB 110 can be used more frequently as the condition codes are no longer partly
overwritten by the block call as they were previously.

The operating system now always run an EPROM memory check during power
on. This means the OB 226 (read operating system word) and OB 227 (read
checksum) have become superfluous. The blocks are still available for
compatibility reasons, but both return the value 0.

The CPU 928B-3UB21 has the following new special functions:

OB 134 for the *D operation

OB 135 for the /D operation

OB 136 for the MOD operation

OB 139 for the PUSH operation

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Contents of the The following chapter explains the components that make up a STEP 5 user

chapter program for the CPU 928B and how it can be structured.

Overview of the

chapter

Section Description Page

21 STEP 5 Programming Language 22
2.1.1 The LAD, CSF, STL Methods of Representation 2-2
212 Structured Programming 2-4
213 STEP 5 Operations 2-5
214 Number Representation 2-6
2.15 STEP 5 Blocks and Storing them in Memory 2-10
22 Program, Organization and Sequence Blocks 2-14
221 Organization Blocks as User Interfaces 2-16
222 Organization Blocks for Special Functions 2-19
23 Function Blocks 2-21
231 Structure of Function Blocks 2-22
232 Programming Function Blocks 2-24
233 Calling Function Blocks and Assigning Parameters to them 2-26
234 Special Function Blocks 2-31
24 Data Blocks 2-33
241 Creating Data Blocks 2-35
242 Opening Data Blocks 2-36
243 Special Data Blocks 2-39

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01 2-1

User Program

2.1 STEP 5 Programming Language

Introduction

Types of
operation

With the STEP 5 programming language, you convert automation tasks into
programs that run on SIMATIC S5 programmable controllers.

You can program simple binary functions, complex digital functions and
arithmetic operations including floating point arithmetic using STEP 5.
The operations of the STEP 5 programming language are divided into the
following groups:

¢ Basic operations:

— you can use these operations in all code blocks

— methods of representation: ladder diagram (LAD), control system
flowchart (CSF), statement list (STL).

¢ Supplementary operations and system operations:
— can only be used in function blocks
— only statement list (STL) method of representation

— system operations: only experienced STEP 5 programmers should use
system operations

21.1 The LAD, CSF, STL Methods of Representation

Overview

When programming in STEP 5, you can choose between the three methods of
representation ladder diagram (LAD), control system flowchart (CSF) and
statement list (STL) for each individual code block. You can choose the method
of representation that best suits your particular application.

The machine code MCS5 that the programmers (PGs) generate is the same for all
three methods of representation.

If you follow certain rules when programming in STEP 5 (see /3/ in Chapter 13),
the programmer can translate your user program from one method of
representation into any other.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Graphic
representation or
list of statements

While the ladder diagram (LAD) and control system flowchart (CSF) methods of
representation represent your STEP 5 program graphically, statement list (STL)
represents STEP 5 operations individually as mnemonic abbreviations.

Ladder diagram

Statement list

Control system flowchart

Programming with
graphic symbols
like a circuit diagram

complies with

Programming with
mnemonic abbreviations
of function designations

complies with

Programming with
graphic symbols

complies with

DIN 19239 DIN 19239 IEC 117-15
DIN 40700
DIN 40719
DIN 19239
LAD STL CSF
A | — T
1 BH/H HC0 AN |]
A | oo
S ON | !
3/ 0] | © I
= Q |
A E—
Fig. 2-1 Methods of representation in the STEP 5 programming language

Graphic
representation
of sequential
controls

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

GRAPH 5 is a programming language for graphic representation of sequential
controls. It is at a higher level than the LAD, CSF, STL methods of
representation. A program written in GRAPH 5 as a graphic representation is
automatically converted to a STEP 5 program by the PG.

User Program

2.1.2 Structured Programming

Overview Using STEP 5, you can structure your program by dividing it into self-contained
program sections (blocks).

This division of your program clarifies the essential program structures making it
easy to recognize the system parts that are related within the software.

Advantages Structured programming offers you the following advantages:
¢ simple and clear creation of programs, even large ones
¢ standardization of program parts
* simple program organization
® easy program changes
¢ simple, section by section program test

¢ simple system start-up

What is a block? A block is a part of the user program that is distinguished by its function,
structure or application. You can differentiate between blocks that contain
statements (code) i.e. organization blocks, program blocks, function blocks or
sequence blocks, and blocks that contain data (data blocks).

CPU 928B-3UB21 Programming Guide
2-4 C79000-G8576-C870-01

User Program

213 STEP 5 Operations

Definition

Example

Absolute and
symbolic
operands

Application of
STEP 5 operations

Result of logic
operation RLO

A STEP 5 operation is the smallest independent unit of the user program. It is the
work specification for the CPU. A STEP 5 operation consists of an operation and
an operand as shown in the following example:

Operation code Parameter

>/

F 54.1

:0
Operation Operand

(what is to be done?) (with what is the
operation to be done?)

You can enter the operand absolutely or symbolically (using an assignment list)
as shown in the following example:

Absolute representation: A 114
Symbolic representation: :A -Motorl

For more information on absolute and symbolic programming, refer to your
STEP 5 manual.

The STEP 5 operation set enables you to do the following:

¢ set or reset and combine binary values logically

¢ load and transfer values

e compare values and process them arithmetically

e specify timer and counter values

e convert number representations

¢ call blocks and execute jumps within a block
and

e influence program execution

The central bit for controlling the program is the result of logic operation RLO.
This is obtained as a result of binary logic operations and is influenced by some
operations.

Section 3.5 describes the whole STEP 5 operation set and explains how the RLO is
obtained. This section also includes programming examples for individual STEP 5
operations.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

214 Number Representation

Overview

Numerical input
on the PG

Permitted
operations

To allow the CPU to logically combine, modify or compare numerical values,
these values must be located in the accumulators (working registers of the CPU)
as binary numbers.

Depending on the operations to be carried out, the following number representations
are permitted in STEP 5:

* Binary numbers: 16-bit fixed point numbers
32-bit fixed point numbers
32-bit floating point numbers (with a 24-bit mantissa)

* Decimal numbers: BCD-coded numbers (sign and 3 digits)

When you use a programmer to input or display number values, you set the data
format on the programmer (e.g. KF or fixed point) in which you intend to enter
or display the values. The programmer converts the internal representation into
the form you have requested.

You can carry out all arithmetic operations with the 16-bit fixed point numbers
and floating point numbers, including comparison, addition, subtraction,
multiplication and division.

Note
Do not use BCD-coded numbers for arithmetical operations, since this leads
to incorrect results.

Use 32-bit fixed point numbers to execute comparison operations. These are also
necessary as an intermediate level when converting numbers in BCD code to
floating point numbers. With the operations +D and -D they can also be used for
addition and subtraction.

The STEP 5 programming language also has conversion operations that enable
you to convert numbers directly to the most important of the other numerical
representations.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

16-bit and 32-bit Fixed point numbers are whole binary numbers with a sign.
fixed point
numbers Coding of fixed point numbers

Fixed point numbers are 16 bit (= 1 word) or 32 bit (= 2 words) in binary
representation. Bit 15 or bit 31 contains the sign.

e ’(’ = positive number
* ’1’ = negative number

The two’s complement representation is used for negative numbers.

PG input
16-bit fixed point number KF

32-bit fixed point number DH

Permitted numerical range

16-bit fixed point number -32768 to +32767
32-bit fixed point number -2147483648 to +2147483647
Using fixed point numbers

Use fixed point numbers for simple calculations and for comparing number
values. Since fixed point numbers are always whole numbers, remember that the
result of dividing two fixed point numbers is also a fixed point number without
decimal places.

Floating point numbers

Floating point numbers are positive and negative fractions. They always occupy
a double word (32 bits). A floating point number is represented as an exponential
number.

In the CPU 928B, the default mantissa is 24 bits long (bits 0 to 23) for adding,
subtracting, multiplying and dividing.

The exponent is 8 bits long and indicates the order of magnitude of the floating
point number. The sign of the exponent tells you whether the value of the
floating point number is greater or less than 0.1.

Using floating point numbers
Use floating point numbers for solving extensive calculations, especially for

multiplication and division or when you are working with very large or very
small numbers!

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-7

User Program

Accuracy

The mantissa indicates the accuracy of the floating point number as follows:

* Accuracy with a 24-bit mantissa:

224 = 0.000000059604 (corresponds to 7 decimal places)

If the sign of the mantissa is "0" the number is positive; if the sign is "1" it is a
negative number in its two’s complement representation.

The floating point value ’0’ is represented as the binary value 80000000H
(32 bits, see below).

Coding floating point numbers

A floating point number is coded as follows:

31 30 24 23 22 0
VoS W2V 2t
Exponent Mantissa
Specification of the data format for floating point numbers at the PG: KG

Permissible numerical range

+0.1469368 x 108 to + 0.1701412 x 10%°

Input/output on PG

a)

in a code block:

You want to load the number N = 12.34567 as a floating point number.
Input:

:LKG1234567+2

PG display after you enter the line:

'L KG | + 123456? + 02

Mantlissa with sign E)}ponent (base 10)
with sign

Value of the number input: +0.1234567 x 10*% = 1234567

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Numbers in BCD
code

b) in a data block:
You want to define the numbet N = - 0.005 as a floating point constant.
Input:
6: KG = -5000000 - 02
PG display after you enter the line:

6: KG = SOOOOOOIT 02|

Mantissa with sign Exponent (base 10)
with sign
Value of the number input: -0.5x 102 =0.005

Decimal numbers are represented as numbers in BCD code. With their sign and
three digits, they occupy 16 bits (1 word) in an accumulator as shown in the
following example:

15 1211 8 7 43 0
V V V V hundreds tens ones

The individual digits are positive 4-bit binary numbers between 0000 and 1001
(0 and 9 decimal).

The left bits are reserved for the sign as follows:

Sign for a positive number: 0000
Sign for a negative number: 1111

Permissible numerical range

-999 to +999

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

215 STEP 5 Blocks and Storing them in Memory
Identifier A block is identified as follows:

 the block type (OB, PB, SB, FB, FX, DB, DX)
and

* the block number (number between 0 and 255).

Block types The STEP 5 programming language differentiates between the following block
types:

¢ Organization blocks (OB)

Organization blocks are the interface between the system program and the
user program. They can be divided into two groups as follows:

— With OB 1 to OB 39, you can control program execution, the restart
procedure of the CPU and the reaction in the event of an error. You
program these blocks yourself according to your automation task. These
OB:s are called by the system program.

— OBs 40 to 255 contain special functions of the system program. You can
call these blocks, if required, in your user program.

* Program blocks (PB)

You require program blocks to structure your program. They contain program
parts divided according to technological and functional criteria. Program
blocks represent the heart of the user program.

¢ Sequence blocks (SB)

Sequence blocks were originally special program blocks for step by step
processing of sequencers. In the meantime, however, sequencers can be
programmed with GRAPH 5. Sequence blocks have therefore lost their
original significance in STEP 5.

Sequence blocks now represent an extension of the program blocks and are
used as program blocks.

¢ Function blocks (FB/FX)
You use function blocks to program frequently recurring and/or complex
functions (e.g. digital functions, sequence control systems, closed loop

controls and signalling functions).

A function block can be called several times by higher order blocks and
supplied with new operands (assigned parameters) at each call.

Using block type FX increases the maximum number of possible function blocks
from 256 to 512.

CPU 928B-3UB21 Programming Guide
2-10 C79000-G8576-C870-01

User Program

Formal structure
of the blocks

Block header

Block body

Block preheader

Maximum length

¢ Data blocks (DB/DX)
Data blocks contain the (fixed or variable) data with which the user program
works. This type of block contains no STEP 5 statements and has a distinctly

different function from the other blocks. Using block type DX doubles the
number of possible data blocks.

All blocks consist of the following two parts:
* ablock header
and

¢ ablock body

The block header is always 5 words long and contains information for block
management in the PG and data for the system program.

Depending on the block type, the block body contains the following:
¢ STEP 5 operations (in OB, PB, SB, FB, FX),
* variable or constant data (in DB, DX)

and

¢ aformal operand list (in FB, FX).

The programmer also generates a block preheader (DV, DXV, FV, FXV) for
block types DB, DX, FB and FX. These block preheaders contain information
about the data format (for DB and DX) or the jump labels (for FB and FX). Only
the PG can evaluate this information. Consequently the block preheaders are not
transferred to the CPU memory. You cannot influence the contents of the block
header directly.

A STEP 5 block can occupy a maximum of 4096 words in the program memory
of the CPU (1 word corresponds to 16 bits).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Available blocks You can program the following block types:

OB 1to 39

FB 0 to 255
total 512

FX 0 to 255

PB 0 to 255

SB 0 to 255

DB 3to 255
— total 506

DX 3 to 255

Data blocks DB 0, DB 1, DB2, DX 0, DX 1 and DX 2 contain parameters. These
are reserved for specific functions and you cannot use them as normal data
blocks.

Block storage The programmer stores all programmed blocks in the program memory in the
order in which they are transferred (Fig. 2-2). The programmer function
"Transfer data blocks B" transfers first the code blocks then the data blocks to
the PLC. In RAM mode, the user memory is first to be filled with data blocks
after transfer of the code blocks and then the remaining data blocks are written
into internal DB RAM.
The start addresses of all stored blocks are placed in data block DB 0.

Address 0

PB1 Location of blocks
FB1 in the user memory

PB2

DB1

SB10

OB1

Fig.2-2 Example of block storage in the user memory

CPU 928B-3UB21 Programming Guide
2-12 C79000-G8576-C870-01

User Program

Alternative
loading (only in
the case of CPU
928B-3UB12)

Correcting and
deleting blocks

By setting bit 0 in system data word RS 144, you can load data blocks first into
internal DB RAM first (i.e. as long as space is available) ("Alternative loading" -
see Chapter 8/RS 144). Data blocks are transferred to the user memory only
when the DB RAM has been filled.

When you correct blocks in "RAM mode", the old block is declared invalid in
the memory and a new block is entered.

Similarly, when blocks are deleted, they are not really deleted, instead they are
declared invalid. Deleted and corrected blocks therefore continue to use up
memory space.

Note

You can use the COMPRESS MEMORY online function to make space for
new blocks. This function optimizes the utilization of the memory by
deleting blocks marked as invalid and shifting valid blocks together.
Compression is handled separately according to user memory and internal

DB-RAM (see Section 11.2.2).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.2 Program, Organization and Sequence Blocks

Introduction

Programming

Block calls

Program blocks (PBs), organization blocks (OBs) and sequence blocks (SBs) are
the same with respect to programming and calling. You can program all three
types in the LAD, CSF and STL methods of representation.

When programming organization, program and sequence blocks, proceed as
follows:

1. First indicate the type of block and then the number of the block that you
want to program.

The following numbers are available for the type of block listed:

— program blocks 0 to 255
— organization blocks 1to 39
— sequence blocks 0 to 255

2. Enter your program in the STEP 5 programming language.

When programming PBs, OBs and SBs, you can only use the STEP 5 basic
operations!

A STEP 5 block should always be a self-contained program section. Logic
operations must always be completed within a block.

3. Complete your program input with the block end operation "BE".

With the exception of OB 1 to OB 39 you must call the blocks to process them.
Use the special STEP 5 block call operations to call the blocks.

You can program block calls inside an organization, program, function or
sequence block. They can be compared with jumps to a subroutine. Each jump
causes a block change. The return address within the calling block is buffered by
the system.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Unconditional Block calls can be unconditional or conditional as follows:
and conditional
block calls ¢ Unconditional call
The "JU" statement belongs to the unconditional operations. It has no effect on
the RLO. The RLO is carried along with the jump to the new block. Within the
new block, it can be evaluated but no longer combined logically.
The addressed block is processed regardless of the previous result of logic
operation (RLO - see Section 3.4).
Example: JU PB 100
¢ Conditional call
The JC statement belongs to the conditional operations. The addressed block is
processed only if the previous RLO = 1. If the RLO = 0, the jump is not
executed.
Example: JC PB 100
Note
After the conditional jump operation is executed, the RLO is set to "1"
regardless of whether or not the jump to the block is executed.
PB 1 PB 5 PB 10
A [1.0 A [2.0
1
JU PB 5 JC PB 10
0] F 1.5 v
0 | 5.3 v
BE BE
PB 6
A | 1.5 0 [3.0
JC PB 6
A | 3.2 w
BE BE
Fig. 2-3 Block calls that enable processing of a program block

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Effect of the BE
statement

After the "BE" statement (block end), the CPU continues the user program in the
block in which the block call was programmed. Program execution continues at
the STEP 5 statement following the block call.

The "BE" statement is executed regardless of the RLO. After "BE", the RLO can
no longer be combined logically. However, the RLO or arithmetic result
occurring directly before execution of the BE operation is transferred to the
block where the call originated and can be evaluated there. When program
execution returns from the block that has been called, the contents of ACCU 1,
ACCU 2, ACCU 3 and ACCU 4, the condition codes CC 0 and CC 1 and the
RLO are not changed. (Refer to Section 3.5 for more detailed information about
the ACCUs, CC0/CC1 and RLO).

221 Organization Blocks as User Interfaces

Introduction

Organization blocks form the interfaces between the system program and the
user program. Organization blocks OB 1 to OB 39 belong to your user program
just as program blocks. By programming these OBs, you can influence the
behavior of the CPU during start-up, program execution and in the event of an
error. The organization blocks are effective as soon as they are loaded in the PLC
memory. This is also possible while the PLC is in the run mode.

Once the system program has called a specific organization block, the user
program it contains is executed.

Note
You can program blocks OB 1 to OB 39 as user interfaces and they are
called automatically by the system program as a reaction to certain events.

For test purposes, you can also call these organization blocks from the user
program (JC/JU OB xxx). It is, however, not possible to trigger a COLD
RESTART, e.g. by calling OB 20.

The following table provides you with an overview of the user interfaces (OBs).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

OBs for program
execution Table 2-1 Overview of the organization blocks for program execution

Organization blocks for controlling program execution

Block Function and call criterion

OB1 Organization of cyclic program execution; first call after a
start-up, then cyclic call

OB 2 Organization of interrupt-driven program execution;
Call by interrupt signal of S5 bus (process interrupt)

OB3toOBS5 Not used with the CPU 928B

OB 6 Delay interrupt (from Version -3UB12)
OB7,0B8 Not used with the CPU 928B

OB 9 Processing clock-controlled time interrupts

Time interrupts with fixed intervals:

OB 10 call every 10 ms
OB 11 call every 20 ms
OB 12 call every 50 ms
OB 13 call every 100 ms
OB 14 call every 200 ms
OB 15 call every 500 ms
OB 16 call every 1s

OB 17 call every 2 s

OB 18 callevery 5 s

OB:s for start-up Table 2-2 Overview of the organization blocks for start-up

Organization blocks to control the start-up procedure

Block Function and call criterion

OB 20 Call on request for COLD RESTART (manual and automatic)

OB 21 Call on request for MANUAL WARM RESTART/RETENTIVE COLD
RESTART

OB 22 Call on request for AUTOMATIC WARM RESTART/RETENTIVE
COLD RESTART

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-17

User Program

OBs for error
handling Table 2-3 Overview of the organization blocks for error handling

Organization blocks for reactions to device or

program errors
Block Function and call criterion

OB 19 Runtime error (LZF): called block not loaded

OB 23 Timeout (QVZ) in user program (during direct access to I/O
modules or other S5 bus addresses)

OB 24 Timeout (QVZ) when updating the process image and
transferring interprocessor communication flags

OB 25 Addressing error (ADF)

OB 26 Cycle time exceeded (ZYK)

OB 27 Op. code error (BCF): code not permitted

OB 28 STOP by PG function/stop switch/S5 bus)

OB 29 Op. code error (BCF): code not permitted

OB 30 Op. code error (BCF): parameter not permitted

OB 31 Other runtime errors (LZF)

OB 32 Runtime error (LZF): load and transfer error with data blocks

OB 33 Collision of time interrupts (WECK-FE)

OB 34 Error in closed loop controller processing (REG-FE)

OB 35 Communication error on the second serial interface (FE-3)

OB 36 to OB 39 do not exist for the CPU 928B

D' If the OB is not programmed, the CPU changes to the STOP mode in the event of an error.
EXCEPTION: if OB 23, OB 24 and OB 35 do not exist, there is no reaction.

2 OB28is called before the CPU changes to the STOP mode. The CPU stops regardless of whether
and how OB 28 is programmed.

EXCEPTION: OB28 is not called if the power is switched off.

CPU 928B-3UB21 Programming Guide
2-18 C79000-G8576-C870-01

User Program

222 Organization Blocks for Special Functions

Introduction The following organization blocks contain special functions of the system
program. You cannot program these blocks, but simply call them (this applies to
all OBs with numbers between 40 and 255). They do not contain a STEP 5
program. Special function OBs can be called in all code blocks.

Table 2-4 Overview of organization blocks for special functions

Overview
Integral organization blocks with special functions
Block: Block function:
OB 110 Access to the status (condition code) byte
OB 111 Clear ACCU 1,2, 3 and 4
OB 112 ACCU roll up
OB 113 ACCU roll down
OB 120 "Block all interrupts" on/off
OB 121 "Block individual time interrupts" on/off
OB 122 "Delay all interrupts" on/off
OB 123 "Delay individual time interrupts" on/off
OB 134 *D
OB 135 /D
OB 136 MOD
OB 139 PUSH
OB 150 Set/read system time
OB 151 Set/read time for clock-controlled time interrupt
OB 152 Cycle statistics
OB 153 Set/read time for delay interrupt
OB 160-163 Counter loops
OB 170 Read block stack (BSTACK)
OB 180 Variable data block access
OB 181 Test data blocks DB/DX
OB 182 Copy data area
OB 185 Influence write protection
OB 186 Compressing memory by means of user program
OB 190, 192 Transfer flags to data block
OB 191, 193 Transfer data fields to flag area
OB 200, 202-205 Multiprocessor communication
OB 216-218 Access to "pages" (CPs and some IPs)
OB 220 Sign extension
OB 221 Set cycle monitoring time
OB 222 Restart cycle monitoring time
OB 223 Compare restart type
OB 224 Transfer blocks of IPC flags
OB 226 Read word from the system program

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-19

User Program

Integral organization blocks with special functions
Block: Block function:
Table 2-4 continued:
OB 227 Read checksum of the system program memory
OB 228 Read status information of a program execution level
OB 230-237 Functions for standard function blocks (handling blocks)
OB 240 Initialize shift register
OB 241 Process shift register
OB 242 Clear shift register
OB 250 Initialize PID controller algorithm
OB 251 Process PID controller algorithm
OB 254, 255 Transfer data block to the DB-RAM

These special functions are described in detail in Chapter 6.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

2.3 Function Blocks

Introduction

Function blocks (FB/FX) are also parts of the user program just like program

blocks. FX function blocks have the same structure as FB function blocks and
are programmed in the same way.

You use function blocks to implement frequently recurring or very complex
functions. In the user program, each function block represents a complex complete
function. You can obtain function blocks as follows:

* as a software product from SIEMENS (standard function blocks on diskette -
see /5/); with these function blocks you can generate user programs for fast
and simple open loop control, signalling, closed loop control and logging;

or

¢ you can program function blocks yourself.

Differences to

Compared with organization, program and sequence blocks, function blocks

other code blocks have the following four essential differences:
OB, PB, SB FB/FX
1L Range of operations
only basic operations - basic operations,
- supplementary operations
- system operations
2. Method of representation
programming and call in STL, LAD, programming only in STL
CSF
3. Name
name environment not possible in addition to the number a name with
(only number) max. 8 chars. can be assigned
4. Operands
none formal operands (block parameters).
When the block is called formal
operands are assigned actual operands

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.3.1 Structure of Function Blocks

Block header

Block body

Absolute or

The block header (five words) of a function block has the same structure as the
headers of the other STEP 5 block types.

The block body on the other hand, has a different structure from the bodies of
the other block types. The block body contains the function to be executed in the
form of a statement list in the STEP 5 programming language. Between the block
header and the STEP 5 statements, the function block needs additional memory
space for its name and for a list of formal operands. Since this list contains no
statements for the CPU, it is skipped with an unconditional jump that the
programmer generates automatically. This jump statement is not displayed when
the function block is displayed on the PG! When a function block is called, only
the block body is processed.

You can enter operands in a function block in absolute form (e.g. F 2.5) or

symbolic symbolically (e.g. MOTORI). You must store the assignment of the symbolic
operands operands in an assignment list before you enter the operands in a function block
(see /3/).
Function block in Fig. 2-4 shows the structure of a function block in the memory of a
the PLC memory programmable controller.
Block
5 words
Skip formal header
operand v
list > JU —1 word
Name of the FB/FX } 4 words [
List of
Formal operand 1 } 3 words formal
operands
Formal operand 2 } 3 words
__________ _________,,—':_‘:_‘:~«~——-—~~-~-,————— Block
““““““““““ T A body
Formal operand 1 } 3 words
1st STEP 5 user operation <o
STEP 5 T e T
user
program
BE y

Fig. 2-4 Structure of a function block (FB/FX)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Distinction:
"programming" —
"calling and
assigning
parameters"”

How to program

The memory contains all the information that the programmer needs to represent
the function block graphically when it is called and to check the operands during
parameter assignment and programming of the function block. The programmer

rejects incorrect input.

When handling function blocks, distinguish between the following procedures:
- programming FB/FX

and
- calling FB/FX and then assigning actual values to the parameters.

Programming

When programming, you specify the function of the block. You must decide
which input operands the function requires and which output results it should
transfer to the calling program. You define the input operands and output results
as formal operands. These function as tokens.

Calling and assigning parameters

When a block is called by a higher order block (OB, PB, SB, FB, FX), the
formal operands (block parameters) are replaced by actual operands; i.e.
parameters are assigned to the function block.

IF...

THEN...

You want to program a function block

"directly", i.e. without formal operands.

Program it as you would a program or
sequence block.

You want to use formal operands in a
function block.

Proceed as explained on the following
pages.

Doing so, make sure you keep to the
required order:

First program the FB/FX with the formal
operands and keep it on the PG (offline)
or in the CPU memory (online).

Then program the block(s) to be called
with the actual operands.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.3.2 Programming Function Blocks

Procedure

You can program a function block only in the "statement list" method of
representation. When entering a function block at a programmer, perform the
following steps:

1.

Enter the block type (FB/FX) and the number of the function block.

Number your function blocks in descending order starting with FB 255, so
that they do not collide with the standard function blocks. The standard
function blocks are numbered from FB 1 to FB 199.

Enter the name of the function block.

The name can have a maximum of eight characters and must start with a
letter.

If the function block is to process formal operands:
Enter the formal operands you require in the block as block parameters.

Enter the following information for each formal operand:
— the name of the block parameter (maximum 4 characters),

— the type and (if applicable) the data type of the block parameter
You can define a maximum of 40 formal operands.

Enter your STEP 5 program in the form of a statement list (STL).

The formal operands are preceded by an equality sign (e.g. A = X1). They
can also be referenced more than once at various positions in the function
block.

Terminate your program input with the block end operation "BE".

Note

If you change the order or the number of formal operands in the formal
operand list, you must also update all STEP 5 statements in the function
block that reference a formal operand and also the block parameter list in
the calling block!

Program or change function blocks only on diskette or hard disk and then
transfer them to your CPU!

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Formal operands

function block (also known as block parameters):

The following parameter and data types are permitted as the formal operands of a

Table 2-5 Permitted formal operands for function blocks
Parameter type Data type
I = input parameter BI/BY/W/D
Q = output parameter
D =data KM/KH/KY/KS/KF/
KT/KC/KG
B = block operation none
T = timer (no type can be specified)
C = counter

L, D, B, T or C are parameters that are indicated to the left of the function

symbol in graphic representation.

Parameters labelled with Q are indicated on the right of the function symbol.

The data type indicates whether you are working with bits, bytes, words or
double words for I and Q parameters and which data format applies to D
parameters (e.g. bit pattern or hexadecimal pattern).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

2.3.3 Calling Function Blocks and Assigning Parameters to them

Introduction

Procedure

Unconditional/
conditional call

You can call every function block as often as you want anywhere in your STEP 5
program. You can call function blocks in a statement list or in one of the graphic
methods of representation (CSF or LAD).

To call a function block and assign parameters to it, perform the following steps:

1.

Make sure that the called function block exists either in the PG memory
(offline) or in the CPU memory (online).

