
SIEMENS
Preface, Contents

Introduction

User Program

Program Execution

Operating Modes and Program
Processing Levels

SS-1 35U
CPU 928B - Version -3UB21 Interrupt and Error Handling

Programming Guide
Integrated Special Functions

Extended Data Block DX 0

Memory Assignment and Memory
Organization

Memory Access Using Absolute
Addresses

Multiprocessor Mode and
Communication

PG Interfaces and Functions

Appendix

Further Reading

List of Abbreviations

Glossary, Index

The CPU 928/CPU 928B/CPU 948, List of
Operations, order no. 6ES5 997-3UA23,
Rel. 01 is included with this manual.

Safety Guidelines This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

A Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

A Warning

indicates that death, severe personal injury orsubstantial property damage can result if proper precautionsare
not taken.

A Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, orto a particular
part of the documentation.

Qualified Personnel The devicelsystem may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Correct Usage Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely if it istransported, stored, set up, and installed correctly, and
operated and maintained as recommended.

Trademarks SIMATICB and SINECB are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

Copyright O Siemens AG 1996 All rights reserved Disclaimer of Liability

The reproduction, transmission or use of this document or its Wehavecheckedthecontentsofthismanualforagreementwiththe
contents is not permitted without express written authority. hardware and software described. Since deviations cannot be
Offenders will be liable for damages. All rights, including rights precluded entirely, we cannot guarantee full agreement. However,
created by patentgrantor registration ofautility model ordesign, are the data in this manual are reviewed regularly and any necessary
reserved. corrections included in subsequent editions. Suggestions for

improvement are welcomed.
Siemens AG
Automation Group
Industrial Automation Systems
PostFach 4848, D-90327 Niirnberg

O Siemens AG 1996
Technical data subject to change.

Siemens Aktiengesellschaft 6 ~ ~ 5 9 9 8 - 2 ~ ~ 2 2

Preface

Scope of the This programming guide describes the CPU 928B-3UB21 and its system
Manual software.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01 iii

Preface

Overview of the Chapter 1 informs you about the areas of application of the S5-135U
Chapters programmable controller with the CPU 928B and its device structure.

It explains the typical mode of operation of the CPU and illustrates how a CPU
program is structured.

The chapter also contains suggestions about how to tackle programming and
which characteristics of the CPU 928B-3UB21 are important for programming.

If you have already worked with the CPU 928B-3UB12 and want to know the
differences between this CPU and the CPU 928B-3UB21 you will find this
information in this chapter.

Chapter 2 explains the components of a STEP 5 user program and how the
program can be structured.

Chapter 3 is intended for readers who do not yet have much experience of using
the STEP 5 programming language. It therefore deals with the basics of STEP 5
programming and explains the STEP 5 operations in detail (with examples).

Experienced readers who may find that the information about specific operations
in the pocket guide is inadequate, can use Section 3.5 as a reference section.

Chapter 4 provides an overview of the modes and program execution levels of
the CPU 928B. It provides you with detailed information about various start-up
modes and the associated organization blocks in which you can program your
routines for differrent start-up situations.

The chapter also explains the differences between the program execution levels
"cyclic processing", "time-controlled processing" and "interrupt-driven
processing" and which blocks are available for your user program.

Chapter 5 informs you about errors to be avoided when planning and writing
your STEP 5 programs.

The chapter tells you about the help you can obtain from the system program for
diagnosing errors and which reactions can be expected and informs you about the
blocks in which you can program reactions to certain errors.

Chapter 6 covers the special functions integrated in the system program. It tells
you how to use the special functions and how to call and assign parameters to the
special function OBs.

The chapter also explains how to recognize and deal with errors in the processing
of a special function.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Preface

Chapter 7 describes the use of data block DX 0 and its structure. The chapter
informs you of the significance of the various DX 0 parameters. Based on examples,
you will learn how to create data block DX 0 or how to assign the parameters in a
screen form.

Chapter 8 is a reference section for experienced system users. It provides
information about the memory organization of the CPU 928B and certain system
data words which contain information that can be called up by the user.

You will also learn how you can switch software protection for your CPU on and
off via a system data word.

Chapter 9 is also for experienced system users. The chapter explains how to
address data in certain memory areas using absolute addresses.

Chapter 10 lists a number of points about using multiprocessor operation and
the possibility of using it to exchange data between CPUs and CPs.

The chapter provides information about programming for multiprocessor
operation.

The remainder of the chapter provides detailed information and application
examples for exchanging larger amounts of data in the multiprocessor mode
(multiprocessor communication).

Chapter 11 tells you how to connect your CPU to a PG and the functions
provided by the PG software to test your STEP 5 program.

Appendix A contains an overview of the characteristic technical data of the
CPUs 928A, 928B und 948 for camparison purposes.

Appendix B lists documentation for further reading.

Appendix C is intended to help you find themes quickly and contains a list of
abbreviations and a list of keywords.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Preface

Conventions Second-level section numbering
used in the text

Larger sub-chapters (e.g. 4.3) with second-level numbers start at the top of a new
page with a bold heading and appear in the list of contents.

Block labels

Bold headings (block labels) appear in the margin on the left of the page to make
it easier for you to find technical information.

1 2;:rtant information is indicated in this format.

Tables for reference

Table 3-2 Binary logic operations

1 Operation 1 Operand I Function 1
AND logic operation with scan for signal state "1"

OR logic operation with scan for signal state "1"

of an input in the PI1
.

Examples

Examples, some of which cover several pages, are highlighted by a gray frame.
When the examples cover more than one page this is clearly indicated.

methods of representation STL and LAD/CSF in a program block

Method of representation STL

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Contents

.. Introduction 1-1

. Area of Application for the S5-135U with the CPU 928B 1-2

Qpical Mode of Operation of a CPU .
. The Programs in a CPU 1-5
. 1.3.1 System Program 1-5

. 1.3.2 User Program 1-7

. Which Operands are available to the User Program? 1-9

. Accessing Operand Areas and Memory Areas 1-12

. How to Tackle Programming 1-13

. Programming Tools 1-16

. What is New with the CPU 928B (.3UB21)? 1-17

... User Program 2-1

. STEP 5 Programming Language 2-2
. 2.1.1 The LAD. CSF. STL Methods of Representation 2-2

. 2.1.2 Structured Programming 2-4
. 2.1.3 STEP 5 Operations 2-5

. 2.1.4 Number Representation 2-6
. 2.1.5 STEP 5 Blocks and Storing them in Memory 2-10

. Program. Organization and Sequence Blocks 2-14
. 2.2.1 Organization Blocks as User Interfaces 2-16

. 2.2.2 Organization Blocks for Special Functions 2-19

. Function Blocks 2-21
. 2.3.1 Structure of Function Blocks 2-22

. 2.3.2 Programming Function Blocks 2-24
2.3.3 Calling Function Blocks and Assigning Parameters to them . 2-26

. 2.3.4 Special Function Blocks 2-31

. Data Blocks 2-33
. 2.4.1 Creating Data Blocks 2-35
. 2.4.2 Opening Data Blocks 2-36

. 2.4.3 Special Data Blocks 2-39

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01 vii

Contents

... Program Execution 3-1

. Principle of Program Execution 3-2

Program Organization . 3-3

. Storing Program and Data Blocks 3-8

. Processing the User Program 3-10
. 3.4.1 Definition of Terns used in Program Execution 3-11

. STEP 5 Operations with Examples 3-13
. 3.5.1 Basic Operations 3-17

3.5.2 Programming Examples in the STL. LAD and CSF Methods of Representation 3-32
. 3.5.3 Supplementary Operations 3-47

3.5.4 Executive Operations . 3-54
. 3.5.5 Semaphore Operations 3-67

.................................. Operating Modes and Program Processing Levels 4-1

. Introduction and Overview 4-2

Program Processing Levels . 4-5

. STOP Mode 4-11
. 4.3.1 Characteristics and Indication of the Operating Mode 4-11

............................ 4.3.2 Requesting and Performing an OVERALL RESET 4-13

. RESTART Mode 4-15
. 4.4.1 MANUAL and AUTOMATIC COLD RESTART 4-16
. 4.4.2 MANUAL and AUTOMATIC WARM RESTART 4-16

. 4.4.3 Comparison of the Different Restart q p e s 4-18
. 4.4.4 User Interfaces for Restart 4-19

. 4.4.5 Interruptions in the RESTART Mode 4-22

. RUNMode 4-24
. 4.1.1 Cyclic Program Execution 4-26

4.1.2 Time-Driven Program Execution . 4-28
4.1.3 CLOSED LOOP CONTROLLER INTERRUPT: Processing Closed Loop Controllers 4-35
4.1.4 PROCESS INTERRUPT: Interrupt-Driven Program Execution 4-36
4.1.5 Nested Interrupt-Driven and Time-Driven Program Execution 4-39

... Interrupt and Error Handling 5-1

. Frequent Errors in the User Program 5-2

. Error Information 5-3

. Control Bits and Interrupt Stack 5-7
. 5.3.1 Control Bits 5-8

. 5.3.2 ISTACK Content 5-13
. 5.3.3 Example of Error Diagnosis using the ISTACK 5-19

. Error Handling using Organization Blocks 5-22

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Contents

. 5.5 Errors during RESTART 5-25
. 5.5.1 DBO-FE (DB 0 Errors) 5-26
. 5.5.2 DB1-FE (DB 1 Errors) 5-26
. 5.5.3 DB2-FE (DB 2 Errors) 5-28

. 5.5.4 DXO-FE @X 0 or DX 2 Errors) 5-29

. 5.5.5 MOD-FE (Memory Card Errors) 5-31

. 5.6 Errors in RUN and in RESTART 5-32
. 5.6.1 BCF (Operation Code Errors) 5-34

. 5.6.2 LZF (Runtime Errors) 5-37
. 5.6.3 ADF (Addressing Error) 5-45

. 5.6.4 QVZ (Timeout Error) 5-46
. 5.6.5 ZYK (Cycle Time Exceeded Error) 5-48

. 5.6.6 WECK-FE (Collision of Time Interrupts) 5-49
. 5.6.7 REG-FE (Controller Error) 5-50

. 5.6.8 ABBR (Abort) 5-52
. 5.6.9 Communication Errors (FE-3) 5-53

.. 6 Integrated Special Functions 6-1

. 6.1 Introduction 6-3

. 6.2 OB 110: Accessing the Condition Code Byte 6-7

6.3 OBlll .ClearACCUs1.2. 3 a n d 4 . 6-9

. 6.4 OB 1121113: Roll Up ACCU and Roll Down ACCU 6-9

. OB 120: EnablingIDisabling of Interrupts 6-11

. OB 121: Enablepisable Individual Time-Driven Interrupts 6-14

. OB 122: EnableIDisable "Delay of All Interrupts" 6-16

. OB 123: Enablepisable "Delay of Individual Time-Driven Interrupts" 6-19

. OB 134. 135. 136 and 139 6-22

. SettindReading the System Time (OB 150) 6-23

. OB 151: SettindReading the Time for Clock-Driven Interrupts 6-28

. OB 152: Cycle Statistics 6-35

. OB 153: SetJRead Time for Delay Interrupt 6-42

. OB 160 to 163: Loop Counters 6-45

. OB 170: Read Block Stack (BSTACK) 6-47

. OB 180: Accessing Variable Data Blocks 6-52

. OB 181: Testing Data Blocks (DBPX) 6-56

. OB 182: Copying a Data Area 6-58

. OB 185: Setting Write Protection 6-61

. OB 186: Compressing Memory 6-62

. OB 190/OB 192: Transferring Flags to a Data Block 6-63

. OB 191/OB 193: Transferring Data Fields to a Flag Area 6-65

. OB 200 and OB 202 to 205: Multiprocessor Communication 6-70

CPU 9288-3U821 Programming Guide

C79000-G8576-C870-01

Contents

. OB 216 to 218: Page Access 6-71
. 6.24.1 OB 216: Writing to a Page 6-74

. 6.24.2 OB 217: Reading from a Page 6-76
. 6.24.3 OB 218: Reserving a Page 6-78

. 6.24.4 Program Example 6-80

. OB 220: Sign Extension 6-82

. OB 221: Setting the Cycle Monitoring Time 6-83

. OB 222: Restarting the Cycle Monitoring Time 6-84

. OB 223: Comparing Restart Types 6-84

. OB 224: Transferring Blocks of Interprocessor Communication Flags 6-85

. OB 228: Reading Status Information of a Program Processing Level 6-87

. OB 230 to 237: Functions for Standard Function Blocks 6-89

. OB 240 to 242: Special Functions for Shift Registers 6-90

. OB 240: Initializing Shift Registers 6-94

. OB 241: Processing Shift Registers 6-97

. OB 242: Deleting a Shift Register 6-98

. OB 250/251: Closed-Loop Control/ PID Algorithm 6-99
. 6.37.1 Functional Description of the PID Controller 6-99

. 6.37.2 PID Algorithm 6-101

. OB 250: Initializing the PID Algorithm 6-106

. OB 251: Processing the PID Algorithm 6-107

. OB 254. OB 255: Transferring a Data Block to the DB-RAM 6-113

.. Extended Data Block DX 0 7-1

. Application 7-2

. Structure of DX 0 7-3

. Parameters for DX 0 7-6

. Examples of Parameter Assignment 7-10

.. Memory Assignment and Organization 8-1

. Structure of the Memory Area 8-2

. Address Distribution in the CPU 928B-3UB21 8-3
. 8.2.1 Address Distribution 8-4

. 8.2.2 Address Distribution of the Peripherals 8-5

. User Memory Organization in the CPU 928B.3UB21 8-7
. 8.3.1 Block Headers in the User Memory 8-8

..................................... 8.3.2 Block Address Lists in Data Block DB 0 8-9
. 8.3.3 RIJRJArea 8-12
. 8.3.4 RS / RTArea 8-13

. 8.3.5 Bit Assignment of the System Data Words 8-16

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Contents

... 9 Memory Access using Absolute Addresses 9-1

. 9.1 Introduction 9-2

. 9.2 Access using the Address in ACCU 1 9-6
9.2.1 LIWIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 9-7

. 9.2.2 Examples of using the Registers 9-14

. 9.3 Transferring Fields of Memory 9-16
. 9.3.1 Example of Transferring Memory Fields 9-19

. 9.4 Operations with the Base Address Register (BR Register) 9-24
. 9.4.1 Operations for Transfer between Registers 9-25

. 9.4.2 Accessing the Local Memory 9-27

. 9.4.3 Accessing the Global Memory 9-28
. 9.4.4 Accessing the Page Memory 9-31

....................................... Multiprocessor Mode and Communication 10-1

. Multiprocessor Mode 10-3
. 10.1.1 Exchanging Data via IPC Flags 10-4

10.1.2 110 Flag Assignment and IPC Flag Assignment in Multiprocessor Mode @B 1) 10-8
. 10.1.3 How to Create Data Block DB 1 10-9

. Multiprocessor Communication 10-13
. 10.2.1 How the Transmitter and Receiver are Identified 10-15

. 10.2.2 Why Data is Buffered 10-16
. 10.2.3 How the Buffer is Processed and Managed 10-17

. 10.2.4 System Start-up 10-20
. 10.2.5 Calling Communication OBs 10-21

. 10.2.6 How to Assign Parameters to Communication OBs 10-22
. 10.2.7 How to Evaluate the Output Parameters 10-24

. Runtimes of the Communication OBs 10-29

. INITIALIZE Function (OB 200) 10-30
. 10.4.1 Function 10-30

. 10.4.2 Call Parameters 10-32
. 10.4.3 Input Parameters 10-33

. 10.4.4 Output Parameters 10-36

. SEND Function (OB 202) 10-38
. 10.5.1 Function 10-38

. 10.5.2 Call Parameters 10-38
. 10.5.3 Input Parameters 10-39

. 10.5.4 Output Parameters 10-41

. SEND TEST Function (OB 203) 10-43
. 10.6.1 Function 10-43

. 10.6.2 Call Parameters 10-43
. 10.6.3 Input Parameters 10-43

. 10.6.4 Output Parameters 10-44

. RECEIVE Function (OB 204) 10-45
. 10.7.1 Function 10-45

. 10.7.2 Call Parameters 10-45
. 10.7.3 Input Parameters 10-45

. 10.7.4 Output Parameters 10-46

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Contents

RECEIVE TEST Function (OB 205) . 10-48
10.8.1 Function . 10-48
10.8.2 Call Parameters . 10-48
10.8.3 Input Parameters . 10-48
10.8.4 Output Parameters . 10-49

Applications . 10-50
10.9.1 Calling the Special Function OB using Function Blocks . 10-50
10.9.2 Transferring Data Blocks . 10-58
10.9.3 Extending the IPC Flag Area . 10-64

... PG Interfaces and Functions 11-1

Overview . 11-2

PG Functions . 11-3
11.2.1 Information . 11-5
11.2.2 Memory Functions and Transfer Functions . 11-5
11.2.3 Program Test . 11-7

Activities at Checkpoints . 11-15

. Serial Link PG . PLC via 1st or 2nd Serial Interface 11-16

Parallel Operation of Rvo Serial PG Interfaces . 11-17
11.5.1 Installation . 11-19
11.5.2 Operation . 11-19
11.5.3 Sequence in Certain Operating Situations . 11-21

Appendix ... A-l

Runtime Comparison between CPU 928.3UA21. CPU 928B-3UB21 and CPU 948 A-2

Error Identifiers . A-5

STEP 5 Operations not Contained in the CPU 928B . A-13

Identifiers for the Program Processing Levels . A-14

. Example "ISTACK Evaluation" A-15

Further reading ... B-l

List of Abbreviations ... C-l

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Contents of the This chapter explains how to use the manual and deals with the areas of
chapter application of the S5-135U programmable controller with the CPU 928B and its

structure. The chapter explains the typical mode of operation of a CPU and the
structure of the CPU program.

You will also find a few suggestions about how to tackle programming and will
learn some of the features of the CPU 928B (-3UB21) which are important for
programming.

If you have already worked with the CPU 928B (-3UBll or -3UB12)
and would like to know the differences between these modules and the
CPU 928B (-3UB21), refer to Section 1.8.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Section

1.1

1.2

1.3

1.3.1

1.3.2

1.4

1.5

1.6

1.7

1.8

Description

Area of Application for the S5-135U with the CPU 928B

Typical Mode of Operation of a CPU

The Programs in a CPU

System Program

User Program

Which Operands are available to the User Program?

Accessing Operand Areas and Memory Areas

How to Tackle Programming?

Programming Tools

What is New with the CPU 928B (-3UB21)?

Page

1-2

1-3

1-5

1-5

1-7

1-9

1-12

1-13

1-16

1-17

Introduction

1.1 Area of Application for the S5-135U with the CPU 928B

Introduction to The S5-135U programmable controller belongs to the family of SIMATIC S5
the SIMATIC S5 programmable controllers. With the CPU 928B, it is the most powerful
family multiprocessor unit for process automation (open and closed loop control,

signalling, monitoring, logging).

Owing to its modularity and high performance, it can be used for medium to
extremely large control systems as well as for complex automation tasks at the
plant and process supervision level.

Suitability The S5-135U with the CPU 928B is particularly suitable for the following:

Tasks requiring fast bit and word-oriented processing and fast reaction times,
i.e. with extremely fast open and closed loop controls.

Examples of this are fast processes in mechanical engineering (bottling plant,
packing machines or similar systems) and in the automobile industry.

Tasks requiring an extremely high storage capacity and fast access times,
e.g. in the automobile industry, process and plant engineering.

Tasks requiring fast communication with other CPUs installed in the PLC
and operating in the multiprocessor mode and with CP modules (e.g. when
connected to bus systems, host computers, for visualization, operation and
monitoring).

Complex tasks which can be handled efficiently and clearly using the high
level languages C and SCL.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.2 Typical Mode of Operation of a CPU

Mode of The following modes of operation are possible in a CPU:
operation
of a CPU

1.

Cyclic processing

2.

Cyclic This is the main part of all activities in the CPU. As the name already says, the
processing same operations are repeated in an endless cycle.

3.

Time-controlled processing

Cyclic processing can be divided into three main phases, as follows:

C (
Interrupt-driven processing

1 Phase I Sequence l CPU Process

C P U 9 2 8 B - 3 U B 2 1 P rog ramming G u i d e

C79000 -G8576 -C870 -01

1

2

3

All the input modules assigned to the CPU
are scanned by the system program and the
values read in are stored in the process
image of the inputs (PII).

Read in process image
of the inputs

Input 1 1.3 -5 Input 1 1.4

lnput 1 1.5

The values contained in the PI1 are
processed by the user program and the
values to be output are entered in the
process image of the outputs (PIQ).

The values contained in the process image
of the outputs are output by the system
program to the output modules assigned to
the CPU.

Evaluate input signals,
set output signals ::;%

l l 3 0 31

Output process image
of the outputs Output Q 3.1

Output Q 4.7

Introduction

Time-controlled In addition to the cyclic processing, time-controlled processing is also available
processing for processes requiring control signals at constant intervals, e.g. non-time critical

monitoring functions performed every second.

Interrupt-driven If the reaction to a particular process signal must be particularly fast, this
processing should be handled with interrupt-driven processing. With, for example, a

process interrupt, triggered via an interrupt generating module, you can
activate a special processing section within your program.

Processing The types of processing listed above are handled by the CPU according to their
according priority.
to priority

Since a fast reaction is required to a time or interrupt event, the CPU interrupts
cyclic processing to handle a time or interrupt event. Cyclic processing therefore
has the lowest priority.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.3 The Programs in a CPU

Introduction The program existing on every CPU is divided into the following:

the system program

and

the user program.

1.3.1 System Program

Overview The system program organizes all the functions and sequences of the CPU which
do not involve a specific control task (refer to Fig. 1-1).

Update process image
of the inputs

user

(inter-
,?----\

Call

U processing Ll

Fig. 1-1 Tasks of the system program

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Tasks The tasks include the following:

cold and warm restart,

updating the process image of the inputs and outputting the process image of
the outputs,

calling the cyclic, time-controlled and interrupt-driven programs,

detection and handling of errors,

memory management,

communication with the programmer (PG).

User interfaces As the user, you can influence the reaction of the CPU to particular situations
and errors via special interfaces to the system program.

Default system The following chapters, except for Chapter 7, describe the default system
reaction reaction to process events or errors. Depending on the defaults, the CPU

changes to the stop mode if an operation code error occurs and the error
organization block is not loaded.

Modifying the You can modify the system response by assigning parameters for the data block
defaults DX 0.

Chapter 7 describes the system response following modification.

l) When operating with several CPUs (multiprocessing) further tasks are involved.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.3.2 User Program

Structure Figure 1-2 shows the general structure of a STEP 5 user program.

Organization Program
blocks blocks

OB PB
STEP 5 STEP 5
operations operations

l l 3
F So3 Q 5 3

0 31

Function Sequence
blocks blocks
FBIFX SB

STEP 5 STEP 5
operations operations

FE 8

SEGMENT 1
NAME :TRANS

l l 3
0005 :L IB 3
0006 :T FW 200
0007 :C DB 5
0008 :DO FW 200
0009 :L DW 0

a
OOOA :T QW 6
0006 :BE

Code blocks

Data blocks

DB 1: KH=0101;
static or dynamic data 2: KF = t120;
(bits, bytes, words, double words) 3: KS = x y ;

4: KY = 4.5;
5: K G =
6: KM =
7:

DX 1: KH = FFFF:

static or dynamic data 2: KH = FFFF:
3: KH = FFFF:

(bits, bytes, words, double words) 4: KH = FFFF:
5: KH = FFFF:
6: KH = FFFF;
7:

Fig. 1-2 Structure of a STEP 5 user program

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Tasks The user program contains all the functions required for processing a specific
control task. In general terms, these functions can be assigned to the interface
provided by the system program for the various types of processing, as follows:

Storing the user The CPU 928B has two areas for storing blocks:
program

User memory: max. 64 Kbytes

Type of processing

Cold and warm restart

Cyclic processing

Time-controlled processing

Interrupt-driven processing

Error reaction

The user memory is located on the main board (CPU).

Task

To provide the conditions under which the other
processing functions can start from a defined status
following a cold or warm restart of the control system
(e.g. assigning specific values to signals).

Constantly repeated signal processing (e.g. logic
operations on binary signals, reading in and analyzing
analog values, specifying binary signals for output,
outputting analog values).

Time-dependent processing with the following time
conditions:
- faster than the average cycle,
- at a time interval greater than the average cycle time,
- at a specified point in time.

Fast reactions to certain process signals.

Handling problems within the normal sequence of the
program.

Data block RAM (DB RAM): max. 46 Kbytes

The DB RAM makes up an additional memory area for storing data
blocks and is located on the main board (CPU).

Interfaces to the Organization blocks are available as interfaces to the system program for the
system program special types of processing.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Introduction

1.4 Which Operands are available to the User Program?

0 vervie W The CPU 928B provides the following operand areas for programming:

process image and VOs

flags (F flags and S flags)

timers/counters

data blocks

Process image of
the inputs and
outputs PII/PQ

I/O area (P area)

Extended I/O
area (0 area)

l Characteristics 1 size 1

Characteristics

The user program can access the following data types in the process
image extremely quickly:

- single bits,
- bytes,
- words,
- double words

Size

128 bytes
each for
inputs and
outputs

l Characteristics 1 size l

The user program can access the V 0 modules directly via the S5 bus.

The following data types are possible:
- bytes,
- words.

256 bytes
each for
inputs and
outputs

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

The user program can access the V 0 modules directly via the S5 bus.

The following data types are possible:
- bytes,
- words.

256 bytes
each for
inputs and
outputs

Introduction

S flags (extended
flag area)

Characteristics

The flag area is a memory area which the user program can access
extremely quickly with certain operations.

The flag area should be used ideally for working data required often.

The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

Single flag bytes can be used as interprocessor communication flags
(IPC flags) to exchange data between the CPUs in the multiprocessor
mode (refer to Chapter 10).

IPC flags are updated by the system program at the end of the cycle via
a buffer in the coordinator or CPIIP.

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Size

2048 bits
(256 bytes)

Characteristics

The CPU 928B also contains an additional flag area, the S flag area.
The user program can also access this area extremely quickly as with
the F flags.

S flags cannot however by used as actual operands with function
block calls nor as IPC flags for data exchange between the CPUs. The
bit test operations of the CPU 948 can also not be used with the S flags.

These flags can only be used with the PG system software "SS-DOS"
from version 3.0 upwards or "SS-DOS/'h4Tu from version 1.0 upwards.

Size

8192 bits
(1024 bytes)

Introduction

Timers m
Characteristics

Counters (C)

Characteristics Size

then increments or decrements them.

Size

The user program loads timer cells with a time value between 10 ms and
9990 s and by means of a start operation, decrements the timer from this
value at the preselected intervals until it reaches the value zero.

Data words in
the current data
block

256 timer
cells

l) In data blocks with a length greater than 256 words, you can only access data words with the
numbers > 255 with operations for absolute memory access (refer to Chapter 9) or with OB 180
(refer to Chapter 6).

Characteristics

A data block contains constants andor variables in the byte, word or
double word format. With STEP 5 operations, you can always access the
"current" data block (refer to Section 2.4).
The following data types can be accessed:

- single bits,
- bytes,
- words,
- double words.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Size

256 words

1)

Introduction

1.5 Accessing Operand Areas and Memory Areas

Introduction STEP 5 operations use two different mechanisms for accessing operand areas
and the entire memory:

relative adressing

absolute addressing

Relative
addressing

Absolute
addressing

Current data
block

The majority of STEP 5 operations address a memory location relative to the
beginning of the operand area. If these operations are used exclusively, code and
data areas of the user program are protected against unintentional ovenvriting. At
the same time, the user program is dependent on the CPU as long as the CPU has
an appropriate operand area.

Some STEP 5 operations work with absolute addresses. These operations can be
used to access the entire memory area. They can only be used in function blocks
and should only be used with great care due to the danger of data corruption.
These operations are dependent on the CPU used.

Data blocks are loaded into the user memory or the DB-RAM by the system
program. Their location depends on the memory space available in each case.
The lengths of the individual data blocks can vary and are set when
programming the data blocks.

The current data block is the data block whose starting address and length are
entered in special registers. This entry is made via a special STEP 5 operation for
calling or "opening" a data block (like the page of book). Unless operations with
absolute addressing are used, the user program can only access the current data
block. The following data types are possible: single bits, bytes, words and double
words.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.6 How to Tackle Programming

Introduction If you are an experienced user, you have probably found the most suitable
method for creating programs for yourself and you can skip this section.

Less experienced readers will find tips for designing, programming, testing and
starting up the STEP 5 program.

lmplementation The implementation of the STEP 5 control program can be divided into three
stages stages:

1. determining the technological task

2. designing the program

3. creating, testing and starting the program

Recursive In practice, you will recognize that certain steps must be repeated (recursive
procedure procedure), e.g. when you realize that more signals are required to improve the

handling of the task.

lmplementation
stage l

This stage can be divided into three steps:

1. creating a general block diagram outlining the control tasks of your process

2. creating a list of the input and output signals required for the task

3. improving the block diagram by assigning the signals and any particular time
conditions andlor counter statuses to the individual blocks

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Implementation
stage 2

We recommend you proceed as follows:

1. Based on the improved block diagram, decide on the types of processing
required of your program (cyclic processing, time-controlled processing etc.)
and select the OBs required for this.

2. Divide the types of processing into technological andor functional units.

3. Check whether the units can be assigned to a program or function block and
select the blocks you require (PB X, FB y etc.)

4. Find out which timers, counters and data or results memory you require.

5. Specify the tasks for each of the proposed code blocks and the data for flags
and data blocks which may be required. Create flow diagrams for the code
blocks.

Notes on the scope of cyclic processing:

When deciding on the types of processing, keep the following conditions in
mind:

The cycle must run through quickly enough. The process statuses must not
change more quickly than the CPU can react. Otherwise the process can get
out of control.

The maximum reaction time should be taken as twice the cycle time.

The cycle time is determined by the cyclic processing of the system program
and the type and scope of the user program. It is often not constant, since the
cyclic user program may be interrupted when time and interrupt-driven
program sections are called.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Implementation
stage 3

This stage should consist of the following steps:

1. Decide on the type of representation for the code blocks
(LAD, CSF or STL, refer to Chapter 2).

Remember that function blocks can only be created in the STL method of
representation.

2. Program all code and data blocks (please refer to your STEP 5 manual).

3. Start up the blocks one after the other (you may have to program a different
OB for each individual step, to call the code blocks):

- load the block(s)

- test the block(s)

(For more detailed information please refer to your STEP 5 manual and
Chapter 11).

4. When you are certain that all the code blocks run correctly and all the data
can be correctly calculated and stored, you can start up your whole program.

Note on test strategies:

When you actually start up your program for the first time in genuine process
operation, i.e. with real input and more importantly output signals, is a decision
that must be left up to yourself or to a team of experts.

The more complex the process, the greater the risk and therefore the greater the
care required when starting up.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.7 Programming Tools

Suitable PGs The following programmers are available for creating your user program,
PG 685, PG 710, PG 730, PG 750 and PG 770.

You can check on the performance and characteristics of these devices in the
catalog ST 59.

Note
Enter the CPU ID for CPU 922 (0010B) in system data word
RS 29 (see Chapter 8) in order to be able to use a PG 615 or a CP 3xx.
In this case, you cannot use S flags.

If you do not change the ID, this will lead to erroneous indicators, e.g. in
the case of ISTACK output, or to the loss of some debugging aids.

In all programmers, the STATUS test function operates without restriction
only at scan times of S 2.5 S. This value is halved in the case of parallel
operation of 2 programmer interfaces (see Chapter 11).

Suitable software You can create user programs for SIMATIC S5 programmable controllers as
follows:

In the STEP 5 programming language,

Here you require the STEP 5 programming package along with the system
software STEP 5/ST or STEP 5/MT (description, refer to 131 in Chapter 13),

In a higher programming language:

If you are familiar with programming in higher programming languages, you
can also formulate your STEP 5 program for the CPU 928B as follows:

- SCL (refer to 1121 in Further Reading, the SCL compiler is contained in
the PG software "SS-DOSIMT" from version 6 upwards.)

You can also create programs for sequence control systems in a graphic
representation using the GRAPH 5 programming package (description, refer
to 141 in Further Reading).

Depending on the task, you can also incorporate "off-the-shelf" standard function
blocks in your user program. The performance and characteristics of these blocks
are described in the catalog ST5 7/11/.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

1.8 What is New with the CPU 928B (-3UB21)?

Introduction The CPU 928B (-3UB21) offers you the following new functions and
characteristics compared to the CPU 928B (-3UB12).

Slot assignment

Integrated RAM

Memory card

DB 0 structure

Floating point math

Extended cycle The functions of the cycle statistics (OB 152) have been extended compared to
statistics the -3UB12 version, to include higher resolutions of the timers.

CPU 928B (-3UB21)

The CPU requires only one slot

RAM (internal RAM) integrated in the
CPU with a capacity of 64 Kbytes

SIMATIC memory card (Flash EPROM)

The user program is copied from the
memory card to the internal RAM for
processing and is then read-only

Only after overall reset of CPU

Mantissa with 24 bits

Software Via RS 139, a password can be assigned with which you can prevent
protection unauthorized reading and editing of the user program in the CPU.

CPU 928B (-3UB12)

The CPU requires two slots

Pluggable RAM submodules with
different memory capacities

Pluggable EPROM submodules

The user program remains on the EPROM
submodule for processing

After power on or overall reset of CPU

Mantissa with 16 or 24 bits

Programming the A PG 7xx with SS-DOS from V6.x onwards is required to program the Flash
memory card EPROM memory cards. A program on an old memory submodule can be

reprogrammed to a memory card.

Reloading the If a Flash EPROM memory card is plugged when an overall reset is performed,
memory card the operating system copies the contents to the internal RAM and creates DB 0.

The memory card is no longer required for operation.

EPROM mode Once the memory card has been reloaded (via overall reset), the user memory
(address OOOOH to 7FFFH) is write-protected for PG access and for write access
by the user program. This corresponds to the behavior of a CPU 928B when an
EPROM submodule is plugged.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Introduction

Influencing the The write protection can be set or removed specifically using two methods:
write protection
(RS 138) (OB 185) by settinghesetting RS 138 before a cold restart of the CPU is completed (e-

valuated at the end of OB 20)

by calling OB 185 in OB 20 (only possible here), the write protection is
activatedldeactivated immediately.

Compressing By calling OB 186, the PG function "compress memory" can be started by the
memory by user program. As the function may then collide with active PG jobs, OB 186 and
means of user PG functions are each blocked if the other is active.
program (OB 186)

Cycle time
statistics
(OB 152)

The cycle time statistics are no longer linked to the cycle time monitoring,
which means that there is no influence caused by restarting cycle time
monitoring.

As an alternative to the l-ms resolution, the resolution can now be increased
to 10 ms by means of a new function number.

Accessing the OB 110 can be used more frequently as the condition codes are no longer partly
condition code ovenvritten by the block call as they were previously.
byte OB 110

EPROM memory The operating system now always run an EPROM memory check during power
check on. This means the OB 226 (read operating system word) and OB 227 (read

checksum) have become superfluous. The blocks are still available for
compatibility reasons, but both return the value 0.

New special
function OBs

The CPU 928B-3UB21 has the following new special functions:

OB 134 for the *D operation

OB 135 for the /D operation

OB 136 for the MOD operation

OB 139 for the PUSH operation

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Contents of the The following chapter explains the components that make up a STEP 5 user
chapter program for the CPU 928B and how it can be structured.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Section

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.4.1

2.4.2

2.4.3

Description

STEP 5 Programming Language

The LAD, CSF, STL Methods of Representation

Structured Programming

STEP 5 Operations

Number Representation

STEP 5 Blocks and Storing them in Memory

Program, Organization and Sequence Blocks

Organization Blocks as User Interfaces

Organization Blocks for Special Functions

Function Blocks

Structure of Function Blocks

Programming Function Blocks

Calling Function Blocks and Assigning Parameters to them

Special Function Blocks

Data Blocks

Creating Data Blocks

Opening Data Blocks

Special Data Blocks

Page

2-2

2-2

2-4

2-5

2-6

2-10

2-14

2-16

2-19

2-21

2-22

2-24

2-26

2-31

2-33

2-35

2-36

2-39

User Program

2.1 STEP 5 Programming Language

Introduction With the STEP 5 programming language, you convert automation tasks into
programs that run on SIMATIC S5 programmable controllers.

You can program simple binary functions, complex digital functions and
arithmetic operations including floating point arithmetic using STEP 5.

Types of
operation

The operations of the STEP 5 programming language are divided into the
following groups:

Basic operations:

- you can use these operations in all code blocks

- methods of representation: ladder diagram (LAD), control system
flowchart (CSF), statement list (STL).

Supplementary operations and system operations:

- can only be used in function blocks

- only statement list (STL) method of representation

- system operations: only experienced STEP 5 programmers should use
system operations

2.1.1 The LAD, CSF, STL Methods of Representation

Overview When programming in STEP 5, you can choose between the three methods of
representation ladder diagram (LAD), control system flowchart (CSF) and
statement list (STL) for each individual code block. You can choose the method
of representation that best suits your particular application.

The machine code MC5 that the programmers (PGs) generate is the same for all
three methods of representation.

If you follow certain rules when programming in STEP 5 (see 131 in Chapter 13),
the programmer can translate your user program from one method of
representation into any other.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Graphic While the ladder diagram (LAD) and control system flowchart (CSF) methods of
representation or representation represent your STEP 5 program graphically, statement list (STL)
list of statements represents STEP 5 operations individually as mnemonic abbreviations.

Fig. 2-1 Methods of representation in the STEP 5 programming language

Ladder diagram

Programming with
graphic symbols
like a circuit diagram

complies with
DIN 19239

Graphic GRAPH 5 is a programming language for graphic representation of sequential
representation controls. It is at a higher level than the LAD, CSF, STL methods of
of sequential representation. A program written in GRAPH 5 as a graphic representation is
controls automatically converted to a STEP 5 program by the PG.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Statement list

Programming with
mnemonic abbreviations
of function designations

complies with
DIN 1 9239

STL
A I
AN I
A I
ON I
0 I
= Q

Control system flowchart

Programming with
graphic symbols

complies with
IEC 117-15
DIN 40700
DIN 40719
DIN 19239

CSF

User Program

2.1.2 Structured Programming

0 vervie W Using STEP 5, you can structure your program by dividing it into self-contained
program sections (blocks).

This division of your program clarifies the essential program structures making it
easy to recognize the system parts that are related within the software.

Advantages Structured programming offers you the following advantages:

simple and clear creation of programs, even large ones

standardization of program parts

simple program organization

easy program changes

simple, section by section program test

simple system start-up

What is a block? A block is a part of the user program that is distinguished by its function,
structure or application. You can differentiate between blocks that contain
statements (code) i.e. organization blocks, program blocks, function blocks or
sequence blocks, and blocks that contain data (data blocks).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.1.3 STEP 5 Operations

Definition A STEP 5 operation is the smallest independent unit of the user program. It is the
work specification for the CPU. A STEP 5 operation consists of an operation and
an operand as shown in the following example:

Example
Operation code Parameter

LA! :O F 54.1

:7 -\
Operation Operand
(what is to be done?) (with what is the

operation to be done?)

Absolute and You can enter the operand absolutely or symbolically (using an assignment list)
symbolic as shown in the following example:
operands

Absolute representation: :A 11.4

Symbolic representation: :A -Motor1

For more information on absolute and symbolic programming, refer to your
STEP 5 manual.

Application of The STEP 5 operation set enables you to do the following:
STEP 5 operations

set or reset and combine binary values logically

load and transfer values

compare values and process them arithmetically

specify timer and counter values

convert number representations

call blocks and execute jumps within a block

and

influence program execution

Result of logic The central bit for controlling the program is the result of logic operation RLO.
operation RLO This is obtained as a result of binary logic operations and is influenced by some

operations.

Section 3.5 describes the whole STEP 5 operation set and explains how the RLO is
obtained. This section also includes programming examples for individual STEP 5
operations.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.1.4 Number Representation

0 vervie W To allow the CPU to logically combine, modify or compare numerical values,
these values must be located in the accumulators (working registers of the CPU)
as binary numbers.

Depending on the operations to be carried out, the following number representations
are permitted in STEP 5:

Binary numbers: 16-bit fixed point numbers

32-bit fixed point numbers

32-bit floating point numbers (with a 24-bit mantissa)

Decimal numbers: BCD-coded numbers (sign and 3 digits)

Numerical input When you use a programmer to input or display number values, you set the data
on the PG format on the programmer (e.g. KF or fixed point) in which you intend to enter

or display the values. The programmer converts the internal representation into
the form you have requested.

Permitted
operations

You can carry out all arithmetic operations with the 16-bit fixed point numbers
and floating point numbers, including comparison, addition, subtraction,
multiplication and division.

Note
Do not use BCD-coded numbers for arithmetical operations, since this leads
to incorrect results.

Use 32-bit fixed point numbers to execute comparison operations. These are also
necessary as an intermediate level when converting numbers in BCD code to
floating point numbers. With the operations +D and -D they can also be used for
addition and subtraction.

The STEP 5 programming language also has conversion operations that enable
you to convert numbers directly to the most important of the other numerical
representations.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

16-bit and 32-bit Fixed point numbers are whole binary numbers with a sign.
fixed point
numbers Coding of fixed point numbers

Fixed point numbers are 16 bit (= 1 word) or 32 bit (= 2 words) in binary
representation. Bit 15 or bit 31 contains the sign.

'0' = positive number

'1' = negative number

The two's complement representation is used for negative numbers.

PG input

16-bit fixed point number KF

32-bit fixed point number DH

Permitted numerical range

16-bit fixed point number -32768 to +32767

32-bit fixed point number -2147483648 to +2147483647

Using fixed point numbers

Use fixed point numbers for simple calculations and for comparing number
values. Since fixed point numbers are always whole numbers, remember that the
result of dividing two fixed point numbers is also a fixed point number without
decimal places.

Floating point numbers

Floating point numbers are positive and negative fractions. They always occupy
a double word (32 bits). A floating point number is represented as an exponential
number.

In the CPU 928B, the default mantissa is 24 bits long (bits 0 to 23) for adding,
subtracting, multiplying and dividing.

The exponent is 8 bits long and indicates the order of magnitude of the floating
point number. The sign of the exponent tells you whether the value of the
floating point number is greater or less than 0.1.

Using floating point numbers

Use floating point numbers for solving extensive calculations, especially for
multiplication and division or when you are working with very large or very
small numbers!

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Accuracy

The mantissa indicates the accuracy of the floating point number as follows:

Accuracy with a 24-bit mantissa:

2-24 = 0.000000059604 (corresponds to 7 decimal places)

If the sign of the mantissa is "0" the number is positive; if the sign is "1" it is a
negative number in its two's complement representation.

The floating point value '0' is represented as the binary value 80000000H
(32 bits, see below).

Coding floating point numbers

A floating point number is coded as follows:

l Exponent l Mantissa l
Specification of the data format for floating point numbers at the PG: KG

Permissible numerical range

a) in a code block:

You want to load the number N = 12.34567 as a floating point number.

Input:

PG display after you enter the line:

~ a n i i s s a with sign ~ i ~ o n e n t (base 10)
with sign

Value of the number input: +0.1234567 x 10'~ = 12.34567

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

b) in a data block:

You want to define the numbek N = - 0.005 as a floating point constant.

Input:

PG display after you enter the line:

6: KG =- 5000000 - 02

Mandssa with sign
'Y

Exponent (base 10)
with sign

Value of the number input: - 0.5 X 10-~ = 0.005

Numbers in BCD Decimal numbers are represented as numbers in BCD code. With their sign and
code three digits, they occupy 16 bits (1 word) in an accumulator as shown in the

following example:

The individual digits are positive 4-bit binary numbers between 0000 and 1001
(0 and 9 decimal).

V V V V

The left bits are reserved for the sign as follows:

Sign for a positive number:
Sign for a negative number:

hundreds

Permissible numerical range

-999 to +999

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

tens ones

User Program

2.1.5 STEP 5 Blocks and Storing them in Memory

Identifier A block is identified as follows:

the block type (OB, PB, SB, FB, FX, DB, DX)

and

the block number (number between 0 and 255).

Block types The STEP 5 programming language differentiates between the following block
types:

Organization blocks (OB)

Organization blocks are the interface between the system program and the
user program. They can be divided into two groups as follows:

- With OB 1 to OB 39, you can control program execution, the restart
procedure of the CPU and the reaction in the event of an error. You
program these blocks yourself according to your automation task. These
OBs are called by the system program.

- OBs 40 to 255 contain special functions of the system program. You can
call these blocks, if required, in your user program.

Program blocks (PB)

You require program blocks to structure your program. They contain program
parts divided according to technological and functional criteria. Program
blocks represent the heart of the user program.

Sequence blocks (SB)

Sequence blocks were originally special program blocks for step by step
processing of sequencers. In the meantime, however, sequencers can be
programmed with GRAPH 5. Sequence blocks have therefore lost their
original significance in STEP 5.

Sequence blocks now represent an extension of the program blocks and are
used as program blocks.

Function blocks (FBIFX)

You use function blocks to program frequently recurring andlor complex
functions (e.g. digital functions, sequence control systems, closed loop
controls and signalling functions).

A function block can be called several times by higher order blocks and
supplied with new operands (assigned parameters) at each call.

Using block type FX increases the maximum number of possible function blocks
from 256 to 512.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Data blocks (DBPX)

Data blocks contain the (fixed or variable) data with which the user program
works. This type of block contains no STEP 5 statements and has a distinctly
different function from the other blocks. Using block type DX doubles the
number of possible data blocks.

Formal structure All blocks consist of the following two parts:
of the blocks

a block header

and

a block body

Block header The block header is always 5 words long and contains information for block
management in the PG and data for the system program.

Block body Depending on the block type, the block body contains the following:

STEP 5 operations (in OB, PB, SB, FB, FX),

variable or constant data (in DB, DX)

and

a formal operand list (in FB, EX).

Block preheader The programmer also generates a block preheader (DV, DXV, FV, FXV) for
block types DB, DX, FB and FX. These block preheaders contain information
about the data format (for DB and DX) or the jump labels (for FB and EX). Only
the PG can evaluate this information. Consequently the block preheaders are not
transferred to the CPU memory. You cannot influence the contents of the block
header directly.

Maximum length A STEP 5 block can occupy a maximum of 4096 words in the program memory
of the CPU (1 word corresponds to 16 bits).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Available blocks You can program the following block types:

EB 0 to 255 F total 512
EX 0 to 255

DB 3 to 255 1 - total 506
DX 3 to 255

Data blocks DB 0, DB 1, DB2, DX 0, DX 1 and DX 2 contain parameters. These
are reserved for specific functions and you cannot use them as normal data
blocks.

Block storage The programmer stores all programmed blocks in the program memory in the
order in which they are transferred (Fig. 2-2). The programmer function
"Transfer data blocks B" transfers first the code blocks then the data blocks to
the PLC. In RAM mode, the user memory is first to be filled with data blocks
after transfer of the code blocks and then the remaining data blocks are written
into internal DB RAM.
The start addresses of all stored blocks are placed in data block DB 0.

Address 0
PB1

F B I

a

a

PB2

a

a

DB1

a

SB10

a

0 B 1

Locat ion of blocks
in the user memory

Fig. 2-2 Example of block storage in the user memory

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Alternative By setting bit 0 in system data word RS 144, you can load data blocks first into
loading (only in internal DB RAM first (i.e. as long as space is available) ("Alternative loading" -
the case of CPU see Chapter 8/RS 144). Data blocks are transferred to the user memory only
9288-3UB 12) when the DB RAM has been filled.

Correcting and When you correct blocks in "RAM mode", the old block is declared invalid in
deleting blocks the memory and a new block is entered.

Similarly, when blocks are deleted, they are not really deleted, instead they are
declared invalid. Deleted and corrected blocks therefore continue to use up
memory space.

Note
You can use the COMPRESS MEMORY online function to make space for
new blocks. This function optimizes the utilization of the memory by
deleting blocks marked as invalid and shifting valid blocks together.
Compression is handled separately according to user memory and internal
DB-RAM (see Section 11.2.2).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.2 Program, Organization and Sequence Blocks

Introduction Program blocks (PBs), organization blocks (OBs) and sequence blocks (SBs) are
the same with respect to programming and calling. You can program all three
types in the LAD, CSF and STL methods of representation.

Programming When programming organization, program and sequence blocks, proceed as
follows:

1. First indicate the type of block and then the number of the block that you
want to program.

The following numbers are available for the type of block listed:

- program blocks 0 to 255

- organization blocks 1 to 39

- sequence blocks 0 to 255

2. Enter your program in the STEP 5 programming language.

When programming PBs, OBs and SBs, you can only use the STEP 5 basic
operations!

A STEP 5 block should always be a self-contained program section. Logic
operations must always be completed within a block.

3. Complete your program input with the block end operation "BE".

Block calls With the exception of OB 1 to OB 39 you must call the blocks to process them.
Use the special STEP 5 block call operations to call the blocks.

You can program block calls inside an organization, program, function or
sequence block. They can be compared with jumps to a subroutine. Each jump
causes a block change. The return address within the calling block is buffered by
the system.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Unconditional Block calls can be unconditional or conditional as follows:
and conditional
block calls Unconditional call

The "JU" statement belongs to the unconditional operations. It has no effect on
the RLO. The RLO is carried along with the jump to the new block. Within the
new block, it can be evaluated but no longer combined logically.

The addressed block is processed regardless of the previous result of logic
operation (RLO - see Section 3.4).

Example: JU PB 100

Conditional call

The JC statement belongs to the conditional operations. The addressed block is
processed only if the previous RLO = 1. If the RLO = 0, the jump is not
executed.

Example: JC PB 100

Note
After the conditional jump operation is executed, the RLO is set to "1"
regardless of whether or not the jump to the block is executed.

Fig. 2-3 Block calls that enable processing of a program block

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Effect of the BE After the "BE" statement (block end), the CPU continues the user program in the
statement block in which the block call was programmed. Program execution continues at

the STEP 5 statement following the block call.

The "BE" statement is executed regardless of the RLO. After "BE", the RLO can
no longer be combined logically. However, the RLO or arithmetic result
occurring directly before execution of the BE operation is transferred to the
block where the call originated and can be evaluated there. When program
execution returns from the block that has been called, the contents of ACCU 1,
ACCU 2, ACCU 3 and ACCU 4, the condition codes CC 0 and CC 1 and the
RLO are not changed. (Refer to Section 3.5 for more detailed information about
the ACCUs, CCO/CCl and RLO).

2.2.1 Organization Blocks as User Interfaces

Introduction Organization blocks form the interfaces between the system program and the
user program. Organization blocks OB 1 to OB 39 belong to your user program
just as program blocks. By programming these OBs, you can influence the
behavior of the CPU during start-up, program execution and in the event of an
error. The organization blocks are effective as soon as they are loaded in the PLC
memory. This is also possible while the PLC is in the run mode.

Once the system program has called a specific organization block, the user
program it contains is executed.

Note
You can program blocks OB 1 to OB 39 as user interfaces and they are
called automatically by the system program as a reaction to certain events.

For test purposes, you can also call these organization blocks from the user
program (JCJJU OB xxx). It is, however, not possible to trigger a COLD
RESTART, e.g. by calling OB 20.

The following table provides you with an overview of the user interfaces (OBs).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

OBs for program
execution Table 2-1 Overview of the organization blocks for program execution

OBs for start-up Table 2-2 Overview of the organization blocks for start-up

Organization blocks to control the start-up procedure

Organization

Block

OB 1

OB 2

OB3toOB5

OB 6

OB 7, OB 8

OB 9

OB 10

OB 11

OB 12

OB 13

OB 14

OB 15

OB 16

OB 17

OB 18

1 Block 1

blocks for controlling program execution

Function and call criterion

Organization of cyclic program execution; first call after a
start-up, then cyclic call

Organization of interrupt-driven program execution;
Call by interrupt signal of S5 bus (process interrupt)

Not used with the CPU 928B

Delay interrupt (from Version -3UB12)

Not used with the CPU 928B

Processing clock-controlled time interrupts

Time interrupts with fixed intervals:

call every 10 ms

call every 20 ms

call every 50 ms

call every 100 ms

call every 200 ms

call every 500 ms

call every l S

call every 2 S

call every 5 S

Function and call criterion

I OB 20 1 Call on request for COLD RESTART (manual and automatic) I

l 0B21 l Call on request for MANUAL WARM RESTARTBETENTIVE COLD
RESTART

l 0B22 l Call on request for AUTOMATIC WARM RESTARTiRETENTIVE
COLD RESTART

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

OBs for error
handling Table 2-3 Overview of the organization blocks for error handling

program errors

l) If the OB is not programmed, the CPU changes to the STOP mode in the event of an error.

EXCEPTION: if OB 23, OB 24 and OB 35 do not exist, there is no reaction.

OB28 is called before the CPU changes to the STOP mode. The CPU stops regardless of whether
and how OB 28 is programmed.

EXCEPTION: OB28 is not called if the power is switched off.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.2.2 Organization Blocks for Special Functions

Introduction The following organization blocks contain special functions of the system
program. You cannot program these blocks, but simply call them (this applies to
all OBs with numbers between 40 and 255). They do not contain a STEP 5
program. Special function OBs can be called in all code blocks.

0 vervie W Table 2-4 Overview of organization blocks for special functions

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integral

Block:

OB 110
OB 111
OB 112
OB 113

OB 120
OB 121
OB 122
OB 123

OB 134
OB 135
OB 136
OB 139

OB 150

OB 151

OB 152

OB 153

OB 160-163

OB 170

OB 180
OB 181
OB 182

OB 185
OB 186

OB 190,192
OB 191,193

OB 200,202-205

OB 216-218

OB 220

OB 221

OB 222

OB 223

OB 224

OB 226

organization blocks with special functions

Block function:

Access to the status (condition code) byte
Clear ACCU 1 ,2 ,3 and 4
ACCU roll up
ACCU roll down

"Block all interrupts" onloff
"Block individual time interrupts" on/off
"Delay all interrupts" onioff
"Delay individual time interrupts" onioff

X D
/D
MOD
PUSH

Setiread system time

Setiread time for clock-controlled time interrupt

Cycle statistics

Setiread time for delay interrupt

Counter loops

Read block stack (BSTACK)

Variable data block access
Test data blocks DBPX
Copy data area

Influence write protection
Compressing memory by means of user program

Transfer flags to data block
Transfer data fields to flag area

Multiprocessor communication

Access to "pages" (CPs and some IPs)

Sign extension

Set cycle monitoring time

Restart cycle monitoring time

Compare restart type

Transfer blocks of IPC flags

Read word from the system program

User Program

These special functions are described in detail in Chapter 6.

Integral organization blocks with special functions

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Block: Block function:

Table 2-4 continued:

0 B 227

OB 228

OB 230-237

OB 240

OB 241

OB 242

OB 250

OB 251

OB 254,255

Read checksum of the system program memory

Read status information of a program execution level

Functions for standard function blocks (handling blocks)

Initialize shift register

Process shift register

Clear shift register

Initialize PID controller algorithm

Process PID controller algorithm

Transfer data block to the DB-RAM

User Program

2.3 Function Blocks

Introduction Function blocks (FBIFX) are also parts of the user program just like program
blocks. FX function blocks have the same structure as FB function blocks and
are programmed in the same way.

You use function blocks to implement frequently recurring or very complex
functions. In the user program, each function block represents a complex complete
function. You can obtain function blocks as follows:

as a software product from SIEMENS (standard function blocks on diskette
see 1-54; with these function blocks you can generate user programs for fast
and simple open loop control, signalling, closed loop control and logging;

you can program function blocks yourself.

Differences to Compared with organization, program and sequence blocks, function blocks
other code blocks have the following four essential differences:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.3.1 Structure of Function Blocks

Block header The block header (five words) of a function block has the same structure as the
headers of the other STEP 5 block types.

Block body The block body on the other hand, has a different structure from the bodies of
the other block types. The block body contains the function to be executed in the
form of a statement list in the STEP 5 programming language. Between the block
header and the STEP 5 statements, the function block needs additional memory
space for its name and for a list of formal operands. Since this list contains no
statements for the CPU, it is skipped with an unconditional jump that the
programmer generates automatically. This jump statement is not displayed when
the function block is displayed on the PG! When a function block is called, only
the block body is processed.

Absolute or
symbolic
operands

You can enter operands in a function block in absolute form (e.g. F 2.5) or
symbolically (e.g. MOTOR1). You must store the assignment of the symbolic
operands in an assignment list before you enter the operands in a function block
(see 130.

Function block in Fig. 2-4 shows the structure of a function block in the memory of a
the PLC memory programmable controller.

cl} 5 words
~ l o c ' k
header

Skip formal I

operano
I st

I C
JU ... I - 1 woro

I\ A

Name of the FB/FX 1 4 words I I
Formal operand 1

Block l body

List of
formal
operands

Formal operand 2

Formal operand

,------ _____________.- <-----S ----------____-- __I
STEP 5 - - -_____--- -- ____________--I ---F-------__- --..
user
program

BE

---_____---- -- , , - - - - - - -____._______ ' -_______----- ,_----_ ,---- l'" ------S' ------------F--. ------- ------ ;---- l

Fig. 2-4 Structure of a function block (FB/FX)

3 words

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

The memory contains all the information that the programmer needs to represent
the function block graphically when it is called and to check the operands during
parameter assignment and programming of the function block. The programmer
rejects incorrect input.

Distinction: When handling function blocks, distinguish between the following procedures:
"programming1 -
"calling and - programming FB/FX
assigning
parameters" and

- calling FB/FX and then assigning actual values to the parameters.

Propramming

When programming, you specify the function of the block. You must decide
which input operands the function requires and which output results it should
transfer to the calling program. You define the input operands and output results
as formal operands. These function as tokens.

Callimp and a s s i ~ i n g parameteq

When a block is called by a higher order block (OB, PB, SB, FB, EX), the
formal operands (block parameters) are replaced by actual operands; i.e.
parameters are assigned to the function block.

Ho W to program

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

IF...

You want to program a function block
"directly", i.e. without formal operands.

You want to use formal operands in a
function block.

THEN...

Program it as you would a program or
sequence block.

Proceed as explained on the following
pages.
Doing so, make sure you keep to the
required order:
First program the FB/FX with the formal
operands and keep it on the PG (offline)
or in the CPU memory (online).
Then program the block(s) to be called
with the actual operands.

User Program

2.3.2 Programming Function Blocks

Procedure You can program a function block only in the "statement list" method of
representation. When entering a function block at a programmer, perform the
following steps:

1. Enter the block type (FBPX) and the number of the function block.

Number your function blocks in descending order starting with FB 255, so
that they do not collide with the standard function blocks. The standard
function blocks are numbered from FB 1 to FB 199.

2. Enter the name of the function block.

The name can have a maximum of eight characters and must start with a
letter.

3. If the function block is to process formal operands:
Enter the formal operands you require in the block as block parameters.

Enter the following information for each formal operand:

- the name of the block parameter (maximum 4 characters),

- the type and (if applicable) the data type of the block parameter

You can define a maximum of 40 formal operands.

4. Enter your STEP 5 program in the form of a statement list (STL).

The formal operands are preceded by an equality sign (e.g. A = XI). They
can also be referenced more than once at various positions in the function
block.

5. Terminate your program input with the block end operation "BE".

Note
If you change the order or the number of formal operands in the formal
operand list, you must also update all STEP 5 statements in the function
block that reference a formal operand and also the block parameter list in
the calling block!

Program or change function blocks only on diskette or hard disk and then
transfer them to your CPU!

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Formal operands The following parameter and data types are permitted as the formal operands of a
function block (also known as block parameters):

Table 2-5 Permitted formal operands for function blocks

I, D, B, T or C are parameters that are indicated to the left of the function
symbol in graphic representation.
Parameters labelled with Q are indicated on the right of the function symbol.

Parameter type

I = input parameter
Q = output parameter

D = data

B = block operation
T = timer
C = counter

The data type indicates whether you are working with bits, bytes, words or
double words for I and Q parameters and which data format applies to D
parameters (e.g. bit pattern or hexadecimal pattern).

Data type

BI/BY/W/D

KM/KH/KY/KS/KF/
KT/KC/KG

none
(no type can be specified)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.3.3 Calling Function Blocks and Assigning Parameters to them

Introduction You can call every function block as often as you want anywhere in your STEP 5
program. You can call function blocks in a statement list or in one of the graphic
methods of representation (CSF or LAD).

Procedure To call a function block and assign parameters to it, perform the following steps:

1. Make sure that the called function block exists either in the PG memory
(offline) or in the CPU memory (online).

2. Enter the call statement for the function block in the block where the call is
to originate.

You can program a function block call in an organization, program or
sequence block or in another function block.

Reaction on PG;
After you enter the call statement (e.g. JU FB200), the name of the relevant
function block and the formal operand list appear automatically.

3. Assign the actual operand relevant to this call to each of the formal operands,
i.e. you assign parameters to the function block.

These actual operands can be different for separate calls (e.g. inputs and
outputs for the first call of FB 200, flags for the second call).
Using the formal operand list, you assign the required actual operands for
each function block call.

Unconditional/
conditional call

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Unconditional call

"JU FBn" for FB function blocks or
"DOU FXn" for EX extended function
blocks: the referenced function block is
processed regardless of the previous result
of logic operation (RLO).

Conditional call

"JC FBn" for EB function blocks or
"DOC FXn" for EX extended function
blocks:

the referenced function block is
only processed when the result of
logic operation RLO = 1.
If RLO = 0 the block call is not
executed. Regardless of whether
the block call is executed or not,
the RLO is alsways set to "l".

After the unconditional or conditional call, the RLO can no longer be combined
logically. However, it is carried over to the called function block with the jump and
can be evaluated there.

User Program

Permitted actual Which operands can be assigned as actual operands is shown in the
operands following table.

Table 2-6 Permitted actual operands for function blocks

Parameter 1 type
Data type Actual operands permitted

B1 for an operand
with bit address

BY for an operand
with byte address

W for an operand
with word address

D for an operand
with double word address

KM for a binary pattern (16 bits)

KY for two absolute numbers,
one byte each,
each in the range from 0 to 255

KH for a hexadecimal pattern with a
maximum of four digits

KS for two alphanumeric characters

KT for timer value (BCD-coded) units
.O to .3 and values 0 to 999

KC for a counter value 0 to 999

KF for a fixed point number
-32768 to t32767

KG for a floating point number
k0.1469368 X 10"~ to
*0.1701412 X 103'

input
output
flag

input byte
output byte
flag byte
data byte left
data byte right
peripheral byte
byte from extended periphery

input word
output word
flag word
data word
peripheral word
word from extended periphery

input double word
output double word
flag double word
data double word

Constants

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

S flags are not permitted as actual operands for function blocks. l

Parameter
type

After the jump to a function block, the actual operands from the block then called
are used in the function block program instead of the formal operands.
This feature of programmable function blocks allow them to be used for a wide
variety of purposes in your user program.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Data type Actual operands permitted

Table 2-6 continued:

B

T

C

Data type designation not possible

Data type designation not possible

Data type designation not possible

DB n Data block; the operation
C DB n is executed

FB n Function block (permitted
only without parameters)
called unconditionally (JU . .n)

OB n Organization block called
unconditionally (JU . .n)

PB n Program blocks - called
unconditionally (JU . .n)

SB n Sequence blocks - called
unconditionally (JU . .n)

T 0 to 255 Timer

C 0 to 255 Counter

User Program

Examples

Example 1: the following (complete) example is intended to further
clarify the programming and calling of a function block
and the assignment of parameters to it. You yourself
can easily try out the example.

Programming the function block FB 202:

FB 202
SEGMENT 1
NAME EXAMPLE
DECL : INPl I /Q/D/B/T/C: 1 BI/BY/W/D: B1
DECL : INP2 I /Q/D/B/T/C: 1 BI/BY/W/D: B1
DECL : OUT1 I /Q/D/B/T/C: Q BI/BY/W/D: B1

:A= INPl
:A= INP2
: == OUT1

Formal
operand
list

STEP 5 l

Function block FB 202 is called and has parameters assigned
to it in program block PB 25:

STL method of representation CSF/LAD method of representation

SEGMENT 1

: J U FB 2 0 2 FB 2 0 2
NAME : EXAMPLE EXAMPLE
I N P 1 : I 1 3 . 5 1 1 3 . 5 Q 2 3 . 0
I N P 2 : F 1 7 . 7 F 1 7 . 7 - F""' :BE

l Formal l l Actual 1
operands operands

The following operations are executed after the jump to FB 202

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

TL method of representation

: C D B 5

: JU F B 2 0 1

F 2.5

KT 010.1

SF/LAD method of representation

FB 2 0 1

REQUEST

: BE

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.3.4 Special Function Blocks

Introduction Apart from the function blocks that you program yourself, you can order
standard function blocks as a finished software product. These contain standard
functions for general use (e.g. signalling functions and sequence control).
Standard function blocks are assigned numbers FB 1 to FB 199.

If you order standard function blocks, remember the special instructions in the
accompanying description (i.e. areas assigned and conventions etc.).

The standard function blocks for the S5-135U are listed in catalog ST 57.

Example

Floating point root extractor RAD:GP FB 6

The function block RAD:GP extracts the root of a floating point number
(8-bit exponent and 24-bit mantissa). It forms the square root. The
result is also a floating point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded up or
down.

If applicable, for the rest of the processing, the function block sets the
"radicand negative" identifier.

Numerical range:

Radicand - 0.1469368 Exp. -38 to +0.1701412 Exp. +39

Root +0.3833434 Exp. -19 to +0.1304384 Exp. +20

Function: Y =
Y = SQRT; A = RADI

Calling the function block FB 6:

In the example, the root is extracted from a floating point number that is
located in DD5 of DB 17 with an 8-bit exponent and a 24-bit mantissa. The
result, another 32-bit floating point number, is written to DD 10. Prior to
this, the appropriate data block must be opened. The parameter VZ (parameter
type: Q, data type: BI) indicates the sign of the radicand: VZ = 1 for a
negative radicand.

Occupied flag words: FW 238 to FW 254.

Continued on the next page

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

STL method of representation LAD/CSF method of representation

: C DB 17
SEGMENT 2

: JU FB 6
eg- NAME : FtAD : GP
ent FtADI : DD 5

VZ : F 15.0
*) SQRT : DD 10

DD= data double word

*) Must be located in separate segments, since the operation "C DB 17"
in segment 1 cannot be converted to LAD/CSF.

Using FB 0 If you have not programmed organization block OB 1, the system program calls
FB 0 (provided it is loaded) cyclically instead of OB 1.

Since you have the total operation set of the STEP 5 programming language
available in a function block, programming FB 0 instead of OB 1 can be an
advantage, particularly when you wish to execute a short time-critical program.

Note
You should only use FB 0 for programming cyclic program execution
(it must not contain parameters).

If both OB 1 and FB 0 are loaded, the system program will only call
organization block OB 1 cyclically.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.4 Data Blocks

Introduction Data blocks @B) or extended data blocks (DX) are used to store the fixed or
variable data with which the user program works. No STEP 5 operations are
processed in data blocks.

The data of a data block includes the following:

various bit patterns (e.g. for status of a controlled process)

numbers (hexadecimal, binary, decimal) for timer values or arithmetic results

alphanumeric characters, e.g. for message texts.

Structure of a A data block (DBDX) consists of the following parts:
data block

block preheader (DV, DXV),

block header

block body.

Block preheader The block preheader is created automatically on the hard or floppy disk of the
PG and not transferred to the CPU. It contains the data formats of the data words
entered in the block body.

You have no influence over the creation of the block preheader.

Note
When you transfer a data block from the PLC to diskette or hard disk, the
corresponding block preheader can be deleted. For this reason, you must
never modify a data block with different data formats in the PLC and then
transfer it back to diskette, otherwise all the data words in the DB are
automatically assigned the data format you selected in the presets screen
form.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Proaram

Block header The block header occupies five words in the memory and contains the following:

the block identifier

the programmer identifier

the block type and the block number

the library number

the block length (including the length of the block header).

Block body The block body contains the data words with which the user program works. These
data words are in ascending order in the block body, starting with data word DW 0.
Each data word occupies one word (16 bits) in the memory.

Maximum length A data block can occupy a total of maximum 32 767 words (including header) in
the CPU memory. When you use your programmer to enter and transfer data
blocks, remember the size of your CPU memory!

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

User Program

2.4.1 Creating Data Blocks

Procedure To create a data block, perform the following steps:

1. Enter the block type (DBDX) and data block number between 3 and 255.

2. Enter individual data words in the data format you require.

(Do not complete your input of the data words with a BE statement!)

Note
Data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved for
specific functions. You cannot use them freely for other functions
(see Section 2.4.3)!

Permitted data When creating a data block, you can use all of the data formats listed below.
formats

Table 2-7 Data formats permitted in a data block

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.4.2 Opening Data Blocks

Introduction You can only open a data block (DBJDX) unconditionally. This is possible
within an organization, program, sequence or function block. You can open a
specific data block more than once in a program.

To open a data block, perform the following steps:

Validity of a data After you open a data block, all statements that follow with the operand area 'D'
block refer to the opened data block.

IF...

You want to open a DB data block

You want to open a DX data block

The opened data block also remains valid when the program is continued in a
different block following a block call.

THEN...

Type in the STEP 5 operation "C DB.."

Type in the STEP 5 operation "CX DX.."

If a second data block is opened in this new block, the second data block is only
valid in the newly called block from the point at which it is called. After program
execution returns to the calling block, the old data block is once again valid.

Access You can access the data stored in the opened data block during program
execution using load or transfer operations (refer to Chapter 3 for more
detailed information).

With a binary operation, the addressed data word bit is used to form the RLO.
The content of the data word is not changed.

With a setheset operation, the addressed data word bit is assigned the value of
the RLO. The content of the data word may be changed.

A load operation transfers the contents of the referenced data word into
ACCU 1. The contents of a data word are not changed.

A transfer operation transfers data from ACCU 1 to the referenced data word.
The old contents of the data word are overwritten.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

Note
Before accessing a data word, you must open the data block you require in
your program. This is the only way that the CPU can find the correct data
word.
The referenced data word must be contained in the opened block, otherwise
the system program detects a load or transfer error.

With load and transfer operations, you can only access data word numbers
up to 255!

An opened data block remains valid until one of the following events
occur:

a) a second data block is opened
or
b) the block, in which the data block was opened, is completed with

'BE', 'BEC' or 'BEU'.

Examples

You want to transfer the contents of data word DW 1 from
data block DB 10 to data word DW 1 of data block DB 20.

Enter the following statements:

:C DB 10 (open DB 10)
:L DW 1 (load the contents of DW 1 into

:C D B 2 0 (openDB20)
:T DW 1 (transfer the contents of ACCU 1

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

(Fig. 2-5)

Data block DB 10 is opened in program block
PB 7 (C DB 10). During the subsequent program execution,
the data of this data block are processed.