Enter the call statement for the function block in the block where the call is
to originate.

You can program a function block call in an organization, program or
sequence block or in another function block.

Reaction on PG:
After you enter the call statement (e.g. JU FB200), the name of the relevant
function block and the formal operand list appear automatically.

Assign the actual operand relevant to this call to each of the formal operands,
i.e. you assign parameters to the function block.

These actual operands can be different for separate calls (e.g. inputs and
outputs for the first call of FB 200, flags for the second call).

Using the formal operand list, you assign the required actual operands for
each function block call.

Unconditional call Conditional call

blocks: the referenced function block is blocks:
processed regardless of the previous result the referenced function block is
of logic operation (RLO). only processed when the result of

"JU FBn" for FB function blocks or "JC FBn" for FB function blocks or
"DOU FXn" for FX extended function "DOC FXn" for FX extended function

logic operation RLO = 1.

If RLO = 0 the block call is not
executed. Regardless of whether
the block call is executed or not,
the RLO is alsways set to "1".

After the unconditional or conditional call, the RLO can no longer be combined
logically. However, it is carried over to the called function block with the jump and
can be evaluated there.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Permitted actual Which operands can be assigned as actual operands is shown in the
operands following table.
Table 2-6 Permitted actual operands for function blocks
Parameter Data type Actual operands permitted
type
LQ BI foran operand I nm input
with bit address Q nm output
F nm flag
BY foran operand IB n input byte
with byte address QB n output byte
FY n flag byte
DL n data byte left
DR n data byte right
PY n peripheral byte
OY n byte from extended periphery
W for an operand
with word address IW n input word
QW n output word
FW n flag word
DW n data word
PW n peripheral word
D for an operand OW n word from extended periphery
with double word address
ID n input double word
QD n output double word
FD n flag double word
DD n data double word
D KM for a binary pattern (16 bits) Constants
KY for two absolute numbers,
one byte each,
each in the range from 0 to 255
KH for a hexadecimal pattern with a
maximum of four digits
KS for two alphanumeric characters
KT for timer value (BCD-coded) units
.0 to .3 and values 0 to 999
KC for a counter value 0 to 999
KF for a fixed point number
-32768 to +32767
KG for a floating point number

+0.1469368 x 10™8 to
+0.1701412 x 10%°

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Parameter Data type Actual operands permitted
type
Table 2-6 continued:
B Data type designation not possible DB n Data block; the operation
C DB nis executed
FB n Function block (permitted
only without parameters)
called unconditionally (JU . .n)
OB n Organization block called
unconditionally (JU . .n)
PB n Program blocks - called
unconditionally (JU . .n)
SB n Sequence blocks - called
unconditionally (JU . .n)
T Data type designation not possible T 0to255 Timer
C Data type designation not possible C 0to255 Counter
Note

S flags are not permitted as actual operands for function blocks.

After the jump to a function block, the actual operands from the block then called
are used in the function block program instead of the formal operands.

This feature of programmable function blocks allow them to be used for a wide
variety of purposes in your user program.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Examples

Example 1:

the following (complete) example is intended to further

clarify the programming and calling of a function block
and the assignment of parameters to it. You yourself
can easily try out the example.

Programming the function block FB 202:

FB 202
SEGMENT 1
NAME EXAMPLE
DECL : INP1 1/9/D/B/T/C: 1 BI/BY/W/D: BI
DECL : INP2 1/9/D/B/T/C: 1 BI/BY/W/D: BI
DECL : OUT1 1/9/D/B/T/C: Q BI/BY/W/D: BI
:A= INP1
:A= INP2
:== OUT1
: BE
Formal Parameter Data
operands type type

PB 25
SEGMENT 1
: JU FB 202
NAME : EXAMPLE
INP1 : I 13.5
INP2 : F 17.7
OUTl : Q 23.0
‘ : BE
Formal Actual
operands operands

STL method of representation

FB 202
EXAMPLE
I 13.5—— 1INP1 OuT1
F 17.7 — | INP2

Formal
operand
list

STEP 5

state-

ments

Function block FB 202 is called and has parameters assigned
to it in program block PB 25:

CSF/LAD method of representation

- Q 23.0

The following operations are executed after the jump to FB 202

ne

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Example 2: calling a function block and assigning parameters to it with
the STL and CSF/LAD methods of representation in a program block.

STL method of representation

PB 25
SEGMENT 1

: C DB5S

: JU FB 201
NAME : REQUEST
DATA : DW 1
RST : I 3.5
SET : F 2.5
MTIM : T 2
TIME : KT 010.1
TRAN : DW 2
BEC : 0 2.3
LOOP : 0 6.0

: BE
Formal Actual
operands operands

CSF/LAD method of representation

PB 25
SEGMENT 1

FB 201

REQUEST

DW1 T | DATA TRAN
I 3.5 ~—~ | RsT BEC
F 2.5 ~—~ | SET LOOP
T 2 MTIM
KT 010.1 TIME

0100
aNDN
ow

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

234 Special Function Blocks

Introduction Apart from the function blocks that you program yourself, you can order
standard function blocks as a finished software product. These contain standard
functions for general use (e.g. signalling functions and sequence control).
Standard function blocks are assigned numbers FB 1 to FB 199.

If you order standard function blocks, remember the special instructions in the
accompanying description (i.e. areas assigned and conventions etc.).

The standard function blocks for the S5-135U are listed in catalog ST 57.

Example

Floating point root extractor RAD:GP FB 6

The function block RAD:GP extracts the root of a floating point number
(8-bit exponent and 24-bit mantissa). It forms the square root. The
result is also a floating point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded up or
down.

If applicable, for the rest of the processing, the function block sets the
"radicand negative" identifier.

Numerical range:
Radicand - 0.1469368 Exp. -38 to +0.1701412 Exp. +39

Root +0.3833434 Exp. -19 to +0.1304384 Exp. +20

Function: Y = VA
Y = SQRT; A = RADI

Calling the function block FB 6:

In the example, the root is extracted from a floating point number that is
located in DD5 of DB 17 with an 8-bit exponent and a 24-bit mantissa. The
result, another 32-bit floating point number, is written to DD 10. Prior to
this, the appropriate data block must be opened. The parameter VZ (parameter
type: Q, data type: BI) indicates the sign of the radicand: VZ = 1 for a
negative radicand.

Occupied flag words: FW 238 to FW 254.

Continued on the next page

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-31

User Program

"Floating point root extractor" continued:
STL method of representation LAD/CSF method of representation
Seg- : C DB 17
ment H SEGMENT 2
1 k%%
o : JU FB 6 FB 6
Seg- |[INAME : RAD : GP RAD
ment [RADI : DD 5 DD 5 — RADI vz ——F 15.0
2 vz : F 15.0 SORT ——DD 10
*) |SQRT : DD 10 :BE
DD= data double word
*) Must be located in separate segments, since the operation "C DB 17"
in segment 1 cannot be converted to LAD/CSF.
Using FB 0 If you have not programmed organization block OB 1, the system program calls

FB 0 (provided it is loaded) cyclically instead of OB 1.

Since you have the total operation set of the STEP 5 programming language
available in a function block, programming FB 0 instead of OB 1 can be an
advantage, particularly when you wish to execute a short time-critical program.

Note
You should only use FB 0 for programming cyclic program execution
(it must not contain parameters).

If both OB 1 and FB 0 are loaded, the system program will only call
organization block OB 1 cyclically.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

2.4 Data Blocks

Introduction Data blocks (DB) or extended data blocks (DX) are used to store the fixed or
variable data with which the user program works. No STEP 5 operations are
processed in data blocks.

The data of a data block includes the following:
e various bit patterns (e.g. for status of a controlled process)
e numbers (hexadecimal, binary, decimal) for timer values or arithmetic results

¢ alphanumeric characters, e.g. for message texts.

Structure of a A data block (DB/DX) consists of the following parts:
data block
* block preheader (DV, DXV),

¢ Dblock header

¢ block body.

Block preheader The block preheader is created automatically on the hard or floppy disk of the
PG and not transferred to the CPU. It contains the data formats of the data words
entered in the block body.

You have no influence over the creation of the block preheader.

Note

When you transfer a data block from the PLC to diskette or hard disk, the
corresponding block preheader can be deleted. For this reason, you must
never modify a data block with different data formats in the PLC and then
transfer it back to diskette, otherwise all the data words in the DB are
automatically assigned the data format you selected in the presets screen
form.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-33

User Program

Block header The block header occupies five words in the memory and contains the following:

the block identifier

e the programmer identifier

e the block type and the block number
e the library number

e the block length (including the length of the block header).

Block body The block body contains the data words with which the user program works. These
data words are in ascending order in the block body, starting with data word DW 0.
Each data word occupies one word (16 bits) in the memory.

Maximum length A data block can occupy a total of maximum 32 767 words (including header) in
the CPU memory. When you use your programmer to enter and transfer data
blocks, remember the size of your CPU memory!

CPU 928B-3UB21 Programming Guide
2-34 C79000-G8576-C870-01

User Program

241 Creating Data Blocks

Procedure

To create a data block, perform the following steps:

1. Enter the block type (DB/DX) and data block number between 3 and 255.

2. Enter individual data words in the data format you require.

(Do not complete your input of the data words with a BE statement!)

Note

Data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved for
specific functions. You cannot use them freely for other functions
(see Section 2.4.3)!

Permitted data
formats

When creating a data block, you can use all of the data formats listed below.

Table 2-7 Data formats permitted in a data block
Type Data format Examples
KM Bit pattern 00100110 00111111
KH Hexadecimal 263F
KY 2 bytes 038,063
KF Fixed point number +09791
KG Floating point number +1356123+12
KS Character 21ABCD123-+.,%
KT Timer value 055.2
KC Counter value 234

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

24.2 Opening Data Blocks

Introduction

Validity of a data
block

Access

You can only open a data block (DB/DX) unconditionally. This is possible
within an organization, program, sequence or function block. You can open a
specific data block more than once in a program.

To open a data block, perform the following steps:

IF... THEN...
You want to open a DB data block Type in the STEP 5 operation "C DB.."
You want to open a DX data block Type in the STEP 5 operation "CX DX.."

After you open a data block, all statements that follow with the operand area D’
refer to the opened data block.

The opened data block also remains valid when the program is continued in a
different block following a block call.

If a second data block is opened in this new block, the second data block is only
valid in the newly called block from the point at which it is called. After program
execution returns to the calling block, the old data block is once again valid.

You can access the data stored in the opened data block during program
execution using load or transfer operations (refer to Chapter 3 for more
detailed information).

With a binary operation, the addressed data word bit is used to form the RLO.
The content of the data word is not changed.

With a set/reset operation, the addressed data word bit is assigned the value of
the RLO. The content of the data word may be changed.

A load operation transfers the contents of the referenced data word into
ACCU 1. The contents of a data word are not changed.

A transfer operation transfers data from ACCU 1 to the referenced data word.
The old contents of the data word are overwritten.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

Note

Before accessing a data word, you must open the data block you require in
your program. This is the only way that the CPU can find the correct data
word.

The referenced data word must be contained in the opened block, otherwise
the system program detects a load or transfer error.

With load and transfer operations, you can only access data word numbers
up to 255!

An opened data block remains valid until one of the following events
occur:
a) asecond data block is opened
or
b) the block, in which the data block was opened, is completed with
’BE’, ’BEC’ or "BEU’.

Examples Example 1: transferring data words

You want to transfer the contents of data word DW 1 from
data block DB 10 to data word DW 1 of data block DB 20.

Enter the following statements:

:C DB 10 (open DB 10)

:L DW 1 (load the contents of DW 1 into
: ACCU 1)

:C DB 20 (open DB 20)

:T DW 1 (transfer the contents of ACCU 1
: to DW 1)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 2-37

C
BE

ag A 9
ooooooo
. o~ o

] o
a7d ema mmmmm
ttttttt

C DB 10
W PB 20
BE

User Program

243 Special Data Blocks

Introduction

DB o0

DB 1

DB 2

On the CPU 928B data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved
for special functions. They are managed by the system program and you cannot
use them freely for other functions.

Data block DB 0 (see Section 8.3)

Data block DB 0 contains the address list with the start addresses of all blocks
that are located in the data block RAM of the CPU. The system program
generates this address list during initialization (following each OVERALL
RESET) and it is updated automatically when you use a programmer to change
data blocks or generate a new data block.

Data block DB 1 (see Section 10.1)

Data block DB 1 contains the list of digital inputs/outputs (P peripheral with
relative byte addresses from 0 to 127) and the interprocessor communication
(IPC) flag inputs and outputs that are assigned to the CPU. If applicable, the
block may also contain a timer field length.

* DB 1 can have parameters assigned and be loaded as follows:

to reduce the cycle time in single processor operation, since only the inputs,
outputs or timers entered in DB1 are updated.

¢ DB 1 must be assigned parameters and loaded as follows:
— for multiprocessing

— when IPC flags exist with CPs

Data block DB 2 (see Section 4.5)

You use data block DB 2 to assign parameters to the closed loop controller
structure R64. The closed loop control function can be ordered as a software
product and operates supported by the system program.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

DX o Data block DX 0 (see Chapter 7)

If you assign parameters to data block DX 0 and load it, you can change the
defaults of certain system program functions (e.g. the start-up procedure) and
adapt the performance of the system program to your particular application.

DX 1 Data block DX 1
Reserved.
DX 2 Data block DX 2

Data block DX 2 is used to specify the communication via the second serial
interface. See the "CPU 928B Communication" Manual for details of assigning
parameters to this block (see /14/).

CPU 928B-3UB21 Programming Guide
2-40 C79000-G8576-C870-01

Program Execution

Contents of the
chapter

Overview of the
chapter

This chapter is intended for readers who do not yet have any great experience in
using the programming language. The chapter therefore deals with the basics of

STEP 5 programming and explains in detail (with examples) the STEP 5

operations for the CPU 928B.

Experienced readers who require more information about a specific STEP 5
operation listed in the Pocket Guide /1/ can refer to the reference section in 3.5.

Section Description Page
3.1 Principle of Program Execution 32
32 Program Organization 3-3
33 Storing Program and Data Blocks 3-8
34 Processing the User Program 3-10
34.1 Definition of Terms used in Program Execution 3-11
35 STEP 5 Operations with Examples 3-13
35.1 Basic Operations 3-17
352 Programming Examples in the STL, LAD and CSF 3-32

Methods of Representation
353 Supplementary Operations 3-47
354 Executive Operations 3-54
355 Semaphore Operations 3-67

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.1

Overview

Principle of Program Execution

You can process your STEP 5 user program in various ways.

Cyclic program execution is most common with programmable controllers
(PLCs). The system program runs through a program loop (the cycle, refer to
Section 3.4) and calls organization block OB 1 cyclically in each loop (refer to

Fig. 3-1).

System program

from start-up

{

Trigger cycle time

Update inter-
processor comm.
flag inputs

Update process
image inputs
(PII)

User program

Call OB1

Update process
image outputs
(P1Q)

Update inter-
processor comm.
flag outputs

J

Fig. 3-1

Principle of cyclic program execution

OB 1
PB 20
call PB 20 /
BE
BE

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.2 Program Organization

Introduction

Program organization allows you to specify which conditions affect the
processing of your blocks and the order in which they are processed. Organize
your program by programming organization blocks with conditional or
unconditional calls for the blocks you require.

You can call additional program, function and sequence blocks in any
combination in the program of individual organization, program, function and
sequence blocks. You can call these one after another or nested in one another.

For maximum efficiency, you should organize your program to emphasise the
most important program structures and in such a way that you can clearly

recognize parts of the controlled system which are related in the software.

Figs. 3-2 and 3-3 are examples of a program structure.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

OB 1

JU PB A

JU PB ‘B

JUu PB ‘C’

JU PB ‘D°

BE

Fig. 3-2

PB 'A FB
Operating mode Stop to the system
program EMERGENCY
OFF
FB
/' Go to initial
state
PB ‘B FB SB
Sequence Control of Sequence
control sequence / step
cascade
L)
L)
s8°
/Sequence
step
PB ‘C* FB DB
Individual Group P Interface flags
control level initialization < of the individual
control
FX elements
Individual
initialization <
[
[
FX .
Individual
initialization D
PB ‘D* FB
Message output Message output
via standard
peripherals
FB DX
Message
texts

Message output
via standard

peripherals

A

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Example of the organization of the user program according to the program structure

Program Execution

oB 1 PB ‘X‘ FB
Controlled Individual control
system part ‘X’
FB
JU PB *X /Closed loop control
FX
Signalling
PB ‘Y FB
Controlled Sequence control
system part ‘Y*
JU PB ‘Y EX
Signalling
FB ‘Z* FB
Controlled Closed loop control
system part ‘Z°
JU PB ‘Z° FB
Arithmetic
FB
/Data logging output
BE

Fig.3-3 Example of the organization of the user program according to the structure of the controlled system

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-5

Program Execution

Nesting blocks

OB 1

JU PB5,
A F 200.5 %

BE

%)

Fig. 3-4

Block addresses

Nesting depth

Fig. 3-4 shows the principle of nested block calls.

Nested logic block calls

PB 5

st STEP 5 Op.
C DB 20

JU PB 20)
= Q 60.6"
\

BE

Operation to which the program returns

PB 20

1st STEP 5 Op.
C DB 30

JU FB 30—
NAME: KURY

A 1550)
BE

A block start address specifies the location of a block in the user memory (or
DB-RAM). For logic blocks, this is the address of the memory location
containing the first STEP 5 operation (with FB and FX, the JU operation via the
formal operand list); with data blocks, it is the address of the first data word.

To enable the CPU to locate the called block in the memory, the start addresses
of all valid blocks are entered in the block address list in data block DB 0. DB 0
is managed by the system program, you cannot call it yourself.

The CPU stores a return address every time a new block is called. After the
new block has been processed, this return address enables the program to find the
block from which the call originated. The return address is the address of the
memory location containing the next STEP 5 statement after the block call. The
CPU also stores the start address and length of the data block valid at this

location.

You can only nest 62 blocks within one another. If more than 62 blocks are
called, the CPU signals an error and goes to the stop mode.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Example of
nesting depth
A Program
processing
level
— 0B 25
— 0B2 —» FB 21
T 0B 13 —» PB 131 —» FB 131
— 0B1 —» pB1 —» FB1
Nesting depth
I I | I I I I I 7
1 2 3 4 5 6 7 8 9

You can determine the nesting depth of your program as follows:

- Add all the organization blocks you have programmed
(in the example: 4 OBs).

- Add the nesting depth of the individual organization blocks
(in the example: 2 + 2 + 1 + 0 = 5).

- Add the two amounts together to obtain the program nesting depth

(in the example: 4 + 5 = nesting depth 9). It may not exceed a value
of 62.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

3.3 Storing Program and Data Blocks

Introduction

RAM mode

EPROM mode

You must load your user program and any data blocks into the program memory
so that the CPU can process it. As program memory, you can use the user
memory and the DB-RAM.

To load the code blocks and data blocks into the program memory, you can
proceed in different ways:

If no memory card (Flash EPROM) is plugged when an OVERALL RESET is
performed on the CPU, the CPU goes into "RAM" mode.

Code blocks and data blocks are loaded from the PG to the user memory or the
DB-RAM of the CPU. They can be reloaded (replaced), edited or deleted by
the PG at any time, which means the write protection is deactivated.

Code blocks and data blocks are copied from the memory card to the user
memory by the system program. The system program also sets a write
protection ID.

This means that all copied blocks cannot be reloaded, edited or deleted.

To edit data in data blocks, you must ensure that the data blocks are copied to the
DB-RAM.

You can copy or move data blocks that are programmed in the memory card to
the DB-RAM using OB 254/0B 255 (for example, startup OB). You can load
other data blocks from the PG to the DB-RAM.

As soon as the data blocks are in the DB-RAM, you can reload, edit or delete
them.

Any changes to these data blocks are not included in the memory card. You
must save their contents before the next overall reset.

After the overall reset, you can remove the memory card; the data are in the user
memory and ready for use.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

DB-RAM

Activating/deactivating write protection

If you want to make changes to blocks in EPROM mode, you can deactivate the
write protection again by deleting the write protection ID (see Section 8.3,
RS 138).

You can make blocks read-only again by setting the write protection ID again.

You can also assign write protection to a CPU without a memory card if you set
the write protection ID.

Displaying the memory configuration

If you display information about the memory in EPROM mode using the PG
function "memory configuration", the length of the memory is displayed as 0’
and the end address of the user memory is displayed as ’OEEEEH’.

Note

The memory card can only be programmed on the PG. You can use the
PG software from version 6 to do this.

When programming, you should select the PG operating mode "WORD"
(see S5-DOS description /3/).

Data blocks (DB/DX) are written to the DB-RAM by creating or copying them.
When data blocks are transferred from the PG to the CPU, they are stored in the
DB-RAM if the user memory is full or if "alternative loading" is set in RAM
mode (see Section 8.3, RS 144).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.4 Processing the User Program

Introduction

START-UP

CYCLE

The complete software on the CPU (consisting of the system program and the
STEP 5 user program) has the following tasks:

¢ CPU START-UP

¢ Controlling an automation process by continuously repeating operations
(CYCLE).

¢ Controlling an automation process by reacting to events occurring
sporadically or at certain times (interrupts) and reacting to errors.

For all three tasks, you can select special parts of your program to run on the
CPU by programming user interfaces (organization blocks OB 1 to OB 35 -
refer to Section 2.2).

Before the CPU can start cyclic program execution, an initialization must be
performed to establish a defined initial status for cyclic program execution and,
for example, to specify a time base for the execution of certain functions. The
way in which this initialization is performed depends on the event that led to a
START-UP and on settings that you can make on your CPU. For more detailed
information, refer to Chapter 4.

You can influence the START-UP procedure of your CPU by programming
organization blocks OB 20, OB 21 and OB 22 or by assigning parameters in
DX 0 (refer to Chapter 7).

Following the START-UP, the system program goes over to cyclic processing. It
is responsible for background functions required for the automation tasks (refer
to Fig. 3-1 at the beginning of this section).

After the system functions have been executed at the beginning of a CYCLE, the
system program calls organization block OB 1 or function block FB 0 as the
cyclic user program. You program the STEP 5 operations for cyclic processing
in this block.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Reactions to
interrupts
and errors

To allow you to specify the reactions to interrupts or errors, special organization
blocks (OB 2, OB6 and OB9 to OB 18 for interrupt servicing, OB 19 and OB 23
to OB 35 for reactions to errors) are available on the CPU 928B. You can store
an appropriate STEP 5 program in these blocks.

When interrupts or errors are to be processed, the system program activates the
corresponding organization block during cyclic processing. This means that the
cyclic processing is interrupted to service an interrupt or to react to an error. The
nesting of the organization blocks has a fixed priority (for further information,
refer to Chapters 4 and 5).

In addition to the organization blocks, you can also influence the reaction of the
CPU to interrupt servicing by assigning parameters in data block DX 0.

Organization blocks OB 1 to OB 39 can be called by the system program as soon
as they are loaded in the program memory (also during operation).

If the OBs are not loaded, there is either no reaction from the CPU or (in the
event of errors) it goes to the stop mode (refer also to Section 5.4).

You can also load data block DX 0 into the program memory during operation
like the organization blocks. It is, however, only effective after the next COLD
RESTART. If DX 0 is not loaded, the standard settings apply (refer to

Chapter 7).

3.4.1 Definition of Terms used in Program Execution

Cycle time

Cycle time
monitoring

The cycle begins when the cycle monitoring time is triggered and ends with the
next trigger. The time that the CPU requires to execute the program between two
triggers is called the cycle time. The cycle time consists of the runtime of the
system program and the runtime of the user program.

The cycle time therefore includes the following:
* the time required to process the cyclic program (system and user program),
* the time required to process interrupts (e.g. time-controlled interrupt),

¢ the time required to process interruptions (errors).

The CPU monitors the cycle time in case it exceeds a maximum value. The
standard setting for this maximum value is 150 ms. You can set the cycle time
monitoring yourself or restart it during user program execution (refer to

DX 0/Chapter 7 and special function OB OB 221 and OB 222/Sections 6.23
and 6.24).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Process input
and output
image (PIl and
PIQ)

Interprocessor
communication
(IPC) flags

Interrupt events

The process image of the inputs and outputs is a memory area in the internal
RAM. Before cyclic execution of the user program begins, the system program
reads the signal states of the input peripheral modules and transfers them to the
process input image. The user program evaluates the signal states in the process
input image and then sets the appropriate signal states for the outputs in the
process output image. After the user program has been processed, the system
program transfers the signal states of the process output image to the output
peripheral modules.

Buffering the I/O signals in the process image of the inputs and outputs avoids a
change in a bit within a program cycle from causing the corresponding output to

"flutter".

The process image is therefore a memory area whose contents are output to the
peripherals and read in from the peripherals once per cycle.

Note

The process image only exists for input and output bytes of the "P" peripherals
with byte addresses from 0 to 127!

IPC flags exchange data between individual CPUs (multiprocessing) or between the
CPU and some communication processors.

The system program reads the input IPC flags of the CPU before cyclic
execution of the user program begins. After the STEP 5 program is processed,
the system program transfers the output IPC flags to the coordinator or to the

communications processors.

You define the input and output IPC flags when you create data block DB 1 (refer to
Section 10.1).

Cyclic program execution can be interrupted by the following:
® process interrupt-driven program processing,

¢ time-controlled program processing,

¢ delay interrupt,

¢ time interrupt clock-controlled.

The cyclic program can be interrupted or even aborted completely by the
following:

¢ adevice hardware fault or program error,

¢ operator intervention (using the PC stop function, or setting the mode selector
to "stop", multiprocessor stop MP-STP),

* astop operation.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

3.5 STEP 5 Operations with Examples

Introduction

Accumulators as
working registers

ACCU 1
D

A STEP 5 operation consists of the operation and an operand. The operation

specifies what the CPU is to do (operation). The operand specifies with what an
operation is to be executed.

STEP 5 operations can be divided into the following groups:

basic operations (can be used in all logic blocks),
supplementary operations,
executive operations (can only be used in FB/FX function blocks),

semaphore operations (can only be used in FB/FX function blocks).

The CPU 928B has four accumulators, ACCU 1 to ACCU 4. Most STEP 5
operations use two 32-bit registers (ACCU 1 and ACCU 2) as the source of

operands and the destination for results.

High word Low word

High byte

Low byte High byte Low byte

31

ACCU-1-HH

24,23 16 15 8,7 0
ACCU-1-HL ACCU-1-LH ACCU-1-LL

ACCU-1-H ACCU-1-L

D' The structure is analogous for ACCU 2 to ACCU 4

The STEP 5 operation to be carried out affects the accumulators, e.g.:

ACCU 1 is always the destination in load operations. A load operation shifts
the old contents of ACCU 1 to ACCU 2 (stack lift). Accumulators 3 and 4 are
not changed by any load operations.

Arithmetic operations combine the contents of ACCU 1 with those of

ACCU 2, write the result to ACCU 1 and transfer the contents of ACCU 3 to
ACCU 2 and the contents of ACCU 4 to ACCU 3 (stack drop). In 16-bit
fixed point arithmetic, only the low word or ACCU 3 is transferred to the low
word of ACCU 2 and the low word of ACCU 4 to the low word of ACCU 3.

When a constant is added (ADD BF/KF/DH) to the contents of ACCU 1, the
accumulators 2, 3 and 4 are not changed.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Condition codes

Bit condition
codes

STEP 5 operations either set or evaluate condition codes. The condition codes are
written to a condition code byte. Two groups of condition codes can be
distinguished: condition codes of digital operations (word condition codes - bits 4
to 7 in the condition code byte) and condition codes from binary and executive
operations (bit condition codes - bits 0 to 3 in the condition code byte). You can see
how the various condition codes are influenced or evaluated by STEP 5 operations
be referring to the operation list (see /1/ in Chapter 13).

You can display the condition code byte on a programmer using the "STATUS"
online function (refer to Section 11.2.3). The byte has the following structure:

Word condition codes Bit condition codes
CC1 CCo ov oS OR STA RLO ERAB
Bit 7 6 5 4 3 2 1 0

e ERAB First bit scan

A logic operation sequence containing binary operations always begins with
the first bit scan, following which a new RLO is formed. The bit condition
code ERAB = 1 is then set. While the remaining logic operations in the
sequence are being performed, ERAB remains set to 1 and the RLO cannot
be changed by these logic operations.

The active sequence of logic operations is terminated by a binary set/reset
operation (e.g. S Q 5.0). The set/reset operation sets ERAB to 0; the RLO can
be evaluated (e.g. by RLO-dependent operations) but can no longer be
combined logically. The next binary logic operation following a binary
set/reset operation is once again a first bit scan.

dependent on the RLO.

Example of ERAB

:S Q 7.7 Last operation of the pre-
vious logic operation
sequence

:A I 1.0 ERAB is set to '1l’,

: the new RLO is formed by

: an AND operation

:0 I 6.3 The RLO is influenced by

: an OR operation

tAN I 2.1 The RLO is influenced by

H an AND NOT operation.

:S 0 2.4 ERAB is set to '0’,

: the sequence is now complete

:JC FB 150 The function block is called

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Other bit
condition codes

Word condition
codes

RLO Result of logic operation

This is the result of bit logic operations. It is the truth statement for
comparison operations (refer to operations list, binary logic operations or
comparison operations).

STA Status

For bit operations, this indicates the logical status of the bit just scanned or
set. The status is updated in binary logic operations - except for A(, O(,), O
and for set/reset operations.

OR Or

Internal CPU bit for handling "AND before OR" logic operations.

OV Overflow

This indicates whether the permissible number range was exceeded during
the arithmetic operation just completed.

OS Stored overflow

It can be used in several arithmetic operations to indicate whether an overflow
occurred at any point during the operations.

CC1and CCO

These are the result condition codes that you can interpret from table 3.1.

Note
To evaluate the condition codes directly, comparison and jump operations are
available (refer to Sections 3.5.1 and 3.5.3).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Table 3-1 Result condition codes of STEP 5 operations

Word Digital For Jump
condition codes | Arithmetical logic Comparison Shift SED, operations
operations operations operations operations SEE executed
CC1 CCo
0 0 Result Result ACCU 2 Shifted Semaphore
=0 =0 = bit is JZ
ACCU 1 =0 set
0 1 Result ACCU2 M
<0 - < - - IN
ACCU 1
1 0 Result Result ACCU 2 Shifted Semaphore JP
>0 =0 > bit is IN
ACCU 1 =1 set
or
enabled
1 1 Division IN
by 0 - - - -
Note

When a change of level takes place, e.g. servicing a timed interrupt, all
accumulators and the bit and word condition codes (RLO etc.) are saved and
loaded again when the interrupted level is resumed.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

3.5.1 Basic Operations

Introduction You can use the basic operations in all code blocks and all methods of
representation (STL, LAD, CSF).
Binary logic
operations
Table 3-2 Binary logic operations
Operation Operand Function
A AND logic operation after scanning for signal state "1"
O OR logic operation after scanning for signal state "1"
I 0.0to127.7 of an input in the PII
Q 0.0t0 127.7 of an output in the PIQ
F 0.0t0255.7 of a flag bit
S 0.0to 4095.7 of an S flag bit
D 0.0to215.15 of a data word bit
T 0to255 of a timer
C 0to 255 of a counter
AN AND logic operation after scanning for signal state "0"
ON OR logic operation after scanning for signal state "0"
I 0.0to127.7 of an input in the PII
Q 0.0t0 127.7 of an output in the PIQ
F 0.0t0255.7 of a flag bit
S 0.0to 4095.7 of an S flag bit
D 0.0to 255.15 of a data word bit
T 0to255 of a timer
C 0to 255 of a counter
o - Combine AND operations through logic OR
A(- ANDing of expressions in parentheses
O(ORing of expressions in parentheses
) Close parenthesis (to complete the bracketed expression)
Maximum of 8 levels are permitted, i.e. 7 opened brackets
RLO formation

The binary logic operations generate the result of logic operation (RLO).
At the beginning of a logic sequence, the RLO only depends on the signal state
scanned (first scan) and not on the type of logic operation (O = OR, A = AND).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Within a sequence of logic operations, the RLO is formed from the type of operation,
previous RLO and the scanned signal state. A sequence of logic operations is
completed by an operation (e.g. set/reset operations) which retains the RLO

(ERAB = 0). Following this, the RLO can be evaluated but cannot be further

combined.
Example of RLO formation
Program Status RLO ERAB
= Q 00 0 0 0<— RLO retained
A I 1.0 1 — 1 1 < first bit scan
A I 11] =1, 1 1 «
A 1 12 |0 =—T,0 1
= Q 0.1 0 0 0 RLO retained, end of
the logic operations
sequence
Set/reset
operations
Table 3-3 Set/reset operations
Operation Operand Function
S Setif RLO =1
R Resetif RLO =1
I 0.0to127.7 an input in the PII
Q 0.0to 127.7 an output in the PIQ
F 0.0to255.7 aflag
S 0.0to0 1023.7 an S flag
D 0.0to 255.15 a bit in the data word
= The RLO is assigned to
I 0.0to127.7 an input in the PII
Q 0.0to 127.7 an output in the PIQ
F 0.0to255.7 aflag
S 0.0to0 1023.7 an S flag
D 0.0to 255.15 a bit in the data word

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Load and
transfer
operations

Table 3-4 Load and transfer operations

Operation Operand Function
L Load
T Transfer
1B 0to 127 an input byte from/to the PII
w Oto 126 an input word from/to the PII
ID Oto 124 an input double word from/to the PII
QB 0to 127 an output byte from/to the PIQ
Qw 0to 126 an output word from/to the PIQ
QD 0to 124 an output double word from/to the PIQ
FY 0 to 255 a flag byte
Fw 0to 254 a flag word
FD 0to 252 a flag double word
SY 0to 1023 an S flag byte
SwW 0to 1022 an S flag word
SD 0to 1020 an S flag double word
DR 0 to 255 the right byte of a data word from/to DB,DX
DL 0to 255 the left byte of a data word from/to DB,DX
DW 0to 255 a data word from/to DB, DX
DD 0to 254 a data double word from/to DB, DX
PY 0to 127 a peripheral byte of the digital inputs/outputs (P area)
PY 128 to 255 a peripheral byte of the analog or digital inputs/outputs
(P area)
PW 0to 126 a peripheral word of the digital inputs/outputs (P area)
PW 128 to 254 a peripheral word of the analog or digital inputs/outputs
(P area)
oy 0to 255 a byte of the extended I/O area (O area)
ow 0to 254 a word of the extended I/O area (O area)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Operation Operand Function
Table 3-4 continued:
L Load
KB 0to255 a constant, 1 byte
KS 2 ASCI a constant, 2 ASCII characters
characters
KF -32768 to a constant as fixed point number
+32767
KG a constant as floating point number
KH O0to FFFF a constant as hexadecimal number
DH Oto a double word constant as a hexadecimal number
FFFF FFFF
KM 16-bit pattern a constant as bit pattern
KY 0to 255 for a constant, 2 bytes
each byte
KT 0.0t0999.3 a constant timer value (in BCD)
KC 0to999 a constant counter value
T 0to 255 a timer, binary coded
C 0to 255 a counter, binary coded
LC Load
T 0to 255 a timer
C 0to 255 a counter
in BCD

1D £0,1469368 x 10”8 t0 +0,1701412 x 10%

Load operations

Load operations write the addressed value into ACCU 1. The former contents
of ACCU 1 are saved in ACCU 2 (stack lift).

Transfer operations

Transfer operations write the contents of ACCU 1 to the addressed memory

location.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Examples of load
and transfer
operations

Example 1

Fig. 3-6 illustrates loading/transferring a byte, word or double word
from/to a memory area organized in bytes (PII, PIQ, flags, I/0).

:L IB i load byte i of the PII into ACCU-1-LL
:L IW j load bytes j and j+1 of the PII into ACCU-1-L
:L FD k load flag bytes k to k+3 in ACCU 1

= |in
ascending
order

Addresses l

k+3

') only with load operations

Fig.3-6 Load and transfer operations in a byte-oriented memory area

CPU 928B-3UB21 Programming Guide
C79000-Gi8576-C870-01 3-21

Program Execution

Example 2:

Fig. 3-7 illustrates the loading/transfer of a byte, word or double word
from/into a memory area organized in words.

:L DR i load the right byte of data word i into ACCU-1-LL

:L DL

:L DW k load data word k into ACCU-1-L

j load the left byte of data word j into ACCU-1-LL

:L DD 1 load data words 1 and 1+1 into ACCU 1
15 0 31 23 15 7 0
0o 01 0 i ACCU 1
A
L DR
right byte T DRI
Data word i
Addresses l 31 23 15 7 0
n -
ascending 0 0 0 j ACCU 1
order A oL
left byte T DL j
Data word | 31 15 0
01 k ACCU 1
]
, L DWk
T DWk
31 15 0
| [+1 ACCU 1
X]
I L bBb|
T DD I
I+ 1
Ulonly with load operations
Fig.3-7 Load and transfer operations in a word-oriented memory area

Note

Load operations do not affect the condition codes. Transfer operations

clear the OS bit.

When a byte or word is loaded the extra bits are cleared in ACCU 1.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Addressing I/Os

You can use load and transfer operations to address the I/O peripherals as
follows:

¢ directly using the following operations:
L./T.. .PY,.PW,.OY,.OW
or
¢ using the process image with the following operations:
L./T.. .IB, .IW, .ID, .QB, ..QW, ..QD
and with logic and set/reset operations
Note
If you use the transfer operations T PY 0 to 127 and T PW 0 to 126, the
process output image is updated at the same time.
Note the following points about I/O peripherals:

* A process input/output image exists for 128 input and 128 output bytes of the
P peripherals with byte addresses from 0 to 127.

¢ No process image exists for the entire area of the O peripherals and the P
peripherals with relative byte addresses from 128 to 255. (For more
information on address space allocation see
Section 8.2.2).

¢]/O modules with addresses of the O peripherals can only be
plugged into expansion units (not in the central controller).

* In one expansion unit, you can use either only P peripherals or only O
peripherals.

Caution

If you use relative addresses of the O peripherals in an expansion unit, you
can no longer use these addresses for I/O modules in the central controller
(this would result in double addressing).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Timer and
counter
operations

To load a timer using a start operation or a counter using a set operation, you
must first load the value in ACCU 1.

The following load operations are preferable:

For timers: LKT, LIW, LQW, LFW,LDW, L SW.
For counters: LKC,LIW,L QW, LFW, LDW, L SW.

Starting a timer with the selected timer value requires an RLO signal change.

A counter is set or started with the selected counter value when a positive-going
RLO signal edge is detected.

The following table indicates the signal edge change with corresponding arrows.

Table 3-5 Timer and counter operations

Operation Operand RLO Function
1
SP T 0 to 255 f Start a timer as a pulse
SE T 0 to 255 ! Start a timer as extended pulse
SD T 0 to 255 1 Start a timer as ON delay
SS T 0 to 255 1 Start a timer as stored ON delay
SF T 0 to 255 v Start a timer as OFF delay
R T 0 to 255 1 Reset a timer
S C 0to 255 1 Set a counter (BCD number from 0 to 999)
R C 0to255 1 Reset a counter
CU C 0to255 t Count up
CD C 0to255 t Count down

D positive-going edge (1):

negative-going edge (|):

signal change from ’0’ to ’1’
signal change from ’1’ to ’0’

When executing the timer or counter operations SP T, SE T, SD T, SS T, SF T and
S C the value in ACCU 1 is transferred to the timer or counter (as with the
transfer operation) and the appropriate operation is started.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Timer value

With the operation L KT, you can load a timer value directly into ACCU 1 or
indirectly from a flag or data word. The value must have the following structure
(with L KT, you specify the time base after the period in the operand as shown
below):

Bit no.
115[14 13 12]11]10] 0 [8 |76 |5 [a [3|2]1]0]|
\ﬂ v A v A v J
102 101 100
N J
e
Timer value O ... 999 in BCD
Time base specified in BCD: 0: 0.01 sec
1: 0.1 sec
2: 1 sec
3: 10 sec

These bits are irrelevant
(i.e. they are ignored when
the timer is started)

You want to set a time of 127 sec.:
Bit assignment:

x|x|1/0o]o]ofo|1|/0f0|1]0|0]|1]1]1
A A N N Y
Ve N N

2 1 2 7
N Y,

Timer value 127

Time base 1 sec

Irrelevant

Note

The start of each timer is liable to an inaccuracy of 1 time base! When
using timers, you should therefore select the smallest possible time base
(time base < timer value):

Example:
time value 4s not: 1sx4 inaccuracy: 1s

but: 0.01 s x 400 inaccuracy: 0.01 s

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Counter value With the operation L KC, you can load a counter value directly in
ACCU 1 or indirectly from a flag or a data word. The value must have the following
structure:
Bit no.
l15]14 131211]10] 9|8 |7 |6 |5 |43 |2]1]0]
J
~ '
102 10! 100
_ J

v
Counter value O ... 999

specified in BCD

These bits are irrelevant,
(i.e. they are ignored when
the counter is set)

You want to specify a counter value of 127:
Bit assignment:

Counter value 127

Irrelevant

In the timer or counter itself, the value is in binary code. If you want to scan the
timer or counter, you can load the actual timer or counter value into ACCU 1
directly or in BCD code.

CPU 928B-3UB21 Programming Guide
3-26 C79000-G8576-C870-01

Program Execution

Further
examples of
timer and
counter values

Loading timer values directly:

Timer value

N
__ r I
9 0 Timer T 10
""""""""""" 00 e ol Accu 1

"L T 10": Loads the binary timer value of timer T 10
directly into ACCU 1

The time base is not loaded.

Loading counter values directly:

Counter value

N
__ - N
9 0 Counter C 10
0’ 9 0| ACCU 1
"L C 10": Loads the binary counter value of counter C 10

directly into ACCU 1

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-27

Program Execution

Loading timer value in BCD code:

Timer value

A
4 N
l }13 12‘ 9 0| Timer T 10
Binary > BCD
'0' |13 12|11 8 413 0| ACCU 1
"""""" D D /
' Y '
2 1 0
klo 10 10 y
'
Time base Timer value

"ILC T 10": Loads the timer value and the time base of
timer T 10 into ACCU 1 in BCD

The time base is also loaded.

Loading counter value in BCD code:

Timer value
A

,,,,,,,,,,,,,,,,,,,,, 4 A
13 12 9 0| Timer T 10
Binary > BCD
0" 11 8 413 0] ACCU 1
””””””””””” 7 7
N Y e
10° 10" 10°
NS J

e

Counter value in BCD

"LC C 10": Loads the counter value of counter C 10
into ACCU 1 in BCD

If you load values in BCD, status bits 14 and 15 of the timer or 12 to 15 of the
counter are not loaded. They have the value 0 in ACCU 1. The value in the

ACCU can now be processed further.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Arithmetic
operations

Table 3-6 Arithmetic operations

Operation Operand Function

- Add two fixed point numbers (16 bits)

Subtract one fixed point number from another (16 bits)

Multiply two fixed point numbers (16 bits)

Divide one fixed point number by another (16 bits):
quotient in ACCU-1-L, remainder in ACCU-1-H

esBies les Mies!

Add two floating point numbers (32 bits)

Subtract one floating point number from another (32 bits)
Multiply two floating point numbers (32 bits)

Divide one floating point number by another (32 bits)

Q@

Arithmetic operations logically combine the contents of ACCU 1 and ACCU 2
(e.g. ACCU 2 - ACCU 1). The result is then contained in ACCU 1. An arithmetic
operation changes the arithmetic registers as follows (in fixed point operations only
the low word):

ACCU1 ACCU2 ACCU3 ACCU4

before: <ACCU 1> <ACCU2> <ACCU3> <ACCU4>
after: <result> <ACCU 3> <ACCU4> <ACCU 4>
Note

Within the supplementary operations, there are operations for
subtraction and addition of double word fixed point numbers.

In addition, you can use the ENT operation from the set of supplementary
operations for loading ACCU 3 and ACCU 4 (see Section 3.5.3).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-29

Program Execution

Comparison

operations

Table 3-7 Comparison operations

Operation Operand Function

I= - Compare for equal to

>< F Compare for not equal to

> D Compare for greater than

>= G Compare for greater than or equal to

< Compare for less than

<= Compare for less than or equal to
..F compare two fixed point numbers (16 bits)
..D: compare two fixed point numbers (32 bits)

G compare two floating point numbers (32 bits)
Block operations

Table 3-8 Block operations

Operation Operand Function
JU Jump unconditionally
JC Jump conditionally (only when RLO =1)
OB 11039 U to an organization block
OB 110to 255 to a system program special function
PB 0to255 to a program block
FB 0to255 to an FB function block
SB 0to255 to a sequence block
DOU Jump unconditionally
DOC Jump conditionally (only when RLO =1)
FX 0to255 to an FX function block
BE - Block end
BEC Block end, conditional (only when RLO =1)
BEU Block end, unconditional
C DB 3t0255 Call a DB data block
CcX DX 3to0255 Call a DX data block
G DB 3t0255 Generate data block DB
GX DX 3to0255 Generate data block DX
(ACCU 1 must contain the number of data words
— maximum 4091 — that the new block is to have)

bH only for test purposes!

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

G DB/GX DX

NOP/display/stop
operations

Generating a data block

The operation G DBx generates a DB data block with the number x (3 < x = 255)
in the user memory of the CPU. The content of the data block is not assigned the
value 0, i.e. the data words can have any contents.

Before programming this statement, you must store the number of data words
that the new DB is to have in ACCU-1-L. The operation "G DB" or "GX DX"
creates the block header. A data block generated in this way (without block
header) can occupy a maximum of 4091 words. You can generate longer data
blocks using OB 125.

If the data block already exists, the length of the DB is not permitted or there is
not enough space in the DB-RAM, the system program calls OB 31. If this is not
loaded, the CPU goes to the stop mode.

The GX DXx operation generates a DX data block in the DB-RAM and is
otherwise the same as G DBx.

Table 3-9 NOP/display/stop operations

Operation Operand Function
NOPO - No operation
NOP1 No operation
BLD 0to 255 Display generation operation for the PG:
the CPU handles the operation like a no operation
STP - CPU changes to soft STOP.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.5.2
Representation

Logic operations

Programming Examples in the STL, LAD and CSF Methods of

AND operation

. o STEP 5 representation
Logical/circuit diagram Statement adder Control system
list diagram flowchart
111 1.31.7 \ 114 11.1 113 117 Q35 111
T 111 . E] E] E : 113
| \|1.3 1.3 1.7 _03.5
& A 117
1.7
= Q85
S L
Q35 Py

statements are optional

The number of scans and the sequence of the logic

Output Q 3.5 is "1" when all inputs are "1" simultaneously

Output Q 3.5 is "0" if any of the inputs has signal state "0"

OR operation
o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
11.2 Q3.2 112 —
I12|1'|71|5 ¢ + o 12 — 17 —| =1
11.2 11.7 115 o 117 115 —| — Q3.2
z1 o 115 b
Q3.2 %
| — 4 = Q32
115
Q3.2

state "0" simultaneously

Output Q 3.2is "1" when at least one of the inputs is "1"

Output Q 3.2 is "0" when all inputs have the signal state

The number of scans and sequence of programming is optional

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

AND-before-OR operation

) o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
I1.|5 I1.|6 I1.|4 I1.|3 A 115 115 11.6 Q31 11
o T | e | P 1
\n.s \|1.4 A 116 7 .
& & 114 113 11 =
116 \113 o H :
11.7 — Q3.1
A 114
= Q341
Q31
Q 3.1 is "1" when at least one AND condition is satisfied
Q 3.1 is "0" when no AND condition is satisfied
OR-before-AND operation /1st example
) o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A 160
16.0 16.1 16.2 16.3 160 162 163 16.0 Q21
| | | o -
p 2 161 162 16.1
16.1 (%
O 162
16.3
O 163
| %
Q2.1)
= Q2.1

Output Q 2.1 is "1" when input | 6.0 o

and the AND condition is not satisfied

rinput | 6.1 and one

of the inputs | 6.2 or | 6.3 has signal state "1"

Output Q 2.1 is "0" when input | 6.0 has signal state "0"

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

OR-before-AND operation /2nd example
. o STEP 5 representation
Logical/circuit diagram Statement Ladder diagram Control system
list flowchart

Al

|1.|4 |1.|5 12.0 |2.|1 o 114 |1.4E |2..E Q3.0 14
e . .

11.4 115 0 115 115

=1 =1 115 |]2_1 120

) E .

2]

| | \IZ..O \|2.1 Al 121 — Q3.0
& @ Q3.0 0 120
| R N o 1241
Q3.
3.0)
= Q30
Output Q 3.0 is "1" when both OR conditions are satisifed
Output Q 3.0 is "0" when at least one OR condition is not satisfied
Scan for signal state "0"
STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
- 115 116 Q3.0 115
"-5| '(])-6 115 A 115 /L C
AN 11.6 11.6 — — Q3.0
11.6
& = Q30
Q3.0
| i wnlll
Q3.0

Output Q 3.0 is "1" only when input | 1.5 has signal state "1"
(normally open contact activated) and input | 1.6 has signal
state "0" (normally closed contact activated)

CPU 928B-3UB21 Programming Guide
3-34 C79000-G8576-C870-01

Program Execution

Set/reset
operations

RS flip-flop for a latching signal output

STEP 5 representation

Logical/circuit diagram

Statement Ladder Control system
list diagram flowchart
A 127 127 Q3.5 ass
S Q35 [_ s 127 s
A 114 114 4R aq
R Q35 11.4
HrR aF— — <

Signal state "1" at input | 2.7 sets the flip-flop

(signal state "1" at output Q 3.5).

If the signal state at input | 2.7 changes to "0", the

state of output Q 3.5 is retained (i.e. the signal is latched).

Signal state "1" at input | 1.4 resets the flip-flop
(signal state "0" at output Q 3.5).

If the signal state at input | 1.4 changes to "0", the
state of Q 3.5 is retained.

When the set signal (input | 2.7) and the reset signal

(input | 1.4) are applied at the same time, the scan
operation programmed last (in this case Al 1.4)

remains in effect for the rest of the program (reset priority).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-35

Program Execution

RS flip-flop with flags
] o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A 1 26 12.6 F17 F1.7
S F17 s 126 —S
A 113 P 113 —4R QF
R F17 118
Hr o — <

Signal state "1" at input | 2.6 sets the flip-flop.

Signal state "1" at input | 1.3 resets the flip-flop.

signal state of the flag is retained.

If the signal state at input | 2.6 changes to "0", the
signal state of the flag is retained, i.e. the signal is latched.

If the signal state at input | 1.3 changes to "0", the

When the set signal (input | 2.6) and the reset signal
(input | 1.3) are applied at the same time, the scan
operation last programmed (in this case Al 1.3) remains
in effect for the rest of the program (reset priority).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Simulation of a momentary contact relay (one shot)
] o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A 117
1 117 AN Fao0 117 F4.0 F2.0 117 —{ ¢
F4.0 - = F20 H H/T ™
L \ F2.0 F20 F4.0 g L F20
2o L S F40 Fao
AN |17 F2.0 F 4.0
R Fao —43 E7s F20_[s
1.7 (1 1.7
F 4.0 11 rr VR o 117 4R Q| —
F20 [[[1 |
On each leading edge of the signal at input | 1.7,
the AND condition (Al 1.7 and AN F 4.0) is satisfied;
the RLO is "1". This sets flags F 4.0 (edge flag) and
F 2.0 (pulse flag).
In the next processing cycle, the AND condition
Al 1.7 and AN F 4.0 is not satisfied, since flag F 4.0
has already been set.
Flag F 2.0 is reset.
Flag F 2.0 therefore only remains "1" for one program
run.
Binary scaler (binary divider)
) o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
! RS 110 F1.0 F11 1o — T
1o 1.0 - F1d A3t ¢ 0 F1.0-o | —F11
[V m1.0 A F1.1 F1.1 F1.0 —
s F1.0 S F1.0_
L AN 110 ﬁ 0[_ F11—8
[~\"] Q3.0 R F1.0 JE R QL 1.0 <R Q—
F20 A F1.1 -
Q3.0 A Q3.0 F1.1 Q3.0 F2.0 Fl1— &
- F2.0 HFF——) @0 [-F20
A F1.1 I
0 AN Q3.0 F1.1 Q3.0 F2.0 Q3.0 F11 ——
11.0 HSNENEREREN AN F20 HEE/8 aso—q " ;’3-0
S Q3.0 F2.0 F2.0 9 I
aso L L [1 [] R B —20_ln ol
The binary scaler (output Q 3.2) changes its state
each time input | 1.0 changes its signal state from O
to 1 (leading edge). Therefore, only half the input
frequency appears at the output of the memory cell.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Timer operations
Pulse timer
) o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
180 T A I 30 | |130 T T
13.0 ;P $T1<1>-2 = 1 18.0 —{ 1L
KT KT
R10sS QN 'T ?'0 102— 1y Bl [— QWO 10.2—|1v Bl — awo
1 |T1)_ T4 L T 1
? T Qw o DE — Qw2 DE— QW2
Q4.0 LC T 1
Q4.0 : T aw 2 13.0 Q4.0 Q4.0
AP 7 L] e O B B I S
The timer is started during the first scan if the RLO is "1".
Subsequent scans with an RLO of "1" do not affect the
timer.
If the RLO is "0", the timer is reset (cleared).
The scan AT or OT produces the signal "1" as long
as the timer is running.
KT 10.2:
The timer is loaded with the specified value (10). 'Qi‘;—l_\—l—\—
o1 L

the time base:
0=0.1sec 2= 1sec
1=0.1sec 3=10sec

with time base.

The number to the right of the decimal point indicates

Bl and DE are digital outputs of the timer. The time at
output Bl is in binary code. The time at DE is in BCD code

AT

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Extended pulse timer

The scan AT or OT produces a signal "1" as long as
the timer is running.

IW 15:
Set the timer with the value of the operand |, Q, F or
D in BCD code (in this example, input word 15).

) o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
131 A 131 T2 T2
L IW 15 1LV 131 1LV
13.1 SE T 2
A T 2
R s| 25 = Q 441 ™ Bl = wis qTW Bl -
1L T2 \ DE — DE -
:l_.. >\T2 Q4.1 Qs
L R Q —<)— —R Q _|E4|1
Q4 e 4 Qa1
The timer is started during the first scan if the RLO is
II1 II-
An RLO of "0" does not affect the timer. | (B15 (B1G)
[P of +p 9

13.1
Q4.1

‘ 102 10! 10°
Time Timer value
base

ipins]

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

ON-delay timer
STEP 5 representation
Logical/circuit diagram
gical/ 9 Statement Ladder Control system
list diagram flowchart
185 A I 35 185 3 T3
L KT92 | 4 1——0 185 4 T—— O
1385 SD T 3
RS AN L85 | I kre2—4w BI | KTo2dTv Bl |
o 0 R T3
S A T 3
—
T3 = Q 4.2 DE— DEl
Q4.2
>—\T3 135 Q4.2
= ER o {r_ ol
Qap Q4.2

The timer is started during the first scan if the RLO
is "1". An RLO of "1" during subsequent scans does
not affect the timer.

When the RLO is "0", the timer is reset (cleared).

The scan AT or OT produces the signal "1" when the
timer has elapsed and the RLO is still applied to the
input.

KT 9.2:

The timer is loaded with the specified value (9). The 185
number to the right of the decimal point indicates Q4.2 -
the time base:

0=0.1sec 2=10sec
1=0.1sec 3=10sec

CPU 928B-3UB21 Programming Guide
3-40 C79000-G8576-C870-01

Program Execution

Stored ON-delay timer

STEP 5 representation
Logical/circuit diagram
gical/ g Statement Ladder Control system
list diagram flowchart
» T4 T4
132 133 A | 33 133
| | ET — S 183 —1 +— s
R s L KT 202
202 — TV Bl |— 202 —{ TV Bl |—
20s 0 s ss T 4
A 1 32 DE |— DE |—
13.2 Q4.3 Q43
Q4.3 R T 4
* Hn o -C. 192 g o H=1
A T 4
= Q 43

The timer is started during the first scan if the RLO is "1".

An RLO of "0" does not affect the timer.
The scan AT or OT produces the signal "1" when the

133
as] |

timer has elapsed. The signal state does not change
to "0" until the R T operation resets the timer.

OFF-delay timer

the timer is running

When the RLO is "1", the timer is reset (cleared).

The scan AT or OT produces signal state "1" if
or the RLO at the input is "1".