After the call (JU PB 20) program block PB 20 is
processed. Data block DB 10, however, remains valid. The
data area only changes when data block DB 11 (C DB 11) is

Data block DB 11 now remains valid until the end of
program block PB 20 (BE).

After the jump back to program block PB 7, data block
DB 10 is once again valid.

Range of v a l ~ d ~ t y of DB 10

Fig. 2-5 Range of validity of an opened data block

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

2.4.3 Special Data Blocks

Introduction On the CPU 928B data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved
for special functions. They are managed by the system program and you cannot
use them freely for other functions.

DB 0 Data block DB 0 (see Section 8.3)

Data block DB 0 contains the address list with the start addresses of all blocks
that are located in the data block RAM of the CPU. The system program
generates this address list during initialization (following each OVERALL
RESET) and it is updated automatically when you use a programmer to change
data blocks or generate a new data block.

Data block DB 1 (see Section 10.1)

Data block DB 1 contains the list of digital inputs/outputs (P peripheral with
relative byte addresses from 0 to 127) and the interprocessor communication
(IPC) flag inputs and outputs that are assigned to the CPU. If applicable, the
block may also contain a timer field length.

DB 1 can have parameters assigned and be loaded as follows:

to reduce the cycle time in single processor operation, since only the inputs,
outputs or timers entered in DB1 are updated.

DB 1 must be assigned parameters and loaded as follows:

- for multiprocessing

- when IPC flags exist with CPs

Data block DB 2 (see Section 4.5)

You use data block DB 2 to assign parameters to the closed loop controller
structure R64. The closed loop control function can be ordered as a software
product and operates supported by the system program.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

User Program

DX 0 Data block DX 0 (see Chapter 7)

If you assign parameters to data block DX 0 and load it, you can change the
defaults of certain system program functions (e.g. the start-up procedure) and
adapt the performance of the system program to your particular application.

Data block DX 1

Reserved.

Data block DX 2

Data block DX 2 is used to specify the communication via the second serial
interface. See the "CPU 928B Communication" Manual for details of assigning
parameters to this block (see 1140.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Contents of the This chapter is intended for readers who do not yet have any great experience in
chapter using the programming language. The chapter therefore deals with the basics of

STEP 5 programming and explains in detail (with examples) the STEP 5
operations for the CPU 928B.

Experienced readers who require more information about a specific STEP 5
operation listed in the Pocket Guide /l/ can refer to the reference section in 3.5.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Section

3.1

3.2

3.3

3.4

3.4.1

3.5

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

Description

Principle of Program Execution

Program Organization

Storing Program and Data Blocks

Processing the User Program

Definition of Terms used in Program Execution

STEP 5 Operations with Examples

Basic Operations

Programming Examples in the STL, LAD and CSF
Methods of Representation

Supplementary Operations

Executive Operations

Semaphore Operations

Page

3-2

3-3

3-8

3-10

3-11

3-13

3-17

3-32

3-47

3-54

3-67

Program Execution

3.1 Principle of Program Execution

Overvie W You can process your STEP 5 user program in various ways.

Cyclic program execution is most common with programmable controllers
(PLCs). The system program runs through a program loop (the cycle, refer to
Section 3.4) and calls organization block OB 1 cyclically in each loop (refer to
Fig. 3-1).

System program User program

f rom star t -up

Fig. 3-1 Principle of cyclic program execution

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.2 Program Organization

Introduction Program organization allows you to specify which conditions affect the
processing of your blocks and the order in which they are processed. Organize
your program by programming organization blocks with conditional or
unconditional calls for the blocks you require.

You can call additional program, function and sequence blocks in any
combination in the program of individual organization, program, function and
sequence blocks. You can call these one after another or nested in one another.

For maximum efficiency, you should organize your program to emphasise the
most important program structures and in such a way that you can clearly
recognize parts of the controlled system which are related in the software.

Figs. 3-2 and 3-3 are examples of a program structure.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Ekecution

control level

Fig. 3-2 Example of the organization of the user program according to the program structure

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

ig. 3-3 Example of the organization of the user program according to the structure of the controlled system

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Nesting blocks Fig. 3-4 shows the principle of nested block calls.

= Q 60.6')~ JU FB 30'
/

NAME: KURV

',B E 'B E

*) Operat ion to which the program returns

Fig. 3-4 Nested logic block calls

Block addresses A block start address specifies the location of a block in the user memory (or
DB-RAM). For logic blocks, this is the address of the memory location
containing the first STEP 5 operation (with FB and EX, the JU operation via the
formal operand list); with data blocks, it is the address of the first data word.

To enable the CPU to locate the called block in the memory, the start addresses
of all valid blocks are entered in the block address list in data block DB 0. DB 0
is managed by the system program, you cannot call it yourself.

The CPU stores a return address every time a new block is called. After the
new block has been processed, this return address enables the program to find the
block from which the call originated. The return address is the address of the
memory location containing the next STEP 5 statement after the block call. The
CPU also stores the start address and length of the data block valid at this
location.

Nesting depth You can only nest 62 blocks within one another. If more than 62 blocks are
called, the CPU signals an error and goes to the stop mode.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Example of
nesting depth

OB 2 -) FB 21

OB 13 + PB 131 -b FB 131

O B 1 -) P B I -) F B I

ou can determine the nesting depth of your program as follows:

Add all the organization blocks you have programmed
(in the example: 4 OBs).

Add the nesting depth of the individual organization blocks
(in the example: 2 + 2 + l + 0 = 5).

Add the two amounts together to obtain the program nesting depth
(in the example: 4 + 5 = nesting depth 9). It may not exceed a value

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.3 Storing Program and Data Blocks

Introduction You must load your user program and any data blocks into the program memory
so that the CPU can process it. As program memory, you can use the user
memory and the DB-RAM.

To load the code blocks and data blocks into the program memory, you can
proceed in different ways:

RAM mode If no memory card (Flash EPROM) is plugged when an OVERALL RESET is
performed on the CPU, the CPU goes into "RAM" mode.

Code blocks and data blocks are loaded from the PG to the user memory or the
DB-RAM of the CPU. They can be reloaded (replaced), edited or deleted by
the PG at any time, which means the write protection is deactivated.

EPROM mode Code blocks and data blocks are copied from the memory card to the user
memory by the system program. The system program also sets a write
protection ID.

This means that all copied blocks cannot be reloaded, edited or deleted.

To edit data in data blocks, you must ensure that the data blocks are copied to the
DB-RAM.

You can copy or move data blocks that are programmed in the memory card to
the DB-RAM using OB 254/0B 255 (for example, startup OB). You can load
other data blocks from the PG to the DB-RAM.

As soon as the data blocks are in the DB-RAM, you can reload, edit or delete
them.

Any changes to these data blocks are not included in the memory card. You
must save their contents before the next overall reset.

After the overall reset, you can remove the memory card; the data are in the user
memory and ready for use.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Activatin~ldeactivatin~ write protection

DB-RAM

If you want to make changes to blocks in EPROM mode, you can deactivate the
write protection again by deleting the write protection ID (see Section 8.3,
RS 138).

You can make blocks read-only again by setting the write protection ID again.

You can also assign write protection to a CPU without a memory card if you set
the write protection ID.

Displaying the memory confi~uration

If you display information about the memory in EPROM mode using the PG
function "memory configuration", the length of the memory is displayed as '0'
and the end address of the user memory is displayed as 'OEEEEH'.

Note
The memory card can only be programmed on the PG. You can use the
PG software from version 6 to do this.
When programming, you should select the PG operating mode "WORD"
(see SS-DOS description 134.

Data blocks @B/DX) are written to the DB-RAM by creating or copying them.
When data blocks are transferred from the PG to the CPU, they are stored in the
DB-RAM if the user memory is full or if "alternative loading" is set in RAM
mode (see Section 8.3, RS 144).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.4 Processing the User Program

Introduction The complete software on the CPU (consisting of the system program and the
STEP 5 user program) has the following tasks:

CPU START-UP

Controlling an automation process by continuously repeating operations
(CYCLE).

Controlling an automation process by reacting to events occurring
sporadically or at certain times (interrupts) and reacting to errors.

For all three tasks, you can select special parts of your program to run on the
CPU by programming user interfaces (organization blocks OB 1 to OB 35 -
refer to Section 2.2).

START-UP

CYCLE

Before the CPU can start cyclic program execution, an initialization must be
performed to establish a defined initial status for cyclic program execution and,
for example, to specify a time base for the execution of certain functions. The
way in which this initialization is performed depends on the event that led to a
START-UP and on settings that you can make on your CPU. For more detailed
information, refer to Chapter 4.

You can influence the START-UP procedure of your CPU by programming
organization blocks OB 20, OB 21 and OB 22 or by assigning parameters in
DX 0 (refer to Chapter 7).

Following the START-UP, the system program goes over to cyclic processing. It
is responsible for background functions required for the automation tasks (refer
to Fig. 3-1 at the beginning of this section).
After the system functions have been executed at the beginning of a CYCLE, the
system program calls organization block OB 1 or function block FB 0 as the
cyclic user program. You program the STEP 5 operations for cyclic processing
in this block.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Reactions to To allow you to specify the reactions to interrupts or errors, special organization
interrupts blocks (OB 2,OB6 and OB9 to OB 18 for interrupt servicing, OB 19 and OB 23
and errors to OB 35 for reactions to errors) are available on the CPU 928B. You can store

an appropriate STEP 5 program in these blocks.

When interrupts or errors are to be processed, the system program activates the
corresponding organization block during cyclic processing. This means that the
cyclic processing is interrupted to service an interrupt or to react to an error. The
nesting of the organization blocks has a fixed priority (for further information,
refer to Chapters 4 and 5).

In addition to the organization blocks, you can also influence the reaction of the
CPU to interrupt servicing by assigning parameters in data block DX 0.

Organization blocks OB 1 to OB 39 can be called by the system program as soon
as they are loaded in the program memory (also during operation).

If the OBs are not loaded, there is either no reaction from the CPU or (in the
event of errors) it goes to the stop mode (refer also to Section 5.4).

You can also load data block DX 0 into the program memory during operation
like the organization blocks. I t is, however, only effective after the next COLD
RESTART. If DX 0 is not loaded, the standard settings apply (refer to
Chapter 7).

3.4.1 Definition of Terms used in Program Execution

Cycle time The cycle begins when the cycle monitoring time is triggered and ends with the
next trigger. The time that the CPU requires to execute the program between two
triggers is called the cycle time. The cycle time consists of the runtime of the
system program and the runtime of the user program.

The cycle time therefore includes the following:

the time required to process the cyclic program (system and user program),

the time required to process interrupts (e.g. time-controlled interrupt),

the time required to process interruptions (errors).

Cycle time The CPU monitors the cycle time in case it exceeds a maximum value. The
monitoring standard setting for this maximum value is 150 ms. You can set the cycle time

monitoring yourself or restart it during user program execution (refer to
DX OIChapter 7 and special function OB OB 221 and OB 2221Sections 6.23
and 6.24).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Process input The process image of the inputs and outputs is a memory area in the internal
and output RAM. Before cyclic execution of the user program begins, the system program
image (PI1 and reads the signal states of the input peripheral modules and transfers them to the
PIG?) process input image. The user program evaluates the signal states in the process

input image and then sets the appropriate signal states for the outputs in the
process output image. After the user program has been processed, the system
program transfers the signal states of the process output image to the output
peripheral modules.

Buffering the 110 signals in the process image of the inputs and outputs avoids a
change in a bit within a program cycle from causing the corresponding output to
"flutter".

The process image is therefore a memory area whose contents are output to the
peripherals and read in from the peripherals once per cycle.

Note
The process image only exists for input and output bytes of the "P" peripherals
with byte addresses from 0 to 127!

Interprocessor IPC flags exchange data between individual CPUs (multiprocessing) or between the
communication CPU and some communication processors.
(IPC) flags

The system program reads the input IPC flags of the CPU before cyclic
execution of the user program begins. After the STEP 5 program is processed,
the system program transfers the output IPC flags to the coordinator or to the
communications processors.

You define the input and output IPC flags when you create data block DB 1 (refer to
Section 10.1).

Interrupt events Cyclic program execution can be interrupted by the following:

process interrupt-driven program processing,

time-controlled program processing,

delay interrupt,

time interrupt clock-controlled.

The cyclic program can be interrupted or even aborted completely by the
following:

a device hardware fault or program error,

operator intervention (using the PC stop function, or setting the mode selector
to "stop", multiprocessor stop MP-STP),

a stop operation.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.5 STEP 5 Operations with Examples

Introduction A STEP 5 operation consists of the operation and an operand. The operation
specifies what the CPU is to do (operation). The operand specifies with what an
operation is to be executed.

STEP 5 operations can be divided into the following groups:

basic operations (can be used in all logic blocks),

supplementary operations,

executive operations (can only be used in FBFX function blocks),

semaphore operations (can only be used in FB/FX function blocks).

Accumulators as The CPU 928B has four accumulators, ACCU 1 to ACCU 4. Most STEP 5
working registers operations use two 32-bit registers (ACCU 1 and ACCU 2) as the source of

operands and the destination for results.

ACCU l
1)

l) The structure is analogous for ACCU 2 to ACCU 4

The STEP 5 operation to be carried out affects the accumulators, e.g.:

High word

ACCU 1 is always the destination in load operations. A load operation shifts
the old contents of ACCU 1 to ACCU 2 (stack lift). Accumulators 3 and 4 are
not changed by any load operations.

High byte

Low word

Arithmetic operations combine the contents of ACCU 1 with those of
ACCU 2, write the result to ACCU 1 and transfer the contents of ACCU 3 to
ACCU 2 and the contents of ACCU 4 to ACCU 3 (stack drop). In 16-bit
fixed point arithmetic, only the low word or ACCU 3 is transferred to the low
word of ACCU 2 and the low word of ACCU 4 to the low word of ACCU 3.

Low byte High byte

When a constant is added (ADD BF/KF/DH) to the contents of ACCU 1, the
accumulators 2 ,3 and 4 are not changed.

Low byte

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Condition codes STEP 5 operations either set or evaluate condition codes. The condition codes are
written to a condition code byte. Two groups of condition codes can be
distinguished: condition codes of digital operations (word condition codes - bits 4
to 7 in the condition code byte) and condition codes from binary and executive
operations @it condition codes - bits 0 to 3 in the condition code byte). You can see
how the various condition codes are influenced or evaluated by STEP 5 operations
be referring to the operation list (see /l/ in Chapter 13).

You can display the condition code byte on a programmer using the "STATUS"
online function (refer to Section 11.2.3). The byte has the following structure:

Bit condition
codes

Word condition codes

ERAB First bit scan

Bit condition codes

CC 1

A logic operation sequence containing binary operations always begins with
the first bit scan, following which a new RLO is formed. The bit condition
code ERAB = 1 is then set. While the remaining logic operations in the
sequence are being performed, ERAB remains set to 1 and the RLO cannot
be changed by these logic operations.

The active sequence of logic operations is terminated by a binary setheset
operation (e.g. S Q 5.0). The setheset operation sets ERAB to 0; the RLO can
be evaluated (e.g. by RLO-dependent operations) but can no longer be
combined logically. The next binary logic operation following a binary
setheset operation is once again a first bit scan.

Bit 7 6 5 4 3 2 1 0

CC0

Example of ERAB

Last operation of the pre-

OV

vious l o g i c operation
sequence
ERAB i s s e t t o ' 1 ' ,
the new RLO i s formed by
an AND operation
The RLO i s influenced by

OS

an OR operation
The RLO i s influenced by
an AND NOT operation.
ERAB i s s e t t o ' O r ,
the sequence i s now complete

OR

The function block i s c a l l e d
dependent on the RLO.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

ST A RLO ERAB

Program Execution

Other bit RLO Result of logic operation
condition codes

This is the result of bit logic operations. It is the truth statement for
comparison operations (refer to operations list, binary logic operations or
comparison operations).

STA Status

For bit operations, this indicates the logical status of the bit just scanned or
set. The status is updated in binary logic operations - except for A(, O(,), 0
and for setheset operations.

Internal CPU bit for handling "AND before OR" logic operations.

Word condition OV Overflow
codes

This indicates whether the permissible number range was exceeded during
the arithmetic operation just completed.

OS Stored overflow

It can be used in several arithmetic operations to indicate whether an overflow
occurred at any point during the operations.

CClandCCO

These are the result condition codes that you can interpret from table 3.1.

Note
To evaluate the condition codes directly, comparison and jump operations are
available (refer to Sections 3.5.1 and 3.5.3).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Table 3-1 Result condition codes of STEP 5 operations

Shift
operations

Shifted
bit
= 0

Shifted
bit
= 1

For
SED,
SEE

Semaphore
is
set

Semaphore
is
set
or

enabled

Jump
operations
executed

Note
When a change of level takes place, e.g. servicing a timed interrupt, all
accumulators and the bit and word condition codes (RLO etc.) are saved and
loaded again when the interrupted level is resumed.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.5.1 Basic Operations

Introduction You can use the basic operations in all code blocks and all methods of
representation (STL, LAD, CSF).

Binary logic
operations

Table 3-2 Binary logic operations

1 Operation 1 Operand I Function 1
AND logic operation after scanning for signal state "1"

OR logic operation after scanning for signal state "1"

of an input in the PI1
of an output in the PIQ
of a flag bit
of an S flag bit
of a data word bit
of a timer
of a counter

AND logic operation after scanning for signal state "0"

OR logic operation after scanning for signal state "0"

of an input in the PI1
of an output in the PIQ
of a flag bit
of an S flag bit
of a data word bit
of a timer
of a counter

ANDing of expressions in parentheses
ORing of expressions in parentheses
Close parenthesis (to complete the bracketed expression)

Maximum of 8 levels are permitted, i.e. 7 opened brackets

The binary logic operations generate the result of logic operation (RLO).
At the beginning of a logic sequence, the RLO only depends on the signal state
scanned (first scan) and not on the type of logic operation (0 = OR, A = AND).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Within a sequence of logic operations, the RLO is formed from the type of operation,
previous RLO and the scanned signal state. A sequence of logic operations is
completed by an operation (e.g. setlreset operations) which retains the RLO
(ERAB = 0). Following this, the RLO can be evaluated but cannot be further
combined.

Example of RLO formation

0 - RLO retained
1 - first bit scan

0 RLO retained, end of

SeVreset
operations

Table 3-3 Setlreset operations

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operation

S
R

- -

Operand

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 1023.7
D 0.0 to 255.15

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 1023.7
D 0.0 to 255.15

Function

Set if RLO = 1
Reset if RLO = 1

an input in the PI1
an output in the PIQ
a flag
an S flag
a bit in the data word

The RLO is assigned to

an input in the PI1
an output in the PIQ
a flag
an S flag
a bit in the data word

Program Execution

Load and
transfer
operations

Table 3-4 Load and transfer operations

1 Operation 1 Operand 1 Function 1

Load

Transfer

an input byte fromlto the PI1
an input word fromlto the PI1
an input double word fromlto the PI1

an output byte fromlto the PIQ
an output word fromlto the PIQ
an output double word fromlto the PIQ

a flag byte
a flag word
a flag double word

an S flag byte
an S flag word
an S flag double word

the right byte of a data word fromlto DB,DX

the left byte of a data word fromlto DB,DX

a data word fromlto DB, DX
a data double word fromlto DB, DX

a peripheral byte of the digital inputs/outputs (P area)

a peripheral byte of the analog or digital inputsloutputs
(P area)

a peripheral word of the digital inputs/outputs (P area)

a peripheral word of the analog or digital inputsloutputs
(P area)

a byte of the extended 110 area (0 area)

a word of the extended 110 area (0 area)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Load operations

Operation

Load operations write the addressed value into ACCU 1. The former contents
of ACCU 1 are saved in ACCU 2 (stack lift).

Transfer operations

Operand

Transfer operations write the contents of ACCU 1 to the addressed memory
location.

Function

Table 3-4 continued:

L

LC

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

KB 0 to 255
KS 2 ASCII

characters

KF -32768 to
t32767

KG
KH 0 to FFFF
DH Oto

FFFF FFFF
KM 16-bit pattern
KY 0 to 255 for

each byte

KT 0.0 to 999.3
KC 0 to 999

T 0 to 255
C 0 to 255

T 0 to 255
C 0 to 255

Load

a constant, 1 byte
a constant, 2 ASCII characters

a constant as fixed point number

a constant as floating point number
a constant as hexadecimal number
a double word constant as a hexadecimal number

a constant as bit pattern
a constant, 2 bytes

a constant timer value (in BCD)
a constant counter value

a timer, binary coded
a counter, binary coded

Load

a timer
a counter

in BCD

Program Execution

Examples of load
and transfer
operations

Fig. 3-6 illustrates loading/transferring a byte, word or double word
frm/to a memory area organized in bytes (PII, PIQ, flags, I/O).

:L IB i load byte i of the PI1 into ACCU-1-LL
:L IW j load bytes j and j+l of the PI1 into ACCU-1-L
:L FD k load flag bytes k to k+3 in ACCU 1

Fig. 3-6 Load and transfer operations in a byte-oriented memory area

CPU 9286-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

ig. 3-7 illustrates the loading/transfer of a byte, word or double word
rm/into a memory area organized in words.

:L DR i load the right byte of data word i into ACCU-1-LL
:L DL j load the left byte of data word j into ACCU-1-LL
:L DW k load data word k into ACCU-1-L
:L DD 1 load data words 1 and 1+1 into ACCU 1

)only with load operations

Fig. 3-7 Load and transfer operations in a word-oriented memory area

Note
Load operations do not affect the condition codes. Transfer operations
clear the OS bit.

1 When a byte or word is loaded the extra bits are cleared in ACCU 1. I

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Addressing I/Os You can use load and transfer operations to address the 110 peripherals as
follows:

directly using the following operations:

using the process image with the following operations:

and with logic and setlreset operations

Note
If you use the transfer operations T PY 0 to 127 and T PW 0 to 126, the
process output image is updated at the same time.

Note the following points about V 0 peripherals:

A process inputloutput image exists for 128 input and 128 output bytes of the
P peripherals with byte addresses from 0 to 127.

No process image exists for the entire area of the 0 peripherals and the P
peripherals with relative byte addresses from 128 to 255. (For more
information on address space allocation see
Section 8.2.2).

110 modules with addresses of the 0 peripherals can only be
plugged into expansion units (not in the central controller).

In one expansion unit, you can use either only P peripherals or only 0
peripherals.

Caution
If you use relative addresses of the 0 peripherals in an expansion unit, you
can no longer use these addresses for V 0 modules in the central controller
(this would result in double addressing).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Timer and To load a timer using a start operation or a counter using a set operation, you
counter must first load the value in ACCU 1.
operations

The following load operations are preferable:

For timers: L KT, L IW, L QW, L FW, L DW, L SW.
For counters: L KC, L IW, L QW, L FW, L DW, L SW.

Starting a timer with the selected timer value requires an RLO signal change.

A counter is set or started with the selected counter value when a positive-going
RLO signal edge is detected.

The following table indicates the signal edge change with corresponding arrows.

Table 3-5 Timer and counter operations

l) positive-going edge (4): signal change from '0' to '1'
negative-going edge (): signal change from '1' to '0'

Operation

SP
SE
SD
SS
SF
R

S
R
CU
CD

When executing the timer or counter operations SP T, SE T, SD T, SS T, SF T and
S C the value in ACCU 1 is transferred to the timer or counter (as with the
transfer operation) and the appropriate operation is started.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operand

T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255

C 0 to 255
C 0 to 255
C 0 to 255
C 0 to 255

RLO
1)

f
f
f
f

f

f
f

Function

Start a timer as a pulse
Start a timer as extended pulse
Start a timer as ON delay
Start a timer as stored ON delay
Start a timer as OFF delay
Reset a timer

Set a counter (BCD number from 0 to 999)
Reset a counter
count up
Count down

Program Execution

Timer value

With the operation L KT, you can load a timer value directly into ACCU 1 or
indirectly from a flag or data word. The value must have the following structure
(with L KT, you specify the time base after the period in the operand as shown
below):

Bit no.

Time base specified in BCD: 0: 0.01 sec
1: 0.1 sec
2: 1 sec

These bits are irrelevant 3: 10 sec

(i.e. they are ignored when
the timer is started)

15

it assignment:

x x 1 0 0 0 0 1 0 0 1 0 0 1 1 1
A A J

V V V

2 1 2 7

V
Timer value 127

Time base 1 sec

A A J
V V V

10 l o l l o o
V
Timer value 0 ... 999 in BCD

1 4 1 3

Note
The start of each timer is liable to an inaccuracy of 1 time base! When
using timers, you should therefore select the smallest possible time base
(time base c timer value):

Example:
time value 4s not: l s x 4 inaccuracy: l s

but: 0.01 s X 400 inaccuracy: 0.01 s

12

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

11 10 9 8 7 6 5 4 3 2 1 0

Program Execution

Counter value With the operation L KC, you can load a counter value directly in
ACCU 1 or indirectly from a flag or a data word. The value must have the following
structure:

Bit no

Counter value 0 ... 999
specified in BCD

These bits are irrelevant,
(i.e. they are ignored when
the counter is set)

x x x x 0 0 0 1 0 0 1 0 0 1 1 1

<-v-'+

+
Counter value 127

In the timer or counter itself, the value is in binary code. If you want to scan the
timer or counter, you can load the actual timer or counter value into ACCU 1
directly or in BCD code.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Further
examples of
timer and
counter values

Timer va lue

c
Timer T 1 0

..

0 ACCU 1
..

directly into ACCU 1

Counter va lue

c
0 Counter C 10

..

0 ACCU 1
..

directly into ACCU 1

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Timer value

h
0 Timer T 10

Time base Timer value

"LC T 10": Loads the timer value and the time base of
timer T 10 into ACCU 1 in BCD

Loading counter value i n BCD code:

Timer value

.

9 0 Timer T 10

II 1 Binary -F BcD I

Counter value in BCD

"LC C 10": Loads the counter value of counter C 10
into ACCU 1 in BCD

If you load values in BCD, status bits 14 and 15 of the timer or 12 to 15 of the
counter are not loaded. They have the value 0 in ACCU 1. The value in the
ACCU can now be processed further.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Arithmetic
operations

Table 3-6 Arithmetic operations

Arithmetic operations logically combine the contents of ACCU 1 and ACCU 2
(e.g. ACCU 2 - ACCU 1). The result is then contained in ACCU 1. An arithmetic
operation changes the arithmetic registers as follows (in fixed point operations only
the low word):

Operation

+ F
- F
X F
: F

+ G
- G
X G
: G

ACCU 1 ACCU2 ACCU3 ACCU4

before: <ACCU l > <ACCU 2> <ACCU 3> <ACCU 4>

l / / A

Operand

-

after: <resuit> - CACCU 3> CACCU 4> CACCU 4>

Function

Add two fixed point numbers (16 bits)
Subtract one fixed point number from another (16 bits)
Multiply two fixed point numbers (16 bits)
Divide one fixed point number by another (16 bits):

quotient in ACCU-1-L, remainder in ACCU-1-H

Add two floating point numbers (32 bits)
Subtract one floating point number from another (32 bits)
Multiply two floating point numbers (32 bits)
Divide one floating point number by another (32 bits)

Note
Within the supplementary operations, there are operations for
subtraction and addition of double word fixed point numbers.

In addition, you can use the ENT operation from the set of supplementary
operations for loading ACCU 3 and ACCU 4 (see Section 3.5.3).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Comparison
operations

Table 3-7 Comparison operations

Block operations

Table 3-8 Block operations

Operation

F
D

> = G
<

l) only for test purposes!

Operand

-

Operation

J U
J C

D O U
D O C

B E
B E C
B E U

C
C X

G
GX

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Function

Compare for equal to
Compare for not equal to
Compare for greater than
Compare for greater than or equal to
Compare for less than
Compare for less than or equal to

...E: compare two fixed point numbers (16 bits)

... D: compare two fixed point numbers (32 bits)

... G: compare two floating point numbers (32 bits)

Operand

OB l to 39 l)

OB 110 to 255
PB 0 to 255
EB 0 to 255
SB 0 to 255

EX 0 to 255

-

DB 3 to 255
DX 3 to 255

DB 3 to 255
DX 3 to 255

Function

Jump unconditionally
Jump conditionally (only when RLO = 1)

to an organization block
to a system program special function
to a program block
to an FB function block
to a sequence block

Jump unconditionally
Jump conditionally (only when RLO = 1)

to an FX function block

Block end
Block end, conditional (only when RLO = 1)
Block end, unconditional

Call a DB data block
Call a DX data block

Generate data block DB
Generate data block DX

(ACCU 1 must contain the number of data words
- maximum 4091 - that the new block is to have)

Program Execution

G DB/GX DX Generating a data block

The operation G DBx generates a DB data block with the number X (3 S X S 255)
in the user memory of the CPU. The content of the data block is not assigned the
value 0, i.e. the data words can have any contents.

Before programming this statement, you must store the number of data words
that the new DB is to have in ACCU-1-L. The operation "G DB" or "GX DX"
creates the block header. A data block generated in this way (without block
header) can occupy a maximum of 4091 words. You can generate longer data
blocks using OB 125.

If the data block already exists, the length of the DB is not permitted or there is
not enough space in the DB-RAM, the system program calls OB 31. If this is not
loaded, the CPU goes to the stop mode.

The GX DXx operation generates a DX data block in the DB-RAM and is
otherwise the same as G DBx.

NO P/display/stop
operations

Table 3-9 NOP/display/stop operations

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operation

N O PO
N O P l

B L D

S T P

Operand

-

0 to 255

-

Function

No operation
No operation

Display generation operation for the PG:
the CPU handles the operation like a no operation

CPU changes to soft STOP.

Program Execution

3.5.2 Programming Examples in the STL, LAD and CSF Methods of
Representation

Logic operations

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.1 is "0" when no AND condition is satisfied

utput Q 2.1 is "0" when input 16.0 has signal state "0"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Output Q 3.0 is "0" when at least one OR condition is not satisfied

STEP 5 representation
Logical/circuit diagram

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

SeVreset
operations

ignal state "1 " at input 1 1.4 resets the flip-flop

the signal state at input 1 1.4 changes to "OH, the

the set signal (input 1 2.7) and the reset signal
1 1.4) are applied at the same time, the scan

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

STEP 5 representation
Logical/circuit diagram

hen the set signal (input 1 2.6) and the reset signal

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

STEP 5 representation
Logical/circuit diagram

1 1.7 nnnnn-
F4.0 nnnnn-
F2.0 I I I I I

On each leading edge of the signal at input 1 1.7,
the AND condition (AI 1.7 and AN F 4.0) is satisfied;
the RLO is "1 ". This sets flags F 4.0 (edge flag) and

In the next processing cycle, the AND condition
AI 1.7 and AN F 4.0 is not satisfied, since flag F 4.0
has already been set.

Flag F 2.0 is reset.

Flag F 2.0 therefore only remains "1 " for one program

Binary scaler (binary divider)

S F1.O
AN I 1.0
R F1.O
A F 1.1
A (23.0
= F 2.0
A F 1.1
AN (23.0
AN F 2.0
S Q 3.0
A F 2.0

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Ekecution

Timer operations

STEP 5 representation
Logical/circuit diagram

The timer is started during the first scan if the RLO is "1 ".
Subsequent scans with an RLO of "1" do not affect the

If the RLO is "OH, the timer is reset (cleared).

The scan AT or OT produces the signal "1 " as long
as the timer is running.

The timer is loaded with the specified value (1 0). 13.0-

The number to the right of the decimal point indicates ~4.0-

the time base:
O=O.lsec 2 = l s e c
1 =0.1 sec 3 = 10sec
BI and DE are digital outputs of the timer. The time at
output BI is in binary code. The time at DE is in BCD code
with time base.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Logical/circuit diagram

n RLO of "0" does not affect the timer.

scan AT or OT produces a signal "1" as long as
Timer value

et the timer with the value of the operand I, Q, F or
in BCD code (in this example, input word 15).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

STEP 5 representation
Logical/circuit diagram

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Proaram Execution

A 1 3.2

n RLO of "0" does not affect the timer.

he scan AT or OT produces the signal "1" when the

A 1 3.4

hen the RLO is " l " , the timer is reset (cleared).

e scan AT or OT produces signal state "1 " if

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Ekecution

STEP 5 representation
Logical/circuit operation

A 1 4 0
CU C 1

L K C 1 5 0
S C 1

The flag necessary for edge evaluation of the set input
is incorporated in the counter word.
BI and DE are digital outputs of the counter cell. The
value at BI is in binary code and the value at DE is in

Reset counter

STEP 5 representation
Logical/circuit diagram

A 1 4 0

An RLO of "1" (1 4.2) resets the counter to zero.

An RLO of "0" does not affect the counter.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

"1" to a maximum value of 999. The function CU
only executed on a positive edge (from "0" to "1 ")
the logic operation programmed before CU. The

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Comparison
operations

= "1 ": comparison is satisfied if ACCU-1 -L = ACCU-2-L
= "0": comparison is not satisfied, when ACCU-1-L is

ot equal to ACCU-2-L.
he condition codes CC1 and CC0 are set as described

CCU-2-H and ACCU-1 -H are not involved in the operation
or a 16-bit fixed point comparison.
n a 32-bit fixed point comparison (! = D) and floating point

CCU 2 (32 bits) are compared with each other.
uring the comparison, the numerical representation of the
perands is taken into account, i.e. the contents of ACCU-1 -L

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

e first operand is compared with the second operand
the comparison operation.
e RLO of the comparison is binary.

RLO = "1 ": comparison is satisfied if ACCU-1 -L is not
I to ACCU-2-L.
= "0": comparison is not satisfied if ACCU-1 -L

beginning of Section 3.5.
-2-H and ACCU-1 -H are not involved in the operation

CU-2-H and ACCU-1-H are involved in a 32-bit fixed
nt comparison and floating point comparison.

n into account, i.e. the contents of ACCU-1-L and

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.5.3 Supplementary Operations

Introduction You can use the supplementary operations set on the programmer only in
function blocks (FB and FX). This means that the total operations set for
function blocks consists of the basic operations and the supplementary operations.

The system operations also belong to the supplementary functions. You can use
the system operations, for example to overwrite the memory at optional locations
or to change the contents of the working registers of the CPU.

If you intend to use system operations, you should be familiar with Chapter 9.

Caution
Only experienced system programmers should use the system operations
and then only with caution.

You can only write operations in function blocks in STL. You cannot program
function blocks in graphic form (LAD and CSF methods of representation).

This section describes the supplementary operations and covers possible
combinations of substitution operations with actual operands.

Identification System operations are marked in the first column of the tables with
of system
operations

Binary logic
operations

AND operation, scan a formal operand for signal state '1'

Table 3-10 Binary logic operations with formal operands

AND operation, scan a formal operand for signal state '0'

Operation

OR operation, scan a formal operand for signal state '1'

OR operation, scan a formal operand for signal state '0'

Operand

Insert formal operand

Function

Inputs, outputs, data and flags addressed in binary (parameter types: I, Q;
data type BI) and timers and counters (parameter type: T, C) are permitted
as actual operands.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Digital logic
operations

Table 3-11 Digital logic operations

ACCUs 2,3 and 4 are not affected, however, the condition codes CC 1 and CC 0
are affected (see word condition codes).

Operation

AW

OW

XOW

SeVreset
operations

AND operation on the contents of ACCU-1-L and ACCU-2-L

OR operation on the contents of ACCU-1-L and ACCU-2-L

Exclusive OR operation on the contents of ACCU-1-L and ACCU-2-L

Table 3-12 Setlreset operations with formal operands

Operand

operation I

Function

Operand Function

Reset a formal operand (binary)

Reset a formal operand (digital)
for timers and counters

Assign the value of the RLO to a
formal operand

Inputs, outputs and F flags addressed in binary (parameter type: I, Q;
data type BI) are permitted as actual operands.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Timer and
counter
operations

Table 3-13 Timer and counter operations with formal operands

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operation

SP =

SD =

SEC =

SSU =

SED =

ER =

ER

RLO I for SP T

RLO ,]v t
for FR T

Scan
with A T

Operand

m
D

m

m

D

m
L

T 0 to 255

C 0 to 255

Function

Start timer specified by the formal operand as a pulse with the value
stored in ACCU-1-L (parameter type T).

Start timer specified by the formal operand as ON delay with the value
stored in ACCU-1-L (parameter type T).

Start timer specified by the formal operand as extended pulse with the value
stored in ACCU-1-L or set counter specified as formal operand with the
counter value stored in ACCU-1-L (parameter type: T, C).

Start timer specified by the formal operand as stored ON delay with the
value stored in ACCU-1-L or increment a counter specified as formal
operand (parameter type: T, C).

Start timer specified by the formal operand as stored OFF delay with the
value stored in ACCU-1-L or decrement a counter specified as formal
operand (parameter type: D, C).

Enable formal operand (timer/counter) for cold restart (see ER T or
FR R); (parameter type: T, C).

Insert formal operand

Enable timer for cold restart:
The operation is only executed on the leading edge of the RLO (change
from 0 to 1). The timer is restarted if the RLO is 1 at the time of the
start operation. (See timing diagram below the table).

Enable a counter for setting or resetting:
The operation is executed only on the leading edge of the RLO (change
from 0 to 1). The counter is only started if the RLO = 1 at the time of
the start operation.

Program Execution

Examples

NAME :EXAMPLE1
:A =ANNA :A 1 1 0 . 3
:L KT 010.2 :L KT010.2
:SSU =BERT :SS T 17

NAME :EXAMPLE2
:A =MAXI :A 1 1 0 . 5
:SSU =DoRA :CU C 15
:A =IRMA :A 1 1 0 . 6
:SFD =DoRA :CD C 15
:A =EVA :A 1 1 0 . 7
:L KC 100 :L KC 100
:SEC =DoRA :S C 15
:AN =DoRA :AN C 15

NAME :EXAMPLE3
:A =BILL :A 1 1 0 . 4
:L =EGON
:SEC =JACK
:A =JACK

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Load and
transfer
operations

Table 3-14 Load and transfer operations with formal operands

Actual operands permitted include those of the corresponding basic operations
except for S flags. For the "LW=" operation, permissible data types include a
binary pattern (KM) or a hexadecimal pattern (KH), two absolute numbers of
1 byte each (KY), a character (KS), a fixed point number (W), a timer value
(KT) and a counter value (KC). For "LWD=" permissible data is a floating point
number.

Operation

L =

LCD =

LW =

LWD =

T =

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operand

m

m

1

Function

Load a formal operand:
The value of the operand specified as a formal operand is loaded into the
ACCU (parameter type: I, T, C, Q; data type: BY, W, D).

Load a formal operand in BCD code:
The value of the timer or counter specified as a formal operand is loaded
into the ACCU in BCD code (parameter type: T, C).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU (parameter
type: D; data type: KF, KH, KM, KY, KS, KT, KC).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU (parameter
type: D; data type: KG).

Transfer to a formal operand:
The contents of the accumulator are transferred to the operand specified
as a formal operand (parameter type: I, Q; data type: BY, W, D).

Insert formal operand

Program Execution

Table 3-15 Load and transfer operations with special operands

In contrast to the RI, RJ and RT areas, you can only use words RS 60 to RS 63 of the
RS area. Refer to Section 8.3.4 "RS/RT Area".

Operation

L

L

T

T

You can use the RT area in its complete length (RT 0 to RT 255) providing you
do not use any standard function blocks.

Arithmetic
operations

Operand

RI 0 to 255

RJ 0 to 255

RS 0 to 255

RT 0 to 255

RI 0 to 255

RJ 0 to 255

RS 60 to 63

RT 0 to 255

Table 3-16 Arithmetic operation ENT

Function

Load a word from the interface data area into ACCU 1 (RI area)

Load a word from the extended interface area into ACCU 1 (RJ area)

Load a word from the system data area into ACCU 1 (RS area)

Load a word from the extended system data area into ACCU 1 (RT area)

Transfer the contents of ACCU 1 to a word in the interface data area
(RI area)

Transfer the contents of ACCU 1 to a word in the extended interface data
area (RJ area)

Transfer the contents of ACCU 1 to a word in the system data area
(RS area)

Transfer the contents of ACCU 1 to a word in the extended system
data area (RT area)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operation

ENT

Operand

-

Function

This causes a stack lift into ACCUs 3 and 4:

<ACCU 4> := <ACCU 3>

<ACCU 3> := <ACCU 2>

<ACCU 2> := <ACCU 2>

<ACCU l > := <ACCU l >

ACCUs 1 and 2 are not changed. The old contents
of ACCU 4 are lost.

Program Execution

Example

DH 0000 0000
to
FFFF FFFF

Table 3-17 Supplementary arithmetic operations

Add a byte constant (fixed point) to ACCU-1-L (includes sign change)/
the condition code in CC 0, CC 1, OV and OS are not affected! -
ACCU-1-H and ACCUs 2 to 4 remain unchanged.

Operation

Add a fixed point constant (word) to ACCU-1-U the condition codes in
CC 0, CC 1, OV and OS are not affected! - ACCU-1-H and ACCUs 2 to
4 remain unchanged.

Add a double word fixed point constant to ACCU l/the condition
codes in CC 0, CC 1, OV and OS are not affected! -
ACCUs 2 to 4 remain unchanged.

Add two double word fixed point constants (ACCU 2 + ACCU l)/
the result can be evaluated in CC O/CC 1. ')

Operand

Subtract two double word fixed point constants
(ACCU 2 - ACCU l)/the result can be evaluated in CC O/CC 1. ')

Function

Swap the contents of ACCU 1 and ACCU 2

l) Programming is dependent on the PG type and the release of the PG system software.

For changes in ACCU 2 and ACCU 3: see Section 3.5.1 "Basic Operations/Arithmetic Operations".

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

3.5.4 Executive Operations

Introduction The executive operations also include system operations.

Caution
System operations should only be used with care and then only by
experienced programmers familiar with the system.

System operations are indicated in the table by El

Jump operations When you use the supplementary jump operations, you indicate the jump
destination for unconditional jumps symbolically. The symbolic parameter of the
jump operation is identical to the symbolic address of the destination statement.
When programming, remember that the absolute jump distance should not
exceed * 127 words and a STEP 5 statement can consist of more than one word.
You can only execute these jumps within a block; jumps over segment
boundaries are not permitted ("segment" = structural element in PBs, SBs, FBs,
FXs and OBs; see STEP 5 manual).

Note
The jump statement and jump destination (symbolic address) must be in
the same segment. A symbolic address can only be used once per segment.
Exception: this does not apply to the JUR jump for which you specify an
absolute jump distance as the parameter.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Table 3-18 Jump operations

Caution
If you use JUR incorrectly, undefined statuses can occur in the system. It
should only be used by extremely experienced programmers with detailed
knowledge of the system.

Operation

JU =

JC =

JZ =

JN =

JP =

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Jump if result < '0':
the jump is only executed if CC 1 = 0 and CC 0 = 1.
The RLO is not changed.

Jump on overflow:
the jump is executed when the OV condition code is 1.
If there is no overflow (OV is O), the jump is not executed. The RLO is

An overflow occurs when an arithmetic operation exceeds the
permissible range for a given numerical representation.

Jump when the OS (stored overflow) condition code is set:
the jump is executed when the condition code OS is 1. If there is no
overflow (OS is O), the jump is not executed. The RLO is not changed.

arrive in a different segment). The operation is always executed
regardless of conditions.
The operand is the number of words difference between the address of

operand) or lower (negative operand) address

Operand

addr

(addr =symbolic
address with
maximum

4 characters)

addr

(addr = symbolic
address with
maximum

4 characters)

Function

Jump unconditionally:
The jump is executed regardless of conditions

Jump conditionally:
the conditional jump is executed only if the RLO is 1.
If the RLO is 0, the statement is not executed and the RLO is set to 1.

Jump if result is '0' :
the jump is executed only if CC 1 is 0 and CC 0 is 0.
The RLO is not changed.

Jump if result is not 0 :
the jump is executed only if CC1 is not equal to CCO.
The RLO is not changed.

Jump if result > '0' :
the jump is only executed if CC 1 = 1 and CC 0 = 0.
The RLO is not changed.

Program Execution

Shift operations

Table 3-19 Shift operations

Only ACCU 1 is involved in the execution of shift operations. The parameter part of
these operations specifies the number of positions by which the accumulator contents
should be shifted or rotated. For the SLW, SRW and SSW operations, only the low
word of ACCU 1 is involved in the shift operations. For SLD, SSD, RLD and RRD
operations, the entire contents of ACCU 1 (32 bits) are involved.

Operation

SLW

SRW

SLD

SSW

SSD

RLD

RRD

Shift operations are executed regardless of conditions.

You can use jump operations to scan the value of the last bits shifted out using
cc 1/CC 0.

Operand

0 to 15

0 to 15

0 to 32

0 to 15

0 to 32

0 to 32

0 to 32

Function (operation with ACCU 1)

Shift a word to the left (vacant positions to the right are padded with
zeros)

Shift a word to the right (vacant position to the left are padded with zeros)

Shift a double word to the left (vacant positions to the right are padded
with zeros)

Shift a word with sign to the right (vacant positions to the left are padded
with the sign - bit 15)

Shift a double word with sign to the right (vacant positions to the left are
padded with the sign - bit 31)

Rotate to the left

Rotate to the right

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Shift: last
bit shifted

0

1

CC 1

0

1

CC 0

0

0

Jump
operation

JZ=

JN=
JP=

Program Execution

Examples

1. You want to shift the contents of data word DW 52 four bits to the left
and write them to data word DW 53.

STEP 5 program: Contents of the data words:

2. You want to read the input double word ID 0, and shift the contents of
ACCU 1 so that the bit positions of the input double word shown in bold
face are retained and the remaining bit positions are set to defined
values (OH or OFH) .
STEP 5 program: Contents of ACCU 1 (hexadecimal)

ABCD
BCDO
OBCD
BCDO
FBCD
OFBC
FBCO
OFBC

3.Application: Multiplication by the 3rd power, e.g. new value = old value X 8

:L FW 10
: SLW 3
:T FW 10 Caution: do not exceed the

positive area limit!

4.Application: Division by the 2nd power, e.g. new value = old value : 4

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Conversion
operations

CFW

CSW

CSD

DEF

DUF

DED

DUD

FDG

GFD

Table 3-20 Conversion operations

DEF

Operation

Form the l 's complement of ACCU-1-L (16 bits)

Form the 2's complement of ACCU-1-L (16 bits)

Form the 2's complement of ACCU 1 (32 bits)

Convert a fixed point number (16 bits) from BCD to binary

Convert a fixed point number (16 bits) from binary to BCD

Convert a double word (32 bits) from BCD to binary

Convert a double word (32 bits) from binary to BCD

Convert a fixed point number (32 bits) to a floating point number (32 bits)

Convert a floating point number to a fixed point number (32 bits)

Function

The value in ACCU-1-L (bits 0 to 15) is interpreted as a BCD (binary-coded
decimal) number. After the conversion, ACCU-1-L contains a 16-bit fixed point
number.

DUF The value in ACCU-1-L @its 0 to 15) is interpreted as a 16-bit fixed point number.
After the conversion, ACCU-1-L contains a BCD number.

15
DUE DEF

0

S (sign): 0 = positive
l = negative

S S S S

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

10 10 10 O

Program Execution

DED The value in ACCU 1 (bits 0 to 31) is interpreted as a BCD number. After the
conversion, ACCU 1 contains a 32-bit fixed point number.

DUD The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed point number.
After the conversion, ACCU 1 contains a BCD number.

DUD L DED

0

S (sign): 0 = positive
l = negative

FDG The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed point number.
After the conversion, ACCU 1 contains a floating point number (exponent and
mantissa).

GFD The value in ACCU 1 (bits 0 to 31) is interpreted as a floating point number. After
the conversion, ACCU 1 contains a 32-bit fixed point number.

FDG L
... 31 30 ... 24 23

GFD 'l

Exponent Mantissa

The conversion is made by multiplying the (binary) mantissa by the value of the
(binary) exponent by shifting the mantissa value to more significant bits past an
imaginary decimal point by the value of the exponent (base 2). After the
multiplication, remnants of the original mantissa remain to the right of the imaginary
decimal point. These bit places are cut off from the whole result.

This conversion algorithm produces the following result classes:

Floating point numbers 2 0 or S -1 result in the next lower number.

Floating point numbers 0 and > -1 result in the value '0'.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Con version
examples

Examples of
CFW, CSW

l o a t i n g p o i n t number 32-b i t f i xed p o i n t number

. You want t h e con ten t s of d a t a word DW 64
i nve r t ed b i t f o r b i t (reversed) and s t o r e d i n
d a t a word DW 78.

STEP 5 program: Assignment of t h e d a t a words:

KM = 0011111001011011

KM = 1100000110100100

.The con ten t s of d a t a word DW 207 a r e i n t e r p r e t e d
a s a f i xed p o i n t number and s t o r e d i n d a t a
word 51 wi th a reversed s ign .

STEP 5 program: Assignment of t h e d a t a words:

KF = +51

KF = -51

Decrement/
increment

Table 3-21 Decrement/increment operation

l) The contents of the low byte of ACCU-1-L are decremented or incremented by the number specified as the
operand without a carry. The operation is executed regardless of conditions.

Operation

D

I

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operand

1 to 255

1 to 255

Function

Decrement the low byte (bits 0 to 7) of ACCU-1-L by the value of the
operand l)

Increment the low byte (bits 0 to 7) of ACCU-1-L by the value of the
operand l)

Program Execution

Example
TEP 5 program: Assignment of the data words:

:L DW 7 KH = 1010

:T DW 8 KH = 1020

Processing
operations

Table 3-22 Processing operations

the address data word and executed.

FW 0 to 254
the following operation is combined with the parameter specified in
the addressed F flag and executed.

Process formal operand (parameter type B):
Only C DB, JU PB, JU OB, JU FB, JU SB can be substituted.

Indirect processing of a formal operand:

l) The value in the formal operand or system data is interpreted as the operation code of a STEP 5 operation and is then executed.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Note
Only the following operations can be combined with DO DW, or DO FW,
D1 or DO RS:

- A..,AN..,O..,ON..,S..,R..,=..
with areas I, Q, F, S,

- L.., T.. with areas P, 0 , I, Q, F, S, D, RI, RJ, RS, RT,

- LT, L C,

- LCT, LC C,

- SLW, SRW,

- D, I, SED, SEE,

- C DB, JU.. , JC.., G DB, GX DX, CX DX, DOC FX, DOU FX.

The PG does not check the legality of the combinations!

Examples of DO DO D W P O FW
operations Operand substitution

Using the statements "DO DW" and "DO FW" you can access data with a
substitution, e.g. in a program loop. The substituted access consists of the
statement DO DWDO FW followed immediately by one of the STEP 5
operations listed above.
"Substituted" means that the operand for the operation is not programmed as a
static value but is fixed during the course of the STEP 5 program.

Select the operand type from the range permitted for the operation when you
write your program, e.g. PB for the operation "JU PB nn":

You must first load the operand value (nn in the example) in a data word or
F flag word (parameter word) before the substituted access with
DO D W P O FW.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

:L KF +l20
:T F W 1 4 load FW with the value "KF +12OW
:DO FW 14
:L I B O

7 . before the operation "L IB" is executed, the
operand value 'Or is replaced by the value '120';
Operation executed: L IB 120

.Data word as index register:
he contents of data words DW 20 to DW 100 are set to signal state '0'. The
ndex register for the parameter of the data words is DW 1.

:L KF +20 supply the index register
:T DW 1
:L KF +O reset
:DO DW 1
:T DW 0
:L DW 1 increment the index register
:L KF +l

:T DW 1
:L KF +l00

: JC =M001 jump if the index is within the range
remaining STEP 5 program

.Jump distributor for subroutine techniques:

Contents of flag word FW 5:

.Jump distributor for block calls:

:DO FW 10 Contents of flag word FW 10:
: JU PB 0

PB 3

Advantage:
all program sections are
contained in one block.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Operand substitution with binary operations

Bit no.

For operand substitutions with binary operations you can use the following
operand types: inputs, outputs, F flags, S flags, timers and counters.
In this substitution, the structure of the F flag word or data word (parameter
word) depends on the operation you are using.

Parameter word for inputs and outputs

Parameter word for Fflags

Bit no.

15 11

no significance

Parameter word for S flags

Bit no.

10 8

Bit address
from 0 to 7

15 11

no significance

Parameter word for timers and counters

Bit no.

7

0

10 8

Bit address
from 0 to 7

15

0

6 0

Byte address from 0 to 127

7 0

Byte address from 0 to 255

Principle of the substitution with a binary operation

14 12

Bit address
from 0 to 7

15 8

no significance

+
statement executed

11 0

Byte address from 0 to 1023

7 0

Number of timer or
counter cell from 0 to 255

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Example of D1 operation

In function block FB 1, STEP 5 operations are executed whose operation
codes were transferred
by a calling block as formal operands FW 10, FW 1 2 and FW 1 4 .

Which of the operation codes is executed is written by the calling block
as a consecutive number in flag word FW 16.
The result of the executed operation is then entered in ACCU 1 and is
transferred to flag word FW 1 8 .

NAME :TEST

DECL :m10 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
DECL : m 1 2 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
DECL : m 1 4 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

:L FW 1 6 cons. number of formal operand
with required operation code

: D1 transferred operation code is executed
:T FW 16 result from ACCU 1
: BE

:T FW 1 6 cons. no. of formal operand with operation code
:JU =AUFR

AUFR :
:JU FB 1 call FB TEST

NAME :TEST
FWlO : KH 4A5A op. code " L I B 9 O W , formal operand 1
FW12 : KH xxxx other operation code, formal operand 2
FW14 : KH yyyy other operation code, formal operand 3

:T FW 1 8 ACCU 1 + FW 1 8
: BE

List of actual operands in FB 2 Principle of sequence in FB 1

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

FW 10
FW 12

FW 14

4A5AH
xxxxH I m

0001 H

ACCU 1

WH

0001 H
(cons, no, of actual operand)

Operation executed with "DI"

Program hecution

Disabling/enabling
process
interrupts

Table 3-23 Disablinglenabling process interrupts

You can use operations "disablelenable process interrupts", for example to
suppress external process interrupts when you are using time-driven processing.
External process interrupt-driven processing is then no longer possible in the
program section between the IA and RA operations.
See also the special function OB 120 "disable interrupts", Section 6.5.

Operation

IA

RA

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operand Function

Disable external process interrupt servicing

Enable external process interrupt servicing

Program Execution

3.5.5 Semaphore Operations

Introduction If two or more CPUs in one programmable controller (see Chapter 10) require
access to the same global memory area (peripherals, CPs, IPs), there is a danger
that one CPU will overwrite the data of another CPU or that one CPU could read
invalid intermediate data statuses of another CPU and misinterpret them. You
must therefore coordinate CPU accesses to the common memory areas.

You can coordinate the individual CPUs using the SED and SEE operations.

You can, for example, program the following coordination between two CPUs: a
CPU involved in multiprocessing can only access the common memory area
after it has successfully set a declared semaphore (SES). A semaphore xx can
only be set by a single CPU. If a CPU fails to set (i.e. disable) the semaphore, it
cannot access the memory area. In the same way, a CPU can no longer access the
memory once it has released the semaphore again (SEE).

SED/SEE (non-system operations)
disable/enable
semaphore

Note
The SED xx and SEE xx operations must be programmed in all CPUs that
require synchronized access to a common global memory area.

Table 3-24 Disablelenable semaphore

Standard FBs, handling blocks and blocks for multiprocessor
communication manage the coordination internally. If you use these
blocks, you do not need to program the operations SEE xx and SED xx.

Operation

SED

SEE

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operand

0 to 31

0 to 31

Function

Disable (set) a semaphore

Enable (release) a semaphore

evaluation of the result of the operation via CC OICC 1

Program Execution

Effect of SED/SEE The CPU that executes the operation SED xx (disable semaphore) accesses a
specific byte in the coordinator (provided that no other CPU has access to that
byte already).

Once a CPU has reserved access, the other CPUs can no longer access the
memory area protected by the semaphore (numbers 0 to 31). The area is
therefore disabled for all other CPUs.

Make sure that the coordination functions correctly, all CPUs requiring access to
the same area of global memory must use the same semaphore.

The SEE xx (enable semaphore) operation resets the byte on the coordinator. The
protected memory area is then once again accessible to the other CPUs. A
semaphore can only be enabled by the CPU that disabled it.

Use of SED/SEE Fig. 3-8 illustrates the basic sequence of coordinated access using a semaphore.

START

Disable semaphore

N 0
successful? t.

Access to sema-
phore protected
global memory

Enable semaphore:
SEE

End

Fig. 3-8 Coordination of access to the global memory

Before disabling or enabling a particular semaphore, the SED and SEE operations
scan the status of the semaphore. The condition codes CC 0 and CC 1 are affected as
follows:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Note
The scanning of a particular semaphore (= read procedure) and the
disabling or enabling of the semaphore (=write procedure) are one unit. No
other CPU can access the semaphore during these procedures!

CC 1

0

1

When using semaphores, remember the following points:

A semaphore is a global variable, i.e. the semaphore with number 16 exists
only once in the entire system, even if your controller is using three CPUs.

CC 0

0

0

AU CPUs that require coordinated access to a common memory area must use the
SED and SEE operations.

All participating CPUs must execute the same start-up type.
During a COLD RESTART, all the semaphores are cleared.
During a manual or automatic warm restart, the semaphores are
retained.

Evaluation

JZ

JN, JP

Start-up in multiprocessor operation must be synchronized. For this reason,
no test operation is allowed.

Significance

Semaphore was disabled by another CPU and
cannot be disabledlenabled.

Semaphore was disabled/
enabled.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

Application
example for
semaphores

Tasks :

Four CPUs are plugged into an S5-135U. They output status messages to a
status signalling device via a common memory area of the 0 peripherals
(OW 6). A CPU must output each status message for 10 seconds. Only after a
10 second output can a new message be output from the same CPU or a
different CPU overwrite the first message. The use of peripheral word OW 6
(extended 1/0 area, no process image) is controlled by a semaphore. Only the
CPU that was able to reserve this area for itself by disabling the assigned
semaphore can write this message to OW 6. The semaphore remains disabled for
10 seconds at a time (TIMER T 10). The CPU re-enables the semaphore only
after this timer has elapsed. After the semaphore has been re-enabled, the
other CPUs can access the reserved area. The new message can then be written
to OW 6.
If one CPU attempts to disable a semaphore and the semaphore is already
disabled by a second CPU, the first CPU waits until the next cycle. It then
re-attempts to set the semaphore and output its message.

Implementation:

The following program can run in all four CPUs, each with a different
message. The blocks shown below are loaded.

7

FB 0:
MAIN PROGRAM

5 flags are used as follows:

FB 100:
DISABLE SEMAPHORE

FB 110:
OUTPUT REPORT

FB 101:
ENABLE SEMAPHORE

F 10.0 = 1: a message was requested or is being processed

F 10.1 = 1: the semaphore was disabled successfully

F 10.2 = 1: the timer was started

F 10.3 = 1: the message was transmitted

F 10.4 = 1: the semaphore was re-enabled

I Continued on next page

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

NAME :MAIN

:A F 10.0
: JC =M001 If no message is active,

:AN I 0.0

:L KIi 2222 generate message and
:T FW 12
:AN F 10.0
:S F 10.0 set "MESSAGE" flag.

M001 :JU FBlO Call "REPORT" FB
NAME :REPORT

NAME :REPORT

:AN F 10.1 If no semaphore is disabled,
:JC FB 100 call "disable semaphore" FB.

NAME : SEMADIS

:A F 10.1 If the semaphore is disabled
:AN F 10.2 and the timer has not started,
:S F 10.2
:L KT010.2 start the timer.
:SE T 10

:A F 10.2 If the timer has started
:AN F 10.3 and no message is being transmitted,
:JC FB 110 call "output message" FB.

NAME :MSGoUT

:A F 10.2 If the timer has started
:AN F 10.4 and the semaphore is not enabled
:AN T 10 and the timer has elapsed,
:JC FB 101 call "enable semaphore" FB.

:AN F 10.4 If the semaphore is enabled,

:L KHOOOO
:T FYlO reset all flags.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Program Execution

AME : SEMADIS

Disable semaphore no. 10
: JZ =M001
:AN F 10.1 If the semaphore is disabled successfully,
:S F 10.1 set "SEMAPHORE-DISABLED" flag.

AME : MSGOUT

:L FW12 Transmit a message
:T OW 6 to the peripherals
:AN F 10.3
:S F 10.3 Set "TRANSFER MESSAGE"

AME :SEMAENAB

Enable semaphore no. 10
: JZ =M001
:AN F 10.4
:S F 10.4 Set "SEMAPHORE ENABLED"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program
Processing Levels

Contents of the This chapter provides an overview of the operating statuses and program
chapter execution levels of the CPU 928B-3UB21. It informs you in detail about various

types of start-up and the organization blocks associated with them, in which you
can program your own sequences for various situations when restarting.

You will also learn the characteristics of the program execution modes "cyclic
processing", "time-controlled processing" and "interrupt-driven processing" and
will see which blocks are available for your user program.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Section

4.1

4.2

4.3

4.3.1

4.3.2

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

Description

Introduction and Overview

Program Processing Levels

STOP Mode

Characteristics and Indication of the Operating Mode

Requesting and Performing an OVERALL RESET

RESTART Mode

MANUAL and AUTOMATIC COLD RESTART

MANUAL and AUTOMATIC WARM RESTART

Comparison of the Different Restart Types

User Interfaces for Restart

Interruptions in the RESTART Mode

RUN Mode

Cyclic Program Execution

Time-Driven Program Execution

CLOSED LOOP CONTROLLER INTERRUPT:
Processing Closed Loop Controllers

PROCESS INTERRUPT: Interrupt-Driven Program
Execution

Nested Interrupt-Driven and Time-Driven Program
Execution

Page

4-2

4-5

4-11

4-11

4-13

4-15

4-16

4-16

4-18

4-19

4-22

4-24

4-26

4-28

4-35

4-36

4-39

Operating Modes and Program Processing Levels

4.1 lntroduction and Overview

Introduction The CPU 928B has three operating modes:

STOPmode

RESTART mode

RUN mode

In the RESTART and RUN modes, certain events can occur to which the system
program has to react. In many cases, a specific organization block (a block from
OB 1 to OB 35) is called as a reaction to an event and serves as the user interface.

The modes are displayed by LEDs on the front panel of the CPU.
Some of the modes must be activated using the operating elements on the front
panel of the CPU. The position of the LEDs and operating elements can be seen
in Fig. 4-1.

Error display
LEDs (red)

LED (green)

LED (red)

Order number
and version

Slot for memory card

Mode selector

Mode selector

lnterface 1

PG interface, 15-pin
lnterface SI 1

lnterface 2

Slot for interface
submodule
lnterface SI 2

Lever
Securing bolt

Fig. 4-1 Front panel of the CPU 928B with display and operating elements

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

LED display of Various LEDs on the front panel of the CPU signal the current CPU mode. The
modes following table shows you the relationship between the STOP and RUN LED

displays and the mode they indicate.
Other LEDs (BASP, ADF, QVZ, ZYK) provide more information.

Table 4-1 Meaning of the LEDs "RUN" and "STOP"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

LED
RUN

ON

OFF

OFF

OFF

OFF

ON

LED
STOP

OFF

ON

OFF

flashing
slowly

flashing
quickly

ON

Mode

The CPU is in the RUN mode.

The CPU is in the STOP mode.
After a STOP request at the switch or from the PG, the STOP LED is lit continuously,
because the STOP condition was requested by the user or, in multiprocessor operation, by
another CPU and was not prompted by the CPU itself.

The CPU is in the RESTART mode
or
the CPU is in the RESTARTBUN mode, the program test is active and the program has
reached a breakpoint (wait state)
or
the CPU is in the RESTARTBUN mode, the program test is active and a breakpoint was
eliminated again before it was reached (wait state)

The CPU is in the STOP mode.
The CPU itself prompted the STOP condition (possibly also of the other CPUs).
Typical causes:
ADF, QVZ, LZF, BCF, CL controller error, interrupt collision, cycle time error,
BSTACK overflow, stop command.

If you switch the mode selector to STOP, the flashing stops and the LED is lit
continuous1 y.

The CPU is in the STOP mode.
An overall reset has been requested. This request can be prompted by the CPU itself or
by an operator input.

Serious system error
Remedy:
- Overall Reset of CPU.
- If error persists, switch voltage at PLC off and on again and perform Overall Reset

of CPU.
- If error persists, switch off voltage at PLC, remove and re-insert the CPU and perform

Overall Reset of CPU.
- If error persists, replace CPU or have it repaired.

Operating Modes and Program Processing Levels

Signalling and BASPLED
error LEDs

This indicates whether the S5 bus signal BASP (disable command output) is
active:

In the single processor mode, the CPU clears BASP when it changes to the
RUN mode and sets BASP when it changes to the STOP mode. BASP is
activated in the RESTART and in the STOP mode and in the first cycle
following a warm restart.

In the multiprocessor mode, the conditions for BASP are identical with those
in the single processor mode, provided the switch on the coordinator is set to
RUN. (See your System Manual 121 for more information on the "Test mode"
special case.)

Note
If BASP is active, all digital outputs are disabled.

If an AUTOMATIC or MANUAL WARM RESTART has been
executed before the transition to the RUN mode, the BASP LED goes
out only after the remaining cycle has been processed.

l1QVZll LED

Timeout of an 110 module.

"ADF" LED

Addressing error; the user program has accessed an address in the process
image for which there is no module inserted in the VOs.

"ZYK" LED

Cycle error; cycle monitoring time has been exceeded.

The errors ADF and QVZ can only occur in RESTART and in RUN, the cycle
error ZYK can only occur in RUN.

At the end of the program processing levels ADF, QVZ or ZYK, the error LED
is cleared by the system program, if the CPU has not gone to the STOP mode.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.2 Program Processing Levels

Introduction Fig. 4-2 gives an overview of the operating states and the processing levels in the
CPU 928B (-3UB12). The explanations of the abbreviations are on the following
page.

LED RUN: off
LED STOP: on
LED BASP: on

In multiproc.

LED BASP: on
cycle together

LED RUN: on
LED STOP: off
LED BASP: off

S T O P RESTART mode RUN
mode b C mode

WECK-FE

PROCESS
QVZ

W A R M REST. I
---------------------A

STP
N AU PEU

4
BAU

X: DOPP
STUEU
STUEB

ABORT (OB 28)
(mode selector,
PG-STP or MP-STP)

N AU
POWER
DOWN

Fig. 4-2 Operating states and program processing levels

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Program processing levels in RESTART:

MANUAL COLD RESTART
MANUAL WARM RESTART
RETENTIVE MANUAL COLD RESTART Restart
RETENTIVE AUTOMATIC COLD RESTART levels
AUTOMATIC COLD RESTART
AUTOMATIC WARM RESTART

BCF
LZF
ADF
QVZ
SSF

(operating code error)
(runtime error)
(addressing error) levels
(timeout)
(interface error) !

Program processing levels in the RUN mode: 1
CYCLE
TIMED JOB
TIME INT 5 sec
TIME INT 2 sec
TIME INT 1 sec
TIME INT 500 ms
TIME INT 200 ms
TIME INT 100 ms
TIME INT 50 ms
TIME INT 20 ms
TIME INT 10 ms
CONTROLLER INT
DELAY INTERRUPT
PROCESS INT

WECK-FE
REG-FE
ZYK
BCF
LZF
ADF

(cyclic program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(collision of time interrupts)
(time-driven program execution)
(process interrupt-driven prog. execution)

(collision of time interrupts)
(CL controller error)
(cycle time error)
(operating code error)
(runtime error)
(addressing error)

Error
levels

Basic
levels

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Features of a A program processing level is characterized by specific features which are
program explained below:
processing level

Nesting other levels

When an event occurs, which requires higher priority processing, the current
level is interrupted by the system program and the higher priority level is
activated.

This occurs in the following situations:

- at error levels and program
processing levels at RESTART:always at operation boundaries,

- all other levels: at block or operation boundaries
(depending on the setting in DX 0,
refer to Chapter 7).

Specific system program

Each program processing level has its special system program.

YCLE processing level, the system program updates
e process image of the inputs and outputs, triggers the

After the system program calls an organization block, the CPU executes the
STEP 5 statements it contains. Previously, the current register record is saved in
the ISTACK and a new register record is set up (register: ACCU 1 to 4, block
stack pointer, block address register, data block start address, data block length,
step address counter and the base address register).
If "normal" program execution is interrupted by the occurrence of an event,
following the execution of the OB, the CPU continues the program execution at
the point of interruption as long as no stop is programmed in the OB.

Fig. 4-3 Principle of level change and ISTACK

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Priority of Program processing levels have a fixed priority. Depending on this priority, they
processing can interrupt each other or can be nested within each other.

Response to
double error

The warm restart and error levels differ from the basic levels in that they
can always be nested at operation boundaries whenever the appropriate
event occurs. They can be nested both in the basic levels and within each
other. In the event of errors, the last to occur always has the highest priority.

A basic level on the other hand can be nested in a lower priority level only at
block boundaries unless this default is changed by writing the appropriate
program in DX 0 (see Chapter 7).

Priority of the "basic levels":

CYCLE
TIMED JOB
TIME INT 5 s
TIME INT 2 s

CONTROLLER INT
PROCESS INT

ascending priority

process interrupt occurs during the processing of a
ime interrupt. Since the process interrupt has a
igher priority, the processing of the time interrupt
eve1 is interrupted at the next block boundary and
he PROCESS INTERRUPT program processing level is

activated.
f, for example, an addressing error is detected
hile the process interrupt is being serviced, the
rocess interrupt is stopped immediately at the next
peration boundary to activate the ADF level.

Once an error level has been activated (ADF, BCF, LZF, QVZ, REG, ZYK) it
cannot be activated again until it has been processed completely, not even if a
different program processing level is nested within it. In this case, the PLC
changes to the STOP mode owing to the double call of a program processing
level (DOPP in the ISTACK). Collisions of time interrupts are an exception
(refer to the relevant section). In the ISTACK, at depth "Ol", the DOPP identifier
and the error level called twice are marked.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Examples of
double call errors

uring the processing of the ADF level (user interface
B 25) a further processing error occurs. Since the ADF
eve1 is still active, it cannot be called a second time;
he CPU changes to STOP.

Addressing error i n PB 30
causes STOP

Add ressng error n FB 5 :
Call OB 251
ADF level

Fig. 4-4 Change of level as a result of a double call error

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

(user interface OB 30) and has not yet been completely processed. Calling the

Fig. 4-5 Double call of error level BCD

Description of The individual program processing levels and the corresponding user interfaces
the individual are described in more detail in the following sections:
levels

Section 4.4 describes the program processing levels in RESTART.

Section 4.5 describes the program processing levels in RUN

Sections 5.5 and 5.6 describe the error levels in RESTART and RUN.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.3 STOP Mode

4.3.1 Characteristics and lndication of the Operating Mode

Characteristics The STOP mode is distinguished by the following features:

User program

The user program is not processed.

Retention of data

If program execution has already been active, the values of counters, timers,
flags and process images are retained at the transition to the stop mode.

BASP signal

The BASP signal (disable command output) is active. This disables all digital
outputs.