. o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
T5 T5
13.4 e A | 3.4 13.4
| E O i T 184 o — T
R s L KT 101
. , s 184 s T s 101 —{Tv Bl |[— 101 | T1v Bl |
— T A T s DE [— DE |
| a Q4.4 Qa4
Qa4)\ - 43 —r aC R a H=]
Q4.4
S S W
When the RLO at the start input changes from "1" to
"0", the timer is started. It runs for the length of time 184 M i
programmed. Q44 —

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Set counter

STEP 5 representation
Logical/circuit operation
gical P Statement Ladder Control system
list diagram flowchart
A I 4.0 14.0 o o
141 KC 150 cuU Cc 1 cu 0 —lcu
| || A 141 — H H
R S Cl L KC 150 1417 cb —|CD
LAt s ¢] s Bl |— 141 s Bl |
L | binary KC150_tcy DE|— KC150 —CV DE|—
CQ | 16 it
—R Q [— —R Q [—

When the result of logic operation changes at the start input
(14.1) from "0" to "1", the counter is loaded with the specified
value (150).

The flag necessary for edge evaluation of the set input
is incorporated in the counter word.

Bl and DE are digital outputs of the counter cell. The
value at Bl is in binary code and the value at DE is in
BCD.

Reset counter

STEP 5 representation
Logical/circuit diagram
gical/ 9 Statement Ladder Control system
list diagram flowchart
A I 40 14.0 c2 c2
14.2 Cb C 2 cD 140—{CD
1] o | OF
RS CI R C 2 o — eV
Il A C 2 _Is Bl |— s Bl |
- = Q 24
L b oV DE | — —jcv DE |—
4% ©a 16 bits 142 Q24 Q24
% E_ R al—() |[142—R Q=]
Q24

An RLO of "1" (I 4.2) resets the counter to zero.

An RLO of "0" does not affect the counter.

CPU 928B-3UB21 Programming Guide
3-42 C79000-G8576-C870-01

Program Execution

Count up

STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
C1 C1
Al 41 141
% P cu 141 _{cu
| 1] cuc 1
R J_sl_ Ci —{cp —|cD
141 b —s DU —1s Bl |—
UL | binary —CV DE —CV DE [—
CQ | 16 bits . o . o

up/down counter.

The value of the addressed counter is incremented
by "1" to a maximum value of 999. The function CU
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before CU. The
flags necessary for edge evaluation of the counter
inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Count down
. o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A 1 40 14.0 c1 c1
% E cD 140 —_|CD
||| c 1
R S CI —{Cu —{cu
140 —} It —S Bl |— —1S Bl |—
WL | binary —{cv DE [— —{cv DE |—
CQ | 16 bits

The value of the addressed counter is decremented
by 1 to a maximum counter value of 0. The function
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before the CD.
The flags necessary for edge evaluation of the
counter inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an
up/down counter.

CPU 928B-3UB21 Programming Guide
3-44 C79000-G8576-C870-01

Program Execution

Comparison
operations

Compare for equal to

STEP 5 representation

Logical/circuit diagram Statement

list

Ladder Control system
diagram flowchart

1B19 1B20

| | L 1B20 1B19 |
\al V2

1B20 —|

\al F IB19 |
= Q3.0

V2 Q _< 1B20 —|

C1

C2

Q3.0

The first operand is compared with the second operand
by the comparison operation. The RLO of the comparison
is binary.

RLO ="0": comparison is not satisfied, when ACCU-1-L is
not equal to ACCU-2-L.

The condition codes CC1 and CCO are set as described

in the list of operations.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

In a 32-bit fixed point comparison (! = D) and floating point
comparison (! = G) the entire contents of ACCU 1 and
ACCU 2 (32 bits) are compared with each other.

During the comparison, the numerical representation of the
operands is taken into account, i.e. the contents of ACCU-1

RLO ="1": comparison is satisfied if ACCU-1-L = ACCU-2-L

-L
and ACCU-2-L are interpreted here as a fixed point number.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Compare for not equal to

STEP 5 representation
Logical/circuit diagram
ogical/circuit diagra Statement Ladder Control system
list diagram flowchart
1B21 Dw3 L1

| | L DWws 1B21 —| V1 F 1B21 —{ V1 F

V1 V2 S<F >< Q3.1 ><
4 _ Qs DW3 | V2 Q _C DW3 | V2 Q[—Q31
4

Q31

The first operand is compared with the second operand
by the comparison operation.

The RLO of the comparison is binary.

RLO = "1": comparison is satisfied if ACCU-1-L is not
equal to ACCU-2-L.

RLO = "0": comparison is not satisfied if ACCU-1-L
equals ACCU-2-L.

The condition codes CC1 and CCO are set as described
at the beginning of Section 3.5.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

ACCU-2-H and ACCU-1-H are involved in a 32-bit fixed
point comparison and floating point comparison.

This information also applies to comparison operations for
"greater than", "greater than or equal to", "less than" and
"less than or equal to" (see the operations list). During the
comparison, the numerical representation of the operands
is taken into account, i.e. the contents of ACCU-1-L and
ACCU-2-L are interpreted here as a fixed point number.

CPU 928B-3UB21 Programming Guide
3-46 C79000-G8576-C870-01

Program Execution

3.5.3 Supplementary Operations

Introduction

A

Identification
of system
operations

Binary logic
operations

You can use the supplementary operations set on the programmer only in
function blocks (FB and FX). This means that the total operations set for
function blocks consists of the basic operations and the supplementary operations.

The system operations also belong to the supplementary functions. You can use

the system operations, for example to overwrite the memory at optional locations

or to change the contents of the working registers of the CPU.

If you intend to use system operations, you should be familiar with Chapter 9.
Caution

Only experienced system programmers should use the system operations
and then only with caution.

You can only write operations in function blocks in STL. You cannot program
function blocks in graphic form (LAD and CSF methods of representation).
This section describes the supplementary operations and covers possible

combinations of substitution operations with actual operands.

System operations are marked in the first column of the tables with E

Table 3-10 Binary logic operations with formal operands

Operation Operand Function
A = |:| AND operation, scan a formal operand for signal state *1’
AN = I:I AND operation, scan a formal operand for signal state 0’
o = I:I OR operation, scan a formal operand for signal state *1’
ON =] OR operation, scan a formal operand for signal state *0’

Insert formal operand

Inputs, outputs, data and flags addressed in binary (parameter types: I, Q;
data type BI) and timers and counters (parameter type: T, C) are permitted
as actual operands.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Digital logic
operations

Table 3-11 Digital logic operations

Operation Operand Function
AW AND operation on the contents of ACCU-1-L and ACCU-2-L
ow OR operation on the contents of ACCU-1-L and ACCU-2-L
XOwW Exclusive OR operation on the contents of ACCU-1-L and ACCU-2-L

ACCUs 2, 3 and 4 are not affected, however, the condition codes CC 1 and CC 0
are affected (see word condition codes).

Set/reset
operations

Table 3-12 Set/reset operations with formal operands

Operation Operand Function
S =] Set a formal operand (binary)
RB = L] Reset a formal operand (binary)
RD = L 1] Reset a formal operand (digital)
for timers and counters
= = L 1] Assign the value of the RLO to a

formal operand

Insert formal operand

Inputs, outputs and F flags addressed in binary (parameter type: I, Q;
data type BI) are permitted as actual operands.

CPU 928B-3UB21 Programming Guide
3-48 C79000-G8576-C870-01

Program Execution

Timer and
counter
operations
Table 3-13 Timer and counter operations with formal operands
Operation Operand Function
SP = I:I Start timer specified by the formal operand as a pulse with the value
stored in ACCU-1-L (parameter type T).
SO = I:I Start timer specified by the formal operand as ON delay with the value
stored in ACCU-1-L (parameter type T).
SEC = |:| Start timer specified by the formal operand as extended pulse with the value
stored in ACCU-1-L or set counter specified as formal operand with the
counter value stored in ACCU-1-L (parameter type: T, C).
SSU = I:I Start timer specified by the formal operand as stored ON delay with the
value stored in ACCU-1-L or increment a counter specified as formal
operand (parameter type: T, C).
SFD = I:I Start timer specified by the formal operand as stored OFF delay with the
value stored in ACCU-1-L or decrement a counter specified as formal
operand (parameter type: D, C).
FR=] Enable formal operand (timer/counter) for cold restart (see FR T or
‘ FR R); (parameter type: T, C).
Insert formal operand
FR T 0to255 Enable timer for cold restart:
The operation is only executed on the leading edge of the RLO (change
from 0 to 1). The timer is restarted if the RLO is 1 at the time of the
start operation. (See timing diagram below the table).
C 0to255 Enable a counter for setting or resetting:
The operation is executed only on the leading edge of the RLO (change
from 0 to 1). The counter is only started if the RLO =1 at the time of
the start operation.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

RLO
for SP T

Lo [1 T1L

for FR T t t

Y

Scan
with A T

Program Execution

Examples
Function block call Program in the Program executed
function block
a)
:JU FB 203
NAME :EXAMPLE1l
ANNA : I 10.3 tA =ANNA tA I 10.3
BERT : T 17 :L KT 010.2 :L KT 010.2
JOHN : O 18.4 :SSU =BERT :tSS T 17
sA =BERT sA T 17
= =JOHN = 0O 18.4
b)
:JU FB 204
NAME :EXAMPLE2
MAXI : I 10.5 sA =MAXI sA I 10.5
IRMA : I 10.6 :SSU =DORA t:CU C 15
EVA H I 10.7 sA =IRMA sA I 10.6
DORA : Cc 15 :SFD =DORA :tCD C 15
EMMA : F 58.3 sA =EVA sA I 10.7
:L KC 100 :L KC 100
:SEC =DORA :S Cc 15
:AN =DORA tAN C 15
= = = F 58.3
c)
:JU FB 205
NAME :EXAMPLE3
BILL : I 10.4 sA =BILL sA I 10.4
JACK : T 18 :L =EGON :L IwW 20
EGON : Iw 20 ¢:SEC =JACK :SE T 18
YOGI : F 100.7 sA =JACK sA T 18
= =YOGI = F 100.7

CPU 928B-3UB21 Programming Guide
3-50 C79000-G8576-C870-01

Program Execution

Load and
transfer
operations

Table 3-14 Load and transfer operations with formal operands

Operation

Operand Function

mininininl

L

LCD

Lw =

LWD

Load a formal operand:
The value of the operand specified as a formal operand is loaded into the
ACCU (parameter type: I, T, C, Q; data type: BY, W, D).

Load a formal operand in BCD code:
The value of the timer or counter specified as a formal operand is loaded
into the ACCU in BCD code (parameter type: T, C).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU (parameter
type: D; data type: KF, KH, KM, KY, KS, KT, KC).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU (parameter
type: D; data type: KG).

Transfer to a formal operand:
The contents of the accumulator are transferred to the operand specified

as a formal operand (parameter type: I, Q; data type: BY, W, D).

Insert formal operand

Actual operands permitted include those of the corresponding basic operations
except for S flags. For the "LW=" operation, permissible data types include a
binary pattern (KM) or a hexadecimal pattern (KH), two absolute numbers of

1 byte each (KY), a character (KS), a fixed point number (KF), a timer value
(KT) and a counter value (KC). For "LWD=" permissible data is a floating point
number.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Table 3-15 Load and transfer operations with special operands
Operation Operand Function
L RI 0to255 Load a word from the interface data area into ACCU 1 (RI area)
RI 0to255 Load a word from the extended interface area into ACCU 1 (RJ area)
L RS 0to255 Load a word from the system data area into ACCU 1 (RS area)
RT 0to255 Load a word from the extended system data area into ACCU 1 (RT area)
T RI 0to255 Transfer the contents of ACCU 1 to a word in the interface data area
(RI area)
R} 0to255 Transfer the contents of ACCU 1 to a word in the extended interface data
area (RJ area)
T RS 60to 63 Transfer the contents of ACCU 1 to a word in the system data area
(RS area)
RT O0to255 Transfer the contents of ACCU 1 to a word in the extended system
data area (RT area)
In contrast to the RI, RJ and RT areas, you can only use words RS 60 to RS 63 of the
RS area. Refer to Section 8.3.4 "RS/RT Area".
You can use the RT area in its complete length (RT 0 to RT 255) providing you
do not use any standard function blocks.
Arithmetic
operations
Table 3-16 Arithmetic operation ENT
Operation Operand Function
ENT - This causes a stack lift into ACCUs 3 and 4:
<ACCU 4> := <ACCU 3>
<ACCU 3> := <ACCU 2>
<ACCU 2> := <ACCU 2>
<ACCU 1> := <ACCU 1>
ACCUs 1 and 2 are not changed. The old contents
of ACCU 4 are lost.
CPU 928B-3UB21 Programming Guide
3-52 C79000-G8576-C870-01

Program Execution

Example

The following fraction must be calculated: (30 + 3 * 4) / 6 = 7

ACCU 1 ACCU 2 ACCU 3 ACCU 4
Contents of the ACCUs
before the sequence of a b c d
arithmetic operations
A
L KF +30 30 a c d
L KF +3 3 g c d
ENT 3~_] 30 g o
TSA
L KF +4 4 3 30 c
x F 12 30 & | c A c
+ F 42 c A | c & | c
L KF +6 6 42 c c
F 7 c & c A c

Table 3-17 Supplementary arithmetic operations

Operation Operand Function
ADD BN -128 to Add a byte constant (fixed point) to ACCU-1-L (includes sign change)/
+127 the condition code in CC 0, CC 1, OV and OS are not affected! —
ACCU-1-H and ACCUs 2 to 4 remain unchanged.
ADD KF -32768 to Add a fixed point constant (word) to ACCU-1-L/ the condition codes in
+32 767 CCO0,CC1,0V and OS are not affected! — ACCU-1-H and ACCUs 2 to
4 remain unchanged.
DH 0000 0000 Add a double word fixed point constant to ACCU 1/the condition
to codes in CC 0, CC 1, OV and OS are not affected! —
FFFF FFFF ACCU:s 2 to 4 remain unchanged.

+
w)
=

Add two double word fixed point constants (ACCU 2 + ACCU 1)
the result can be evaluated in CC 0/CC 1.)

>

Subtract two double word fixed point constants
(ACCU 2 - ACCU 1)/the result can be evaluated in CC 0/CC 1. ?

TAK

el 8 = e G
Z
w)

Swap the contents of ACCU 1 and ACCU 2

bH Programming is dependent on the PG type and the release of the PG system software.

D For changes in ACCU 2 and ACCU 3: see Section 3.5.1 "Basic Operations/Arithmetic Operations".

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

3.5.4 Executive Operations

Introduction The executive operations also include system operations.
Caution
System operations should only be used with care and then only by
experienced programmers familiar with the system.

System operations are indicated in the table by @

Jump operations When you use the supplementary jump operations, you indicate the jump
destination for unconditional jumps symbolically. The symbolic parameter of the
jump operation is identical to the symbolic address of the destination statement.
When programming, remember that the absolute jump distance should not
exceed = 127 words and a STEP 5 statement can consist of more than one word.
You can only execute these jumps within a block; jumps over segment
boundaries are not permitted ("segment" = structural element in PBs, SBs, FBs,
FXs and OBs; see STEP 5 manual).

Note

The jump statement and jump destination (symbolic address) must be in
the same segment. A symbolic address can only be used once per segment.
Exception: this does not apply to the JUR jump for which you specify an
absolute jump distance as the parameter.

CPU 928B-3UB21 Programming Guide
3-54 C79000-G8576-C870-01

Program Execution

Table 3-18 Jump operations

Operation Operand Function

JU= addr Jump unconditionally:
The jump is executed regardless of conditions
(addr =symbolic

JIC= address with Jump conditionally:
maximum the conditional jump is executed only if the RLO is 1.
4 characters) If the RLO is 0, the statement is not executed and the RLO is set to 1.
JZ= Jump if result is *0’ :
the jump is executed only if CC 1is 0 and CC 0 is 0.
The RLO is not changed.
IN = addr Jump if result is not 0 :

the jump is executed only if CCl is not equal to CCO.
(addr = symbolic | The RLO is not changed.

address with
Jp= maximum Jump if result > 0’ :
4 characters) the jump is only executed if CC1=1and CC0=0.
The RLO is not changed.

M= Jump if result < ’0’:
the jump is only executed if CC1 =0and CCO = 1.
The RLO is not changed.

JO= Jump on overflow:

the jump is executed when the OV condition code is 1.

If there is no overflow (OV is 0), the jump is not executed. The RLO is
not changed.

An overflow occurs when an arithmetic operation exceeds the
permissible range for a given numerical representation.

JOS = Jump when the OS (stored overflow) condition code is set:

the jump is executed when the condition code OS is 1. If there is no
overflow (OS is 0), the jump is not executed. The RLO is not changed.
An overflow occurs when an arithmetic operation exceeds the
permissible range for a given numerical representation.

JUR -32768 to +32 767 | Relative jump within the user memory or within a function block (e.g. to
arrive in a different segment). The operation is always executed
regardless of conditions.

The operand is the number of words difference between the address of
the jump destination - the current destination. The jump is executed
either to a higher (positive operand) or lower (negative operand) address
than the current operation.

Caution

If you use JUR incorrectly, undefined statuses can occur in the system. It
A should only be used by extremely experienced programmers with detailed

knowledge of the system.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-55

Program Execution

Shift operations
Table 3-19 Shift operations
Operation Operand Function (operation with ACCU 1)
SLW Oto 15 Shift a word to the left (vacant positions to the right are padded with
Zer10S)
SRW Oto 15 Shift a word to the right (vacant position to the left are padded with zeros)
SLD 0to 32 Shift a double word to the left (vacant positions to the right are padded
with zeros)
SSwW Oto 15 Shift a word with sign to the right (vacant positions to the left are padded
with the sign - bit 15)
SSD 0to 32 Shift a double word with sign to the right (vacant positions to the left are
padded with the sign - bit 31)
RLD 0to 32 Rotate to the left
RRD 0to 32 Rotate to the right

Only ACCU 1 is involved in the execution of shift operations. The parameter part of
these operations specifies the number of positions by which the accumulator contents
should be shifted or rotated. For the SLW, SRW and SSW operations, only the low
word of ACCU 1 is involved in the shift operations. For SLD, SSD, RLD and RRD
operations, the entire contents of ACCU 1 (32 bits) are involved.

Shift operations are executed regardless of conditions.

You can use jump operations to scan the value of the last bits shifted out using

CC1/CCO.
Shift: last CC1 CCo Jump
bit shifted operation
0 0 0 JZ=
1 1 0 JN=
JP=

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Examples

1. You want to shift the contents of data word DW 52 four bits to the left
and write them to data word DW 53.

STEP 5 program: Contents of the data words:

:L DW 52 KH = 14AF
:SLW 4
:T DW 53 KH = 4AF0

2. You want to read the input double word ID 0, and shift the contents of
ACCU 1 so that the bit positions of the input double word shown in bold
face are retained and the remaining bit positions are set to defined
values (OH or OFH).

STEP 5 program: Contents of ACCU 1 (hexadecimal)

ACCU-1-H: ACCU-1-L:

:L ID O 2348 ABCD
:SLW 4 2348 BCDO
:SRW 4 2348 0BCD
:SLD 4 3480 BCDO
:SSW 4 3480 FBCD
:SSD 4 0348 OFBC
:RLD 4 3480 FBCO
:RRD 4 0348 OFBC

3. Application: Multiplication by the 3rd power, e.g. new value = old value x 8

:L FW 10
:SLW 3
:T FW 10 Caution: do not exceed the

positive area limit!

4. Application: Division by the 2nd power, e.g. new value = old value : 4

Q
=)
w
(8]

I-J%I."
=
N

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-57

Program Execution

Conversion

operations

Table 3-20 Conversion operations

Operation Function
CFW Form the 1°s complement of ACCU-1-L (16 bits)
CSW Form the 2’s complement of ACCU-1-L (16 bits)
CSD Form the 2’s complement of ACCU 1 (32 bits)
DEF Convert a fixed point number (16 bits) from BCD to binary
DUF Convert a fixed point number (16 bits) from binary to BCD
DED Convert a double word (32 bits) from BCD to binary
DUD Convert a double word (32 bits) from binary to BCD
FDG Convert a fixed point number (32 bits) to a floating point number (32 bits)
GFD Convert a floating point number to a fixed point number (32 bits)

DEF The value in ACCU-1-L (bits 0 to 15) is interpreted as a BCD (binary-coded
decimal) number. After the conversion, ACCU-1-L contains a 16-bit fixed point
number.

DUF The value in ACCU-1-L (bits O to 15) is interpreted as a 16-bit fixed point number.

After the conversion, ACCU-1-L contains a BCD number.

15 14 0
S |2 14 2 0
15 DUF | DEF .
SSSS 102 101 10°
S (sign): 0 = positive
1 = negative

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

DED The value in ACCU 1 (bits 0 to 31) is interpreted as a BCD number. After the
conversion, ACCU 1 contains a 32-bit fixed point number.

DUD The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed point number.
After the conversion, ACCU 1 contains a BCD number.

31 30 0
g |30 50
DUD | DED |
31 0
SSSS 106 10° 10* 10° 102 10" 10°
S (sign): 0 = positive
1 = negative
FDG The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed point number.
After the conversion, ACCU 1 contains a floating point number (exponent and
mantissa).
GFD The value in ACCU 1 (bits 0 to 31) is interpreted as a floating point number. After

the conversion, ACCU 1 contains a 32-bit fixed point number.

31 30 0
S |2 30 2 0
FDG | GFD 1
31 30.. .24 23 0
S |25, 20 |sf2too 23
Exponent Mantissa

The conversion is made by multiplying the (binary) mantissa by the value of the
(binary) exponent by shifting the mantissa value to more significant bits past an
imaginary decimal point by the value of the exponent (base 2). After the
multiplication, remnants of the original mantissa remain to the right of the imaginary
decimal point. These bit places are cut off from the whole result.

This conversion algorithm produces the following result classes:
¢ Floating point numbers = 0 or =< -1 result in the next lower number.

¢ Floating point numbers < 0 and > -1 result in the value ’0°.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-59

Program Execution

Conversion
examples

Examples of
CFW, cCsw

Decrement/
increment

Floating point number 32-bit fixed point number
GFD
+5,7 i 5
-2,3 i -3
-0,6 - 0
+0,9 - 0

1. You want
inverted

:L DW 64
:CFW
:TDW 78

:L DW 207
:CSW
:TDW 51

data word DW 78.

STEP 5 program: Assignment of the data words:

2. The contents of data word DW 207 are interpreted
as a fixed point number and stored in data
word 51 with a reversed sign.

STEP 5 program: Assignment of the data words:

the contents of data word DW 64
bit for bit (reversed) and stored in

KM

0011111001011011

KM

1100000110100100

KF +51

KF = -51

Table 3-21 Decrement/increment operation

Operation Operand Function
D 1to 255 Decrement the low byte (bits O to 7) of ACCU-1-L by the value of the
operand !
I 1to 255 Increment the low byte (bits 0 to 7) of ACCU-1-L by the value of the
operand b

D' The contents of the low byte of ACCU-1-L are decremented or incremented by the number specified as the
operand without a carry. The operation is executed regardless of conditions.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Example
STEP 5 program: Assignment of the data words:
:L DW 7 KH = 1010
eI 16
:T DW 8 KH = 1020
:D 33
:T DW 9 KH = 10FF
Processing
operations

Table 3-22 Processing operations

Operation Operand Function

DO DW O0to255 Process data word:
the following operation is combined with the parameter specified in
the address data word and executed.

FW 0to254 Process flag word:
the following operation is combined with the parameter specified in
the addressed F flag and executed.

DO = [] Process formal operand (parameter type B):
‘ Only C DB, JU PB, JU OB, JU FB, JU SB can be substituted.
Insert formal operand
DI D Indirect processing of a formal operand:

execute an operation whose operation code is stored in a formal operand.
The number of the formal operand must be stored in ACCU 1.

DO RS 60to637D Execute an operation whose operation code is stored in the system
data area (RS = free system data: RS 60 to 63). In 2-word operations
the 2nd word must be loaded in RS n + 1.

D' The value in the formal operand or system data is interpreted as the operation code of a STEP 5 operation and is then executed.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-61

Program Execution

Examples of DO
operations

Note
Only the following operations can be combined with DO DW, or DO FW,
DI or DO RS:

- A.,AN..,0..,ON..,,S..,R.., =..
with areas I, Q, F, S,

- FRT,RT,SFT,SDT,SPT,SST,SET,

- FRC,RC,SC,CDC,CUC,

- L., T..withareas P, O, I, Q, F, S, D, RI, RJ, RS, RT,

- LT, LC,

- LCT,LCC,

- JU=,JC=,JZ=, JN=, JP=,]M=, JO=,

- SLW, SRW,

- D, I, SED, SEE,

- CDB,JU..,JC.., G DB, GX DX, CX DX, DOC FX, DOU FX.

The PG does not check the legality of the combinations!

DO DW/DO FW
Operand substitution

Using the statements "DO DW" and "DO FW" you can access data with a
substitution, e.g. in a program loop. The substituted access consists of the
statement DO DW/DO FW followed immediately by one of the STEP 5
operations listed above.

"Substituted" means that the operand for the operation is not programmed as a
static value but is fixed during the course of the STEP 5 program.

Select the operand type from the range permitted for the operation when you
write your program, e.g. PB for the operation "JU PB nn":

You must first load the operand value (nn in the example) in a data word or
F flag word (parameter word) before the substituted access with
DO DW/DO FW.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

1. Principle of substitution:

:L KF +120

:T FW 14 load FW with the value "KF +120"
:DO FW 14

:L IB O

i

before the operation "L IB" is executed, the
operand value ‘0O’ is replaced by the value '120';
Operation executed: L. IB 120

2. Data word as index register:
The contents of data words DW 20 to DW 100 are set to signal state '0’. The
index register for the parameter of the data words is DW 1.

:L KF +20 supply the index register
T DW 1
MOO1 :L KF +0 reset
:tDO DW 1
T DW O
:L DW 1 increment the index register
:L KF +1
:+F
T DW 1

:L KF +100

1<=

:JC =MOO1 jump if the index is within the range
N remaining STEP 5 program

3. Jump distributor for subroutine techniques:

:DO FW 5
N =M001 Contents of flag word FW 5:
+ : =M002
Jump : =MO003 jump distance
distance : =M004 (maximum * 127)
: =M005
MOO1 s .
¢:BEU
MO002 : . Advantage:
: . all program sections are
:BEU contained in one block.
MO003 : .
¢:BEU

4. Jump distributor for block calls:

:DO FW 10 Contents of flag word FW 10:
:JU PB O —T— PB O
——— PB 1 Block no. x
PB 2
PB 3

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 3-63

Program Execution

Bit no.

Bit no.

Bit no.

Bit no.

Operand substitution with binary operations

For operand substitutions with binary operations you can use the following
operand types: inputs, outputs, F flags, S flags, timers and counters.

In this substitution, the structure of the F flag word or data word (parameter
word) depends on the operation you are using.

Parameter word for inputs and outputs

15 11 | 10 8716 0
no significance Bit address 0 Byte address from 0 to 127
from O to 7

Parameter word for F flags

15 11 | 10 817 0

no significance Bit address Byte address from 0 to 255
from O to 7

Parameter word for S flags

15 | 14 12 | 11 0
0 | Bit address Byte address from 0 to 1023
from O to 7

Parameter word for timers and counters

15 817 0

no significance Number of timer or
counter cell from 0 to 255

¢ Principle of the substitution with a binary operation

4 0 30 DW 27

statement executed

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

¢ Example of DI operation

FB 1

NAME

DECL
DECL
DECL

AUFR

NAME
FW10
FW12
FWl4

In function block FB 1, STEP 5 operations are executed whose operation
codes were transferred
by a calling block as formal operands FW 10, FW 12 and FW 14.

Which of the operation codes is executed is written by the calling block
as a consecutive number in flag word FW 16.

The result of the executed operation is then entered in ACCU 1 and is
transferred to flag word FW 18.

:TEST

:FW10 I1/9/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

:FW12 I1/9/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

:FW1l4 I1/9/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

:L FW 16 cons. number of formal operand

: with required operation code

:DI transferred operation code is executed
:T FW 16 result from ACCU 1

¢BE

:L KF +1

:T FW 16 cons. no. of formal operand with operation code
¢:JU =AUFR

:JU FB 1 call FB TEST

:TEST

: KH 4A5A op. code "L IB 90", formal operand 1

: KH xxxx other operation code, formal operand 2

: KH yyyy other operation code, formal operand 3

:T FW 18 ACCU 1 — FW 18

List of actual operands in FB 2

Principle of sequence in FB 1

FW 10 ® 4ASAH
FW 12 xooH FW 16 | 0001H |
FW 14 yyyyH
|
ACCU 1 | 0001H |
(cons. no. of actual operand)
Y
L IB 90 | <

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operation executed with "DI"

Program Execution

Disabling/enabling
process
interrupts

Table 3-23 Disabling/enabling process interrupts

Operation Operand Function
1A Disable external process interrupt servicing
RA Enable external process interrupt servicing

You can use operations "disable/enable process interrupts"”, for example to
suppress external process interrupts when you are using time-driven processing.
External process interrupt-driven processing is then no longer possible in the
program section between the IA and RA operations.

See also the special function OB 120 "disable interrupts", Section 6.5.

CPU 928B-3UB21 Programming Guide
3-66 C79000-G8576-C870-01

Program Execution

3.5.5 Semaphore Operations

Introduction

SED/SEE
disable/enable
semaphore

If two or more CPUs in one programmable controller (see Chapter 10) require
access to the same global memory area (peripherals, CPs, IPs), there is a danger
that one CPU will overwrite the data of another CPU or that one CPU could read
invalid intermediate data statuses of another CPU and misinterpret them. You
must therefore coordinate CPU accesses to the common memory areas.

You can coordinate the individual CPUs using the SED and SEE operations.

You can, for example, program the following coordination between two CPUs: a
CPU involved in multiprocessing can only access the common memory area
after it has successfully set a declared semaphore (SES). A semaphore xx can
only be set by a single CPU. If a CPU fails to set (i.e. disable) the semaphore, it
cannot access the memory area. In the same way, a CPU can no longer access the
memory once it has released the semaphore again (SEE).

(non-system operations)

Table 3-24 Disable/enable semaphore

Operation Operand Function
SED Oto31 Disable (set) a semaphore
SEE Oto31 Enable (release) a semaphore

evaluation of the result of the operation via CC 0/CC 1

Note
The SED xx and SEE xx operations must be programmed in all CPUs that
require synchronized access to a common global memory area.

Standard FBs, handling blocks and blocks for multiprocessor
communication manage the coordination internally. If you use these
blocks, you do not need to program the operations SEE xx and SED xx.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Effect of SED/SEE

Use of SED/SEE

The CPU that executes the operation SED xx (disable semaphore) accesses a
specific byte in the coordinator (provided that no other CPU has access to that
byte already).

Once a CPU has reserved access, the other CPUs can no longer access the
memory area protected by the semaphore (numbers 0 to 31). The area is

therefore disabled for all other CPUs.

Make sure that the coordination functions correctly, all CPUs requiring access to
the same area of global memory must use the same semaphore.

The SEE xx (enable semaphore) operation resets the byte on the coordinator. The
protected memory area is then once again accessible to the other CPUs. A
semaphore can only be enabled by the CPU that disabled it.

Fig. 3-8 illustrates the basic sequence of coordinated access using a semaphore.

START

Disable semaphore
SED

Operation
successful?

Yes

Access to sema-
phore protected
global memory

Enable semaphore:
SEE

End

Fig. 3-8 Coordination of access to the global memory

Before disabling or enabling a particular semaphore, the SED and SEE operations
scan the status of the semaphore. The condition codes CC 0 and CC 1 are affected as
follows:

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

CC1 CCo Evaluation Significance
0 0 JZ Semaphore was disabled by another CPU and
cannot be disabled/enabled.
1 0 IN, JP Semaphore was disabled/
enabled.
Note

The scanning of a particular semaphore (= read procedure) and the
disabling or enabling of the semaphore (=write procedure) are one unit. No
other CPU can access the semaphore during these procedures!

When using semaphores, remember the following points:

A semaphore is a global variable, i.e. the semaphore with number 16 exists
only once in the entire system, even if your controller is using three CPUs.

All CPUs that require coordinated access to a common memory area must use the
SED and SEE operations.

All participating CPUs must execute the same start-up type.
During a COLD RESTART, all the semaphores are cleared.
During a manual or automatic warm restart, the semaphores are
retained.

Start-up in multiprocessor operation must be synchronized. For this reason,
no test operation is allowed.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Application
example for
semaphores

Tasks:

Four CPUs are plugged into an S5-135U. They output status messages to a
status signalling device via a common memory area of the O peripherals

(OW 6) . A CPU must output each status message for 10 seconds. Only after a
10 second output can a new message be output from the same CPU or a
different CPU overwrite the first message. The use of peripheral word OW 6
(extended I/0 area, no process image) is controlled by a semaphore. Only the
CPU that was able to reserve this area for itself by disabling the assigned
semaphore can write this message to OW 6. The semaphore remains disabled for
10 seconds at a time (TIMER T 10). The CPU re-enables the semaphore only
after this timer has elapsed. After the semaphore has been re-enabled, the
other CPUs can access the reserved area. The new message can then be written
to OW 6.

If one CPU attempts to disable a semaphore and the semaphore is already
disabled by a second CPU, the first CPU waits until the next cycle. It then
re-attempts to set the semaphore and output its message.

Implementation:

The following program can run in all four CPUs, each with a different
message. The blocks shown below are loaded.

FB 100:
DISABLE SEMAPHORE

FB 0: FB 10: FB 110:
MAIN PROGRAM REPORT OUTPUT REPORT

FB 101:
ENABLE SEMAPHORE

5 flags are used as follows:

F 10.0 = 1: a message was requested or is being processed

F 10.1 = 1: the semaphore was disabled successfully
F 10.2 = 1: the timer was started
F 10.3 = 1: the message was transmitted

F 10.4 = 1: the semaphore was re-enabled

Continued on next page

CPU 928B-3UB21 Programming Guide
3-70 C79000-G8576-C870-01

Program Execution

AN F 10.4
B

=
Q

KHO0000
FY10

FB 0
éNAME ¢:MAIN
:A F 10.0
:JC =MO00O1
tAN I 0.0
:BEC
:L KH 2222
:T FW 12
tAN F 10.0
:S F 10.0
MOO1 :JU FB10
 NAME :REPORT
:BE
FB 10
NAME :REPORT
tAN F 10.1
:JC FB 100
ENAME :SEMADIS
:A F 10.1
tAN F 10.2
:S F 10.2
:L KT010.2
tSE T 10
:A F 10.2
tAN F 10.3
:JC FB 110
NAME :MSGOUT
:A F 10.2
tAN F 10.4
tAN T 10
:JC FB 101
NAME :SEMAENAB

[I
=

Semaphore application example continued:

If no message is active,

generate message and

set "MESSAGE" flag.

Call "REPORT" FB

If no semaphore is disabled,
call "disable semaphore" FB.

If the semaphore is disabled
and the timer has not started,
start the timer.

If the timer has started

and no message is being transmitted,
call "output message" FB.

If the timer has started

and the semaphore is not enabled
and the timer has elapsed,

call "enable semaphore" FB.

If the semaphore is enabled,

reset all flags.

Continued on next page

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Program Execution

Semaphore application example continued:
FB 100

NAME :SEMADIS

:SED 10 Disable semaphore no. 10
:JZ =MO001
tAN F 10.1 If the semaphore is disabled successfully,
H F 10.1 set "SEMAPHORE-DISABLED" flag.
MO0l :BE
FB 110
NAME : MSGOUT
:L FW1l2 Transmit a message
:T OW 6 to the peripherals
tAN F 10.3
H F 10.3 Set "TRANSFER MESSAGE"
: flag
¢BE
FB 101
NAME :SEMAENAB
:SEE 10 Enable semaphore no. 10
:JZ =MO001
tAN F 10.4
H F 10.4 Set "SEMAPHORE ENABLED"
: flag
MO0l :BE

CPU 928B-3UB21 Programming Guide
3-72 C79000-G8576-C870-01

Operating Modes and Program
Processing Levels

Contents of the
chapter

Overview of the
chapter

This chapter provides an overview of the operating statuses and program

execution levels of the CPU 928B-3UB21. It informs you in detail about various
types of start-up and the organization blocks associated with them, in which you

can program your own sequences for various situations when restarting.

You will also learn the characteristics of the program execution modes "cyclic
processing", "time-controlled processing" and "interrupt-driven processing" and
will see which blocks are available for your user program.

Section Description Page
4.1 Introduction and Overview 4-2
42 Program Processing Levels 4-5
43 STOP Mode 4-11
43.1 Characteristics and Indication of the Operating Mode 4-11
432 Requesting and Performing an OVERALL RESET 4-13
44 RESTART Mode 4-15
44.1 MANUAL and AUTOMATIC COLD RESTART 4-16
442 MANUAL and AUTOMATIC WARM RESTART 4-16
443 Comparison of the Different Restart Types 4-18
444 User Interfaces for Restart 4-19
445 Interruptions in the RESTART Mode 4-22
4.5 RUN Mode 4-24
45.1 Cyclic Program Execution 4-26
452 Time-Driven Program Execution 4-28
453 CLOSED LOOP CONTROLLER INTERRUPT: 4-35
Processing Closed Loop Controllers

454 PROCESS INTERRUPT: Interrupt-Driven Program 4-36
Execution

455 Nested Interrupt-Driven and Time-Driven Program 4-39
Execution

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.1 Introduction and Overview

Introduction The CPU 928B has three operating modes:

e STOP mode

e RESTART mode

¢ RUN mode

In the RESTART and RUN modes, certain events can occur to which the system
program has to react. In many cases, a specific organization block (a block from
OB 1 to OB 35) is called as a reaction to an event and serves as the user interface.

The modes are displayed by LEDs on the front panel of the CPU.
Some of the modes must be activated using the operating elements on the front
panel of the CPU. The position of the LEDs and operating elements can be seen

in Fig. 4-1.

Error display
LEDs (red)

LED (green)

LED (red)

Order number
and version

——

—]

Slot for memory card

Mode selector

Mode selector

Interface 1

PG interface, 15-pin
Interface Sl 1

Interface 2
Slot for interface

submodule
Interface Sl 2

Lever
Securing bolt

Fig.4-1 Front panel of the CPU 928B with display and operating elements

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

LED display of Various LEDs on the front panel of the CPU signal the current CPU mode. The
modes following table shows you the relationship between the STOP and RUN LED
displays and the mode they indicate.
Other LEDs (BASP, ADF, QVZ, ZYK) provide more information.

Table 4-1 Meaning of the LEDs "RUN" and "STOP"

LED LED Mode
RUN STOP

ON OFF The CPU is in the RUN mode.

OFF ON The CPU is in the STOP mode.

After a STOP request at the switch or from the PG, the STOP LED is lit continuously,
because the STOP condition was requested by the user or, in multiprocessor operation, by
another CPU and was not prompted by the CPU itself.

OFF OFF The CPU is in the RESTART mode

or

the CPU is in the RESTART/RUN mode, the program test is active and the program has
reached a breakpoint (wait state)

or

the CPU is in the RESTART/RUN mode, the program test is active and a breakpoint was
eliminated again before it was reached (wait state)

OFF flashing | The CPU is in the STOP mode.

slowly The CPU itself prompted the STOP condition (possibly also of the other CPUs).
Typical causes:

ADF, QVZ, LZF, BCF, CL controller error, interrupt collision, cycle time error,
BSTACK overflow, stop command.

If you switch the mode selector to STOP, the flashing stops and the LED is lit
continuously.

OFF flashing | The CPU is in the STOP mode.
quickly | An overall reset has been requested. This request can be prompted by the CPU itself or
by an operator input.

ON ON Serious system error

Remedy:

- Overall Reset of CPU.

- If error persists, switch voltage at PLC off and on again and perform Overall Reset
of CPU.

- If error persists, switch off voltage at PLC, remove and re-insert the CPU and perform
Overall Reset of CPU.

- If error persists, replace CPU or have it repaired.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 4-3

Operating Modes and Program Processing Levels

Signalling and e BASPLED
error LEDs

This indicates whether the S5 bus signal BASP (disable command output) is
active:

In the single processor mode, the CPU clears BASP when it changes to the
RUN mode and sets BASP when it changes to the STOP mode. BASP is
activated in the RESTART and in the STOP mode and in the first cycle
following a warm restart.

In the multiprocessor mode, the conditions for BASP are identical with those
in the single processor mode, provided the switch on the coordinator is set to
RUN. (See your System Manual /2/ for more information on the "Test mode"
special case.)

Note
If BASP is active, all digital outputs are disabled.

If an AUTOMATIC or MANUAL WARM RESTART has been
executed before the transition to the RUN mode, the BASP LED goes
out only after the remaining cycle has been processed.

e "QVZ"LED

Timeout of an I/O module.

e "ADF" LED

Addressing error; the user program has accessed an address in the process
image for which there is no module inserted in the I/Os.

e "ZYK"LED

Cycle error; cycle monitoring time has been exceeded.

The errors ADF and QVZ can only occur in RESTART and in RUN, the cycle
error ZYK can only occur in RUN.

At the end of the program processing levels ADF, QVZ or ZYK, the error LED
is cleared by the system program, if the CPU has not gone to the STOP mode.

CPU 928B-3UB21 Programming Guide
4-4 C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.2 Program Processing Levels

Fig. 4-2 gives an overview of the operating states and the processing levels in the
CPU 928B (-3UB12). The explanations of the abbreviations are on the following

LED RUN: on
LED STOP: off
LED BASP: off

Introduction
page.
In multiproc.
LED RUN: off LED RUN: off | gQperatlon:
LED STOP: on LED STOP: off cycle together
LED BASP: on LED BASP: on
STOP RESTART mode /l\
mode _/
MANUAL COLD
RESTART/
STP RETENTIVE BCF
PEU C. RESTART/ |LZF
BAU WARM REST. ADF
DOPP AUTOMAT. Qvz
C. RESTART/ iSSF
21353 RETENTIVE
C. RESTART/
WARM REST.
______________________ STP
NAU PEU
) BAU
b DOPP
NAU STUEU
STUEB
Y Y
POWER UP NAU
POWER
DOWN
Fig. 4-2 Operating states and program processing levels

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

RUN
mode
CYCLE WECK-FE
TIMED JOB |REG-FE
TIME INT. ZYK
BCF
INTERRUPT | ADF
Qvz
PROCESS SSF
INTERRUPT

ABORT (OB 28)
(mode selector,
PG-STP or MP-STP)

Operating Modes and Program Processing Levels

Program processing levels in RESTART:

MANUAL COLD RESTART 7]
MANUAL WARM RESTART

RETENTIVE MANUAL COLD RESTART Restart
RETENTIVE AUTOMATIC COLD RESTART levels
AUTOMATIC COLD RESTART

AUTOMATIC WARM RESTART

BCF (operating code error)

LZF (runtime error) Error

ADF (addressing error) levels

QVZ (timeout)

SSF (interface error) _

Program processing levels in the RUN mode:]
CYCLE (cyclic program execution)

TIMED JOB (time-driven program execution)

TIME INT 5 sec (time-driven program execution)

TIME INT 2 sec (time-driven program execution)

TIME INT 1sec (time-driven program execution)

TIME INT 500 ms (time-driven program execution)

TIME INT 200 ms (time-driven program execution) Basic
TIME INT 100 ms (time-driven program execution) levels
TIME INT 50 ms (time-driven program execution)

TIME INT 20 ms (time-driven program execution)

TIME INT 10 ms (time-driven program execution)
CONTROLLER INT (collision of time interrupts)

DELAY INTERRUPT (time-driven program execution)

PROCESS INT (process interrupt-driven prog. execution) _
WECK-FE (collision of time interrupts)

REG-FE (CL controller error)

ZYK (cycle time error)

BCF (operating code error) Error

LZF (runtime error) levels

ADF (addressing error)

CPU 928B-3UB21 Programming Guide
4-6 C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Features of a A program processing level is characterized by specific features which are
program explained below:
processing level

¢ Nesting other levels

When an event occurs, which requires higher priority processing, the current
level is interrupted by the system program and the higher priority level is
activated.

This occurs in the following situations:

— aterror levels and program
processing levels at RESTART:always at operation boundaries,

— all other levels: at block or operation boundaries
(depending on the setting in DX 0,
refer to Chapter 7).

* Specific system program

Each program processing level has its special system program.

At the CYCLE processing level, the system program updates
the process image of the inputs and outputs, triggers the
cycle monitoring time and invokes management of the
programmer interface (system checkpoint).

ISTACK After the system program calls an organization block, the CPU executes the
STEP 5 statements it contains. Previously, the current register record is saved in
the ISTACK and a new register record is set up (register: ACCU 1 to 4, block
stack pointer, block address register, data block start address, data block length,
step address counter and the base address register).

If "normal" program execution is interrupted by the occurrence of an event,
following the execution of the OB, the CPU continues the program execution at
the point of interruption as long as no stop is programmed in the OB.

Example:
STP WARM RESTART
® ISTACK °
ADF ADF ALF
Depth 1
ISTACK \
BCF BCF BCF
Depth 2
ISTACK
CKCLEF CYCLE CYCUE
Depth 3

ISTACK = Image of the
interrupted levels

Fig.4-3 Principle of level change and ISTACK

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 4-7

Operating Modes and Program Processing Levels

Priority of Program processing levels have a fixed priority. Depending on this priority, they
processing can interrupt each other or can be nested within each other.

The warm restart and error levels differ from the basic levels in that they

can always be nested at operation boundaries whenever the appropriate

@ event occurs. They can be nested both in the basic levels and within each
v other. In the event of errors, the last to occur always has the highest priority.

A basic level on the other hand can be nested in a lower priority level only at
block boundaries unless this default is changed by writing the appropriate
program in DX 0 (see Chapter 7).

Priority of the "basic levels":

CYCLE

TIMED JOB
TIME INT 5 s ascending priority
TIME INT 2 s

CONTROLLER INT
PROCESS INT

Example:

A process interrupt occurs during the processing of a
time interrupt. Since the process interrupt has a
higher priority, the processing of the time interrupt
level is interrupted at the next block boundary and
the PROCESS INTERRUPT program processing level is
activated.

If, for example, an addressing error is detected
while the process interrupt is being serviced, the
process interrupt is stopped immediately at the next
operation boundary to activate the ADF level.

Response to Once an error level has been activated (ADF, BCF, LZF, QVZ, REG, ZYK) it

double error cannot be activated again until it has been processed completely, not even if a
different program processing level is nested within it. In this case, the PLC
changes to the STOP mode owing to the double call of a program processing
level (DOPP in the ISTACK). Collisions of time interrupts are an exception
(refer to the relevant section). In the ISTACK, at depth "01", the DOPP identifier
and the error level called twice are marked.

CPU 928B-3UB21 Programming Guide
4-8 C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Examples of
double call errors

Example 1:

During the processing of the ADF level (user interface
OB 25) a further processing error occurs. Since the ADF
level is still active, it cannot be called a second time;
the CPU changes to STOP.

STOP

A
Addressing error in PB 30
causes STOP

B2 V4

& /
B
AOF

Addressing error in FB 5:
Call OB 25/
ADF level

LS

aXé7

Crelf

Fig.4-4 Change of level as a result of a double call error

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 4-9

Operating Modes and Program Processing Levels

Example 2:

If an operation code error occurs in the LZF program processing level, the
system program attempts to call the BCF level (user interface OB 29). This
has, however, already been activated by the occurrence of a parameter error
(user interface OB 30) and has not yet been completely processed. Calling the
BCF level again at this point is not permitted; the CPU changes to STOP (see

STOP

Op code error in FB 22
causes STOP

LZF

Runtime error processing OB 30:

OB 31 call /
LZF level

if substitution 0B 27)
error ,
if op code error ,‘ OB 29 [PB5 M FB7 / !
if parameter - !
error 0B 30 BC F)
/
Parameter error in FB 3: !
OB 30 call / !
BCF level !
FB2 /4 FB3 / :
OB 1 :
)

Fig. 4-5 Double call of error level BCD

Description of The individual program processing levels and the corresponding user interfaces
the individual are described in more detail in the following sections:
levels
Section 4.4 describes the program processing levels in RESTART.
Section 4.5 describes the program processing levels in RUN

Sections 5.5 and 5.6 describe the error levels in RESTART and RUN.

CPU 928B-3UB21 Programming Guide
4-10 C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.3 STOP Mode

4.3.1 Characteristics and Indication of the Operating Mode

Characteristics The STOP mode is distinguished by the following features:
¢ User program

The user program is not processed.

¢ Retention of data

If program execution has already been active, the values of counters, timers,
flags and process images are retained at the transition to the stop mode.

* BASP signal

The BASP signal (disable command output) is active. This disables all digital
outputs.

Exception: In multiprocessor mode the BASP signal is not active during the
test mode of the coordinator - refer to your System Manual /2/
for more information.

* ISTACK

If program execution was already active, there is an information field for
each interrupted program processing level in the interrupt stack (ISTACK)
that indicates the cause of the interrupt when the CPU is in the STOP mode
(see Section 5.4).

Indication The current operating mode is indicated by LEDs on the front panel of the CPU.

RUN LED: off
STOP LED: on (steady or flashing)
BASP LED: on (except in test mode)

The STOP LED indicates the possible causes of the current stop state. The
following paragraphs describe a continuously lit or flashing STOP LED.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 4 -11

Operating Modes and Program Processing Levels

STOP LED lit
continuously

STOP LED
flashes slowly
(approximately
0.5 Hz)

The STOP LED
flashes quickly
(approximately
2 Hz)

The STOP mode was triggered by the following:

¢ in the single processor mode

the mode selector was switched from RUN to STOP ,
the PLC STOP programmer function was activated,

a device fault occurred (BAU, PEU),

an OVERALL RESET was performed,

the END PROGRAM TEST programmer function was activated.

* in the multiprocessor mode

by switching the mode selector on the coordinator to STOP,

by another CPU going into STOP as the result of a fault (a CPU not
causing a fault is lit continuously).

When the STOP LED flashes slowly, this normally indicates an error. In the
multiprocessor mode, slow flashing indicates the CPU which caused the stop
mode (owing to an error).

¢ The STOP LED flashes slowly in the following situations:

a stop operation was programmed in the user program

an operator error has occurred (e.g. DB 1 error, selection of an illegal
start-up type, etc.)

programming or device errors (calling a block that is not loaded,

addressing error, timeout, operation code error etc.); the following LEDs
also light up to define the possible cause of error more exactly:

ADF LED

QVZ LED

ZYK LED

the END PROGRAM TEST programmer function was activated in this
CPU.

When the STOP LED flashes quickly, this is a warning that an OVERALL
RESET is being requested.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.3.2 Requesting and Performing an OVERALL RESET

Request by the
system program

Operator request

Each time you turn on the power and perform an overall reset, the CPU runs
through an initialization routine. If errors are detected during this initialization,
the CPU changes to the STOP mode and the STOP LED flashes quickly.

Possible errors: Contents of the RAMS are not correct.
Remedy: overall reset on the CPU

Contents of the memory card are not correct
Remedy: insert correctly programmed memory card
and overall reset on the CPU

You must deal with the cause of the problem and then perform an overall reset
on the CPU again. OVERALL RESET is also requested if a CPU or system error
occurs. You can recognize this error by the fact that the request appears again
following an OVERALL RESET. In this case, call your SIEMENS
representative.

You request OVERALL RESET as follows:
1. Switch the mode selector from RUN to STOP.
Result: the CPU is in the STOP mode. The STOP LED is lit continuously.
2. Hold the momentary-contact mode selector in the OVERALL RESET
position; at the same time, switch the mode selector from STOP to RUN
and back to STOP.
Result: you request an OVERALL RESET. The STOP LED flashes quickly.
Note

If you do not want the OVERALL RESET that you requested to be
executed, perform a COLD RESTART or MANUAL WARM RESTART.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Performing an
OVERALL RESET

Checksum

Loading the
memory card

Regardless of whether you yourself or the system program requested an overall
reset, you perform the OVERALL RESET as follows:

¢ Hold the reset switch in the OVERALL RESET position; at the same time,
switch the mode selector from STOP to RUN and once again to STOP.

Result: the OVERALL RESET is performed, the STOP LED is lit
continuously.

or

¢ Use the PG function OVERALL RESET
(If you perform an OVERALL RESET at the PG, the manual overall reset
request using the switches and selector can be omitted. The position of the
reset switch and mode selector are then irrelevant.)

Result: the OVERALL RESET is performed. The STOP LED is lit
continuously.

When performing an overall reset, a checksum is formed via the system program
and compared with the entry in the Flash EPROM. If the two do not match, a
serious system error is present (see page 4-3).

Note
Once you have performed an OVERALL RESET, the only permitted
restart mode is a COLD RESTART.

If a memory card is inserted when performing an overall reset, all code blocks
and data blocks in the memory card are loaded into the user memory of the CPU.
The CPU is then in EPROM mode, meaning code blocks cannot be reloaded,
edited or deleted; data blocks in the DB-RAM can, however, be reloaded, edited
or deleted (see Section 3.3).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4 RESTART Mode

Special features The RESTART mode is distinguished by the following features:

Transition from STOP to RUN
The RESTART is the transition from the STOP mode to the RUN mode.

Restart types

The CPU 928B has the following restart modes:

— COLD RESTART (manual or automatic)

— WARM RESTART (manual or automatic)

— RETENTIVE COLD RESTART (manual or automatic)

Following a COLD RESTART, the cyclic user program is processed from
the beginning. Following a WARM RESTART, the cyclic user program is
processed from the point at which it was interrupted.

Organization blocks
The following organization blocks are called:
for MANUAL or AUTOMATIC COLD RESTART: OB 20

for MANUAL WARM RESTART or
RETENTIVE COLD RESTART: OB 21

for AUTOMATIC WARM RESTART or
RETENTIVE COLD RESTART: OB 22

The length of the STEP 5 start-up program in the OBs is not restricted. The
organization blocks are not time-monitored. Other blocks can be called in the
start-up OBs.

Data handling

In each start-up type, the values of counters, timers, flags and process images
are handled differently.

BASP signal

The BASP signal (disable command output) is active. This disables all digital
outputs.

Exception: in the test mode, BASP is not activated! (Please see your System
Manual /2/ for information on the test mode.)

LEDs on the front panel of the CPU

RUN LED: off
STOP LED: off
BASP LED: on (except in test mode)

Restart characteristics in multiprocessor mode

For information on the start-up procedure in the multiprocessor mode, refer to
Section 10.1.7.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4.1 MANUAL and AUTOMATIC COLD RESTART

When is a COLD
RESTART
permitted?

MANUAL COLD
RESTART

AUTOMATIC
COLD RESTART

A COLD RESTART is always permitted provided the system is not requesting
an OVERALL RESET.

You carry out a MANUAL COLD RESTART as follows:
¢ Hold the reset switch in the RESET position; at the same time, switch the
mode selector from STOP to RUN.
or
¢ Use the PC START programmer function (COLD RESTART).
An AUTOMATIC COLD RESTART is triggered in the following case:
After power failure/POWER OFF in RESTART or RUN followed by power
restore/POWER ON, the CPU runs an initialization routing and then attempts to
automatically execute a COLD RESTART as long as DX 0 is correctly
parameterized (see Section 7.1).
Prerequisite:
* The switches on all CPUs and on the coordinator must remain at RUN.
* There must have been no faults in the initialization run.
¢ The CPU was not in the STOP mode when the power was switched off.
In the case of power failure in an expansion unit (PEU signal), the CPU goes to
STOP. It remains in STOP until the PEU signal is switched inactive and then

attempts to execute an AUTOMATIC COLD RESTART or an AUTOMATIC
WARM RESTART.

4.4.2 MANUAL and AUTOMATIC WARM RESTART

When is a WARM A MANUAL WARM RESTART is not permitted in the following situations:

RESTART not
permitted?

¢ when the system is requesting OVERALL RESET
or

¢ after the following events:

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

MANUAL WARM
RESTART

AUTOMATIC
WARM RESTART

RETENTIVE
COLD RESTART

— double call of a program processing level (ISTACK: DOPP),
— OVERALL RESET (control bits: URGELOE),

— start-up aborted (control bits: ANL-ABB),

— STOP after the END PROGRAM TEST programmer function,
— when compressing the memory in the STOP mode,

— stack overflow,

— when the user program has been modified in the STOP mode.

You carry out a MANUAL WARM RESTART as follows:

e Switch the mode selector from STOP to RUN. The reset switch must be in
the mid-position.

or

¢ Use the PLC START programmer function (WARM RESTART).