Exception: In multiprocessor mode the BASP signal is not active during the
test mode of the coordinator - refer to your System Manual 121
for more information.

ISTACK

If program execution was already active, there is an information field for
each interrupted program processing level in the interrupt stack (ISTACK)
that indicates the cause of the interrupt when the CPU is in the STOP mode
(see Section 5.4).

Indication The current operating mode is indicated by LEDs on the front panel of the CPU.

RUN LED: off
STOP LED: on (steady or flashing)
BASP LED: on (except in test mode)

The STOP LED indicates the possible causes of the current stop state. The
following paragraphs describe a continuously lit or flashing STOP LED.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

STOP LED lit The STOP mode was triggered by the following:
continuously

in the single processor mode

- the mode selector was switched from RUN to STOP ,

- the PLC STOP programmer function was activated,

- a device fault occurred (BAU, PEU),

- an OVERALL RESET was performed,

- the END PROGRAM TEST programmer function was activated.

in the multiprocessor mode

- by switching the mode selector on the coordinator to STOP,

- by another CPU going into STOP as the result of a fault (a CPU not
causing a fault is lit continuously).

STOP LED When the STOP LED flashes slowly, this normally indicates an error. In the
flashes slowly multiprocessor mode, slow flashing indicates the CPU which caused the stop
(approximately mode (owing to an error).
0.5 Hz)

The STOP LED flashes slowly in the following situations:

- a stop operation was programmed in the user program

- an operator error has occurred (e.g. DB 1 error, selection of an illegal
start-up type, etc.)

- programming or device errors (calling a block that is not loaded,

- addressing error, timeout, operation code error etc.); the following LEDs
also light up to define the possible cause of error more exactly:

ADF LED
QVZ LED
ZYK LED

- the END PROGRAM TEST programmer function was activated in this
CPU.

The STOP LED When the STOP LED flashes quickly, this is a warning that an OVERALL
flashes quickly RESET is being requested.
(approximately
2 Hz)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.3.2 Requesting and Performing an OVERALL RESET

Request by the Each time you turn on the power and perform an overall reset, the CPU runs
system program through an initialization routine. If errors are detected during this initialization,

the CPU changes to the STOP mode and the STOP LED flashes quickly.

Possible errors: Contents of the RAMS are not correct.
Remedy: overall reset on the CPU

Contents of the memory card are not correct
Remedy: insert correctly programmed memory card
and overall reset on the CPU

You must deal with the cause of the problem and then perform an overall reset
on the CPU again. OVERALL RESET is also requested if a CPU or system error
occurs. You can recognize this error by the fact that the request appears again
following an OVERALL RESET. In this case, call your SIEMENS
representative.

Operator request You request OVERALL RESET as follows:

1. Switch the mode selector from RUN to STOP.

Result: the CPU is in the STOP mode. The STOP LED is lit continuously.

2. Hold the momentary-contact mode selector in the OVERALL RESET
position; at the same time, switch the mode selector from STOP to RUN
and back to STOP.

Result: you request an OVERALL RESET. The STOP LED flashes quickly.

Note
If you do not want the OVERALL RESET that you requested to be
executed, perform a COLD RESTART or MANUAL WARM RESTART.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Performing an Regardless of whether you yourself or the system program requested an overall
OVERALL RESET reset, you perform the OVERALL RESET as follows:

Hold the reset switch in the OVERALL RESET position; at the same time,
switch the mode selector from STOP to RUN and once again to STOP.

Result: the OVERALL RESET is performed, the STOP LED is lit
continuously.

Use the PG function OVERALL RESET
(If you perform an OVERALL RESET at the PG, the manual overall reset
request using the switches and selector can be omitted. The position of the
reset switch and mode selector are then irrelevant.)

Result: the OVERALL RESET is performed. The STOP LED is lit
continuously.

Checksum When performing an overall reset, a checksum is formed via the system program
and compared with the entry in the Flash EPROM. If the two do not match, a
serious system error is present (see page 4-3).

Note
Once you have performed an OVERALL RESET, the only permitted
restart mode is a COLD RESTART.

Loading the If a memory card is inserted when performing an overall reset, all code blocks
memory card and data blocks in the memory card are loaded into the user memory of the CPU.

The CPU is then in EPROM mode, meaning code blocks cannot be reloaded,
edited or deleted; data blocks in the DB-RAM can, however, be reloaded, edited
or deleted (see Section 3.3).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4 RESTART Mode

Special features The RESTART mode is distinguished by the following features:

Transition from STOP to RUN

The RESTART is the transition from the STOP mode to the RUN mode.

Restart types

The CPU 928B has the following restart modes:

- COLD RESTART (manual or automatic)

- WARM RESTART (manual or automatic)

- RETENTIVE COLD RESTART (manual or automatic)

Following a COLD RESTART, the cyclic user program is processed from
the beginning. Following a WARM RESTART, the cyclic user program is
processed from the point at which it was interrupted.

Organization blocks

The following organization blocks are called:

for MANUAL or AUTOMATIC COLD RESTART: OB 20

for MANUAL WARM RESTART or
RETENTIVE COLD RESTART: OB 21

for AUTOMATIC WARM RESTART or
RETENTIVE COLD RESTART: OB 22

The length of the STEP 5 start-up program in the OBs is not restricted. The
organization blocks are not time-monitored. Other blocks can be called in the
start-up OBs.

Data handling

In each start-up type, the values of counters, timers, flags and process images
are handled differently.

BASP signal

The BASP signal (disable command output) is active. This disables all digital
outputs.
Exception: in the test mode, BASP is not activated! (Please see your System
Manual 121 for information on the test mode.)

LEDs on the front panel of the CPU

RUN LED: off
STOP LED: off
BASP LED: on (except in test mode)

Restart characteristics in multiprocessor mode

For information on the start-up procedure in the multiprocessor mode, refer to
Section 10.1.7.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4.1 MANUAL and AUTOMATIC COLD RESTART

When is a COLD A COLD RESTART is always permitted provided the system is not requesting
RESTART an OVERALL RESET.
permitted?

MANUAL COLD You carry out a MANUAL COLD RESTART as follows:
RESTART

Hold the reset switch in the RESET position; at the same time, switch the
mode selector from STOP to RUN.

Use the PC START programmer function (COLD RESTART).

AUTOMATIC An AUTOMATIC COLD RESTART is triggered in the following case:
COLD RESTART

After power failurePOWER OFF in RESTART or RUN followed by power
restore/POWER ON, the CPU runs an initialization routing and then attempts to
automatically execute a COLD RESTART as long as DX 0 is correctly
parameterized (see Section 7.1).

Prerequisite:

The switches on all CPUs and on the coordinator must remain at RUN.

There must have been no faults in the initialization run.

The CPU was not in the STOP mode when the power was switched off.

In the case of power failure in an expansion unit (PEU signal), the CPU goes to
STOP. It remains in STOP until the PEU signal is switched inactive and then
attempts to execute an AUTOMATIC COLD RESTART or an AUTOMATIC
WARM RESTART.

4.4.2 MANUAL and AUTOMATIC WARM RESTART

When is a WARM A MANUAL WARM RESTART is not permitted in the following situations:
RESTART not
permitted?

when the system is requesting OVERALL RESET

after the following events:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

- double call of a program processing level (ISTACK: DOPP),

- OVERALL RESET (control bits: URGELOE),

- start-up aborted (control bits: ANL-ABB),

- STOP after the END PROGRAM TEST programmer function,

- when compressing the memory in the STOP mode,

- stack overflow,

- when the user program has been modified in the STOP mode.

MANUAL WARM You carry out a MANUAL WARM RESTART as follows:
RESTART

Switch the mode selector from STOP to RUN. The reset switch must be in
the mid-position.

Use the PLC START programmer function (WARM RESTART).

AUTOMATIC
WARM RESTART

If there is a power failure/POWER OFF during RESTART or RUN, when the
power returns agaidPOWER ON, the CPU performs an initialization routine and
then attempts to perform a WARM RESTART automatically, as long as DX 0 is
correctly parameterized (see Chapter 7) or does not exist.

Conditions:

The selectors on all the CPUs and on the coordinator remain set to RUN.

No errors are detected during the initialization.

The CPU was not in STOP before the power failure/POWER OFF.

If there is a power failure in an expansion unit (PEU signal), the CPU changes to
STOP. It remains in this state until the PEU signal is cleared and then attempts to
perform an AUTOMATIC WARM RESTART or AUTOMATIC COLD
RESTART.

RETENTIVE If the parameter "Retentive cold restart" is stored in DX 0, the system program
COLD RESTART executes RETENTIVE COLD RESTART instead of WARM RESTART. See

the following section to find out how this differs to a "normal" COLD
RESTART.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4.3 Comparison of the Different Restart Types

Table 4-2 Comparison of the different restart types

l) DB 0 is only initialized after an OVERALL RESET

System program
performs

Evaluation of:
- D B 1
- D B 2
- DXO
- DX2

Initialization of:
-DBO
- 9th track
- Disablelenable
interrupts

- Cycle statistics

Deletion of:
- Timed job
- Delay interrupt
- ISTACK/
BSTACK

- Process image
of the inputs

- Process image
of the outputs/
digital V 0

- Analog V 0
- IPC flags
- Semaphores
- F flags and
S flags

- Timers and
counters

Processing of
remaining cycle in
the case of active
BASP signal

Restart type
determined by
OB 223

Indication of the
restart type at the
programmer in the
ISTACK control bits
User interface

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

COLD RESTART

manual

Yes
Yes
Yes
Yes

no
Yes
Yes

Yes

Yes
Yes
Yes

yes (com-
pletely)

yes (com-
pletely)

Yes
Yes
Yes
Yes

Yes

no

COLD
RESTART

NEUSTA

OB 20

automatic

Yes
Yes
Yes
Yes

no
Yes
Yes

Yes

Yes
Yes
Yes

yes (com-
pletely)

yes (com-
pletely)

Yes
Yes
Yes
Yes

Yes

no

COLD
RESTART

NEUSTA +
AWA

OB 20

WARM RESTART

manual

no
no
no
no

no
no
no

no

no
Yes
no

no

no

no
no
no
no

no

Yes

MANUAL
WARM

RESTART

MWA

OB 21

RETENTIVE COLD

automatic

no
no
no
no

no
no
no

no

no
Yes
no

no

no

no
no
no
no

no

Yes

AUTO.
WARM

RESTART

AWA

OB 21

RESTART

manual

no
no
no
no

no
no
Yes

no

no
Yes
Yes

no

yes (acc. to
9th track)

no
no
no
no

no

no

MANUAL
WARM

RESTART

ANL-6 +
MWA

OB 22

automatic

no
no
no
no

no ')
no
Yes

no

no
Yes
Yes

no

yes (acc. to
9th track)

no
no
no
no

no

no

AUTO.
WARM

RESTART

ANL6 +
AWA

OB 22

Operating Modes and Program Processing Levels

Definition of the "9th track"

The "9th track" is a list of input and output bytes in the process image that
acknowledged at the last COLD RESTART. If you program and load DB 1, then
following a successful COLD RESTART, the 9th track contains only the input
and output bytes listed in DB 1.

You cannot access the 9th track with STEP 5 operations.

4.4.4 User Interfaces for Restart

Introduction The organization blocks OB 20, OB 21 and OB 22 are used as user interfaces for
the different restart types. You can store your STEP 5 program for each restart
type in these blocks.

You can do the following in the RESTART OBs:

set flags,

start timers (the start is delayed by the system program until the user program
enters the RUN mode),

prepare the data traffic of the CPU with the 110 modules,

execute synchronization of the CPs.

COLD RESTART:

When the CPU executes a MANUAL or AUTOMATIC COLD RESTART, the
system program calls OB 20 once. In OB 20, you can store a STEP 5 program
that executes preparatory steps for restarting cyclic program execution:

After OB 20 is processed, the cyclic program execution begins by calling OB 1
or FB 0.
If OB 20 is not loaded, the CPU begins cyclic program execution immediately
after the end of a COLD RESTART (following the system activities).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

OB 21 MANUAL WARM RESTART or RETENTIVE MANUAL COLD
RESTART:

When the CPU carries out a MANUAL WARM RESTART or RETENTIVE
MANUAL COLD RESTART, the system program calls OB 21 once. In OB 21,
you can store a STEP 5 program that carries out specific activities once before
cyclic program execution is resumed.

After OB 21 is processed, for MANUAL WARM RESTART the cyclic program
execution continues with the next statement after the point at which it was
interrupted. The following conditions apply:

The disable command output signal (BASP) remains active while the rest of
the cycle is processed. It is only cleared at the beginning of the next
(complete) cycle.

The process output image is reset at the end of the remaining cycle.

If OB 21 is not loaded, then at the end of a MANUAL WARM RESTART and
after performing system activities the CPU begins program execution again at the
point at which the program was interrupted.

Note
The CPU registers a power down (NAU or PEU) even when this occurs in
the STOP mode. If you then trigger a MANUAL WARM RESTART, the
CPU calls OB 22 before OB 21.

If, instead, you trigger a MANUAL COLD RESTART, the previous
events are ignored by the CPU and OB22 is not called.

NTIVE MANUAT, COT D RESTART

If the parameter "RETENTIVE COLD RESTART" is entered in the data block
DX 0, after processing OB 21, the system program then goes through a COLD
RESTART (the CPU resumes program execution with the first STEP 5
statement in OB 1 or FB 0). The signal states of the flags, IPC flags, semaphore
and the block address list (DB 0) are retained.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

AUTOMATIC WARM RESTART or RETENTIVE AUTOMATIC COLD
RESTART:

When the CPU executes an AUTOMATIC WARM RESTART or a
RETENTIVE AUTOMATIC COLD RESTART, the system program calls
OB 22 once. Here you can store a STEP 5 program which executes specific
actions once before restoration of program execution previously interrupted in
RUN.

When the power is restored, the CPU carries out the system functions mentioned
above and attempts to continue the program from the point at which it was
interrupted.

If it is loaded, OB 22 is called first. After OB 22 is processed, cyclic program
execution resumes with the next statement after the point at which it was
interrupted.

After a power failure and subsequent restoration of power, the following
conditions apply:

The BASP signal (disable command output) remains active while the
remaining cycle is processed. It is cleared at the beginning of the next
complete cycle.

The process output image is reset at the end of the remaining cycle.

If the parameter "RETENTIVE COLD RESTART" is entered in the data block
DX 0, after processing OB 22, the system program then goes through a
RETENTIVE COLD RESTART (the CPU resumes program execution with the
first STEP 5 statement in OB 1 or FB 0). The signal states of the flags, IPC
flags, semaphore and the block address list (DB 0) are retained.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.4.5 Interruptions in the RESTART Mode

Introduction A start-up program can be interrupted by the following:

NAU (power failure) or PEU (power failure in expansion unit),

activating the stop switch, the stop operation, MP-STP or PG-STP,

or:

program and device errors (see Section 5.6).

If you want to continue an interrupted RESTART with one of the possible restart
types, please remember the following points:

Power failure at After power returns following a power failure you must distinguish between
RESTART the situations listed in the following table:

Selected mode: AUTOMATIC WARM RESTART

The CPU is performing a COLD RESTART (OB 20):

following the return of power after power failure, the organization block OB 22
(AUTOMATIC WARM RESTART) is activated at the point of interruption in OB 20.

The CPU is performing a MANUAL WARM RESTART (OB 21):

following the return of power after a power failure, organization block OB 22
(AUTOMATIC WARM RESTART) is activated at the point of interruption in OB 21.

The CPU is already performing an AUTOMATIC WARM RESTART (OB 22):

following the return of power after a power failure, no second OB 22 is activated.
The interrupted OB 22 is not continued after the return of power but is aborted and
then called again and processed from the beginning.

Selected mode: AUTOMATIC COLD RESTART

The CPU is performing a MANUAL or AUTOMATIC COLD RESTART or a
MANUAL WARM RESTART:

following the return of power after power failure, the interrupted OB 20 or OB 21 is
not continued, but abandoned and the newly called OB 20 is processed.

The same rules apply to an AUTOMATIC WARM RESTART following a PEU
signal.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

MANUAL WARM If the CPU goes to the STOP mode during any RESTART (stop switch of ADF)
RESTART after and you then trigger a MANUAL WARM RESTART, the interrupted
aborting a RESTART is continued from the point at which it was interrupted. OB 21 is not
RESTART activated.

MANUAL COLD If the CPU goes to the STOP mode during any RESTART and you then trigger a
RESTART after MANUAL COLD RESTART, the interrupted RESTART is aborted and a
aborting a COLD RESTART is performed (if it exists, OB 20 is called).
RESTART

Aborting RETENTIVE COLD RESTART is aborted by:
RETENTIVE
COLD RESTART

Power failure in the central controller (NAU) or in the expansion unit (PEU),

Stop switch, stop command, MP-STP or PG-STP

Program errors and hardware faults (see Section 5.6).

An aborted RETENTIVE COLD RESTART is not continued at warm restart.
Instead, a new RETENTIVE COLD RESTART is started.

Previous events and statuses are not taken into account in the selection of restart
type. The following applies especially:

If a MANUAL or AUTOMATIC RETENTIVE COLD RESTART is aborted
by POWER OFF or power failure in the expansion unit, a RETENTIVE
AUTOMATIC COLD RESTART always takes place at POWER ON if all
other restart conditions are met.

If a MANUAL or AUTOMATIC RETENTIVE COLD RESTART is
initiated by one of the other abort types, a new RETENTIVE MANUAL
COLD RESTART takes place.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5 RUN Mode

Special features When the CPU has executed a RESTART (and only then) it changes to the RUN
mode. This mode is characterized by the following Special features:

Execution of the user program

The user program in OB 1 or in FB 0 is executed cyclically and additional
interrupt-driven program sections can be nested in it.

Timers, counters, process image

All the timers and counters started in the program are running, the process
image is updated cyclically.

BASP signal

The BASP signal (disable command output) is inactive. All the digital
outputs are therefore enabled.

IPC flags

The interprocessor communication (IPC) flags are updated cyclically
(provided this is programmed in DB1).

LEDs on the front panel of the CPU

RUN LED: on
STOP LED: off
BASP LED: off

Note
If an AUTOMATIC or MANUAL warm restart was executed before the
CPU went into the RUN mode, the BASP LED remains lit until the rest of
the cycle has been processed and the process image has been updated.

I The RUN mode is only possible after the RESTART mode. I

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

Program In the RUN mode there are 13 basic program processing levels, as follows:
processing levels

CYCLE:

The user program is executed cyclically

TIMED JOB:

The user program is executed at fixed times you have programmed or once at
a fixed time (clock-controlled time interrupt).

9 TIME INTERRUPTS:

The user program is processed at fixed intervals specified by the system.

CONTROLLER INTERRUPT:

Time-driven processing of a preset number of closed loop controllers.

DELAY INTERRUPT

The user program is processed once after a preset delay time has elapsed.

PROCESS INTERRUPT:

Process interrupt-driven user program execution.

The processing levels differ from each other in the following aspects:

they are triggered by different events

the user interface for each program processing level is a different
organization block or function block.

You can program all basic processing levels at the same time in a CPU 928B.
The levels are called by the system program according to the current events and
the default priority (see Section 4.2).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.1 Cyclic Program Execution

Introduction Most functions of a programmable controller involve cyclic program execution
(CYCLE program processing level). This cycle is known as a "free cycle", i.e.
after reaching the end of the program, the next cycle is executed immediately
(see Fig. 4-6).

Triggering

Principle

If the CPU completes the restart program without errors, it begins cyclic program
execution.

The system program activities are as follows:

from restart --. triggers the cycle time monitoring

l updates the IPC flag inputs

updates the process input image 1 (PI11

calls the cyclic user program (OB 1
or FB 0)

l User program l
including nesting of

the other

basic processing levels

outputs the process output image
(PIQ)

1 updates IPC flag outputs l
system activities, e.g.
loading or clearing blocks,

compressing blocks. . .

Fig. 4-6 Cyclic program execution

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

User interface: The system program calls organization block OB 1 or function block FB 0 as the
OBlorFBO user interface regularly during cyclic program execution. The system program

processes the STEP 5 user program in OB 1 or FB 0 from the beginning through
the various block calls you have programmed. Following the system activities,
the CPU starts again with the first STEP 5 statement in OB 1 (or in FB 0).

In OB 1, you program the calls for program, function and sequence blocks that
are to be processed in your cyclic program.

If you have a short time-critical user program in which you do not require
structured programming, then program FB 0. Since you use the total STEP 5
operation set in this block, you do not require block calls and can reduce the
runtime of your program.

Note
If both OB 1 and FB 0 are programmed, only OB 1 is called by the system
program. If you use FB 0 as the user interface, it must not contain
parameters.

Interrupt points Cyclic program execution can be interrupted at block boundaries by the
following:

process interrupt-driven program execution,

closed loop controller processing,

time-driven program execution.

You can program DX 0 to enable these interruptions to occur at operation
boundaries (see Chapter 7).

Cyclic program execution can be interrupted at operation boundaries or aborted
completely as follows:

if a device or program error occurs,

by operator intervention (PG function, stop switch, MP-STP),

by the STOP operation.

ACCUs as data The arithmetic registers ACCU 1 , 2 , 3 and 4 of the CPU 928B can be used as
storage data storage outside the cycle (from the end of one program cycle to the

beginning of the next).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.2 Time-Driven Program Execution

Introduction Time-driven processing occurs when a time signal from a clock or internal clock
pulse prompts the CPU to interrupt the current program and execute a specific
program. After executing this program, the CPU returns to the point at which the
previous program was interrupted and continues execution. This way, particular
program sections can be inserted automatically into the cyclic program at a
specified time.

You can trigger time-driven program execution in different ways, as follows:

One-off triggering after a freely selectable delay time in the millisecond
range, a "delay interrupt" (DELAY INTERRUPT program processing
level). The OB 6 organization block is called via this interrupt.

Triggering using a freely selected time base or once only at an absolute time,
a "clock-driven time interrupt" (program processing level TIMED JOB). This
interrupt calls organization block OB 9.

Triggering in 9 different time bases with a range from 10 ms to 5 seconds by
"time interrupts" (program processing levels TIME INTERRUPTS). An
organization block (OB 10 to OB 18) is assigned to each time interrupt.
These have a fixed cycle, i.e. the time between two program starts is fixed.

Delay interrupt Small time intervals with a resolution of 1 ms can also be specified with the
delay interrupt of the CPU 928B. When the set time has elapsed, the system
program calls OB 6 once.

Triggering A delay interrupt is generated by calling the special function organization block
OB 153 (see Section 6.12). As soon as the delay time parameterized with
OB 153 has elapsed, the system program interrupts the current program
execution and calls OB 6. After this, program execution is resumed at the
interrupt point.

User interface In the case of a delay interrupt, OB 6 is called as the user interface. In OB 6 you
OB 6 store a STEP 5 program to be executed in this case. If OB 6 has not been loaded,

program execution will not be interrupted.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

Interrupt points The execution of a clock-controlled time interrupt can be interrupted at block
boundaries, or operation boundaries (if selected in DX 0) by the following:

processing of a process interrupt.

The processing can be interrupted at operation boundaries or aborted
completely by the following:

the occurrence of a hardware fault or program error,

operator intervention (PG function, stop switch, MP-STP),

the stop operation.

Special features A delay interrupt is only processed in the RUN mode.

A generated delayed alarm (= OB 153 call was processed) is not retained in
the transition to the STOP mode and during POWER OFF.

A delay interrupt can be generated in the RESTART and in the RUN
mode (calling of OB 153).

If you generate a new delay interrupt, i.e. call OB 153 with new parameters, a
previously set delay interrupt is cancelled. A delay interrupt currently being
processed is continued. This means that only one delay interrupt is valid at
any one time.

If a delay interrupt occurs without the previous one being completely
processed, the new interrupt is discarded. Delayed interrupts are not
checked for collisions!

Note the special functions OB 122 and OB 142 with which you can disable or
delay the servicing of delay interrupts.

Clock-driven The CPU 928B has a battery-backed clock (central back-up via the power supply
time interrupts of the central controller), which you can set and read out using a STEP 5

program. Using this clock, you can execute a program section time-driven.

While the delay interrupt is used for high-speed jobs, the clock-driven time
interrupt is especially suitable for processing one-off jobs or jobs occurring
periodically at large time intervals such as hourly, daily or every Monday.
When the set time is reached, the system program calls OB 9.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Triggering A clock-driven time interrupt (timed job) is generated by calling the special
function organization block OB 151 (see Section 6.10). Once the time transferred
to OB 151 (time of day, date) has been reached, the timed job is processed. This
can be programmed to occur once (absolute time) or be repeated (time base).
Once a job becomes due for processing, the system program interrupts the
current program and calls OB 9 (program processing level TIMED JOB).
Following this, the program is resumed at the point at which it was interrupted.

Sett ing using OB 151:

JOB TYPE : 1 (every minute)

clock-driven

User interface: OB 9 is called as the user interface for a clock-driven time interrupt. You store a
OB 9 STEP 5 program in OB 9 that is to be processed whenever it is called. If you do

not load OB 9, program execution is not interrupted.

Interrupt points The execution of a clock-controlled time interrupt can be interrupted at block
boundaries, or operation boundaries (if selected in DX 0) by the following:

processing of a process interrupt

processing of a delay interrupt

processing of a closed loop controller interrupt.

The processing can be interrupted at operation boundaries or aborted
completely by the following:

the occurrence of a hardware fault or program error,

operator intervention (PG function, stop switch, MP-STP),

the stop operation.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

Special features A clock-driven time interrupt is only processed in the RUN mode.
Clock-driven time interrupts that occur in the STOP mode, when the power
has failed or during RESTART are discarded.

A clock-driven time interrupt generated following OVERALL RESET and
COLD RESTART (= OB 151 call) is retained during a WARM RESTART
and following POWER OFFPOWER ON, providing the trigger time did not
occur during STOP (see above).

If you generate a new clock-controlled time interrupt, i.e. you call OB 151
with new timer values, an already existing clock-driven time interrupt is
cancelled. A currently active clock-driven interrupt is continued. Only one
clock-driven time interrupt is ever valid at one time.

If a clock-driven time interrupt occurs when a previous clock-driven time
interrupt has not been processed or not been completely processed, the new
time interrupt is discarded. Clock-driven time interrupts are not checked
for collisions.

You can use the special functions OB 120 and OB 122, to disable or delay
the processing of clock-driven time interrupts.

Time interrupts Program execution in fixed time bases

In the CPU 928B, you can execute up to 9 different time-driven programs, each
program being called at a different time interval.

Triggering A time interrupt is triggered automatically at a fixed time interval if the
corresponding OB is programmed.

User interfaces When a particular time interrupt occurs, the corresponding organization block is
activated as the user interface at the next block boundary (or operation boundary).

Assignment of the time interrupt time to the OBs:

Table 4-3 Assignment "Time interrupt time - called OB"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Time base

10 ms
20 ms
50 ms
100 ms
200 ms
500 ms
1 sec
2 sec
5 sec

Organization block called

OB 10
OB 11
OB 12
OB 13
OB 14
OB 15
OB 16
OB 17
OB 18

Falling priority

Operating Modes and Program Processing Levels

For example, program the program section to be inserted into the cyclic program
every 100 ms in OB 13.

OBs with shorter time bases have a higher priority and can interrupt OBs
with longer time bases. l

Time since last Whenever a time interrupt OB is called (OB 10 to OB 18) ACCU 1 contains the
interrupt number of time units that have occurred since the last time interrupt OB call, as
processed follows:

ACCU 1 := number of time units - 1

If, for example, ACCU 1 contains the number "5" when OB 11 is called, this
means that 120 ms (6 time units) have elapsed since
OB 11 was last called. As long as there is no collision of time interrupts, a "0" is
transferred in ACCU 1.

Interrupt points Time-driven program execution can be interrupted either at block boundaries
(default) or at operation boundaries (programmed in DX 0) by the following:

processing of a process interrupt

processing of a delay interrupt

processing of a closed loop controller interrupt

renewed processing of a time interrupt

Processing can be interrupted at operation boundaries or aborted completely by
the following:

the occurrence of a hardware fault or program error

operator intervention (PG function, stop switch, MP-STP)

the stop operation STP.

Time-driven program execution cannot be interrupted by the same time
interrupt (collision of time interrupts). l

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

Collision of time If a time interrupt OB has not yet been completely processed and is called a
interrupts second time, a collision occurs. A time interrupt collision also occurs if an OB is
(WECK- FE) called a second time and the first call has not been processed. This is possible

when the time interrupts can only interrupt the cyclic program at block limits,
particularly if your STEP 5 program contains blocks with long runtimes.
If a collision of time interrupts occurs, the error program processing level
WECK-FE is activated and the system program calls OB 33 as the user interface.
In OB 33, you can program a specific reaction to this problem.

If OB 33 is not loaded, the CPU goes into Stop if an error occurs. Then
WECK-FE is indicated on the programmer in the control bits "Output ISTACK"
screen. The level ID of the relevant time interrupt (LEVEL) is indicated in the
ISTACK.

When the system program calls OB 33, it transfers additional information to
ACCU 1 and ACCU 2 which provides more detail about the first error to occur.

Table 4-4 Collision of time interrupt identifiers

The identifier in ACCU-2-L is the level identifier (see Section 5.4) of the time
interrupt which caused the error.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Explanation

Collision of time interrupts with OB 10 (10 ms)

Collision of time interrupts with OB 11 (20 ms)

Collision of time interrupts with OB 12 (50 ms)

Collision of time interrupts with OB 13 (100 ms)

Collision of time interrupts with OB 14 (200 ms)

Collision of time interrupts with OB 15 (500 ms)

Collision of time interrupts with OB 16 (1 sec)

Collision of time interrupts with OB 17 (2 sec)

Collision of time interrupts with OB 18 (5 sec)

Error identifier

ACCU-1-L

1001H

1001H

1001H

1001H

1001H

1001H

1001H

1001H

1001H

ACCU-2-L

OOlH

0014H

OOlOH

OOlOH

OOOEH

OOOCH

OOOAH

0008H

0006H

Operating Modes and Program Processing Levels

Continuing If you require the program to continue if a collision of time interrupts occurs,
program either program the block end statement "BE" in OB 33 or change the default in
execution after DX 0 so that the program is continued if a collision occurs and OB 33 is not
collision of time programmed.
interrupts After OB 33 is processed, the program is continued from the point at which it

was interrupted.

Note
With respect to time-driven program execution, remember the special
functions OB 120, OB 121, OB 122 and OB 123 with which you can
disable or delay the processing of time interrupts for a particular program
section. (This is possible either for all programmed time interrupts or for
individual time interrupts.)

The "faster" a time-driven program processing level is, the greater the
danger of time interrupt collisions. If you have time interrupts with short
time bases (e.g. the 10 ms and the 20 ms time interrupts) it is normally
necessary to select interruption at operation boundaries. This means that the
closed loop controller interrupt and the process interrupt must also be set to
interrupt at operation boundaries (see Chapter 7, Assigning Parameters to
DX 0).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.3 CLOSED LOOP CONTROLLER INTERRUPT:
Processing Closed Loop Controllers

Introduction In the CPU 928B, apart from cyclic, time and process interrupt program
execution, it is also possible to process closed loop controllers. You select
intervals (= sampling time) at which the cyclic or time-driven program execution
is interrupted and the controller is processed. Following this, the CPU returns to
the point at which the cyclic or time-driven program was interrupted and
continues execution.

Triggering A closed loop controller interrupt is triggered when the sampling time you have
selected elapses.

System program activities

It manages the user interface for closed loop controller processing.

It updates the controller process image.

User interface: When processing a controller, the R64 standard function block is called as the
standard user interface. In conjunction with the controller parameter assignment block DB
function block 2, this allows up to 64 controllers to be processed.
"closed loop You assign a specific data block for each controller. In data block DB 2, known
controller as the "controller list" you specify which controllers are to be processed by the
structure R64 " system program at which point in time. DB 2 is reserved for this task.

(When assigning parameters, starting up and testing the R64 standard FB, you
are supported by a special program package: "COMREG", see Catalog ST 59.)

Interrupt points Closed loop control processing can be interrupted either at block boundaries
(default) or at operation boundaries (programmed in DX 0), by the following:

processing of a process interrupt,

processing of a delay interrupt.

Processing can be interrupted at operation boundaries or aborted completely by
the following:

the occurrence of a hardware fault or program error,

operator intervention (PG function, stop switch, MP-STP),

the stop operation STP.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

4.5.4 PROCESS INTERRUPT: Interrupt-Driven Program Execution

Introduction Interrupt-driven program execution involves the S5 bus signal of an
interrupt-capable digital input module (e.g. 6ES5 432-4UAxx) or a suitable IP
module that causes the CPU to interrupt program execution and to process a
specific program section. On completion of this program, the CPU returns to the
point at which execution was interrupted and continues from there.

The evaluation of a process interrupt can be triggered either by a signal level or
signal edge. You can write a program to either disable, delay or enable the
interrupt. OB 2 can interrupt the current program either at operation or block
boundaries (when you program DX 0).

Triggering The active state of an interrupt line on the S5 bus triggers the process interrupt.
Depending on the slot in the rack, each CPU is assigned one of the interrupt lines
(for more detailed information, refer to the System Manual).

User interface When a process interrupt occurs, OB 2 is called as the user interface. In OB 2,
082 you program a specific program to be processed if a process interrupt occurs.

If OB 2 is not programmed, the cyclic program is not interrupted. No
interrupt-driven program execution takes place.

Interrupt points Process interrupt-driven program execution can only be interrupted by the
following:

a program or device error (at operation boundaries)

operator intervention (PG function, stop switch, MP-STP),

the stop operation.

Interrupt-driven program execution cannot be interrupted by time-driven
program execution or by a further process interrupt.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

Multiple If further process interrupts occur during the interrupt-driven program execution,
interrupts these are ignored until OB 2 has been completely processed (including all the

blocks called in OB 2). The CPU then returns to the point of interruption and
executes the program until the next block or operation boundary. Only then is a
new process interrupt accepted and OB 2 called again. This means that a
permanently active interrupt cannot totally block cyclic program execution.

Multiple interrupts are not detected. l
OB 2 can also be called when the signal state of the interrupt line is passive
again when the block boundary is reached.

Edge-triggered process interrupts occurring during the execution of OB 2
and remaining active for a shorter time than OB 2 are not detected (if level
triggered).

The signal state of the interrupt signal between its becoming active and the
completion of OB 2 (BE operation) is irrelevant. 1

Process interrupt In the default (DX O), the process interrupt signal for the CPU 928B is
signal level-triggered. i.e. the active state of the interrupt line sets a request which

causes OB 2 to be processed at the next block or operation boundary (depending
on the setting of DX 0).

0 1
. inactive

Interrupt
line - active

process interrupt ,
(at block boundaries) T

Cycle 1
A A A

A = block boundaries

Fig. 4-7 Process interrupt, level triggered

When it is called, OB 2 is processed completely. If the interrupt signal is still
active or active once again at the end of OB 2, a block is processed in the cyclic
program and OB 2 is then called again. If the level is no longer active, OB 2 is
only called again at the next change of signal state (from inactive to active).

Active interrupt signal states before processing the block end operation (BE) of
OB 2 are irrelevant.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Process interrupt You can select this setting by assigning parameters to DX 0. After OB 2 has been
signal: processed, a new process interrupt can only be triggered by a signal state change
edge-triggered (from inactive to active). After processing the block end command (BE) of OB 2

an "inactive-active signal change" of the interrupt signal must follow to
generate a process interrupt.

inactive
Interrupt
line
1 I I I I --active

Process interrupts
(at block boundaries)

Cycle

A = block boundaries

Fig. 4-8 Process interrupt, edge-triggered

Disabling The system program inserts an interrupt-driven program into the cyclic program
interrupt-driven at a block boundary or at a STEP 5 operation boundary.
processing An interruption of this type can have a negative effect if a cyclic program section

has to be processed within a specific time (e.g. to achieve a specific response
time) or if a sequence of operations should not be interrupted (e.g. when reading
or writing related values).

If a section of the user program should not be interrupted by interrupt-driven
processing, you can use the following program procedures:

Program this section so that it does not contain a block change and retain the
default in DX 0 (process interrupts at block limits). Program sections that do
not contain block changes cannot be interrupted.

Program the disable process interrupts (IA) operation. Enable interrupt
processing with the enable interrupts (RA) operation. No process interrupt
driven program execution can take place between these two operations.
IA and RA are only allowed in function blocks (supplementary operation set).

You can use the special functions OB 120 and OB 122 to disable or delay the
processing of process interrupts for a particular program section.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

O~eratina Modes and Proaram Processina Levels

4.5.5 Nested Interrupt-Driven and Time-Driven Program Execution

Priorities for If a process interrupt occurs during time controlled program execution, the
interrupt and program is interrupted at the next interrupt point (block or operation boundary)
time-driven and the process interrupt is processed. Following this, the time-controlled
program program is completed.
execution

If a time interrupt occurs during interrupt-driven program execution, the
interrupt-driven program execution is completed first before the time-driven
program execution is started.

If a process interrupt and a time interrupt occur simultaneously the process
interrupt is processed first at the next interrupt point. After this is completed, the
pending time interrupt is then processed.

Fig. 4-9 is a schematic representation of how program execution is interrupted at
block boundaries by time-controlled and program-controlled interrupt
processing.

l time-driven

- interrupt-driven

Interrupt point at which
interrupt or time-driven
program execution can
normally be inserted
into cyclic, interrupt or
time-driven program
execution. Time-driven
program execution can
only be interrupted by
a process interrupt and
not vice-versa.

Fig. 4-9 Interrupt-driven program execution at block boundaries

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Operating Modes and Program Processing Levels

Response time The response time to a time interrupt request corresponds to the processing time
of a block or a STEP 5 operation (depending on the selected preset). If, however,
process interrupts are still in the queue when cyclic program execution is
interrupted, the time-driven program is only processed after all pending process
interrupts have been completely processed.

The maximum response time between the occurrence and processing of a time
interrupt is then increased by the processing time of the process interrupts. If you
want to exclude as far as possible the chance of a collision for a particular time
interrupt OB xy, remember the following rules:

A + B + Cc D where A = the sum of the processing times of all higher
priority program processing levels (process,
controller, time interrupt OBs)

B = processing time of the time interrupt OB xy

C = runtime of the longest block of all lower
priority processing levels

D = time base of the time interrupt OB xy

Note
If you run your program not only cyclically but also time and
interrupt-driven, you run the risk of overwriting flags.
This can occur if you use flags as intermediate flags both in the cyclic and
in the inserted time-driven or interrupt-driven programs and the cyclic
program is interrupted by a time or interrupt-driven program.

For this reason, save the signal states of the flags in a data block at the
beginning of time or interrupt-driven program execution and rewrite them
into the (doubly assigned) flags at the end of the interrupt.

Four special organization blocks are available for this purpose: OB 190 and
OB 192 "transfer flags to data block and OB 191 and 193 "transfer data
fields to flag area" (refer to the relevant section).

To avoid double assignment of flags, you can also use the S-flags for most
applications. Special "saving procedures" for flags are then no longer
necessary (there are enough S flags available).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Contents of the This chapter explains how to avoid errors when planning and programming your
chapter STEP 5 programs. You will see what help you can get from the system program

and which blocks you can use to program reactions to errors.

Overview of the
chapter

1 5.2 1 Error Information

Section

5.1

/ 5.3 1 Control Bits and Interrupt Stack

Description

Frequent Errors in the User Program

Page

5-2

5-3

5-7

5-8

5-13

5-19

5-22

5-25

5-26

5-26

5-28

5-29

5-31

5-32

5-34

5-37

5-45

5-46

5-48

5-49

5-50

5-52

5-53

5.3.1

5.3.2

5.3.3

5.4

5.5

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

5.6

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

5.6.6

5.6.7

5.6.8

5.6.9

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Control Bits

ISTACK Content

Example of Error Diagnosis using the ISTACK

Error Handling using Organization Blocks

Errors during RESTART

DBO-FE (DB 0 Errors)

DB1-FE (DB 1 Errors)

DB2-FE (DB 2 Errors)

DXO-FE (DX 0 or DX 2 Errors)

MOD-FE (Memory Card Errors)

Errors in RUN and in RESTART

BCF (Operation Code Errors)

LZF (Runtime Errors)

ADF (Addressing Error)

QVZ (Timeout Error)

ZYK (Cycle Time Exceeded Error)

WECK-FE (Collision of Time Interrupts)

REG-FE (Controller Error)

ABBR (Abort)

Communication Errors (FE-3)

Interru~t and Error Handlina

5.1 Frequent Errors in the User Program

Introduction The system program can detect faulty operation of the CPU, errors in the system
program processing or the effect of user errors in the program.

0 vervie W This section contains a list of errors most likely to occur when you first run your
user program.

You can avoid these errors easily by remembering the following points when you
write your STEP 5 program:

When specifying byte addresses for IIOs, make sure that the corresponding
modules are plugged into the central controller or the expansion unit.

Make sure that you have provided correct parameters for all operands.

Make sure that outputs, flags, timers and counters are not processed at
different points in the program with operations that counteract each other.

Make sure that all data blocks called in the program exist and are long
enough.

Check that all blocks called are actually in the memory.

Be careful when changing existing function blocks. Check that the FBsIFXs
are assigned the correct operands and that the actual operands are specified.

Make sure that timers are scanned only once per cycle (e.g. A Tl).

Make sure that scratchpad flags (intermediate flags) are saved by interrupt
and time-driven programs and are loaded again on completion of the inserted
program when they are required by other blocks (e.g. standard FBs).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.2 Error Information

0 vervie W If an error occurs during system start-up or during cyclic execution of your
program, there are various sources of information to help you find the problem,
as follows:

LEDs on the front panel of the CPU

ISTACK interrupt stack and control bits

system data RS 3, RS 4 and RS 80

error identifiers in ACCU 1 and ACCU 2

BSTACK block stack

The following sections describe how to evaluate the information provided by
these sources and how to use the error information to analyze a problem.

LEDs on the If the CPU goes over to the STOP mode when you do not want it to, check the
front panel LEDs on the front panel. They can indicate the cause of the problem.
of the CPU

OUTPUT ISTACK You can get information about the status of the control bits and the contents of
programmer the interrupt stack (= ISTACK) using the ISTACK programmer online function.
online function

When the CPU goes over to the STOP mode, the system program enters the
following information in the ISTACK. This information is required for a warm
restart:

LED display

STOP LED lit continuously

STOP LED flashes slowly

STOP LED flashes quickly

ADF LED lit continuously

QVZ LED lit continuously

ZYK LED lit continuously

register contents

Meaning

The various states of
the STOP LED indicate
specific causes of
interruptions and errors
(see section 4.1).

Addressing error

Timeout error

Cycle time exceeded error

accumulator contents

STEP 5 address counter SAC

and

condition codes

These entries can be very helpful for error diagnosis.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Before the actual ISTACK is output on the programmer, the status of the control
bits is displayed. The control bits mark the current operating status and certain
characteristics of the CPU and the user program and provide additional
information on the cause of an error.

You can use the "Output ISTACK" function in the STOP, RESTART and RUN
modes; however, in RESTART and RUN you only get information via the
control bits and not via the contents of the ISTACK.

The meaning of the control bits and the structure of the interrupt stack are
described in more detail in Section 5.3.

System data
RS 3 and RS

If your CPU returns to the stop mode owing to an error during the RESTART,
4 the cause of the error is defined in greater detail in the system data words RS 3

and RS 4 (see Section 5.5). These involve errors detected by the system program
when it sets up the address list in DB 0 or evaluates DB 1, DB 2, DX 0 or DX 2.

The two data words are stored at the following absolute memory addresses:

system data word RS 3: KH = EA03

system data word RS 4: KH = EA04

The error identifier in system data word RS 3 tells you what type of error has
occurred.
System data word RS 4 tells you where the error has occurred.

The error identifiers are in the KH data format.

Analyzing Using the online function INFO ADDRESS (KH = EA03 or EA04) you can read
system data out the contents of the two system data words directly and discover the cause of
words RS 3 and the error.
RS 4 on the
programmer

System data
RS 80

If the system program detects a serious system error, it sets the control bit INF in
the interrupt stack (see Section 5.3) and enters an additional error identifier in the
data format KH in system data word RS 80.

The system data word RS 80 has the absolute memory address
KH = EA 50. You can read it out in the same way as the system data RS 3 and
RS 4.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Error identifiers If errors occur in the STEP 5 program execution in RESTART or in the
in ACCU l and CYCLE for which there is a particular organization block as user interface, the
ACCU 2 system program automatically enters additional error information in the

accumulators ACCU 1 and ACCU 2 when the organization block is called.
These entries also define the cause of the error more exactly (see Section 5.6).

The error identifier in ACCU 1 tells you what type of error has occurred.

The error identifier in ACCU 2 (if entered) tells you where the error occurred.

The error identifiers are in the KH data format.

Analysis of Using the online function OUTPUT ISTACK, you can read the contents of the
ACCU l and two accumulators directly out of the ISTACK to find out the exact cause of the
ACCU 2 on the error.
programmer

Analysis of Since the error identifiers are written to ACCU 1 and ACCU 2 automatically
ACCU l and when an error organization block is called, you can take these identifiers into
ACCU 2 with account when you program your error OB.
STEP 5 This allows you to program specific reactions to various errors in your

organization block depending on the error identifier transferrred to it.

OUTPUT The PG online function OUTPUT BSTACK gives you information in STOP
BSTACK online about the contents of the block stack (BSTACK - see Section 3.2 "Nesting
function blocksv).

Starting from OB 1 or FB 0, the BSTACK contains a list of all blocks called in
sequence and not completely processed when the CPU went into the STOP
mode. Since the BSTACK is filled from the bottom, the block on the uppermost
level of the BSTACK display contains the block that was last processed and in
which the error occurred.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

BSTACK The top line contains the following information:
information

Example:

Information

BLOCK NO

BLOCK ADDR

RETURN ADDR

REL ADDR

DB NO

DB ADDR

valuating the BSTACK function:

BLOCK NO BLOCK ADDR RETURN ADDR REL ADDR DB NO DB ADDR

n the example above, the stoppage occurred in OB 23 when processing the
TEP 5 statement at the absolute memory address "0064 - 1 = 0063".

B 23 (QVZ error OB) was called in FB 5 at the relative address
0008 - 1 = 0007".

he data block DB 100 was opened in FB 6. When the CPU went into the stop
ode, data block DB 13 was valid.

ata block DB 13 was opened in FB 5.

Meaning

Type and number of the block that called the faulty block

Absolute start address of the calling block in the program
memory

Absolute address of the first STEP 5 operation of this block in
the user memory.

Relative address (= difference "RETURN
ADDR - BLOCK ADDR") of the next operation to be
processed in the calling block.
(You can display relative addresses on a programmer in the
mode "disable input"/key switch and with SS-DOS from
Stage IV upwards using the function key "addresses").

Number of the last data block opened in the calling block

Absolute start address in the program memory of the last data
block opened in the calling block (address of data word DW 0)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

5.3 Control Bits and Interrupt Stack

Introduction Using the PLC INFO and OUTPUT ISTACK online programmer functions, you
can analyze the operating status, the characteristics of the CPU and the user
program and any possible causes of errors and interruptions.

Note
You can display the control bits in any mode. You can display the
ISTACK only in the STOP mode.

0 vervie W Diagnosis data are displayed by control bits and the ISTACK.

Control bits:

The control bits indicate the current and previous operating status and the
cause of the problem.
If several errors occurred, the control bits indicate all of them.

ISTACK:

The ISTACK indicates the location of the interruption (addresses) with the
current condition codes, the accumulator contents and the cause of the
problem.
If several errors occurred, a multiple level interrupt stack is constructed as
follows:

depth 01 = last cause of problem,

depth 02 = next to last cause of problem etc.

If an ISTACK overflow occurs (more than 13 entries) the CPU goes into the
STOP mode immediately. If this happens, you must perform a POWER
OFFPOWER ON and a cold restart.

The meanings of the individual abbreviations in the control bits and in the
ISTACK are described below.

Note
The text on the screen of your programmer depends on the PG software
used. It may differ from the screen represented here. Nevertheless, the
description of the individual positions on the screen in these programming
instructions is valid.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

5.3.1 Control Bits

Display When you display the ISTACK on the PG the statuses of the control bits are
shown on the first screen page (see Fig. 5-1).

32KWRAM 16KWRAM

URGELOE URL-IA

DXO-FE FE-22

N A U P E U

B C F FE-6

FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP

NEUSTA M W A A W A ANL-2 NEUZU MWA-ZUL
X X X

EINPROZ BARB OBlGEL FBOGEL OBPROZA OBWECKA
X X

8KWRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS
X X X

STP-VER ANL-ABB UA-PG UA-SYS UA-PRFE UA-SCH

MOF-FE RAM-FE DBO-FE DB1 -FE DB2-FE KOR-FE

B A U STUE-FE Z Y K Q V Z A D F WECK-FE

FE-5 FE-4 FE-3 L Z F REG-FE DOPP-FE

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK": control bits

The control bits (>>STP<<, >>ANL<< and >>RUN<<) and the control bits in
the first lines of the first screen page mark the current or previous status of the
CPU and provide information about certain features of the CPU and your
STEP 5 program.

You can display the control bits in all modes. You can, for example, make sure
that organization block OB 2 is loaded and that interrupt control program
execution is possible at any time.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

Meaning The following tables explain the meaning of the individual control bits.

Table 5-1 Meaning of the control bits in the >>STP<< line

Table 5-2 Meaning of the control bits in the >>ANL<< line

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Control bit

>>ANL<<

ANL-6
t

MWA

ANL-6
t

AWA

NEUSTA

M W A

A W A

MWA
t

AWA

>>ANL<< line (CONTROL BITS)

Meaning

CPU is in the RESTART mode

RETENTIVE MANUAL COLD RESTART

RETENTIVE AUTOMATIC COLD RESTART

MANUAL COLD RESTART requested (STOP) or was last RESTART
type (RESTARTIRUN)

MANUAL WARM RESTART requested (STOP) or was last RESTART
type (RESTARTIRUN)

AUTOMATIC WARM RESTART after power failure is requested
(STOP) or was last RESTART type (RESTARTBUN)

AUTOMATIC COLD RESTART was requested (STOP) or was last
RESTART type (RESTARTBUN)

Interru~t and Error Handlina

Table 5-3 Meaning of the control bits in the >>RUN<< line

>>ANL<< line (CONTROL BITS)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Control bit Meaning

Table 5-2 continued:

ANL-2

NEUZU

MWA-ZUL

Double function:
- is set after PROGRAM TEST END (in contrast to

BARBEND in the first line, it is also set when
PROGRAM TEST END is called in the STOP
mode; prevents WARM RESTART)

- is set after "compressing in the STOP mode";
prevents WARM RESTART

COLD RESTART permitted (STOP) or COLD RESTART was
permitted when the last RESTART took place (RESTARTIRUN)

MANUAL WARM RESTART permitted (STOP) or COLD RESTART
was permitted when the last RESTART took place (RESTARTBUN)

Interru~t and Error Handlina

Table 5-4 Meaning of the control bits in lines 4 and 5

The control bits in the following table indicate errors that can occur in the
RESTART (e.g. during an initial COLD RESTART) and RUN (e.g. during
time-driven program execution) modes.
If several errors occur, all causes of interruptions that have occurred up to now
(and have not yet been processed) are displayed in the last three lines of the
control bits. See also system data word RS 2, this contains the ICMK (interrupt
condition code group word, 16 bits), in which all errors not yet processed are
also entered (Section 8.3.5).

Control bit

32KWRAM

16KWRAM

8KWRAM

EPROM

KM-AUS

KM-EIN

DIG-EIN

DIG-AUS

URGELOE

URLIA

STP-VER

ANL-ABB

UA-PG

UA-SYS

UA-PRFE

UA-SCH

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Lines 4 and 5 (CONTROL BITS)

Meaning

Submodule is a RAM (with 32 X 2'' words)

Irrelevant for the CPU 928B-3UB21

Irrelevant for the CPU 928B-3UB21

Submodule is an EPROM (with 32 X 2'' words)

Address list for IPC flag outputs from DB 1 exists

Address list for IPC flag inputs from DB 1 exists

Address list for digital inputs exists

Address list for digital outputs exists

Overall reset performed on CPU (COLD RESTART required)

Overall reset being performed on CPU

CPU caused CP stop

RESTART aborted (COLD RESTART required)

PG has requested OVERALL RESET

System program has requested OVERALL RESET (no RESTART
possible); OVERALL RESET must be performed

OVERALL RESET requested owing to CPU error

OVERALL RESET requested at hardware switch:
perform an OVERALL RESET or select a restart type if you do not want
to perform the requested OVERALL RESET

Interru~t and Error Handlina

Table 5-5 Meaning of the control bits in lines 6 to 8

- DB 1 not programmed and coordinator plugged in or multiprocessor

s image, in which I/O modules
d in, defect or not specified in

peration code error:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

5.3.2 ISTACK Content

Lines 6 to 8 (CONTROL BITS)

Introduction If the CPU is in the stop state, you can display the content of the ISTACK on the
screen after the control bit display by pressing the enter key. When the CPU goes
into the STOP mode, the system program enters all the information it needs in
this ISTACK for a warm restart.

Control bit

You can use the entries in this ISTACK to see what kind of error occurred and
where it occurred in the program.

Meaning

If the stop state was caused by a single error, only one level of the ISTACK
information is displayed. With several errors, the corresponding number of
ISTACK levels are output (DEPTH 01, DEPTH 02, etc.). At all levels, only one
error is marked as the CAUSE OF INTERRUPT.

If several errors have occurred DEPTH 01 marks the error detected immediately
before the change to the stop state.

Table 5-5 continued:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

LZF

REG-FE

DOPP-FE

Runtime error:
- called block not loaded
- loadltransfer error with data blocks
- other runtime errors

Error processing the controller structure R64 in the CYCLE

Double call error:
a still active error program processing level (ADF, BCF, LZF, QVZ,
REG, ZYK) is activated a second time (COLD RESTART required)

Interru~t and Error Handlina

Display Fig 5-2 is an example of a PG display of the ISTACK content.

/ INTERRUPT STACK \
DEPTH 02

OP-REG: C70A
BLK-STP: 0002

LEVEL: 0004

ACCU 1 : 0000 C464

KLAMMERN: KEl 111

CONDITION CODE:

CAUSE OF INTERR.:

SAC: 00F3 DB-ADD: 0000 BA-ADD: 0000
FB-NO.: 226 DB-NO.: OB-NO.:
REL-SAC: 0006 DBL-REG.: 0000
ICMK: 0200 ICRW: 0000

ACCU2: 0000 OOFF ACCU3: 0000 0000 ACCU4: 0000 0000

CC1 CC0 OVFL OVFLS ODER ERAB

X
STATUS VKE

X X
NAU PEU BAU MPSTP ZYK QVZ

ADF STP BCF S-6 LZF REG-FE
X

STUEB STUEU WECK DOPP

Fig. 5-2 Example of the first screen page "OUTPUT ISTACK" : contents

Explanation of QElmL
the ISTACK
screen Information level of the ISTACK when more than one error has occurred:

DEPTH 01 = last cause of stop to occur
DEPTH 02 = next to last cause of stop to occur
......
DEPTH13 = (maximum depth)

out t w

The following table contains information about the ISTACK IDs with which the
statement in the user program can be found which caused the CPU to change to
the STOP mode.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Table 5-6 Meaning of the ISTACK IDs concerning the point of error
I I

OP-REG

Information about the error

BLK-STP

ISTACK ID

Operation register:
contains machine code (first word) of the instruction processed last in
an interrupted program processing level (see list of operations, list of
machine codes).

Meaning

Block stack pointer:
contains the number of elements entered in the block stack at the time
when the interruption of this processing level occurred

LEVEL Z Specifies the level of program processing that was interrupted
Z : 0002: COLD RESTART

0004: CYCLE
0006: TIME INTERRUPT / 5 sec (OB 18)
0008: TIME INTERRUPT / 2 sec (OB 17)
000A: TIME INTERRUPT / 1 sec (OB 16)
000C: TIME INTERRUPT / 500 ms (OB 15)
000E: TIME INTERRUPT 1 200 ms (OB 14)
0010: TIME INTERRUPT / 100 ms (OB 13)
0012: TIME INTERRUPT / 50 ms (OB 12)
0014: TIME INTERRUPT / 20 ms (OB 11)
0016: TIME INTERRUPT / 10 ms (OB 10)
0018: TIMED JOB
001.4: not used
001C: CL CONTROLLER INTERRUPT
001E: not used
0020: DELAY INTERRUPT
0022: not used
0024: PROCESS INTERRUPT
0026: not used
0028: RETENTIVE MANUAL COLD RESTART
002A: RETENTIVE AUTOMATIC COLD RESTART
002C: transition to stop mode after stop in multiprocessing,

stop switch or PG STOP
002E: interface error
0030: collision of time interrupts
0032: CL controller error
0034: cycle error
0036: not used
0038: operation code error
003A: runtime error
003C: addressing error
003E: timeout
0040: not used
0042: not used
0044: MANUAL WARM RESTART
0046: AUTOMATIC WARM RESTART

SAC STEP address counter:
- contains the absolute address of the last operation of an interrupted

program processing level to be processed in the program memory
- if an error occurs, SAC indicates the operation that caused it.
- before the first operation of a processing level is executed, SAC is

set to "0"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

contains the relative address (related to the block start address) of
the last operation to be executed in the last block processed (you can

in the event of certain errors, the system program writes error
identifiers into ACCUs 1 and 2 when the interruption occurs.

X = 1 to 7 levels
a = OR (OR see condition code bits)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

code

see Section 3.5

The following abbreviations (ISTACK IDs) represent the most important causes
of interruptions.

The only causes of interruptions that are marked are those that have occurred in
the currently displayed program processing level (see LEVEL).
The causes of interruptions represent the contents of the interrupt condition code
group word (ICMK, 16 bits, see Section 8.3.5). Some of the entries here are
identical to those in the control bits.

Table 5-7 ISTACK IDs cause of interrupt

Cause of interrupt

ISTACK ID

NAU

MPSTP Multiprocessor STOP: l l - reset switch on the coordinator in STOP position or
- STOP at a different CPU in multiprocessor operation

Meaning (called error OB)

Power supply failure in central controller

PEU

BAU

Peripherals not ready = power failure in expansion unit

Battery not ready = back-up battery failure (central controller)

I ADF I Addressing error for inputs and outputs with process V 0 image I

ZYK

QVZ

Cycle monitoring time exceeded

Timeout during data exchange with V 0 peripherals

I if error organization block is not programmed
I

STP

BCF I Operation code error: error detected during the operation decoding

- stop mode caused by setting the stop switch to STOP
- stop mode caused by command from PG
- stop mode after processing the STEP 5 operation "STP"
- stop mode after stop command from system program,

- substitution error: processed STEP 5 operation cannot be substituted
- operation code error: processed STEP 5 operation is incorrect
- parameter error: parameter of the processed STEP 5 operation is not

I permitted
I

S-6 I Interface error

I REG-FE I Error processing the controller structure R64 in the CYCLE I

LZF

1 STUEB I Block stack overflow:
nesting depth too great; required measure: COLD RESTART)

Runtime error: error detected during the execution of an operation:
- called block not loaded
- loaditransfer error with data blocks
- other runtime errors

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Cause of interrupt

ISTACK ID Meaning (called error OB)

Table 5-7 continued:

STUEU

WECK

DOPP

Interrupt stack overflow:
nesting depth too great; required measure: COLD RESTART)

Collision of time interrupts:
before or during the processing of a time interrupt OB, an attempt
was made to call the same OB a second time

Double call error
a still active error program processing level (ADF, BCF, LZF, QVZ,
REG, ZYK) is activated a second time (COLD RESTART required)

Interru~t and Error Handlina

5.3.3 Example of Error Diagnosis using the ISTACK

Example 1:

Fig. 5-3 illustrates the structure of the ISTACK in conjunction with the
interruptions that have occurred.

- The CYCLE program processing level (OB 1) is aborted owing to the
occurrence of an interrupt.

- Following this, the program processing level TIME INTERRUPT is activated
and OB 13 is processed.

- The TIME INTERRUPT level is exited owing to the occurrence of a process
interrupt, the PROCESS INTERRUPT level is activated and OB 2 is processed.

- An incorrect addressing operation activates level ADF where OB 25 is
processed. In the error handling program, the user has programmed a stop
operation (STP); the CPU aborts program execution.

ADF

PROCESS
INTERRUPT

TIME
INTERRUPT

CYCLE

Program processlng levels

Fig. 5-3 Example 1 of evaluating the ISTACK

Depth 01

Level: 003C

Depth 02

Level: 0024 m
Depth 03

Level: 0010 0
Depth 04

Level: 0004 0
Before the CPU finally goes into the stop mode, a total of four different
program processing levels have been interrupted. If you display the ISTACK,
you obtain a four level ISTACK, first the ISTACK with depth 01, in which
the identifier of the program processing level last interrupted (=ADF) is
marked. You can now "page down" through the ISTACK until you reach the
ISTACK with depth 04, that represents the CYCLE program processing level,
that was interrupted first.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interru~t and Error Handlina

o interrupted program execution l e v e l s l ead t o the creat ion of a
o - l eve l ISTACK (s e e Figs 5-5 and 5-6) :

INTERRUPT STACK

1007 DB-ADD:

0003 PB-NO.: 5 DB-NO.: 16 08-NO.:
REL-SAC: 0007 DBL-REG.:

003C ICMK: 0300 ICRW: 0000

CONDITION CODE: ...

CAUSE OF INTERR.:

ig. 5-5 Example 2 of evaluating the ISTACK: 1st ISTACK level

INTERRUPT STACK

OOlA DB-ADD:
1 DB-NO.:

REL-SAC: OOOA DBL-REG.:
0004 ICMK: 0200 ICRW:

CONDITION CODE: ...

CAUSE OF INTERR.:

ig. 5-6 Example 2 of evaluating the ISTACK: 2nd ISTACK level

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.4 Error Handling using Organization Blocks

Introduction When the system program detects an error, it calls the appropriate organization
block to handle it. You can determine how the CPU reacts by programming the
relevant organization block. Depending on how you program the organization
block, you can achieve the following reactions:

normal program processing is continued

the CPU goes to the STOP mode

andlor

a special error handling program is run through.

Errors and the Organization blocks exist for the following causes of errors:
OBs called

Table 5-8 The organization blocks called in case of errors
I I I I

Cause of error Organization Reaction of / blockcalled / CPU l) 1

1 Addressing error (ADF) 1 OB25 1 STOP 1

Call of a block that is not loaded (LZF)

Timeout in the user program during access to I10
modules (QVZ)

Timeout during update of the process image

1 Parameter error (BCF) 1 OB30 1 STOP 1

OB 19

OB 23

OB 24

Cycle time exceeded (ZYK)

Substitution error (SUF)

Mode selector set to STOP, PG function PC STOP,
STOP from S5 bus (multiprocessor operation)

Operation code error (BCF)

STOP

none

none

OB 26

OB 27

OB 28

OB 29

Other runtime errors (LZF)

Loadltransfer error with data blocks (TRAF)

Collision of time interrupts (WECK-FE)

I Communication error on the 2nd serial interface (El-3) I OB 35 1 none I

STOP

STOP

STOP

STOP

Error processing the controller structure R64 (REG-FE)

l) if OB is not programmed, with DX 0 defaults

OB 31

OB 32

OB 33

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

STOP

STOP

STOP

I I

OB 34 STOP

Interrupt and Error Handling

Response of If the organization block is not loaded the response depends on the particular
organization error:
block not loaded

No interruption of cyclic program execution

If a timeout occurs and OB 23, OB 24 or OB 35 is not loaded, cyclic program
execution is not interrupted. The CPU does not react.

If you want the CPU to go into the STOP mode when a timeout occurs, the
organization block must contain a stop statement and be completed with the
block end statement BE or DX 0 must have suitable parameters assigned.

Program for STOP:

: STP
:BE

STOPmode

When any other error occurs, the CPU goes into the STOP mode immediately
if you did not program the appropriate organization blocks.

If, in exceptional circumstances, (e.g. during system installation) you do not
want one of these errors to interrupt cyclic program execution, a block end
statement in the appropriate organization block is sufficient or assign suitable
parameters to DX 0.

Program for uninterrupted operation:

Note
Organization block OB 28 is an exception: here, the CPU always goes
to the STOP mode regardless of whether you have loaded OB 28 or not.

If you do not want to program the corresponding organization block, you can
prevent the transition to the STOP mode by assigning appropriate parameters
to data block DX 0.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Interruptions during processing of error organization blocks

After the system program calls the appropriate organization block, the user
program in that block is processed.

If another error occurs while the first organization block is being processed,
the program is interrupted at the next operation boundary and the appropriate
second organization block is called, just as in cyclic program execution.

The organization blocks are processed in the order in which they are called.
The nesting depth for error organization blocks depends on the following:

- The type of error

No organization blocks belonging to the same program processing level
can be nested within each other. (See Chapter 6 for the assignment of
error OBs to the program processing level).

When processing OB 27 (program processing level BCF) it is, for
example, possible to nest OB 32 (program processing level LZF),
however, OB 29 or OB 30 (also BCF) cannot be nested in OB 27.

If two blocks from the same program processing level are called, the CPU
changes immediately to the STOP mode.

- The number of propram processinp levels currently active at any one
time

For each activated program processing level, the system program requires
extra memory space to set up the ISTACK when an interrupt occurs. If
there is not enough memory left, an ISTACK overflow results.

If there is an ISTACK overflow, the CPU changes immediately to the
STOP mode.

- The number of blocks called at any one time

If there is a BSTACK overflow, the CPU changes immediately to the
STOP mode.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.5 Errors during RESTART

Introduction During initialization and during a restart, causes of interruptions and errors can
lead to the restart program being aborted and put the CPU into the STOP mode.
Interruptions occurring during the restart program (organization blocks OB 20,
21 and 22) are handled just as in the CYCLE.

Exception:
if a STOP occurs during the restart, no organization block OB 28 is called.

Causes of There is no way of responding via a user interface (error OB) to the causes of
interrupt and interrupt and causes of error listed in the table below.
causes of error

Table 5-9 Causes of error and causes of interrupt in RESTART

for further explanations: see the following pages

Control bit or ID
in ISTACK

STP

BAU

NAU

PEU

STUEU

STEUB

DOPP-FE

RAM-FE

MOD-FE

DBO-FE l)

DB1-FE l)

DBZFE l)

DXO-FE l)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Explanation

Stop command from system program (at FE-STP) or in the user
program

Failure of the back-up battery on the central controller

Failure of the power supply in the central controller

Failure of the power supply in an expansion unit

Stack overflow in interrupt stack (ISTACK)

Stack overflow in the block stack (BSTACK)

Double call of an error program processing level

Error during initialization: the contents of the operation system
RAM or the DB RAM are incorrect

Error during initialization: the contents of the memory card are not
correct

Error setting up the block address list (DB 0)

Error evaluating DB 1 to set up the address list for updating the
process image

Error evaluating DB 2 of the controller structure R64

Error evaluating data block DX 0
or
Error evaluating data block DX 2

Interrupt and Error Handling

5.5.1 DBO-FE (DB 0 Errors)

Introduction Errors when setting up the block address list (data block DB 0).

DB 0 is set up by the system program following OVERALL RESET. If a DB 0
error occurs, you will find error identifiers in the system data words RS 3 and
RS 4 that define the error in greater detail.

Error identifiers The identifiers for DB 0 errors are listed in the table below.

Table 5-10 IDs for DB 0 errors

5.5.2 DBI-FE (DB 1 Errors)

Error identifier
RS3 RS4

8001H yyyyH

8002H yyyyH

8003H yyyyH

8004H yyyyH

8005H yyyyH

Introduction Error evaluating DB 1 to set up the address list for updating the process image.

Explanation

Wrong block length
yyyy = address of the block with the wrong length

Calculated end address of the block in the memory is wrong
yyyy = block address

Invalid block identifier
yyyy = address of the block with the incorrect identifier

Organization block number too high @emitted: OB 1 to OB 39)
yyyy = address of the block with the incorrect number

Data block number 0 @ermitted: DB 1 to DB 255)
yyyy = address of the block with the incorrect number

DB 1 does not exist in multiprocessor operation,

incorrect DB 1 address list during COLD RESTART.

Note
In multiprocessor operation, the system checks whether DB 1 exists in all
types of restart. DB 1 parameters are, however, only evaluated during a
COLD RESTART.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Error identifiers The identifiers for DB 1 errors are listed in the table below.

Table 5-11 IDs for DB 1 errors

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
RS3 RS4

0410H yyyyH

0411H yyyyH

0412H yyyyH

0413H yyyyH

0414H yyyyH

0415H yyyyH

0419H yyyyH

O~~AHYYYYH

041BHyyyyH

041CHyyyyH

Explanation

Illegal identifier:
- header identifier missing or incorrect (correct KC MASKO1)
- identifier illegal (permitted KH DEOO, DAOO, CEOO, CAOO,

BBOO)
- end identifier missing or incorrect (correct KH EEEE)
yyyy = illegal identifier

"Digital inputs", number of addresses illegal (permitted 0...128)
yyyy = illegal number of addresses

"Digital outputs", number of addresses illegal
(permitted 0...128)
yyyy = illegal number of addresses

"IPC flag inputs", number of addresses illegal
(permitted 0...256)
yyyy = illegal number of addresses

"IPC flag outputs", number of addresses illegal
(permitted 0...256)
yyyy = illegal number of addresses

Illegal number of timers @ermitted: 256)
yyyy = illegal number of timers

Timeout with digital inputs
yyyy = address of the unacknowledged input byte

Timeout with digital outputs
yyyy = address of the unacknowledged output flag byte

Timeout with IPC flag input
yyyy = address of the unacknowledged IPC flag byte

Timeout with IPC flag output
yyyy = address of the unacknowledged IPC flag byte

Interrupt and Error Handling

5.5.3 DB2-FE (DB 2 Errors)

Introduction Errors in the evaluation of the parameter assignment data block DB 2 for
controller structure R64 (controller initialization).

If a DB 2 error occurs, system data words RS 3 and RS 4 contain error identifiers
that define the error in greater detail.

Error identifiers The identifiers for DB 2 errors are listed in the table below.

Table 5-12 IDs for DB 2 errors

Error identifier
RS 3 RS 4

0421H DByyH

0422H FByyH

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Explanation

Data block not loaded
yyyy = number of the data block that is not loaded

Function block not loaded
yyyy = number of the function block that is not loaded

0423H FByyH

0424H FByyH

0425H DByyH

0426H -

Function block not recognized
yyyy = number of the unrecognized function block

Function block loaded with wrong PG software
yyyy =number of the function block

Wrong controller data block length
yyyy = number of the data block

There is not enough memory space in the DB-RAM to shift the
controller DBs from the user EPROM to the DB-RAM

Interrupt and Error Handling

5.5.4 DXO-FE (DX 0 or DX 2 Errors)

Note
DX 0 and DX 2 errors have a common control bit (DXO-FE) in the control
bit screen form.