If there is a power failure/POWER OFF during RESTART or RUN, when the
power returns again/POWER ON, the CPU performs an initialization routine and
then attempts to perform a WARM RESTART automatically, as long as DX 0 is
correctly parameterized (see Chapter 7) or does not exist.

Conditions:

* The selectors on all the CPUs and on the coordinator remain set to RUN.

¢ No errors are detected during the initialization.

¢ The CPU was not in STOP before the power failure/POWER OFF.

If there is a power failure in an expansion unit (PEU signal), the CPU changes to
STOP. It remains in this state until the PEU signal is cleared and then attempts to

perform an AUTOMATIC WARM RESTART or AUTOMATIC COLD
RESTART.

If the parameter "Retentive cold restart" is stored in DX 0, the system program
executes RETENTIVE COLD RESTART instead of WARM RESTART. See
the following section to find out how this differs to a "normal" COLD
RESTART.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

443 Comparison of the Different Restart Types
Table 4-2 Comparison of the different restart types
COLD RESTART WARM RESTART RETENTIVE COLD
System program RESTART
performs
manual automatic manual automatic manual automatic

Evaluation of:

-DB1 yes yes no no no no

-DB2 yes yes no no no no

-DX0 yes yes no no no no

-DX2 yes yes no no no no

Initialization of:

-DBO no V) no?V no no Y no V) no

- 9th track yes yes no no no no

- Disable/enable yes yes no no yes yes
interrupts

- Cycle statistics yes yes no no no no

Deletion of:

- Timed job yes yes no no no no

- Delay interrupt yes yes yes yes yes yes

- ISTACK/ yes yes no no yes yes
BSTACK

- Process image yes (com- yes (com- no no no no
of the inputs pletely) pletely)

- Process image yes (com- yes (com- no no yes (acc.to | yes (acc. to
of the outputs/ pletely) pletely) 9th track) 9th track)
digital I/O

- Analog I/O yes yes no no no no

- IPC flags yes yes no no no no

- Semaphores yes yes no no no no

- Fflags and yes yes no no no no
S flags

- Timers and yes yes no no no no
counters

Processing of

remaining cycle in

the case of active no no yes yes no no

BASP signal

Restart type COLD COLD MANUAL AUTO. MANUAL AUTO.

determined by RESTART RESTART WARM WARM WARM WARM

OB 223 RESTART | RESTART | RESTART | RESTART

Indication of the NEUSTA NEUSTA + MWA AWA ANL-6 + ANL-6 +

restart type at the AWA MWA AWA

programmer in the

ISTACK control bits

User interface OB 20 OB 20 OB 21 OB 21 OB 22 OB 22

D' DB 0 is only initialized after an OVERALL RESET

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Definition of the "9th track"

The "9th track" is a list of input and output bytes in the process image that
acknowledged at the last COLD RESTART. If you program and load DB 1, then
following a successful COLD RESTART, the 9th track contains only the input
and output bytes listed in DB 1.

You cannot access the 9th track with STEP 5 operations.

444 User Interfaces for Restart

Introduction

OB 20

The organization blocks OB 20, OB 21 and OB 22 are used as user interfaces for
the different restart types. You can store your STEP 5 program for each restart
type in these blocks.

You can do the following in the RESTART OBs:

¢ set flags,

* start timers (the start is delayed by the system program until the user program
enters the RUN mode),

¢ prepare the data traffic of the CPU with the I/O modules,

¢ execute synchronization of the CPs.

COLD RESTART:

When the CPU executes a MANUAL or AUTOMATIC COLD RESTART, the
system program calls OB 20 once. In OB 20, you can store a STEP 5 program
that executes preparatory steps for restarting cyclic program execution:

After OB 20 is processed, the cyclic program execution begins by calling OB 1
or FB 0.

If OB 20 is not loaded, the CPU begins cyclic program execution immediately
after the end of a COLD RESTART (following the system activities).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

OB 21

MANUAL WARM RESTART or RETENTIVE MANUAL COLD
RESTART:

When the CPU carries out a MANUAL WARM RESTART or RETENTIVE
MANUAL COLD RESTART, the system program calls OB 21 once. In OB 21,
you can store a STEP 5 program that carries out specific activities once before
cyclic program execution is resumed.

MANUAL WARM RESTART

After OB 21 is processed, for MANUAL WARM RESTART the cyclic program
execution continues with the next statement after the point at which it was
interrupted. The following conditions apply:

¢ The disable command output signal (BASP) remains active while the rest of
the cycle is processed. It is only cleared at the beginning of the next
(complete) cycle.

¢ The process output image is reset at the end of the remaining cycle.

If OB 21 is not loaded, then at the end of a MANUAL WARM RESTART and
after performing system activities the CPU begins program execution again at the
point at which the program was interrupted.

Note

The CPU registers a power down (NAU or PEU) even when this occurs in
the STOP mode. If you then trigger a MANUAL WARM RESTART, the
CPU calls OB 22 before OB 21.

If, instead, you trigger a MANUAL COLD RESTART, the previous
events are ignored by the CPU and OB22 is not called.

RETENTIVE MANUAL COLD RESTART

If the parameter "RETENTIVE COLD RESTART" is entered in the data block
DX 0, after processing OB 21, the system program then goes through a COLD
RESTART (the CPU resumes program execution with the first STEP 5
statement in OB 1 or FB 0). The signal states of the flags, IPC flags, semaphore
and the block address list (DB 0) are retained.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

oB22

AUTOMATIC WARM RESTART or RETENTIVE AUTOMATIC COLD
RESTART:

When the CPU executes an AUTOMATIC WARM RESTART or a
RETENTIVE AUTOMATIC COLD RESTART, the system program calls
OB 22 once. Here you can store a STEP 5 program which executes specific
actions once before restoration of program execution previously interrupted in
RUN.

AUTOMATIC WARM RESTART

When the power is restored, the CPU carries out the system functions mentioned
above and attempts to continue the program from the point at which it was
interrupted.

If it is loaded, OB 22 is called first. After OB 22 is processed, cyclic program
execution resumes with the next statement after the point at which it was
interrupted.

After a power failure and subsequent restoration of power, the following
conditions apply:

* The BASP signal (disable command output) remains active while the
remaining cycle is processed. It is cleared at the beginning of the next
complete cycle.

¢ The process output image is reset at the end of the remaining cycle.

RETENTIVE AUTOMATIC COLD RESTART

If the parameter "RETENTIVE COLD RESTART" is entered in the data block
DX 0, after processing OB 22, the system program then goes through a
RETENTIVE COLD RESTART (the CPU resumes program execution with the
first STEP 5 statement in OB 1 or FB 0). The signal states of the flags, IPC
flags, semaphore and the block address list (DB 0) are retained.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

44,5 Interruptions in the RESTART Mode

Introduction

Power failure at
RESTART

A start-up program can be interrupted by the following:

* NAU (power failure) or PEU (power failure in expansion unit),

¢ activating the stop switch, the stop operation, MP-STP or PG-STP,
or:

¢ program and device errors (see Section 5.6).

If you want to continue an interrupted RESTART with one of the possible restart
types, please remember the following points:

After power returns following a power failure you must distinguish between
the situations listed in the following table:

Selected mode: AUTOMATIC WARM RESTART

The CPU is performing a COLD RESTART (OB 20):

following the return of power after power failure, the organization block OB 22
(AUTOMATIC WARM RESTART) is activated at the point of interruption in OB 20.

The CPU is performing a MANUAL WARM RESTART (OB 21):

following the return of power after a power failure, organization block OB 22
(AUTOMATIC WARM RESTART) is activated at the point of interruption in OB 21.

The CPU is already performing an AUTOMATIC WARM RESTART (OB 22):

following the return of power after a power failure, no second OB 22 is activated.
The interrupted OB 22 is not continued after the return of power but is aborted and
then called again and processed from the beginning.

Selected mode: AUTOMATIC COLD RESTART

The CPU is performing a MANUAL or AUTOMATIC COLD RESTART or a
MANUAL WARM RESTART:

following the return of power after power failure, the interrupted OB 20 or OB 21 is
not continued, but abandoned and the newly called OB 20 is processed.

The same rules apply to an AUTOMATIC WARM RESTART following a PEU
signal.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

MANUAL WARM
RESTART after
aborting a
RESTART

MANUAL COLD
RESTART after
aborting a
RESTART

Aborting
RETENTIVE
COLD RESTART

If the CPU goes to the STOP mode during any RESTART (stop switch of ADF)
and you then trigger a MANUAL WARM RESTART, the interrupted
RESTART is continued from the point at which it was interrupted. OB 21 is not
activated.

If the CPU goes to the STOP mode during any RESTART and you then trigger a
MANUAL COLD RESTART, the interrupted RESTART is aborted and a
COLD RESTART is performed (if it exists, OB 20 is called).

RETENTIVE COLD RESTART is aborted by:

* Power failure in the central controller (NAU) or in the expansion unit (PEU),
¢ Stop switch, stop command, MP-STP or PG-STP

or
* Program errors and hardware faults (see Section 5.6).

An aborted RETENTIVE COLD RESTART is not continued at warm restart.
Instead, a new RETENTIVE COLD RESTART is started.

Previous events and statuses are not taken into account in the selection of restart
type. The following applies especially:

¢ Ifa MANUAL or AUTOMATIC RETENTIVE COLD RESTART is aborted
by POWER OFF or power failure in the expansion unit, a RETENTIVE
AUTOMATIC COLD RESTART always takes place at POWER ON if all
other restart conditions are met.

¢ Ifa MANUAL or AUTOMATIC RETENTIVE COLD RESTART is
initiated by one of the other abort types, a new RETENTIVE MANUAL
COLD RESTART takes place.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5 RUN Mode

Special features

When the CPU has executed a RESTART (and only then) it changes to the RUN
mode. This mode is characterized by the following Special features:

Execution of the user program

The user program in OB 1 or in FB 0 is executed cyclically and additional
interrupt-driven program sections can be nested in it.

Timers, counters, process image

All the timers and counters started in the program are running, the process
image is updated cyclically.

BASP signal

The BASP signal (disable command output) is inactive. All the digital
outputs are therefore enabled.

IPC flags

The interprocessor communication (IPC) flags are updated cyclically
(provided this is programmed in DB1).

LEDs on the front panel of the CPU

RUN LED: on

STOP LED: off

BASP LED: off
Note

If an AUTOMATIC or MANUAL warm restart was executed before the
CPU went into the RUN mode, the BASP LED remains lit until the rest of
the cycle has been processed and the process image has been updated.

The RUN mode is only possible after the RESTART mode.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Program
processing levels

In the RUN mode there are 13 basic program processing levels, as follows:

* CYCLE:
The user program is executed cyclically.
e TIMED JOB:

The user program is executed at fixed times you have programmed or once at
a fixed time (clock-controlled time interrupt).

* 9TIME INTERRUPTS:

The user program is processed at fixed intervals specified by the system.
¢ CONTROLLER INTERRUPT:

Time-driven processing of a preset number of closed loop controllers.
e DELAY INTERRUPT

The user program is processed once after a preset delay time has elapsed.
¢ PROCESS INTERRUPT:

Process interrupt-driven user program execution.

The processing levels differ from each other in the following aspects:
¢ they are triggered by different events

¢ the user interface for each program processing level is a different
organization block or function block.

You can program all basic processing levels at the same time in a CPU 928B.
The levels are called by the system program according to the current events and
the default priority (see Section 4.2).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.1 Cyclic Program Execution

Introduction

Triggering

Principle

Most functions of a programmable controller involve cyclic program execution
(CYCLE program processing level). This cycle is known as a "free cycle", i.e.
after reaching the end of the program, the next cycle is executed immediately
(see Fig. 4-6).

If the CPU completes the restart program without errors, it begins cyclic program
execution.

The system program activities are as follows:

from restart

|

triggers the cycle time monitoring

v

updates the IPC flag inputs

updates the process input image
(PI)

calls the cyclic user program (OB 1
or FB 0)

User program

including nesting of
the other

basic processing levels

outputs the process output image
(PIQ)

updates IPC flag outputs

system activities, e.g.
loading or clearing blocks,

compressing blocks. . .

Fig.4-6 Cyclic program execution

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

User interface:
OB1orFBO

Interrupt points

ACCUs as data
storage

The system program calls organization block OB 1 or function block FB 0 as the
user interface regularly during cyclic program execution. The system program
processes the STEP 5 user program in OB 1 or FB 0 from the beginning through
the various block calls you have programmed. Following the system activities,
the CPU starts again with the first STEP 5 statement in OB 1 (or in FB 0).

In OB 1, you program the calls for program, function and sequence blocks that
are to be processed in your cyclic program.

If you have a short time-critical user program in which you do not require
structured programming, then program FB 0. Since you use the total STEP 5

operation set in this block, you do not require block calls and can reduce the
runtime of your program.

Note

If both OB 1 and FB 0 are programmed, only OB 1 is called by the system
program. If you use FB 0 as the user interface, it must not contain
parameters.

Cyclic program execution can be interrupted at block boundaries by the
following:

® process interrupt-driven program execution,
¢ closed loop controller processing,
¢ time-driven program execution.

Note

You can program DX 0 to enable these interruptions to occur at operation
boundaries (see Chapter 7).

Cyclic program execution can be interrupted at operation boundaries or aborted
completely as follows:

e ifa device or program error occurs,

* Dby operator intervention (PG function, stop switch, MP-STP),

¢ by the STOP operation.

The arithmetic registers ACCU 1, 2, 3 and 4 of the CPU 928B can be used as

data storage outside the cycle (from the end of one program cycle to the
beginning of the next).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.2 Time-Driven Program Execution

Introduction

Delay interrupt

Triggering

User interface
OB6

Time-driven processing occurs when a time signal from a clock or internal clock
pulse prompts the CPU to interrupt the current program and execute a specific
program. After executing this program, the CPU returns to the point at which the
previous program was interrupted and continues execution. This way, particular
program sections can be inserted automatically into the cyclic program at a
specified time.

You can trigger time-driven program execution in different ways, as follows:

¢ One-off triggering after a freely selectable delay time in the millisecond
range, a "delay interrupt" (DELAY INTERRUPT program processing
level). The OB 6 organization block is called via this interrupt.

¢ Triggering using a freely selected time base or once only at an absolute time,
a "clock-driven time interrupt" (program processing level TIMED JOB). This
interrupt calls organization block OB 9.

¢ Triggering in 9 different time bases with a range from 10 ms to 5 seconds by
"time interrupts" (program processing levels TIME INTERRUPTS). An
organization block (OB 10 to OB 18) is assigned to each time interrupt.
These have a fixed cycle, i.e. the time between two program starts is fixed.

Small time intervals with a resolution of 1 ms can also be specified with the
delay interrupt of the CPU 928B. When the set time has elapsed, the system
program calls OB 6 once.

A delay interrupt is generated by calling the special function organization block
OB 153 (see Section 6.12). As soon as the delay time parameterized with

OB 153 has elapsed, the system program interrupts the current program
execution and calls OB 6. After this, program execution is resumed at the
interrupt point.

In the case of a delay interrupt, OB 6 is called as the user interface. In OB 6 you
store a STEP 5 program to be executed in this case. If OB 6 has not been loaded,
program execution will not be interrupted.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Interrupt points The execution of a clock-controlled time interrupt can be interrupted at block
boundaries, or operation boundaries (if selected in DX 0) by the following:

* processing of a process interrupt.

The processing can be interrupted at operation boundaries or aborted
completely by the following:

¢ the occurrence of a hardware fault or program error,
* operator intervention (PG function, stop switch, MP-STP),

¢ the stop operation.

Special features A delay interrupt is only processed in the RUN mode.
* A generated delayed alarm (= OB 153 call was processed) is not retained in
the transition to the STOP mode and during POWER OFF.

* A delay interrupt can be generated in the RESTART and in the RUN
mode (calling of OB 153).

¢ If you generate a new delay interrupt, i.e. call OB 153 with new parameters, a
previously set delay interrupt is cancelled. A delay interrupt currently being
processed is continued. This means that only one delay interrupt is valid at
any one time.

¢ If a delay interrupt occurs without the previous one being completely
processed, the new interrupt is discarded. Delayed interrupts are not
checked for collisions!

¢ Note the special functions OB 122 and OB 142 with which you can disable or
delay the servicing of delay interrupts.

Clock-driven The CPU 928B has a battery-backed clock (central back-up via the power supply
time interrupts of the central controller), which you can set and read out using a STEP 5
program. Using this clock, you can execute a program section time-driven.

While the delay interrupt is used for high-speed jobs, the clock-driven time
interrupt is especially suitable for processing one-off jobs or jobs occurring
periodically at large time intervals such as hourly, daily or every Monday.
When the set time is reached, the system program calls OB 9.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 4-29

Operating Modes and Program Processing Levels

Triggering A clock-driven time interrupt (timed job) is generated by calling the special
function organization block OB 151 (see Section 6.10). Once the time transferred
to OB 151 (time of day, date) has been reached, the timed job is processed. This
can be programmed to occur once (absolute time) or be repeated (time base).
Once a job becomes due for processing, the system program interrupts the
current program and calls OB 9 (program processing level TIMED JOB).
Following this, the program is resumed at the point at which it was interrupted.

Example:

You want to trigger a time interrupt at the 55th second
_every minute.

Setting using OB 151:

SECONDS: 55
JOB TYPE: 1 (every minute)

5’565 6’55 7’55

| | | min
] CallOB 9 CallOB 9 CallOB9

Generate
clock-driven
time interrupt
(call OB 151)

User interface: OB 9 is called as the user interface for a clock-driven time interrupt. You store a
OB9 STEP 5 program in OB 9 that is to be processed whenever it is called. If you do
not load OB 9, program execution is not interrupted.

Interrupt points The execution of a clock-controlled time interrupt can be interrupted at block
boundaries, or operation boundaries (if selected in DX 0) by the following:

* processing of a process interrupt
e processing of a delay interrupt
¢ processing of a closed loop controller interrupt.

The processing can be interrupted at operation boundaries or aborted
completely by the following:

¢ the occurrence of a hardware fault or program error,
* operator intervention (PG function, stop switch, MP-STP),

* the stop operation.

CPU 928B-3UB21 Programming Guide
4-30 C79000-Gi8576-C870-01

Operating Modes and Program Processing Levels

Special features

Time interrupts

Triggering

User interfaces

A clock-driven time interrupt is only processed in the RUN mode.
Clock-driven time interrupts that occur in the STOP mode, when the power
has failed or during RESTART are discarded.

A clock-driven time interrupt generated following OVERALL RESET and
COLD RESTART (= OB 151 call) is retained during a WARM RESTART
and following POWER OFF/POWER ON, providing the trigger time did not
occur during STOP (see above).

If you generate a new clock-controlled time interrupt, i.e. you call OB 151
with new timer values, an already existing clock-driven time interrupt is
cancelled. A currently active clock-driven interrupt is continued. Only one
clock-driven time interrupt is ever valid at one time.

If a clock-driven time interrupt occurs when a previous clock-driven time
interrupt has not been processed or not been completely processed, the new
time interrupt is discarded. Clock-driven time interrupts are not checked
for collisions.

You can use the special functions OB 120 and OB 122, to disable or delay
the processing of clock-driven time interrupts.

Program execution in fixed time bases

In the CPU 928B, you can execute up to 9 different time-driven programs, each
program being called at a different time interval.

A time interrupt is triggered automatically at a fixed time interval if the
corresponding OB is programmed.

When a particular time interrupt occurs, the corresponding organization block is
activated as the user interface at the next block boundary (or operation boundary).

Assignment of the time interrupt time to the OBs:

Table 4-3 Assignment "Time interrupt time - called OB"

Time base Organization block called
10 ms OB 10 Falling priority
20 ms OB 11
50 ms OB 12
100 ms OB 13
200 ms OB 14
500 ms OB 15
1sec OB 16
2 sec OB 17
5 sec OB 18

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Time since last
interrupt
processed

Interrupt points

For example, program the program section to be inserted into the cyclic program
every 100 ms in OB 13.

Note

OBs with shorter time bases have a higher priority and can interrupt OBs
with longer time bases.

Whenever a time interrupt OB is called (OB 10 to OB 18) ACCU 1 contains the
number of time units that have occurred since the last time interrupt OB call, as
follows:

ACCU 1 := number of time units - 1
If, for example, ACCU 1 contains the number "5" when OB 11 is called, this
means that 120 ms (6 time units) have elapsed since

OB 11 was last called. As long as there is no collision of time interrupts, a "0" is
transferred in ACCU 1.

Time-driven program execution can be interrupted either at block boundaries
(default) or at operation boundaries (programmed in DX 0) by the following:

¢ processing of a process interrupt

* processing of a delay interrupt

¢ processing of a closed loop controller interrupt
¢ renewed processing of a time interrupt

Processing can be interrupted at operation boundaries or aborted completely by
the following:

¢ the occurrence of a hardware fault or program error
* operator intervention (PG function, stop switch, MP-STP)
¢ the stop operation STP.

Note

Time-driven program execution cannot be interrupted by the same time
interrupt (collision of time interrupts).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Collision of time
interrupts
(WECK-FE)

If a time interrupt OB has not yet been completely processed and is called a
second time, a collision occurs. A time interrupt collision also occurs if an OB is
called a second time and the first call has not been processed. This is possible
when the time interrupts can only interrupt the cyclic program at block limits,
particularly if your STEP 5 program contains blocks with long runtimes.

If a collision of time interrupts occurs, the error program processing level
WECK-FE is activated and the system program calls OB 33 as the user interface.
In OB 33, you can program a specific reaction to this problem.

If OB 33 is not loaded, the CPU goes into Stop if an error occurs. Then
WECK-FE is indicated on the programmer in the control bits "Output ISTACK"
screen. The level ID of the relevant time interrupt (LEVEL) is indicated in the
ISTACK.

When the system program calls OB 33, it transfers additional information to
ACCU 1 and ACCU 2 which provides more detail about the first error to occur.

Table 4-4 Collision of time interrupt identifiers

Error identifier Explanation

ACCU-1-L | ACCU-2-L

1001H 001H Collision of time interrupts with OB 10 (10 ms)
1001H 0014H Collision of time interrupts with OB 11 (20 ms)
1001H 0010H Collision of time interrupts with OB 12 (50 ms)
1001H 0010H Collision of time interrupts with OB 13 (100 ms)
1001H 000EH Collision of time interrupts with OB 14 (200 ms)
1001H 000CH Collision of time interrupts with OB 15 (500 ms)
1001H 000AH Collision of time interrupts with OB 16 (1 sec)
1001H 0008H Collision of time interrupts with OB 17 (2 sec)
1001H 0006H Collision of time interrupts with OB 18 (5 sec)

The identifier in ACCU-2-L is the level identifier (see Section 5.4) of the time
interrupt which caused the error.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Continuing
program
execution after
collision of time
interrupts

If you require the program to continue if a collision of time interrupts occurs,
either program the block end statement "BE" in OB 33 or change the default in
DX 0 so that the program is continued if a collision occurs and OB 33 is not
programmed.

After OB 33 is processed, the program is continued from the point at which it
was interrupted.

Note

With respect to time-driven program execution, remember the special
functions OB 120, OB 121, OB 122 and OB 123 with which you can
disable or delay the processing of time interrupts for a particular program
section. (This is possible either for all programmed time interrupts or for
individual time interrupts.)

The "faster" a time-driven program processing level is, the greater the
danger of time interrupt collisions. If you have time interrupts with short
time bases (e.g. the 10 ms and the 20 ms time interrupts) it is normally
necessary to select interruption at operation boundaries. This means that the
closed loop controller interrupt and the process interrupt must also be set to
interrupt at operation boundaries (see Chapter 7, Assigning Parameters to

DX 0).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.3 CLOSED LOOP CONTROLLER INTERRUPT:
Processing Closed Loop Controllers

Introduction

Triggering

User interface:
standard
function block
"closed loop
controller
structure R64"

Interrupt points

In the CPU 928B, apart from cyclic, time and process interrupt program
execution, it is also possible to process closed loop controllers. You select
intervals (= sampling time) at which the cyclic or time-driven program execution
is interrupted and the controller is processed. Following this, the CPU returns to
the point at which the cyclic or time-driven program was interrupted and
continues execution.

A closed loop controller interrupt is triggered when the sampling time you have
selected elapses.

System program activities

¢ It manages the user interface for closed loop controller processing.

¢ It updates the controller process image.

When processing a controller, the R64 standard function block is called as the
user interface. In conjunction with the controller parameter assignment block DB
2, this allows up to 64 controllers to be processed.

You assign a specific data block for each controller. In data block DB 2, known
as the "controller list" you specify which controllers are to be processed by the

system program at which point in time. DB 2 is reserved for this task.

(When assigning parameters, starting up and testing the R64 standard FB, you
are supported by a special program package: "COMREG", see Catalog ST 59.)

Closed loop control processing can be interrupted either at block boundaries
(default) or at operation boundaries (programmed in DX 0), by the following:

¢ processing of a process interrupt,
¢ processing of a delay interrupt.

Processing can be interrupted at operation boundaries or aborted completely by
the following:

¢ the occurrence of a hardware fault or program error,
¢ operator intervention (PG function, stop switch, MP-STP),

¢ the stop operation STP.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.4 PROCESS INTERRUPT: Interrupt-Driven Program Execution

Introduction

C(2 ! D)

Triggering

User interface
OB2

Interrupt points

Interrupt-driven program execution involves the S5 bus signal of an
interrupt-capable digital input module (e.g. 6ES5 432-4UAxx) or a suitable IP
module that causes the CPU to interrupt program execution and to process a
specific program section. On completion of this program, the CPU returns to the
point at which execution was interrupted and continues from there.

The evaluation of a process interrupt can be triggered either by a signal level or
signal edge. You can write a program to either disable, delay or enable the
interrupt. OB 2 can interrupt the current program either at operation or block
boundaries (when you program DX 0).

The active state of an interrupt line on the S5 bus triggers the process interrupt.

Depending on the slot in the rack, each CPU is assigned one of the interrupt lines
(for more detailed information, refer to the System Manual).

When a process interrupt occurs, OB 2 is called as the user interface. In OB 2,
you program a specific program to be processed if a process interrupt occurs.

If OB 2 is not programmed, the cyclic program is not interrupted. No
interrupt-driven program execution takes place.

Process interrupt-driven program execution can only be interrupted by the
following:

* aprogram or device error (at operation boundaries)
* operator intervention (PG function, stop switch, MP-STP),
¢ the stop operation.

Note

Interrupt-driven program execution cannot be interrupted by time-driven
program execution or by a further process interrupt.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Multiple
interrupts

Process interrupt
signal

If further process interrupts occur during the interrupt-driven program execution,
these are ignored until OB 2 has been completely processed (including all the
blocks called in OB 2). The CPU then returns to the point of interruption and
executes the program until the next block or operation boundary. Only then is a
new process interrupt accepted and OB 2 called again. This means that a
permanently active interrupt cannot totally block cyclic program execution.

Note
Multiple interrupts are not detected.

OB 2 can also be called when the signal state of the interrupt line is passive
again when the block boundary is reached.

Edge-triggered process interrupts occurring during the execution of OB 2
and remaining active for a shorter time than OB 2 are not detected (if level
triggered).

The signal state of the interrupt signal between its becoming active and the
completion of OB 2 (BE operation) is irrelevant.

In the default (DX 0), the process interrupt signal for the CPU 928B is
level-triggered. i.e. the active state of the interrupt line sets a request which
causes OB 2 to be processed at the next block or operation boundary (depending
on the setting of DX 0).

Interrupt I ,—I '—] ,— .inactive
line - - - - active
Process interrupt OB2 OB2 OB2 OB2

(at block boundaries)

Cycle

A = block boundaries

Fig. 4-7 Process interrupt, level triggered

When it is called, OB 2 is processed completely. If the interrupt signal is still
active or active once again at the end of OB 2, a block is processed in the cyclic
program and OB 2 is then called again. If the level is no longer active, OB 2 is
only called again at the next change of signal state (from inactive to active).

Active interrupt signal states before processing the block end operation (BE) of
OB 2 are irrelevant.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Process interrupt
signal:
edge-triggered

Disabling
interrupt-driven
processing

You can select this setting by assigning parameters to DX 0. After OB 2 has been
processed, a new process interrupt can only be triggered by a signal state change
(from inactive to active). After processing the block end command (BE) of OB 2
an "inactive-active signal change" of the interrupt signal must follow to
generate a process interrupt.

-inactive

Interrupt | l IJ _____ active

line

Process interrupts OB2 OoB2 OoB2
(at block i I

ll-l

A = block boundaries

Fig. 4-8 Process interrupt, edge-triggered

The system program inserts an interrupt-driven program into the cyclic program
at a block boundary or at a STEP 5 operation boundary.

An interruption of this type can have a negative effect if a cyclic program section
has to be processed within a specific time (e.g. to achieve a specific response
time) or if a sequence of operations should not be interrupted (e.g. when reading
or writing related values).

If a section of the user program should not be interrupted by interrupt-driven
processing, you can use the following program procedures:

¢ Program this section so that it does not contain a block change and retain the
default in DX O (process interrupts at block limits). Program sections that do
not contain block changes cannot be interrupted.

* Program the disable process interrupts (IA) operation. Enable interrupt
processing with the enable interrupts (RA) operation. No process interrupt
driven program execution can take place between these two operations.

IA and RA are only allowed in function blocks (supplementary operation set).

* You can use the special functions OB 120 and OB 122 to disable or delay the
processing of process interrupts for a particular program section.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.5 Nested Interrupt-Driven and Time-Driven Program Execution

Priorities for
interrupt and
time-driven

program
execution

If a process interrupt occurs during time controlled program execution, the
program is interrupted at the next interrupt point (block or operation boundary)
and the process interrupt is processed. Following this, the time-controlled
program is completed.

If a time interrupt occurs during interrupt-driven program execution, the
interrupt-driven program execution is completed first before the time-driven
program execution is started.

If a process interrupt and a time interrupt occur simultaneously the process
interrupt is processed first at the next interrupt point. After this is completed, the
pending time interrupt is then processed.

Fig. 4-9 is a schematic representation of how program execution is interrupted at
block boundaries by time-controlled and program-controlled interrupt
processing.

OB 1 PB
- e |Interrupt point at which
interrupt or time-driven
program execution can
— normally be inserted
——] into cyclic, interrupt or
— e . time d|:|ven program
— . execution. Time-driven
- cyclic program execution can
only be interrupted by
a process interrupt and
4'7_, /./ . not vice-versa.
- |
I — .
OB 9/OB 13 B
=
R e = ma—
- | L time-driven
—F— [.
PO R
OB2
e—

interrupt-driven

Fig. 4-9

Interrupt-driven program execution at block boundaries

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Response time

The response time to a time interrupt request corresponds to the processing time
of a block or a STEP 5 operation (depending on the selected preset). If, however,
process interrupts are still in the queue when cyclic program execution is
interrupted, the time-driven program is only processed after all pending process
interrupts have been completely processed.

The maximum response time between the occurrence and processing of a time
interrupt is then increased by the processing time of the process interrupts. If you
want to exclude as far as possible the chance of a collision for a particular time
interrupt OB xy, remember the following rules:

A+B+C<D where A the sum of the processing times of all higher
priority program processing levels (process,

controller, time interrupt OBs)
B = processing time of the time interrupt OB xy

C = runtime of the longest block of all lower
priority processing levels

D = time base of the time interrupt OB xy

Note

If you run your program not only cyclically but also time and
interrupt-driven, you run the risk of overwriting flags.

This can occur if you use flags as intermediate flags both in the cyclic and
in the inserted time-driven or interrupt-driven programs and the cyclic
program is interrupted by a time or interrupt-driven program.

For this reason, save the signal states of the flags in a data block at the
beginning of time or interrupt-driven program execution and rewrite them
into the (doubly assigned) flags at the end of the interrupt.

Four special organization blocks are available for this purpose: OB 190 and
OB 192 "transfer flags to data block" and OB 191 and 193 "transfer data
fields to flag area" (refer to the relevant section).

To avoid double assignment of flags, you can also use the S-flags for most
applications. Special "saving procedures" for flags are then no longer

necessary (there are enough S flags available).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Contents of the This chapter explains how to avoid errors when planning and programming your
chapter STEP 5 programs. You will see what help you can get from the system program

and which blocks you can use to program reactions to errors.

Overview of the
chapter
Section Description Page
5.1 Frequent Errors in the User Program 52
52 Error Information 5-3
53 Control Bits and Interrupt Stack 57
531 Control Bits 5-8
532 ISTACK Content 5-13
533 Example of Error Diagnosis using the ISTACK 5-19
54 Error Handling using Organization Blocks 5-22
5.5 Errors during RESTART 5-25
5.5.1 DBO-FE (DB 0 Errors) 5-26
552 DBI-FE (DB 1 Errors) 5-26
553 DB2-FE (DB 2 Errors) 5-28
554 DXO0-FE (DX 0 or DX 2 Errors) 5-29
555 MOD-FE (Memory Card Errors) 5-31
5.6 Errors in RUN and in RESTART 5-32
5.6.1 BCF (Operation Code Errors) 5-34
562 LZF (Runtime Errors) 5-37
563 ADF (Addressing Error) 5-45
5.6.4 QVZ (Timeout Error) 5-46
5.6.5 ZYK (Cycle Time Exceeded Error) 5-48
5.6.6 WECK-FE (Collision of Time Interrupts) 5-49
5.6.7 REG-FE (Controller Error) 5-50
5.6.8 ABBR (Abort) 5-52
5.6.9 Communication Errors (FE-3) 5-53

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

5-1

Interrupt and Error Handling

5.1 Frequent Errors in the User Program

Introduction

Overview

The system program can detect faulty operation of the CPU, errors in the system
program processing or the effect of user errors in the program.

This section contains a list of errors most likely to occur when you first run your
user program.

You can avoid these errors easily by remembering the following points when you
write your STEP 5 program:

When specifying byte addresses for I/Os, make sure that the corresponding
modules are plugged into the central controller or the expansion unit.

Make sure that you have provided correct parameters for all operands.

Make sure that outputs, flags, timers and counters are not processed at
different points in the program with operations that counteract each other.

Make sure that all data blocks called in the program exist and are long
enough.

Check that all blocks called are actually in the memory.

Be careful when changing existing function blocks. Check that the FBs/FXs
are assigned the correct operands and that the actual operands are specified.

Make sure that timers are scanned only once per cycle (e.g. A T1).
Make sure that scratchpad flags (intermediate flags) are saved by interrupt

and time-driven programs and are loaded again on completion of the inserted
program when they are required by other blocks (e.g. standard FBs).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

5.2 Error Information

Overview

LEDs on the
front panel
of the CPU

OUTPUT ISTACK
programmer
online function

If an error occurs during system start-up or during cyclic execution of your
program, there are various sources of information to help you find the problem,
as follows:

LEDs on the front panel of the CPU

L]

ISTACK interrupt stack and control bits
e system data RS 3, RS 4 and RS 80

e error identifiers in ACCU 1 and ACCU 2

BSTACK block stack

The following sections describe how to evaluate the information provided by
these sources and how to use the error information to analyze a problem.

If the CPU goes over to the STOP mode when you do not want it to, check the
LEDs on the front panel. They can indicate the cause of the problem.

LED display Meaning
STOP LED lit continuously The various states of
the STOP LED indicate
STOP LED flashes slowly specific causes of
. interruptions and errors
STOP LED flashes quickly (see section 4.1).
ADF LED lit continuously Addressing error
QVZ LED lit continuously Timeout error
ZYK LED lit continuously Cycle time exceeded error

You can get information about the status of the control bits and the contents of
the interrupt stack (= ISTACK) using the ISTACK programmer online function.

When the CPU goes over to the STOP mode, the system program enters the
following information in the ISTACK. This information is required for a warm
restart:

* register contents

e accumulator contents

e STEP 5 address counter SAC
and

e condition codes

These entries can be very helpful for error diagnosis.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

System data
RS 3and RS 4

Analyzing
system data
words RS 3 and
RS 4 on the
programmer

System data
RS 80

Before the actual ISTACK is output on the programmer, the status of the control
bits is displayed. The control bits mark the current operating status and certain
characteristics of the CPU and the user program and provide additional
information on the cause of an error.

You can use the "Output ISTACK" function in the STOP, RESTART and RUN
modes; however, in RESTART and RUN you only get information via the
control bits and not via the contents of the ISTACK.

The meaning of the control bits and the structure of the interrupt stack are
described in more detail in Section 5.3.

If your CPU returns to the stop mode owing to an error during the RESTART,
the cause of the error is defined in greater detail in the system data words RS 3
and RS 4 (see Section 5.5). These involve errors detected by the system program
when it sets up the address list in DB 0 or evaluates DB 1, DB 2, DX 0 or DX 2.

The two data words are stored at the following absolute memory addresses:
system data word RS 3: KH = EA03

system data word RS 4: KH = EA04

The error identifier in system data word RS 3 tells you what type of error has
occurred.

System data word RS 4 tells you where the error has occurred.

The error identifiers are in the KH data format.

Using the online function INFO ADDRESS (KH = EA03 or EA04) you can read
out the contents of the two system data words directly and discover the cause of
the error.

If the system program detects a serious system error, it sets the control bit INF in
the interrupt stack (see Section 5.3) and enters an additional error identifier in the
data format KH in system data word RS 80.

The system data word RS 80 has the absolute memory address
KH = EA 50. You can read it out in the same way as the system data RS 3 and
RS 4.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Error identifiers
in ACCU 1 and
ACCU 2

Analysis of
ACCU 1 and
ACCU 2 on the
programmer

Analysis of
ACCU 1 and
ACCU 2 with
STEP 5

OuUTPUT
BSTACK online
function

If errors occur in the STEP 5 program execution in RESTART or in the
CYCLE for which there is a particular organization block as user interface, the
system program automatically enters additional error information in the
accumulators ACCU 1 and ACCU 2 when the organization block is called.
These entries also define the cause of the error more exactly (see Section 5.6).

The error identifier in ACCU 1 tells you what type of error has occurred.
The error identifier in ACCU 2 (if entered) tells you where the error occurred.

The error identifiers are in the KH data format.

Using the online function OUTPUT ISTACK, you can read the contents of the
two accumulators directly out of the ISTACK to find out the exact cause of the
error.

Since the error identifiers are written to ACCU 1 and ACCU 2 automatically
when an error organization block is called, you can take these identifiers into
account when you program your error OB.

This allows you to program specific reactions to various errors in your
organization block depending on the error identifier transferrred to it.

The PG online function OUTPUT BSTACK gives you information in STOP
about the contents of the block stack (BSTACK - see Section 3.2 "Nesting
blocks").

Starting from OB 1 or FB 0, the BSTACK contains a list of all blocks called in
sequence and not completely processed when the CPU went into the STOP
mode. Since the BSTACK is filled from the bottom, the block on the uppermost
level of the BSTACK display contains the block that was last processed and in
which the error occurred.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

BSTACK
information

Example:

The top line contains the following information:

Information Meaning

BLOCK NO Type and number of the block that called the faulty block

BLOCK ADDR Absolute start address of the calling block in the program
memory

RETURN ADDR Absolute address of the first STEP 5 operation of this block in
the user memory.

REL ADDR Relative address (= difference "RETURN
ADDR - BLOCK ADDR") of the next operation to be
processed in the calling block.
(You can display relative addresses on a programmer in the
mode "disable input"/key switch and with S5-DOS from
Stage IV upwards using the function key "addresses").

DB NO Number of the last data block opened in the calling block

DB ADDR Absolute start address in the program memory of the last data
block opened in the calling block (address of data word DW 0)

Evaluating the BSTACK function:

BLOCKNO | BLOCK ADDR RETURN ADDR REL ADDR DB NO DB ADDR
OB 23 0063 0064 0001 13 0078
FBS 006A 0072 0008 13 078
FB 6 008A 0091 0007 100 098

OB1 009D 009E 0001

In the example above, the stoppage occurred in OB 23 when processing the
STEP 5 statement at the absolute memory address "0064 - 1 = 0063".

OB 23 (QVZ error OB) was called in FB 5 at the relative address
"0008 - 1 = 0007".

The data block DB 100 was opened in FB 6. When the CPU went into the stop
mode, data block DB 13 was valid.

Data block DB 13 was opened in FB 5.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

5.3 Control Bits and Interrupt Stack

Introduction Using the PLC INFO and OUTPUT ISTACK online programmer functions, you
can analyze the operating status, the characteristics of the CPU and the user
program and any possible causes of errors and interruptions.

Note
You can display the control bits in any mode. You can display the
ISTACK only in the STOP mode.

Overview Diagnosis data are displayed by control bits and the ISTACK.
¢ Control bits:

The control bits indicate the current and previous operating status and the
cause of the problem.
If several errors occurred, the control bits indicate all of them.

¢ ISTACK:

The ISTACK indicates the location of the interruption (addresses) with the
current condition codes, the accumulator contents and the cause of the
problem.

If several errors occurred, a multiple level interrupt stack is constructed as
follows:

depth 01 = last cause of problem,
depth 02 = next to last cause of problem etc.

If an ISTACK overflow occurs (more than 13 entries) the CPU goes into the
STOP mode immediately. If this happens, you must perform a POWER
OFF/POWER ON and a cold restart.

The meanings of the individual abbreviations in the control bits and in the
ISTACK are described below.

Note

The text on the screen of your programmer depends on the PG software
used. It may differ from the screen represented here. Nevertheless, the
description of the individual positions on the screen in these programming
instructions is valid.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-7

Interrupt and Error Handling

5.3.1 Control Bits

Display When you display the ISTACK on the PG the statuses of the control bits are
shown on the first screen page (see Fig. 5-1).

CONTROL BITS

>>STP<< STP-6 FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP
>>ANL<< ANL-6 NEUSTA MWA AWA ANL-2 NEUZU MWA-ZUL
X X X
>>RUN<< RUN-6 EINPROZ BARB OB1GEL FBOGEL OBPROZA OBWECKA
X X X
32KWRAM 16KWRAM 8KWRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS
X X X
URGELOE URL-IA STP-VER ANL-ABB UA-PG UA-SYS UA-PRFE UA-SCH
DX0-FE FE-22 MOF-FE RAM-FE DBO-FE DB1-FE DB2-FE KOR-FE
NAU PEU BAU STUE-FE ZY K Qvz ADF WECK-FE
BCF FE-6 FE-5 FE-4 FE-3 LZF REG-FE DOPP-FE

_ /

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK": control bits

The control bits (>>STP<<, >>ANL<< and >>RUN<<) and the control bits in
the first lines of the first screen page mark the current or previous status of the
CPU and provide information about certain features of the CPU and your
STEP 5 program.

You can display the control bits in all modes. You can, for example, make sure
that organization block OB 2 is loaded and that interrupt control program
execution is possible at any time.

CPU 928B-3UB21 Programming Guide
5-8 C79000-G8576-C870-01

Interrupt and Error Handling

Meaning

The following tables explain the meaning of the individual control bits.

Table 5-1 Meaning of the control bits in the >>STP<< line
>>STP<< line (CONTROL BITS)
Control bit Meaning
»STP« CPU is in the STOP mode
STP-6 Not used
FE-STP | Error stop: stop mode caused by NAU (power failure), PEU (peripherals
not ready), BAU (battery not ready), STUEB (BSTACK overflow),
STUEU (ISTACK overflow), DOPP (double call error) or CPU fault
BARBEND | Program test end: stop mode after PROGRAM TEST END online
function (COLD RESTART required)
Is not set if the END PROGRAM TEST function was executed with the
CPU in the STOP mode.
PG-STP | PG-STOP: stop mode due to command from PG
STP-SCH | STOP switch: stop mode due to mode selector in position STOP
STP-BEF | Stop operation:
- stop mode caused by STEP 5 operation "STP"
- stop mode after stop command from system program, if error
- organization block is not programmed
MP-STP | Multiprocessor STOP:
- reset switch on the coordinator in STOP position or
- different CPU in the STOP mode in multiprocessing
Table 5-2 Meaning of the control bits in the >>ANL<< line
>>ANL<< line (CONTROL BITS)
Control bit Meaning
»ANL« CPU is in the RESTART mode
ANL-6
+ RETENTIVE MANUAL COLD RESTART
MWA
ANL-6
+ RETENTIVE AUTOMATIC COLD RESTART
AWA
NEUSTA | MANUAL COLD RESTART requested (STOP) or was last RESTART
type (RESTART/RUN)
MWA | MANUAL WARM RESTART requested (STOP) or was last RESTART
type (RESTART/RUN)
AWA | AUTOMATIC WARM RESTART after power failure is requested
(STOP) or was last RESTART type (RESTART/RUN)
MWA AUTOMATIC COLD RESTART was requested (STOP) or was last
+ RESTART type (RESTART/RUN)
AWA

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

>>ANL<< line (CONTROL BITS)

Control bit

Meaning

Table 5-2 continued:

ANL-2 | Double function:
- is set after PROGRAM TEST END (in contrast to
BARBEND in the first line, it is also set when
PROGRAM TEST END is called in the STOP
mode; prevents WARM RESTART)
- is set after "compressing in the STOP mode";
prevents WARM RESTART
NEUZU | COLD RESTART permitted (STOP) or COLD RESTART was
permitted when the last RESTART took place (RESTART/RUN)
MWA-ZUL | MANUAL WARM RESTART permitted (STOP) or COLD RESTART
was permitted when the last RESTART took place (RESTART/RUN)
Table 5-3 Meaning of the control bits in the >>RUN<< line
>>RUN<<« line (CONTROL BITS)
Control bit Meaning
»RUN« | CPU is in the RUN mode (cyclic processing is active)
RUN-6 Not used
EINPROZ | Single processor mode
BARB PROGRAM TEST online function is active
OB1GEL | Organization block OB 1 is loaded in the user memory. Cyclic program
execution is determined by OB 1
FBOGEL | Function block FB 0 is loaded in the user memory. Cyclic program
execution is determined by FB 0 if no OB 1 is loaded. If FB 0 and OB 1
are both loaded, OB 1 determines the cyclic program execution
OBPROZA | Process interrupt organization block OB 2 is loaded, i.e. process
interrupt-driven program execution is possible
OBWECK | Time interrupt organization block loaded, i.e. time-driven program
execution is possible

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Table 5-4 Meaning of the control bits in lines 4 and 5

Lines 4 and 5 (CONTROL BITS)

Control bit Meaning

32KWRAM | Submodule is a RAM (with 32 x 2'° words)

16KWRAM | Irrelevant for the CPU 928B-3UB21

8KWRAM | Irrelevant for the CPU 928 B-3UB21

EPROM | Submodule is an EPROM (with 32 x 2'° words)

KM-AUS | Address list for IPC flag outputs from DB 1 exists

KM-EIN | Address list for IPC flag inputs from DB 1 exists

DIG-EIN | Address list for digital inputs exists

DIG-AUS | Address list for digital outputs exists

URGELOE | Overall reset performed on CPU (COLD RESTART required)

URL-IA | Overall reset being performed on CPU

STP-VER | CPU caused CP stop

ANL-ABB | RESTART aborted (COLD RESTART required)

UA-PG | PG has requested OVERALL RESET

UA-SYS | System program has requested OVERALL RESET (no RESTART
possible); OVERALL RESET must be performed

UA-PRFE | OVERALL RESET requested owing to CPU error

UA-SCH | OVERALL RESET requested at hardware switch:
perform an OVERALL RESET or select a restart type if you do not want
to perform the requested OVERALL RESET

The control bits in the following table indicate errors that can occur in the
RESTART (e.g. during an initial COLD RESTART) and RUN (e.g. during
time-driven program execution) modes.

If several errors occur, all causes of interruptions that have occurred up to now
(and have not yet been processed) are displayed in the last three lines of the
control bits. See also system data word RS 2, this contains the ICMK (interrupt
condition code group word, 16 bits), in which all errors not yet processed are
also entered (Section 8.3.5).

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-11

Interrupt and Error Handling

Table 5-5 Meaning of the control bits in lines 6 to 8
Lines 6 to 8 (CONTROL BITS)
Control bit Meaning
DXO0-FE | Parameter assignment error in DX 0 or DX 2
FE-22 Not used
MOD-FE | Error in contents of memory card (OVERALL RESET required)
RAM-FE | Error in contents of user memory or of DB-RAM (OVERALL RESET
required)
DBO-FE | Structure of block address lists in DB 0 incorrect
DBI1-FE | Structure of the address lists in DB 1 for process image updating is
incorrect:
- DB 1 not programmed and coordinator plugged in or multiprocessor
operation required
- structure or contents of DB 1 incorrect
DB2-FE | Error evaluating the parameter assignment data block DB 2 of controller
structure R64
KOR-FE | Error in data exchange with the coordinator
NAU Power failure in the central controller
PEU Peripherals not ready = power failure in expansion unit
BAU Battery not ready = back-up battery failure in central controller
STUE-FE | Interrupt or block stack overflow (nesting depth too great; COLD
RESTART required)
ZYK Cycle monitoring time exceeded
Qvz Timeout during data exchange with I/Os
ADF Addressing error with inputs or outputs:
error caused by accessing the process image, in which I/O modules
were addressed that were not plugged in, defect or not specified in
DB 1 at the last COLD RESTART
WECK-FE | Collision of time interrupts:
an attempt was made to call a particular time interrupt OB a second
time while or before first call was processed
BCF Operation code error:
- substitution error: processed STEP 5 operation cannot be substituted
- operation code error: processed STEP 5 operation is incorrect
- parameter error: parameter of the processed STEP 5 operation is
incorrect
FE-6 Not used
FE-5 Indicates a serious system error, additional information in RS 80
FE-4 Power down error:
processing of a previous power failure (NAU) by the system program
did not run correctly; WARM RESTART is therefore not possible
FE-3 Interface error (SSF)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Lines 6 to 8 (CONTROL BITS)
Control bit Meaning
Table 5-5 continued:
LZF Runtime error:
- called block not loaded
- load/transfer error with data blocks
- other runtime errors
REG-FE | Error processing the controller structure R64 in the CYCLE
DOPP-FE | Double call error:
a still active error program processing level (ADF, BCF, LZF, QVZ,
REG, ZYK)) is activated a second time (COLD RESTART required)
5.3.2 ISTACK Content
Introduction If the CPU is in the stop state, you can display the content of the ISTACK on the

screen after the control bit display by pressing the enter key. When the CPU goes
into the STOP mode, the system program enters all the information it needs in
this ISTACK for a warm restart.

You can use the entries in this ISTACK to see what kind of error occurred and
where it occurred in the program.

If the stop state was caused by a single error, only one level of the ISTACK
information is displayed. With several errors, the corresponding number of
ISTACK levels are output (DEPTH 01, DEPTH 02, etc.). At all levels, only one
error is marked as the CAUSE OF INTERRUPT.

If several errors have occurred DEPTH 01 marks the error detected immediately
before the change to the stop state.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Display Fig 5-2 is an example of a PG display of the ISTACK content.

INTERRUPT STACK

DEPTH 02
OP-REG: C7T0A SAC: 00F3 DB-ADD: 0000 BA-ADD: 0000
BLK-STP: 0002 FB-NO.: 226 DB-NO. OB-NO.:
REL-SAC: 0006 DBL-REG.: 0000
LEVEL: 0004 ICMK: 0200 ICRW: 0000
ACCU1: 0000 C464 ACCU2: 0000 OOFF ACCU3: 0000 0000 ACCU4: 0000 0000
KLAMMERN: KE1 111 KE2 100 KE3 111
CONDITION CODE: cCt cco OVFL OVFLS ODER ERAB
X
STATUS VKE
X X
CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK Qvz
ADF STP BCF S-6 LZF REG-FE
X

\\ STUEB STUEU WECK DOPP /

Fig. 5-2 Example of the first screen page "OUTPUT ISTACK": contents

Explanation of DEPTH:
the ISTACK
screen Information level of the ISTACK when more than one error has occurred:

DEPTH 01 = last cause of stop to occur
DEPTH 02 = next to last cause of stop to occur

DEPTH13 = (maximum depth)
Information about the error

The following table contains information about the ISTACK IDs with which the
statement in the user program can be found which caused the CPU to change to
the STOP mode.

CPU 928B-3UB21 Programming Guide
5-14 C79000-G8576-C870-01

Interrupt and Error Handling

Table 5-6

Meaning of the ISTACK IDs concerning the point of error

Information about the error

ISTACK ID

Meaning

OP-REG

Operation register:

machine codes).

contains machine code (first word) of the instruction processed last in
an interrupted program processing level (see list of operations, list of

BLK-STP

Block stack pointer:

when the interruption of this processing level occurred

contains the number of elements entered in the block stack at the time

LEVEL Z

Specifies the level of program processing that was interrupted
Z:0002: COLD RESTART

0004: CYCLE

0006: TIME INTERRUPT/ 5 sec (OB 18)

0008: TIME INTERRUPT /2 sec (OB 17)

000A: TIME INTERRUPT/ 1 sec (OB 16)

000C: TIME INTERRUPT/500ms (OB 15)
000E: TIME INTERRUPT/200ms (OB 14)
0010: TIME INTERRUPT/100ms (OB 13)

0012: TIME INTERRUPT /50 ms (OB 12)
0014: TIME INTERRUPT /20 ms (OB 11)
0016: TIME INTERRUPT /10 ms (OB 10)

0018: TIMED JOB

001A: not used

001C: CL CONTROLLER INTERRUPT

001E: not used

0020: DELAY INTERRUPT

0022: not used

0024: PROCESS INTERRUPT

0026: not used

0028: RETENTIVE MANUAL COLD RESTART

002A: RETENTIVE AUTOMATIC COLD RESTART

002C: transition to stop mode after stop in multiprocessing,
stop switch or PG STOP

002E: interface error

0030: collision of time interrupts

0032: CL controller error

0034: cycle error

0036: not used

0038: operation code error

003A: runtime error

003C: addressing error

003E: timeout

0040: not used

0042: notused

0044: MANUAL WARM RESTART

0046: AUTOMATIC WARM RESTART

SAC

STEP address counter:

- if an error occurs, SAC indicates the operation that caused it.

set to "O"

- contains the absolute address of the last operation of an interrupted
program processing level to be processed in the program memory

- before the first operation of a processing level is executed, SAC is

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Information about the error

ISTACK ID

Meaning

Table 5-6 cont

inued:

..NO.

Block type and number of the last block processed

REL-SAC

Relative STEP address counter:
contains the relative address (related to the block start address) of
the last operation to be executed in the last block processed (you can
display relative addresses on a programmer using the PG mode
"input disable"/key-switch or with S5-DOS from stage IV using a
function key or you can output the block on a printer)

ICMK

Interrupt condition code group word:
ICMK indicates all the causes of interruptions that have occurred up
to now and have not yet been completely processed (see "System Data
Memory Assignment", Section 8.3.5)

ICRW

Interrupt condition code reset word (see "System Data Memory
Assignment", Section 8.3.5)

DB-ADD

Absolute start address (DW 0) of the data block opened last in the program
memory (DB-ADD = 0000, if no DB was opened)

DB-NO.

Number of the data block opened last

DBL-REG

Length of the data block opened last

BA-ADD

Absolute address in the program memory of the operation to be
processed next in the block last called

Block type and number of the block last called

ACCU 1...4

Contents of the calculation registers at the time of interruption:
in the event of certain errors, the system program writes error
identifiers into ACCUs 1 and 2 when the interruption occurs.
These identifiers define the cause of the interruption more exactly.

BRACKETS

Number of bracketed levels:
"Imx abc"
x =1to 7 levels
a = OR (OR see condition code bits)
b =RLO (result of logic operation, see condition code bits)
c=1: A(
c=0:0(

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Conditi i

see Section 3.5

Cause of interrupt

The following abbreviations (ISTACK IDs) represent the most important causes
of interruptions.

The only causes of interruptions that are marked are those that have occurred in
the currently displayed program processing level (see LEVEL).

The causes of interruptions represent the contents of the interrupt condition code
group word (ICMK, 16 bits, see Section 8.3.5). Some of the entries here are
identical to those in the control bits.