Errors evaluating In the event of a DX 0 error you will find error identifiers in the system data
data block DX 0 words RS 3 and RS 4 that define the error in more detail.

Table 5-13 IDs for DX 2 errors

Errors evaluating Parameter assignment for the second serial interface.
data block DX2 Data block DX 2 is set up by the system program after a COLD RESTART. In

the event of a DX 2 error, you will find error identifiers in the system data words
RS 3 and RS 4 that define the error in more detail.

Error identifier
RS3 RS4

0431H yyyyH

0432H yyyyH

0433H yyyyH

0434H yyyyH

Table 5-14 IDs for DX 0 errors

Explanation

Illegal identifier:
- header identifier missing or incorrect (correct KC MASKXO)
- field identifier illegal
- end identifier missing or incorrect (correct KH EEEE)
yyyy = illegal identifier

Illegal parameter
yyyy = illegal parameter

Illegal number of timers @ermitted: 0...256)
yyyy = incorrect number of timers

Illegal cycle time monitoring @ermitted: 1 ms to 13000 ms)
yyyy = incorrect time value

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
RS3 RS4

0451H -

0452H yyyyH

0453H yyyyH

0454H xxOOH

0455H xxyyH

0456H xxyyH

Explanation

DX 2 length (without block header) < 4 words is not permitted

DX 2 length (without block header) is too short for link type
yyyy = length DX 2

Link type illegal
yyyy = link type

Data identifier for stat. parameter set illegal
(not equal to 44H, 58H)
xx = data identifier

Block for static parameter set illegal
xx = identifier / yy = DB number

Static parameter set does not exist
xx = identifier / yy = DB number

Interrupt and Error Handling

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
RS3 RS4

Explanation

Table 5-14 continued:

0457H yyyyH

0458H xxOOH

0459H yyyyH

045AH xxOOH

045BH xxyyH

045CH xxOOH

045DH xxyyH

045EH xxOOH

045FH xxyyH

0460H xxyyH

0461H yyyyH

Static parameter set too short
yyyy = number of the non-existent DW

Data identifier for dynamic parameter invalid (44H, 58H, OOH)
xxH = data identifier

Block for dynamic parameter set illegal
xx = identifier / yy = DB number

Data identifier for sendljob mailbox invalid (not equal to 44H,
58H, OOH)
xx = data identifier

Block for sendljob mailbox illegal
xx = identifier / yy = DB number

Data identifier for receive mailbox invalid (not equal to 44H, 58H,
OOH)
xx = data identifier

Block for receive mailbox illegal
xx = identifier / yy = DB number

Data identifier for coordination bytes invalid (not equal to 44H,
58H, 4DH)
xx = data identifier

Block for coordination bytes illegal
xx = identifier / yy = DB number

Block for coordination bytes does not exist
xx = identifier / yy = DB number

DW for coordination bytes does not exist
yyyyH = number of the non-existent DW

Interrupt and Error Handling

5.5.5 MOD-FE (Memory Card Errors)

Introduction When evaluating a memory card and copying blocks from the memory card, a
number of checks are run. If an error is found, the control bit MOD-FE is entered
in the control bits screen form and an additional error identifier entered in the
system data word RS 3.

Error identifiers
in system data
word RS 3

If the above checks lead to an error, system data word RS 3 contains error
identifiers which define the errors in greater detail (the contents of RS 4 are
irrelevant).

Table 5-15 IDs for memory card errors and errors when copying blocks

Error identifier 1 RS3 RS 4
Explanation

620EH -

1 6211H - I Memory card: wrong application (not STEP 5) I

Memory card: wrong access time class

6210H -

1 6212H - I Memory card: wrong MLFB number

I

Memory card: wrong data width
I

6213H -

1 6216H - 1 Block type illegal

Memory card: wrong class (not Flash)

6214H -

6215H -

I
Block illegal

Block number illegal

6217H - Block length illegal

6218H -

6219H -

1 621BH - 1 Memory card content inconsistent 1

I
Too many blocks

Too many blocks of one type

621AH -

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

No space in user memory
I

Interrupt and Error Handling

5.6 Errors in RUN and in RESTART

Introduction In the RUN mode, cyclic, time-driven or interrupt-driven program execution or
controller processing can be interrupted at operation boundaries by the
occurrence of certain errors or faults, e.g. power failure in the central controller
or block stack overflow.

Interruptions during initialization and in the RESTART mode cause the restart
program to be aborted and the CPU goes into the STOP mode or calls the
organization block intended for this error. Interruptions occurring during the
start-up program are handled in the same way as in the CYCLE.

A distinction is made between problems that cause the CPU to go directly to the
STOP mode (e.g. STUEU) and problems that cause the system program to call
certain organization blocks that you can program instead of the CPU going
directly to the STOP mode (e.g. ADF).

There is no way of responding via a user interface (error OB) to the causes of
interrupt and causes of error listed in the table below.

Errors which
lead direct to
STOP

If these errors occur, an ISTACK is created in which the interrupt is displayed.

program

BAU I Failure of the back-uv batterv in the central controller

Table 5-16 Causes of error and causes of interrupt in RESTART and RUN, which lead
direct to STOP

NAU I Failure of the power supply to the central controller

Control bit or ID
in ISTACK

STP

Explanation

STOP caused by the system program (machine error), when an
error OB is not loaded, or there is a stop operation in the user

I STUEB I Stack overflow in the block stack (BSTACK), nesting depth I

PEU

STUEU

Failure of the power supply to one or more expansion units

Stack overflow in the interrupt stack (ISTACK), nesting depth
too nreat

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

I too great

DOPP-FE Double call of an error program processing level

Interrupt and Error Handling

Errors which When these errors occur, an error OB will be called.
cause an error
OB to be called

BCF

Table 5-17 Causes of error and causes of interrupt in RESTART and RUN, which
cause an error OB to be called

LZF

Control bit or
ID in

ISTACK

WECK-FE r

Operation code error:
- substitution error
- operation code error
- parameter error

Runtime error:
- call for a block that is not loaded
- transfer error with DBs
- other runtime errors

Addressing error:
- when accessing the process image

Timeout:
- in the user program when accessing 110 modules
- when updating the process image

Cycle error
- the cycle monitoring time was exceeded

Collision of two time interrupts:
- error processing a time interrupt

Explanation OB no.

The following sections describe each of these causes of errors in more detail.

REG-FE

ABBR

S-6

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Controller error:
- error processing a controller interrupt

Abort:
- (see 'ABBR' in this Section)

Communication error:
- during data exchange via the second serial interface

OB 34

OB 28

OB 35

Interrupt and Error Handling

5.6.1 BCF (Operation Code Errors)

Introduction An operation code error occurs when the CPU either cannot interpret or cannot
execute a STEP 5 operation in the user program. All permissible operation codes
are listed in the list of operations.

The operation that caused the operation code error is not executed. If the relevant
BCF organization block is loaded, this is called, processed and the user program
is then continued starting with the next operation. If the BCF-OB is not loaded,
the CPU goes into the STOP mode.

The following operation code errors can occur. In each case, the error OB named
is called:

Substitution error If an operation with a formal operand is to be executed in a function block, the
(OB 27) CPU replaces this formal operand with the actual operand contained in the

function block call.

The CPU recognizes an illegal substitution. The system program interrupts the
processing of the user program and calls organization block OB 27, if it is loaded.

ACCU 1 contains additional information that defines the error in more detail.

Table 5-18 BCF substitution error

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
ACCU-1-LACCU-2-L

1801H -

1802H -

1803H -

1804H -

1805H -

1806H -

Explanation

Substitution error with the DO RS operation

Substitution error with the DO DW, DO F W operations

Substitution error with the DO=, D1 operations

Substitution error with the L=, T= operations

Substitution error with the A=, AN=, 0 = , ON=, ==, S=
and RB= operations

Substitution error with the RD=, LD=, FR=, SFD=, SD=,
SSU; and SEC= operations

Interrupt and Error Handling

Operation code An operation code error is detected by the CPU during the execution of a STEP 5
error (OB 29) program when an operation is programmed that does not belong to the STEP 5

set of operations for the CPU 928B (e.g. RU and SU operations can be
programmed at the programmer but cannot be interpreted by the CPUs 928B,
928,922 (R processor) and 921 (S processor) in the S5 135U).

If the CPU detects an illegal operation code, the execution of the user program is
interrupted and organization block OB 29 is called, if it is loaded

When OB 29 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-19 BCF operation code error

Caution
An operation code error should not be acknowledged: the CPU does not
recognize whether the incorrect operation is a single word or multiword
operation. Once the CPU has processed
OB 29, it attempts to continue the program at the next operation word. If
this is the second word of a multiword operation, it either detects a further
operation code error or executes this word as a valid operation, which can
cause a variety of program errors.

Error identifier
ACCU-1-LACCU-2-L

1811H -

1812H -

1813H -

1814H -

1815H -

Parameter error An illegal parameter occurs when an operation is programmed with a parameter
(OB 30) that is not permitted for the particular CPU (e.g. calling a reserved data block), or

when a non-existent special function is called.

Explanation

Operation with illegal OP code

Illegal OP code for an operation in which the high byte of
the first operation word contains the value 68H

Illegal OP code for an operation in which the high byte of
the first operation word contains the value 78H

Illegal OP code for an operation in which the high byte of
the first operation word contains the value 70H

Illegal OP code for an operation in which the high byte of
the first operation word contains the value 60H

If the CPU detects an illegal parameter, the system program interrupts the
execution of the user program and calls organization block OB 30, if it is loaded.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

When OB 30 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-20 BCF Darameter error

A=/AN=/O=/ON=/S=/RB=/==/
RD=/FR=/SP=/SD=/SEC=/SSU=/
SFD=/L=/LD=/LW=/T= 0,127-255

DO=/LWD= 0, 126-255

A S10 S/S S/=S/AN S/ON S/R S
byte number > 1023

A S/OS/S S/=S/AN S/ON S/RS
bit number > 7

Error identifier
ACCU-1-LACCU-2-L

1821H -

182BH -

182CH -

182DH -

182EH -

1 8 2 ~ ~ -

1830H -

1831H -

Explanation

CDB 0, 1 , 2

JU(C) OB 0

JU(C) OB > 39: special function does not exist

CXDXO, CXDX1, CXDX2

L FW/T FW/L PW/T PW/L OW/T OWL DD/T
DDDO FW 255

L IW/T IW/L QW/T QW 127

L FD/T FD 253,254,255

L ID/T ID/L QD/T QD 125,

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

183AH -

183BH -

183CH -

L SW/T SW parameter > 1022

L SD/T SD parameter >l020

G DB/GX DX parameter 0, 1 or 2 (DB or DX 0, 1 , 2
cannot be generated)

Interrupt and Error Handling

5.6.2 LZF (Runtime Errors)

Introduction A runtime error occurs when the CPU detects an error during the execution of a
STEP 5 operation.
The operation that causes the runtime error is not executed. If there is an LZF
organization block, this is called. The interrupted user program is then continued
from the next operation after the operation that caused the error. If no LZF-OB is
loaded, the CPU goes to the STOP mode.

The following runtime errors are possible. In each case, the named error OB is
called:

LZF - calling a If a block is called or opened in the user program and this block does not exist,
block that is not the system program automatically detects an error. This applies to all block types
loaded (OB 19) and is true for conditional and unconditional calls.

If the system program detects the call or opening of a block that is not loaded, it
calls organization block OB 19, if it is loaded. In OB 19, you can specify how
the CPU should proceed.

If you have programmed OB 19, it is called and processed following which the
interrupted STEP 5 program is continued at the next operation unless OB 19
contains a stop operation. If, on the other hand, you have not programmed
OB 19, the CPU goes into the STOP mode when a block that is not loaded is
called or opened.

When OB 19 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-21 LZF - calling a block that is not loaded

I Error identifier I Emlanation I

I lAOlH - I Data block not loaded for C DB I
I 1A02H - I Data block not loaded for CX DX I

1A03H

1A04H

1A05H Data block not loaded for OB 254 or 255

1A06H Data block not loaded for OB 182

1A07H Data block not loaded for OB15010B15110B 153

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Note
If you attempt to open a data block that is not loaded, the DBA register
(see Chapter 9) is affected. In this case a loaded data block must be opened
again before accessing DBIDX data.

Load/transfer When you transfer data to data blocks (DB, DX), the CPU compares the length
error (OB 32) of the DB that has been opened with the operand in the transfer operation. If the

specified parameter exceeds the actual data block length, the CPU does not
execute the transfer statement to prevent data in the memory from being
ovenvritten by mistake.

The system program also detects a loadltransfer error if a single bit of a
non-existent data word is to be setlreset or scanned.

The system program also detects a loadltransfer error if you attempt to access a
data word before you call a data block (using C DBn or
CX DXn).

When the system program detects a loadltransfer error, it calls organization block
OB 32, if it is loaded. The operation that caused the transfer error is not executed.
When OB 32 is called, ACCU 1 contains additional information that defines the
error in greater detail.

Table 5-22 LZF-loadltransfer error (TRAF)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Other runtime These include all runtime errors that cannot be grouped with the previous types
errors (OS 31) of runtime error (transfer errors or calling a block that is not loaded).

If the system program detects one of these runtime errors, it calls organization
block OB 31. The operation (or special function) that caused the error is not
processed any further. If OB 31 is not loaded, the CPU goes into the STOP mode.
If you want program execution to continue when one of the errors listed below
occurs, simply write the block end statement BE in
OB 31.

When OB 31 is called, ACCU 1 and ACCU 2 contain additional information that
defines the error in greater detail.

Error identifiers of different operations, OB 2541255 and OB 250

Table 5-23 LZF-other runtime errors (OB 2541255 and OB 250 identifiers)

Error identifier 1 ACCU-I-L ACCU-I-L I Explanation l
I 1A21H - I G DB. GX DX: data block alreadv exists I

1 1A22H - 1 (< l or > 4091) 1 G DB, GX DX: illegal number of data words

1A23H -

1A25H -

G DB, GX DX: not enough space in the RAM

DI: illegal parameter in ACCU 1

1A29H -

1A2AH -

1A2BH -

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

(< i o r > 125)

Bracket stack under or overflow following A(, 0(,)

C DB, CX DX, block length in data block header too
short (length < 5 words)

Function block with incorrect PG software loaded

1A2CH -

1A3 1H -

1A32H -

1A33H -

ACR: illegal page number in ACCU-1-L (> 255)

OB 254 or OB 255 (shift) or OB 250:
destination data block already exists in DB-RAM

OB 254 or OB 255 (duplicate):
destination data block already exists in DB-RAM

OB 254 or OB 255 or OB 250:
not enough space in the DB-RAM

Interrupt and Error Handling

Table 5-24 LZF-other runtime errors (OB 182 identifier)

I 1A34H 0200H I "Source data block tvve" illegal I

Error identifier
ACCU-1-L ACCU-2-L

1A34H OOOlH

1A34H OlOOH

1A34H OlOlH

1A34H 0102H

Explanation

Description of the data field illegal

Address area type is illegal

Data block number is illegal

"Number of the first varameter word" illegal

1A34H 0201H

1A34H 0202H

Number of the first data word in the destination to be
transmitted illegal

Length of the destination data block in the block
header, value < 5 words entered

Number of data words to be transmitted illegal
(= 0 or > 4091)

"Source data block number" illegal

Number of first data word in the source to be
transmitted illenal

1A34H 0203H

1A34H 0210H

1A34H 0211H

Length of source data block in the block header,
value < 5 words entered

"Destination data block type" illegal

"Destination data block" number illegal

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

1A34H 0221H

1A34H 0222H

1A34H 0223H

Source data block too short

Destination data block too short

Destination data block in EPROM

Interrupt and Error Handling

OBs

Table 5-25 LZF-other runtime errors (special function OB identifiers)

umber < 192 or > 2

1A4BH - OB 123: illegal value in ACCU l

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

OB 150 err- . .

Table 5-26 LZF-other runtime errors (OB 150 identifiers)

of OB 151. OB 152 and OB 153

Table 5-27 LZF-other runtime errors (identifiers of OB 151, OB 152 and OB 153)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Error identifiers of different system operations

Table 5-28 LZF-other runtime errors (identifiers of different system operations)

Error identifier
ACCU-1-L ACCU-2-L

Explanation

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
ACCU-1-L ACCU-2-L

1A50H -

1A51H -

1A52H -

1A53H -

1A54H -

1A55H -

1A56H -

1A57H -

Table 5-27 continued:

Explanation

LRW, TRW:

the calculated memory address <BR + constant>
not in range "0 - EDFEH"

LRD, TRD:

the calculated memory address <BR + constant>
not in range "0 - EDEEH" l)

TSG, LY GB, LW GW, TY GB, TW GW:

the calculated linear address <BR + constant>
not in range "0 - EFFF'H"

LY GW, LW GD, TY GW, TW GD:

the calculated linear address <BR + constant>
not in range "0 - EFEEH"

LY GD, TY GD:

the calculated linear address <BR + constant>
not in range "0 - EFFCH"

TSC, LY CB, LW CW, TY CB, TW CW:

the calculated page address <BR + constant>
not in range "F400H - FBFFH"

LY CW, LW CD, TY CW, TW CD:

the calculated page address <BR + constant>
not in range "400H - FBFEH"

LY CD, TY CD:

the calculated page address <BR + constant>
not in range "F400H - FBFCH"

1A4DH 0208H

1A4DH 0209H

1A4DH 020AH

11100 seconds in data field not equal to 0

job type in data field illegal (> 7)

hour format does not match setting in OB 150

OB 152 identifiers

1A4EH OOOlH function no. illegal (not 0 to 3, or 8 or 15)

OB 153 identifiers

~ A ~ E H OOOlH

~ A ~ E H 0002H

function no. illegal (=0 or < l)

illegal delay time

Interrupt and Error Handling

Error identifier
ACCU-1-L ACCU-2-L

the source field is not completely in one of the following
ranges:
0000 .. 7FFF user memory l)

8000 .. DD7F data blockRAM
DD80 .. E3FF DB 0
E400 .. E7FF S flags
E800 .. EDFF system data

(RI, RJ, RS, RT, C, T)
EEOO .. EFFF flags, process image
F000 .. FFFF peripherals

TNW, TNB:

Explanation

Table 5-28 continued:

the destination field is not completely in one of the
following ranges:
0000 .. 7FFF user memory l)

8000 .. DD7F data blockRAM
DD80 .. E3FF DB 0
E400 .. E7FF S flags
E800 .. EDFF system data (RI,

RJ, RS, RT, C, T)
EEOO .. EFFF flags, process image
F000 .. FFFF peripherals

1A58H -

see Chap. 9

TNW, TNB:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.6.3 ADF (Addressing Error)

Introduction An addressing error occurs when a STEP 5 operation references a process image
input or output to which no 110 module was assigned at the time of the last
COLD RESTART (e.g. the module is not plugged in, it is defective or it is not
defined in DB 1 of the CPU).

The system program interrupts the execution of the user program and calls
organization block OB 25. After executing the program in OB 25, the CPU
continues with the next operation of the interrupted program. The STEP 5
statement that caused ADF was executed but with an undefined input or output
value.
If OB 25 is not programmed, the CPU goes into the STOP mode when the error
occurs, unless you have specified in data block DX 0 that the program should
continue.
The address error monitoring can also be completely suppressed if you program
DX 0 appropriately.

Error identifiers The system program transfers the following as error identifiers:

Table 5-29 ADF-identifiers of addressing errors

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
ACCU-1-L ACCU-2-L

1E40H YYYYH

Explanation

Addressing error
yyyy = ADF address

Interrupt and Error Handling

5.6.4 QV2 (Timeout Error)

Introduction A timeout error occurs when an input or output module is addressed and does not
respond with the ready signal (RDY) within a specific time. The cause of the
timeout may be a defect on the 110 module or the module may have been
unplugged from the PC during operation.

The following timeout errors interrupt the user program, and call the appropriate
organization blocks.

Note
If the organization blocks called are not programmed, the user program
is continued.

If a timeout occurs, the CPU reads in the substitute value "OOH" and
continues to work with this value if the QVZ is acknowledged.

A timeout, however, increases the runtime of the STEP 5 operation that
caused it.

STOP in the case If you want a timeout to cause the CPU to stop, you must program the stop
of QVZ operation STP in the called OB (OB 23 or OB 24).

You can also program DX 0 to cause a system stop in the event of a timeout
without programming OB 23/24.

Q VZ during Timeout in the user program during direct access via the S5 bus to CP, IP,
direct access via coordinator or to a peripheral module (e.g. with load and transfer operations LIT
the S5 bus P*.. or O...):

08 23 The system program calls organization block OB 23, if it is loaded.

Error identifiers ACCUs 1 and 2 contain additional information that defines the error in greater
detail.

Table 5-30 QVZidentifiers of timeout errors

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
ACCU-1-L ACCU-2-L

1E23H YYYYH

Explanation

Timeout error
yyyy = QVZ address

Interrupt and Error Handling

Q VZ address The QVZ address indicates the first peripheral byte to generate a QVZ.
Normally, this is the byte with the lowest address in peripheral operations.

An exception to this are QVZ addresses supplied with the commands TNBDNW
in the event of a timeout. Since these operations are decremented, in this case the
QVZ address indicates the byte with the highest address that triggered the QVZ
during the transfer of data.

Q VZ during Timeout error during the update of the process image of inputs/outputs and
PI1 update and transfer of IPC flags:
transfer of the
IPC flags

08 24 The system program calls organization block OB 24, if it is loaded.

Error identifiers ACCUs 1 and 2 contain additional information that defines the error in greater
detail:

Table 5-31 QVZ flags when calling OB 24

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Error identifier
ACCU-1-L ACCU-2-L

1E25H yyyyH

1E26H yyyyH

1E27H yyyyH

1E28H yyyyH

Explanation

Timeout outputting the process image of the digital
outputs
yyyy = address of the non-acknowledged output byte

Timeout updating the process image of the digital inputs
yyyy = address of the non-acknowledged input byte

Timeout updating the IPC flag outputs
yyyy = address of the non-acknowledged IPC flag byte

Timeout updating the IPC flag inputs
yyyy = address of the non-acknowledged IPC flag byte

Interrupt and Error Handling

5.6.5 ZYK (Cycle Time Exceeded Error)

Introduction The cycle time includes the entire duration of cyclic program execution. The
cycle monitoring time can be exceeded owing to a number of reasons: e.g.
incorrect programming, a program loop in a function block, failure of the clock
pulse generator or by system activities such as process image updating in
conjunction with long programs.

When the cycle time exceeded error occurs, the system program interrupts the
user program and calls organization block OB 26, if it is loaded. This retriggers
the cycle time monitoring. If the monitoring time elapses again, before OB 26
has been completely processed, the CPU goes into the STOP mode owing to a
double call error (DOPP-FE).

Cycle monitoring The cycle monitoring time is variable (1 to 13000 ms) and can be retriggered
time (see above). Regardless of the cycle time, 100 ms after the cycle time has

elapsed, BASP is activated if OB 26 has not yet been completed.

You can select the cycle monitoring time by means of an entry in DX 0 or by
calling the special function organization block OB 221.

In the cyclic program, the cycle time monitoring can be retriggered by calling the
special function OB 222.

STOP in the case If you do not program OB 26, the CPU changes to the STOP mode. If you do not
of unloaded want this to happen, you must change the default in DX 0.
08 26

Error identifiers If a cycle time exceeded error occurs, no error identifiers are transferred to
ACCU 1 or ACCU 2.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.6.6 WECK-FE (Collision of Time Interrupts)

Introduction If a particular time interrupt OB is requested before its last request has been
completely processed, the system program recognizes a collision of time
interrupts.

When a collision of time interrupts occurs, the system program calls organization
block OB 33, if it is loaded, or the CPU goes to the STOP mode. See Section 4.5.

Error identifiers ACCUs 1 and 2 contain additional information that defines the error in greater
detail.

Table 5-32 WECK-FE identifiers

Note
The identifier in ACCU 2 is the level identifier of the time interrupt that
caused the error.

Error identifier
ACCU-1-L ACCU-2-L

lOOlH 0016H

lOOlH 0014H

lOOlH 0012H

lOOlH OOlOH

lOOlH OOOEH

lOOlH OOOCH

lOOlH OOOAH

lOOlH 0008H

lOOlH 0006H

If you do not program OB 33, the CPU goes into the stop mode. You can,
however, program DX 0 so that the program is continued when a collision
of time interrupts occurs although you have not programmed OB 33.

Explanation

Collision of time interrupts in OB 10 (10 ms)

Collision of time interrupts in OB 11 (20 ms)

Collision of time interrupts in OB 12 (50 ms)

Collision of time interrupts in OB 13 (100 ms)

Collision of time interrupts in OB 14 (200 ms)

Collision of time interrupts in OB 15 (500 ms)

Collision of time interrupts in OB 16 (1 sec)

Collision of time interrupts in OB 17(2 sec)

Collision of time interrupts in OB 18 (5 sec)

A second call for the already active error program processing level
"collision of time interrupts" does not lead to a double call error (DOPP).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.6.7 REG-FE (Controller Error)

Introduction An error occurring during the processing of the standard function block for
controller structure R64 is detected as a controller error.

Note
While, for example, a collision of time interrupts is always recognized by
the system program, when a particular time interrupt OB is not started and
completed within a particular time interval (e.g. OB 13 within 100 ms),
incorrect processing of the closed loop control program is only detected
when the program processing level CL CONTROL is called. The error is
then indicated in the ISTACK.

If a controller error occurs, the program processing level CL CONTROL is
exited and the CONTROLLER ERROR (LEVEL: 001CH) level is called with
organization block OB 34. The subsequent reaction of the CPU depends on how
you have programmed OB 34:

If you have not programmed OB 34, the CPU goes into the STOP mode. You
can see the cause of the error by displaying the ISTACK.

If you have programmed OB 34, the STEP 5 program it contains (e.g.
evaluation of ACCU 1 and 2 and then appropriate error handling) is executed.
Following this, the controller processing is continued from the point at which
it was interrupted.

Response to If you want to ignore all controller errors, simply write the block end statement
controller errors BE in OB 34.

If you want the controller processing to continue when a controller error occurs
and you do not program OB 34, change the default in DX 0.

Error identifiers When OB 34 is called, ACCUs 1 and 2 contain additional information that
defines the error in greater detail.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Table 5-33 REG-FE identifiers

Entry in the In all seven situations, the error identifier REG-FE is marked in the control bits
control bit on the programmer screen. If you operate a PG without the SS-DOS operating
screen form system, the last position in the lower line of the control bits screen is not

labelled, but is also marked. In the ISTACK screen, the level CL CONTROL,
REG is marked as the cause of the interruption.

Error identifier
ACCU-1-LACCU-2-L

0801H DByyH

0802H DByyH

0803H FByyH

0804H FByyH

0805H FByyH

0806H DByyH

0880H OOyyH

Sampling time After the selected sampling time has elapsed, the cyclic program is stopped at the
errors next block boundary and the controller processing is inserted. It is possible that

the processing of longer blocks takes too long and that the controller processing
becomes "out of step": this causes a sampling time error.

Explanation

Sampling time error
yy = number of controller data block involved

Controller data block not loaded
yy = number of the data block that is not loaded

Controller function block not loaded
yy = the number of the function block that is not loaded

Controller function block not recognized
yy = number of the non-recognized function block

Controller function block loaded with incorrect PC
software
yy = function block number

Wrong controller data block length
yy = data block number

Timeout (QVZ) during the controller processing
yy = number of the 110 byte that caused the timeout.

You can handle a sampling time error just as the other controller errors (as
described on the previous page) or you can suppress the error by means of a
mask. In this case, program execution is not interrupted when a sampling time
error occurs.

Refer also to the description "compact closed loop control in the R processor of
the S5 135U" in 1131.

You can sometimes prevent a sampling time error by changing the default in
DX 0 "processing of controller and process interrupts at block boundaries" to
"processing of controller and process interrupts at operation boundaries".

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.6.8 ABBR (Abort)

Triggering and If, during the RUN mode, the stop mode is requested by one of the following:
response

switching the mode selector on the CPU from RUN to STOP,

PG online function, PLC STOP,

reset switch on coordinator set to STOP (in multiprocessor operation),

the system program calls OB 28, if it is loaded. After OB 28 has been processed,
the CPU goes into the STOP mode.

Note
The transition to the stop mode takes place regardless of whether you
program OB 28 or not.

I No error identifiers are transferred to ACCU 1 or ACCU 2.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

5.6.9 Communication Errors (FE-3)

Introduction If problems occur on the second serial interface with the computer link RK 512,
data transfer with procedure 3964/3964R, data transfer with "open driver" or data
transfer with SINEC L1, the system program calls organization block OB 35 and
transfers additional information about the problems to ACCU 1.

If you do not program OB 35, the system program does not react and the CPU
does not go into the stop mode. This is the default reaction.

If you want the CPU to go into the stop mode when an interface error occurs and
you do not program OB 35, you must change the default in DX 0.

Error information Every 100 ms the system program checks whether communication errors have
in ACCU l occurred on the second serial interface. If an error is detected, the system

program transfers the error information to ACCU 1 and ACCU 2. If you program
OB 35, the system program calls it and transfers the error information in
ACCU 1 and ACCU 2.

Error numbers for a maximum of three causes of problems can be transferred
when OB 35 is called. If there are more than three causes of problems at the
same time, this is indicated by a special overflow identifier.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Interrupt and Error Handling

Structure of the
error information
in ACCU l and
ACCU 2

3 1

ACCU 1

F = '0', when there is no error entered in the error area
= ' l ' , when there is an error entered in the error area.

0

U = '0', when there is no error overflow (maximum three entries)
= ' l ' , when there is an error overflow (more than three entries)

B = '0', when there is no BREAK on the interface
= 'l', when there is a BREAK on the interface

0

BREAK If there is a BREAK on an interface, OB 35 is only called at the beginning and
end of the BREAK status.

Error numbers 1 Here, a maximum of three error numbers belonging to problems detected on the
to 3 interface are entered in the order in which they are detected by the system.

0

Meaning of the For the meaning of the error numbers and further information on handling
error numbers interface errors, refer to the "CPU 928B Communication" Manual 1141.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

0 F U B 0 Error number 1 Error number 2 Error number 3

Integrated Special Functions 6
Contents of the This Chapter tells you which integral special functions the system program
chapter contains, where you can use these functions and how you must call and assign

parameters to the special function OBs.
In addition, you will learn how to detect errors in processing a special function
and how do deal with these in the program.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Section

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

Description

Introduction

OB 110: Accessing the Condition Code Byte

OB 111: Clear ACCUs 1 ,2 ,3 and 4

OB 1121113: Roll Up ACCU and Roll Down ACCU

OB 120: Enablingmisabling of Interrupts

OB 121: EnablePisable Individual Time-Driven
Interrupts

OB 122: EnablePisable "Delay of All Interrupts"

OB 123: EnablePisable "Delay of Individual
Time-Driven Interrupts"

OB 134,135,136 and 139

Settinmeading the System Time (OB 150)

OB 151: Settinmeading the Time for Clock-Driven
Interrupts

OB 152: Cycle Statistics

OB 153: Setmead Time for Delay Interrupt

OB 160 to 163: Loop Counters

OB 170: Read Block Stack (BSTACK)

OB 180: Accessing Variable Data Blocks

OB 181: Testing Data Blocks (DBIDX)

OB 182: Copying a Data Area

OB 185: Setting Write Protection

OB 186: Compressing Memory

Page

6-3

6-7

6-9

6-9

6-11

6-14

6-16

6-19

6-22

6-23

6-28

6-35

6-42

6-45

6-47

6-52

6-56

6-58

6-61

6-62

Integrated Special Functions

Section Description

OB 190/OB 192: Transferring Flags to a Data Block

1 OB 19110B 193: Transferring Data Fields to a Flag Area

OB 200 and OB 202 to 205: Multiprocessor
Communication

OB 216 to 218: Page Access

OB 216: Writing to a Page

1 OB 217: Reading from a Page

1 OB 218: Reserving a Page

1 Program Example

I OB 220: Sign Extension

1 Setting the Cycle Monitoring Time

1 OB 222: Restarting the Cycle Monitoring Time

1 OB 223: Comparing Restart Types

OB 224: Transferring Blocks of Interprocessor
Communication Flags

OB 228: Reading Status Information of a Program
Processing Level

OB 230 to 237: Functions for Standard Function Blocks

OB 240 to 242: Special Functions for Shift Registers

OB 240: Initializing Shift Registers

1 OB 241: Processing Shift Registers

OB 242: Deleting a Shift Register

OB 2501251: Closed-Loop Control/ PID Algorithm

/ Functional Description of the PID Controller

1 PID Algorithm

1 OB 250: Initializing the PID Algorithm

1 OB 251: Processing the PID Algorithm

OB 254, OB 255: Transferring a Data Block to the
DB-RAM

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

lntearated S~ecial Functions

6.1 Introduction

0 vervie W The CPU 928B operating system provides you with a number of special
functions, that you can call with a conditional (JC OBx) or unconditional
(JU OBx) block call. Organization blocks OB 40 to OB 255 are reserved for
these special functions.

These functions are known as integrated special functions, since they are a fixed
part of the system program. You can call these special functions, you cannot,
however, read or modify them.

Overview of The table below gives you an overview of the special functions available.
special functions

Table 6-1 Overview of the special functions available with the CPU 928B

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Block

OB 110
OB 111
OB 112
OB 113

OB 120
OB 121
OB 122
OB 123

OB 134
OB 135
OB 136
OB 139

OB 150
OB 151

OB 152

OB 153

OB 160 to 163

OB 170

OB 180
OB 181
OB 182

OB 185
OB 186

OB 190,192
OB 191,193

OB 200')' 202')
OB 203,204'), 205

Function

Access to the condition code byte
Clear ACCU 1,2,3 and 4
Roll up ACCU
Roll down ACCU

"Disable all interrupts" onloff
"Disable single time interrupts" odoff
"Delay all interrupts" odoff
"Delay single time interrupts" onloff

*D
/D
MOD
PUSH

Setlread the system time
Setlread time for clock-driven time interrupt

Read out cycle time

Setlread time for delay interrupt
(from Version -3UB12)

Loop counter

Read block stack (BSTACK)

Variable data block access
Test data block (DBIDX)
Copy data area

Setlreset write protection
Compressing memory by means of user program

Transfer flags to data blocks
Transfer data fields to flag area

Functions for multiprocessor communication

see section /page

6.2 6-7
6.3 6-9
6.4 6-9
6.4 6-9

6.5 6-11
6.6 6-14
6.7 6-16
6.8 6-19

6.9 6-22
6.9 6-22
6.9 6-22
6.9 6-22

6.10 6-23
6.11 6-28

6.12 6-35

6.13 6-42

6.14 6-45

6.15 6-47

6.16 6-52
6.17 6-56
6.18 6-58

6.19 6-61
6.20 6-62

6.21 6-63
6.22 6-65

6.23 6-70

lntearated S~ecial Functions

l) Special functions with pseudo operation boundaries (executed in several steps)
Instead of these special function organization blocks, assign parameters in data block DX 0 (see Chapter 7).

Block

Interfaces The following operations and parameters are available as interfaces when
programming the use of special functions:

Function

Block call

see section /page

Table 6-1 continued:

OB 216 to 218

OB 220

OB 221 2,

0 B 222
0 B 223

OB 224 2,

OB 226
0 B 227
OB 228

OB 230 to 237')

OB 240
OB 241
OB 242

OB 250')
OB 251')

OB 254,255')

Conditional/unconditional block call JC ... / JU ...

Parameters

Accessing pages

Sign extension

Set the cycle monitoring time
Restart the cycle monitoring time
Compare restart types in multiprocessor operation
Transfer a block of IPC flags in multiprocessor operation
Read a word from the system program
Read the checksum of the system program
Read status information of a program processing level

Functions for standard function blocks

Initialize shift register
Process shift register
Clear shift register

Initialize PID controller
Process PID controller

Copyiduplicate a DB or DX data block

Parameters for selecting presets using ACCU 1 and possibly ACCU 2 and/or
memory registers.

6.24 6-71

6.25 6-82

6.26 6-83
6.27 6-84
6.28 6-84
6.29 6-85
6.30 6-86
6.30 6-86
6.31 6-87

6.32 6-89

6.34 6-94
6.35 6-97
6.36 6-98

6.38 6-106
6.39 6-107

6.40 6-113

In this description, the term parameters refers to all data that the CPU needs
to carry out the special functions correctly. Before you call these special
functions in your STEP 5 program, you must load this data into the
accumulators or into the memory registers as indicated.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

ACCU The abbreviations used in reference to the parameter assignment of special
abbreviations function OBs are as follows:

ACCU 1: ACCU 1, 32 bits

ACCU-1-L: ACCU 1, low word, 16 bits

ACCU-1-LL: ACCU 1, low word, low byte, 8 bits

ACCU-1-LH: ACCU 1, low word, high byte, 8 bits

High word Low word

High byte Low byte High byte Low byte

Errors during If an error occurs during the processing of the special functions, the system
special function program reacts in a specific manner.
processing

In terms of the system program reaction to errors, the special functions can be
divided into two groups.

Error OB, ACCU identifiers

There are special functions for which an error organization block (error OB) is
called in the event of an error. You can program the CPUs reaction in these error
OBs. These error OBs are OB 19, OB 30 and OB 31. In ACCU 1 and for some
special functions also in ACCU 2 (see Section 5.6), identifiers are transferred to
the error OB that define the error in greater detail.

If the CPU encounters for example an incorrect parameter when processing one
of these special functions, it detects a runtime error and calls OB 31. On the other
hand, if for example the called special function does not exist, the CPU detects
an operation code error and attempts to call OB 30. With some of these special
functions, if there is a reference to a data block in the call parameters and the data
block is not loaded, then the CPU attempts to call OB 19.

If the error OBs 30 or 31 are not loaded or contain an STP operation, the CPU
goes into the stop mode. LZF or BCF is marked in the control bits in the
ISTACK. The accumulators of the error processing levels contain error
identifiers that describe the error in greater detail.
If OB 19, OB 30 or OB 31 is loaded (and does not contain an STP operation), the
user program is continued at the next operation after the OB has been processed.
In this case, the accumulators remain unchanged.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

RLO, CC OICC 1

In connection with some of the special functions, errors specific to the special
function affect the condition codes CC O/CC 1.
If an error occurs during the processing of these special functions, the RLO is
normally set (RLO = 1). When using these special functions, you can use a
JC operation (conditional jump) in your STEP 5 program to evaluate the
RLO and to react to an error.

The processing of some special functions also affects the condition codes CC
0 and CC 1. In your STEP 5 program, you can scan these condition codes
with comparison operations and once again react to an error.

The following descriptions of the individual special function OBs indicate which
of these reactions apply to the particular special function OB.

Note
Calling a special function OB with the operation JC OB > 39 or
JU OB > 39 is not a "genuine" block change, but is handled like a STEP 5
operation without a block operand. No interrupts are inserted (when
"interrupts at block boundaries" is set).

Special functions Some of the special functions are carried out in several steps and contain what
with pseudo are known as pseudo operation boundaries.
operation This means that the special function is executed in several steps. If an error
boundaries (e.g. ZYK) or an interrupt (e.g. time or process interrupt at operation boundaries)

occurs during the execution of a step, the appropriate organization block is
inserted at the end of this step at the pseudo operation boundary.

The special functions containing pseudo operation boundaries are marked in the
overview of the integrated special functions.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.2 OB 110: Accessing the Condition Code Byte

Function Using the special function organization block OB 110, you can write the contents
of ACCU 1 to the condition code register, or mask it with "1" or "0".

Assignment of ACCU 1 for access to the condition code register:

I Word displays I Bit displays
*) Bits 8 to 31 are reserved for extensions and must be "0" when the condition code register is written to.

They must also be ignored when reading out the condition code register.

Parameters 1. ACCU-2-L

Function number
possible values: 1, 2 or 3

2. ACCU 1

New condition code byte or mask

Result

Function no. in
ACCU-2-L

1

2

3

After execution of OB 110, the condition code byte will have been changed in
accordance with the function and the contents of ACCU-1.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

F u n c t i o n

The contents of ACCU 1 are loaded in the condition code register.

All the bits indicated as "1" in the mask in ACCU 1 are set to "1"
in the condition code register. The new condition code byte is
loaded in ACCU 1.

All the bits indicated as "1" in the mask in ACCU 1 are set to "0"
in the condition code register. The new condition code byte is
loaded in ACCU 1.

Contents of ACCU-1-L

before

New
condition
code byte

Mask

Mask

after

New
condition
code byte

New
condition
code byte

New
condition
code byte

lntearated S~ecial Functions

Possible errors The following error events may occur.

Function number in ACCU-2-L not equal to 1 , 2 or 3.

One of the bits no. 8 to no. 31 is set in ACCU 1.

If an error occurs, OB 31 (other runtime errors) is called. If OB 31 is not loaded,
the CPU goes to the STOP mode. In both cases, the error identifier 1A49H is
entered in ACCU-1-L.

Example With OB 110, you can test the operations that evaluate or affect the condition
code register. Its application is, however, not restricted to the operation test. The
following example shows you a further possible application.

Call distributor

One of fou r subrout ines is t o be c a l l e d depending on t h e contents of f l a g
byte FY 0 . The fou r subrout ines a r e assigned t o b i t s F 0 .0 t o
F 0 . 3 . Only one of t hese b i t s can be s e t a t any one time.

:L FYO
:SLW 4
:L KB1
: TAK
: JU OBllO
: J S =M000
:JO = M 0 0 1
: J M =M002
: J P =M003

: BEU

: BEU

: BEU

; s h i f t F 0 .0 t o F 0 . 3 four b i t s t o t h e l e f t
; load t h e funct ion number

; i f no b i t i s s e t

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.3 OB 11 1 : Clear ACCUs 1 , 2 , 3 and 4

Function Calling special function organization block OB 111 is a simple way of clearing
ACCUs 1 to 4. OB 111 overwrites all four registers with "0".

Parameters none

Result Accus 1 to 4 (32 bits each) are deleted.

Possible errors none

6.4 OB 11 211 13: Roll Up ACCU and Roll Down ACCU

Function OBs 112 and 113 roll the contents of the ACCUs either up or down.

OB 112 (roll up) shifts the contents of ACCU 1 to ACCU 2, the contents of
ACCU 2 to ACCU 3 etc.

OB 113 (roll down) shifts the contents of the ACCUs in the opposite
direction; the contents of ACCU 1 to ACCU 4, ACCU 4 to ACCU 3 etc.

Parameters none

Result Figures 6-1 and 6-2 show the contents of the ACCUs before and after calling
OB 112 and OB 113.

Note
You can also shift the contents of the ACCUs using the STEP 5 operations
ENT (supplementary operation set) and TAK (system operation)
(see Section 3.4).

Possible errors none

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

roll ACCU contents
c - - - -

I
A

I

I
ACCU 3

l
ACCU 2

I

I

ACCU 1 m cACCV
t

ACCU 4 1 cACCU 4>

before

I

Fig. 6-1 Effects of the "roll up" function

roll ACCU contents
r - - - -

after

ACCU 3

ACCU 4

ACCU 2 h CACCU 2>

ACCU 1 1 cACCU l > 1

before after

Fig. 6-2 Effects of the "roll down" function

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.5 OB 120: EnablingIDisabling of Interrupts

Introduction A STEP 5 program can be interrupted at block or operation boundaries by
programs with a higher priority. These higher priority program processing levels
include the process and all time interrupts (cyclic time interrupts, clock-driven
time interrupt and delay interrupt). The runtime of the interrupted program is
therefore extended by the runtime of the programs inserted by the interrupts.

Using special function organization blocks OB 120, you can prevent the insertion
of higher priority program processing levels at one or more consecutive block or
operation boundaries (depending on the setting in DX 0).

Function The special function organization OB 120 affects the reaction to interrupts:

Disabling interrupts means that no more interrupts are recognized and the
interrupts that have already been detected (e.g. they are waiting for a block
boundary) are cleared. If OB 2 (process interrupts) or an OB for time-driven
interrupt processing have already started, they are processed to the end.

Enabling interrupts means that all interrupts are once again recognized
immediately, and are inserted and processed at the next block or operation
boundary.

Parameters l. Double control word

OB 120 records the interrupts to be disabled or delayed in a system-internal
double control word.

The bits of the double control word are assigned as follows:

As long as a bit is set to ' l ' , the respective interrupt is disabled.

Control word
bit no.

m

0 = '1'

1 = '1'

2 = '1'

3 = '1'

4 to 31

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Function

all time-driven interrupts in fixed interval delayed

the clock-driven time interrupt is disabled

all process interrupts are disabled

the delay interrupt is disabled

reserved; these bits must be "OM!

Integrated Special Functions

2. Accus

Function No.
Permissible values 1,2 or 3 with:

1: The contents of ACCU 1 are loaded
in the control word.

2: All the bits in the mask in ACCU 1
marked with a '1' are set to '1' in the
control word. The new control word is
loaded in ACCU 1.

3: All the bits in the mask in ACCU 1
marked with '1' are set to '0' in the
control word. The new control word is
loaded in ACCU 1.

ACCUl

New control word or mask, depending on the desired function

Result Calling OB 120 has the following results:

Possible errors The following error events may occur.

Function no.
in ACCU-2-L

1

2

3

Illegal function number in ACCU-2-L.

One of the reserved bits in ACCU 1 (no. 3 to 31) is set to "l".

Contents of ACCU 1

In the event of an error, OB 31 (other runtime errors) is called. If OB 31 is not
loaded, the CPU goes to the STOP mode. In both cases, an error ID is entered in
ACCU-1-L.

before

Control word

Mask

Mask

CPU 928B-3UB21 Programming Guide
C79000-G8576-C870-01

after

Control word

New control word

New control word

lntearated S~ecial Functions

Notes You can scan the status of a control word with the following program
sequence:

1. Load the function number 2 or 3 in ACCU-2-L

2. Load the value '0' in ACCU 1

3. Call special function OB 120

4. Read out ACCU 1

You can determine the status of interrupt processing by reading out system
data word RS 131.

- RS 131 Condition codeword "disable all interrupts"

Instead of OB 120, you can use the operations IA and RA to disable and
enable process interrupts as follows:

IA corresponds to :L KB 2
:L KM 00000000 00000100
:JU OB 120

RA corresponds to :L KB 3
:L KM 00000000 00000100
:JU OB 120

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.6 OB 121 : EnableIDisable Individual Time-Driven Interrupts

Introduction Using the special function organization block OB 121, you can prevent the
insertion of certain time-driven OBs (time-driven interrupts with a fixed time
interval) at one or more consecutive block or operation boundaries. You can, for
example, prevent a particular program section being interrupted by an OB 18
(5 S) and an OB 17 (2 S). On the other hand, all other programmed time-driven
interrupts are processed as usual

Function

Parameters

OB 121 affects the reaction to time-driven interrupts:

Disabling individual time-driven interrupts means that no more of the specified
time-driven interrupts are recognized and the interrupts that have already been
detected (e.g. they are waiting for a block boundary) are cleared. If OB 2
(process interrupts) or an OB for time-driven interrupt processing (for processing
a time-driven interrupt at a fixed time interval) have already started, they are
processed to the end.

Enabling individual time-driven interrupts means that all interrupts are once
again recognized immediately, and are inserted and processed at the next block
or operation boundary.

1. Control word

OBs 121 records the time-driven interrupts to be disabled or delayed in a control
word.

The bits of the control word are assigned as follows:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Bit no.

Oto2

3 = '1'
4 = '1'
5 = '1'
6 = '1'
7 = '1'
8 = '1'
9 = '1'
10 = '1'
l1 = 'l'

12 to 15

Interrupt

Reserved; these bits must be "OM!

Time-driven interrupt with fixed time intervals:
10ms (OB10)
20 ms (OB 11)
50 ms (OB 12)
100 ms (OB 13)
200 ms (OB 14)
500 ms (OB 15)

l s e c (OB 16)
2sec (OB 17)
Ssec (OB 18)

Reserved; these bits must be "OM!

lntearated S~ecial Functions

2. Accus

Function No.
Permissible values: 1, 2 or 3 with:

1: The contents of ACCU 1 are loaded
in the control word.

2: All the bits in the mask in ACCU 1
marked with a '1' are set to '1' in
the control word. The new control word
is loaded in ACCU 1.

3: All the bits in the mask in ACCU 1
marked with '1' are set to '0' in the
control word. The new control word
is loaded in ACCU 1.

ACCU 1

New control word or mask, depending on the desired function

Possible errors The following error events may occur.

Illegal function number in ACCU-2-L

One of the reserved bits in ACCU 1 is set to "l".

In the event of an error, OB 31 (other runtime errors) is called. If OB 31 is not
loaded, the CPU goes to the STOP mode. In both cases, an error ID is entered in
ACCU-1-L.

Notes You can scan the status of a control word with the following program
sequence:

1. Load the function number 2 or 3 in ACCU-2-L

2. Load the value "0" in ACCU 1

3. Call special function OB 121

4. Read out ACCU 1

You can determine the status of the time-driven interrupt processing by reading
out system data word RS 135.

- RS 135 Condition codeword "disable individual interrupts"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.7 OB 122: EnableIDisable "Delay of All Interrupts"

Introduction A STEP 5 program can be interrupted at block or operations boundaries by a
higher-priority program. Such higher-priority program processing levels include
the process interrupts and all time interrupts (cyclic time interrupts, clock-driven
time interrupt and delay interrupt). The runtime of the interrupted program is
therefore extended by the runtime of the programs inserted by the interrupts.

Using special function block OB 122, you can prevent the insertion of higher
priority program processing levels at one or more consecutive block or operation
boundaries (depending on the setting in DX 0).

Function

Parameters

OB 122 affects the reaction to interrupts as follows:

Enabling interrupt delay means all interrupts will continue to be registered and
already pending interrupts will remain registered. However, registered interrupts
will not yet be processed. All operation or block boundaries will be temporarily
disabled for the processing interrupts. If OB 2 (process interrupts) or an OB for
time-driven interrupt processing have already started, they are processed to the
end.

Disabling interrupt delay means all registered interrupts will be inserted and
processed at the next block or operation boundary.

Note
If a specific time-driven interrupt OB is called for the second time during
the "Delay interrupt" phase, a collision of time interrupts occurs.

1. Double control word

OB 122 records the interrupts to be delayed in a system-internal double control
word.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

The bits of the double control word are assigned as follows:

As long as a bit is set to ' l ' , the respective interrupt is disabled.

Control word
bit no.

0 = '1'

1 = '1'

2 = '1'

3 = '1'

4 to 31

2. Accus

F u n c t i o n

all time-driven interrupts in fixed interval are delayed

the clock-driven time interrupt is delayed

all process interrupts are delayed

the delay interrupt is delayed

reserved; these bits must be "OM!

Function No.
Permissible values: 1, 2 or 3 with:

1: The contents of ACCU 1 are loaded in
the control word.

2: All the bits in the mask in ACCU 1
marked with "1" are set to "1". The new
control word is loaded in ACCU 1.

3: All the bits in the mask in ACCU 1
marked with "0" are set to "1" in the
control word. The new control word is
loaded in ACCU 1.

ACCU 1

New control word or mask depending on the desired function.

Result Calling OB 122 has the following results:

I 1 I Control word I Control word I

Function no.
in ACCU-2-L

I 2 I Mask I New control word I
I 3 I Mask I New control word I

Contents of ACCU 1

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

before after

lntearated S~ecial Functions

Possible errors The following error events may occur.

Illegal function number in ACCU-2-L.

One of the reserved bits in ACCU 1 (no. 4 to 31) is set to "1"

In the event of error, OB 31 (other runtime errors) is called. If OB 31 is not
loaded, the CPU goes to the STOP mode. In both cases, the error ID 1A48H is
entered in ACCU-1-L.

Notes You can scan the status of the control work with the following program
sequence:

1. Load the function number 2 or 3 in ACCU-2-L

2. Load the value "0" in ACCU 1

3. Call special function OB 122

4. Read out ACCU 1

You can determine the status of interrupt processing by reading out system
data word RS 132.

RS 132 Condition code word "delay all interrupts"

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.8 OB 123: EnableIDisable "Delay of Individual Time-Driven Interrupts"

Introduction Using special function organization block OB 123, you can prevent the insertion
of certain time-driven OBs (time-driven interrupts with a fixed time interval) at
one or more consecutive block or operation boundaries.

Function OB 123 affects the reaction to time-driven interrupts as follows:

Disabling delay of individual time-driven interrupts means all interrupts will
continue to be registered and already pending interrupts will remain registered.
However, registered interrupts will not yet be processed. All operation or block
boundaries will be temporarily disabled for the processing interrupts. If a time
interrupt OB (for processing a time interrupt with a fixed time base) has already
been started, it is processed to the end.

Disabling delay of individual time-driven interrupts means that with immediate
effect, all cyclic time-driven interrupts will again be registered, inserted at the
next block or operation boundary (depending on the setting in DX 0) and
processed.

Note
If a specific time-driven interrupt OB is called for the second time during
the "Delay interrupt" phase, a collision of time interrupts occurs.

Parameters 1. Control word

OB 123 records the interrupts to be delayed in a system-internal control word.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Notes You can scan the status of the control word with the following program
sequence:

1. Load the function number 2 or 3 in ACCU-2-L

2. Load the value '0' in ACCU 1

3. Call special function OB 123

4. Read out ACCU 1

You can determine the status of interrupt processing by reading out system
data word RS 137.

- RS 137 Condition code word "delay individual time-driven interrupts"

CPU 9286-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.9 OB 134,135,136 and 139

Arithmetic An arithmetic operation (OB 134, 135, 136) changes the arithmetic registers as
operation follows (in fixed point operations only the low word):

before: <ACCU l > <ACCU 2> <ACCU 3> <ACCU 4>

l / / A
after: <resuit> - CACCU 3> CACCU 4> CACCU 4>

Condition codes

*D (multiply 32-bit fixed point numbers) multiplies ACCU 2 and ACCU 1 and
loads the result into ACCU 1. If the result is greater than the largest or smaller
than the smallest 32-bit fixed point number that can be represented, this is
indicated via OV=l and OS=l. Then ACCU 3 and ACCU 4 are transferred to
ACCU 2 and ACCU 3.

OB 135: :D :D (divide 32-bit fixed point numbers) divides ACCU 2 by ACCU 1 and loads
the result into ACCU 1. Then ACCU 3 and ACCU 4 are transferred to ACCU 2
and ACCU 3.

Depends on

Sets

Condition codes

CC 1

X

OB 136: MOD MOD (remainder of division of two 32-bit fixed point numbers) divides ACCU 2
by ACCU 1 and loads the remainder of the division as the result into ACCU 1.
Then ACCU 3 and ACCU 4 are transferred to ACCU 2 and ACCU 3.

Depends on

Sets

Condition codes

CC0

X

CC 1

X

OB 139: PUSH PUSH (push ACCU stack) moves ACCU 1 deeper into the ACCU stack. PUSH
can be used to enter the same value in the ACCU stack more than once.

OV

X

Depends on

Sets

Condition codes

CC0

X

OS

X

CC 1

X

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

OV

X

Depends on

Sets

OR

CC0

X

OS

X

CC 1

STA

OV

X

OR

CC0

RLO

OS

X

m

STA

OV

OR

RLO

OS

m

STA

OR

RLO m

STA RLO m

lntearated S~ecial Functions

6.10 SettingIReading the System Time (OB 150)

Characteristics The system time has the following features:
of the system
time

The resolution is 10 ms for reading and 1 sec for setting.

Leap years are taken into account.

You can select between a 24 hour clock and a 12 hour clock, "am" (midnight
to twelve o'clock), and "pm" (twelve o'clock to midnight),

The weekday can be specified

Input and output in BCD.

The integral hardware clock for the system time is backed up by the battery in
the PLC rack. If you have set the system time, it also remains correct
following a power down and WARM RESTART.

Function Using OB 150, you can set or read the date and time of the CPU 928B in your
user program. The date and time are known as the "system time".

Before you can read out the system time, it must first be set. l
Parameters 1. Data Field for the Time Parameters

When you set the system time, OB 150 takes the system time from a data field,
when you read the system time, OB 150 transfers the current data to the data
field. You can set up this data field in a data block or in one of the two flag
areas (F or S flags).

The data field consists of four words.

la) Format of the data field for setting the hardware clock

2nd word l Format 1 Hours 1 Minutes 1

Bit no. 15 12 11 8 7 4 3 0

3rdword I Day of month 1 Weekday 1 0 1

1 st word

4th word I Year 1 Month 1

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

I I

Seconds

I I

0

lntearated S~ecial Functions

lb) Format of the data field when readin? the hardware clock

2nd word 1 Format 1 Hours 1 Minutes 1

Bit no. 15 12 11 8 7 4 3 0

1 st word

The time parameters have the following meaning, permitted range of values and
representation:

3rd word

4th word

I I I I

l) The value you input is checked to ensure that the date is logically correct
taking into account leap years after OB 150 is called.

Seconds

Day of month

Year

Parameter

Seconds
11100
seconds
Minutes
Hours
Weekday
Day of
month1)
Month
Year

Format

Data field in the flag area

1 / l 00th second

If you set up the data field in a flag area, you must take into account the
following assignment of data field words to flag bytes. "X" is the parameter
"number of the first data field word" (see following page) that you must enter in
ACCU-1-L when OB 150 is called.

Weekday

Permitted range of values

00 to 59
00 to 99
00 to 59
00 to 23 or 01 to 12 depending on selected format
0 to 6 where MO = 0, ..., Su = 6
01 to 31
01 to 12
00 to 99

The format for the hour field is as follows:
Bit 15 = l : 24 hour format @it 14 = 0)
Bit 15 = 0: 12 hour format

(select "am" or "pm" in bit 14)
Bit 14 = 0: "am"
Bit 14 = 1: "pm"

Bit no.

1st data field word

2nd data field word

3rd data field word

4th data field word

0

Representation

BCD format

--

Month

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

15 8

flag byte X

flag byte x t 2

flag byte x t 4

flag byte x t 6

7 0

flag byte x t l

flag byte x t 3

flag byte x t 5

flag byte x t 7

lntearated S~ecial Functions

2. Accus

Bit no.

Result

ACCU-2-L contains information on the desired function and the data field used.
It must have the following structure:

Parameters in ACCU-2-L

15 I 1 1 2 11 I I I 8 7 1 I I I I I I 0

Function number,
permitted values: 1 = set system time

2 = Read system time

Function no.

Address area type,
permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Data block number,
permitted values: 3 to 255

(only for address area type 1 or 2;
irrelevant for address area types 3 or 4)

Address area type

ACCU-1-L

Number of the 1st data field word,
possible value (dependent on the
address area type):

DB, DX: 0 to 2044
F flags : 0 to 248

(= no. of flag byte 'X')
S flags : 0 to 1016

(= no. of flag 'X')

Data block no.

After OB 150 has been processed correctly, the condition code bits OR, ERAB
and OS = 0. All other condition code bits and ACCUs 1 and 2 remain unchanged.

Possible errors In the event of an error, OB 19 or OB 31 is called. If OB 19 or OB 31 is not
loaded, the CPU goes to the stop mode.
In both cases, error IDs are entered in ACCU 1 and ACCU 2 (see following
table).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Table 6-2 OB 150 error IDs

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

ACCU-1-L

1A07H

1A4CH

Note
If you select incorrect parameters when setting the system time,
and if the time has been set correctly at least once, the error IDs
are transferred, however, the previously set system time is
retained.

Example

ou want to set the system time as follows:

"Thurs, 24.11.1991, 11:30, 0 seconds, 24 hour format"

t is assumed that the time parameters will be stored in data block
B 10 from data word DW 0 onwards. The system time should be set accurate
o the second by triggering a process interrupt (trigger bit, e.g. I 1.0 -
utton in the vicinity of the PLC).

irst, program data block DB 10 with the following values and load it in
he PLC. You must include the STEP 5 operations for calling OB 150 in
B 1 in such a way that the operations for calling OB 151 are only executed
n the case of a rising edge of the trigger bit:

Continued on the next page

ACCU-2-L

OOOlH
OlOOH
OlOlH
0102H
0103H
0201H
0202H
0203H
0204H
0205H
0206H
0207H
0208H
0209H
020AH

Cause of error

Data block not loaded

Function no. = 0 or > 2
Address area type illegal
Data block number illegal
"Number of the first data field word" illegal
Data block length in block header < 5 words
Year specified in data field illegal
Month specified in data field illegal
Day of month specified in data field illegal
Weekday specified in data field illegal
Hour specified in data field illegal
Minute specified in data field illegal
Second specified in data field illegal
11100 second in data field not equal to 0
Data field word 3 /bit no. 0 to 3 z 0
Hour format not the same as setting in OB 151

OB called

OB 19

OB 31

lntearated S~ecial Functions

0: KH= 0 0 0 0 left byte = seconds (BCD), right byte = 0

1: KH= 9 1 3 0 91 = format (=80H) + hour (= 11 BCD)
30 minutes (BCD)

2: KH= 2 4 3 0 24 = day of the month (BCD)
30 = day of week (3 = Thursday) + bit 0 to bit 3 = 0

3: KH= 9 1 1 0 93 = year (BCD)
10 = month (BCD)

he STEP 5 operations in OB 1 for calling for OB 150 are as follows:

Signal edge of the input for setting the system
time has occurred

Function number = 1 for "set"

ACCU-1-L :
Number of the 1st data field word = 0

:JU OB 150 Call OB 150

"Reading the system time":

You want to write the current system time to data block DB 10 from data word
DW 4. You must therefore call OB 150 with the following parameters:

Values for ACCU-2-L:
DB no. = 10

. Address area type = 1 for "data field in DB"
Function no. = 2 for "read"

ACCU-1-L
Number of 1st data field word = 4
Call OB 150
Open DB 10
Evaluate DB 10

After calling OB 150, the actual system time is stored in the following form
in the data block DB 10 ("Thurs, 24.10.93, 11:30, 20 seconds, 13 hundredths,
24 hour format") :

DW4: K H = 2 0 1 3 Seconds = 20 (BCD)
1/100 seconds = 13 (BCD)

DW5: K H = 9 1 3 O Format = 24 hour (bits 14/15 = Ol), hours = 11
(BCD), Minutes = 30 (BCD)

DW6: K H = 2 4 3 O Day of month = 24 (BCD)
Day of week = 3 = Thursday

DW7: K H = 9 1 1 O Year = 93 (BCD)
Month = 10 (BCD)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.1 1 OB 151 : SettingIReading the Time for Clock-Driven Interrupts

Function By calling OB 151 you can perform the following:

program the CPU 928B, to activate the clock-driven time
interrupt ("Time job" - OB 9, see Section 4.5.2) at a
preset time :
- every minute
- every hour
- every day
- every week
- every month
- every year
- once

read out the current status of a timed job

cancel a previously generated timed job

You can call OB 151 in the modes RESTART and RUN. Once generated, a
clock-controlled time interrupt is retained following a WARM RESTART
(automatic or manual). A COLD RESTART clears an existing timed job.

If you generate a new timed job, a currently programmed timed job is
automatically cancelled. This means that only one clock-controlled time interrupt
can be active.

Parameters 1. Data Field for Job Parameters

When you generate or cancel a timed job, OB 151 takes the required job
parameters from a data field.
When you read out the current status of a timed job, OB 151 transfers the
current job parameters to a data field.

You can set up this data field in a data block or in one of the two flag areas (F
or S flags).

The data field consists of four words and has the following format for both
generating and reading out a timed job:

2nd word I Format I Hours 1 Minutes 1

Bit no. 15 12 11 8 7 4 3 0

I st word

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

3rd word

4th word

I I I I I I I

Seconds

Day of month

Year

0

Weekday Job type

Month

Integrated Special Functions

The parameters have the following meanings, permissible value ranges and
representations:

l) After calling OB 151, the value specified is checked to ensure it is logically correct taking into
account leap years.

For the significance of "am" and "pm", see OB 150 in the previous section:
"Format" must agree with the format set for the system time in OB 150.

Representation

BCD format

BCD format

--

Parameter
m

Job type

Seconds
11100 second
Minutes
Hours

Weekday
Day of month1)
Month
Year

Format

Data field in the flap area

Permissible range of values

0 to 7 where:
0 = cancel job or no
job active
1 = every minute
2 = every hour
3 = every day
4 = every week
5 = every month
6 = every year
7 = once

00 to 59
00 to 99
00 to 59
00 to 23 or 01 to 12 depending on the selected
format
0 to 6 where MO = 0, ..., Su = 6
01 to 31
01 to 12
00 to 99

The format of the hour field is as follows:
Bit 15 = l : 24 hour format

(bit 14 = 0)
Bit 15 = 0: 12 hour format

(select "am" or
"pm" in bit 14)

Bit 14 = 0: "am"
Bit 14 = 1: "pm"

When you set up the data field in a flag area, you must take into account the
following assignment of the data field words to the flag bytes. "X" is the
parameter "number of the first data field word" that you must enter in ACCU-1-L
when OB 151 is called.

Bit no.

1st data field word

2nd data field word

3rd data field word

4th data field word

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

15 8

flag byte X

flag byte x t 2

flag byte x t 4

flag byte x t6

7 0

flag byte x t l

flag byte x t 3

flag byte x t 5

flag byte x t 7

lntearated S~ecial Functions

2. Accus

ACCU-2-L contains information on the desired function and the data field used.
It must have the following structure:

Result

Bit no. 15 I 1 1 2 11 I I I 8 7 1 I I I I I I 0

Parameters in ACCU-2-L

Function no.

Function number,
permitted values: 1 = generate job

2 = read job

Address area type,
permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Address area type

Data block number,
permitted values: 3 to 255 (for address area type = 1 or 2;

irrelevant for address area type 3 or 4

Data block no.

Number of the 1st data field word,
possible values (dependent on the
address area type):

DB, DX: 0 to 2044
F flags: 0 to 248

(= no. of flag byte 'X')
S flags: 0 to 1016

(= no. of flag byte 'X')

After OB 150 has been processed correctly, the condition code bits OR, ERAB
and OS = 0. All other condition code bits remain unchanged, as do ACCU 1 and
ACCU 2.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Note
If the job type "0" is set in the data field and all other parameters are "F"
or "FF" (hexadecimal) when you read out a timed job, then no timed job
is active.
This status can occur:
- following a COLD RESTART, when no timed job is generated,
- when a timed job programmed to be executed only once has been
executed, or

- when you have cancelled a job.

Possible errors In the event of an error, OB 19 or OB 31 is called. If OB 19 or OB 31 is not
loaded, the CPU goes to the stop mode. In both cases, error IDs are entered in
ACCU 1 and ACCU 2 (see following table).

Table 6-3 OB 151 error IDs

Note
If you assign incorrect parameters and a valid timed job has already been
generated, the error identifiers are transferred as indicated above,
however, the previously generated timed job is retained.

ACCU-1-L

1A07H

1A4DH

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

ACCU-2-L

OOOlH
OlOOH
OlOlH
0102H
0103H
0201H
0202H
0203H
0204H
0205H
0206H
0207H
0208H
0209H
020AH

Cause of error

Data block not loaded

Function no. = 0 or > 2
Address area type illegal
Data block number illegal
"Number of the first data field word" illegal
Data block length in block header < 5 words
Year specified in data field illegal
Month specified in data field illegal
Day of month specified in data field illegal
Weekday specified in data field illegal
Hour specified in data field illegal
Minute specified in data field illegal
Second specified in data field illegal
11100 second in data field not equal to 0
Job type in data field > 7
Hour format not the same as setting in OB 150

OB called

OB 19

OB 31

lntearated S~ecial Functions

Important points Depending on when you want to trigger a clock-driven time interrupt (timed job)
concerning time you must select the individual time parameters in certain combinations.
parameters Depending on the time you select for the clock-driven time interrupt, you must

specify certain parameters, while others are not evaluated by the system program
and can therefore be ignored.

The following table indicates which time parameters must be specified for which
timed job (XXX = must be specified, --- = irrelevant).

Table 6-4 "Time job - Time parameter" assignments

Special features If you select the job type "every year" (= 6) and select " February 29th" as
the day of the month and month, then OB 9 will only be called every leap
year.

Time of interrupt

every minute
every hour
every day
every week
every month
every year
once

If you select the job type "every month" (= 5) and select the value "29", "30"
or "31" then OB 9 will only be called in the months containing these dates.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Seconds

XXX
XXX
XXX
XXX
XXX
XXX
XXX

Minutes

XXX
XXX
XXX
XXX
XXX
XXX

Hours

XXX
XXX
XXX
XXX
XXX

Week-
day

XXX

Day of
month

XXX
XXX
XXX

Month

XXX
XXX

Year

XXX

lntearated S~ecial Functions

Examples

Various timed jobs (24 hour format):

1. "Job at the 29th second of every minute"
(12:44:29, 12:45:29 etc):

You must specify the following: job type = 1 (Function no. in
ACCU-2-L = 1)

seconds = 29

2. "Job every hour at xx:14:15":

You must specify the following: job type = 2 (Function no. in
ACCU-2-L = 1)

seconds = 15
minutes = 14

3. "Job daily at 5:32:47"

You must specify the following: job type = 3 (Function no. in
ACCU-2-L = 1)

seconds = 47
minutes = 3 2
hours = 05

4. "Job every week at 10:50:0OW:

You must specify the following: job type = 4 (Function no. in
ACCU-2-L = 1)

seconds = 0 0
minutes = 50
hours = 10
weekday= 0 1

5. "Job every month, on the 14th at 7:30:15":

You must specify the following: job type = 5 (Function no. in
ACCU-2-L = 1)

seconds = 15
minutes = 30
hours = 07
day of month= 14

6. "Job every year, on May 1st at 00:01:45":

You must specify the following: job type = 6 (Function no. in
ACCU-2-L = 1)

seconds = 45
minutes = 0 1
hours = 0 0
day of month= 01
month = 05

Continued on the nex page

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

. "Job on December 31st 1999 at 23:55:0OW:
You must specify the following: job type = 7 (Function no. in

ACCU-2-L = 1)
seconds =
minutes =

day of month= 31
month =

. "Cancel job" :
You must specify the following: job type = 0 (Function no. in

ACCU-2-L = 1)

. "Read out timed job":
You must specify the following: function no. in ACCU-2-L = 2

f no job is active, you receive the following result in the data field:

Data field word 0: FFFF H
Data field word 1: FFFF H
Data field word 2 : FFFO H
Data field word 3 : FFFF H

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.1 2 OB 152: Cycle Statistics

Introduction A series of statistical data relating to the duration of the cycle can be recorded in
the CPU 928B (cycle statistics). Using OB 152, you can initialize the cycle
statistics, read out the statistical data and enable and disable the recording of
statistical data.

0 vervie W The statistical data include the following:

the duration of the previous cycle,

the time elapsed in the currently active cycle since the last cycle boundary,

the minimum and maximum cycle time since the last initialization of the
cycle statistics,

the number of cycles since the last initialization of the cycle statistics,

the average cycle time: a maximum of the last 256 cycles recorded in the
statistics are used to calculate the average value.

Note
Only "normal" cycles are recorded in the cycle statistics. If the recording
of the duration of the current cycle would falsify the cycle statistics, e.g.
owing to a WARM RESTART, these data are not included in the
statistics. This means that "mavericks" do not affect the statistics.