Table 5-7 ISTACK IDs cause of interrupt

Cause of interrupt

ISTACK ID Meaning (called error OB)
NAU Power supply failure in central controller
PEU Peripherals not ready = power failure in expansion unit

BAU Battery not ready = back-up battery failure (central controller)

MPSTP | Multiprocessor STOP:
- reset switch on the coordinator in STOP position or
- STOP at a different CPU in multiprocessor operation

ZYK Cycle monitoring time exceeded

Qvz Timeout during data exchange with I/O peripherals

ADF Addressing error for inputs and outputs with process I/O image

STP - stop mode caused by setting the stop switch to STOP

- stop mode caused by command from PG

- stop mode after processing the STEP 5 operation "STP"

- stop mode after stop command from system program,
if error organization block is not programmed

BCF Operation code error: error detected during the operation decoding

- substitution error: processed STEP 5 operation cannot be substituted
- operation code error: processed STEP 5 operation is incorrect

- parameter error: parameter of the processed STEP 5 operation is not

permitted
S-6 Interface error
LZF Runtime error: error detected during the execution of an operation:
- called block not loaded

- load/transfer error with data blocks
- other runtime errors

REG-FE | Error processing the controller structure R64 in the CYCLE

STUEB | Block stack overflow:
nesting depth too great; required measure: COLD RESTART)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-17

Interrupt and Error Handling

Cause of interrupt

ISTACK ID

Meaning (called error OB)

Table 5-7 cont

inued:

STUEU | Interrupt stack overflow:
nesting depth too great; required measure: COLD RESTART)
WECK Collision of time interrupts:
before or during the processing of a time interrupt OB, an attempt
was made to call the same OB a second time
DOPP Double call error

a still active error program processing level (ADF, BCF, LZF, QVZ,
REG, ZYK)) is activated a second time (COLD RESTART required)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

5.3.3 Example of Error Diagnosis using the ISTACK

Example 1:

Fig. 5-3 illustrates the structure of the ISTACK in conjunction with the
interruptions that have occurred.

- The CYCLE program processing level (OB 1) is aborted owing to the
occurrence of an interrupt.

- Following this, the program processing level TIME INTERRUPT is activated
and OB 13 is processed.

- The TIME INTERRUPT level is exited owing to the occurrence of a process
interrupt, the PROCESS INTERRUPT level is activated and OB 2 is processed.

- An incorrect addressing operation activates level ADF where OB 25 is
processed. In the error handling program, the user has programmed a stop
operation (STP); the CPU aborts program execution.

STP
l Depth 01
Level: 003C
ADF oB25 57
/ / 7 I—’ STP
|

|
|
| | | Depth 02
PROCESS | Level: 0024
0oB2
INTERRUPT |
| | ADF
X
| |
|
| | | |
| | | Depth 03
| Level: 0010
TIME OB13 |
INTERRUPT | |4.
)
| 1
|
| | L
| | | | Depth 04
| Level: 0004
CYCLE | OB
[
Program processing levels ISTACK

Fig. 5-3 Example 1 of evaluating the ISTACK

Before the CPU finally goes into the stop mode, a total of four different
program processing levels have been interrupted. If you display the ISTACK,
you obtain a four level ISTACK, first the ISTACK with depth 01, in which
the identifier of the program processing level last interrupted (=ADF) is
marked. You can now "page down" through the ISTACK until you reach the
ISTACK with depth 04, that represents the CYCLE program processing level,
that was interrupted first.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-19

Interrupt and Error Handling

xample 2:

n this example the CPU detects an addressing error when executing the
A I x.y" operation in OB 1. This leads to the processing of OB 25. As a
esult of an STP operation in PB 5, the CPU goes into the STOP mode (see
ig. 5-4).

. 5-4 Example 2 of evaluating the ISTACK

Continued on next page

CPU 928B-3UB21 Programming Guide
5-20 C79000-G8576-C870-01

Interrupt and Error Handling

Continuation of Example 2:

Two interrupted program execution levels lead to the creation of a
two-level ISTACK (see Figs 5-5 and 5-6):

INTERRUPT STACK

DEPTH 01
OP-REG: STP SAC: 1007 DB-ADD: BA-ADD: 0106
BLK-STP: 0003 PB-NO.: 5 DB-NO.: 16 OB-NO.: 25
REL-SAC: 0007 DBL-REG.:

LEVEL: 003C ICMK: 0300 ICRW: 0000
ACCU1:
CONDITION CODE....
CAUSE OF INTERR.:

STP

X

N /

Fig.5-5 Example 2 of evaluating the ISTACK: 1st ISTACK level

INTERRUPT STACK

DEPTH 02
|OP-REG: Alxy | sAC 001A DB-ADD: BA-ADD: 0000
BLK-STP: 0001 OB-NO.: 1 DB-NO.: 16
REL-SAC: 000A DBL-REG.:
LEVEL: 0004 ICMK: 0200 ICRW: 0000
ACCU1:
CONDITION CODE:...
CAUSE OF INTERR.:
ADF
X

N /

Fig. 5-6 Example 2 of evaluating the ISTACK: 2nd ISTACK level

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-21

Interrupt and Error Handling

5.4 Error Handling using Organization Blocks

Introduction

Errors and the
OBs called

When the system program detects an error, it calls the appropriate organization
block to handle it. You can determine how the CPU reacts by programming the
relevant organization block. Depending on how you program the organization
block, you can achieve the following reactions:

e pormal program processing is continued
e the CPU goes to the STOP mode
and/or

¢ aspecial error handling program is run through.

Organization blocks exist for the following causes of errors:

Table 5-8 The organization blocks called in case of errors

Cause of error Organization | Reaction of
block called | CPUY

Call of a block that is not loaded (LZF) OB 19 STOP
Timeout in the user program during access to I/O OB 23 none
modules (QVZ)

Timeout during update of the process image OB 24 none
Addressing error (ADF) OB 25 STOP
Cycle time exceeded (ZYK) OB 26 STOP
Substitution error (SUF) OB 27 STOP
Mode selector set to STOP, PG function PC STOP, OB 28 STOP
STOP from S5 bus (multiprocessor operation)

Operation code error (BCF) OB 29 STOP
Parameter error (BCF) OB 30 STOP
Other runtime errors (LZF) OB 31 STOP
Load/transfer error with data blocks (TRAF) OB 32 STOP
Collision of time interrupts (WECK-FE) OB 33 STOP
Error processing the controller structure R64 (REG-FE) OB 34 STOP
Communication error on the 2nd serial interface (FE-3) OB 35 none

D if OB is not programmed, with DX 0 defaults

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Response of If the organization block is not loaded the response depends on the particular
organization error:
block not loaded

¢ No interruption of cyclic program execution

If a timeout occurs and OB 23, OB 24 or OB 35 is not loaded, cyclic program
execution is not interrupted. The CPU does not react.

If you want the CPU to go into the STOP mode when a timeout occurs, the
organization block must contain a stop statement and be completed with the
block end statement BE or DX 0 must have suitable parameters assigned.

Program for STOP:

:STP
:BE

e STOP mode

When any other error occurs, the CPU goes into the STOP mode immediately
if you did not program the appropriate organization blocks.

If, in exceptional circumstances, (e.g. during system installation) you do not
want one of these errors to interrupt cyclic program execution, a block end
statement in the appropriate organization block is sufficient or assign suitable
parameters to DX 0.

Program for uninterrupted operation:

:BE

Note
Organization block OB 28 is an exception: here, the CPU always goes
to the STOP mode regardless of whether you have loaded OB 28 or not.

If you do not want to program the corresponding organization block, you can
prevent the transition to the STOP mode by assigning appropriate parameters
to data block DX 0.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-23

Interrupt and Error Handling

¢ Interruptions during processing of error organization blocks

After the system program calls the appropriate organization block, the user
program in that block is processed.

If another error occurs while the first organization block is being processed,
the program is interrupted at the next operation boundary and the appropriate
second organization block is called, just as in cyclic program execution.

The organization blocks are processed in the order in which they are called.
The nesting depth for error organization blocks depends on the following:

— The type of error

No organization blocks belonging to the same program processing level
can be nested within each other. (See Chapter 6 for the assignment of
error OBs to the program processing level).

When processing OB 27 (program processing level BCF) it is, for
example, possible to nest OB 32 (program processing level LZF),
however, OB 29 or OB 30 (also BCF) cannot be nested in OB 27.

If two blocks from the same program processing level are called, the CPU
changes immediately to the STOP mode.

— The number of program processing levels currently active at any one
time

For each activated program processing level, the system program requires

extra memory space to set up the ISTACK when an interrupt occurs. If
there is not enough memory left, an ISTACK overflow results.

If there is an ISTACK overflow, the CPU changes immediately to the
STOP mode.

— The number of blocks called at any one time

If there is a BSTACK overflow, the CPU changes immediately to the
STOP mode.

CPU 928B-3UB21 Programming Guide
5-24 C79000-G8576-C870-01

Interrupt and Error Handling

5.5 Errors during RESTART

Introduction During initialization and during a restart, causes of interruptions and errors can
lead to the restart program being aborted and put the CPU into the STOP mode.
Interruptions occurring during the restart program (organization blocks OB 20,
21 and 22) are handled just as in the CYCLE.

Exception:

if a STOP occurs during the restart, no organization block OB 28 is called.

Causes of There is no way of responding via a user interface (error OB) to the causes of
interrupt and interrupt and causes of error listed in the table below.

causes of error

Table 5-9 Causes of error and causes of interrupt in RESTART

Control bit or ID
in ISTACK

Explanation

STP

Stop command from system program (at FE-STP) or in the user
program

BAU

Failure of the back-up battery on the central controller

NAU

Failure of the power supply in the central controller

PEU

Failure of the power supply in an expansion unit

STUEU

Stack overflow in interrupt stack (ISTACK)

STEUB

Stack overflow in the block stack (BSTACK)

DOPP-FE

Double call of an error program processing level

RAM-FE

Error during initialization: the contents of the operation system
RAM or the DB RAM are incorrect

MOD-FE

Error during initialization: the contents of the memory card are not
correct

DBO-FE V)

Error setting up the block address list (DB 0)

DB1-FE "

Error evaluating DB 1 to set up the address list for updating the
process image

DB2-FE "

Error evaluating DB 2 of the controller structure R64

DXO-FE D

Error evaluating data block DX 0
or
Error evaluating data block DX 2

)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

for further explanations: see the following pages

Interrupt and Error Handling

5.5.1 DBO-FE (DB 0 Errors)

Introduction Errors when setting up the block address list (data block DB 0).

DB 0 is set up by the system program following OVERALL RESET. If a DB 0
error occurs, you will find error identifiers in the system data words RS 3 and
RS 4 that define the error in greater detail.

Error identifiers The identifiers for DB O errors are listed in the table below.
Table 5-10 IDs for DB O errors
Error identifier Explanation
RS3 RS 4
8001H yyyyH | Wrong block length
yyyy = address of the block with the wrong length
8002H yyyyH | Calculated end address of the block in the memory is wrong
yyyy = block address
8003H yyyyH | Invalid block identifier
yyyy = address of the block with the incorrect identifier
8004H yyyyH | Organization block number too high (permitted: OB 1 to OB 39)
yyyy = address of the block with the incorrect number
8005H yyyyH | Data block number O (permitted: DB 1 to DB 255)
yyyy = address of the block with the incorrect number
5.5.2 DB1-FE (DB 1 Errors)
Introduction Error evaluating DB 1 to set up the address list for updating the process image.

¢ DB 1 does not exist in multiprocessor operation,

or

¢ incorrect DB 1 address list during COLD RESTART.

Note

In multiprocessor operation, the system checks whether DB 1 exists in all
types of restart. DB 1 parameters are, however, only evaluated during a
COLD RESTART.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Error identifiers The identifiers for DB 1 errors are listed in the table below.

Table 5-11 IDs for DB 1 errors

Error identifier Explanation
RS 3 RS 4

0410H yyyyH Illegal identifier:

- header identifier missing or incorrect (correct KC MASKO1)

- identifier illegal (permitted KH DE0O, DA0O, CE00, CAQO,
BB00)

- end identifier missing or incorrect (correct KH EEEE)

yyyy = illegal identifier

0411H yyyyH "Digital inputs", number of addresses illegal (permitted 0...128)
yyyy = illegal number of addresses

0412H yyyyH "Digital outputs", number of addresses illegal
(permitted 0...128)
yyyy = illegal number of addresses

0413H yyyyH "IPC flag inputs", number of addresses illegal
(permitted 0...256)
yyyy = illegal number of addresses

0414H yyyyH "IPC flag outputs", number of addresses illegal
(permitted 0...256)
yyyy = illegal number of addresses

0415H yyyyH Illegal number of timers (permitted: 256)
yyyy = illegal number of timers

0419H yyyyH | Timeout with digital inputs
yyyy = address of the unacknowledged input byte

041AHyyyyH Timeout with digital outputs

yyyy = address of the unacknowledged output flag byte
041BHyyyyH Timeout with IPC flag input

yyyy = address of the unacknowledged IPC flag byte
041CHyyyyH Timeout with IPC flag output

yyyy = address of the unacknowledged IPC flag byte

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-27

Interrupt and Error Handling

5.5.3 DB2-FE (DB 2 Errors)

Introduction

Error identifiers

Errors in the evaluation of the parameter assignment data block DB 2 for

controller structure R64 (controller initialization).

If a DB 2 error occurs, system data words RS 3 and RS 4 contain error identifiers

that define the error in greater detail.

The identifiers for DB 2 errors are listed in the table below.

Table 5-12 IDs for DB 2 errors

Error identifier Explanation
RS3 RS4

0421H DByyH | Data block not loaded

yyyy = number of the data block that is not loaded

0422H FByyH | Function block not loaded

yyyy = number of the function block that is not loaded

0423H FByyH | Function block not recognized

yyyy = number of the unrecognized function block

yyyy =number of the function block

0424H FByyH | Function block loaded with wrong PG software

0425H DByyH | Wrong controller data block length
yyyy = number of the data block

0426H — There is not enough memory space in the DB-RAM to shift the
controller DBs from the user EPROM to the DB-RAM

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.5.4 DXO0-FE (DX 0 or DX 2 Errors)

Note

DX 0 and DX 2 errors have a common control bit (DX0-FE) in the control

bit screen form.

Errors evaluating In the event of a DX 0 error you will find error identifiers in the system data
data block DX 0 words RS 3 and RS 4 that define the error in more detail.

Table 5-13 IDs for DX 2 errors

Error identifier Explanation

RS 3 RS 4

0431H yyyyH | Illegal identifier:
- header identifier missing or incorrect (correct KC MASKXO0)
- field identifier illegal
- end identifier missing or incorrect (correct KH EEEE)
yyyy = illegal identifier

0432H yyyyH |Illegal parameter
yyyy = illegal parameter

0433H yyyyH |Illegal number of timers (permitted: 0...256)
yyyy = incorrect number of timers

0434H yyyyH |Illegal cycle time monitoring (permitted: 1 ms to 13000 ms)
yyyy = incorrect time value

Errors evaluating Parameter assignment for the second serial interface.

data block DX 2 Data block DX 2 is set up by the system program after a COLD RESTART. In
the event of a DX 2 error, you will find error identifiers in the system data words
RS 3 and RS 4 that define the error in more detail.

Table 5-14 IDs for DX O errors
Error identifier Explanation
RS3 RS 4
0451H — DX 2 Iength (without block header) < 4 words is not permitted
0452H yyyyH | DX 2 length (without block header) is too short for link type
yyyy = length DX 2
0453H yyyyH | Link type illegal
yyyy = link type
0454H xx00H [Data identifier for stat. parameter set illegal
(not equal to 44H, 58H)
xx = data identifier
0455H xxyyH | Block for static parameter set illegal
xx = identifier / yy = DB number
0456H xxyyH | Static parameter set does not exist
xx = identifier / yy = DB number

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Error identifier

RS3

RS 4

Explanation

Table 5-14 continued:

0457H yyyyH | Static parameter set too short
yyyy = number of the non-existent DW

0458H xxO0H | Data identifier for dynamic parameter invalid (44H, 58H, 00H)
xxH = data identifier

0459H yyyyH | Block for dynamic parameter set illegal
xx = identifier / yy = DB number

045AH xxO0H | Data identifier for send/job mailbox invalid (not equal to 44H,
58H, 00H)
xx = data identifier

045BH xxyyH | Block for send/job mailbox illegal
xx = identifier / yy = DB number

045CH xxO0H | Data identifier for receive mailbox invalid (not equal to 44H, 58H,
00H)
xx = data identifier

045DH xxyyH | Block for receive mailbox illegal
xx = identifier / yy = DB number

045EH xxO0H | Data identifier for coordination bytes invalid (not equal to 44H,
58H, 4DH)
xx = data identifier

045FH xxyyH [Block for coordination bytes illegal
xx = identifier / yy = DB number

0460H xxyyH | Block for coordination bytes does not exist
xx = identifier / yy = DB number

0461H yyyyH | DW for coordination bytes does not exist

yyyyH = number of the non-existent DW

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

5.5.5 MOD-FE (Memory Card Errors)

Introduction When evaluating a memory card and copying blocks from the memory card, a
number of checks are run. If an error is found, the control bit MOD-FE is entered
in the control bits screen form and an additional error identifier entered in the

system data word RS 3.
Error identifiers If the above checks lead to an error, system data word RS 3 contains error
in system data identifiers which define the errors in greater detail (the contents of RS 4 are
word RS 3 irrelevant).

Table 5-15 IDs for memory card errors and errors when copying blocks

Error identifier Explanation
RS3 RS 4
620EH — Memory card: wrong access time class
6210H — Memory card: wrong data width
6211H — Memory card: wrong application (not STEP 5)
6212H — Memory card: wrong MLFB number
6213H — Memory card: wrong class (not Flash)
6214H — Block illegal
6215H — Block number illegal
6216H — Block type illegal
6217H — Block length illegal
6218H — Too many blocks
6219H — Too many blocks of one type
621AH — No space in user memory
621BH — Memory card content inconsistent

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-31

Interrupt and Error Handling

5.6 Errorsin RUN and in RESTART

Introduction

Errors which
lead direct to
STOP

In the RUN mode, cyclic, time-driven or interrupt-driven program execution or
controller processing can be interrupted at operation boundaries by the
occurrence of certain errors or faults, e.g. power failure in the central controller
or block stack overflow.

Interruptions during initialization and in the RESTART mode cause the restart
program to be aborted and the CPU goes into the STOP mode or calls the
organization block intended for this error. Interruptions occurring during the
start-up program are handled in the same way as in the CYCLE.

A distinction is made between problems that cause the CPU to go directly to the
STOP mode (e.g. STUEU) and problems that cause the system program to call
certain organization blocks that you can program instead of the CPU going
directly to the STOP mode (e.g. ADF).

There is no way of responding via a user interface (error OB) to the causes of

interrupt and causes of error listed in the table below.

If these errors occur, an ISTACK is created in which the interrupt is displayed.

Table 5-16 Causes of error and causes of interrupt in RESTART and RUN, which lead

direct to STOP
Control bit or ID Explanation
in ISTACK
STP STOP caused by the system program (machine error), when an
error OB is not loaded, or there is a stop operation in the user
program
BAU Failure of the back-up battery in the central controller
NAU Failure of the power supply to the central controller
PEU Failure of the power supply to one or more expansion units
STUEU Stack overflow in the interrupt stack (ISTACK), nesting depth
too great
STUEB Stack overflow in the block stack (BSTACK), nesting depth
too great
DOPP-FE Double call of an error program processing level

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Errors which When these errors occur, an error OB will be called.
cause an error
OB to be called

Table 5-17 Causes of error and causes of interrupt in RESTART and RUN, which
cause an error OB to be called

Control bit or Explanation OB no.
IDin
ISTACK
BCF Operation code error:
- substitution error OB 27
- operation code error OB 29
- parameter error OB 30
LZF Runtime error:
- call for a block that is not loaded OB 19
- transfer error with DBs OB 32
- other runtime errors OB 31
ADF Addressing error:
- when accessing the process image OB 25
QvZ Timeout:
- in the user program when accessing I/O modules OB 23
- when updating the process image OB 24
ZYK Cycle error
- the cycle monitoring time was exceeded OB 26
WECK-FE Collision of two time interrupts:
- error processing a time interrupt OB 33
REG-FE Controller error:
- error processing a controller interrupt OB 34
ABBR Abort:
- (see ’ABBR’ in this Section) OB 28
S-6 Communication error:
- during data exchange via the second serial interface OB 35

The following sections describe each of these causes of errors in more detail.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01 5-33

Interrupt and Error Handling

5.6.1 BCF (Operation Code Errors)

Introduction

Substitution error
(OB 27)

An operation code error occurs when the CPU either cannot interpret or cannot
execute a STEP 5 operation in the user program. All permissible operation codes
are listed in the list of operations.

The operation that caused the operation code error is not executed. If the relevant
BCF organization block is loaded, this is called, processed and the user program
is then continued starting with the next operation. If the BCF-OB is not loaded,
the CPU goes into the STOP mode.

The following operation code errors can occur. In each case, the error OB named
is called:

If an operation with a formal operand is to be executed in a function block, the
CPU replaces this formal operand with the actual operand contained in the
function block call.

The CPU recognizes an illegal substitution. The system program interrupts the
processing of the user program and calls organization block OB 27, if it is loaded.

ACCU 1 contains additional information that defines the error in more detail.

Table 5-18 BCF substitution error

Error identifier Explanation

ACCU-1-LACCU-2-L

1801H — Substitution error with the DO RS operation

1802H — Substitution error with the DO DW, DO FW operations

1803H — Substitution error with the DO=, DI operations

1804H — Substitution error with the L=, T= operations

1805H — Substitution error with the A=, AN=, O=, ON=, ==, S=
and RB= operations

1806H — Substitution error with the RD=, LD=, FR=, SFD=, SD=,
SSU; and SEC= operations

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Operation code
error (OB 29)

A

Parameter error
(OB 30)

An operation code error is detected by the CPU during the execution of a STEP 5
program when an operation is programmed that does not belong to the STEP 5
set of operations for the CPU 928B (e.g. RU and SU operations can be
programmed at the programmer but cannot be interpreted by the CPUs 928B,
928, 922 (R processor) and 921 (S processor) in the S5 135U).

If the CPU detects an illegal operation code, the execution of the user program is
interrupted and organization block OB 29 is called, if it is loaded

When OB 29 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-19 BCF operation code error

Error identifier Explanation
ACCU-1-LACCU-2-L

1811H — Operation with illegal OP code

1812H — Tllegal OP code for an operation in which the high byte of
the first operation word contains the value 68H

1813H — Tllegal OP code for an operation in which the high byte of
the first operation word contains the value 78H

1814H — Tllegal OP code for an operation in which the high byte of
the first operation word contains the value 70H

1815H — Tllegal OP code for an operation in which the high byte of
the first operation word contains the value 60H

Caution

An operation code error should not be acknowledged: the CPU does not
recognize whether the incorrect operation is a single word or multiword
operation. Once the CPU has processed

OB 29, it attempts to continue the program at the next operation word. If
this is the second word of a multiword operation, it either detects a further
operation code error or executes this word as a valid operation, which can
cause a variety of program errors.

An illegal parameter occurs when an operation is programmed with a parameter
that is not permitted for the particular CPU (e.g. calling a reserved data block), or
when a non-existent special function is called.

If the CPU detects an illegal parameter, the system program interrupts the
execution of the user program and calls organization block OB 30, if it is loaded.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

When OB 30 is called, ACCU 1 contains additional information that defines the

error in greater detail.

Table 5-20 BCF parameter error
Error identifier Explanation
ACCU-1-LACCU-2-L

1821H — CDBO, 1,2

182BH — JUC)OB O

182CH — JU(C) OB > 39: special function does not exist

182DH — CXDX0,CXDX1,CXDX?2

182EH — L FW/T FW/L PW/T PW/L OW/T OW/L DD/T
DD/DO FW 255

182FH — L IW/T IW/L QW/T QW 127

1830H — L FD/T FD 253, 254, 255

1831H — L ID/T ID/L QD/T QD 125,
126, 127

1832H — RLD/RRD/SSD/SLD 33-255

1833H — SLW/SRW/LIR/TIR 16-255

1834H — SED/SEE 32-255

1835H — A=/AN=/0=/ON=/S=/RB=/==,
RD=/FR=/SP=/SD=/SEC=/SSU=/
SFD=/L=/LD=/LW=/T= 0, 127-255

1836H — DO=/LWD= 0, 126-255

1837H — A S/OS/S S/=S/AN S/ON S/R S
byte number > 1023

1838H — A S/OS/S S/=S/AN S/ON S/RS
bit number > 7

1839H — L SY/T SY parameter>1023

183AH — L SW/T SW parameter > 1022

183BH — L SD/T SD parameter >1020

183CH — G DB/GX DX parameter 0, 1 or 2 (DB or DX 0, 1, 2
cannot be generated)

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

5.6.2 LZF (Runtime Errors)

Introduction

LZF - calling a
block that is not
loaded (OB 19)

A runtime error occurs when the CPU detects an error during the execution of a
STEP 5 operation.

The operation that causes the runtime error is not executed. If there is an LZF
organization block, this is called. The interrupted user program is then continued
from the next operation after the operation that caused the error. If no LZF-OB is
loaded, the CPU goes to the STOP mode.

The following runtime errors are possible. In each case, the named error OB is
called:

If a block is called or opened in the user program and this block does not exist,
the system program automatically detects an error. This applies to all block types
and is true for conditional and unconditional calls.

If the system program detects the call or opening of a block that is not loaded, it
calls organization block OB 19, if it is loaded. In OB 19, you can specify how
the CPU should proceed.

If you have programmed OB 19, it is called and processed following which the
interrupted STEP 5 program is continued at the next operation unless OB 19
contains a stop operation. If, on the other hand, you have not programmed

OB 19, the CPU goes into the STOP mode when a block that is not loaded is
called or opened.

When OB 19 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-21 LZF - calling a block that is not loaded

Error identifier Explanation
ACCU-1-. ACCU-2-L
1A01H — Data block not loaded for C DB
1A02H — Data block not loaded for CX DX
1A03H — Block not loaded for JU(C) FB, OB 1 to 39, PB, SB
1A04H — Block not loaded for DOU(C) FX
1A05H — Data block not loaded for OB 254 or 255
1A06H — Data block not loaded for OB 182
1A07H — Data block not loaded for OB150/0B151/0B 153

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Load/transfer
error (OB 32)

Note

If you attempt to open a data block that is not loaded, the DBA register
(see Chapter 9) is affected. In this case a loaded data block must be opened
again before accessing DB/DX data.

When you transfer data to data blocks (DB, DX), the CPU compares the length
of the DB that has been opened with the operand in the transfer operation. If the
specified parameter exceeds the actual data block length, the CPU does not
execute the transfer statement to prevent data in the memory from being
overwritten by mistake.

The system program also detects a load/transfer error if a single bit of a
non-existent data word is to be set/reset or scanned.

The system program also detects a load/transfer error if you attempt to access a
data word before you call a data block (using C DBn or
CX DXn).

When the system program detects a load/transfer error, it calls organization block
OB 32, if it is loaded. The operation that caused the transfer error is not executed.
When OB 32 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-22 LZF-load/transfer error (TRAF)

Error identifier Explanation
ACCU-1-L. ACCU-2-L
1A11H — A/AN D, O/ON D, S/R D, =D access to a non-defined

data word

1A12H — Transfer error: T DR to a non-defined data word
1A13H — Transfer error: T DL to a non-defined data word
1A14H — Transfer error: T DW to a non-defined data word
1A15H — Transfer error: T DD to a non-defined data word
1A16H — Load error: L DR to a non-defined data word
1A17H — Load error: L DL to a non-defined data word
1A18H — Load error: L DW to a non-defined data word
1A19H — Load error: L DD to a non-defined data word
1A1AH — BDW access to a non-defined data word

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Interrupt and Error Handling

Other runtime
errors (OB 31)

These include all runtime errors that cannot be grouped with the previous types
of runtime error (transfer errors or calling a block that is not loaded).

If the system program detects one of these runtime errors, it calls organization
block OB 31. The operation (or special function) that caused the error is not
processed any further. If OB 31 is not loaded, the CPU goes into the STOP mode.
If you want program execution to continue when one of the errors listed below
occurs, simply write the block end statement BE in

OB 31.

When OB 31 is called, ACCU 1 and ACCU 2 contain additional information that
defines the error in greater detail.

Error identifiers of different operations, OB 254/255 and OB 250

Table 5-23 ~ LZF-other runtime errors (OB 254/255 and OB 250 identifiers)

Error identifier Explanation
ACCU-1-L. ACCU-2-L
1A21H — G DB, GXDX: data block already exists
1A22H — G DB, GXDX: illegal number of data words
(<1or>4091)
1A23H — <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>