If the cycle time exceeds 167 seconds, erroneous data will be recorded for
the statistics.

Enabling/disabling Following a COLD RESTART (automatic or manual), the statistics function is
the statistics always disabled and the statistical data are deleted (the cycle statistics are
function initialized). A WARM RESTART (automatic or manual) does not affect the

statistics function or the statistical data.

You can activate the statistics function in the RESTART or RUN modes using
OB 152.

If the statistics function is enabled with OB 152, the statistical data are updated at
each cycle boundary and you can read them out by calling OB 152.

If you no longer require the statistics function, you can disable the function in the
RESTART or RUN modes, once again using OB 152. This reduces the cycle
time load caused by the updating of the cycle data at each cycle boundary.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

You can also initialize the cycle statistics using OB 152 in the RESTART or
RUN modes. It may, for example, be useful to initialize the cycle statistics after
evaluating the statistical data (possibly also dependent on the value of the cycle
counter).

Statistical data The statistical data are read out directly as individual values using OB 152 or
calculated when OB 152 is called. They are transferred by OB 152 to ACCU-1-L
or ACCU-2-L.

You can determine the following statistical values by calling OB 152:

Table 6-5 Cycle statistics variables - OB 152

l) see "Calculation of the average value"
For the function numbers 1, 2 and 3, the unit is milliseconds and the value range runs from 0 to OFFFFH
(in the low word of the accumulators).
For the function numbers 5, 6 and 7, the unit is 10 ms and the value range runs from 0 to OFF FFFFH
(in the high and low words of the accumulators).

3, The 10 ms COUNTER is displayed as an 8-digit hexadecimal value in the high and low words of ACCU 1.

Statistical
value

CURCYC

LASTCYC

MINCYC

MAXCYC

AVERAGE

CYCLE
COUNTER

10 ps
COUNTER

Calculation of The average value is calculated by OB 152 using the following algorithm:
the average value

Each time the statistical data are updated, the value of LASTCYC is entered into
an internal system buffer each time the statistical data are updated. This buffer
can take a maximum of 256 values. If the buffer is full, the oldest LASTCYC
value is lost and the newest value is entered. During the updating of the data, the
sum of the LASTCYC values in the buffer is formed so that it always contains
the most recent LASTCYC values (maximum 256).

When OB 152 is called, the average value is formed by dividing the total by the
number of LASTCYC values stored in the buffer. In practical terms, this means
that the average value is almost always formed from the LASTCYC values of the
last 256 cycles.

Significance

Time already elapsed in the current cycle

Duration of the last completed cycle

Duration of the shortest cycle since the last initialization
of the cycle statistics

Duration of the longest cycle since the last initialization
of the cycle statistics

Average of the cycle times of the last (maximum 256)
cycles

Number of cycles recorded in the statistics since the last
initialization of the cycle statistics

Continuously running counter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Format

number

Unit

2)

Number of
cycles

10 ps

Range of
values

2)

0 to
OFFFFH

3)

Integrated Special Functions

Functions When OB 152 is called, you can activate the following individual functions by
means of a function number:

Table 6-6 OB 153 functions

Parameters

Result

ACCU-1-L

ACCU-1-L contains the function no.; it must have the following structure:

Function no.,
permitted values:

Bit no. 15 4 , 3 0

see table 6-5

0

Bit nos. 4 to 15 must always be O!

Function no.

After OB 152 is called, the condition codes OS, OR and ERAB = 'O', the RLO
is also 0 except in the cases listed below. In addition to this, the statistical values
requested by some functions are transferred to ACCU-1-L and ACCU-2-L with
some functions (see the following table).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Table 6-7 Results of the OB 152 functions

l) Due to a WARM RESTART

Function

Disable cycle statistics

Read CURCYC / LASTCYC

Read MINCYC / MAXCYC

Read AVERAGE VALUE / CYCLE COUNTER

Initialize cycle statistics

10 ps COUNTER

Enable cycle statistics

If RLO = 1 is set when you read out the cycle counter, then when the condition code is transferred, a system internal flag for
cycle overflow is cleared. This flag is then only set again when the cycle counter overflows again.

3, In the case of function numbers 1, 2 and 3 in the low word and in the case of function numbers 5,6 ,7 and 9 in the high and
in the low word of the accumulators.

Results of the functions

Possible errors An error occurs if an incorrect function no. is transferred to ACCU-1-L (only the
numbers 0 to 3, 8 and 15 are permissible).

ACCU-1-L

In the event of an error, OB 31 (other runtime errors) is called. If OB 31 is not
loaded, the CPU goes to the stop mode.

In both cases, the error ID 1A4EH is entered in ACCU-1-L and OOOlH is
entered in ACCU-2-L.

ACCU-2-L

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Significance of " RLO = 1"

--

CURCYC is incorrect, the data
of the current cycle are not
used in the statistics

or

Result of function no. 1 is out
of permitted range (> FFFFH),
FFFFH is the default value

Result of function no. 2 is out
of permitted range (> FFFFH),
FFFFH is the default value

CYCLE COUNTER overflow
2)

or

Result of function no. 3 is out
of permitted range (> FFFFH),
FFFFH is the default value

--
--

--

Unchanged

CURCYC
3)

MINCYC
3)

AVERAGE
VALUE

3)

LASTCYC
3,

MAXCYC
3,

CYCLE
COUNTER

3)

Unchanged

10 ps
COUNTER

--

Unchanged

lntearated S~ecial Functions

Special Features This section explains several special features of OB 152 during a COLD
RESTART, following a RESTART or when certain events occur and you should
take note of these points if you want to use OB 152.

Reaction to a COLD RESTART

The statistical data are initialized during a COLD RESTART. Calling
OB 152 in the first cycle following COLD RESTART reestablishes the
initialization data.
The following table shows how the statistical data are

- initialized following a COLD RESTART

and

- modified during the first three cycles by the system program.

COLD
RESTART

Update
Initialization of stat. data
stat. data by OB 20 1st cycle by system
system program

"stat. ont' "read stat."

Update
stat. data
by system

2nd program 3rd cycle

-Ir
4

OB 152:
"read stat."

I

--- 1 CURCYC (1.1 1 --- 1 CURCYCp,) 1 --- 1 CURCYCp.1

LASTCYC I 0 I 0 I 0 I Cycle time (1.1 I Cycle time (1,) I Cycle time (2.) I Cycle time (2.1 I

l) The value for CURCYC is always read out via OB 152, the cycle monitoring timer. For this reason, it is already available
during the first cycle.

Initialization value (= OOFFFFH ms or OFF FFFFH X 10 ps)

MINCYC

MAXCYC

AVERAGE

CYCLE C.

When the statistical data are initialized, not only the defaults listed in the table,
but also the internal system buffer for the average are deleted and an internal flag
for cycle counter overflow is reset.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

21

0

0

0

21

0

0

0

21

0

0

0

Cycle time (1.1

Cycle time (1.1

Cycle time (1.1

1

Cycle time (1.1

Cycle time (1.1

Cycle time (1.1

1

min. c.t.

max. c.t.

aver. c.t.

2

min. c.t.

max. c.t.

aver. c.t.

2

lntearated S~ecial Functions

Calling OB 152 in a start-up OB

Depending on the type of restart, the OB 152 call to read the statistical data
provides the following values in ACCU-1-L and ACCU-2-L (columns on a gray
background).

COLD RESTART
Initialization of

WARM RESTART in cycle n

stat. data by
system program

OB 20

l l -
OB 152: -W- OB 152:

"stat. ont' "read stat." "read stat."

l

CURCYC

LASTCYC

MAXCYC

I AVERAGE I 0 I 0 I 0 I

l) Initialization value (= OOFFFFH ms or OFF FFFFH X 10 ps)

CURCYC

LASTCYC

MINCYC

MAXCYC

AVERAGE

CYCLE C.

Initializing the statistical data by calling OB 152

0

Cycle time (n-I)

incl. cyc. (n-1)

incl. cyc. (n-1)

incl. cyc. (n-1)

n-l

The following table shows how the statistical data are changed when they are
initialized by calling OB 152 in the CYCLE. The columns with a gray
background contain the values transferred when the statistical data are read.

Cycle
@+l& 1- I Update

Update

CURCYC

LASTCYC

l) Initialization value (= OOFFFFH ms or OFF F F F m x 10 ps)

6 - 40

MINCYC

MAXCYC

AVERAGE

CYCLE C.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

- r T 7 I I T

CURCYC[,.1)

Cycle time (,.2)

OB 152:
"read

incl. cyc. (,.q

incl. cyc. (,.2)

incl. cyc. (,,.2)

n-2

Cycle time (,.l)

OB 152: OB 152: OB 152:
"read stat." "init. stat." "read stat."

incl. cyc. (,.l)

incl. cyc. (,.l)

incl. cyc. (,.l)

n- l

OB 152:
"read stat."

CURCYC (n)

Cycle time (n-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

n- l

0

13 000

0

0

0

T

0

13 000

0

0

0

no

CURCYC (,+I)

0

no

no

no

no

13 000

0

0

0

lntearated S~ecial Functions

When the statistical data are initialized, not only the defaults listed in the table,
but also the system internal buffer for forming the average value is deleted and
an internal flag for cycle counter overflow is reset.

After the statistical data are initialized by calling OB 152, the data are only
updated by the system program at the end of the first cycle after the
initialization.

Calling OB 152 when the cycle statistics are disabled

If you disable the cycle statistics by calling OB 152, the statistical data of the
last update are retained. If you then use OB 152 to read the statistical data, it
supplies the data from the last update before the statistics were disabled.

If you read the statistical data following a COLD RESTART, without
enabling the cycle statistics with an OB 152 call, OB 152 supplies the
initialization data.

Falsifying the Certain events can cause problems when recording the cycle length of the current
statistical data cycle and can lead to incorrect values. In these situations, the statistical data for

the cycle affected are not updated.

Cycle 1- (n - 1 4
Update

OB 142:
"read stat." 1

Interruption by:

RESTART
OB 2211222
cycle error OB 152:

"read stat."

CURCYC

LASTCYC

MINCYC

MAXCYC

AVERAGE

CYCLE C

OB 152:
"read stat."

CURCYC

Cycle time
(n-2)

incl. cyc. (n-2)

incl. cyc. (n-2)

incl. cyc. (n-2)

n-2

1) The value of CURCYC corresponds to the time T that has elapsed since the occurrence of the "problem" in the current cycle.
This is not the length of the whole cycle. To indicate this situation, the RLO is set to "1" in addition to the values transferred
to ACCU-1-L and ACCU-2-L.

Cycle time
@-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

n- l

1)

Cycle time

(n-1)

incl. cyc. (n-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

n- l

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

no

no

no

no

no

CURCYC
@+l)

Cycle time
@-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

incl. cyc. (n-l)

n- l

Integrated Special Functions

6.1 3 OB 153: SetIRead Time for Delay Interrupt

Introduction Using OB 153, you can transfer so-called "delay jobs" to the system program.
After a specified delay time "a delay interrupt" is then processed (refer to OB 6,
Section 4.5).

Function By calling OB 153, you can do the following:

define and start a delay time,

stop an activated delay time (cancel delay job),

read how long the delay time still has to run.

A delay job can be activated by OB 153 in the RESTART and RUN modes.

Life of a delay job

The delay interrupt triggered by a delay job is only activated by the system
program in the RUN mode (OB 6 call). Jobs which become due in a mode other
than RUN are discarded by the system program without any message.
A currently active (but not yet due) job is also discarded if the CPU changes to
the STOP mode or if the power is switched off.

Parameters Accus

Delay time in milliseconds (max. 65535)
Permitted values: OOOlH to FFFFH

ACCU-2-L only needs to be supplied with the function number '1' ("define
delay time") when OB 153 is called. The contents of ACCU-2-L are not
evaluated in the remaining OB 153 functions.

Function no.
Permitted values: 1 = define and start delay time

2 = stop delay time (= cancel job)
3 = read remaining delay time

Note
If a previously defined delay time is not yet elapsed when a further delay
time is defined, the previously defined time is lost and the new delay time
started.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Result After correct processing of OB 153, the condition code bits OR, ERAB and
OS = 0.

When OB 153 is called with the function no. '2' or '3', ACCU-1-L contains the
remaining time to run in milliseconds.

If no delay job is active when OB 153 is called with function no. '2' or '3',
ACCU-1-L contains the value '0'.

Possible errors The errors listed in the following table can occur.
OB 31 (other runtime errors) is called. If OB 31 is not loaded, the CPU goes to
the STOP mode.

In both cases, error IDs are entered in ACCU-1-L and ACCU-2-L (see the table
below).

Table 6-8 OB 153 error IDs

Examples

ACCU-1-L

1A4 EH

hen an AUTOMATIC WARM RESTART is performed, after 5 seconds a certain STEP
operation sequence must be run through once. To do this, the delay time

S defined and started in start-up organization block OB 22.

he STEP 5 operations in OB 22 for calling OB 153:

:L KF +5000 Value for ACCU-2-L: 5000 ms
Value for ACCU-1-L: function no. = 1 for
"define and start delay time"

:JU OB 153 Call OB 153

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

ACCU-2-L

OOOlH
0002H

Significance

Function no. = 0 or >3
Illegal delay time

lntearated S~ecial Functions

TEP 5 operations for calling OB 153:

Value for ACCU-1-L: function no. = 2 for
"stop delay time"

:JU OB 153 Call OB 153

TEP 5 operations for calling OB 153:

Value for ACCU-1-L: function no. = 3 for
"read out remaining time"

:JU OB 153 Call OB 153

ACCU-1-L contains the time the delay job still
has to run.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.14 OB 160 to 163: Loop Counters

Introduction By using these special function operation blocks, you can implement program
loops with a particularly fast runtime.

Function A system data word is assigned to each of the four special function OBs as
follows:

Programming the You transfer the value for the required number of loop repetitions to one of these
program loop system data words. When you then call the appropriate special function OB, the

loop counter in the system data word is decremented by 1. The loop is repeated
until the loop counter reaches the value zero.

Note
If the loop counter is already zero before the special function OB is called,
it is decremented by 1; the loop is then run through 65,536 times.

Parameters System data word RS 60 - 63

Loop counters
possible values: 0 - 65 535 decimal (0 to FFFFH)

Result Loop counter in RLO is set (RLO = 1)
system data word >O:

Loop counter in RLO is cleared (RLO = 0)
system data word = 0:

The other bit and word condition codes are always cleared.

The accumulators are not changed and not evaluated. This means that they are
still available at the beginning of the next loop and do not need to be set again.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Possible errors none

Example

The required number o f loop repe t i t i ons i s contained i n f l a g word X .

I n i t i a l i z e the loop

:L MWx Loop counter

: JC =M002
:T RS 62 Transfer loop counter

t o system data word

"Loop program"

Manage loop:
:JU OB162 Loop counter
:JC =MOO1

Further :

For a further example, refer to Section 9.2 "TNW and TNB: Transferring
Memory Fields".

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.1 5 OB 170: Read Block Stack (BSTACK)

Introduction Starting with OB 1 or FB 0, the block stack contains all the blocks that have been
called in sequence and that have not yet been completely processed.

Function Using the special function organization block OB 170, you can read the entries
currently in the BSTACK into a data block. In this way, you can find out how
many entries are currently in the BSTACK and how much space is still available
for further entries.
For each entry, you obtain the return address (step address counter = SAC), the
absolute start address of the data block valid in this block (DBA) and its length
(number of data words = DBL).

Note
Before you call OB 170, you must first open a data block (DB or DX) with
sufficient length. Four data words are required for each BSTACK entry.

Parameters Accus

Number of the data word (DW n) from which the entries are to be stored in the
open DB (offset)

Required number of BSTACK elements;
Possible values: 1 - 62

Example: if ACCU-1-L contains the value " l" , you obtain the last BSTACK
entry, if it contains "2", you obtain the last and one before last etc.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Result

RLO, CC 0 and
CC l settings

After OB 170 has been called successfully

the offset in the data block is still contained in ACCU-2-L

the actual number of BSTACK elements represented is in
ACCU-1-L l)

The RLO is cleared.

The condition codes CC 0 and CC 1 can be analyzed.

All other bit and word condition codes are cleared.

l) Possible values: 0 - 62, where the represented number is less than or equal to the
required number
0 = "no BSTACK entry exists" or "error"
(Multiply the contents of ACCU-1-L by four to obtain the number of data
words written to the DB).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Meaning

Existing number of BSTACK
elements c required number

Existing number of BSTACK
elements = required number

Existing number of BSTACK
elements > required number

Error

RLO

0

0

0

1

CC 0

1

0

0

1

CC 1

0

0

1

1

Scan with

JM

JZ

JP

JC

lntearated S~ecial Functions

Storing the The contents of the BSTACK are stored in the data block as follows when
BSTACK OB 170 is called (see Fig. 6-3):
elements in open
data blocks A = BSTACK element number (62 to 1)

(As soon as the last BSTACK element is output you can determine the remaining
space: A = 17 reserve = A - 1 = 16)

B = Depth if the BSTACK element (1 to 62)

DWO

Block header F
Offset - DWn

last entry in the
BSTACK (B = l)

A

second last entry
in the BSTACK (B = 2)

B

older BSTACK entries

Fig. 6-3 Storing BSTACK entries in a data block

SAC

DBA

Length

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

A B

SAC

DBA

Length

lntearated S~ecial Functions

Possible errors The following error events may occur:

No data block opened

Opened data block does not exist or is not long enough to take the required
number of BSTACK entries

Illegal parameters in ACCU 1 and ACCU 2

If an error occurs, the RLO and the condition codes CC 0 and CC 1 are set
(RLO, CC 0 and CC 1 = 1). The remaining bit and word condition codes are
cleared. The contents of ACCU-1-L are set to "0".

Example

want t h e e n t r i e s t o be s t o r e d i n DX 10 from data word DW 16 onwards (see
F i g s . 6 . 4 and 6 . 5) .

:CX DX 10 ;open DX 10
:L KY 0 ,16 ;BSTACK e n t r i e s t o be s tored from DW 16 onwards
:L KY 0 , 3 ;you require t h e l a s t three BSTACK e n t r i e s

S i x b locks a r e entered i n t h e BSTACK a s f o l l o w s :

BSTACK

(last BSTACK entry)

(first BSTACK entry)

Fig. 6-4 Contents of the BSTACK in this example

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Continuation of the example:

After the special function OB is called, DX 10 contains the following:

1 Block header l
DWO

Offset- DW 161 57 1 1 1 Depth 1

DW 171 SAC l
D W 1 8 DBA I

Length

DW 20 Depth 2

DW 21 SAC

D W 2 2 DBA I
DW 2 3 Length I
DW 2 4 59 1 3 1 Depth 3

ACCU-2-L= 16 (Offset)

ACCU-1-L= 3 (No. of elements in DX 10)

RLO = 0 (No errors)

(No. of BSTACK elements

Length greater then requested
CC 1 =

number of elements)

Fig. 6-5 Contents of DX 10 in this example after OB 170 is called

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.1 6 OB 180: Accessing Variable Data Blocks

Function With OB 180, the starting address of the current data block is shifted by a
specified value. In doing so, account is taken of the fact that the remaining
available length of the DB has to be reduced (the DBA and DBL registers are
loaded in correspondence to the shift).

Note
Before you call OB 180, a data block (DB or DX) with an adequate length
must already be open.

DBA/DBL register When a data block is opened with the operations C DB and CX DX, the DBA
register (data block start address) is loaded with the address of data word DW 0,
stored in DB 0.

Access to data blocks with operations such as L DR 60 or DO DW 240 etc. are
always relative to the data block start address.

In addition to the DBA register, the DBL register (data block length) is always
loaded when a data block is called. This register contains the length (in words) of
the opened DB or DX data block without the block header.

Note
A maximum of up to 4091 data words can be entered in the DBL register.
STEP 5 access to data words is only possible up to a maximum data word
number of 255.

Example

The DBA register the address of the memory word in which
DW 0 to DB 17 is stored: DBA = 151BH

The number of data words is stored in the DBL register:
DBL = 8 (DW 0 to DW 7)

Since access to the data words by means of the STEP 5
operations L DW, U D, DO DW etc. is always relative to
DBA, 3 is added to 151BH in order to access, e.g. DW 3.
Data word DW 3 is stored under the address 151EH.
The DBL register is used to check whether a transfer or
load operation is pending. T DW 7 is permissible but
T DW 8 or L DW 8 are not.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Applications of Special function OB 180 allows you to access structured data in an opened data
OB 180 block. You can do this by shifting the starting address of the data block entered

in the DBA register to the end of the data block with the help of OB 180.
Simultaneously to shifting the starting address, OB 180 decrements the block
length entered in the DBL register accordingly. It is important that this is done so
that the CPU can monitor load and transfer operations in the case of later
accesses to the data block.

Access to DBs with a length greater than 261 words (five words header) over
the whole length of the DB. Using OB 180, you can move an "access
window" of 256 data words over the length of the data block.

Handling data structures

A data block can be divided into several data records of the same length and
with the data arranged in the same order. This is known as structuring the
data block. A data block structured in this way might, for example, contain
the data of several subprocesses, with a temperature value in the first data
word, a pressure in the second and other values for the subprocess in the
remaining data words.

Using OB 180, you can access the data of each subprocess using the same
operations (e.g. L DD, S D, T DR etc.), by loading the DBA register with the
start address for the subprocess.

In contrast to other substitution mechanisms, (substitution = indexed
parameter assignment) you obtain simpler and faster subroutines.

Parameters ACCU-1-L

offset (number of data words,
by which you want to shift the data block start address),
possible values: 0 I ACCU-1-L c DBL

Result After OB 180 has been called successfully

the value of the DBA register (= address of DW 0) is raised by the value of
ACCU- 1-L

the value of the DBL register is reduced by the value of ACCU-1-L

the RLO is cleared (RLO = 0)

all other bit and word condition codes are cleared

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Possible errors The following error events may occur:

Negative length

No data block opened

Contents of ACCU-1-L z DBL

In the event of an error (ACCU-1-L z DBL) the DBA and DBL registers remain
unchanged. The RLO is set (RLO = 1). The remaining bit and word condition
codes are cleared.

If the DBL register contains the value "0", OB 180 recognizes that no data block
is open. The RLO is set (RLO = l) , signalling an error.

Resetting DBA Opening the data block again using the operations C DB or CX DX,
and DBL to the re-establishes the initial setting.
initial value

Example

(DBL = 8) by two data words.

:C DB 17 open DB 17
: L KB 2 shift / offset as constant
:JU OB 180 call OB 180: DBA and DBL are adjusted

When you call OB 180, the data word stored at e.g. address 1520 can no
longer be addressed as DW 5, but must be addressed as DW 3 etc.
(see Fig. 6-6).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Continuation of the example:

Addr. (hex.) DB 17

DBA old

1517 1 5 words
block header 1

DBA ne- 151 D cccc

151E dddd

151F eeee DW 2

1520 f f f f DW 3

1521 gggg DW 4

1522 hhhh DW 5
- - - - -

'15

Fig. 6-6 Shifting the DB start address

Because the DBL register is adjusted at the same time, error monitoring is
guaranteed: the operation T DW 5 is permitted, while T DW 6/LW 6 would
cause an error.

If you call OB 180 again, the DBA can be increased again (and the DBL is
further reduced). The operation C DB 17 re-establishes the initial state
(DBA = 151B, DBL = 8).
If DB 17 has a length of, for example, 258 data words, you cannot access
DW 256 and DW 257 using STEP 5 operations. If you shift the DBA register
by two, you can address data words 256 and 257 using "DW 254" and "DW 255".

For more information about the DBA/DBL registers, refer to Chapter 9.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.17 OB 181: Testing Data Blocks (DBIDX)

Introduction With the special function organization block OB 181 you can check the
following:

whether a particular DB or DX data block exists,

the address of the first data word of the data block,

how many data words the data block contains,

the memory type and area used.

Application of The "test DBDX" function is useful before the operations TNBtTNW, G
OB 181 DB/GX DX and before calling the special function organization blocks OB 182,

OB 254 and OB 255.

You can, for example, call OB 181 before transferring a group of data words, to
make sure that the destination data block is both valid and long enough to take
all the data words you wish to transfer.

Function

Parameters

Result

OB 181 checks that a specified data block exists and returns the characteristic
parameters of the data block as a result.

block number
possible values: 1 to 255

block identifier
possible values: 1 = D B

2 = D X

If the block does exist in the CPU:

- ACCU-1-L: contains the address of the first data
word (DW 0)

- ACCU-2-L: contains the length of the data block in words
(without block header),
Example: ACCU-2-L contains the value "7":
the data block consists of DW 0 to DW 6.

- RLO:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

- CC OICC 1: are affected according to the location of the block
(see following list)

- the remaining
bit and word
condition codes: are cleared.

If the data block does not exist in the memory or the parameter assignment is
incorrect:

- ACCU l and 2: are not changed

- RLO: = 1

- the remaining
bit and word
condition codes: are cleared

RLO, CCI, CC0 The following condition code bits are set according to the check result. The
condition code bits can be evaluated by the operations listed in the "Scan"
column of the table:

Possible errors The following error events may occur:

Incorrect block number (illegal: 0: DB O/DX 0)

Incorrect block identifier (permitted: 1 = DB, 2 = DX; illegal: 0, 3 to 255)

Memory error

RLO

0

0

0

1

Examples Refer to Section 8.3 / Section 9.2 / Section 9.3.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

CC 1

0

0

1

1

CC0

1

0

0

1

Scan

JM

JZ

JP

JC

Meaning

DB/DX in user memory

DB/DX in DB-RAM

DB/DX does not exist or there is an error

DB/DX in EPROM
mode (read-only)

DB/DX in RAM
mode (readlwrite)

DB/DX exists

lntearated S~ecial Functions

OB 182: Copying a Data Area

Function OB 182 copies a data field of variable length from one data block to another.
You can use DB and DX data blocks as the source and destination blocks. You
can select the start of the field in the source and destination data block as
required. OB 182 can copy a maximum of 4091 data words. It contains pseudo
operation boundaries.

Parameters

Note
The source and destination block can be identical; the data areas of the
source and destination can overlap. The original data of the source area are
copied unchanged to the destination area even if there is an overlap.
(The area overlapping in the source is overwritten following the copying.)
You can use this feature in certain situations, for example to shift a data
area within a block.

1. Data Field with Parameters for Copying Functions

Before you call OB 182, supply a data field with all the data required for the
copying. This data field can be set up in a DB or DX data block, or in the F or S
flag area.

The data field defines the source and destination data block, the field start
address in both blocks and the number of data words to be transferred. It consists
of 5 words.

Bit no. 15 8 7 0

1st word 1 Source DB type 1 Source DB no. I
2nd word I No. of 1 st data word in source DB to be transferred I
3rd word I Dest. DB type 1 Dest. DB no. 1
4th word I No. of 1st data word to be written in dest. DB 1
5th word I Number of data words 1

The range of values and meaning of the parameters is as follows:

Parameters Permissible value range

Data block type (source and destination) 1 = D B , 2 = D X

Data block number (source and destination)

I Number of data words I 1...4091 I

I

3...255

No. of the 1st data word (source and destination)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

I

0...4090
I

lntearated S~ecial Functions

Data field in the flap area

If you set up the data field in the flag area, you must take into account the
following assignment of data field words to flag bytes. "X" is the parameter "no.
of the 1st data field word", that you must store in ACCU-1-L when OB 182 is
called.

Bit no.

1st data field word

2nd data field word

3rd data field word

4th data field word

5th data field word

2. Accus

15 8

Flag byte X

Flag byte xt2

Flag byte xt4

Flag byte xt6

Flag byte xt8

ACCU-2-L contains information regarding the data field used. It must present
the following structure:

7 0

Flag byte x t l

Flag byte xt3

Flag byte xt5

Flag byte xt7

Flag byte xt9

Parameters in ACCU-2-L

Bit no. 15
I I I I I l 8 7 1 I I I I I l 0

Address area type,
permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Address area type

Data block no.,
permitted values : 3 to 255 (in the case of address area type "1" or "2" only;

irrelevant in the case of address area type "3" or "4")

Data block no.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Result

Reactions to
errors

Number of the 1st data field word,
permitted values (depending on the address area type):

DB, DX: 0...2043
F flags: 0...246

(= no. of flag byte "X")
S flags: 0...1014

(= no. of flag byte "X")

After OB 182 is correctly executed, the condition code bits OR, ERAB and
OS = 0. All other condition code bits and ACCUs 1 and 2 are unchanged.

In the event of an error, OB 19 or OB 31 (other runtime errors) is called. If
OB 19 or OB 31 is not loaded the CPU goes to the STOP mode.
In both cases, error identifiers are transferred to ACCU 1 and ACCU 2
(see the following table).

Table 6-9 OB 182 error IDs

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

ACCU-1-L

1A06H

1A34H

ACCU-2-L

OOOlH
OlOOH
OlOlH
0102H
0200H
0201H
0202H

0203H
0210H
0211H
0212H

0213H

0220H

0221H
0222H
0223H

Cause of error

Data block not loaded

Data field written to incorrectly
Address area type not permitted
Data block number not permitted
Number of the first data field word not permitted
Source data block type not permitted
Source data block number not permitted
Number of 1st data word in the source DB to be transferred not
permitted
Length of the source data block in the block header < 5 words
Destination data block type not permitted
Destination data block number not permitted
Number of the 1st data word to be written to in the destination
DB not permitted
Length of the destination data block in the block
header < 5 words
Number of data words to be transferred not permitted
(= 0 or > 4091)
Source data block too short
Destination data block too short
Destination data block is write-protected (EPROM mode)

OB called

OB 19

OB 31

lntearated S~ecial Functions

6.19 OB 185: Setting Write Protection

Function If you are using a memory card and already have to access data blocks within
OB 20, you can remove the write protection by calling OB 185 in OB 20.

Application OB 185 evaluates bit 0 of ACCU-1-L and sets the write protection accordingly.
Then it transfers the value of bit 0 of ACCU-1-L to bit 0 of the RS 138 system
data. The remaining bits in ACCU-1-L are not evaluated.

OB 185 is only processed in a cold restart, i.e. in OB 20. In all other modes, the
call has no effect, so does not lead to an error or an error reaction.

Parameter ACCU-1-L

Activateldeactivate write protection,
permitted values: bit 0 = 0: deactivate write protection

bit 0 = 1: activate write protection

Result OB 185 sets the bit condition codes OR and ERAB and the word condition
code OS to 0.

Write protection As OB 185 changes the RS data and this is scanned at the end of OB 20 again by
status the system, you may change the write protection setting unintentionally as a

result of the "mixed" use of the OB and the direct change of the RS data.

0 vervie W CPU 928B in RAM mode

Write protection is deactivated: bit 0 of RS 138=0

PG ISTACK: submodule ID: 32 KW RAM

PG memory configuration: RAM configured to 07FFEH

PG user memory end address 08000H

All blocks: "valid in RAM" -> loading, deleting, overwriting possible

CPU 928B in EPROM mode

Write protection is activated: bit 0 of RS 138=1

PG ISTACK: submodule ID: EPROM

PG memory configuration: RAM configured to OOOOOH

PG user memory end address OEEEEH

Code blocks and data blocks not copied to DB-RAM: "valid in EPROM" ->
loading, deleting, overwriting not possible

Data blocks copied to DB-RAM: "valid in RAM" -> loading, deleting,
overwriting possible

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.20 OB 186: Compressing Memory

Function With the organization block OB 186 you can compress the memory and scan or
check the status of the compression function. The functionality of OB 186
corresponds to the PG function "Compress memory" (see Section 11.2).

Note
While the memory is being compressed by OB 186, the PG function
"Compress memory" is rejected. Other PG functions can only be used with
certain restrictions.
As long as a PG function is active, OB 186 is rejected.

Compressing memory with OB 186 is a long-term function which is distributed
by the system program over a number of cycles. No explicit messages are
displayed: you can, however, request status messages by calling the OB
cyclically with function number 2.

OB 186 calls no error block.

Parameter

Result

ACCU-1-L contains the function number,
permitted values: 0001H: trigger compression

0002H: readlcheck status of the compression

OB 186 sets the bit condition codes OR and ERAB and the word condition code
OS to 0.

Calling OB 186 produces the following results:

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

cause CPU not in compressable state at

invalid 0 8001H Error, invalid function number

lntearated S~ecial Functions

6.21 OB 190/OB 192: Transferring Flags to a Data Block

Application With organization blocks OB 190 and OB 192, you can transfer a selected
number of flag bytes to a data block.
This can, for example, be an advantage before block calls, in error organization
blocks or when cyclic program execution is interrupted by a time or process
interrupt.
Using OB 191 and OB 193, you can then write these flag bytes back from the
data block.

Function

Note
Use OB 190 and OB 191 to save and read back flag bytes, since the time
required is extremely short.
Before you call OB 1901192, a data block @B/DX) must already be open.
OBs 1901192 only transfer flag bytes from the F flag area to a data block,
they cannot transfer flag bytes from the S flag area.

After you call OB 190/192, the flag bytes are written to the open data block from
the specified data word address. OBs 1901192 take the flag area to be saved from
ACCU 2. OBs 190 and 192 are identical except for the way in which they
transfer the flag bytes:

OB 190 transfers the flags in bytes
OB 192 transfers the flags in words.

This difference is significant, when the data transferred to the data block are
intended for processing and you are not simply using the data block as a buffer.
The following diagram illustrates the difference.

Fig. 6-7 Transferring in bytes (OB 190) and words (OB 192)

Copy flags with OB 190: OB 192:

Flags Data block Data block

7 0 15 DL 8 7 DR 0 15 DL 8 7 DR 0

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

FYO DWO

lntearated S~ecial Functions

Parameters

Result

Note
If you transfer an odd number of flag bytes, only half the last data word in
the data block is used. With OB 190, the left date in the destination DB is
unchanged, with OB 192 the right date is unchanged.

1. Specifying the data source:

First flag byte to be transferred,
permitted values: 0 to 255

Last flag byte to be transferred,
permitted values: 0 to 255

(The last flag byte must be z the first flag byte)

2. Specifying the destination

ACCU-1-L

Number of the first data word to be written to in the open data block:

The permitted values depend on the length of the data block in the memory.
Numbers greater than 255 may occur.

If the special function OBs 190/192 are processed correctly, the RLO is cleared
(RLO = 0). The ACCUs remain unchanged.

If an error occurs, the RLO is set (RLO = l) , the ACCUs remain unchanged.

Possible errors No DB or DX data block opened

Incorrect flag area (last flag byte c first flag byte)

Data word number does not exist

DB or DX data block not long enough

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.22 OB 191/OB 193: Transferring Data Fields to a Flag Area

Application With the organization blocks OB 191 and OB 193 you can transfer data from a
data block to the flag area. With this function, you can, for example, write flag
bytes you have saved in a data block back to the flag area.

The only difference between OBs 1911193 and OBs 1901192, is that the source
and destination are reversed:

OB 1901192: Flag area Data block

OB 1911193: Flag area Data block

Note
Before you call OB 1911193, a data block of sufficient length (DBDX)
must be opened.

OBs 1911193 transfer from the data block only to the F flag area and not to
the S flag area.

Function After OB 1911193 is called, data words starting from the data word address
specified are read out of the opened data block and transferred to the flag area.

OBs 191 and 193 are identical, except for the way in which they transfer data.

OB 191 transfers data words in bytes

OB 193 transfers data words in words.

The figure on the next page illustrates this difference.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

DWO

DWO

Data block OB 191 Flags
DL D R

15 8 7 0 7 0

Data block OB 193 Flags
DL D R

15 8 7 0 7 0

Fig. 6-8 Transferring in bytes (OB 191) and words (OB 193)

Parameters 1. Specifying the source:

ACCU-2-L
Number of the first data word in the open data block to be transferred

2. Specifying the destination:

ACCU-1-LH
First flag byte to be written to,
permitted values: 0 to 255

ACCU-1-LL
Last flag byte to be written to,
possible values: 0 to 255

(The last flag byte must be 2 the first flag byte)

FYO

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Result If special function OBs 191/193 are processed correctly, the RLO is cleared
(RLO = 0). The ACCUs remain unchanged.

In the event of an error, the RLO is set (RLO = l) , the ACCUs remain
unchanged.

Possible errors The following error events may occur:

No DB or DX data block open

Incorrect flag area (last flag byte c first flag byte)

Data word number does not exist

DB or DX data block not long enough

Examples

Before program block PB 12 is called, all the flags (FY 0 to FY 255) must
be saved in data block DX 37 from address 100 onwards and then written
back to the flag area.

:CX DX 37 Call the data block
:L KY 0,255 Flag area FYO to FY255
:L KB 100 Number of the 1st data word in the destination DB
:JU OB 190 Save flags

Block change:

:JU PB 12

Writing back:

(Data block already called)
:L KB 100 Number of the 1st data word in the source DB
:L KY 0,255 Flag area FYO to FY255
:JU OB 191

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Example 2

Flags used by the cyclic user program must not be used by a time or
process-driven user program. Each program processing level must have a
particular section of the flag area assigned to it.

e.g.: Cyclic user program: FYO FY99
Time-driven user program: FYlOO FY199
Process interrupt-driven user program: FY200 FY255

If, however, the cyclic user program is already using all 256 flag bytes
and the time-driven user program also requires all 256 flag bytes, the
flags must be swapped over when the processing level is changed and the
old flags stored until the program returns to the original processing
level. The quickest way to save and load these flags is with the special
function blocks OB 190 and OB 191. Fig. 6-9 illustrates how a flag area
FYx to FYy used by both OB 1 and OB 13 (100 ms time interrupt) can be
buffered in a data block DBx.

STEP 5 program in OB 13:

Fig. 6-9 Saving the areas when the program processing level changes

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

- I n the CPU 928B, operations involving the processing of single bits
(A, 0, ON, AN, S, R, =) that access the flag area are far faster than
comparable operations that access data blocks (compare, for example the
operations "A F" -"A D" or "S F" - "S D").
You can speed up your program if you copy data to the flag area,
process them there and then return them to the data block.

- A high byte and low byte in a data block can be swapped over without
complicated programming by copying the data words to the flag area
using the appropriate OBs and then transferring them back as
illustrated by Fig. 6-10.

Data block Data block

Fig. 6-10 Swapping the high byte and low byte in a DB using OB 193lOB 190

-You can shift data fields within a data block by specifying a different
data word but the same DB number for transferring the data back to

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.23 OB 200 and OB 202 to 205: Multiprocessor Communication

0 vervie W These special function organization blocks are described in detail in Chapter 10.

You can use the special function organization blocks OB 200 and
OB 202 to OB 205 to transfer data between CPUs in multiprocessor operation
using the coordinator 923C.

OB 200: initialize

This special function organization block sets up a memory area in the 923C
coordinator. This memory is a buffer for the data fields that are transferred.

OB 202: send

This function transfers a data field to the buffer of the 923C coordinator and
indicates how many data fields can still be sent.

OB 203: send test

The special function OB 203 determines the number of free memory fields in
the buffer of the 923C coordinator.

OB 204: receive

This function transfers a data field from the buffer of the
923C coordinator and indicates how many data fields can still be received.

OB 205: receive test

The special function OB 205 determines the number of occupied memory
fields in the buffer of the 923C coordinator.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.24 OB 21 6 to 21 8: Page Access

What are pages? To implement a large number of communications registers, within the address
range of the S5 bus, an address area with a length of 1024 bytes (2048 bytes are
reserved) is imaged 256 times on the memory. Because these 256 images are
stored beside or behind each other like individual "pages", these memory areas
are also referred to as a "page memory".

In multiprocessor operation, all modules involved can only access one page of
this memory area at any one time, all the remaining pages must be disabled for
both reading and writing.

A page is addressed via a page address register that exists on all modules
operating with pages and that has a fixed address on the S5 bus. You set the
numbers (addresses) of the pages on each of these modules using a DIL switch,
so that each page can only exists once in the PLC.

Before reading or writing to a page, the CPU specifies the page number by
writing to the page address register. All the modules that operate according to
this procedure of the S5 bus receive this number simultaneously ("broadcast")
and store it in their memory. Only the page addressed in this way can be written
to or read from in the page memory of the S5 bus, all other pages are disabled.

H0 W to access You can use organization blocks OB 216 to OB 218 and several STEP 5
Pages operations (see Chapter 9) to access the pages.

The organization blocks contain the following functions:

OB 216:

write a byte/word/double word to a page

OB 217:

reads a byte/word/double word from a page

OB 218:

the CPU occupies a page (used for coordination in multiprocessor operation)

You can use these functions for test purposes and for programming handling
blocks or similar functions.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Address areas
for peripherals
on the S5 bus

Bit
F000

FCOO

FEFF

FFOO

FFFF

Note
Whenever possible, only program access to pages by calling OB 216 to
OB 218. You should only use the available STEP 5 operations if you have
considerable experience of the system.

Normally, you can execute all functions using the standard function blocks
"handling blocks" and the integrated function organization blocks
"multiprocessor communication" (OB 200, OB 202 to OB 205), with which
all page access is handled "automatically".

P area

Page length

1024 addresses (byte or word addresses)

2048 addresses (byte or word addresses)

0 area

Address area occupied

F400H - F7FEH

F400H - FBFEH

Multiple memory area
Length: 1024 or 2048 bytes

l not occupied l

Fig. 6-11 Location of the page address area on the S5 bus

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

You specify the page to be used when you assign parameters to the special
function organization blocks OB 216, OB 217 and OB 218. The number of the
"currently active" page is then automatically entered in a memory location with
the address OFEFFH (see Fig. 6-11). All addresses then refer to the page whose
number is entered.

Note
You cannot read the page address register with the address OFEFF H. At
this address, you can, however, read out the bus error register on the
coordinator module 923C (see S5-135U/155U System Manual).

Notes on When a byte/word/double word is written (OB 216) and read
assigning (OB 217) tolfrom a page, the bytes are referenced in the following order:
parameters

Address n

Address n

1 Address n+l

Address n

Byte

Address n+l

Byte format

Address n+2

High byte

Low byte l
H byte in H word

L byte in H word

H byte in L word

L byte in L word

1 Word format

r Double word format

Fig. 6-12 Location of the bytes when writing (OB 216) 1 reading (OB 217) tolfrom a page in words or double
words

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.24.1 OB 216: Writing to a Page

Function The special function organization block transfers a byte, word or double word
from ACCU 1 (right-justified) to a particular page.

The addressing of the page in single or multiprocessor operation and the
transfer of the complete data unit (1 ,2 or 4 bytes) is one program function
and cannot be interrupted.

Parameters Accus

ACCU-3-LH
Identifier of the data to be transferred,
possible values: 0 = byte

1 = word
2 = double word

ACCU-3-LL
Current page number,
possible values:

Destination address on the page,
possible values: 0 to 2047

ACCU 1
Data to be written (byte, word, double word: right-justified)

ACCU contents before writing (before calling OB 216):

ACCU 3

,. Low word
High byte Low byte High byte Low byte

ACCU 2

ACCU 4 X

X X

'- data (8 bits)

ACCU l data (1 6 bits) 7

Length ID 1 Page number

0: byte (8 bits) ' Oto255

l : word (16 bits)

2: double word (32 bits)

X X

data (32 bits)

31 24 ' 2 3 16 ' 1 5 8 ' 7 0

Address (relative to start of page)

0 ... 2047 if length ID 0 (byte)

0 ... 2046 if length ID 1 (word)

0 ... 2044 if length ID 2 (double word)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Result If the data is written to the page correctly:

- ACCU 1 and ACCU 3: remain unchanged.

contains a value incremented by 1,
2 or 4 (depending on the length of
the data transferred)

- RLO: = 1

- the remaining bit and
word condition codes: are cleared

If the data cannot be written to the page

- all ACCUs: remain unchanged

- RLO: = 0

- all remaining bit and
word condition codes: are cleared.

Possible errors The following error events may occur:

wrong length ID in ACCU-3-LH

destination address on the page is wrong or does not exist

specified page number does not exist

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.24.2 OB 21 7: Reading from a Page

Function The special function organization block transfers a byte, word or double word
from a specific page to ACCU 1 (right-justified).

Addressing the page in the single and multiprocessor modes and transferring
the complete data (1,2 or 4 bytes) form a single program unit that must not be
interrupted.

Parameters Accus

ACCU-3-LH
Identifier of the data to be transferred,
permitted values: 0 = byte

1 = word
2 = double word

ACCU-3-LL
Current page no.,
permitted values:

ACCU-2-L
Source address of the page,
permitted values: 0 to 2047

ACCU contents before reading (before calling OB 217):

ACCU 3

r Hig"" Highi
,. Low word

Low byte High byte Low byte
ACCU 4

ACCU 2

X X

X X

_I- data (8 bits)

ACCU l data (1 6 bits)

Length ID 1 Page number

0: byte (8 bits) ' 0 to 255

1: word (16 bits)

2: double word (32 bits)

X X

data (32 bit)

31 24 ' 2 3 16 ' 1 5 8 ' 7 0

Address (relative to start of page)

0 t l. . . 2047 t l for length ID 0 (byte)

0 t 2 ... 2046 t 2 for length ID 1 (word)

0 t 4 ... 2044 t 4 for length ID 2 (double word)

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Result If the OB reads from the page successfully,

- ACCU 1: (right-justified) contains the value
read (the remaining bits up to
maximum 32 are cleared),

- ACCU 3: remains unchanged,

contains a value incremented by 1,
2 or 4 (depending on the length
of the data transferred),

- RLO: = 1,

- the remaining bit and
word condition codes: are cleared.

If the OB cannot read from the page,

- all ACCUs: remain unchanged,

- RLO: = 0,

- all other bit and word
condition codes: are cleared.

Possible errors The following error events may occur:

wrong length ID in ACCU-3-LH

source address on the page is wrong or does not exist

specified page number does not exist

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.24.3 OB 21 8: Reserving a Page

Parameters

The special function organization block transfers the number of the CPU to a
particular page, providing the contents of the memory location addressed on this
page are zero. As long as the CPU number is entered in this location, the page is
reserved for this CPU and cannot be used by other CPUs.

Organization block OB 218 is used to synchronize data transfer and is
particularly important when large blocks of data must be transmitted as one
unit. In the multiprocessor mode, no more than 4 bytes are transferred per bus
allocation. Reserving a page is therefore advantageous.

Addressing the page, reading and, if applicable, writing the slot identifier is
one program unit that must not be interrupted.

Accus

ACCU-2-LL
Number of the page to be reserved,
permitted values: 0 to 255

ACCU-1-L
Destination address on the page,
permitted values: 0 to 2047

(The contents of ACCU 3 and 4 are irrelevant.)

Accu assignments before calling OB 218:

ACCU 2 1
High High,word

Low word

m Page number
1 0 to 255 1

Low byte

l Address (relative to start of page)
ACCU l 1 X X 0...2047 l

High byte I

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Result If the page is reserved successfully:

- all ACCUs: remain unchanged

- RLO: = 1

- the remaining bit and
condition codes: are cleared.

If the page cannot be reserved:

- all ACCUs: remain unchanged,

- RLO: = 0,

- all other bit and word
condition codes: are cleared.

Possible errors The following error events may occur:

incorrect length ID in ACCU-3-LH

source address on the page is incorrect or does not exist

specified page number does not exist.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.24.4 Program Example

Task

You want to write data words 4 to 11 via the 923C coordinator from the
DB 45 of a CPU 928B to the DX 45 (data words 0 to 7) of a second CPU 928B.
You want to synchronize the sender and receiver (in the multiprocessor
mode)using OB 218.

Current page on the coordinator: no. 255

Coordination location on the page (reserved): addr. 53

Data transfer area of the page (reading and writing): addr. 54-69

STEP 5 operations in the SENDER:

: BEU
MOO1 :C DB 45

:L KY 2,255
:L KB 54
: ENT
:L DD 4
:JU OB 216

: TAK

:L D D 6
:JU OB 216
: TAK

:L D D 8
:JU OB 216
: TAK

:L DD 10
:JU OB 216

:L KY 0,255
:L K B 5 3
: ENT
:L K B O
:JU OB 216
: BE

Page number
Address of the coordination cell
Transfer the slot ID to the cell on the page
If RLO = 1 (transfer successful),
jump to label
Else block end
Open the source data block
2=length ID double word, page number
Start address on page
Write to ACCU 3
Data words 4 and 5 (= 4 bytes)
Transfer the 1st double word
Increment address by 4 (ACCU-2-L = 58)
Save the destination address

Transfer the 2nd double word

Transfer the 3rd double word

Transfer the 4th double word

Address with slot ID

ACCU 1 = 0
Clear slot ID, release data transfer area

Continued on the next page

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

STEP 5 operations in the RECEIVER:

:L KB 255 Page number
:L K B 5 3 Coordination cell
:JU OB 218 Page reserved by 2nd CPU
:JC =M002 If RLO = 1, jump to label

M002 :CX DX 45 Destination data block
:L KY 2,255
:L K B 5 4

Write to ACCU 3
:L KBO Write to ACCU 2

:JU OB 217 Read 1st double word
Increment the address by 4 (ACCU 2-L = 58)

:T D D 0 Transfer ACCU 1 to data word 0 and 1
:JU OB 217 Read 2nd double word
:T D D 2

:JU OB 217 Read 3rd double word
:T D D 4

:JU OB 217 Read 4th double word
:T D D 6

:L KY 0,255
:L K B 5 3 Address with slot ID

:L K B O ACCU 1 = 0
:JU OB 216 Clear slot ID, release data

transfer area

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.25 OB 220: Sign Extension

Application A sign extension is necessary to extend a negative 16-bit fixed point number to a
32-bit fixed point number before performing a fixed point-floating point
conversion (32 bits, operation FDG).

Function This special function extends the sign of a 16-bit fixed point number in
ACCU-1-L to the more significant word (ACCU-1-H):

If bit 215 = 0 (positive number), the more significant word is loaded with KH
= 0000.

If bit 215 = 1 (negative number), the more significant word is loaded with KH
= FFFF.

Parameters

Result

ACCU-1-L

16-bit fixed point number

ACCU-1-H is loaded into ACCU-1-L according to the sign of the fixed-point
number (see above).

Possible errors none

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.26 OB 221 : Setting the Cycle Monitoring Time

Function By calling this special function, you can modify the cycle monitoring time and
change the maximum permitted cycle time. As standard, the cycle monitoring
time is set to 150 ms.

Along with this call, the timer for the cycle time monitoring is restarted.

The maximum permitted cycle time for the cycle in which OB 221 is called, is
extended by the newly selected value, calculated from the time when the special
function call took place. The cycle monitoring time of all subsequent cycles
corresponds to the newly selected value (= the time value that you transfer in
ACCU 1).

Parameters ACCU l

new cycle time (in milliseconds),
permitted values 1 ms - 13000 ms,

positive fixed point number (KF)

ACCU l-H

ACCU-1-H must have the value "0"

Result The new cycle monitoring time is set after correct processing of
OB 221.

Possible errors The cycle monitoring time you have specified is not within the range
1 ms - 13000 ms.

The function is not executed. The system program recognizes a runtime error and
calls OB 31. The other reactions to the error depend on how you have
programmed OB 31 (see Section 5.6). If OB 31 is not loaded, the CPU goes to
the STOP mode.

In both cases, the error identifier 1A3AH is entered in ACCU-1-L.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.27 OB 222: Restarting the Cycle Monitoring Time

Function The special function OB 222 retriggers the cycle monitoring time, i.e. the timer
for the monitoring is restarted. After you call this special function, the maximum
permitted cycle time for the current cycle is extended by the selected value from
the time of the call.

Parameters none

Possible errors none

6.28 OB 223: Comparing Restart Types

Function If you call OB 223 in multiprocessor operation, the system checks whether the
restart types of all CPUs involved are the same.

Note
OB 223 must only be called when all the CPUs have completed their
start up.
If start-up synchronization is active (DX 0) this is guaranteed by calling
OB 223 in the RUN mode.
If start-up synchronization is inactive this must be achieved by other
means, e.g. delayed OB 223 call.

Parameters none

Result Error messages in the event of deviating restart types

Possible errors If the restart types of all the CPUs participating in multiprocessor mode are not
the same, the CPU in which OB 223 is processed detects a runtime error. OB 31
is then called.

If OB 31 is not loaded, the CPU goes to the STOP mode with the LZF error
message. Its STOP LED flashes slowly. The other CPUs also go to the STOP
mode, their LEDs show a steady light.

Error IDs When OB 31 is called and the CPU is in the STOP mode, the error ID 1A3BH is
entered in ACCU-1-L.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.29 OB 224: Transferring Blocks of Interprocessor
Communication Flags

Function The interprocessor communication (IPC) flags are transferred at the end of the
program cycle. In the single processor mode, the IPC flags are transferred
completely as a block of data to the memory on the coordinator or the CP andlor
from this memory to the flags of the CPU. The S5 bus is always available.

In multiprocessor operation, on the other hand, each CPU can only use the bus
when it is allocated by the coordinator. Each time the CPU has access to the bus,
only one byte is transferred. Following this, it is once again the turn of the other
CPUs. Sets of data that belong together but that are distributed over several flag
bytes are therefore separated.

If you call organization block OB 224, you can transfer all the IPC flags
specified in DB 1 of the CPU as a block of data. As long as a CPU is transferring
IPC flags, it cannot be interrupted by another CPU. Since the next CPU has to
wait before it can transfer its data, the cyclic program execution is delayed
(cycle time!).

OB 224 ensures the consistency of the IPC flag information. It must be called in
the start-up program as follows:

in all the CPUs involved in IPC flag transfer

and

in each restart type being used.

Parameters none

Possible errors none

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Function OB 226 and OB 227 are still included in the operating system for compatibility
reasons. The original function of these OBs - forming a checksum via the system
program - is now integrated into the system program. Both OBs return the value
"0" when called.

You can still use user programs which use OB 226 or OB 227 to form a
checksum without any modifications.

Note
The system program runs a checksum check automatically following power
on and before an overall reset.

Checksum The firmware EPROMs of the CPU 928B contain a checksum. Following power
on and before an overall reset, the system software calculates a checksum itself
and compares the calculated value with the stored value.

If both values are not the same, a "hard" system error occurs (RUN and STOP
light up, REDIGREEN-STOP). The CPU cannot run.

Following power offlon, the CPU requests (if still possible) an OVERALL
RESET. The value 1170H is entered in RS data EA80H. OVERALL RESET
leads again to a REDIGREEN-STOP.

OB 226 and OB 227, which could previously be used to check the checksum,
always return the result "correct checksum".

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.31 OB 228: Reading Status Information of a Program Processing Level

Function If a particular event occurs, the system program calls the corresponding program
processing level. The program processing level is then "activated".
Using organization block OB 228, you can find out whether a specific program
processing level is active or not at a particular time. Transfer the number of the
program processing level whose status you want to scan to ACCU 1. (The
numbers are those entered under LEVEL in the ISTACK).

When the block is called, it stores the status information of the specified program
level in ACCU-1-L. By evaluating this information, you can make your program
execution dependent on the status of another program processing level.

Parameters ACCU-1-L

Number of the program processing level
(see ISTACK, LEVEL)
possible values (hexadecimal): see following table

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Level no. in
ACCU-1-L

02
04
06
08
0 A
OC
OE
10
12
14
16
18
1A
1C
1E
20
22
24

Level name

COLD RESTART
CYCLE
TIME INTERRUPT 5 sec
TIME INTERRUPT 2 sec
TIME INTERRUPT 1 sec
TIME INTERRUPT 500 ms
TIME INTERRUPT 200 ms
TIME INTERRUPT 100 ms
TIME INTERRUPT 50 ms
TIME INTERRUPT 20 ms
TIME INTERRUPT l 0 ms
TIMED JOB
Not used
CONTROLLER INTERRUPT
Not used
DELAY INTERRUPT
Not used
PROCESS INTERRUPT

Level no. in
ACCU-1-L

26
28
2A
2C
2E
30
32
34
36
38
3A
3C
3E
40
42
44

46

Level name

Not used
Not used
Not used
Abort
Interface error
Collision of time interrupt
Controller error
Cycle error
Not used
Operation code error
Runtime error
Addressing error
Timeout
Not used
Not used
MANUAL
WARM RESTART
AUTOMATIC
WARM RESTART

lntearated S~ecial Functions

Result ACCU-1-L: contains the status information:
= 0 Program processing level has not been called
z 0 Program processing level has been activated

ACCU-2-L: contains the previous contents of ACCU-1-L;
the previous contents of ACCU-2-L are lost

Possible errors none

Example

Call special function organization block OB 228 at the beginning of OB 23
to check whether program processing level COLD RESTART (number 02) is
active or not when a QV2 (timeout) occurs. You can make the reactions to
the error dependent on the status information you obtain as follows:

ACCU l= 0: COLD RESTART not active - QV2 has not occurred in
COLD RESTART, but in another
program processing level
Error handling program must be
executed

ACCU 1 0: COLD RESTART activated - QV2 has occurred in COLD RESTART
QV2 can be ignored

Using OB 228, you can differentiate between various methods of handling
errors.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.32 OB 230 to 237: Functions for Standard Function Blocks

Introduction The special function organization blocks OB 230 to OB 237 are reserved for data
handling functions and can only be called in the standard function blocks FB 120
to FB 127.

Data handling These standard function blocks, the data handling blocks known simply as
blocks "handling blocks", control the data exchange via the page area in the single and

multiprocessor modes. They are used when data or parameters and control
information are transferred to or from the communications processors (CPs).

Assignment aid You can use the table below to find out which handling blocks call the special
function organization blocks OB 230 to OB 237.

Using the The use of the handling blocks, that can be ordered as a software product on
handling blocks diskette, is described in the manual "S5 135U programmable controller, handling

blocks for the R processor and CPU 928/928BU 154.

Standard
function block

FB 120

FB 121

FB 122

FB 123

FB 124

FB 125

FB 126

FB 127

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Special function
Organization block

SF-OB 230

SF-OB 231

SF-OB 232

SF-OB 233

SF-OB 234

SF-OB 235

SF-OB 236

SF-OB 237

Handling
block

SEND

RECEIVE

FETCH

CONTROL

RESET

SYNCHRON

SEND ALL

RECEIVE ALL

lntearated S~ecial Functions

6.33 OB 240 to 242: Special Functions for Shift Registers

Introduction This introduction tells you what you can use shift registers for and the points to
note in doing so.

Application You can use shift registers, e.g. in a manufacturing process, to program a
materials follow-up on the programmable controller. On the CPU 928B, you
have a maximum of 64 software shift registers available.

You can write data to the shift register and read data from it. This is done using
"pointers". Pointers are flag bytes that contain the contents of individual cells of
a shift register.

Structure A software shift register consists of rows of 8-bit wide memory cells and can be
between 2 and 256 memory cells long.

Location in the The data of a shift register are located in the data block RAM of the CPU. Each
DB-RAM shift register is assigned to a specific data block and also has the same number as

the data block (permitted: 192 to 255). If you set up a shift register with the
number 210, the corresponding data is in data block DB 210.

The DB-RAM has a capacity of 46 Kbytes (address KH 8000 to KH DD7F).
This area contains the data blocks (starting from KH 8000 in ascending order)
copied using OB 254 and 255 and the shift registers you have set up (starting
from KH DD7F in descending order). If the memory area of the DB RAM is not
sufficient for copying DBs or setting up shift registers, the CPU recognizes a
runtime error and calls OB 31. The reactions to the error depend on how you
have programmed OB 31 (see Section 5.6).

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Principle of a The following schematics illustrate the principle of a software shift register with
shift register three pointers and twelve memory cells.

Pointer 1 Pointer 2 Pointer 3

Fig. 6-13 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells

Flag bit 0
Flag bit 1
Flag bit 2 - Flag bit 3

Initializing When you initialize a shift register (see Section 6.34), you specify the number of
the flag byte for pointer 1 (= base pointer). This is then set permanently on the
first memory cell of the shift register. You then position all the other pointers
relative to the base pointer (you can use between one and a maximum of six
pointers per shift register).

-

Shifting When you shift a shift register (like a hardware shift register), the total contents
of all the shift register cells are transferred in bytes from one memory cell to the
next (see Fig. 6-13). Each time the shift register function is called, the
information is shifted one memory cell (corresponds to one clock pulse), and the
pointers are supplied with new contents. As shown by the arrows, the
information is shifted through the complete shift register to the last memory cell
from where it returns to memory cell 1 (after 12 clock pulses for the shift register
illustrated in the schematic).

-

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Flag bit 4
Flag bit 5
Flag bit 6
Flag bit 7

r r r I
I I I I Bit 1

Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

1 2 3 4 5 6 7 8 9 10 11 12

I
I Bit 0

I

Integrated Special Functions

Example

Before the spec ia l function i s c a l l e d , c er ta in b i t s are s e t i n the
pointers (f l a g s) t o i d e n t i f y the pointer information, a s fo l lows:

Se t f l a g b i t 0 of pointer 1 :S F 0.0

Set f l a g b i t 3 o f pointer 2 :S F 1 .3

Se t f l a g b i t 2 of pointer 3 :S F 2 .2

The s h i f t r e g i s t e r function i s then c a l l e d : J U OB 241

Pointer 2 Pointer 3

ig. 6-14 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells
before the first clock pulse

Pointer 2 Pointer 3

ig. 6-15 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells
after the first clock pulse

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

You can now evaluate the information i n the pointers a s fo l lows:

Flag b i t s 0 , 3 and 2 can be scanned a t the base pointer: i n t h i s way, you
can evaluate a l l the information from the e n t r i e s i n a l l po inters a t the
base pointer (i n the example, t h i s requires twelve clock p u l s e s) .

Organization If you want to use a shift register, there are three special function organization
blocks blocks available:

OB 240:

This funciton initializes a shift register.

OB 241:

This function processes a shift register.

0 B 242:

This function deletes a shift register.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.34 OB 240: Initializing Shift Registers

Application Before processing a shift register, you must first initialize it. This is done by
calling OB 240 once (ideally in a restart organization block).
The parameters that OB 240 requires to create a shift register are contained in a
data block with the number of the shift register to be initialized. DB numbers
between 192 and 255 are permitted.

Function

Parameters

A specific memory area at the end of the DB-RAM is reserved and initialized
with the information from the opened data block.

Opened data block

possible values: DB no. 192 to 255

The data block has a fixed structure which you must not change. It can have a
maximum length of 9 data words (DW 0 through DW 8).

0

Shift register length (bytes) L

Number of the 1st flag bytelbase pointer

lnterval n

lnterval n 3

lnterval n

lnterval n

lnterval n

0

DW 0

DW 1

DW 2

DW 3

DW 4

DW 5

DW 6

DW 7

DW 8 or last data word

Fig. 6-16 Structure of the data block for initializing a shift register

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Data word The individual data words must be assigned as follows:
assignment

Data word 0

Must always contain the value 0.

Data word 1

The shift register length L is the number (in bytes) of memory locations of the
shift register. It can be within the range between 2 S L S 256.

Data word 2

The number of the first flag byte determines the base pointer and with it the
block of flags assigned to the pointers. The block of flags contains the total
number of pointers you have selected. You select pointers by making entries in
data words DW 3 to maximum DW 7, using one data word per pointer.
If, for example, you want to set up two further pointers, you then have a total of
three pointers. Make sure that you have enough flags available for all pointers up
to the end of the block of flags.

Data word 3 to maximum 7

You specify the other pointers indirectly. They are defined by their distance
(shift register cells = number of bytes) from the base pointer.

n2 = distance from pointer 2 to base pointer

n3 = distance from pointer 3 to base pointer

n4 = distance from pointer 4 to base pointer

etc. (1 to maximum 5 entries)

Last data word (DW 4 to maximum DW 8)

(in the example DW 8). This must always contain the value zero. If you only
select two additional pointers, the "0" is in data word DW 5 etc.

All the information is specified as fixed point numbers.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Note
The number of pointers (6 including the base pointer) must not exceed the
length of the shift register.

The distance of a pointer to the base pointer must not exceed the length of
the shift register.

Data word DW 0 and the data word after the last pointer distance must
always contain 0.

The data block must be open before OB 240 is called.

The data block must have a number in the range DB 192 to DB 255.

Memory n = shift register length12 + 8 data words
requirements

are required for every shift register, i.e. the length of the DB RAM is reduced by
n data words. The data block RAM end address is shifted to lower addresses. If
you attempt to initialize a shift register that already exists, the area already
assigned will be initialized again providing the new and old shift registers both
have the same length. Otherwise the old area will be declared invalid and a new
area will be opened.

Possible errors illegal data block number (4 9 2)

not enough memory space in the DB RAM

formal error in the structure of the data block

illegal length specified for the shift register

errors in the pointer parameters

In the event of an error, the CPU recognizes a runtime error and calls OB 31.
What happens then depends on how you have programmed OB 31 (see
Section 5.6). If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L that describe the error in
greater detail.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.35 OB 241 : Processing Shift Registers

Introduction The special function organization block OB 241 processes a shift register
providing it has been initialized by OB 240. In the CPU 928B, you can call a
maximum of 64 shift registers.

Application Before you call OB 241, certain flag bits are usually setheset in the pointers.
Each time OB 241 is called, the information is shifted byte by byte from one
memory cell to the next higher memory cell. The pointers are then supplied with
new contents. By repeatedly calling OB 241, the information can be shifted
through the complete shift register to the last memory cell. From here, it is then
transferred to memory cell 1.

Function Each time OB 241 is processed, the shift register addressed via ACCU-1-L is
shifted one position to the right.

Parameters ACCU-1-L

Number of the shift register to be processed,
permissible values: 192 to 255

Result After you call OB 241, the pointers (maximum 6 per shift register) that can be
positioned as required with the exception of the base pointers contain the
information of the preceding memory cell. You can then evaluate this
information.

Possible errors illegal shift register number in ACCU 1

shift register not initialized.

In the event of an error, the CPU recognizes a runtime error and calls OB 31.
What happens then depends on how you have programmed OB 31 (see
Section 5.6). If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L that describe the error in
greater detail.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.36 OB 242: Deleting a Shift Register

Function With this function, you can delete a shift register in the data block RAM. The
entry in the DB 0 address list is cleared and the shift register is declared invalid
in the DB RAM (remember: shift registers still occupy memory space after they
have been deleted).

Parameters

Result

Number of the shift register to be deleted,
possible values: 192 to 255

After you call OB 242, the shift register is deleted and can no longer be used; if
you want to work with it again, it must be reinitialized.

Possible errors illegal shift register number in ACCU 1

shift register not initialized

In the event of an error, the CPU recognizes a runtime error and calls OB 31.
What happens then depends on how you programmed OB 31 (see Section 5.6).
If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L that describe the error in
greater detail.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

6.37 OB 2501251 : Closed-Loop Controll PID Algorithm

Introduction You can work with one or more PID controllers in the CPU 928B of the
S5-135U. Each controller must be initialized in the restart organization block. A
data block is used to transfer the parameters.

The actual control algorithm is integrated in the system program and you can
simply call it as an organization block. A data block is used as the data interface
between the control algorithm and the user program.

6.37.1 Functional Description of the PID Controller

Z Manual input: Input of YH when S3 set to 0
lnput of dYH when S3 set to 1

1

Fig. 6-17 Block diagram of the PID controller

W

X

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

0, \ ;xw
>-

xz" S 1

P I D
algorithm

1

dYA (S3 set to 1)

dy y ql. LL YA (S3 set to 0)

.- - - - - - - - - 2

Integrated Special Functions

Index k k times sampling

STEU control
word

Switch

S 1
CONTROL
BIT 1

S2
CONTROL
BIT 0

S3
CONTROL
BIT 3

S4
CONTROL
BIT 5

PID algorithm

Differentiator

Setting

0

1

0

1

0

1

0

1

Disturbance
compensation

Effect

The system error XWk is supplied to the derivative unit.

The derivative unit can be supplied with another signal via
XZ.

Manual operation

Automatic

Position algorithm

Velocity algorithm

With feedfonvard control

Without feedfonvard control

Inverted control
direction

Limiting the
control
information

You obtain a function corresponding to the switch settings of the block diagram
by assigning parameters to the PID controller, i.e. by setting the control bits in
the control word STEU. The continuous controller is intended for fast control
systems, e.g. in process engineering for pressure, temperature or flow rate control.

The controller itself is based on a PID algorithm. Its output signal can either be
output as a manipulated variable (position algorithm) or as a change of
manipulated variable (velocity algorithm).
You can disable the individual P, I and D actions by setting their parameters R,
TI and TD to zero. This allows you to implement any controller structure you
require, e.g. PI, PID or PD controllers.

You can supply the derivative unit either with the system error XW or a
disturbance or the inverted actual value -X can be supplied via the XZ input.

If you require a precontrol of the actuator without dynamic behavior to
compensate for the influence of a disturbance, then a disturbance Z measured in
the process can be fed forward to the control algorithm. In manual operation, this
is replaced by the preselected manipulated variable YM.

If you require an inverted control direction, preset a negative K value.

If the control information (dY or Y) reaches a limit, the I action is automatically
disabled in order to prevent deterioration of the controller response.

You can supply the control program with preset fixed values or with adaptive
(dynamic) parameters (K, R, TI, TD). These are input via the memory cells
assigned to the individual parameters.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.37.2 PID Algorithm

Introduction The PID controller is based on a velocity algorithm according to which the
control increment dYk is calculated at time t = k * TA, according to the
following formula:

P action I action D action

dXXXk: change in variable XXX at time t.

U can be either W or Z, depending on whether XW or XZ is supplied to the
derivative unit. The following applies:

If XWk is supplied: If XZ is supplied:

PWk = XWk - XWk-1 Pzk = xzk - xzk-l

QWk = PWk - PWk-1 QZk = PZk - PZk-l

dPWk = (XWk - XWk-1)R

1 TV
dDk = (TD * QUk + d&-l) TD = - TA

If you require the manipulated variable Yk at the controller output at time tk, it is
calculated according to the following formula:

With most controller structures, it is assumed that R = 1 if a P action is required.

Using the variable R, you can adjust the proportional action of the PID controller.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Data blocks for Controller-specific data are input using a transfer data block (see Sections 6.38
the PID controller and 6.39) for initialization and processing of the PID controller.

You must specify these data in the transfer data block X:

K, R, TI, TD, W, STEU, ETI, ULV, LLV

The transfer data block must contain data words 0 to 48, i.e. it is 49 data words
long. The following table explains the significance of these data words.

Structure of the
transfer data block

Table 6-10 Transferring the data block for PID control

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Addr.
in DB

DWO

DD 1

DD 3

DD5

DD7

DD9

DWll

DD12

DD14

DD16

DW18

DW19

DW20

DW21

DD 22

DW 24

DD 25

Name

-

K

R

TI

TD

Wk

STEU

YHk

ULV

LLV

YHk

Wk

MERK

Xk

Xk

Zk

Zk

110

-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Numerical
format

2)

-

FLP

FLP

FLP

FLP

FLP

FLP

FLP

FLP

FLP

NE

NE

BP

NE

ELP

NE

ELP

PG
format

3)

-

KG

KG

KG

KG

KG

KM

KG

KG

KG

KF

KF

KM

KF

KG

KF

KG

Remarks

Reserve

Proportional cooefficient
K >O: Positive control direction, i.e. change of actual value

and manipulated variable in same direction
K <O: Negative control direction,

floating point number range

R parameter, usually equals 1 for controllers with P action

TI=TA/TN

TD =TV/TA

Setpoint input here, when control bit 6 = 1, otherwise in word
no. 19 (-1 sWk < l)

Control word

Manual input here, when control bit 6 = 1; otherwise in word
no. 18 (-1 sYHk < l)
For velocity algorithms, you must specifiy manipulated variable
increments here

Upper limit value 4,

-1 s ULV s 1 p'& ,,);
!! LLV<ULV!!

Lower limit value 4,

-1 s L L V s 1 p'&,$

Manual input here, when control bit 6 = 0 (-1 s YH < 1). For
velocity algorithms, you must specify manipulated variable
increments here

Setpoint input here, when control bit 6 = 0 (-1 S Wk < 1)

Bit 0 = 1: positive limit exceeded;
Bit 1 = 1: below negative limit

Actual value input for control bit 7 = 0 (-1 sXk < l)

Actual value input for control bit 7 = 1 (-1 sXk < l)

Disturbance (-1 sZk < l)

Disturbance input here, if control bit 7 = 1 (-1 sZk <l)

lntearated S~ecial Functions

l) 1 = input, Q = output

FLP = floating point number, NF = normalized fixed point number (see page 6 - 103), BP = bit pattern

3, Suggested format (KH, KM also permitted)

4, In normalized fixed point format, the upper and lower limit value must be entered according to the following formulas:

DD 14 = BGOG: Value as fixed point number = mG
32767

Addr.
in DB

DD 16 = BGUG: Value as fixed point number =
32767

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Name

Table 6-10

DD 27

DW29

DD30

DD 32

DD 34

DD 36

DD 38

DD40

DW42

DD 44

DD 46

DW 48

110

continued:

Zk-I

XZk

XZk

XZk-I

PZk-l

dDk-l

XWk-1

PWk-1

-

Yk-l

YAk

YAk

Numerical
format

2)

I

I

I

I

-

-

-

-

-

PG
format

3)

Remarks

FLP

NE

FLP

FLP

FLP

FLP

FLP

FLP

FLP

FLP

FLP

NE

KG

KF

KG

KG

KG

KG

KG

KG

KG

KG

KG

KF

Historical value of the disturbance

Value supplied to the derivative unit via input XZ
(-1 sXZk <l); input here, if control bit 7 = 0

XZ input here, if control bit 7 = 1 (-1 sXZk < l)

Historical value of XZk

XZk-l - XZk-2

Derivative action

Historical value of the system error

XWk-1- XWk-2

Reserve

Historical value of the calculated manipulated variable Yk-l
or dYk-l before the limiter

Output variable

Output variable ULV sYA s LLV

Integrated Special Functions

Example of limit
values

Upper limit value = 0.1

Lower limit value = -0.1

- Entries in the DB:

DD 14: *l000 000 +00

DD 16: -1000 000 +00

- Output variable is limited:
DW 48: +-3276

DD 15: +-0.1

For limit values outside 1, the output variable is limited in floating
point format (DD 46) .

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Bit assignment
of the control
word STEU (data
word DW I 1 in
the transfer DB)

Table 6-11 Control word in the transfer DB for PID control

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

DW 11
Bit no.

11.0

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9 to

Name

AUTO

XZINP

DIS-CTR

VELOC

MANTYPE

NO-Z

PGDG

VAR-FLP

BUMP

11.15

Meaning

= 1: Automatic operation
= 0: Manual operation

= l : Another variable (not XWk), is supplied to the derivate unit
by the input

= =: XWk is supplied to the derivate unit. The XZ input
is ignored.

= 1: When the controller is called (OB 251) all variables (DW 20 to DW 48)
except K, R, TI, TD, BGOG, BGUG, STEU, YHk, Wk,
Zk and Zk-l are cleared once in the DB-RAM. The controller is disabled.
The historical value of the disturbance is updated.

= 0: control

= 1: Velocity algorithm
= 0: Position algorithm

= 1: If VELOC = 0 (position algorithm) the last manipulated variable to be output
is retained.
If VELOC is 1 (velocity algorithm) the control increment dYk = 0 is set.

= 0: If VELOC = 0, then after switching to manual operation, the value of the
manipulated variable output YA is brought to the selected manual value
exponentially in four sampling steps.
Following this, other manual variables are accepted immediately at the
controller output.
If VELOC = 1, the manual values are switched through to the controller ouptut
immediately. In manual operation, the limits are effective. In manual operation
the following variables are updated:
Xk, SWk-1 and PWk-1
XZk, XZk-l and PZk-l, if control bit 1 = 1
Zk and Zk-1, if control bit 5 = 0
The variable dDk-l is set to = 0. The algorithm is not calculated.

= 1: no feedforward control
= 0: with feedforward control

= 1: Wk, YHk input as floating point number
= 0: Input as normalized fixed point number

= 1: The variables Xk, XZk and Zk are input as floating point numbers
= 0: Input of the variables as normalized fixed point numbers

= 1: No bumpless changeover from manual to automatic
= 0: Bumpless changeover from manual to automatic

Irrelevant

Integrated Special Functions

6.38 OB 250: Initializing the PID Algorithm

Function OB 250 initializes the PID algorithm and is called in the restart OBs 20121122.

Parameters The parameters required for the initialization are contained in the transfer data
block (DB X).

1 ::::ransfer data block m u r be open before 0 B 250 is called,

For data transfer, each controller requires its own DB X (X 5254). From this, the
system program automatically generates a further DB X + 1 in the data block
RAM, that the controller uses as a data field in cyclic operation. This means that
the corresponding DB numbers must still be available. Data blocks DB X + 1
represent the data interfaces between the controller and the user or peripheral
110s.

Possible errors Internally, OB 250 uses OB 254 or OB 255 (duplication of data blocks). In the
event of an error, the CPU recognizes a runtime error and calls OB 31. If this is
not programmed, the CPU goes to the stop mode. The error IDs entered in
ACCU 1 then refer to OB 250.

Note
If DB X + 1 is not kept free during the initialization, it will be used as a
controller data field without any warning if its length is identical to that of a
controller DB (49 data words); data words 20 through 48 are cleared.
Otherwise the CPU goes to the stop mode.

Instead of DB data blocks, you can also use DX data blocks. Initialization is the
same as with DB data blocks.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

6.39 OB 251 : Processing the PID Algorithm

Application OB 251 is called during cyclic program execution and processes the
PID algorithm.

Call The controller should be called after the sampling time has elapsed. Keep to the
following order:

1. Call data block DB X t 3

2. Load input data Xk, XZk, Zk and YHk or a subset of these

3. Convert input data to the correct format and transfer it to DB X t 1

4. Call OB 251 (process PID controller)

5. Load the output data YAk from DB X t 1

6. Convert the data and transfer to the process 110s

Format of Internally, the PID control algorithm uses the floating point format for numerical
controller inputs representation and can be supplied with floating point values. You can also
and outputs supply the PID controller algorithm using the normalized fixed point format (see

bits 6 and 7 in the control word STEU). In this case, the controller automatically
converts the words to the floating point format with every call.

Adaptation of words from the input and output modules in the STEP 5 program
is faster if you use the normalized fixed point format (see table at the end of this
section).

Inputs You can input W, YH, X, Z and XZ as floating point or normalized fixed point
numbers. Different memory cells are reserved for each variable in the data
transfer block.

Input as (For an explanation of the normalized fixed point numbers, see the table at the
normalized fixed end of this section).
point numbers

Note
While keeping within the nominal input ranges of the analog input modules,
do not forget that the bit pattern for a certain input value is different from
when you use the full input range. This is particularly important when you
adjust the setpoint. Otherwise, it is possible that a setpoint input at the PG
cannot be reached although the actual value is far higher than the desired
value.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

If your analog-to-digital converter supplies negative numbers as a number and
sign, the 2's complement of this number must be formed before it is transferred
to the controller DB. Following this, the binary digit 15 must be set to 1.

If the number -0 is possible as a number and sign in the following format:

in your analog-to-digital converter, the 2's complement must not be formed. The
number must be transferred to the controller DB as +0:

Output The controller output YA exists in the DB as a normalized fixed point number
and a floating point number. Taking into account the input and output modules
used (analog-to-digital converter, digital-to-analog converter) the format must be
converted for normalized fixed point inputs and outputs before and after the
controller is called in the STEP 5 user program before values are transferred to or
from the controller DB.

General notes Using BUMP

If BUMP (control bit 8) is set to zero, the changeover from manual to
automatic operation is bumpless, i.e. the system error, however large it may
be, is corrected only by the I action. If, however, you have selected
TI = T W N = 0 (P or PD controller) the system error does not cause a
change of the manipulated variable when the changeover takes place.

You can prevent this by setting BUMP = 1. This means that a system error is
corrected quickly when there is a manual-to- automatic changeover,
irrespective of TI = 0. The manipulated variable jump that results
corresponds to the value of the system error, which means that it is not
arbitrary in the sense of a disturbance of the controller operation.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Displaying MERK, bits 0 and 1

Bits 0 and 1 of MERK can be displayed if required to show that the
manipulated variable (for velocity algorithm, the control increment) lies
between the upper and lower limits. Since these bits are evaluated by the
algorithm for disabling the I action, you cannot overwrite them.

Note
You must not reload the controller data blocks DB X + 1 during cyclic
operation.

Cascade control

If two or more controllers are cascaded, remember the following points:

- If the cascade is split, either all the controllers have to change to manual
operation simultaneously to prevent any controller drift due to the I action
or at least the controller of the outer loop must be operated manually to
ensure that the last manipulated variable corresponding to the setpoint of
the inner loop is retained or changed to a safe value.

- If you want to close the cascade, both loops should operate at the same
time in the automatic mode or at least the inner loop to ensure that the
manipulated variable of the outer loop is taken as the setpoint.

Switching to manual mode

If the control system is disconnected from the controller and directly adjusted
at the actuator following the changeover to manual operation, the
manipulated variable obtained must be supplied to the controller via the
manual input. This ensures that when you change from manual to automatic
operation, the controller output will correspond to the manipulated variable
set during manual operation. In the case of the velocity algorithm, this will be
the change in the manipulated variable.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Controller P controller
parameters The parameter for a P controller is K. This is the quotient of the output and

input value: K = Xout/Xin.

X out

PI controller
The parameters for a PI controller are the proportional cooefficient K and the
reset time TN. The proportional cooefficient K is the quotient of the output
and input value and determines the P action. The reset time TN is the time
required to respond to achieve the same change in the manipulated variable
due to the I action as occurs due to the P action.

PD controller
The parameters for a PD controller are the proportional cooefficient K (see
above) and the derivative time constant TV. The derivative time constant is
the time a P controller would require at a constant rate of change of the input
variable to bring about the same change in the output variable that is brought
about immediately by the D action of a PD controller. To determine the
derivative time constant, a linear change in the input variable is assumed and
not a jump function.

PID controller
The parameters for a PID controller are the proportional cooefficient K, the
reset time TN and the derivative time constant TV. These in turn determine
the P, I and D actions.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Integrated Special Functions

Parameter The P action of the manipulated variable is obtained based on the following
changes formula:

P action = KP * (X W ~ - X W ~ - I)

If KP or R are changed during automatic operation, this only affects subsequent
changes of the system error XWk. The current value of the manipulated variable
is not affected by the parameter change. This response allows for a bumpless
change. If, however, you do not want this response, you can eliminate it using
the following calculation, (example of a KP change). This calculation is only
made once for each parameter change:

If you use the following program in the case of a parameter change, the
controller responds like an analog controller.

:L KPnew load KPnew
:L KPold load KPoid
:-G
:L DD38 XWk-1
:xG
:L DD44 Yk-l
:+G
:T DD44 = Yk-l

Abbreviations for dYk
PID controllers dZk

FLP
k
K
LL
NE
R
TA
TD
TI
t
TN
TV
UL
Wk
Xk
XWk
Yk
YAk

Calculated control increment
Disturbance increment
Floating point representation
k * sampling
Proportional cooefficient
Lower limit (limiter)
Normalized fixed point representation
R parameter
Sampling time
TViTA
TAlTN
Sampling instant = k * TA
Reset time
Derivative time constant
Upper limit (limiter)
Setpoint
Actual value
System error
Calculated manipulated variable
Value of manipulated variable (control increment or
manipulated variable)
Disturbance

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Normalized fixed One word is required to represent a normalized fixed point number in a data
point numbers block. The following example illustrates the difference between a fraction

represented decimally, in binary and using the KF format on the programmer.

Table 6-12 Fraction

Negative normalized fixed point numbers in a binary representation are obtained
by forming the 2's complement of the positive normalized fixed point number.

Normalized fixed point numbers (NE) can be converted to the values represented
in the programmer (KF) as follows:

Fixed point
number

-32767

-24576

-16384

-8192

0

t 8192

t16384

t24576

t32767

Fraction in

where -1 c NE < + l and -32767 S KF S +32767

Decimal representation

-0.999... .

-0.75

-0.5

-0.25

0

t0.25

t0.5

t0.75

t0.999

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Binary representation

1000000000000001

1010000000000000

1100000000000000

11 10000000000000

0000000000000000

0010000000000000

0100000000000000

01 10000000000000

0111111111111111

lntearated S~ecial Functions

6.40 OB 254, OB 255: Transferring a Data Block to the DB-RAM

Introduction Special function organization blocks OB 254 and OB 255 allow you to transfer
data blocks from the user memory to the DB-RAM (data block memory) of the
CPU. The special functions OB 254 and 255 are identical; OB 254 is used for
DX data blocks and OB 255 for DB data blocks.

Application Shifting or duplicating a data block

Function Shifting

Shifting a data block from the user memory to the DB-RAM

A data block is shifted from the user memory to the DB-RAM and retains its
original block number. The new start address of the data block is entered in
the address list in DB 0.

Duplicating

A data block in the user memory or in the DB-RAM is duplicated in the
DB-RAM and assigned a new block number. The start address of the new
data block is entered in the address list in DB 0. The start address of the old
block is retained in DB 0, i.e. the original data block remains valid.
The start address is only entered into DB 0 after the transfer is completed and
all identifiers are entered correctly in the block header. The duplicated block
is only accepted as valid or existing by the system program after it has been
completely transferred.

Note
Shifting DBO into the DB-RAM is not possible since it already exists in
the DB-RAM. However, you can duplicate DB 0.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

lntearated S~ecial Functions

Parameters 1. ACCU-1-L-L
Number of the data block to be shifted or duplicated,
permitted values: 0 to 255

(0 only for DX or for duplicating DBs)

2. ACCU-1-H-L
With the value in ACCU-1-H, you specify whether you want to shift or
duplicate a block:
ACCU-1-H-L = 0:
the data block DB (OB 255 call) or DX with the number specified in
ACCU-1-L-L is shifted to the DB-RAM
ACCU-1-H-L = number for new block,
permitted values: 1 to 255
the data block DB (OB 255 call) or DX (OB 254 call) with the number specified
in ACCU-1-L-L is duplicated in the DB-RAM and entered in DB 0 with the
number stored in ACCU-1-H-L.

The values for ACCU-1-L-H and ACCU-1-H-H are not considered by OB 254
and OB 255 and are therefore not significant for assigning parameters to the OBs.

Possible errors The data block to be shifted does not exist (OB 19).

The block already exists in the DB-RAM (OB 31).
(therefore only execute the function once, ideally during the start-up).

Not enough memory space in the DB-RAM (OB 31).

In the event of an error, the function is not executed. The system program detects
a runtime error and calls OB 19 or OB 31. How the CPU reacts to the error
depends on the way in which OB 19 or OB 31 are programmed (see Section 5.6).
If OB 19 or OB 31 is not programmed, the CPU goes into the stop mode.

In both cases, ACCU 1 contains an error identifier that defines the error in
greater detail.

Example

following table shows the memory configuration after calling OB 255 several
times with the parameters listed in the table.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

Contents of the This chapter explains how to use the data block DX 0 and how it is structured.
chapter You will find information about the meaning of the various DX 0 patterns and

will learn how to create and how to assign parameters via a screen form for a
DX 0 data block based on examples.

Overview of the
chapter

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Page

7-2

7-3

7-6

7- 10

Section

7.1

7.2

7.3

7.4

Description

Application

Structure of DX 0

Parameters for DX 0

Examples of Parameter Assignment

Extended Data Block DX 0

7.1 Application

Introduction You can match some of the activities of the system program to your own
particular requirements by selecting settings in DX 0 that differ from the defaults.

The system program defaults (marked in table 7-1 by "D") are set automatically
at each COLD RESTART. Following this, DX 0 is evaluated. If you do not
program and load a DX 0 block, the defaults remain valid; otherwise, the settings
you have made in DX 0 become valid.

You program DX 0 just as with other data blocks by assigning values using
STEP 5 statements, (see Section 7.2) or with PG system software (SS-DOS from
Version 3.0 onwards) entering the values as parameters in a special screen form
on your PG.

Note
DX 0 is only evaluated when you perform a COLD RESTART.
For any parameters which are not specified in DX 0, the defaults are retained.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

7.2 Structure of DX 0

Introduction DX 0 is made up of the following three parts:

the start ID for DX 0 (DW 0, l and 2)

several fields of varying lengths (depending on the number of parameters)

the end delimiter EEEE.

Start ID

Field

ASCII characters MASKXO in DW 0 to DW 2

A field in DX 0 consists of 1 to n data words, these contain the following:

the field ID

the field length

and

the field parameters.

The field ID explains the meaning of the parameters that follow. Each field is
assigned to a specific system program part or to a specific system function (e.g.
field ID "04" means cyclic program execution).

Field length The field length indicates the number of data words needed for the parameters
that follow.

Parameters Section 7.3 describes the possible parameters. Numerical values are specified in
hexadecimal format (KH).

End ID This indicates the end of DX 0 with EEEEH in the last data word.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

Formal structure

Bit no. 15

ASCll M A
chars.: S K

X 0

3 Field D l 1 Field length 1

Parameter

Parameter Field 1

Parameter

Parameter

P

Field ID 2

Field ID n

Field length 2

Field length n ~
Parameter

Parameter

Parameter

1 F ield n

Fig. 7-1 Structure of DX 0

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

Example of DX 0

DW 0: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830

Field ID/length DW 3: KH = 0101 Field
Parameters (occupies 1 DW) DW 4: KH = 1001

Field ID/length DW 5: KH = 0402
Parameters (occupies 2 DW) DW 6: KH = 1000 Field 2

DW 7: KH = 0040

DW10: KH = EEEE

When assigning parameters in DX 0, remember the following points:

You can enter individual fields in any order.

You do not need to specify fields you are not going to use.

If a field exists more than once, the field you enter last is valid.

You can enter individual parameters in any order.

You do not need to specify parameters you are not going to use.

If a particular parameter is specified several times, the parameter last
specified is valid.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

7.3 Parameters for DX 0

Table 7-1 DX 0 parameters and their meaning

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Field ID/ length Parameters
lstl2nd word

Meaning
(D = default with DX 0 not loaded or blockiparameter missing)

RESTART and RUN:

02xx 2, 1000
1001

2000
2001

3000
3001

4000
4001

6000

6001

BB00 yyyy

D AUTOMATIC WARM RESTART after POWER UP
AUTOMATIC COLD RESTART after POWER UP

D Synchronization of RESTART in multiprocessor operation
No synchronization of RESTART in multiprocessor operation

D Addressing error monitoring
No addressing error monitoring

D WARMRESTART
RETENTIVE COLD RESTART

D Floating point arithmetic with 16-bit mantissa
(CPU always calculates with 24 bits)
Floating point arithmetic with 24-bit mantissa

Number of timers to be updated
Default: yyyy = 256 timers, i.e. timer 0 to 255
permitted: 0...256

Cyclic program execution

04xx 1000 yyyy

4000
4001

Length of the cycle monitoring time in milliseconds;
default: yyyy = 150 ms,
permitted: 1s yyyy s 32C8 (hex)

1 ms to 13000 ms (dec)

D Update of the process image of the IPC flags without semaphore protection
Upate of the process image of the IPC flags with semaphore protection
(in the field, see Section 10.1.3)

Interrupt-driven program execution

06xx 3)

2000
2001

Selection of the processing mode 3,

D Process interrupt signal, level-triggered
Process interrupt signal, edge-triggered

Error handling

lOxx l)
1000
1001

1200
1201

Collision of time interrupts
D System stop when the event occurs and OB 33 is not loaded

No system stop when the event occurs and OB 33 is not loaded

Controller error handling
D System stop when the event occurs and OB 34 is not loaded

No system stop when the event occurs and OB 34 is not loaded

Extended Data Block DX 0

xx = field length (number of data words occupied by the parameters)

') For updating timers, please read the explanation on the following page.

3, For parameters and their significance, see the table on page 7-9.

Field ID/ length

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Parameters
lstl2nd word

Meaning l)
(D = default with DX 0 not loaded or blocklparameter missing)

Table 7-1 continued:

1Oxx ')

EEEE

1400
1401

1800
1801

1A00
1AO1

1C00
1CO1

1E00
1E01

2000
2001

Error handling (continued)

Cycle error handling
D System stop when the event occurs and OB 26 is not loaded

No system stop when the event occurs and OB 26 is not loaded

Operation code error handling
D System stop when the event occurs and OB 27/29/30 is not loaded

No system stop when the event occurs and OB 27/29/30 is not loaded

Runtime error handling
D System stop when the event occurs and OB 19/31/32 is not loaded

No system stop when the event occurs and OB 19/31/32 is not loaded

Addressing error handling
D System stop when the event occurs and OB 25 is not loaded

No system stop when the event occurs and OB 25 is not loaded

Timeout error handling
System stop when the event occurs and OB 23/24 is not loaded

D No system stop when the event occurs and OB 23/24 is not loaded

Interface error handling
System stop when the event occurs and OB 35 is not loaded

D No system stop when the event occurs and OB 35 is not loaded

End delimiter

Extended Data Block DX 0

Updating the
timers

Note
The current PG software (STEP 5/ST Vers. 6 or STEP 5/MT Vers. 2) for
generating DX 0 using a screen form does not transfer the parameters for
interface error handling (field ID 02xx, parameter 2000 or 2001) and for the
selection "Warm restart or retentive cold restart" (field ID 02xx,
parameter 4000 or 4001).
You can enter these parameters e.g. with the "output block" PG function
(do not forget to change the block length). You can no longer edit a DX 0
modified in this way using the output screen form of the current
PG software.

As standard, the timers T 0 to T 255 are updated.

If you enter the value "0" in DX 0, no timers are updated, even if they are
included in the program. There is then also no error message output.

Note
You can also assign parameters to the number of timers in data block DB 1 (see
Section 10.1.6). However, we recommend that you specify this parameter only
in DX 0.
If you set the number of timers both in DX 0 and in DB 1, the value you
specify in DB 1 will be valid!

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

Extended Data Block DX 0

Parameters for You can use the table below to find the correct parameter for your interrupt
interrupt processing and you can program DX 0 with this parameter. Depending on the
processing parameter you select, some (or all) interrupts will be effective at block

boundaries and other (or all) interrupts will be effective at operation boundaries,
according to the shading in the symbols.

D = Defaul t

O lnterrupts at b lock boundar ies

ln terrupts at operat ion boundar ies

Para-

meter' (old) ,)

(1 OOC)

1224
(1 00A)

1220

121C
(1 008)

1216

1214

1212

1210

120E

120C

120A

1208

1206

1204
(1 006)

The PG software for generating DXO uses the "old" parameters. If you generate a DXO with new parameters using
STEP 5 and want to display it on the PG, an error message is displayed.

Note
If you enable interrupt processing at operation boundaries, the operations
"TNB" "TNW" may also be interrupted. This also applies to a few of the
special function organization blocks, standard function blocks and controller
function blocks.

Cl0ck int.

CPU 928B-3UB21 Programming Guide

C79000-G8576-C870-01

T i m e i n t e r r u p t s

5 S 2 S 1 S 500 200 100 50 20 10
ms ms ms ms ms ms

1 2 2 C D n I n n n n I n n n I n n

~ ~ ~ ~ ~ ~ ~ ~ ~ n n m

o I o n n n o n n n n m m

O I O I I I I I I I m m m

o I o n n n o n n m m m m

~~~~~~~~~~~~~ 
o n o n n n o m m m m m m  

o n o n n n m m m m m m m  

o n o n n m m m m m m m m  

O I O I m m m m m m m m m  

O I O m m m m m m m m m m  

o n m m m m m m m m m m m  

o m m m m m m m m m m m m  

m m m m m m m m m m m m m  

Cont. 
int. 

Delay 
int,  

Proc. 
int 



Extended Data Block DX 0 

7.4 Examples of Parameter Assignment 

STEP 5 
Programming 

PU C is largely independent and has a short, time-critical program. 

s standard, all CPUs in multiprocessor operation start cyclic program execution 
ogether, i.e. the CPUs wait until all CPUs have completed their restart procedures 
nd then start cyclic program execution at the same time. 

ince CPU C runs a very short restart program independent of the other CPUs, its 
estart procedure does not need to be synchronized. By assigning parameters in DX 0, 
ou can arrange for CPU C to start cyclic program execution immediately after its 
estart, without waiting for CPU A and B. 
rogramming DX 0 for CPU C: 
X 0 start ID "MASKXO" DW 0: KH= 4D41 

DW 1: KH= 534B 
DW 2: KH= 5830 

1st field ID/length DW 3: KH= 0201 
parameter 1 DW 4: KH= 2001 
end delimiter DW 5: KH= EEEE 

nce you have loaded this DX 0 in the program memory, it becomes effective after the 
ext COLD RESTART. Since CPU C processes a very short restart program and does not 
ait for A and B, its green LED is lit immediately following the restart. The BASP 

Example B: 
Assigning the parameters to DX 0 as shown below achieves the following: 

- the addressing error monitoring is disabled, 
- the timer updating is disabled, 
- the cycle time is set to 4 sec. 

DX 0 start ID "MASKXO DW 0: 
DW 1: 
DW 2: 

1st field ID/length DW 3: 
parameter DW 4: 
parameter l) DW 5: 

DW 6: 
2nd field ID/length DW 7: 
parameter l) DW 8: 

DW 9: 
end delimiter DW10: 

KH = 4D41 
KH = 534B 
KH = 5830 
KH = 0203 
KH = 3001 
KH = BB00 
KH = 0000 
KH = 0402 
KH = 1000 
KF = +4000 
KH = EEEE 

This assignment of parameters to DX 0 has the following effects on program execution: 

- The part of the process image not assigned to peripheral 1/0 modules 
can be used as an additional flag area. 

- The runtime of the system program is reduced, since no timers are updated. 
- A cycle error is only detected when the runtime of the user program and 

the system program together exceeds 4 sec. 

1) Parameters occupying two words must be identified with "2" when specifying the field length. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Extended Data Block DX 0 

Assigning From stage IV of the PG system software SS-DOS, screen forms are available for 
Parameters assigning parameters to DX 0. The PG software generates the data block DX 0 
using the PG automatically according to the parameter defaults and the parameters you have 
Screen Form specified. Two screen forms are required for this parameter assignment. 

For the basic steps you require to select and complete PG screen forms, see your 
STEP 5 manual. 

Completing the The PG screen form for completing DX 0 is in two parts. 
DX 0 screen 
forms The first DX 0 screen contains the first group of parameters (Fig. 7-2): 

RESTART AFTER POWER UP 
SYNCHRONIZE MULTIPROCESSOR RESTART 
BLOCK TRANSFER OF IPC FLAGS 
ADDRESS ERROR MONITORING 
CYCLE TIME MONITORING 
NO. OF TIMER CELLS 
ACCURACY OF FLOAT. POINT ARITHMETIC 
(no effect, CPU always calculates with 24 bits) 

I DX 0 - PARAM. ASS. (S5 135U: CPU 928, R PROCESSOR) DX 0 

RESTART AFTER POWER UP: 1 ( 1 = WARM RESTART 
2 = COLD RESTART ) 

SYNCHRONIZE MULTIPROCESSOR RESTART YES 

BLOCK TRANSFER OF IPC FLAGS N 0 

ADDRESSING ERROR MONITORING YES 

CYCLE TIME MONITORING (X 10 MS) 

NO. OF TIMER CELLS 

15 ( R P R O C . : l - 4 0 0  
CPU 928: 1 - 600 ) 

256 (RPROC: 0 - 1 2 8  
CPU 928: 0 - 256 ) 

ACCURACY OF FLOAT. POINT ARITHMETIC 16 - BIT MANTISSA 
#24-BIT MANTISSA ONLY BY CPU 928# 

Fig. 7-2 PG screen form for assigning parameters to DX 0 /part 1 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Extended Data Block DX 0 

Once you have selected all the parameters in the first screen form for your 
application, you can display the second screen form (Fig. 7-3) with the following 
group of parameters: 

ADDRESS. ERROR, CYCLE ERROR 
ACKNOWL. ERROR, TIMER ERR. 
COMMAND CODE ERROR, CONTROLLER ERROR 
RUNTIME ERROR 
PROCESS INT SERVICING 
INTERRUPTABILITY OF USER PROGRAM BY INTERRUPTS 

' 
DX 0 - PARAM. ASS. (S5 135U: CPU 928, R PROCESSOR) DX 0 

SYSTEM STOP IF EVENT OCCURS AND ERROR OB IS MISSING 

ADDRESS. ERROR (OB 25) YES CYCLE ERROR (OB 26) YES 

ACKNOWL. ERROR (OB 23,24) NO TIMER ERR. (OB 33) YES 

COMMAND CODE ERR. (OB 27,29,30) YES CONTROLLER ERR (OB 34) YES 

RUNTIME ERROR (OB 19,31,32) YES 

PROCESS INT. SERVICING LEVEL - TRIGGERED 

INTERRUPTABILITY OF USER PROGRAM BY INTERRUPTS: MODE 1 
1 : ALL INTERRUPTS AT BLOCK BOUNDS 
2: ALL INTERRUPTS AT OPERATION BOUNDS 
3: ONLY PROCESS INTERRUPTS AT OPERATION BOUNDS 
4: ONLY PROC: AND CONTROLLER. INT. AT OP. BOUNDS 
X: (X=10, . . . 17) TIME INT. FROM OBlO - OBX AND CONTROLLER/PROC 

INTS. AT OP. BOUNDS #ONLY POSSIBLE WITH CPU 928# 

Fig. 7-3 PG screen form for assigning parameters to DX 0 / part 2 

The following flowchart explains how to complete the screen forms, store the 
parameters and load the generated data block DX 0. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Extended Data Block DX 0 

Flowchart for 
completing the 
DX 0 screen 
forms. 

YES 

Repeat the fo l lowing procedure unt i l  you  have made a l l  the requ i red 
changes i n  the screen form: 

- Se lect  input  f ie ld :  
Pos i t ion the cursor  before the parameter  f ield. The display f ie ld  
F3 at the bot tom edge of the screen ind icates whether  you  can 
se lect  between a l ternat ives (SELECT displayed) or whether  you  
can change the parameter  va lue (INPUT d isp layed) .  

- SELECT: 
Press F3 unt i l  the requ i red a l ternat ive is  d isp layed.  

- INPUT: 
Press F3 once,  the cursor  jumps t o  the beg inn ing 
of the f ield. You can overwr i te  the f ie ld  with a 
permiss ib le  numer ica l  range.  

You want to change parameters  i n  form 2? 
YES 

Press F6 (CONTINUE); the 2nd  screen is  d isp layed.  

Change the parameters  as descr ibed above for  the 1st  
screen form.  

Press the enter key;  the PG sof tware enters  a l l  the parameter  set t ings 
f rom both screen forms and generates da ta  b lock DX 0.  

DX 0 is  s tored i n  the PG. You can load i t  in to  the CPU us ing the 
programmer or you  can s tore  i t  on an EPROM submodule .  

Below you can find an example to fill in. 

Example of filling 
in the DX 0 
screen form 

You want to assign parameters in DX 0 to achieve the following system 
program response (different from the defaults). 

- in multiprocessor operation, the CPU for which this DX 0 is programmed does not 
wait until the other CPUs have completed their restart procedure, 

- the cycle monitoring time is 100 ms, 
- arithmetic operations are performed with 24-bit floating point mantissa, 
- if cycle errors occur, the CPU does not go to the STOP mode if OB 26 is not 

loaded, 
- the user program is interrupted at operation boundaries by all interrupts. 

To obtain these reactions, complete the screen form as follows: 

First DX 0 screen f m  
- Select the "synchronize multiprocessor restart" parameter with function key 

F3 as NO. 
- For the "cycle time monitoring" parameter, press function key F3 and then 

type in the number 10 (= 100 ms). 
- Select the "24-bit mantissa" for the "accuracy of floating point arithmetic" 

parameter with function key F3. 
- Press function key F6 (CONTINUE). The second DX 0 screen is then displayed. 

Second DX 0 screen form: 
- Select NO for the "cycle error" parameter with function key F3. 
- Enter the number '2' in the "mode" field of the "interruptability of user 

program by interrupts" parameter (= all interrupts at operation boundaries). 
- Confirm your entries by pressing the enter key. Data block DX 0 is now 

generated by the PG software. 
Finally, transfer DX 0 to memory or to an EPROM submodule. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Assignment and 
Organization 

Contents of the You can use this chapter as a reference section to check the organization of the 
chapter CPU 928B-3UB21 memory. The chapter also includes important information for 

the user contained in some of the system data words. 

Overview of the 
chapter 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

8.1 

8.2 

8.2.1 

8.2.2 

8.3 

8.3.1 

8.3.2 

8.3.3 

8.3.4 

8.3.5 

Description 

Structure of the Memory Area 

Address Distribution in the CPU 928B-3UB21 

Address Distribution 

Address Distribution of the Peripherals 

User Memory Organization in the CPU 928B-3UB21 

Block Headers in the User Memory 

Block Address Lists in Data Block DB 0 

RI / RJ Area 

RS / RT Area 

Bit Assignment of the System Data Words 

Page 

8-2 

8-3 

8-4 

8-5 

8-7 

8-8 

8-9 

8-12 

8-13 

8-16 



Memorv Assianment and Oraanization 

8.1 Structure of the Memory Area 

0 vervie W The memory area of the CPU 928B is basically divided into the following areas: 

Table 8-1 Structure of the memory area 

Refer to the memory map in the next section for the exact addresses of the areas. 

Memory area 

User memory: For OBs, FBs, FXs, PBs, SBs, DBs, DXs 

DB-RAM: For data blocks, shift registers 

Flags: S 

Interface data area: RI, RJ 
System data area: RS, RT 
Counters: C 
Timers: T 

Flags: F 

Process input and 
output image: PII, PIQ 

Peripheral 110 area, 
divided into: 

P peripherals 
0 peripherals 
IM 3 
IM 4 
IPC flags 
Coordinator module 
Pages (CP, IP, 923C) 
Distributed 110s 

Note 
With STEP 5, you should never access a memory cell within an operand 
area (e.g. flags) directly using the absolute address of this memory area, but 
always relative to the base address of the operand area. 
The base addresses of all operand areas are in the system data area (RS area 
- see "system data assignment"). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Length 

max. 32x2" words 

23x2" words 

1024 bytes 

each 256 words 
each 256 words 

256 words 
256 words 

256 bytes 

each 128 bytes 

256 bytes 
256 bytes 
256 bytes 
256 bytes 
256 bytes 
256 bytes 
2048 bytes 
768 bytes 

Width 

16 bits 

16 bits 

8 bits 

16 bits 
16 bits 
16 bits 
16 bits 

8 bits 

8 bits 

8 bits 



Memorv Assianment and Oraanization 

8.2 Address Distribution in the CPU 928B-3UB21 

Bit no. 

0000 

User memory 

max. 32 x 2 'O words 

DB-RAM 

23 x 2 ' O  words 

DB 0 (block address lists) 

S flags 

E800 I I 

System transfer data (RIIRJ areas), 

E D F F  

system data (RS/RT areas), 
counters, timers 

EEOO 

EEFF 
EFOO 

EFFF 
F000 

FFFF 

Flags 

PII/PIQ area 

Peripheral 110s 
(digital/analog 

CPIIP) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Fig. 8-1 Address distribution in the CPU 928B-3UB21 - overview 

System RAM, internal 
to the C P U  
(see also Fig. 8-2) 

S5 bus 
(see also Fig. 8-3) 

1 



Memorv Assianment and Oraanization 

8.2.1 Address Distribution 

Bit no. 

8000 

D B O  

E9FF 
EAOO 

EAFF 
EBOO 

EBFF 
ECOO 

ECFF 
EDOO 

EDFF 

S flags 

RI: interface data area 

RJ: extended interface data area 

RS: system data area 

RT: extended system data area 

Counters (256) 

Timers (256) 

EEOO 

EEFF 
EFOO 

EFFF 

Fig. 8-2 Address distribution 

Flags 

PII/PIQ area 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

8.2.2 Address Distribution of the Peripherals 

Bit no ,  

F 0 0 0  

FOFF 
F 1  0 0  

F B F F  
FCOO 

F C F F  
F D O O  

F D F F  
F E 0 0  

F E F E  
F E F F  
F F O O  

F F F F  

Fig. 8-3 

P  area  

7 0 

Digitai or analog 
peripherais (wi thout  process image),  
1024 bits inputs 1 1024 bits outputs 

Dig i ta i  peripherais (wi th process image), 
1024 bits inputs / 1024 bits outputs 

Ex tended  per iphera is  
2048 b i ts  inpu t  / 2048 b i ts  o u t p u t  

I 

2048 b i t s  iPC f l a g s  
( o n  c o o r d i n a t o r  m o d u i e / C P )  

32 semaphores 
( o n  c o o r d i n a t o r  modu ie )  

Da ta  transfer area 
for CP (pages) 

i M  3 a r e a  

i M  4 a r e a  

D i s t r i b u t e d  p e r i p h e r a i s ,  
e x t e n d e d  a d d r e s s  v o l u m e  

Occupied when using page  areos 

Reserved  

I I 

Address distribution - peripherals (8 bits) on the S5 bus 

page a r e a  

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Address areas for 
the peripherals and 
their programming 

With STEP 5 operations, you can access the peripherals either directly or via the 
process image. Remember that the process image only exists for input and output 
bytes of the P peripherals with byte addresses from 0 to 127. 

Area (absolute address) 

P peripherals with process image 

(process input image) 

P peripherals 

Note 
Using the interface modules IM 304, IM 307 and IM 308, you can access 
distributed address areas using your program. This allows access to two 
new address areas similar to the 0 area. In contrast to the 0 area, however, 
access to these areas is only possible using absolute addressing or using 
FB 196 of the "basic functions" software package (refer to Catalog ST.59). 

Address with Parameters 

When the operation is processed, only the process image is changed. 
The new status of the process image is only output to the peripherals 
at the end of the cycle. 

L IB  / T I B  0 to 127 
LIW / T I W  0 to 126 
L I D  / T I D  0 to 124 
A I /  AN 1 1 0  I / O N I  0.0 to 127.7 
S I /  R I / = I  

LQB / T Q B  0 to 127 
L Q W /  T Q W  0 to 126 
LQD / T Q D  0 to 124 
A Q / AN Q / 0 Q / ON Q 0.0 to 127.7 
S Q  / R Q I = Q  

The inputs and outputs are addressed directly byte or word 
oriented. 

L P Y  / T P Y  0 to 127 
L P W /  T P W  0 to 126 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

T P Y  / T P Y  128 to 255 
128 to 254 

Q peripherals 

Extended peripheral 
FlFF inputs/outputs 

The inputs and outputs are addressed 
directly byte or word oriented. 

L O Y  / T O Y  0 to 255 
L O W /  T O W  0 to 254 



Memory Assignment and Organization 

8.3 User Memory Organization in the CPU 928B-3UB21 

Introduction The user memory consists of the memory area from OOOOH to 7FFFH. When you 
load the blocks of the user program, they are stored in any order (addresses in 
ascending order). 

"Alternative There are alternative methods of loading DB/DX data blocks depending on the 
loading" of the setting in system data word RS 144: 
data blocks 

The default is that the data blocks are first loaded into the user memory. Only 
when this has been filled are the data blocks stored in internal DB RAM (8000H 
to DD7FH). You can reverse this order by setting bit 0 in RS 144 ("alternative 
loading"). 

Memory With the online function MEM CONF (memory configuration) you can obtain 
information the address (hexadecimal) of the memory cell containing the block end operation 

of the last block in the user memory which then tells you the size of the user 
memory. 

Block When you correct blocks, the "old" block is declared invalid in the memory and a 
management new block is set up. This also applies when you delete blocks; the blocks are not 

really deleted in the memory, but simply declared invalid. 

Gaps created when blocks are deleted cannot be used again directly 
(see "Compress memory"). 

You can neither correct nor delete blocks in EPROM mode. 

Compress Using the COMPRESS MEMORY online function you can create memory 
memory space for new blocks. This function optimizes the memory occupation by 

deleting blocks marked as invalid and shifting valid blocks together filling all 
gaps. The shifting is done separately for the user memory and the DB-RAM 
(see Section 11.2). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

8.3.1 Block Headers in the User Memory 

Structure Each block in the memory begins with a five word long header. 

1st word: block start identifier: 7070H 

2nd word: high byte = block type 

01 H Data block DB 
02H Sequence block SB 
04H Program biock PB 
05H Function biock FX 
08H Function biock FB 
OCH Data block DX 
10H Organization block OB 

Bit no. 

0 0 The block is invalid, not entered in the 
address list in DBO 

0 1 Block In the RAM Is valld, and Is entered 
in the address list of DBO 

1 1 Block is valid and write-protected 
("valid in EPROM") 

8 
15 

Low byte = block number 

The block number (0 to 255) is in the low byte of the 2nd header word 
and is coded in binary: 00 to FFH 

14 

3rd word: the high byte of the 3rd word contains the identifiers for the 
programmer, the low byte contains part of the library number. 

4th word: the fourth word contains the rest of the library number. 

13 

5th word: the 5th word (low and high byte) contains the length of the 
block including the block header. This is specified in words. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

12 11  10 9 8 



Memorv Assianment and Oraanization 

8.3.2 Block Address Lists in Data Block DB 0 

Introduction Data block DB 0 contains a list with the start addresses of all blocks in the 
memory submodule or in the DB RAM of the CPU. The system program 
generates this list after OVERALL RESET and updates it automatically when 
you enter or change blocks at the programmer. 

Address list start A 256 words long address list is reserved in DB 0 for each block type i.e. one 
addresses word is reserved for each block. Blocks that are not loaded or have been deleted 

have the start address "0". 

The start addresses of the block address lists are also entered in the system data 
RS 32 to RS 38. 

RS 32: Start address of the DX address list 

RS 33: Start address of the EX address list 

RS 34: Start address of the DB address list 

RS 35: Start address of the SB address list 

RS 36: Start address of the PB address list 

RS 37: Start address of the FB address list 

RS 38: Start address of the OB address list (only 48 words long) 

Block start The start addresses always refer to the first word after the block header: 
addresses 

this is DW 0 of data blocks 

this is the first STEP 5 operation of a logic block 
(in FBs, this is the "JU" operation before the name and the parameter list) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Storing block 
addresses in DB 0: 

DBO 

Examples of how 
to obtain a block 
address 

15 0 
n = start address of the PB address list 

n (= content of RS 36) 

n t l  

Fig. 8-4 Block addresses in DB 0 

If the value '0' is entered as 
the address, the block is not loaded 

Start address of FB 40 

Solution a) : 

:LRS 37 Base address of the FB address list 
:L KB 40 + FB number 
: +F = Address of the memory cell con- 

taining the start address of FB 40 
:LIR 1 Load the start address of FB 40 

in ACCU 1. 
(If the block is not loaded, 
the start address = 0) 

Solution b) : 

:LRS 37 Base address of the FB address list 
: MAB Load the BR register with the base 

address 
:LRW +40 Load the contents of the memory cell 

"base address + 40" in ACCU 1 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Determining the start address and length of data block DB 50 

a) Using indirect memorv access: 

:L RS 34 
:L KB 50 
: +F 
:LIR 1 
:L K B O  
: !=F 
:JC =NIVO 
: ENT 
: TAK 
:L KF -1 
: +F 
:LIR 1 

Load the base address of the DB address list 
Calculate the address of the entry for DB 50 

and load the start address in ACCU 1 

If the block does not exist, jump to the 
NIVO label 

Load the start address of DB 50 in ACCU 3 and 
in ACCU 1 

Decrement the start address by 1 and 
load the block length in ACCU 1 

NIVO : . . . . . . . Reaction if the block does not exist 

D6 0  User memory: 

DB50 4 7 1 0 1 0 7  header 

DB 50 OlOA 

Fig. 8-5 Start address of DB 50 

Result: ACCU-1-L: Length of DB 50 
ACCU-2-L: Start address of DB 50 

Continued on next page 

CPU 928B-3UB21 Programming Guide 
C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

b) Using the svecial function organization block OB 181 
test data blocks !DB/DX!": 

OB 181 (see Section 6.16) executes the same function as described in 
example a). In addition to this function, it also determines whether the 
data block is in the user memory (RAM or EPROM submodule) or in the DB RAM. 

:L KY1,50 Data block DB 50 
:JU OB 181 "Test data blocks (DB/DX)" 
:JC =NIVO Jump if block does not exist 
:JM =PROM Jump if in EPROM submodule 
: JZ =ANWE Jump if in RAM submodule 
:JP =DBRA Jump if in DB RAM 
:JU = FEHL Jump to error processing 

Data block does not exist 

Data block is in the user memory / write 
protected ("EPROM mode") 

Data block is in the user memory / write 
enabled ("RAM mode") 

Data block is in the DB RAM 

Error processing 

Result: ACCU-1-L: Length of DB 50 
ACCU-2-L: Start address of DB 50 
RLO = 1 if DB 50 does not exist 

8.3.3 RI / RJ Area 

0 vervie W The RI area is an area 256 words long in the internal system RAM of the CPU. 
It occupies addresses E800H to E8FFH. 

The RJ area is an area 256 words long in the internal system RAM of the CPU. 
It occupies addresses E900H to E9FFH. 

You can use the entire RI area (RI 0 to RI 255) and the entire RJ area (RJ 0 
to RJ 255) for your own purposes. 

Only an OVERALL RESET can clear the RI / RJ areas (zeros entered). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Assignment and Organization 

8.3.4 RS / RT Area 

RS area The RS and RT areas contain information for the system programmer and system 
internal data. 

The RS area is an area 256 words long in the internal system RAM of the CPU. 
It occupies the addresses EAOOH to EAFFH. 

RT area 

Caution 
You can only write to system data words RS 1, RS 60 to RS 63, RS 133 
and RS 140. 

- You can use RS 60 and RS 63 for your own purposes. 
- RS 1 and RS 133 have a fixed function and influence the processing of 

the program. You must only write valid identifiers to them. 

You can only read the other system data 

Writing to these system data can affect the functional capability of your 
CPU and connected programmers. Serious faults may result, endangering 
both personnel and machinery. 

You can obtain the information of some of the system data (the internal 
configuration of the CPU, the software release, the CP identifier etc.) using the 
SYSTEM PARAMETERS online function. 

Following figures 8-6 and 8-7 you will find the bit assignment of some system 
data that you can evaluate using STEP 5 operations or with the PG (refer to 
Section 5.3 for an explanation of the abbreviations). 

The RS area can only be cleared by an OVERALL RESET. 

The RT area is an area 256 words long in the internal system RAM of the CPU. 
It occupies the addresses EBOOH to EBFFH. 

You can use the entire RT area (RT 0 to RT 255) for your own purposes. 

The RT area can only be cleared by an OVERALL RESET. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Assignment of 
the system data 
in the RS area 

7 : reserved 

Fig. 8-6 RS area memory map (part 1) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

3 0 
3 1 
32 

5 4 EA36 
Em Counter for 1 hour /to 3599 sec, hex) m 

33 
34 
35 
3 6 
3 7 
38 

! 5 6 !  
I I 

I EA38 I 
Reserved for handling block 

; EA3B: 
! E A ~ C !  

Reserved for user purposes 
1 63 1 : EA3F 1 

Length of the block header information 
CPU identifier 1 I PG interface software release 

Base address of the DX address list 

! 6 4 !  Reserved for system program 1 EA40! 
i 79 i i EA4E i 

80 1 Additional error ID if bit FE-5 i s  set in RS 8 1 EA50 
81 1 EA51 

EAl E 
EAl F 
EA20 

Base address of the FX address list 
Base address of the DB address list 
Base address of the SB address list 
Base address of the PB address list 
Base address of the FB address list 
Base address of the OB address list 

Reserved for system program 

1127 1 

EA2 1 
EA22 
EA23 
EA24 
EA25 
EA26 

131 1 Condition codeword "disable all interrupts" 1 EA83 
132 1 Condition codeword "delay all interrupts" 1 EA84 

137 1 Condition codeword "delay individual interrupts" I EA89 
138 ! Write ~ ro tec t i on  for user memory in EPROM mode ' EA8A. 

: 139 : Software protect ion EA8B : 
1140 1 Condition codeword "write and delete blocks" 1 E A ~ C ~  

Fig. 8-7 RS area memory map (part 2) 

144 1 Alternat've load'ng of OOTO b ocks EA90 

145 EA9 1 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

255 EAFF 



Memorv Assianment and Oraanization 

8.3.5 Bit Assignment of the System Data Words 

R S  0 Interrupt condition codeword 

Address EAOOH 

Table 8-2 Assignment of RS 0 (Interrupt condition codeword) 

The system data RS 0 corresponds to the CAUSE OF INTERR. in the ISTACK. 
If, e.g. a runtime error occurs during the program execution, bit number 5 is set. 
Once the program processing level LZF has been processed completely, bit 
number 5 is reset. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Interrupt condition code reset word ICRW 

Address: EAOlH 

RS 1: Active interface, released for user 

If you set bit number 9 or bit number 10 of the ICRW the next ADF or QVZ is 
ignored and does not affect the execution of the program. After a QVZ or ADF 
occurs, the system program resets the corresponding bit. 

Table 8-3 Assignment of RS 1 (Interrupt condition code reset word) 

Each program processing level has its own ICRW. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Assignment and Organization 

Example of ICR W 

The following example tests whether a module can be addressed at a certain 
peripheral address. If the module does not exist, ICRW prevents a timeout 
and a program written for the situation is executed. The example also tests 
whether a particular peripheral address has been entered in DB 1. If the 
address does not exist in DB 1, ICRW prevents an addressing error and a 
special program is executed. 

FB 201 
NAME : L 

:JU FB 10 
NAME : PERITEST Test whether a module can be addressed at 
PADR: PB 128 peripheral adddress 128 
MASK: KM 00000100 00000000 

:JN =M001 
. . .  This program section is processed if the module 
. . .  cannot be addressed 
a . .  

M001 : 
:JU FB 10 

NAME : PERITEST Test whether a module with peripheral 
PADR: QB 4 address 4 is entered in DB 1 
MASK: KM 00000010 00000000 

:JN =M002 
This program section is processed, 
if the peripheral address 
is not entered 

FB 10 
NAME : PERITEST 
DECL:PADRI/Q/D/B/T/C: I BI/BY/W/D: BY 
DECL:MASKI/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KM 

:L R S 1  
:T RS 60 
:LW =MASK 
: ow 
:T R S 1  
:L =PADR 

:L R S 1  
:LW =MASK 
: AW 
:L RS 60 
:T R S 1  
: TAK 
: BE 

Load and save ICRW 

Set QVZ or ADF bit 

Write ICRW back 
Single peripheral access or access to the 
process image 

Mask QVZ or ADF bit 

Write old ICRW back, so that the next 
QVZ or ADR can be detected 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Interrupt condition code group word ICMK (RS 2): 

Address: EA02H 

The 16 bits of the interrupt condition code group word correspond to the possible 
causes of error listed in the CAUSE OF INTERR. in the ISTACK. 

If one of these errors occurs, the corresponding bit is set. 

Table 8-4 Assignment of RS 2 (Interrupt condition code group word) 

You can only read the interrupt code group word (ICMK in the ISTACK). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Assignment and Organization 

Example of ICMK 

ICMK bit number 9 is set. If an operation code error (BCF) occurs when 
processing the ADF, bit number 7 is also set in the ICMK. 

Content of the ICMK (binary): 00000010 10000000 
Representation (hexadecimal) in the ISTACK: 

While only the last error to occur is marked under CAUSE OF INTERR. in the 
ISTACK, all the errors that have occurred are indicated in the ICMK (ISTACK 
depth 05: in ICMK, 5 bits are set). If you convert the hexadecimal code to 
the binary code, you can analyze the contents of the ICMK. In this way, you 
can find out which error led to the stop mode. 

The error bits are reset as soon as the corresponding error program 
processing level has been completely processed and is exited. 

Interrupt codes of errors to which no program processing level is assigned 
(e.g. NAU, PEU, STUEB, etc.) are cleared during RESTART. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

STOP and RESTART IDs 

Address: EAOSH 

The IDs correspond to the control bits in lines 1 and 2 of the ISTACK. 

Table 8-5 Assignment of RS 5 (STOP and RESTART IDs) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

0 MWA-ZUL 



Memorv Assianment and Oraanization 

CYCLE and SubmoduleIMPL IDs 

Address: EA06H 

The IDs correspond to the control bits in lines 3 and 4 of the ISTACK. 

Table 8-6 Assignment of RS 6 (Cycle and submoduleiMPL IDs) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

0 DIG-AUS 



Memorv Assianment and Oraanization 

RESET IDs/Initialize error IDs 

Address: EA07H 

The IDs correspond to the control bits in lines 5 and 6 of the ISTACK. 

Table 8-7 Assignment of RS 7 (RESET IDsDnitialize error IDs) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

0 KOR-FE 



Memorv Assianment and Oraanization 

Error IDs HWISW 

Address: EAOSH 

The IDS correspond to the control bits in lines 7 and 8 of the ISTACK. 

Table 8-8 Assignment of RS 8 (Error IDs HWISW) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ower-down error 

0 DOPP-FE 



Memory Assignment and Organization 

RS 29 (HIGH) 

RS 29 (LOW) 

Slot IDICPUIPLC type 

Address: EAlDH 

Table 8-9 Assignment of RS 29 (Slot ID/CPU/PLC type) 

High byte: Slot IDs 

Active interface, used by the handling blocks and in multiprocessor 
communication as well as by OB 218 and the SED and SEE operations. 

CPU type: 

PLC type: 

I 

Bit no. 

15 

14 

13 

12 

11 

10 

9 

8 

1 0 1 1  CPU 928B 

0 1 1 1  S5-135U 

Assignment 

not used 

CPU no. 4 

CPU no. 3 

CPU no. 2 

CPU no. 1 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Low byte: CPU / PLC types 

7 

6 

5 

4 

3 

2 

1 

CPU type 

PLC type 

I 0 I 



Memorv Assianment and Oraanization 

Address: EASOH (high and low): 

This contains additional information to define the cause of the error when bit 5 
is set in RS 8 by the system or when control bit FE 5 is marked in the ISTACK 
output. 

Address EA82H (low): 

Identifier in RS 80 

2460H 

The system data RS 130 indicates the following statuses of the program 
processing level "closed loop control". 

Cause of error 

Ready signal continuously active on the S5 bus 

Bit no. 0 = 0 : program processing level "closed loop control" activated 

Bit no. 0 = 1 : program processing level "closed loop control" suppressed 

Before you call a restart organization block (OB 20, 21 or 22) the system 
program evaluates data block DB 2 (if it exists). Depending on the result of the 
evaluation, RS 130 is set or reset by the system program. Following this, the 
system program calls a restart OB. 
If RS 130 (LOW) is reset, the closed loop controller is processed in cyclic 
operation according to the controller list in DB 2. 

Condition codeword "disable all interrupts": see OB 120 (Section 6.5) 
Address EA83H (low) 

The system data RS 131 indicates the following statuses of the program 
processing levels "interrupt processing". 

Table 8-10 Assignment of RS 131 (Disable all interrupts) 

Bit = 1 means: interrupt(s) is (are) disabled. 

Bit no. 

7 

6 

5 

4 

3 

2 

1 

0 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Low byte: Disable all interrupts 

0 

0 

0 

0 

Delay interrupt 

Process interrupts 

Clock-driven time interrupt 

Time interrupts at fixed intervals 



Memorv Assianment and Oraanization 

Condition codeword "delay all interrupts": see OB 122 (Section 6.7) 

Address EA84H (low) 

The system data RS 132 indicates the following statuses of the program 
processing levels "interrupt processing". 

Table 8-11 Assignment of RS 132 (Delay all interrupts) 

Bit = 1 means: interrupt(s) is (are) delayed 

Process image updating 

Address EA85H (low) 

Bit no. 

7 

6 

5 

4 

3 

2 

1 

0 

Table 8-12 Assignment of RS 133 (Process image updating) 

Low byte: Delay all interrupts 

0 

0 

0 

0 

Delay interrupt 

Process interrupts 

Clock-driven time interrupt 

Time interrupts at fixed intervals 

Bit = 1 means: process image of the digital inputs will be prevented once. 
Following this, the bit is reset to " 0" by the system program. 

Bit no. 

7 

6 

5 

4 

3 

2 

1 

0 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Low byte: Process image updating 

not used 

KM-AUS 

KM-EIN 

DIGH-EIN 

DIGH-AUS 



Memorv Assianment and Oraanization 

Condition codeword "disable individual time interrupts": see OB 121 
(Section 6.6) 

Address EA87H 

The system data RS 135 indicates the following statuses of the program 
processing levels "time-driven interrupt processing". 

Table 8-13 Assignment of RS 135 (Disable individual time interrupts) 

Bit = 1 means: this time interrupt is disabled. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Condition codeword "delay individual time interrupts": see OB 123 
(Section 6.8.) 

Address EA89H 

The system data RS 137 indicates the following statuses of the program 
processing levels "time interrupt processing": 

Table 8-14 Assignment of RS 137 (Delay individual time interrupts) 

Bit = 1 means: this time interrupt is delayed. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Write protection for user memory in EPROM mode 

Address EASAH 

The user memory is write protected when the blocks are copied from a memory 
card (EPROM mode). 

By deleting or setting the write protection ID bit 0 in RS 138 via the PG and then 
performing a COLD RESTART, the write protection can be activated and 
deactivated selectively. (Bits no. 1 to 15 in RS 138 are irrelevant.) 

Procedure for activatingldeactivating write protection 

1. Display the content of the address EA8AH on the PG. 

2. Set or delete bit 0 in RS 138 by overwriting the content of the address EA8AH 
with the bit pattern OOOxH (X = 1 for "set", X = 0 for "delete" write protection). 

3. Then perform a COLD RESTART. After processing OB 20, bit 0 in the 
system data word RS 138 is evaluated and the write protection is activated 
or deactivated accordingly. 

RS 138 can not only be set via the PG (1) but also via OB 20. 

The status of the write protection is retained until the next OVERALL RESET of 
the CPU. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Password 

Declaring a 
pass word/ 
activating 
software 
protection 

Deleting a 
pass word/ 
deactivating 
software 
protection 

How is the 
pass word 
declared/ 
deleted? 

Software protection 

The system data word RS 139 controls the system function "software 
protection". With this function you can prevent blocks being read, overwritten 
and deleted using the programmer (e.g. by unauthorized personnel) by setting a 
password. 

The "software protection" function is linked to a password which is made known 
to the system program via RS 139. 

When a password is declared in RS 139, the software protection is activated 
automatically. 

The password can only be redeclared if it is deleted first. 

When a password is deleted, the software protection is deactivated automatically. 

When a password is deleted, this must be made known to the system program via 
RS 139. 

Maximum of 5 attempts to delete the password: 

Incorrect password entries to delete the password are rejected by the system 
program and counted. After a maximum of five incorrect entries, the system 
program prevents any further password editing. The password can then only 
be deleted again after a COLD RESTART. 

The "error counter" is cleared again after the password was deleted 
successfully or following a COLD RESTART. 

The password is declaredldeleted (and the software protection 
activatedldeactivated) by writing the system data RS 139 with a particular bit 
pattern (see "Assignment of the system data when writing") either via 

the STEP 5 program 

a PG job "output address". 

Note 
When the CPU is shipped and following an OVERALL RESET, the 
password is deleted and the software protection deactivated. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

When is the A password can be declared at any time. Once a password has been declared, 
software the software protection is only activated at specific times: 
protection 
activated/ in STOP mode: 
deactivated? regularly at the system checkpoint "Stop", 

in RESTART mode: 
once following the call of the start-up OBs (OB 20, OB 21, OB 22), 

in RUN mode: 
cyclically before OB 1 is called. 

Assignment of To call the software protection function, assign the system data RS 139 with a bit 
the system data pattern according to the function you want to perform. Refer to the following 
when writing table to see how to structure the bit pattern. 

Address: EASBH 

Table 8-15 Assignment of RS 139 (Software protection) when writing 

Bit numbers 8 to 13 of a 14-bit password 

Bit numbers 0 to 7 of a 14-bit password 

0 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Reading out By reading out the system data RS 139 you can determine whether a "job" was 
the system data executed by writing the system data. The system program stores a message there. 
RS 139 

Assignment of the system data when reading: 

Once the software protection function has been called, you can obtain 
information about the success of the job by evaluating the message reported. 

Address: EASBH 

Table 8-16 Assignment of RS 139 (Software protection) when reading 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

counting the number of attempts 

0 1 = counter overflow (too many attempts) 



Memory Assignment and Organization 

Valid reports 

When to activate You should activate the software protection from the PG immediately after an 
the software overall reset. The earliest time you can activate it via the user program is in 
protection OB 20. 

Address 

OOOOH 

4xOlH 

4xO2H 

4xO4H 

4x08H 

4xlOH 

Reactions to Once you have activated the software protection, the system program reacts to 
software any violations by PG jobs. Refer to the following table for the reactions to the 
protection various PG jobs. 
violation 

Explanation 

No error 

The counter counting attempts to delete the password overflowed. 
Perform a COLD RESTART to reset the counter. 

Illegal password (0000H or 3FFFH) 

An attempt was made to declare a new password while the software 
protection was already activated (X = no. of attempts to delete) 

An attempt was made to delete the existing password (deactivate the 
software protection) using an incorrect password. The counter 
counting the number of attempts to delete was incremented. The 
counter level 'X' is reported with the message (binary number in 
bit 8 to bit 10). 

An attempt was made to delete a non-existent password. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

PG function 

Delete block 

Read block 

Write block (block does 
not exist yet) 

Overwrite block (block 
already exists) 

Display on PG 

Message displayed 
"block type and number illegal" 

A dummy block is displayed: 
FBIFX: 

FB number 
NAME :DUMMY 

:BE 

DBDX: DWO 6500 
OPIPBISB: 

:BE 

The block is entered 

Message displayed "block available"; following 
confirmation with Return, the message "block type and 
number incorrect" is displayed. 



Memorv Assianment and Oraanization 

Examples of writing 
and reading RS 139 

(Activating the software protection via the user program should be done in 
one of the start-up OBs - OB 20, OB 21, OB 22.) 

:L KH COAF KH = Bit pattern "declare password" 
(password = OOAFH) 

:T RS 139 

With the following series of STEP 5 operations in OB 1, you can react to an 
error declaring the password by evaluating the message reported. Note that 
the report can only be evaluated following specific actions of the system 

:L RS 139 
:L K B O  

Call function block for error handling 
NAME : PW ERROR 

Delete and edit the password from the PG using the function "output 
address" : 

Initial situation: The CPU is in RUN or STOP mode. 

Perform the following steps: 

1. Display the content of the address EA8BH. 

2. Delete the old password by overwriting the content with the hexadecimal 
number 80AFH ("OOAFH" = old password) . 

3. Wait at least as long as the cycle time for OB 1. 

4. Display the content of the address EA8BH again. 

5. Enter the new password "1234HW by overwriting the content with the 
hexadecimal number D234H. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

Condition codeword "write and read blocks" 

Address EASCH 

System data RS 140 indicates whether blocks have been overwritten, newly 
loaded or deleted since the last OVERALL RESET of the CPU or since the last 
time system data RS 140 was cleared. The bits for changes and block type are 
allocated to each block. Before a new monitoring section, system data RS 140 
must be cleared. RS 140 is also cleared during an overall reset. 

Table 8-17 Assignment of RS 140 (Writehead blocks) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Assianment and Oraanization 

"Alternative loading of data blocks into DB-RAM" 

Address EA90H 

In the CPU 928B, all blocks are first loaded by the programmer into the user 
memory as standard. Only when there is no more memory space there, are the 
data blocks (DBs, DXs) and only the data blocks loaded into DB-RAM. 

You can influence the order of loading data blocks via bit no. 0 of system data 
word RS 144: 

Bit 0 = 0: Default "Standard behavior": 
The data blocks are loaded into the user memory first. 
Only when there is no more space there, are they loaded into 
DB-RAM. 

Bit O =  1: The data blocks are loaded into DB-RAM first. 
Only when there is no more space there, are they loaded into 
the user memory. 

The remaining bits of RS 144 are not assigned. 

Note 
Code blocks are loaded into the user memory regardless of the setting in 
RS 144. 

The setting in RS 144 has no influence on operations and special function 
OBs for generating and reloading blocks. Similarly, the setting has no 
influence on the copying of memory card blocks. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using 
Absolute Addresses 

Contents of the This chapter explains how to use STEP 5 operations and special STEP 5 registers 
chapter to address data in certain memory areas using absolute addresses. 

Overview of the 
chapter 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

9.1 

9.2 

9.2.1 

9.2.2 

9.3 

9.3.1 

9.4 

9.4.1 

9.4.2 

9.4.3 

9.4.4 

Description 

Introduction 

Access using the Address in ACCU 1 

LIRITIR: Loading to or Transferring from a 16-Bit 
Memory Area Indirectly 

Examples of using the Registers 

Transferring Fields of Memory 

Example of Transferring Memory Fields 

Operations with the Base Address Register (BR Register) 

Operations for Transfer between Registers 

Accessing the Local Memory 

Accessing the Global Memory 

Accessing the Page Memory 

Page 

9-2 

9-6 

9-7 

9-14 

9-16 

9-19 

9-24 

9-25 

9-27 

9-28 

9-31 



Memorv Access usina Absolute Addresses 

9.1 lntroduction 

Introduction The STEP 5 programming language contains operations with which you can 
access the entire memory area. These operations belong to the "system 
operations". 

Caution 
If the operations described in this section are not used properly, STEP 5 
blocks and system data can be overwritten. This can result in undesirable 
operating statuses. Only experienced system programmers should use 
operations that work with absolute addresses. 

Local memory Local memory is the memory area available in each CPU (user submodule, 
DB-RAM, RI, RJ, RS, RT area, counters, timers, flags, process image). 

Global memory Global memory only exists once for all CPUs and is addressed via the S5 bus. 

Memory Memory areas are organized in bytes or words as follows: 
organization 

bytes: each address addresses a byte 

words: each address addresses a 16-bit word (= 2 bytes) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

OOOOH 

E D F F H  
EEOOH 

EFFFH 

Select register 

Fig. 9-1 Global and local memory 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

Memory access With the following operations, you can access local or global memory areas 
using absolute addresses (see also Fig. 9-2). 

Access to the You can acccess both the local and global areas: 
local and global 
area local area (0000 to EFFF) and the part of the global memory organized in 

bytes (F000 to F3FF, FCOO to FFFF): 

TNB, TNW, LIR, TIR 

the part of the local area organized in words (0000 to E3FF and E800 to 
EDFF): 

LRW, TRW, LRD, TRD 

Access only to You can access the following parts of the global area: 
the global area 

the part of the global area organized in bytes (0000 to EFFF): 

LY GB, LY GW, LY GD, TY GB, TY GW, TY GD, TSG 

the part of the global area organized in words (0000 to EFFF): 

LW GW, LW GD, TW GW, TW GD, TSG 

Access to the You can access the following part of the page area: 
page area 

the part of the global area organized in bytes (F400 to FBFF, 
= dual-port RAM area): 

LY CB, LY CW, LY CD, TY CB, TY CW, TY CD, TSC 

the part of the global area organized in words (F400 to FBFF, 
= dual-port RAM area): 

LW CW, LW CD, TW CW, TW CD, TSC 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

0 no access possible access possible 

U 

b) LRW, TRW, LRD, TRD a) LIR, TIR, TNB, TNW 

c) LY GB, LY GW, LY GD 
TY GB, TY GW, TY GD, (TSG) 

d) LW GW, LW GD 
TW GW, TW GD, (TSG) 

e) LY CB, LY CW, LY CD 
TY CB, TY CW, TY CD, (TSC) 

9 LW CW, LW CD, 
TW CW, TW CD, (TSC) 

Fig. 9-2 Access to local or global memory areas using absolute addresses (see also Fig. 9-1) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

9.2 Access using the Address in ACCU 1 

Application Registers are memory cells used by the CPU to execute a STEP 5 program. 
Every register is 16 bits wide. Using the system operations LIR (load a register 
indirectly) and TIR (transfer a register indirectly) you can access the contents of 
the registers. 

Operations 

Table 9-1 Operations for indirect memory access using registers 

The memory word is either in the local area (0000 to EFFF) or in the the part of 
the global area organized in bytes (F000 to F3FF, FCOO to FFFF). 

The following pages explain which registers you can use with the operations. 

Examples explain how to use the operations. 

Operation 

LIR 

TIR 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Operand 

Register no. 0 to 15 

Register no. 0 to 15 

Function 

Load the specified register with the content of 
a memory word addressed by ACCU 1 
(20-bit address). 

Load the content of the specified register in 
the memory word addressed by ACCU 1 
(20-bit address). 



Memorv Access usina Absolute Addresses 

9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 

The following table shows which register numbers you can use with the 
CPU 928B for the LIR and TIR operations and how these are assigned. 

Table 9-2 16-bit register for LIRlTIR 

Loading the contents of an addressed memory register into register 'O'or '1 
overwrites the address stored in ACCU-1-L. 

Registers 4 ,5 ,7 ,  13 and 14 do not exist on the CPU 928B. LIRDIR operations 
with these register numbers are treated as no operations (NOP). 

LIR and TIR with The LIR and TIR operations are not suitable for accessing the page area 
the page area (addresses F400 to FBFF) in the S5-135U multiprocessor PLC. Use instead the 

operations from Section 9.4.4 "Accessing the Page Memory" or the special 
functions from Section 6.21 "Page Accesses". 

LIR/TIR: with &bit If you use the LIR and TIR operations to access memory areas that are only 
memory areas 8 bits wide i.e., for memory addresses from E400 to E7FF and z EEOO 

remember that 

the TIR operation transfers only the low byte of the register. The high byte of 
the register is lost. 

and 

the LIR operation overwrites the high byte of the registers with FFH. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

Figures 9-3 and 9-4 illustrate the difference between LIR/TIR access to word and 
byte-oriented areas: 

15 0 15 0 

I Register  n 
/ 

ACCU 1 

15 0 
addressed  , 
memory  ce l l  

ACCU 1 

r l  TIR n 

15 0 

Reg is te r  n 

LIR n 

Fig. 9-4 LIR/TIR with 16-bit memory areas (word-oriented) 

15 0 0 

Regis ter  n 

ACCU 1 

15 0 
addressed  , Regis te r  n 
memory  ce l l  

n TIR n 

ACCU 1 

Fig. 9-3 LIR/TIR with a-bit memory areas (byte-oriented) 

LIR n 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

Registers 0 to 3 During program execution, the CPU uses the accumulators as buffers. Using the 
and 9 to 12: TIR operation, you can transfer the contents of the accumulators into memory 
ACCU l, 2,3 cells with absolute addresses. With the LIR operation, you can load the contents 
and 4 of memory cells with absolute addresses into the accumulators. The absolute 

address of the memory cell is always in ACCU-1-L. 

Examples 

: L K H  A000  load address A000  of the memory cell into ACCU 1 
load the contents of the memory cell in ACCU 1 into 
register 1 = load ACCU 1 

: T F W  1 0 0  store the contents of address A000  in flag word FW 1 0 0  

: L F W  2 0 0  load flag word FW 2 0 0  into ACCU 1 
: L K H  A000  load address A000 ,  the destination address, 

in ACCU 1 (flag word FW 2 0 0  to ACCU 2 )  
transfer contents of register 3 = ACCU 2 into 
the memory cell addressed by ACCU 1 

Register 6: When you open a data block with the operations C DB and CX DX, the address 
Data Block Start of DW 0 of this data block is loaded in register 6. The block address list in DB 0 
Address (DBA) contains this address. 

The DBA register is set to "0" before each OB 1 or FB 0 call. 

The DBA register remains the same if the following occurs: 

a jump operation (JUIJC) causes program execution to continue in a different 
block 

a different program processing level is inserted. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

It changes if one of the following occurs: 

another data block is opened 

the program returns to a higher level block after a new data block was opened 
in the inserted block (see also Section 2.4.2, Range of Validity of Data 
Blocks). 

Note 
In the ISTACK, the address entered in the DBA register appears under the 
heading "DB-ADD". 

You normally access data words with the STEP 5 operations LIT DW, LIT DR, 
LIT DL, LIT DD, A/O/AN/ON/=/S/R Dx.y. You can only use these operations 
up to data word DW 255. However, by manipulating the DBA register, you can 
use them to access data words > 255. This is also possible with special function 
OB 180 (see Section 6.15). 

Examples 

Example 1: Effect of the "CX DX 17" operation on the DBA register: 

Addresses 
DX 17  

151 6H 

5 words 

block header 

KH = 0000 

KH = 0001 

Fig. 9-5 Using the DBA register 

When DX 17 is called, the address of the memory word in which DW 0 is 
stored is entered in the DBA register. In this example, the DBA is 151BH. 

Note : In the ISTACK, the address entered in the DBA register appears 
under the heading 'DB-ADD'. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

data block DB 100. 

NAME: L I R / T I R 6  

: L  RS 34 start address of the DB address list plus 100 
:ADD BN+100 produces the address list entry of DB 100 

start address of DB 100 (DW 0) to ACCU 1 
:ADD KF+200 store address of DW 200 in DB 100 in system data 
: T  RS 62 word RS 62 
: L  RS 20 load base address of system data 
:ADD KF+62 load address of RS 62 in ACCU 1 

load DBA register with the contents of the address of 
RS 62, i.e., the data block start is set to DW 200 

: L  DW 100 load DW (200 + 100) = DW 300 
FW 100 store DW 300 in flag word FW 100 

NAME :OB180 

:C DB 100 DBA and DBL registers are loaded with the values 
: L  KF 200 of DB 100 and with the help of OB 180 the 
:JU OB 180 DBA register is increased by 200 and the DBL 

register reduced by 200 
: JC =ERR0 error output, in case DB 100 contains 

less than or equal to 200 data words 
: L  DW 100 load DW 300 and 
: T  FW 100 store in FW 100 

program section for error handling 

Note 
If you manipulate the DBA register as shown in example 1, the DBL 
register is not changed. This means that transfer error monitoring can no 
longer be guaranteed. 
By using the special function OB 180 "variable data block access" you can 
also shift the DBA register by a selected number of data words. Since 
OB 180 also changes the DBL register at the same time, transfer error 
monitoring remains in effect. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

Register 8: In addition to the DBA register, a DBL register is loaded every time a data block 
DBL = Data is called. This contains the length (in words) of the data block called, without the 
Block Length block header. The DBL register is set to "0" before each OB 1 or FB 0 call. 

The DBL register remains the same if the following occurs: 

a jump operation (JUIJC) causes program execution to continue in a different 
block 

a different program processing level is inserted. 

It changes if one of the following occurs: 

another data block is opened 

the program returns to a higher level block after a new data block was opened 
in the inserted block (see also Section 2.4.2). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

DX17 
Addresses 

151 6H 

151 7H 

151 8H 

151 9H 

151AH 

DBA - 151 BH 

151 CH 

151DH 

151EH 

151 FH 

1520H 

1521H 

1522H 

Fig. 9-6 Using the DBL register 

the heading "DBL-REG". 

When DX 17 is called, the number of existing data words is entered in the 
DBL register. In this example the DBL is 8 (DW 0 to DW 7) 

Note: In the ISTACK, the number entered in the DBL register appears under 

5 words 

block header 

aaaa 

bbbb 

C C C C  

dddd 

eeee 

f f f f  

9999 

hhhh 

Register 15: During STEP 5 program execution, register 15 contains the absolute address of 
SAC = Step the operation in the program memory to be processed next. 
Address Counter 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

9.2.2 Examples of using the Registers 

Example 1: You want all the data words of a data block to contain a 
constant. 

The program shown below writes the constant KH=A5A5 to all data words in 
DB 50. After changing the STEP 5 operations shown in bold face, it can 
also be used to write any values required to different data blocks (DB 
or DX). Non-existent data blocks or data blocks with no data words are 
detected and cause a jump to the NIVO label. 
The start address (DBA) and length (DBL) of the data block are determined 
by the special function OB 181 "test data block (DB/DX)". 

The program uses all four accumulators. In the figure, you can see the 
occupation of the accumulators during the program as far as the LOOP 
label. Within the loop, the accumulator occupation does not change. 

ACCU 1 initially contains the address of the last data word 
(DBA + DBL - 1) and is reduced by 1 each time the loop is run through. 
ACCU 2 contains the address of the first data word (DBA). The loop is 
abandoned as soon as the contents of ACCU 1 are less than the contents of 
ACCU 2. 

The operation TIR 10 that stores the contents of ACCU-3-L (the constant) 
under the address located in ACCU-1-L is used to write to the data words. 

:L 

:L 
: ENT 
:JU 
: JC 
: TAK 
: ENT 
: +F 

: !=F 
: JC 

LOOP :ADD 
: TIR 

: ><F 
: JC 

BN- 1 the 
10 

constant to be written to 
all data words 

type and number of the data block 

special function OB "test data blocks" 
abandon if DB 50 does not exist 

ACCU 1 := address of last data word + 1 
ACCU 2 := address of the first data word 
ACCU 3 := constant 
abandon if DB 50 contains 

no data words 

constant contained in ACCU-3-L 
is written to all data words beginning 
with the last data word 

scan: 1st data word reached? 
return to loop if 1st data word not reached 

continuation of the program... 

Continued on next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

... a f t e r  a l l  da t a  words have been 
w r i t t e n  t o  

NIVO : . ... i f  DB 50 does not  e x i s t  
o r  has no d a t a  words 

Note: The s e c t i o n  of program from t h e  l a b e l  LOOP can be used t o  w r i t e  a  
cons t an t  t o  any memory a r e a s  (e .g.  f l a g s ,  t imers ,  coun te r s ) .  

Sequence of events 

JU OB181 
JC =NIVO 

Example 2: Clear ing  a l l  f l a g  bytes  (FY 0  t o  FY 255) 

:L KBO 

:L RS 1 4  

: ENT 
:L KF + 256 
: ENT 
: +F 

LOOP :ADD BN - 1 
:TIR 10 

: J C  =LOOP 

cons tant  t o  be w r i t t e n  t o  
a l l  f l a g  bytes  

base address of t h e  f l a g  a r e a  (= address 
of t h e  f i r s t  f l a g  byte  FY 0 )  

+ l ength  of t h e  f l a g  a r e a  
= (address of t h e  l a s t  f l a g  byte  FY 255) + 1 

w r i t e  t h e  cons tant  contained i n  ACCU-3-L 
t o  a l l  256 f l a g  bytes ,  beginning wi th  
f l a g  byte  FY 255 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

9.3 Transferring Fields of Memory 

Application You can use the system operations TNB and TNW to transfer fields of memory 
(max. 255 bytes with TNB, max. 255 words with TNW). With the TNB and 
TNW operations you can access both the local memory area and the part of the 
global memory area organized in bytes (F000 to F3FF, FCOO to FFFF). 

Operations 

Table 9-3 Operations for field transfer 

Parameters 

Operation 

TNW 

TXB 

Field length 

Operand = number of bytes (TNB) or number of words (TNW) 

End address of the source area 

ACCU-2-L = End address of the source area 

Operand 

0 to 255 

-- 

End address of the destination area 

ACCU-1-L = End address of the destination area 

Function 

Field transfer 0 to 255 bytes 

Field transfer o to 255 words 

The entire source and destination areas must be located in one of the memory 
areas listed in Table 9-4 and cannot overlap. 

Permissible 
memory areas 

Table 9-4 Memory areas permitted for TNW, TXB and TXW 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Addresses 

OOOOH to 1 FFEH 
OOOOH to 3FFEH 
OOOOH to 7FFFH 

8000H to DD7FH 
DD80H to E3FFH 
E400H to E7FFH 
E800H to EDFFH 
EEOOH to EFFFH 
FOOOOH to FFFFH 

Memory area 

User memory: 
User submodule (16 bits) 8 Kwords 
User submodule (16 bit) 16 Kwords 
User submodule (16 bit) 32 Kwords 

System RAM: 
DB-RAM (16 bits) 
DB 0 (16 bits) 
S flags (8 bits) 
System data (16 bits: BA, BB, BS, BT,timers and counters) 
R A M  (8 bits: flags, process image) 
110s (8 bits)/S5 bus 



Memory Access using Absolute Addresses 

Sequence The field transfer is made in descending order, i.e. it begins with the highest 
address of the source area (= end address) and ends with the lowest. 

Use in the page The TNB and TNW operations are not suitable for accessing the page area 
area (addresses F400 to FBFF) in the S5-135U multiprocessor PLC. Use instead the 

operations from Section 9.4.4 "Accessing the Page Memory" or the special 
functions from Section 6.24 "Page Accesses". 

Special features 

Pseudo The TNB and TNW operations are long-running STEP 5 operations that contain 
operation so-called "pseudo operation boundaries". This means that the data is transferred 
boundaries with in sub-fields of various sizes depending on the source and destination area. If an 
TNB and TN W error (e.g. cycle error) or an interrupt (e.g. caused by a time or process-driven 

interrupt) occurs during the transfer of a sub-field, the appropriate organization 
block is inserted at the end of this sub-field. This is, however, only possible if 
DX 0 is programmed to allow interruptions at operation boundaries. 

If one or more timeouts andlor addressing errors occur during the transfer, all the 
sub-fields are transferred first and then before the next operation is executed, the 
appropriate error organization block is called once (if QVZ and ADF occur 
simultaneously, only the QVZ-OB is called). The error address specified is 
always the address at which an error occurred first. Since TNB and TNW 
operate with decrementing addresses, when there is more than one error, this is 
always the highest error address in the area in which an error first occurred. 
OB 2, OB 10 to 18 or an error organization block can be inserted at the pseudo 
operation boundaries. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

TNB and TWN 
between 8 and 16 
bit memory areas 

Addresses 
in 
ascending 
order 1- 

Bvte 2 Byte 2 

destination 
address 'c 
Transfer of bytes 1 to 5: 

Transfer of bytes 1 to 4: 

Fig. 9-8 Transferring blocks of memory 

Addresses 
in ascending 
order 

Destination/source 
address 

L <source address> 
L <destination address> 
TNB 5 
L <source address> 
L <destination address> 
TNW 2 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

9.3.1 Example of Transferring Memory Fields 

a) Task 

You want to copy a field of maximum 4095 data words from a DB or DX data 
block to a different DB or DX data block. The start of the field of data 
is specified within the source and destination data block by an offset 
value between 0 and 4095. 

The program is stored in FB 10. 

(type, no.) . STNO FBI 0 
Source DB 

KF (Offset ) 
SOFF 

Source DB 

(type, no.) BY . DTNO STAT 
Dest. DB Status 

KF (Offset) . DOFF 
Dest. DB 

KF (block length) . LENG 

Fig. 9-9 Function block for transferring fields of data 

Before the copying function is started, the input parameters are checked. 
In the event of an error, bit no. 7 = 1 is set in the output parameter 
STAT and the type of error specified in bits no. 0 to no. 2 as follows: 

Bit no. 7 6 5 4 3 2 1  0 

0 = no error 
l = error 

Type of error 
1 = source DB = destination DB 
2 = offset or length > 4095 
3 = source DB does not exist or illegal 
4 = source DB too short 
5 = destination DB does not exist or illegal 
6 = destination DB in read-only memory (EPROM submodule) 
7 = destination DB too short 

I Continued on next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

Example 1 continued: 

b) Program structure: 

FB 10 is made up of five program sections with the following tasks: 

- Input parameters 

a) Check that the source and destination data block are not the same 
type and same number. 

b) Check that the input parameters "source offset", "destination offset" 
and "length of field" are less than 4096. 

-Source data block: 

a) Check that the source data block exists and is long enough. 
b) Calculate the absolute address of the last data word in the 

destination field. 

-Destination data block: 

a) Check that the destination data block exists and is long enough and 
whether it is in the random access memory (RAM submodule or DB-RAM). 

b) Calculate the absolute address of the last data word in the 
destination field. 

- Transfer: 

Execute the copy function with the help of the TNW operation. 
Blocks of data with more than 255 words are transferred in sub-fields 
of 128 words (operation TNW 128). 
Any remaining data is transferred by an additional TNW operation. 

- Condition code: 

Write the output parameter "status" according to the results of the 
checks carried out. 

c) Occupied memory cells 

FW 242 End address of the data destination 
FW 244 End address of the data source 
FW 246 Length of the field of data 

FW 248 Offset in the destination data block 
FW 250 Type and number of the destination data block 

FW 252 Offset in the source data block 
FW 254 Type and number of the source data block 

RS 60 Sub-field counter 

Continued on next page 

CPU 928B-3UB21 Programming Guide 
C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

Example 1 continued: 

b) Programming function block FB 10 

Note:If you want to copy from data word DW 0, the program sections shown in 
heavy print can be omitted. You do not specify an offset value. 

FBlO 

SEGMENT 1 
NAME:DB-DB-TR DATA BLOCK-DATA BLOCK TRANSFER 
DECL :STNO I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KY 
DECL : SOFF I/Q/D/B/T/C : D KM/KH/KY/KS/KF/KT/KC/KG: KF 
DECL:DTNOI/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KY 
DECL : DOFF I/Q/D/B/T/C : D KM/KH/KY/KS/KF/KT/KC/KG: KF 
DECL : LENG I /Q/D/B/T/C : D KM/KH/KY/KS/KF/KT/KC/KG: KF 
DECL : STAT I/Q/D/B/T/C : Q BI/BY/W/D: BY 

BEGINNING OF INPUT PARAMETERS 
:LW =STNO TYPE (DB/DX) AND NUMBER OF 
:T FW 254 THE SOURCE DATA BLOCK 
:LW =DTNO TYPE (DB/DX) AND NUMBER OF 
:T FW 250 THE DESTINATION DATA BLOCK 
: !=F SOURCE DB = DESTINATION DB ? 
:JC =F001 JUMP IF YES 

:LW =SOFF OFFSET IN SOURCE 
: T FW 252 DATA BLOCK 
:LW =DOFF OFFSET IN DESTINATION 
: T FW 248 DATA BLOCK 
: OW 
:LW =LAEN LENGTH (NUMBER OF DATA WORDS) 
:T FW 246 OF THE FIELD TO BE TRANSFERRED 

(LENGTH OF FIELD) 
: OW OR SOURCE OFFSET, DESTINATION OFFSET 
:L KH F000 LENGTH >= 4096 ? 
: AW JUMP, IF YES 
:JP =F002 END OF INPUT PARAMETERS 

Continued on next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

Example 1 continued: 

:L 
:JU 
: JC 
: TAK 
: ENT 
: L  
:ENT 
:L 
: +F 
: <F 
: JC 
:L 
: -F 
: +F 
: T 

:L 
:JU 
: JC 
:JM 
: TAK 
: ENT 
: L  
:ENT 
:L 
: +F 
: <F 
: JC 
:L 
: -F 
: +F 
: T 

BEGINNING OF SOURCE DATA BLOCK 
TYPE AND NUMBER OF SOURCE DATA BLOCK 
TEST DATA BLOCK 
JUMP, IF BLOCK TEST NEGATIVE 
Al: NUMBER OF DWs, A2: ADDRESS 
A3: ADDRESS 
OFFSET I N  SOURCE DATA BLOCK 
A 3 :  NUMBER OF DWs, A 4 :  ADDRESS 
LENGTH OF FIELD 
OFFSET + LENGTH OF FIELD 
NO. OF DWs <OFFSET + FIELD LENGTH ? 
JUMP, IF YES 
A2: OFFSET + FIELD LEN, A3: ADDRESS 
OFFSET + FIELD LENGTH - 1 
OFFSET + FIELD LEN - 1 + ADDRESS 
END ADDRESS OF THE DATA SOURCE 
END OF SOURCE DATA BLOCK 

BEGINNING OF DESTINATION DATA BLOCK 
TYPE AND NUMBER OF DESTINATION DATA BLOCK 
TEST DATA BLOCK 
JUMP, IF BLOCK TEST NEGATIVE 
JUMP, IF BLOCK IN EPROM 
Al: NUMBER OF DWs, A2: ADDRESS 
A3: ADDRESS 
OFFSET I N  DESTINATION DATA BLOCK 
A 3 :  NUMBER OF DWs, A 4 :  ADDRESS 
LENGTH OF FIELD 
OFFSET + LENGTH OF FIELD 
NO. OF DWs <OFFSET + FIELD LENGTH ? 
JUMP, IF YES 
A2: OFFSET + FIELD LEN, A3: ADDRESS 
OFFSET + FIELD LENGTH - 1 
OFFSET + FIELD LEN - 1 + ADDRESS 
END ADDRESS OF THE DATA DESTINATION 
END OF DESTINATION DATA BLOCK 

Continued on next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memory Access using Absolute Addresses 

Example 1 continued: 

:L K B O  
:L FY 246 
: !=F 
:SLW 1 
:T RS 60 
:L FW 244 
:L FW 242 
: JC =REST 

LO0P:TNW 128 
:ADD KF -128 
: TAK 
:ADD KF -128 
: TAK 
:JU OB 160 
: JC =LOOP 

REST:DO FW 246 
: TNW 0 

:L K B O  
END :T =STAT 

: BEU 
F001 :L KB 129 

:JU =END 
F002 :L KB 130 

:JU =END 
F003:LKB 131 

:JU =END 
F004 :L KB 132 

:JU =END 
F005 :L KB 133 

:JU =END 
F006 :L KB 134 

:JU =END 
F007 :L KB 135 

:JU =END 

: BE 

BEGINNING OF TRANSFER 
COMPARISON VALUE 
FIELD LENGTH, HIGH BYTE 
FIELD LENGTH >= 256 WORDS ? 
MULTIPLIED BY 2, NUMBER OF SUB- 
FIELDS EACH WITH 128 WORDS 
END ADDRESS OF THE DATA SOURCE 
END ADDRESS OF THE DATA DESTINATION 
JUMP, IF FIELD LENGTH < 256 WORDS 
TRANSFER A SUB-FIELD 
REDUCE SOURCE END ADDRESS BY 

LENGTH OF THE SUB-FIELD 
REDUCE DESTINATION END ADDRESS 

BY LENGTH OF THE SUB-FIELD 
COUNT LOOP 
JUMP, IF NOT ALL SUB- 

FIELDS HAVE BEEN TRANSFERRED 
FIELD LENGTH, LOW BYTE 
TRANSFER REMAINDER OF FIELD 
END TRANSFER 

BEGINNING OF CONDITION CODE 
ID 00 (HEX): NO ERROR 
OUTPUT PARAMETER STATUS/ERROR 

ERROR ID 81 (HEX): 
SOURCE DB = DESTINATION DB 

ERROR ID 82 (HEX): 
OFFSET OR LENGTH >= 4096 

ERROR ID 83 (HEX): 
SOURCE DB ILLEGAL 

ERROR ID 84 (HEX): 
SOURCE DB TOO SHORT 

ERROR ID 85 (HEX): 
DESTINATION DB ILLEGAL 

ERROR ID 86 (HEX): 
DESTINATION DB IN READ-ONLY MEMORY 

ERROR ID 87 (HEX): 
DESTINATION DB TOO SHORT 

END OF CONDITION CODE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addresses 

9.4 Operations with the Base Address Register (BR Register) 

Application The BR register (base address register, 32 bits) is used by the load and transfer 
operations described from Section 9.3.3 onwards to address the memory. The 
absolute address of the memory cell to be accessed is calculated as the sum of the 
contents of the BR register and a constant as follows: 

Absolute address = BR register contents + constant 

Operations 

Table 9-5 Load and arithmetic operations with the BR register 

l) Bits 2" to 231 of the BR register are set to "0". 

Operation 

MBR 

ABR 

MBR 0 to FFFFF 

20-bit constant 

ABR -32768 to +32767 

31 0 

Operand 

Constant (OH to F FFFFH) 

Constant (-32 768 to t32  767) 

16-bit constant 

(fixed point number) 

Function 

Load the BR register with a 
20-bit constant l) 

Add a 16-bit constant to the 
contents of the BR register 

Fig. 9-10 Loading the BR register 

Changing the The BR register is retained when the same program processing level is 
BR register continued in another block called by the jump operation (JU FB / JC FB). 

The BR register is retained after nesting in a different program execution 
level. 

When the system program calls another program processing level, the BR 
register is set to "0". 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

9.4.1 Operations for Transfer between Registers 

Application You can use the operations described in this section for the fast exchange of 
values between the restisters ACCU 1, STEP address counter (SAC) and base 
address register (BR). 

Operations 

Table 9-6 Operations for transfer between registers 

1 @its 2' to 231) to the BR 

ess register) to the SAC register (STEP address 

Bits 215 to 231 are set to "0" 

The following figure illustrates how the registers are changed by the operations. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

AB, MBA 'F' l 

Fig. 9-8 Register - register transfer operations 

1 SAC 

I MSA, MSB 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

9.4.2 Accessing the Local Memory 

Application With the following operations, you can access the local memory organized in 
words using an absolute memory address. The absolute address is the total of the 
BR register contents and the 16-bit constant contained in the operation (-32768 
to +32767). 

Operations 

Table 9-7 Operations for accessing the local memory 

ACCU 2 new = ACCU lold  

Operation 

LRW 

LRD 

TRW 

TRD 

Permissible The absolute address must be as follows: 
address area 

for LRW, TRW: between OOOH and E3FFH or E800H and EDFFH 

for LRD, TRD: between OOOH and E3FEH or E800H and EDFEH 

Operand 

Constant 
(-32768 to t32767) 

Constant 
(-32768 to t32767) 

Constant 
(-32768 to t32767) 

Constant 
(-32768 to t32767) 

Error reaction If the calculated address of the memory location is not in the permissible 
memory area, the CPU detects a runtime error and calls OB 31, providing it is 
loaded. If OB 31 is not loaded, the CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.7.2). 

Description 

add the specified constant to content 
of the BR register and load the word 
addressed in this way in ACCU-1-L 

add the specified constant to content 
of the BR register and load the double 
word addressed in this way in ACCU 1 

add the specified constant to content of the BR 
register and transfer the content of ACCU-1-L 
to the word addressed in this way 

add the specified constant to content of the BR 
register and transfer the content of ACCU 1 to 
the double word addressed in this way 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

9.4.3 Accessing the Global Memory 

Application With the following operations, you can access the global memory organized in 
bytes or words using an absolute memory address. The absolute address is the 
total of the BR register contents and the constant contained in the operation 
(-32768 to 32767). 

Testing and You can control the access of individual CPUs to common memory areas using a 
setting a busy busy location. Each memory area used by more than one CPU has a busy 
location in the location assigned to it that must be tested by each CPU before it can access this 
global area area. The busy location either contains the value "0" or the slot identifier of the 

CPU currently using the memory area. This CPU releases the memory area by 
writing "0" to the busy location again when it is finished. (Note the 
explanations for the operations "set semaphore/SEDU and "enable 
semaphore/SEEU in Section 3.5.5.). 

The CPU tests and sets a busy location using the TSG operation. 

Sequence 

Operation 

TSG 

Result 

The low byte of the word addressed by the contents of the BR register + the 
constant is used as the busy location. If the content of the low byte is "O", the 
TSG operation enters the slot ID (from RS 29) into the busy location. 

Operand 

-32768 to t32767 

Testing (= reading) and setting (= writing) the busy location is one program unit 
that cannot be interrupted. 

Explanation 

Add the specified constant to the content of 
the BR register and test and set the location 
addressed in this way. 

You can evaluate the result of the test in condition codes CC 0 and CC 1, as 
follows: 

Note 
All CPUs that require synchronized access to a common global memory 
area must use the TSG operation. 

CC 1 

0 

1 

0 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

CC 0 

0 

0 

1 

Explanation 

The busy location contains the value "0"; the CPU 
enters its slot ID. 

The CPU's own slot ID is already entered in the busy 
location. 

The busy location contains a different slot ID. 



Memorv Access usina Absolute Addressina 

Permissible The absolute address must be between OOOOH and EFFFH. 
address area 

Error reaction If the calculated address of the memory location is not in the range shown, the 
CPU detects a runtime error and calls OB 31, providing it is loaded. If OB 31 is 
not loaded, the CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.6.2). 

Load and transfer 
operations for the 

memory Table 9-8 Operations for access to the global memory organized in bytes organized in b-ytes 

ant to content of the BR 

register and transfer the content of ACCU 1 to 
I the double word addressed in this way 

ACCU-l-LH and ACCU-l-H are set to '0'. 

ACCU-I-H is set to '0'. 

3, ACCU 2 new : = ACCU lold  

Permissible The absolute address must be as follows: 
address area 

between 0 and EFFFH (for LY GB, TY GB) 

between 0 and EFFEH (for LY GW, TY GW) 

between 0 and EFFCH (for LY GD, TY GD) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

Error reaction If the calculated address of the memory location is not in the range shwon, the 
CPU detects a runtime error and calls OB 31, providing it is loaded. If OB 31 is 
not loaded, the CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.7.2). 

Load and transfer 
operations for the 

memory Table 9-9 Operations for access to the global memory organized in words organized in words 

'1 ACCU-I-H is set to '0'. 

') ACCU 2 new : = ACCU lold  

Operation 

LW GW 

LW GD 

TW GW 

TW GD 

Permissible 
address area 

The absolute address must be as follows: 

for LW GW, TW GW: between 0 and EFFFH 

for LW GD, TW GD: between 0 and EFFEH 

Operand 

-32768 to t32767 

-32768 to t32767 

-32768 to t32767 

-32768 to t32767 

Error reaction If the calculated address of the memory location is not in the range shown, the 
CPU detects a runtime error and calls OB 31, providing it is loaded. If OB 31 is 
not loaded, the CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.7.2). 

Description 

add the specified constant to content of the BR 
register and load the word addressed in this way 
in ACCU-I-L '1 '1 

add the specified constant to content of the BR 
register and load the double word addressed in 
this way in ACCU 1 '1 

add the specified constant to content of the BR 
register and transfer the content of ACCU-1-L 
to the word addressed in this way 

add the specified constant to content of the BR 
register transfer the content of ACCU 1 to the 
double word addressed in this way 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

9.4.4 Accessing the Page Memory 

Application Using the following operations, you can access pages organized in bytes or 
words via an absolute memory address. The absolute address is the total of the 
BR register contents and the constant contained in the operation (-32768 to 
32767). 

Procedure of The global area includes a "window" in the address area F400H to FBFFH to 
accessing pages allow access to one of maximum 256 memory areas (= pages). A page occupies a 

maximum of 2 K addresses and can be organized in bytes or words. Before each 
access to the page area, one of the 256 pages must be selected by entering its 
page number in the select register. Writing to the select register and the 
subsequent access to the page area cannot be interrupted. 

Before any access (loadltransfer) to the page area, one of the 256 pages must be 
opened. To do this, you transfer the number of the page to be opened to 
ACCU-1-L; this number is entered in the CPU internal page register with the 
ACR operation. All subsequent page operations write the contents of the page 
register to the select register of the appropriate modules on the S5 bus before the 
page is accessed. 

Changing the The page register is retained when the same program processing level is 
page register continued in another block called by the jump operation (JU FB / JC FB). 

When the page register is modified in a block, its value is retained if the 
program jumps back to the calling block at the end of the block. 

After another program processing level has been inserted, the system 
program loads the same value in the page register as it had before the other 
level was inserted. 

When the system program calls another program processing level, the page 
register is set to "0". 

Opening a page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Operation 

ACR 

Operand Explanation 

Open the page whose number is located in ACCU-1-L 
permitted values: 0 to 255 



Memorv Access usina Absolute Addressina 

Error reaction The page number must be between 0 and 255. If this is not the case, the CPU 
recognizes a runtime error and calls OB 31, providing it is loaded. If OB 31 is 
not loaded, the CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.7.2). 

Testing and You can control the access of individual CPUs to common memory areas using a 
setting a busy busy location. Each memory area used by more than one CPU has a busy 
location in the location assigned to it that must be tested by each CPU before it can access this 
page area area. The busy location either contains the value "0" or the slot identifier of the 

CPU currently using the memory area. This CPU releases the memory area by 
writing "0" to the busy location again when it is finished. (Note the 
explanations of the operations "set semaphore/SEDU and "enable 
semaphore/SEEU in Section 3.5.5.). 

The CPU tests and sets a busy location on the open page using the TSC operation. 

Sequence 

Operation 

TSC 

Result 

The low byte of the word addressed by the contents of the BR register + the 
constant is used as the busy location. If the content of the low byte is "O", the 
TSC operation enters the slot ID (from RS 29) into the busy location. 

Operand 

-32768 to t32767 

Testing (= reading) and setting (= writing) the busy location is one program unit 
that cannot be interrupted. 

Explanation 

Add the specified constant to the content of 
the BR register and test and set the location on 
the opened page addressed in this way. 

You can evaluate the result of the TSC operation in condition codes CC 0 and 
CC 1, as follows: 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

CC 1 

0 

1 

0 

CC 1 

0 

0 

1 

Explanation 

The busy location contains the value "0"; the CPU enters 
its slot ID. 

The CPUs own slot ID is already entered in the busy 
location. 

The busy location contains a different slot ID. 



Memory Access using Absolute Addressing 

Note 
All CPUs requiring synchronized access to a common global memory 
area (page area) must use the TSC operation. 

Error reaction The location must be on the corresponding module and on the common page 
between F F400H and F FBFFH. If this is not the case, the CPU recognizes a 
runtime error and calls OB 32, providing it is loaded. If OB 32 is not loaded, the 
CPU goes to the stop mode. 
In both cases, error IDs are entered in ACCU-1-L, that define the error in greater 
detail (see Section 5.6.2). 

Load and transfer 
operations for the 
pages Organized Table 9-10 Operations for access to the pages organized in bytes 
in b-ytes 

register and transfer the content of ACCU 1 to the 
double word addressed in this way in the opened 
page. 

ACCU-l-LH and ACCU-l-H are set to '0'. 

ACCU-I-H is set to '0'. 

3, ACCU 2 new : = ACCU lold  

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Memorv Access usina Absolute Addressina 

Permissible The absolute address must be as follows: 
address area 

for LY CB, TY CB: between F400H and FBFFH 

for LY CW, TY CW: between F400H and FBFEH 

for LY CD, TY CD: between F400H and FBFCH 

Error reaction If the calculated byte address is not in the range shown, the CPU recognizes a 
runtime error and calls OB 31, providing it is loaded. If OB 31 is not loaded, the 
CPU goes to the stop mode. In both cases, error IDs are entered in ACCU-1-L, 
that define the error in greater detail (see Section 5.7.2). 

Load and transfer 
operations for 
pages organized 
in words Table 9-11 Operations for access to the pages organized in words 

ACCU-I-H is set to '0'. 

'I ACCU 2 new : = ACCU lold  

Operation 

LW CW 

LW CD 

TW CW 

TW CD 

Permissible 
address area 

The absolute address must be as follows: 

for LW CW, TW CW: between F400H and FBFFH 

Operand 

-32768 to t32767 

-32768 to +32767 

-32768 to +32767 

-32768 to +32767 

for LW CD, TW CD: between F400H and FBFEH 

Explanation 

add the specified constant to content of the BR 
register and load the word addressed in this 
way in the opened page into ACCU-1-L 

add the specified constant to content of the BR 
register and load the double word addressed in 
this way in the opened page into ACCU 1 ') 

add the specified constant to content of the BR 
register and transfer the content of ACCU-1-L 
to the word addressed in this way in the 
opened page. 

add the specified constant to content of the BR 
register transfer the content of ACCU 1 to the 
double word addressed in this way in the 
opened page. 

Error reaction If the calculated address of the memory cell is not in the range shown, the CPU 
recognizes a runtime error and calls OB 31, providing it is loaded. If OB 31 is 
not loaded, the CPU goes to the stop mode. In both cases, error IDs are entered in 
ACCU-1-L, that define the error in greater detail (see Section 5.7.2). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode 
and Communication 

Contents of the At the beginning of this chapter, you will see when you can use the 
chapter multiprocessor mode and which data exchange is possible in this mode. 

The chapter provides you with information about programming for 
multiprocessor operation (Section 10.1). 
The second part of the chapter provides you with detailed instructions and 
examples of exchanging larger amounts of data in the multiprocessor mode 
(multiprocessor communication Sections 10.2 to 10.9). 

Overview of the 
chapter 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

10.1 

10.1.1 

10.1.2 

10.1.3 

10.2 

10.2.1 

10.2.2 

10.2.3 

10.2.4 

10.2.5 

10.2.6 

10.2.7 

10.3 

10.4 

10.4.1 

10.4.2 

10.4.3 

10.4.4 

10.5 

Description 

Multiprocessor Mode 

Exchanging Data via IPC Flags 

110 Flag Assignment and P C  Flag Assignment in 
Multiprocessor Mode (DB 1) 

How to Create Data Block DB 1 

Multiprocessor Communication 

How the Transmitter and Receiver are Identified 

Why Data is Buffered 

How the Buffer is Processed and Managed 

System Start-up 

Calling Communication OBs 

How to Assign Parameters to Communication OBs 

How to Evaluate the Output Parameters 

Runtimes of the Communication OBs 

INITIALIZE Function (OB 200) 

Function 

Call Parameters 

Input Parameters 

Output Parameters 

SEND Function (OB 202) 

Page 

10-3 

10-4 

10-8 

10-9 

10-13 

10-15 

10-16 

10-17 

10-20 

10-21 

10-22 

10-24 

10-29 

10-30 

10-30 

10-32 

10-33 

10-36 

10-38 



Multiprocessor Mode and Communication 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

10.5.1 

10.5.2 

10.5.3 

10.5.4 

10.6 

10.6.1 

10.6.2 

10.6.3 

10.6.4 

10.7 

10.7.1 

10.7.2 

10.7.3 

10.7.4 

10.8 

10.8.1 

10.8.2 

10.8.3 

10.8.4 

10.9 

10.9.1 

10.9.2 

10.9.3 

Description 

Function 

Call Parameters 

Input Parameters 

Output Parameters 

SEND TEST Function (OB 203) 

Function 

Call Parameters 

Input Parameters 

Output Parameters 

RECEIVE Function (OB 204) 

Function 

Call Parameters 

Input Parameters 

Output Parameters 

RECEIVE TEST Function (OB 205) 

Function 

Call Parameters 

Input Parameters 

Output Parameters 

Applications 

Calling the Special Function OB using Function Blocks 

Transferring Data Blocks 

Extending the IPC Flag Area 

Page 

10-38 

10-38 

10-39 

10-41 

10-43 

10-43 

10-43 

10-43 

10-44 

10-45 

10-45 

10-45 

10-45 

10-46 

10-48 

10-48 

10-48 

10-48 

10-49 

10-50 

10-50 

10-58 

10-64 



Multiprocessor Mode and Communication 

10.1 Multiprocessor Mode 

Definitions of You are in multiprocessor mode as soon as you plug in a coordinator module, 
terms regardless of how many CPUs or CPIIPs are plugged in. 

When to use the If your user program is too large for one CPU and there is not enough 
multiprocessor memory, distribute your program on several CPUs. 
mode 

When a particular part of your system has to be processed especially fast, se- 
parate the appropriate program part from the total program and run it on its 
own fast CPU. 

When your system consists of several parts that you can separate easily and 
control independently, let CPU 1 process system part 1, CPU 2 process 
system part 2, etc. 

For more information on multiprocessing, read the information in your system 
manual. This will help you to decide which CPUs are best suited for your 
problem. 

What " Interprocessor communication flags" are available for cyclic exchange of 
communications binary data between CPUs (CPU 948, CPU 9461947, CPU 928B, CPU 928 and 
mechanisms are CPU 922) or between CPUs and communications processors (CPs). 
available? 

For the exchange of large amounts of data (e.g., entire data blocks) between 
the CPU 948, CPU 9461947, CPU 928B, CPU 928 and CPU 922 you are sup- 
ported by the "special functions for multiprocessing" OB 200 to OB 205 (for 
more information refer to Section 10.2). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.1.1 Exchanging Data via IPC Flags 

Introduction Interprocessor communication (IPC) flags are available for cyclic exchange of 
binary data. They are used mainly for transmitting information byte by byte. 

Data is transferred as follows: 

CPU(s) - Communications processor(s) 

The system program transfers IPC flags once per cycle. For data transfer between 
CPUs, the IPC flags are buffered physically on the coordinator. 

IPC flags are bytes that are transferred. You define them in DB 1 for each CPU 
as IPC input or output flags. If, for example, you have defined flag byte 50 on the 
CPU 1 as an IPC output flag byte, its signal state is transferred cyclically via the 
coordinator to the CPU on which the flag byte FY 50 is defined as an IPC input 
flag byte (see Section 10.1.5). 

Note 
There is no error message when the IPC flag byte exists physically but is 
only written by one CPU and never read out and vice-versa. 

Memory area With the CPU 948 the memory area for the IPC flags in the coordinator and the 
CPs covers the addresses F 200H to F F2FFH. On a CPU/communications 
processor there are 256 available IPC flag bytes. 

Jumper settings To avoid double assignments you must group the 256 available IPC flag bytes on 
the COR or CP modules. Fields of 32 bytes can be enabled or disabled (your 
system manual contains information about setting the jumpers). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Example 

Fig. 10-1 Transferring IPC flags in the multiprocessor mode 

Note 
- The only flag bytes that you can specify as IPC flags are the ones enabled 

on the coordinator or on the CP(s). 

- A flag byte that is defined on one or more CPUs as an IPC input flag byte 
must be defined as an IPC output flag byte on one other CPU or CP. 
An IPC output flag byte is only allowed on one CPU, but this may be 
used as an IPC input flag in all other CPUs in the rack. 

- If you have flag bytes that you have not defined as IPC flags in a CPU, 
you can use them as normal flags! 

You cannot use S flags as IPC flags! 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Data exchange If you want to exchange data between one CPU and one CP, you must enable the 
between CPUS necessary number of IPC flags on the CP. You have 256 bytes available that you 
and can divide into groups of 32 bytes. 
communication 
processors If you want to transfer data from one CPU to several CPs, the areas you enable in the 

CPs and the coordinator must not overlap, otherwise the same address is assigned 
twice. 

If you want to use IPC flags simultaneously on the coordinator and in one or 
more CPs, you must also prevent double addressing as follows: 
Divide the IPC flags among the coordinator and the CPs in groups of 32 bytes. 
Remove jumpers on the coordinator to mask the IPC flag bytes that you want to 
use in the CP (refer to the System Manual). 

You can define a specific flag byte as an IPC output flag in one CPU only. However, 
you can define a specific flag byte as in IPC input flag in several CPUs. 

Example 

Fig. 10-2 Example of IPC flag areas on the CPs 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Transmitting IPC At the end of each program cycle, along with the updating of the process image, 
flags in the CPU transmits the IPC flags specified in DB 1 when the coordinator signals 
multiprocessor the CPU that it can access the S5 bus. 
operation 

The coordinator allocates the bus enable signal to each CPU in sequence. When a 
CPU has access to the S5 bus, it can transmit only one byte. Because of this 
interleaved transmission, related (byte groups) IPC flag information can be 
separated and subsequently processed with old or incorrect values. 

If you want to transfer information that takes up more than one byte, you can 
prevent corruption of data by setting a parameter in extended data block DX 0. 
This parameter uses semaphores to ensure that all IPC flags specified in DB 1 are 
transferred in groups (see Chapter 7). While one CPU is transmitting IPC flags, 
another CPU cannot interrupt it. Because the next CPU has to wait to transmit its 
data, cyclic program processing of this CPU is delayed accordingly. 

Multiprocessor For transferring data blocks or more exactly fields of data with a size of max. 
communication 64 bytes (= 32 data words), the following special functions are integrated in 

the CPU: 

OB 200: INITIALIZE: preassign 

OB 202: SEND: send a data field 

OB 203: SEND TEST: test sending capacity 

OB 204: RECEIVE: receive a data field 

OB 205: RECEIVE TEST: test receiving capacity 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.1.2 110 Flag Assignment and IPC Flag Assignment in Multiprocessor Mode 
(DB 1) 

Introduction The I10 area of the programmable controller is available only once on the S5 
bus. The V 0  area encompasses the addresses FOOOH to FFFFH. 

In multiprocessor mode, all CPUs in the programmable controller access this 110 
area "simultaneously". To avoid data being overwritten, the 110 area must be 
divided between the individual CPUs. 

For this purpose, you must program DB 1 for every CPU. In DB 1 you define 
the inputs and outputs (byte addresses 0 to 127) and IPC flag inputs and 
outputs each CPU is to work with. 

If the CPU does not use any 110 or IPC flags, an (empty) DB 1 must still be 
available in multiprocessor mode. 

Note 
Only the input and output bytes defined in DB 1 will be taken into account 
during updating of the process 110 image by each CPU. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.1.3 How to Create Data Block DB 1 

Entering or Createlmodify DB 1 on the PG using the DB 1 screen form 
editing DB l 

or 

by editing DB 1 as a data block on the PG and then transferring it to the CPU. 

1 :::CPU evaluates the entered or changed DB 1 only after a cold restart! 

Using the DB l 1. Select the editor for the DB 1 screen form on your PG (refer to Fig. 10-3). 
screen form 

2. Enter the required values for "digital inputs" etc. as decimal numbers. 

3. Enter the values by pressing the enter key on the PG. 
The PG then generates DB 1. 

4. Transfer DB 1 to the CPU or load it into an EPROM submodule. 

Note 
You can specify the timer field length in DX 0 andlor in the DB 1 screen 
form. We recommend that you specify this parameter only in DX 0 (see 
Chapter 7). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Example of the 
DB l screen form 

I10 assignment: 

! 0, 1, 2, 3, 7 , 1 0 ,  , ! ! , , ! ! > , 

0 ,  2 , 4 , 1 2 ,  , , , ! > , , > > , , 

5 0 , 5 1 , 6 0 ,  ) , , , , , , , , 

7 0 , 7 2 , 1 0 0 ,  , , , , , , , , ) 

, l 

Editing DB l as a 1. Write the DB 1 start ID in data words 0 , 1  and 2: 
data block 

DW 0: KH = 4D41 ('M' 'A') 
DW 1: KH = 534B ('S' 'K') 
DW 2: KH = 3031 ('0' 'l') 

2. Type in the individual operand areas (from data word 3 onwards). 
Before each operand area, you must specify an ID. The possible ID words 
are as follows: 

ID word for digital inputs KH = DEQO 
ID word for digital outputs KH = DAOO 
ID word for IPC input flags KH = CEOO 
ID word for IPC output flags KH = CA00 

After each ID word, use fixed-point format to list the numbers of the inputs and 
outputs used. 

3. Complete the entries with the DB 1 end ID "KH = EEEE" and transfer DB 1 
to the CPU. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Note 
You can make the DB 1 entries in any order. Remember that the process 
image of the inputs and outputs is updated in the reverse order to which 
you store the addresses in DB 1 (i.e. the last entry is updated first). 
Multiple entries of the same bytes (e.g., for test purposes) are possible. The 
system program makes multiple updates of the process images of bytes that are 
entered more than once. 

Example of 
editing DB l 

DW 0-2: 
Start ID 

for DB 1 
ID word for digital inputs 

KF = +00000; Input byte 0 
KF = +00001; Input byte 1 
KF = +00002; Input byte 2 
KF = +00003; Input byte 3 
KF = +00007; 
KF = +00010; Input byte 10 

ID word for digital outputs 
KF = +00000; Output byte 0 
KF = +00002; Output byte 2 
KF = +00004; 
KF = +00012; Output byte 12 

ID word for IPC flag inputs 
KF = +00050; Flag byte 50 
KF = +00051; 
KF = +00060; Flag byte 60 

ID word for IPC flag outputs 
KF = +00070; Flag byte 70 
KF = +00072; 
KF = +00100; Flag byte 100 
KH = EEEE; End ID 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Entering DB l The system program adopts DB 1 during a cold restart. The system program 
checks to see if the inputs and outputs or IPC flags indicated in DB 1 exist in 
their corresponding modules. If they are not present there, a DB 1 error causes 
the CPU to go into the STOP mode and the STOP LED flashes slowly. The CPU 
no longer processes your program. 

After you program DB 1 and the CPU accepts it during a cold restart, the 
following rules apply: 

Only the inputs and outputs indicated in DB 1 can access peripheral modules via 
the process images (L ...IT... ... IB, ... IW, ... ID, ... QB, ... QW, ... QD operations and 
logic operations with inputs and outputs). Access to process image addresses not 
entered in DB 1 cause addressing errors. 

You can load peripheral bytes directly by bypassing the process image using 
the L PY, L PW, L OY, L OW operations for all acknowledging inputs, 
regardless of entries in DB 1. 

You can transfer directly (T PY, T PW) to bytes 0 to 127 only for the outputs 
indicated in DB 1. This is because the process image is also written to during 
direct transfer. Writing to V 0  addresses not entered in DB 1 causes an addressing 
error. 

Transfer without a process image : 
Direct transfer to byte addresses >l27 is possible regardless of the entries 
in DB 1. 
Direct transfer of byte addresses of the extended 110s (T OY, T OW) is also 
possible regardless of the entries in DB 1. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2 Multiprocessor Communication 

Definition Multiprocessor communication means the exchange of larger amounts of data 
(data blocks) between CPUs operating in the multiprocessor mode. The 
COR 923C coordinator is necessary for multiprocessor communication. 

Introduction To transfer data blocks, or to be more precise, blocks of data with a maximum 
length of 64 bytes (= 32 data words), you can use the following special functions 
that are integrated in the CPU: 

OB 200: INITIALIZE: preassign 

OB 202: SEND: send a field of data 

OB 203: SEND TEST: test sending capacity 

OB 204: RECEIVE: receive a data field 

OB 205: RECEIVE TEST: test receiving capacity 

The special function OBs, OB 200 and OB 202 to OB 205 are simply called 
"communication OBs" in the following sections. 

Required To use these functions, you only require basic knowledge of the STEP 5 
knowledge programming language and the way in which SIMATIC S5 programmable 

controllers operate. You can obtain this basic information from the publications 
listed in "Further Reading". 

Basic sequence To transfer data, you must activate the SEND function on the transmitting CPU 
and the RECEIVE function on the receiving CPU. 

The data words of a DB or DX data block located in the transmitting CPU are 
transported via the coordinator 923C to the receiving CPU one after the other and 
written to the DB or DX data block with the same number and under the same 
data word address; i.e. this represents a "1:l" copy operation. 

Length of data The amount of data that can be transferred with the SEND and RECEIVE 
fields transferred functions is normally 32 words. 

If the block length (without header) is not a multiple of 32 words, the last field of 
data to be transferred is an exception and is less than 32 words long. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

The data block in the receiving CPU can be longer or shorter than the data block 
to be sent. It is, however, important that the data words transferred by the SEND 
function exist in the receiving block; otherwise the RECEIVE function signals an 
error. 

Example 

Data to be sent Data received 

DW 32 to DW 63 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.1 How the Transmitter and Receiver are Identified 

Each field of data exchanged between the CPUs is marked with a number to 
indicate the source and destination CPU. 
The CPUs are numbered so that the leftmost CPU has the number 1 and each 
subsequent CPU to the right has a number increased by 1. 

Example 

s5-135u/155u: 

C C C C  C C 
O P P P  P P I l l  
R U U U  

C 1 2 3  

Fig. 10-4 Senderlreceiver identification 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.2 Why Data is Buffered 

Generally, the multiprocessor mode is used to distribute tasks on several CPUs. 
Since the tasks are not identical and the performance of the CPUs involved can 
be different, the program execution of the individual CPs in the multiprocessor 
mode is always asynchronous. This means that the data sent by a CPU cannot 
always be received immediately by another CPU. 

For this reason, the data to be transferred is buffered on the coordinator 923 C. 
The number of the CPU executing the task and the number of the sender when 
receiving and the receiver when sending define the source or the destination of a 
data field. 

Example 

C C C C  C C 
O P P P  P P I l l  
R U U U  

C 1  2 3  

CPU 3 buffers its data on the coordinator. 

C C C C  C C 
O P P P  P P I I I 
R U U U  

C 1 2 3  

buffer to the destination DB. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.3 How the Buffer is Processed and Managed 

Principle The buffer is based on the FIE0 principle (first in - first out, queue principle). 
The data is received in the order in which it is sent. This applies to each 
individual link (identified by the transmitting and receiving CPU) and is 
independent of other links. 

Data protection The buffer is battery-backed; this means that the "automatic warm restart 
following a power down" is possible without any restrictions. A loss of power 
during a data transfer does not cause any loss of data in the programmable 
controller. 

Management The coordinator 923 C has a memory capacity of 48 data fields each with a fixed 
length of 32 words. The INITIALIZE function assigns these fields to individual 
CPU links. 
Each memory field can receive exactly one field of data. The length of the data 
can be from 1 data word to 32 data words. A data field is entered in a memory 
field by a SEND function and read out again by a RECEIVE function. 
The number of memory fields assigned to a link is directly related to the parameters 
for the transmitting capacity (SEND, SEND TEST function) and receiving capacity 
(RECEIVE, RECEIVE TEST function). 

The transmitting capacity indicates how many of the memory fields reserved 
for a link are free at any particular time. 

The receiving capacity indicates how many of the memory fields reserved for a 
link are occupied at any particular time. 

The sum of the transmitting and receiving capacity is always equal to the number 
of memory fields reserved for a link. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

Example 

Occupation of the buffer by a link 

The link between CPU 3 and CPU 2 is initialized. The link is assigned seven 
memory fields in the buffer of the coordinator. Following this, the data 
transfer shown below would be possible. 

Transmlttlng capaclty 
(no, of free 
memory fields) t initialize send send 4 fields send 4 fields send 2 fields 

field A B, C, D, E F, G,  H, I K, L 

Transmitter: CPU 3 

Time 

Receiver: CPU 2 

Receiving capacity 
(no. of free 
memory fields) 

receive receive receive receive 
fields A, B fields C, D, fields H, I fields K, L 

E, F, G 

Fig. 10-5 Example of the occupation of the COR buffer 

Sending/receiving n data fields means that the corresponding functions are 
called n times one after the other. 

To simplify the representation, at any one time, data can either be sent or 
received in this example. 
It is, however, possible and useful to transmit (CPU 3) and receive (CPU 2) 
simultaneously ("Parallel processing in a multiprocessor programmable 
controller"). In the example, fields H and I are received while fields K 
and L are sent. 

The example illustrates the queue organization of the buffer: the fields of 
data sent first (A,B,C...) are received first (A,B,C...). 

CPU 928B-3UB21 Programming Guide 

10 - 18 C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Summary Buffering data on the coordinator COR 923C allows the asynchronous operation 
of transmitting and receiving CPUs and compensates for their different 
processing speeds. 

Since the capacity of the buffer is limited, the receiver should check "often" and 
"regularly" whether there are data in the buffer (RECEIVE TEST function, 
receiving capacity > 0) and should attempt to fetch stored data (RECEIVE 
function). Ideally, the RECEIVE function should be repeated until the receiving 
capacity is zero. This means that the transmitted data are not buffered for a 
longer period of time and that the receiver always has the current data. This also 
means that memory fields remain free (the transmitting capacity is increased) and 
prevents the sender from being blocked (i.e. when the transmitting capacity is 
zero). 

Note 
A receiving capacity of zero represents the ideal state (i.e. all transmitted 
data have been fetched by the receiver), on the other hand a transmitting 
capacity of zero indicates incorrect planning, as follows: 

- the SEND function is called too often, 

- the RECEIVE function is not called often enough 

- there are not enough memory fields assigned to the link. 
The capacity of the buffer is insufficient to compensate temporary 
imbalances in the frequency with which the CPUs transmit and receive 
data. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.4 System Start-Up 

If you require multiprocessor communication, then all CPUs involved must go 
through the same STOP-RUN transition (= RESTART), i.e. all the CPUs go 
through a COLD RESTART or all CPUs go through a WARM RESTART. 

You must make sure that the restart of at least all the CPUs involved in the 
communication is uniform in the following ways: 

direct operation (front switch, programmer), 

parameter assignment (DX 0) 

programming (using the special function organization block OB 223 
"stop if non-uniform restarts occur in the multiprocessor mode") 

COLD RESTART In organization block OB 20 (COLD RESTART) only one CPU must set up the 
buffer (in the COR 923C) using the INITIALIZE function. Any existing data is 
lost. 
Following this, i.e. during the RESTART, you can call the SEND, SEND TEST, 
RECEIVE, RECEIVE TEST functions in the individual CPUs. With appropriate 
programming, you must make sure that this only occurs after the buffer in the 
coordinator has been correctly initialized. 
On completion of the RESTART, i.e. in the RUN mode, the user program is 
processed from the beginning, i.e. from the first operation in OB 1 or FB 0. 

WARM RESTART You must not use the INITIALIZE function in the organization blocks OB 21 
(MANUAL WARM RESTART) and OB 22 (AUTOMATIC WARM 
RESTART). Calling the SEND, SEND TEST, RECEIVE, RECEIVE TEST 
functions can cause problems (refer to the following sections). 

On completion of the WARM RESTART, i.e. in the RUN mode, the user 
program is not processed from the start, but from the point at which it was 
interrupted. The point of interruption can, for example, be within the SEND 
function. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.5 Calling Communication OBs 

Proceed as follows: 

1. Call the INITIALIZE function only in the cold restart organization block 
OB 20 on one CPU. 

2. Call the SEND, SEND TEST, RECEIVE, RECEIVE TEST functions either 
only within the cyclic program or only within the time-driven program. 

Double call Depending on the assignment of parameters in DX 0 ("interrupts at operation 
boundaries"), and the type of program execution (WARM RESTART, interrupt 
handling, e.g. OB 26 for cycle time error) it is possible that one of the functions 
INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE TEST can be 
interrupted. 
If a user interface inserted at the point of interruption also contains one of the 
functions SEND, SEND TEST, RECEIVE and RECEIVE TEST an illegal call 
(double call) is recognized and an error is signalled (error number 67, 
Section 10.2.8). 

Parallel Once you have completed the assignment of the buffer (INITIALIZE function), 
processing you can execute the functions SEND, SEND TEST, 

RECEIVE and RECEIVE TEST in any combination and with any parameter 
assignment in all the CPUs simultaneously and parallel to each other. 

Taking a single link (e.g. from CPU 2 to CPU 3) it is possible to execute the 
SEND function (CPU 2) and the RECEIVE function (CPU 3) simultaneously. 
While CPU 2 is sending data fields to the coordinator, CPU 3 can already receive 
(fetch) buffered data fields from the coordinator. 

Areas occupied The communication OBs do not require a working area (for buffering variables) 
and do not call data blocks. They do, of course, access areas containing 
parameters, although only the parameters marked as output parameters are 
modified. 

Result bits The result bits (CC 1/CC 0, RLO etc.) are influenced by the communication 
OBs. For more detailed information refer to Section 10.2.8. 

Changes in the CPU 922, CPU 928, The contents of ACCU 1 to ACCU 4 and the 
ACCUs CPU 928B: contents of the registers are not affected by 

the communication OBs. 

CPU 9461947, The contents of all registers and ACCU 1, 2 
CPU 948: and 3 remain the same, only the contents of 

ACCU 4 are affected. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.6 How to Assign Parameters to Communication OBs 

The communication OBs have the following types of parameter: 

input parameters, 

output parameters 

and 

call parameters. 

Input and output parameters are located in a maximum 10 byte long data field in 
the F flag area. The data field is divided into an area for input parameters and 
an area for output parameters. 

Input parameters The input parameters specify how a function is handled. All or part of the 
parameters are read out by communication OBs and evaluated, no write access 
takes place. 

Output The output parameters contain all the information that the calling program needs 
parameters about the result of a job, e.g. error bits. 

Some or all of the output parameters are written to by the communication OBs, 
this area is not read. 

Note 
You can assign a flag area with 10 flag bytes for all communications 
functions. The functions themselves require different numbers of bytes. Refer 
to the description of the single functions (Sections 10.4 and following). 

Call parameters For all communication OBs the number of the first flag byte in the data field 
(= pointer to data field) in ACCU-1-L is transferred as the call parameter. 
Permitted values are 0 to 246. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Example 

FY X + 0: transmitting CPU input parameter 
FY X + 1: not used 

FY X + 2: condition code byte output parameter 
FY X + 3: receiving capacity output parameter 

FY X + 4: block ID output parameter 
FY X + 5: block number output parameter 

FY X + 6: address of the first output parameter 
FY X + 7: received data word output parameter 

FY X + 8: address of the last output parameter 
FY X + 9: received data word output parameter 

This example illustrates that the number of the first F flag byte in the 
data field must not be higher than FY 246, since otherwise the parameter 
field of up to 10 bytes would exceed the limits of the flag area (FY 255). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.2.7 How to Evaluate the Output Parameters 

Among other things, the output parameters indicate whether or not a function 
could be executed and if not they indicate the reason for the termination of the 
function. 

Condition codes The INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE TEST functions 
affect the condition codes (see programming instructions for your CPUs, general 
notes on the STEP 5 operations): 

the OV and OS bits (word condition codes) are always cleared, 

the OR, STA, ERAB bits (bit condition codes) are always cleared, 

RLO, CC 1 and CC 0 indicate whether a function has been executed correctly 
and completely. 

Table 10-1 Condition codes of the communication OBs 

In the following sections, it is assumed that the pointer to the data field 
contains a correct value. The first byte of the output parameter provides 
detailed information about the cause of termination. 

Bit no. 

W = l :  Warning 
E =  l :  Error 
I = l :  Initialization conflict 
Number: - of a warning 

- of an error 
- of an initialization conflict 

7 

W 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

6 

E 

5 

I 

4 

0 

3 

Number 

2 1 0 



Multiprocessor Mode and Communication 

The first byte in the field of the output parameters (condition code byte) also 
indicates whether or not a function has been correctly and completely executed. 
This byte contains detailed information about the cause of termination of a 
function. 
Assuming that at least the pointer to the data field contains a correct value, this byte 
is always relevant. 

If the function has been executed correctly and completely, all the bits are 
cleared (= O), and all other output parameters are relevant. 

If the function is aborted with a warning (bit number 7 = l ) ,  only the condition 
code for the transmittinglreceiving capacity is relevant, other output parameters 
(if they exist) are unchanged. 

If the function is aborted owing to an error (bit number 6 = 1) or an initialization 
conflict (bit number 5 = l ) ,  all other output parameters remain unchanged. 

Evaluation of the The identifiers 'W', 'E' and 'I' indicate the significance of the numbers. 
code byte Apart from this bit-by-bit evaluation, it is also possible to interpret the whole 

condition code byte as a fixed point number without sign. If you interpret the 
condition code byte as a byte, the groups of numbers have the following 
significance: 

Table 10-2 Code byte for the communication OBsInumber groups 

Errors are detected and indicated in the ascending order of the error numbers. This 
means that several errors may have occurred although (currently) only one is 
indicated. The other errors are then indicated by further calls. 

Number group 

0 

33 to 42 

65 to 73 

129 to 130 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Significance 

Function executed correctly and completely 

Function aborted owing to an initialization conflict 

Function aborted owing to an error 

Function aborted owing to a warning 



Multiprocessor Mode and Communication 

Example 

Initialization 
conflict 

executed. If you then make program and/or parameter 
modifications and the SEND function again indicates an 
error with a higher number than previously, you can 
assume that you have corrected one of several errors. 

An initialization conflict can only occur with the INITIALIZATION function. If 
a conflict occurs, you must modify the program or the parameters. 

Initialization conflict numbers (evaluation of the condition code byte as a byte): 

Table 10-3 Condition code byte: Initialization conflict numbers 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Cond. 
code byte 

33 

34 

35 

36 

37 

38 

39 

Significance 

The pages required for multiprocessor communication 
(numbers 252 to 255) are not or not all available. 

The pages required for multiprocessor communication 
(numbers 252 to 255) are defective. 

The parameter "automatic/manual" is illegal. The following errors are possible: 
- the "automatic/manual" ID is less than 1, 
- the "automatic/manual" ID is greater than 2. 

The parameter "number of CPUs" is illegal. The following errors are 
possible: 

- the number of CPUs is less than 2, 
- the number of CPUs is greater than 4. 

The parameter "block ID" is illegal. The following errors are possible: 
- the block ID is less than 1, 
- the block ID is greater than 2. 

The parameter "block number" is incorrect, since it is a data 
block with a special significance. 
The following errors are possible: 

- if block ID = 1 :DB 0, DB 1, DB 2 
-ifblockID = 2 : D X O , D X l , D X 2  

The parameter "block number " is incorrect, since the data block does not exist. 

The parameter "start address of the assignment list" is too high or the data 
block is too short. 

The assignment list in the data block is not correctly structured. 

The sum of the assigned memory fields is greater than 48. 



Multiprocessor Mode and Communication 

Errors If an error occurs, you must change the programlparameters. 

Error numbers (evaluation of the condition code byte as a byte): 

Table 10-4 Condition code byte: Error numbers 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Cond. 
code byte 

65 

66 

67 

68 

69 

70 

71 

72 

73 

Significance 

The parameter "receiving CPU" (SEND, SEND TEST) is illegal. The following 
errors are possible: 
- The number of the receiving CPU is greater than 4. 
- The number of the receiving CPU is less than 1. 
- The number of the receiving CPU is the same as the CPU's own number. 

The parameter "transmitting CPU" (RECEIVE, RECEIVE TEST) is illegal. 
The following errors are possible: 
- The number of the transmitting CPU is greater than 4. 
- the number of the transmitting CPU is less than 1. 
- the number of the transmitting CPU is the same as the CPU's own number. 

The special function organization block call is wrong (SEND, RECEIVE, 
SEND TEST, RECEIVE TEST). The following errors are possible: 
- Secondary error, since the INITIALIZE function could not be called or 

was terminated by an initialization conflict. 
- Double call: the call for this function (SEND, SEND TEST, RECEIVE or 

RECEIVE TEST) is illegal, since one of these functions INITIALIZE, 
SEND, SEND TEST, RECEIVE or RECEIVE TEST has already been 
called in this CPU in a lower processing level (i.e. cyclic program 
execution). 

- The CPU's own number is incorrect (system data corrupted); following 
power dowdpower up the CPU number is generated again by the system 
program. 

The management data (queue management) of the selected links are 
incorrect; set up the buffer in the coordinator 923C again using the 
INITIALIZE function (SEND, RECEIVE, SEND TEST, RECEIVE 
TEST). 

The parameter "block ID" (SEND) or the block ID provided by the sender 
(RECEIVE) is illegal. The following errors are possible: 
- The block ID is less than 1. 
- the block ID is greater than 2. 

The parameter "block number" (SEND) or the block number supplied by the 
sender (RECEIVE) is illegal, since it is a data block with a special significance. 
The following errors are possible: 
- If theblockID=l:DBO,DBl,DB2 
- iftheblockID=2:DXO,DXl,DX2 

The parameter "block number" (SEND) or the block number provided by the 
sender (RECEIVE) is incorrect. The specified data block does not exist. 

The parameter "field number" (SEND) is incorrect. 
The data block is too short or the field number too high. 

The data block is not large enough to receive the data field transmitted by the 
sender (RECEIVE). 



Multiprocessor Mode and Communication 

Warning The function could not be executed; the function call must be repeated, e.g. in the 
next cycle. 

Warning numbers (evaluation of the condition code byte as a byte): 

Table 10-5 Condition code bytes: Warning numbers 

I 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Cond. 
code byte 

129 

130 

Significance 

The SEND function cannot transfer data, since the transmitting capacity was 
already zero when the function was called. 

The RECEIVE function cannot accept data, since the receiving capacity was 
already zero when the function was called. 



Multiprocessor Mode and Communication 

10.3 Runtimes of the Communication OBs 

The "runtime" is the processing time of the special function organization blocks. 

Table 10-6 Runtimes of the communication OBs 

The time from calling a block to its termination can be much greater if it is 
interrupted by higher priority activities (e.g. updating timers, etc.). 

Special function OB 

The runtimes listed in Table 10-6 assume that of four CPUs inserted in a rack, 
only the CPU whose runtimes are being measured accesses the SIMATIC S5 
bus. If other CPUs use the bus intensively, the runtime increases particularly for 
the sendlreceive functions. 

Block name 

OB 200/initialize 

OB 202lsend 

OB 203lsend test 

OB 204lreceive 

OB 205lreceive test 

Transfer time An important factor of a link (e.g. from CPU 1 to CPU 2) is the total data transfer 
time. This is made up of the following components: 

time required to send (see runtime), 

CPU 928 

104 ms 

533 p 
(200 ps basic time 
t 10.5 pshord); 

92 ps if a warning occurs 

40 ps 

528 P 
(195 ps basic time 
t 10.5 pshord); 

79 ps if a warning occurs 

39 ps 

length of time the data are buffered (on the COR 923C coordinator) 

and 

CPU 928B 

104 ms 

533 p 
(200 ps basic time 
t 10.5 pslword); 

92 ps if a warning occurs 

40 ps 

528 P 
(195 ps basic time 
t 10.5 pslword); 

79 ps if a warning occurs 

39 ps 

the time required to receive data (see runtime) 

CPU 948 

90 ms 

542 p 
(220 p basic time 

t 19 pldouble word); 
110 ps if a warning occurs 

115 ps 

506 p 
(218 p basic time 

t 18 pldouble word); 
132 ps if a warning occurs 

120 ps 

The length of time that the data are "in transit" is largely dependent on the 
length of time that the data is buffered and therefore on the structure of the 
user program (see "Buffering Data "). 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.4 INITIALIZE Function (OB 200) 

10.4.1 Function 

To transfer data from one CPU to another CPU, the data must be temporarily 
buffered. The INITIALIZE function sets up a buffer on the COR 923C 
coordinator. 
The memory is initialized in fields with a fixed length of 32 words. 

Each memory field accepts one data field with a length between 1 data word and 32 
data words. A data field is entered in a memory field by a SEND function and read 
out by a RECEIVE function. 

If you are using two CPUs, there are two links (transfer directions, "channels"): 

1 CPU 1 rr CPU 2 1 

If you are using three CPUs, there are six links: 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

CPU 1 CPU 2 

A A 

CPU 3 



Multiprocessor Mode and Communication 

If you are using four CPUs, there are twelve links: 

The INITIALIZE function specifies how the total of 48 available memory fields 
are assigned to the maximum twelve links. 
This means that each possible link, specified by the parameters "transmitting CPU" 
and "receiving CPU" has a certain memory capacity available. 

CPU 1 
b 

Note 
Before you can call the SEND / RECEIVE / SEND TEST / RECEIVE TEST 
functions, one CPU must have already called the INITIAL,IZE function and 
executed it completely and without errors. 

CPU 2 

If the INITIALIZE function is called several times, one after the other, the last 
assignment made is valid. While a CPU is processing the INITIALIZE function, 
no other multiprocessor communication functions including the INITIALIZE 
function can be called on other CPUs. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

A A 

Y 

A A 

CPU 4 CPU 3 
b 



Multiprocessor Mode and Communication 

10.4.2 Call Parameters 

Structure of the Before calling OB 200, you must supply the input parameters in the data field. 
(parameter) data OB 200 requires eight F flag bytes in the data field for input and output 
field parameters: 

FYx+O: Mode (automatic/manual) input parameter 
F Y x + l :  Number of CPUs input parameter 
F Y x + 2 :  Block ID input parameter 
F Y x + 3 :  Block number input parameter 

Start address of the input parameter 
F Y x + 5 :  assignment list 

F Y x + 6 :  Condition code byte output parameter 
F Y x + 7 :  Total capacity output parameter 

When OB 200 is called, you transfer the flag byte number at which the parameter 
data field begins to ACCU-1-L: 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.4.3 Input Parameters 

Mode Mode = 1: automatic 
(automatic/ Mode = 2: manual 
manual) Mode = 0 or 3 to 255: illegal, causes an initialization conflict 

Number of CPUs This parameter is only relevant when you have selected the "automatic" mode. 
With the "automatic" setting, the memory fields are divided evenly according to 
the number of CPUs. 

Block ID, block The parameters are only relevant if you select the "manual" mode. You must then 
number, address create an assignment list in a data block in which the 48 available memory fields 
assignment list (or less) are assigned to the maximum 12 links. This function is particularly 

useful when some CPUs transfer more data than others. 

Number of CPUs 

2 

3 

4 

0; 1; 5 to 255 

The CPUs not involved in the multiprocessor communication do not need and 
should not have memory fields assigned to them. 
The parameters 

block number 

Number of links 

2 

6 

12 

and 

Memory fields per link 

24 

8 

4 

start address of the assignment list 

Illegal, causes an initialization conflict 

specify where the assignment list is stored. 

Block ID ID = 1: DB data block 
ID = 2: DX data block 
ID = 0 or 3 to 255 : illegal, causes an initialization conflict 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Block number For the block number, you specify the number of the DB or DX data block in 
which the assignment list is stored. 

Start address of Along with the block ID and number, this specifies the area (or more precisely, 
the assignment the start address of the area) in the data block in which the assignment list is 
list stored. 

As the address of the assignment list, specify the data word number at which the 
assignment list begins in flag bytes FY x+4 (high byte) and FY x+5 (low byte). 

Assignment list With the assignment list, you specify how many of the existing 48 memory fields are 
to be assigned to the links. 

The list is not changed by the system program. It has the following structure. 

Table 10-7 Assignment list for OB 200 (initialize) 

Data word 

DW n t O  
DW n t 1  
DW n t 2  
DW n t 3  

DW n t 4  
DW n t 5  
DW n t 6  
DW n t 7  

Format 

KS 
KY 
KY 
KY 

DW n t 8  
DW n t 9  
DW n t l 0  
DW n t l1 

Instead of the lower case letters a to m (in bold face) numbers between 0 and 48 must 
be inserted depending on the number of assigned memory fields. The sum of these 
numbers must not exceed 48. 

KS 
KY 
KY 
KY 

DW n t 12 
DW n t 13 
DW n t 14 
DW n t 15 

Note 
You must keep to the structure shown in Table 10-7 even if you have less than 
four CPUs. 

Value 

S 1 
2 ,  a 
3 , b 
4 ,  C 

KS 
KY 
KY 
KY 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Significance 

Transmitter = CPU 1 
Receiver = CPU 2 
Receiver = CPU 3 
Receiver = CPU 4 

S2 
l , d 
3 , e 
4 ,  f 

KS 
KY 
KY 
KY 

Transmitter = CPU 2 
Receiver = CPU 1 
Receiver = CPU 3 
Receiver = CPU 4 

S3 

2 ,  h 
4 , i  

Transmitter = CPU 3 
Receiver = CPU 1 
Receiver = CPU 2 
Receiver = CPU 4 

S4 
l , k 
2 , 1  
3 , m 

Transmitter = CPU 4 
Receiver = CPU 1 
Receiver = CPU 2 
Receiver = CPU 3 



Multiprocessor Mode and Communication 

Example 

Transmi t te r :  CPU 1 
Receiver  : CPU 2/2 f i e l d s  
Receiver  : CPU 3/no f i e l d  
Receiver  : CPU 4 (does no t  e x i s t ) / n o  f i e l d  
Transmi t te r :  CPU 2  
Receiver  : CPU 1/22 f i e l d s  
Receiver  : CPU 3/22 f i e l d s  
Receiver  : CPU 4 (does no t  e x i s t ) / n o  f i e l d  
Transmi t te r :  CPU 3  
Receiver  : CPU l / n o  f i e l d  
Receiver  : CPU 2/2 f i e l d s  
Receiver  : CPU 4 (does no t  e x i s t ) / n o  f i e l d  
Transmi t te r :  CPU 4 (does no t  e x i s t )  
Receiver  : CPU l / n o  f i e l d  
Receiver  : CPU 2/no f i e l d  
Receiver  : CPU 3/no f i e l d  

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.4.4 Output Parameters 

Condition This byte informs you whether the INITIALIZE function was executed correctly 
code byte and completely. 

Initialization The initialization conflicts listed are recognized and indicated by the function in the 
conflict ascending order of their numbers. 

If an initialization conflict occurs, you must change the programlparameters. 

All the numbers listed in the following table can occur in the condition code byte. 

Table 10-8 Condition code byte: warning numbers 

Significance 

34 The pages required for multiprocessor communication (numbers 252 1 1 to 255) are defective. 1 
33 The pages required for multiprocessor communication (numbers 252 

to 255) are not or not all available. 

35 The parameter "automatic/manual" is illegal. 
The following errors are possible: 

- The "automatic/manual" ID is less than 1. 
- The "automatic/manual" ID is greater than 2. 

36 The parameter "number of CPUs" is illegal. 
The following errors are possible: 

- The number of CPUs is less than 2. 
- The number of CPUs is greater than 4. 

37 

1 39 1 The parameter "block number 'l is incorrect, since the data block does not exist. 1 

The parameter "block ID" is illegal. 
The following errors are possible: 

- The block ID is less than 1. 
- The block ID is greater than 2. 

38 

l 40 l The parameter "start address of the assignment list" is too high or the data block 
is too short. 

The parameter "block number" is incorrect, since it is a data 
block with a special significance. 
The following errors are possible: 

- IfblockID = l :  DBO,DBl,DB2 
- IfblockID = 2 :  DXO,DXl,DX2 

1 41 1 The assignment list in the data block is not correctly structured. l 
1 42 1 The sum of the assigned memory fields is greater than 48. l 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Errors The "error" number group cannot occur with the INITIALIZE function. 

Warning The "warning" number group cannot occur with the INITIALIZE function. 

Total capacity This parameter specifies how many of the 48 available memory fields are 
assigned to links. 
In the "automatic" mode, this parameter always has the value 48. In the "manual" 
mode, it can have a value less than 48. This means that existing memory capacity is 
not used. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.5 SEND Function (OB 202) 

10.5.1 Function 

The SEND function transfers a data field to the buffer of the COR 923C 
coordinator. It also indicates how many data fields can still be sent or buffered. 

10.5.2 Call Parameters 

Structure of the Before calling OB 202 you must specify the input parameters in the data field. 
(parameter) data OB 202 requires six F flag bytes in the data field for input and output parameters: 
field 

FYx+O: receiving CPU input parameter 
F Y x + l :  block ID input parameter 
F Y x + 2 :  block number input parameter 
F Y x + 3 :  field number input parameter 

F Y x + 4 :  condition code byte output parameter 
F Y x + 5 :  transmitting capacity output parameter 

When OB 202 is called, transfer the flag byte at which the parameter data field 
begins to ACCU-1-L: 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.5.3 Input Parameters 

Receiving CPU CPU number of the receiver (destination); the permitted value is between 1 and 4 but 
must be different from the CPU's own number. 

Block ID ID = 1: DB data block 
ID = 2: DX data block 
ID = 0 or 3 to 255: illegal, causes an error message 

Block number The block number, along with the block ID and the field number specifies the 
area from which the data to be sent is taken (and where it is to be stored in the 
receiving CPU). 

Remember that certain data blocks have a special significance, for example, 
DB 0, DB 1 or DX 0 (see programming instructions for your CPUs). These data 
blocks must therefore not be used for the data transfer described here! 
If you attempt to use these block numbers, the function is aborted with an error 
message. 

Field number The field number indicates the area in which the data to be sent is located. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Field 
number 

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

Data area 

First data word 

DW 0 
DW 32 

DW 64 
DW 96 

DW 128 
DW 160 

DW 192 
DW 224 

DW 256 
DW 288 

Last data word 

DW 31 
DW 63 

DW 95 
DW 127 

DW 159 
DW 191 

DW 223 
DW 255 

DW 287 
DW 319 



Multiprocessor Mode and Communication 

The following situations are possible: 

DB is longer than source area: 
If the data block is sufficiently long, you obtain a 32-word long area per field 
as shown in the table above. 

DB is too short: 
If the end of the data block is within the selected field, in the last field an area 
with a length between 1 and 32 words will be transferred. 

Field is outside the DB: 
If the first data word address of a field is not within the length of the data 
block, the SEND function detects and indicates an error. 

Example 

Field no. : 
data word: data word: 

32 words 
32 words 

11 words 

higher Incorrect parameter assignment 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.5.4 Output Parameters 

Condition code This byte informs you whether the SEND function was executed correctly and 
bfle completely. 

Initialization Has no significance with the SEND function. 
conflict 

Errors When the SEND function is called, the following error numbers (evaluation of 
the condition code byte) can occur: 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Condition 
code byte 

65 

67 

68 

69 

70 

71 

72 

Significance 

The parameter "receiving CPU" is illegal. 
The following errors are possible: 

- The number of the receiving CPU is greater than 4 
- The number of the receiving CPU is less than 1 
- The number of the receiving CPU is the same as 

the CPU's own number. 

The special function organization block call is wrong. 
The following errors are possible: 

- Secondary error, since the INITIALIZE function could not be 
called or was terminated by an initialization conflict. 

- Double call: the call for this function, SEND, SEND TEST, 
RECEIVE or RECEIVE TEST is illegal, since one of the functions 
INITIALIZE, SEND, SEND TEST, RECEIVE or RECEIVE TEST 
has already been called in this CPU in a lower processing level 
(e.g. cyclic program processing). 

- The CPU's own number is incorrect (system data corrupted) 
following power down/power up the CPU number is generated again 
by the system program. 

The management data (queue management) of the selected links are 
incorrect; set up the buffer in the coordinator 923C again using the 
INITIALIZE function. 

The parameter "block ID" is illegal. 
The following errors are possible: 

- The block ID is less than 1. 
- The block ID is greater than 2. 

The parameter "block number" is illegal, since it is a data block with a 
special significance. The following errors are possible: 

- If theblockID=l:DBO,DBl,DB2 
- IftheblockID=2:DXO,DXl,DX2 

The parameter "block number" is incorrect. 
The specified data block does not exist. 

The parameter "field number" is incorrect. The data block is too short or the 
field number too high. 



Multiprocessor Mode and Communication 

Warning The function could be executed; the function call must be repeated, e.g. in the 
next cycle. 

The following warning numbers (evaluation of the condition code byte) can 
occur: 

Condition Significance 
code byte 

The SEND function cannot transfer data, since the transmitting capacity 
was already zero when the function was called. 

Transmitting 
capacity 

The "transmitting capacity" indicates how many data fields can still be sent and 
buffered. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.6 SEND TEST Function (OB 203) 

10.6.1 Function 

The SEND TEST function determines the number of free memory fields in the 
buffer of the COR 923C coordinator. 
Depending on this number m, the SEND function can be called m times to 
transfer m data fields. 

10.6.2 Call Parameters 

Structure of the Before calling OB 203, you must specify the input parameters in the data field. 
(parameter) data OB 203 requires 4 F flag bytes in the data field for input and output parameters: 
field 

FYx+O: receiving CPU input parameter 
F Y x + l :  - not used 

F Y x + 2 :  condition code byte output parameter 
F Y x + 3 :  transmitting capacity output parameter 

ACCU-l-L When OB 203 is called, transfer the flag byte number at which the parameter 
data field begins to ACCU-1-L: 

10.6.3 Input Parameters 

Receiving CPU The CPU's own number and the number of the receiving CPU identify the link 
for which the transmitting capacity is determined. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.6.4 Output Parameters 

Condition code This byte indicates whether the SEND TEST function was executed correctly and 
bfle completely. 

Initialization Has no significance for the SEND TEST function. 
conflict 

Errors 

Warning 

Transmitting 
capacity 

When calling the SEND TEST function, the following error numbers (evaluation 
of the condition code byte) can occur: 

The "warning" number group cannot occur with the SEND TEST function. 

Condition 
code byte 

65 

67 

68 

The "transmitting capacity" parameter indicates how many data fields can be sent 
and buffered. 

Significance 

The parameter "receiving CPU" is illegal. 
The following errors are possible: 

- The number of the receiving CPU is greater than 4, 
- The number of the receiving CPU is less than 1, 
- The number of the receiving CPU is the same as 

the CPU's own number. 

The special function organization block call is wrong. 
The following errors are possible: 

- Secondary error, since the INITIALIZE function 
could not be called or was terminated by an 
initialization conflict. 

- Double call: the call for this function, SEND, SEND TEST, 
RECEIVE or RECEIVE TEST is illegal, since one of the functions 
INITIALIZE, SEND, SEND TEST, RECEIVE or RECEIVE TEST 
has already been called in this CPU in a lower processing level 
(e.g. cyclic program processing). 

- The CPU's own number is incorrect (system data corrupted); 
following power down/power up the CPU number is generated again 
by the system program. 

The management data (queue management) of the selected links are 
incorrect; set up the buffer in the coordinator 923C again using the 
INITIALIZE function. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

10.7 RECEIVE Function (06 204) 

10.7.1 Function 

The RECEIVE function takes a data field from the buffer of the COR 923C 
coordinator. It also indicates how many data fields are still buffered and can still 
be received. 
The RECEIVE function should be called in a loop until all the buffered data 
fields have been received. 

10.7.2 Call Parameters 

Structure of the Before calling OB 204, you must specify the input parameters in the data field. 
(parameter) data OB 204 requires 10 F flag bytes in the data field for input and output parameters: 
field 

FYx+O: transmitting CPU input parameter 
F Y x + l :  - not used 

F Y x + 2 :  condition code byte 
F Y x + 3 :  receiving capacity 
F Y x + 4 :  block ID 
F Y x + 5 :  block number 

address of the first 
F Y x + 7 :  F +  H received data word 

address of the last 
F Y x + 9 :  H received data word 

output parameter 
output parameter 
output parameter 
output parameter 

output parameter 
output parameter 

output parameter 

ACCU-l-L When calling OB 204, transfer the flag byte number at which the parameter data 
field begins to ACCU-1-L: 

ACCU-1-LH: 
ACCU- 1 -LL: 

10.7.3 Input Parameters 

Transmitting CPU The receive block receives data supplied by the transmitting CPU. Specify the 
number of the transmitting CPU. The permitted value is between 1 and 4, but must 
be different from the CPU's own number. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

10.7.4 Output Parameters 

Condition code This byte informs you whether the RECEIVE function was executed correctly 
bfle and completely. 

Initialization Has no significance with the RECEIVE function. 
conflict 

Errors When calling the RECEIVE function the following error numbers (evaluation of 
the condition code byte) can occur: 

CPU 928B-3UB21 Programming Guide 
C79000-G8576-C870-01 

Condition 
code byte 

66 

67 

68 

69 

70 

71 

73 

Significance 

The parameter "transmitting CPU" is illegal. 
The following errors are possible: 

- The number of the transmitting CPU is greater 
than 4, 

- The number of the transmitting CPU is less than 1, 
- The number of the transmitting CPU is the same 

as the CPU's own number. 

The special function organization block call is wrong. 
The following errors are possible: 

- Secondary error, since the INITIALIZE function 
could not be called or was terminated by an 
initialization conflict. 

- Double call: the call for this function, SEND, SEND TEST, 
RECEIVE or RECEIVE TEST is illegal, since one of the functions 
INITIALIZE, SEND, SEND TEST, RECEIVE or RECEIVE TEST 
has already been called in this CPU in a lower processing level 
(e.g. cyclic program processing). 

- The CPU's own number is incorrect (system data corrupted) 
following power down/power up the CPU number is generated again 
by the system program. 

The management data (queue management) of the selected links are 
incorrect; set up the buffer in the coordinator 923C again using the 
INITIALIZE function. 

The block identifiers supplied by the transmitter are illegal. 
The following errors are possible: 

- The block ID is less than 1. 
- The block ID is greater than 2. 

The block number supplied by the transmitter is illegal, since it is a data 
block with a special significance. The following errors are possible: 

- If theblockID=l:DBO,DBl,DB2 
- IftheblockID=2:DXO,DXl,DX2 

The block number provided by the transmitter is incorrect. The specified 
data block does not exist. 

The data block is too small to receive the data field supplied by the transmitter. 



Multiprocessor Mode and Communication 

Warning The function could not be executed; the function call must be repeated, e.g. in the 
next cycle. 

The following warning number (evaluation of the condition code byte) can occur: 

Condition Significance 
code byte 

The RECEIVE function cannot receive data, since the receiving capacity 
was already zero when the function was called. 

Receiving 
capacity 

Block ID: 

Block number 

Address of the 
first received 
data word 

Address of the 
last received 
data word 

The "receiving capacity" parameter indicates how many data fields are still 
buffered and can still be received. 

ID = 1: DB data block 
ID = 2: DX data block 
ID = 0 or 3 to 255: illegal, causes an error message 

Block number of the DBIDX in which the received data are stored (and from 
which they are taken by the SEND function in the transmitting CPU). 

Remember that the receive data blocks must be in a random access memory, using 
read-only memories (EPROM) might possibly serve a practical purpose for transmit 
data blocks only. 

Data word number within the DBIDX in which the first transferredlreceived data 
word was stored. 

Data word number within the DBIDX in which the last transferredlreceived data 
word was stored. 

Note 
The difference between the addresses of the first and last data word 
transferred is a maximum of 31, since a maximum of 32 data words can be 
transferred per function call. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

10.8 RECEIVE TEST Function (OB 205) 

10.8.1 Function 

The RECEIVE TEST function determines the number of occupied memory 
fields in the buffer of the COR 923C coordinator. Depending on this number m, 
the RECEIVE function can be called m times to receive m data fields. 

10.8.2 Call Parameters 

Structure of the Before calling OB 205, you must specify the input parameters in the data field. 
(parameter) OB 205 requires 4 F flag bytes in the data field for input and output parameters: 
data field 

FYx+O: transmitting CPU 
F Y x + l :  

input parameter 
not used 

F Y x + 2 :  condition code byte output parameter 
F Y x + 3 :  receiving capacity output parameter 

When calling OB 204, transfer the flag byte number at which the parameter data 
field begins to ACCU-1-L: 

10.8.3 Input Parameters 

Transmitting CPU The CPU's own number and the number of the transmitting CPU identify the link 
for which the receiving capacity is determined. 

CPU 928B-3UB21 Programming Guide 
C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.8.4 Output Parameters 

Condition code This byte indicates whether the RECEIVE TEST function was executed correctly 
bfle and completely. 

Initialization Has no significance with the RECEIVE TEST function. 
conflict 

Errors When calling the RECEIVE TEST function, the following error numbers 
(evaluation of the condition code byte) can occur: 

Warning The "warning" number group cannot occur with the RECEIVE TEST function. 

Condition 
code byte 

66 

67 

68 

Receiving The "receiving capacity" parameter indicates how many data fields can be received 
capacity and buffered. 

Significance 

The parameter "transmitting CPU" is illegal. 
The following errors are possible: 

- The number of the transmitting CPU is greater than 4. 
- The number of the transmitting CPU is less than 1. 
- The number of the transmitting CPU is the same as the CPU's 

own number. 

The special function organization block call is wrong. 
The following errors are possible: 

- Secondary error, since the INITIALIZE function 
could not be called or was terminated by an 
initialization conflict. 

- Double call: the call for this function, SEND, SEND TEST, 
RECEIVE or RECEIVE TEST is illegal, since one of the functions 
INITIALIZE, SEND, SEND TEST, RECEIVE or RECEIVE TEST 
has already been called in this CPU in a lower processing level 
(e.g. cyclic program processing). 

- The CPU's own number is incorrect (system data corrupted); 
following power down/power up the CPU number is generated again 
by the system program. 

The management data (queue management) of the selected links are 
incorrect; set up the buffer in the coordinator COR 923C again using the 
INITIALIZE function. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.9 Applications 

Based on examples, this section explains how to program multiprocessor 
communication. 

Note 
If you use the function blocks listed below and service interrupts on your CPU 
(e.g. with OB 2) remember to save the "scratchpad flags" at the start of interrupt 
servicing and to write them back when the interrupt is completed. 
This also applies to the setting "interrupts at block boundaries", since the call of 
the special function organization blocks represents a block boundary. 

10.9.1 Calling the Special Function OB using Function Blocks 

The following five function blocks (FB 200 and FB 202 to FB 205) contain the call 
for the corresponding special function organization block for multiprocessor 
communication (OB 200 and OB 202 to OB 205). 
The numbers of the function blocks are not fixed and can be changed. The 
parameters of the special function OBs are transferred as actual parameters when the 
function blocks are called. The direct call of the special function organization blocks 
is faster, however, is more difficult to read owing to the absence of formal 
parameters 

The flag area from EY 246 to maximum EY 255 is used by the function blocks as a 
parameter field for the special function organization blocks. 

FB no. 

FB 200 

FB 202 

FB 203 

FB 204 

FB 205 

The exact significance of the input and output parameters is explained in the 
description of the special function organization blocks. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

FB name 

INITIAL 

SEND 

SEND-TST 

RECEIVE 

RECV-TST 

Function 

Set up buffer 

Send a data field 

Test sending capacity 

Receive a data field 

Test receiving capacity 



Multiprocessor Mode and Communication 

Note 
The following examples of applications involve finished applications that you 
can program by copying them. 

Programming 
function blocks 

FB 200 

INITIAL 

(1) - AUMA INIC - 

( 2 ) NUMC TCAP 
- 

(4) STAS 

Number of CPUs 

Type (H byte) and number (L byte) of 
the data block containing the 

Start address of the assignment list 

Continued on the  next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

NAME : INITIAL 
DECL :AUMA I/Q/D/B/T/C: I BI/BY/W/D: BY 
DECL :NUMC I/Q/D/B/T/C: I BI/BY/W/D: BY 
DECL :TNAS I/Q/D/B/T/C: I BI/BY/W/D: 
DECL :STAS I/Q/D/B/T/C: I BI/BY/W/D: 
DECL : INIC I/Q/D/B/T/C: Q BI/BY/W/D: BY 
DECL :TCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY 

0 0 1 7  :L = A m  A u t o m a t i c / m a n u a l  
0 0 1 8  :T FY 2 4 6  
0 0 1 9  :L =NuMC Number o f  CPUs 
OOlA :T FY 247  
OOlB :L =TNAS DB type, DB no. 
OOlC :T FY 2 4 8  
OOlD :L =STAS S t a r t  a d d r e s s  o f  t h e  a s s i g n m e n t  
OOlE :T FW 2 5 0  l i s t  

0 0 2 0  :L KB 2 4 6  S F  OB: 

0 0 2 1  : JU OB 2 0 0  " I n i t i a l i z e "  

0 0 2 3  :L FY 2 5 2  I n i t i a l i z a t i o n  c o n f l i c t  
0 0 2 4  :T =INIC 
0 0 2 5  :L FY 2 5 3  T o t a l  capacity 
0 0 2 6  :T =TCAP 
0 0 2 7  :BE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB 202 

SEND 

(1) -- RCPU ERWA - 

( 2 ) - TNDB TCAP - 

(3) - FIN0 

Parameter name Significance Parameter Data Parameter field 

Type (H byte) and number (L byte) 
of the source data block 

Field number 

ERWA Errorlwaming 

Transmitting capacity 

LEN=40 

0014 :L =RCPU Receiving CPU 
0015 :T FY 246 
0016 :L =TNDB DB type, DB no. 
0017 :T FW 247 
0018 :L =FIN0 Field number 
0019 :T FY 249 

OOlB :L KB 246 SF OB: 
OOlC :JU OB 202 "Send a data field" 

OOlE :L FY 250 Error/warning 
OOlF :T =ERWA 
0020 :L FY 251 Transmitting capacity 
0021 :T =TCAP 
0022 :BE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB 2 0 3  

SEND-TST 

( 1 )  RCPU ERR0 
- 

TCAP - ( 3 )  

Parameter name Parameter Data Parameter field 

Transmitting capacity 

NAME : SEND-TST 
DECL :RCPU I /Q/D/B/T/C:  I BI/BY/W/D: BY 
DECL :ERR0 I /Q/D/B/T/C:  Q BI/BY/W/D: BY 
DECL :TCAP I /Q/D/B/T/C:  Q BI/BY/W/D: BY 

OOOE :L =RCPU R e c e i v i n g  CPU 
OOOF :T FY 2 4 6  

0011 :L KB 2 4 6  S F  OB: 
0 0 1 2  :JU OB 2 0 3  " T e s t  t r a n s m i t t i n g  c a p a c i t y "  

0 0 1 4  :L FY 2 4 8  E r r o r  
0015 :T =ERR0 
0 0 1 6  :L FY 2 4 9  T r a n s m i t t i n g  capacity 
0 0 1 7  :T =TCAP 
0018 :BE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB 2 0 4  

RECEIVE 

(1 )  - TCPU ERWA - 

RCAP - ( 3 ) 

TNDB - ( 4 )  

STAA - 

ENDA - ( 6 )  

Parameter name Significance Parameter Data 

Transmitting CPU 

ERWA Errodwarning 

Receiving capacity 

Type (H byte) and number (L byte) of the 
destination data block 

Address of the first received data word 

Address of the last received data word 

Continued on the  next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

NAME : RECEIVE 
DECL :TCPU I/Q/D/B/T/C: I BI/BY/W/D: BY 
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY 
DECL : RCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY 
DECL :TNDB I/Q/D/B/T/C: Q BI/BY/W/D: 
DECL :STAA I/Q/D/B/T/C: Q BI/BY/W/D: 
DECL :ENDA I/Q/D/B/T/C: Q BI/BY/W/D: 

0017  :L =TCPU T r a n s m i t t i n g  CPU 
0 0 1 8  :T FY 2 4 6  

OOlA :L KB 2 4 6  SF  OB: 

OOlB : JU OB 2 0 4  " R e c e i v e  a d a t a  f i e l d "  

OOlD :L FY 2 4 8  E r r o r / w a r n i n g  
OOlE :T =ERWA 
OOlF :L FY 2 4 9  R e c e i v i n g  capacity 
0 0 2 0  :T =RCAP 
0 0 2 1  :L FW 2 5 0  DB type, DB no. 
0 0 2 2  :T =TNDB 
0 0 2 3  :L FW 252  S t a r t  a d d r e s s  
0 0 2 4  :T =STAA 

End a d d r e s s  

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB 2 0 5  

RECV-TST 

( 1 )  TCPU ERR0 
- 

RCAP - ( 3 ) 

OOOE :L =TCPU T r a n s m i t t i n g  CPU 
OOOF :T FY 2 4 6  

0 0 1 1  :L KB 2 4 6  SF OB: 
0 0 1 2  :JU OB 2 0 5  " T e s t  r e c e i v i n g  capacity" 

0 0 1 4  :L FY 2 4 8  E r r o r  
0 0 1 5  :T =ERR0 
0 0 1 6  :L FY 2 4 9  R e c e i v i n g  capacity 
0 0 1 7  :T =RCAP 
0 0 1 8  :BE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.9.2 Transferring Data Blocks 

In this example, the function block TRAN DAT (FB 110) transfers a selectable 
number of data fields from a data block in one CPU to the data block of the same 
type and same number in a different CPU. 
The FB number (FB 110) has been selected at random and you can use other 
numbers. 

Programming FB 110 is described first followed by the application of FB 110. 

Programming 
FB I 1 0  

FB 110: Transferring a data block 

The data area to be transferred is stipulated by the input parameter FIRB 
(= number of the first data field to be transferred) and NUMB (= number of 
data fields to be transferred). A data field normally consists of 32 data 
words. Depending on the data block length, the last data field may be less 
than 32 data words. 

The transfer is triggered by a positive-going edge at the start input STAR. 
If the output parameter REST is zero after the transfer, this means that the 
function block TRANDAT was able to send all the data fields (according to the 
NUMB parameter). 

If, however, the REST output parameter has a value greater than zero, this 
means that the function block must be called again, for example in the next 
cycle. This means that you or the user program can only change the set 
parameters (i.e. the values of all parameters) when the REST parameter 
indicates zero showing that the data transfer is complete. 

You can call the function block TRANDAT several times with different 
parameters. In this case, various data areas are transferred simultaneously 
(interleaved in each other). The special function organization blocks for 
multiprocessor communication OB 202 to OB 205 can also be used "directly". 
This possibly is illustrated in the application example. 

If the SEND function (OB 202) is not correctly executed with the TRANDAT 
function block, the error number is entered in the output parameter ERRO, the 
RLO = '1' and the output parameter REST is set to '0'. 

The TRANDAT function block uses flag bytes FY 246 to FY 251 as scratchpad 
flags. All other variables whose value is significant as long as the output 
parameter REST = ' O r  continue to have memory assigned to them using the 
mechanism of formal/actual parameters. This is necessary to allow various 
data blocks to be transferred simultaneously. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

TRAN-DAT 

(1) -- STAR ERR0 - 

REST - 

CUBN - 

EDGF - 

(5)- FIRB 

Parameter name Significance Parameter Data 

Start the transfer of the data block on a positive-going edge 

Type (H byte) and number (L byte) of the data block to be 
transferred. 
Number of data fields to be transferred. 

Number of the first data field to be transferred. 

Number of data fields still to be transferred. 

CUBN l) Current field number 

EDGE l) Edge flag 

LEN=89 

0020 :L =RCPU Assign parameter field for 
0021 :T FY 246 SF OB 202 
0022 :L =TNDB 
0023 :T FW 247 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB 1 1 0  continued: 

0025 :L =REST 
0026 :L KB 0 
0027 :><F 
0028 :JC =TRAN 
0029 : 
002A :AN =STAR 
002B :RB =EDGF 
002C :ON =STAR 
002D :O =EDGF 
002E :JC =GOOD 
002F :S =EDGF 
0030 : 
0031 :L =NUMB 
0032 :T =REST 
0033 :L =FIRB 
0034 :T =CUBN 
0035 : 
0036 :L =REST 
0038 LO0P:L KF+O 
0039 : !=F 
003A :JC =GOOD 
003B TRAN:L =CUBN 
003C :T FY 249 
003D :L KB 246 

0033 : JU OB 202 
003F :L FY 250 
0040 :JM =ERR0 
0041 :JP =GOOD 
0042 :L =CUBN 
0043 :I 1 
0044 :T =CUBN 
0045 :L =REST 
0046 :D 1 
0047 :T =REST 
0048 :JU =LOOP 
0049 : 
004A GOOD :A F 0.0 
004B :AN F 0.0 
004C :L KB 0 
004D :T =ERR0 
004E :BE 
004F : 
0050 ERRO :T =ERR0 
0051 :L KB 0 
0052 :T =REST 
0053 :BE 

First send any remaining 
data fields 

Positive edge at start 
input ? 

Initialize the global flags 
after postive edge at 
START input 

As long as REST >CO, 
continue to attempt to 
send data fields 

SF OB: 

"Send a data field" 

Abort if error 
Abort if trans-cap. = 0 

Increment 
field number 

Decrement number of 
remaining data fields 

Regular end of program: 

RLO = 0, ERRO = 0 

Program end if error: 

RLO = 1, ERRO contains error 
number 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

Application of 
FB I 1 0  

You want CPU 1 to transfer data blocks DB 3 (data fields 2 to 5) and DB 4 
(data fields 1 to 3) to CPU 2 during the cyclic user program. The RECEIVE 
function (OB 204) is also called in the cyclic user program. 

Imvlementation 

called in: 

Initialization (OB 200) OB 20 

Send organization (FB 1) 

Receive organization (FB 2) - 

DB 3; DB 4 

The user program in function block FB 1 of CPU 1 contains two calls for the 
function block TRANDAT in each case with different sets of parameters. 
The transfer of the first data block DB 3 begins after a positive edge 
after input I 2.0. A positive edge at input I 2.1 starts the transfer of 
the second data block. 

NAME : S-OR0 
0000 :L 
0001 :T 
0002 :L 
0003 :T 
0004 :L 
0005 :T 
0006 :L 
0007 :T 

Continued on the  next page 

To CPU 2 . . 
.. from data block DB 3 
.. four data fields 
.. send from 2nd data field 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Application example continued: 

0 0 0 9  :JU FB 1 1 0  
OOOA NAME :TRAN-DAT 
OOOB STAR : 1 2 . 0  
OOOC RCPU : FY 0 
OOOD TNDB : FW 1 
OOOE NUMB : FY 3 
OOOF FIRB : FY 4 
0 0 1 0  ERR0 : FY 5 
0 0 1 1  REST : FY 6 
0012  CUBN : FY 7 
0 0 1 3  EDGF : F 8 . 0  
0 0 1 4  : 
0 0 1 5  : 
0 0 1 6  :JC =HALT 
0017  : 
0 0 1 8  :L KB 2 
0 0 1 9  :T FY 1 0  
OOlA :L K Y 1 , 4  
OOlB :T FW 11 
OOlC :L K B 3  
OOlD :T FY 1 3  
OOlE :L K B 1  
OOlF :T FY 1 4  
0 0 2 0  : 
0 0 2 1  :JU FB 1 1 0  
0 0 2 3  NAME :TRAN-DAT 
0 0 2 4  STAR : 1 2 . 1  
0 0 2 5  RCPU : FY 1 0  
0 0 2 6  TNDB : FW 11 
0027 NUMB : FY 1 3  
0 0 2 8  FIRB : FY 1 4  
0 0 2 9  ERR0 : FY 5 
002A REST : FY16 
002B CUBN : FY 1 7  
002C EDGF : F 8 . 1  
002D : 
002E : 
002F :JC =HALT 
0 0 3 0  :BEU 
0 0 3 1  : 
0032  HALT : 
0 0 3 3  : 
0 0 3 4  : 
0 0 3 5  : 
0 0 3 6  : 

A b o r t  a f t e r  error 

To CPU 2 . . 
.. f r o m  d a t a  b l o c k  DB 4 

.. t h r e e  d a t a  f i e l d s  

.. s e n d  f r o m  2 n d  d a t a  f i e l d  

A b o r t  a f t e r  error 

T h e  error h a n d l i n g  t a k e s  place 
h e r e  ( e . g .  stop, m e s s a g e  output  
o n  t h e  p r i n t e r ,  ...) 

OOxx :BE 

Continued on the next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

In CPU 2, the RECEIVE function (OB 204) called by FB 2 enters each transmitted 
data field into the appropriate data block. It may take 
several cycles before a data block has been completely received. 

NAME : RECV-DAT 
0000 :L KB 1 
0001 :T FY 246 

0003 SCHL :L KB 246 
0004 :JU OB 204 
0005 :JM =ERR0 
0006 :L FY 249 
0007 :L KB 0 
0008 :><F 
0009 :JC =LOOP 

OOOB :BEU 
OOOC ERR0 : 

OOxx :BE 

Receive data from CPU 1 

SF OB: 
" Receive " 
Abort if error 
The RECEIVE function is 
called until there are no 
further of data fields in 
the buffer, i.e. the 
receiving capacity = 0. 

The error handling takes place 
here (e.g. stop, message output 
on printer, . . . ) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

10.9.3 Extending the IPC Flag Area 

The problem In the S5-135U1155U programmable controllers, each of the 256 flag bytes of a 
CPU can become an input or output IPC flag by making an entry in data block 
DB 1. This, however, reduces the number of "normal" flag bytes. To transfer a 
data record (several bytes) other mechanisms are also required (semaphore 
variable or DX 0 parameter assignment "transfer IPC flags as a block") are 
necessary to prevent the receiver from receiving a fragmented data record. 

The solution Consecutive data words of a DB or DX data block are defined from DW 0 
onwards as "IPC data words". Each link is assigned its own data block and is 
totally independent of the other links. 

At the beginning of the cycle block, the IPC data words are received with the aid 
of the special function organization blocks for multiprocessor communication. 
This is followed by the "regular" cyclic program, that evaluates the received data 
and generates the data to be sent. At the end of the cycle, this data is then sent 
with the aid of the special organization blocks for multiprocessor 
communication. It can therefore be received by the other CPUs at the beginning 
of their cycles. 

The following applies for each of the maximum 12 possible links regardless of 
the other links: 

The transmitting CPU is only active when the receiving CPU has read out all 
the "old" data from the COR 923C buffer. 

The receiving CPU is only active when the transmitting CPU has written all 
the "new" data in the COR 923C buffer. 

This means that the receiving CPU can either receive a complete new data record 
or the old data record remains unchanged: no mixing of "old" and "new" data. 

Data structure Which data words (for the data word area below) are to be transferred from which 
CPU to which CPU is described in the link list (see the table on the following page). 
This is located in an additional data block that must exist in all the CPUs involved. 

The data word areas always begin from data word DW 0, and their lengths are 
specified in data fields. Remember the following points: 

A complete data field consists of 32 data words. 

If the last data field is "truncated", i.e. it contains between 1 and 31 data 
words, less data words are transferred. 

If a send data block is longer than the number of fields of data specified in the 
link list, the excess data words can be used in the corresponding CPU. 

If a receive data block is longer than the received data word area, the excess 
data words can be used in the corresponding CPU. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Structure of the 
link list 

Table 10-9 Link list for extending the IPC flag area 

I l SUB-LIST 1 l SUB-LIST 2 I 

I 
l) Refer to the example on the following page 

Link 

from CPU 1 to ... 

... CPU 2 

... CPU 3 

... CPU 4 

from CPU 2 to ... 

... CPU 1 

... CPU 3 

... CPU 4 

from CPU 3 to ... 

... CPU 1 

... CPU 2 

... CPU 4 

from CPU 4 to ... 

... CPU 1 

... CPU 2 

... CPU 3 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

DWO 

DW1 

DW2 

DW3 

DW4 

DW5 

DW6 

DW7 

DW8 

DW9 

DW 10 

DW 11 

DW 12 

DW 13 

DW 14 

DW 15 

DW 16 

DW 17 

DW 18 

DW 19 

DW 20 

DW 21 

DW 22 

DW 23 

DW 24 

DW 25 

DW 26 

DW 27 

DW 28 

DW 29 

DW 30 

DW 31 

DB type DB number No. of data 
fields 

S 1 

2 

3 

4 

S 1 

... 

... 

... 

... 

... 

... 

... 

... 

... 

S 2  

1 

3 

4 

S 2  

... 

2 l) 

... 

... 

1 l) 

... 

... 

10 l) 

... 

S 3 

1 

2 

4 

S 3  

... 

... 

... 

... 

... 

... 

... 

... 

... 

S 4  

1 

2 

3 

S 4  

... 

... 

... 

... 

... 

... 

... 

... 

... 



Multiprocessor Mode and Communication 

The link consists of two similarly structured sub-lists, each with 16 data words. For 
each of the four sender CPUs (Sl, S2, S3, S4) three entries are required to describe a 
link. 

Number of data fields 

The number of data fields specifies the size (= the number of data words) of 
the data word area to be transferred. (If links do not exist or you do not 
require them, enter 0 for the number of data fields, and for the DB type and 
DB number.) 

DB type 

Type of data block containing the data word area to be transferred. 

DB number 

Number of the data block containing the data word area to be transferred. 

As shown in the table, these entries can be read in and completed in lines. If, for 
example, you want to transfer the first two data fields in data block DB 10 from 
CPU 2 (S2) to CPU 3, make the following entries: 

CPU 2 (S 2) sends .. 

..to CPU 3 2 data fields from DB 10 

Sub-list 2 is identical to the assignment ("manual" mode) required for the 
INITIALIZE function (OB 200). Within the data block, sub-list 2 must occupy 
data words 0 to 15 and sub-list 2 data words 16 to 31. You must not alter the 
entries shown in bold face. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Program During restart, one of the CPUs calls the INITIALIZE function 
structure (OB 200) to reserve exactly the same number of coordinator memory fields per 

link as data fields to be transmitted on this link. 

To send and receive data word areas, each CPU uses two function blocks: 

FB no. Function 

SEND-DAT Send data word areas to the other CPUs 

RECV-DAT Receive data word areas from the other CPUs 

These FB numbers have been selected at random and you can use others. 

The function blocks SEND-DAT and RECV-DAT read the link list to determine 
which data word areas are to be sent from or received by which data blocks. The 
whole data word area is always sent or received. If this is not possible owing to 
insufficient transmitting or receiving capacity, the send or receive function is not 
executed. 

Note 
This example (IPC flag extension using function blocks SEND-DAT and 
RECV-DAT) can only run correctly when the special function organization 
blocks for multiprocessor communication OB 202 to OB 205 are not called in 
any of the CPUs. 

The function blocks SEND-DAT and RECV-DAT contain the special function 
organization blocks for multiprocessor communication OB 202 to OB 205. 
You cannot call these organization blocks outside SEND-DATIRECV-DAT. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Restart  OB to  reserve 
the buffer on the 
923C coordinator 

Cycl ic user program 
extended by the cal ls for 
the  RECV-DAT and SEND-DAT 
funct ion blocks. 

Funct ion block: SEND-DAT 
Send data blocks 

Funct ion block: RECV-DAT 
Receive data blocks 

Data block containing 
the l ink l ist 

Maximum three input and 
three output blocks 

DB xxx 
JU FB 100 
B E 

DB xxx 

l) 0 B  200 must 
only be cal led 
in one processor.  

4 

4 

evalu- 
ated 

DB YYY 
or land 
DX zzz 

Fig. 10-6 Overview of the blocks required in each CPU 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multi~rocessor Mode and Communication 

Programming 
function blocks 

Before you call FB 100, the data block containing the link list must be 
open. The function block SEND-DAT requires the number of the CPU on which 
it is called in order to evaluate the information contained in the link 

If the SEND function (OB 202) is not executed correctly in the function 
block, the error or warning number is transferred to the output parameter 
ERWA and RLO is set to 1. 
If the input parameter CPUN (CPU number) is illegal, ERWA has the value 16 
(bit no. 4 = 1). 
The function block SEND-DAT uses flag bytes FY 239 to FY 251 as scratchpad 

SEND-DAT 

Parameter name Significance Parameter Data type 

Number of the CPU on which FB 100 is called. 
The numbers 1 to 4 are permitted. 

ERWA Error/waming (see SEND function/ 

NAME : SEND-DAT 
DECL:CPUN I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG:KF 
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: 

OOOB :LW =CPUN CPUN = CPUN - 1 
OOOC :L KB 1 Error if: 
OOOD :-F 
OOOE :JM =ERWA CPU no. <l 
OOOF :L KB 3 
0010 :>F 
0011 :JC =ERWA CPU no. >4 
0012 :TAK 

Continued on the  next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

0014 :SLW 2 C W N  = CPUN * 4 
Base address 

0017 :L KB 1 
0018 :T FY 244 Link counter 

OOlALOOP :L FY 245 Base address 
OOlB :L FY 244 + counter 
OOlC :+F 

OOlE :ADD BN+16 + offset 

0021 :DO FW 242 
0022 :L D R O  Number of reserved 
0023 :T FY 239 fields = 0 ? 

0025 :!=F 
0026 :JC =EMPT 

0029 :L D L O  

0 0 2 ~  : JU OB  203 
002D :L FY 248 
002E :JC =OBER 

0030 :L FY 249 
0031 :L FY 239 
0032 :><F 
0033 :JC =EMPT 

0035 :L 
0036 :T FY 249 

0038 :B FY 240 
0039 :L DW 0 
003A :T FW 247 

003C TRAN :L KB 246 
003D : JU O B  202 
003E :L FY 250 
003F :JC =OBER 

0041 :L FY 249 
0042 :I 
0043 :T FY 249 
0044 :L FY 239 

0045 :<F 
0046 :JC =TRAN 

No. of the receiving CPU 

SF OB: 
"Test sending capacity" 
Abort if error 

Transmitting capacity >< no. 
of reserved fields? 

Field counter 

Type and number of 
the source DB 

SF OB: 
Send a data field 
Abort if error/warning 

Field no. = field no. + 1 

All data fields transferred ? 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

0048 EMPT :L FY 244 Increment 
0049 :I 1 link counter 
004A :T FY 244 
004B :L KB 4 All links 
004C :<F processed ? 
004D :JM =LOOP 
004E :L KB 0 Regular program end: 
004F :T =ERWA RLO = 0, ERWA = 0 
0050 :BEU 

0052 ERWA :L KB 16 Program end if error: 
0053 OBER :T =ERWA RLO = 1, ERWA contains 
0054 :BE error/warning number 

in which it is called in order to evaluate the information contained in the 
link list. 

If the RECEIVE function (OB 204) is not correctly processed within the 

FB 101 

RECV-DAT 

Number of the CPU, on which FB 101 is called. 
The numbers 1 to 4 are permitted. 

Continued on the  next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

FB l01 continued: 

SEGMENT 1 0000 
NAME:RECV-DAT 
DECL :CBUN I/Q/D/B/T/C: 
DECL :ERWA I/Q/D/B/T/C: 

OOOB :LW =CPUN 
OOOC :L KB 1 
OOOD :<F 
OOOE :JC =ERWA 
OOOF :LW =CPUN 
0010 :L K B 4  
0011 :>F 
0012 :JC =ERWA 
0013 : 
0014 :L KB 1 
0015 :T FY 242 
0016 : 
0017 :L KB 16 
0018 :T FW 244 
0019 : 
OOlA SRCH :L FW 244 
OOlB :I 1 
OOlC :T FW 244 
OOlD :DO FW 244 
OOlE :L DL 0 
OOlF :LW =CPUN 
0020 :><F 
0021 :JC =SRCH 
0022 : 
0023 :DO FW 244 
0024 :L DR 0 
0025 :T FY 243 
0026 :L KB 0 
0027 : !=F 
0028 :JC =EMPT 
0029 : 
002A :L FW 244 Determine the number of the 
002B :L KM 00000000 00001100 transmitting CPU from the 
002D :AW pointer to sub-list 2. 
002E :SRW 2 
002F :I 1 
0030 :T FY 246 
0031 : 
0032 :L KB 246 SF OB: 

0033 :JU OB 205 "Test receiving capacity" 
0034 :L FY 248 
0035 :JC = OBER Abort if error 
0036 : 

Error if: 

CPU no. <l 

CPU no. >4 

Link counter 

Pointer to sub-list 2 

Search sub-list 2 until 
the next entry for the 
receiving CPU with the 
numberrCPUN' is found. 

Number of reserved 
memory fields = 0 ? 

Continued on the  next page I 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

0037 :L FY 249 Receiving capacity = number 
0038  :L FY 243  of reserved 
0039  :><F memory fields ? 
003A :JC = EMPT 

003C RECV :L KB 246 SF  OB: 
: JU OB 2 0 4  "Receive a data field" 
:L FY 2 4 8  
:JM =OBER Abort if error/warning 
:L FY 2 4 9  if receiving capacity = 0 
:L K B O  process next link 

:JC ==CV 

0 0 4 5  EMPT :L FY 242  Increment 
link counter 

:T FY 242  
:L K B 4  All links 

processed ? 
:JM = SRCH 
:L K B O  Regular program end: 
:T =ERWA RLO = 0, ERWA = 0 

0 0 4 F  ERWA :L KB 1 6  Program end if error: 
0 0 5 0  OBER :T =ERWA RLO = 1, ERWA contains 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Application 
example 

You want to exchange data between three CPUs: 

- From CPU 1 to CPU 2: data block DB 3, DW 0 to DW 127 (= 4 data fields) 

- From CPU 1 to CPU 3: data block DX 4, DW 0 to DW 63 (= 2 data fields) 

- From CPU 2 to CPU 1 
and CPU 3: data block DB 5, DW 0 to DW 95 (= 3 data fields) 

DX 4, 2 data fields 

DB 5 ,  3 data fields 
F- CPU 3 

Fig. 10-7 Data exchange between 3 CPUs 

Function block FB 1 is the interface for the cyclic user program on all 
three CPUs. CPU 1 calls the INITIALIZE function (OB 200) during the cold 
restart. The link list is in data block DB 100. 

Continued on the  next page 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Imvlementation 

1. Loading blocks 

FB: RECV-DAT 

DB 5; DX 4 

2. Creating the link list 

PAGE 1 

Sub-list 1 - - 

KY = 001,003; 
KY = 002,004; 

KY = 001,005; 
KY = 001,005; 

KY = 000,000; 
KY = 000,000; 

KY = 000,000; 
KY = 000,000; 
KY = 000,000; 

Continued on the  next page 

Send from CPU 1 to .. .. CPU 2 (DB 3) .. CPU 3 (DX 4) 
Send from CPU 2 to .. .. CPU 1 (DB 5) .. CPU 3 (DB 5) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

Send from CPU 1 t o  .. .. CPU 2 ( four  data f i e l d s )  .. CPU 3 (two data f i e l d s )  

Send from CPU 2 t o  .. .. CPU 1 ( three  data f i e l d s )  .. CPU 3 ( three  data f i e l d s )  

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Multiprocessor Mode and Communication 

4. Program calls for the function blocks in FB 1 of the CPUs: 

The user program on each CPU is extended by the RECV-DAT and SEND-DAT call. 
Function block FB 1 shown below is for CPU 1. For the other CPUs, the input 
parameter CPUN (CPU number) must be modified. 

NAME : EM- SE 

:C DBlOO 
:JU FBlOl 

0003 NAME :RECV-DAT 
0004 CPUN : 
0005 ERWA : 

: JC =ERWA 

:C DB 100 
:JU FBlOO 

0012 NAME :SEND-DAT 
0013 CPUN : 
0014 ERWA : 

: JC =ERWA Abort if error/warning 

0018 ERWA : Run an error handling routine 
following an error/warning (here, 
the error handling routine is 
inserted, e.g. stop, output error 
message on printer or screen, 
or ..) 

Link list DB 100 
Receive the input 
data blocks 

Abort if error/warning 

Here, the cyclic user program 
that reads data from the inpu 
data blocks and enters data in 
the output data blocks is 
inserted. 

Link list DB 100 
Send the output 
data blocks 

CPU 9286-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Contents of the This chapter explains how to connect your PG to the CPU 928B and the 
chapter functions provided by the PG software with which you can test your STEP 5 

program. 
If you only use the standard PG interface (1st serial PG interface) you do not 
need to read Section 11.5. This section tells you about further interfaces with 
which you can connect a PG to your CPU. It also contains points to note if you 
use PG functions on both interfaces. 

Overview of the 
chapter 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

11.1 

11.2 

11.2.1 

11.2.2 

11.2.3 

11.3 

11.4 

11.5 

11.5.1 

11.5.2 

11.5.3 

Description 

Overview 

PG Functions 

Information 

Memory Functions and Transfer Functions 

Program Test 

Activities at Checkpoint 

Serial Link PG - PLC via 1st or 2nd Serial Interface 

Parallel Operation of Two Serial PG Interfaces 

Installation 

Operation 

Sequence in Certain Operating Situations 

Page 

11-2 

11-3 

11-5 

11-5 

11-7 

11-15 

11-16 

11-17 

11-19 

11-19 

11-21 



PG Interfaces and Functions 

11 .l Overview 

Link CPU - PG You can load and test your user program using the online functions of the 
STEP 5 software. 

To use these functions, the CPU must be connected to the PG. The following 
interfaces are available for this link: 

link via the serial standard interface "PG - PLC", 

link via the 2nd serial interface of the CPU 928B. 

The PG functions can operate simultaneously on the two serial interfaces. 

Overview of the PG functions provide the following support for installing and testing your 
PG functions STEP 5 program: 

Table 11-1 Functions for installation and testing 
I I I 

I Function I Section I 
I Info I 

Size of the internal RAM and free user 
memory 

"Memory configuration" l 
I List of loaded blocks I "Output DIR" I 

Display contents of memory wordslbytes 
and V 0  bytes 

"Output address" l 
I Memory management I 
I Delete the whole memory I "Overall reset" I 

Create more memory space 

Manage blocks 

"Compress memory 

"Transferldelete blocks" 

Program test 

I Display signal state of process variables I "Status variables" I 

Startlstop CPU 

Test the operation sequence in a block 

Test single program steps 

"Startlstop" 

"Status block" 

"Program test" 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Output signals in the stop mode 

Display/change process variables 

"Force" 

"Force variables" 



PG Interfaces and Functions 

11.2 PG Functions 

Note concerning The terms used in this section for the PG functions may in some cases differ 
some terms used from the terms in your PG software. 

Calling and How to call and use the individual PG functions is described in the STEP 5 
using functions manual. 

Note 
The COMPRESS MEMORY function is rejected as long as OB 186 is 
compressing the memory. Other PG functions can only be used with certain 
restrictions. 

I As long as a PG function is active, OB 186 is rejected. I 

Execution The PG functions are executed at defined points in the programmable controller. 
There are points in the system program (= system checkpoints) and points in the 
user program (= user checkpoints). 

System In the STOP mode there is the system checkpoint "stop" that is called regularly. 
checkpoints 

In the RUN mode there is the system checkpoint "cycle" that is called at the end 
of the program processing level CYCLE before the process image is updated. 

If the CPU is in the WAIT state, the system checkpoint "wait state" is called 
regularly. 

There is also a time-dependent system checkpoint "asynchronous". This system 
checkpoint is inserted asynchronously during program execution. 

User checkpoints In the test functions STATUS and PROGRAM TEST, user checkpoints are used. 
A user checkpoint is called when a command is executed that is marked 
accordingly by the PG. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

WAIT STATE So far you have come across the modes STOP, RESTART and RUN. When 
using the online function PROGRAM TEST, the CPU has a fourth mode, the 
WAIT STATE. When the CPU is in the WAIT STATE, you can call further 
online functions. 

Features of the The user program is not processed in the wait state. 
wait state 

LEDS on the front panel: RUN-LED: off 
STOP-LED: off 
BASP-LED: on 

All the timers are "frozen", i.e. no timers are running (i.e. the timers are not 
changed). All system timers such as for closed loop control and time-driven 
processing are also stopped. 
Once the CPU exits the WAIT STATE the timers start running again. 

Causes of interrupts, for example PEU, BAU, MPSTP or the stop switch are 
registered in the WAIT STATE, however, there is no reaction. 

Interrupts If causes of interrupts are registered in the WAIT STATE, the appropriate 
program processing levels are called immediately after the WAIT STATE is 
exited. 

If NAU occurs, the WAIT STATE is exited and the PROGRAM TEST online 
function is aborted. Following POWER ON, BARBEND is marked in the control 
bits. You can only exit the stop mode with COLD RESTART. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.2.1 Information 

Memory The "Memory configuration" programmer function shows you the highest usable 
configuration address of the RAM submodule ("0" is displayed in the case of EPROM) and the 

last address of the memory submodule occupied by blocks of the user program. 

Output address With the "output address" function, you can display the contents of memory and 
I10 addresses in hexadecimal format. You can access all addresses (RAM, S5 
bus, areas with no modules assigned). In the process image area no ADF is 
triggered, in the I10 area there is no QVZ. 

In the areas addressed as bytes (flags, process image) the high byte is represented 
as 'FE'. 

In the I10 area, the high byte is output as "00" in the case of acknowledging 
addresses. If an I10 module does not acknowledge, the high byte is displayed 
as 'FE'. 

11.2.2 Memory Functions and Transfer Functions 

Overall reset With the function "delete all blocks" you can carry out an overall reset of the 
CPU from the PG. The overall reset is carried out unconditionally (refer to 
Section 4.3.2). 

If the CPU is in RESTART or RUN when "Delete all blocks" is called, a 
transition to the Stop state is executed first. Organization block OB 28 is called 
here if it is loaded. 

Overall reset is not permissible as long as "Program test" is active! l 
Compress This function optimizes the memory space occupied by blocks. The space taken 
memory up by blocks marked as invalid is overwritten by the valid blocks of the user 

program (the block is rewritten to a different memory area). Following this, the 
blocks are located from the beginning of the memory, one after the other without 
gaps between them. 
This function is performed separately in the RAM submodule and in the DB 
RAM and is executed at the system checkpoints "cycle" and "stop". 

With the CPU 928B, the COMPRESS MEMORY function is always possible in 
the STOP mode, even if the BSTACK is not empty. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Caution 
After COMPRESSING memory in the STOP mode, you can only restart 
with a COLD RESTART. The ISTACK and BSTACK are not updated. 

Power down If there is a power down during the compressing function, no further block is 
during rewritten. If you call the COMPRESS MEMORY function again following the 
compressing return of power, the function is continued. 

Errors in the The COMPRESS MEMORY function detects the following errors in the block 
block memory memory: 

wrong block length 

corrupted pattern "7070" in the block header 

invalid block type (with OBs invalid block number). 

The function is then terminated and a message is displayed at the PG. You must 
then perform an overall reset. The function can only be called again following 
the overall reset. 

Note 
You cannot use the COMPRESS MEMORY function as long as the 
PROGRAM TEST is active. 

Transfer block With this function you can transfer new or existing logic and data blocks to the 
user memory of the CPU or to the internal DB-RAM of the CPU. 

If a block already exists in the user memory of the CPU, it is declared invalid and 
the new block becomes valid. A block will only be declared invalid when it is 
not being processed. 

Delete block With this function you declare a logic or data block in the user memory as 
invalid. A block will only be declared invalid when it is not being processed. 

The space occupied by these blocks can be used for other blocks via the 
"Compress memory" function. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.2.3 Program Test 

Start/stop When you use the START and STOP PG functions, operating the PG 
corresponds to manual operation. 

You can put the programmable controller into the STOP mode by calling the 
STOP function while the controller is in the RUN mode. 

You will see the following display for the CPU connected to the PG: 

STOP-LED: on 

BASP-LED: off 

PG-STP is marked in the control bit display. In multiprocessor operation, the 
MP-STP control bit is set for the other CPUs. 

You exit the SOFT STOP status with a COLD RESTART or WARM 
RESTART. In the single processor mode, the CPU exits the stop mode. In 
multiprocessor operation, the restart type is registered initially (the NEUST or 
MWA control bit is set). However, the CPU stays in the soft STOP mode until 
all CPUs are initialized for multiprocessing. With the next operation "system 
start" you can start the programmable controller. This corresponds to operation 
via the coordinator (switch to RUN). 

You can call the START PG function in the multiprocessor mode to select the 
restart type you want for all the CPUs you are using. After that, you can start the 
programmable controller with the last CPU. 

COLD RESTART PG function: 
MANUAL COLD RESTART of the CPU is executed. 

WARM RESTART PG function: 
Depending on the setting in DX 0, MANUAL WARM RESTART or 
RETENTIVE MANUAL COLD RESTART is executed. 

Status block You can call the "status" PG function to test related operational sequences 
(STEP 5 operations) in one block at any location in the user program. 
The current signal status of operands, the accumulator contents, and the RLO are 
output on the PG screen for every executed operation in the block (i.e., step 
mode). You can also use this function to test the parameter assignment of 
function blocks (i.e., field operation): 
The signal status of the actual operands is displayed. 

Calling the When you call the "status" function on a PG and enter the type and number of the 
function and block you want to test (possibly including the nesting sequence and search key), 
specifying a you enter a breakpoint. 
breakpoint 

When the "status" function is called during program processing in the RUN 
mode, program processing continues until it reaches the operation marked by the 
specified breakpoint in the correct nesting sequence. Then the system program 
executes each of the monitored operations up to the operation boundary, 
outputting the processing results to the PG. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Calling the You can auch activate the STATUS function in the STOP mode. You can then 
function in the carry out either a COLD RESTART or a MANUAL WARM RESTART. The 
STOP mode CPU executes the program up to the marked operation. The data for the desired 

operation are then output. This means that the "Status" function is also suitable 
for, e.g., testing the user program in restart or in the first cycle. 

Note 
The results of operation processing are not output in each of the program 
cycles. 

Nesting and 
interruptions 

Program test 

A sequence of operations marked by a breakpoint is completed even if a different 
program execution level (e.g., an error OB or interrupt OB) is activated and 
processed. With this you can see whether data has been changed by nested 
program sections. 

If an interruption in a nested program execution level puts the CPU into the 
STOP mode, data is output up to the operation that was executed before the 
program execution levels changed. The data of the remaining operations is 
padded with zeros (the SAC is also 0). 

If the CPU changes from one operating mode to another (e.g., RUN - STOP - 
MANUAL WARM RESTART), the function remains active. "Status" is 
terminated by pressing the abort key on the programmer. 

You can call the "program test" function to test individual program steps 
anywhere in your user program. When you do this, you stop program processing 
and allow the CPU to process one operation after the other. The PG outputs the 
current signal status of operands, the accumulator contents, and the RLO for each 
operation executed. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Calling the To call the "program test" function, specify the type and number of the block 
function and (if necessary with nesting sequence) you want to test. At the PG, mark the first 
specifying the operation, whose data are to be output. This is how you specify the first 
first breakpoint breakpoint. BARB is marked in the control bits. Command output is disabled 

(BASP LED = on). 

Caution 
If you set Test mode on the coordinator, command output is not disabled 
(BASP LED = off). If commands are now processed which change the 
digital I10 or if the CPU updates the process image, the I10 modules output 
appropriate signals. 

Calling in When you specify the first breakpoint during program processing, the CPU 
RESTART and continues processing the program until it reaches the operation marked by the 
in RUN specified breakpoint. The operation is executed up to the operation boundary. 

(The DO FW and DO DW operations are processed including the substituted 
operation.) 
The CPU then goes to the WAIT STATE. The data of the marked and last 
executed operation are output there. 

Calling test You can also call the "program test" function and specify an initial breakpoint 
functions in when the CPU is in the soft STOP mode. The CPU remains in the soft STOP 
SOFT STOP mode, and you can execute either a COLD RESTART or a MANUAL WARM 

RESTART. The CPU processes the program up to the marked operation and it 
proceeds as outlined above. 

Executing the Initial situation: the CPU is in the WAIT STATE. 
function and 
specifying To continue the function, you have two possibilities: 
another 
breakpoint 1. Specify the next operation as the following breakpoint: 

Move the cursor down to the next operation to specify the following 
breakpoint. The CPU continues by processing this operation up to the 
operation boundary. Then the CPU outputs the data and waits for further 
instructions from the PG. 

However, if a nested program execution level interrupts operation processing 
at the following breakpoint, the CPU processes the nested program first. Then 
the CPU returns to the 2nd breakpoint that you specified. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Note 
You cannot specify a following breakpoint when the CPU is in the STOP 
mode. 

2. Specify a new breakpoint: 

At the PG, specify any other operation in the same block or in a different 
block. The CPU continues program processing until it reaches the new 
breakpoint. The operation is processed fully. The CPU then goes to the 
WAIT STATE and outputs the data there. 

You can also run the program through a whole cycle (cyclic test), by setting 
the breakpoint at the same operation as previously in the WAIT STATE. 
Remember, however, that the operation must not be in a program loop. In this 
case, the loop is run through once; and the program execution does not go 
beyond the end of the cycle. 

Note 
You can call other functions, such as OUTPUT DIR, STATUS 
VARIABLES or FORCE VARIABLES in the WAIT STATE. Once 
program execution is continued after exiting the WAIT STATE, the timers 
and system timers continue to run until the next breakpoint is reached. 

Cancelling the If a specified breakpoint has not yet been reached, you can cancel it by pressing 
breakpoint the break key on the PG. The CPU then changes to the WAIT STATE. You can 

then select a new breakpoint or call PROGRAM TEST END. 

Aborting the If you call the PROGRAM TEST END function during program execution, in 
function the WAIT STATE and in the STOP MODE, you can terminate the function. The 

CPU goes to the STOP mode (or remains in the STOP mode). The STOP LED 
flashes slowly. BARBEND is marked in the control bits. Following this you 
must perform a COLD RESTART. 

If an interface error (break on the PG cable) or NAU occurs during the 
PROGRAM TEST function, the function is terminated as described above. 

Nesting When the PROGRAM TEST function is active, other program processing levels 
can be inserted after the WAIT STATE is exited. 

When the operation is processed at the breakpoint and if a different program 
processing level is called at this point (e.g. an error OB, a process interrupt or a 
time-driven interrupt) this is inserted and completely processed only when the 
WAIT STATE is exited again. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Note 
The data are read at the operation boundary and output there. Program 
processing levels which may have been inserted after this point are not yet 
processed. 

The sequence of the "program test" function is illustrated in Fig. 11-1. 

I Execute ope- I 
1st b r e a k p o i n k  ration and 1 read data 1 

Next , <,,,, Process interrupt, timed 
breakpoint - interrupt, error OB 

WAIT STATE (output data) 

I , ,,,,, Process interrupt, timed 

I interrupt, error OB 

Fig. 11-1 Sequence of "program test" 

If requests such as PEU, MP-STP, stop switch etc. occur during the WAIT 
STATE, these are only registered. These can become active immediately after 
the CPU exits the WAIT STATE: A program processing level is inserted or an 
interrupt leads to the STOP mode. 
The reaction depends on the order in which the events occurred. Simultaneous 
requests have an order of priority. 

Note 
When the CPU is in the WAIT STATE and the insertion of a program 
processing level is requested, you can set a breakpoint at an operation in the 
inserted program section. This allows you, for example, to monitor the QVZ 
error OB immediately after an operation that triggers a QVZ. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Interruptions Program processing (RESTARTIRUN) += STOP mode: 
If an interruption occurs during program processing (e.g., multiprocessor 
stop, I10 not readyISTOP, error OB not programmed etc.) before the program 
reaches the specified breakpoint, the CPU goes into the STOP mode 
immediately. If you execute a COLD RESTART or a MANUAL WARM 
RESTART, the "program test" function is still in effect and the breakpoint is 
still set. 

Program processing at breakpoint (RESTARTIRUN) += STOP mode: 

If stop conditions occur at the breakpoint or following breakpoint during 
program processing, the CPU goes directly into the soft STOP mode and 
outputs the data. 
If you do not specify a new breakpoint while the CPU is in the STOP mode, 
the "program test" function is still in effect after the restart. 

Wait state += STOP 

Causes of interrupts occurring in the WAIT STATE (e.g. MP-STP, PEU, I10 
not ready, stop switch) or resulting from the previous operation (error causing 
the CPU to stop) are registered, however, the CPU remains in the WAIT 
STATE. The causes of interrupts only bring about a transition to the STOP 
mode after you have specified a new breakpoint in the WAIT STATE and the 
CPU has exited the WAIT STATE. The specified breakpoint is not reached. 
If you then carry out a RESTART (COLD RESTART or MANUAL WARM 
RESTART) the new breakpoint remains set. 

Note 
If you switch the CPU to stop using the stop switch while it is in the 
WAIT STATE, it only goes into the STOP mode after exiting the 
WAIT STATE. 

If causes of interrupts bring the CPU to the STOP mode during the 
PROGRAM TEST, the PROGRAM TEST function (and any breakpoint 
you may have specified) remain active after the restart. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Status variables Using the "status variables" function, you can display the current signal states of 
certain operands (process variables). 

The function activates system checkpoints in the CYCLE, in the STOP MODE 
and in the WAIT STATE. 

When a checkpoint is reached, the PG displays the present signal status of the 
desired process variable. You can specify all process variables (inputs, outputs, 
flags, timers, counters and data words). No addressing error (ADF) is triggered 
in the process image area when accessing an address for which there is no V 0  
available. 

The function If the function is activated in the RESTART or RUN modes, program execution 
during program is continued until the system checkpoint "cycle" is reached. The signal states of 
execution the operands are then scanned and output at the end of the cycle. Inputs are read 

from the process image. Providing the function is not aborted, the signal states 
are updated during program execution. In this case the signal states are not 
scanned at every system checkpoint. 
If the system checkpoint "cycle" is not reached, the signal states are not output 
(e.g. in a continuous loop in the user program). 

The function in If the STATUS VARIABLES function is active in the STOP mode, the signal 
the STOP mode states of the operands are output as they stand at the system checkpoint "stop". 

The important point to note here is that the inputs are scanned directly (not from 
the process image) and output. This feature, for example, allows you to check 
whether an input signal actually reaches the CPU. Even in multiprocessor 
operation, you can specify all inputs regardless of the assignment in DB 1. The 
outputs are read from the process image. 

The function in You can also call the STATUS VARIABLES function when the CPU is in the 
the WAIT STATE WAIT STATE caused by the PROGRAM TEST function. The signal states of 

the operands are scanned at the system checkpoint "wait state" and output. As in 
the stop mode, the inputs are scanned directly and the outputs are read from the 
process image. 

Changing the When the CPU changes from one mode to another (e.g. RUN += STOP += 

operating MANUAL WARM RESTART), the function remains activated. STATUS 
stateberminating VARIABLES is terminated by pressing the break key on the programmer. 
the function 

The variables are not output in every program cycle. l 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Force 

Function 
sequence 

Using the FORCE function you can set the output bytes of the programmable 
controller to a particular signal state directly (avoiding the process image) or you 
can recognize process interface modules (digital peripherals 0 to 127) that do not 
acknowledge (message on the PG). You can check and directly control the 
process devices (actuators e.g. motor, valve) supplied with signals by the outputs. 

The "force" function is only permitted in the stop mode. l 
When you call the function in the STOP mode, the command output disable 
function is cancelled (BASP = inactive). The whole digital peripheral area 
(FOOOH to F07FH) is cleared, and the value "0" is written to each address. You 
cannot interrupt this function while the peripherals are being cleared. 
The peripheral outputs are forced in bytes directly and without affecting the 
process output image. 
In multiprocessor operation, you can force all peripheral outputs (regardless of 
the peripheral assignment in DB 1). 

When the function is active (message "End of force fct" on the PG), you can 
perform a COLD RESTART or a MANUAL WARM RESTART. If the CPU 
once again changes to the STOP mode, you can use the force function again. The 
process interface output modules are not cleared in this case. 

Terminating the You terminate the function by pressing the break key on the PG. The command 
function output disable function is once again activated 

(BASP LED = on). 

Force variables Using the PG function FORCE VARIABLES, you can change the values of 
operands (process variables) once. You can do this in any CPU mode. You can 
specify all process variables. If you attempt to access an address in the range of 
the process image for which there is no 110, no ADF is triggered. 
The modification becomes effective asynchronously to the system checkpoints, 
i.e. not till the end of the cycle. Remember that the forced values can be 
ovenvritten later (e.g. by the user program or when the process image is updated). 

Note 
The PG forces the I, Q and F process variables in bytes and the DW, T 
and C variables in words. 

If you force several operands, the modified bytes (for DW, T and C the 
words) are changed in the CPU memory, distributed over several function 
calls. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.3 Activities at Checkpoints 

0 vervie W The table below shows you which activities of the PG functions are executed at 
the checkpoints. 

Table 11-2 Activities at checkpoints 

l) Activities distributed over more than 1 system checkpoint 
Maximum one block per system checkpoint 

3, After compressing the memory in STOP, only COLD RESTART is permitted. 

Activities of the online 
functions 

Input of the address: 
write data1) 

Block input: 
declare block as valid 

Delete block 

Compress memory: 
shift blocks1) ') 

STARTISTOP 

OVERALL RESET 

STATUS: read and output data 

STATUS VARMLES: read 
and output data 

PROGRAM TEST: 
preset breakpoints 
read and output data 

FORCE (process interface modules)') 

FORCE  VARIABLE^) 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

User 
check- 
point 

"Stop" 

* 3) 

System 

"Cycle" 

checkpoint 

"Wait 
state" 

"Asyn- 
chronous " 



PG Interfaces and Functions 

11.4 Serial Link PG - PLC via 1st or 2nd Serial Interface 

Link possibilities For the serial link PG - PLC there are the following possibilities: 

Direct link to the CPU via the standard cable. 

Link to the PG via the coordinator COR 923C. In this case the PG is 
connected via the cable to the coordinator. This means that the 1st serial 
interface is no longer available. 

Link to the PG via a PG multiplexer 757. The permitted cables can be found 
in the S5-135Ul155U System Manual (121 in Chapter 13). 

Link to the PG via SINEC Hl/L2/Ll and "swing cable"; the 
COR 923C or PG multiplexer can be connected in the link. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.5 Parallel Operation of Two Serial PG lnterfaces 

Introduction You can use the second interface on the CPU 928B (S1 2) as a PG interface in 
exactly the same way as the first interface. 

To be able to link your PG via this interface, you must also order the PG 
interface module in addition to your CPU 928B (the order number is listed in the 
S5-135Ul155U System Manual 120. 

Fig. 11-2 Using the second interface as a PG interface 

All the PG functions are available on both interfaces. The following sections 
contain only the information that you require if you work with PGs or OPs on 
both interfaces simultaneously. 

. 
0 . . . . • • 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

1 

\ 

Interface 
submodule PG 

- 

0 

- 
S12 

PG 



PG Interfaces and Functions 

Examples of 
configurations 

- S12 PG connected d~rectly 

Fig. 11-3 First example of a configuration 

- S11 OP connected directly 
(for operating and monitoring) 

- S12 PG connected directly 
(for programming) 

Fig. 11-4 Second example of a configuration 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.5.1 Installation 

Procedure To use the second interface of the CPU 928B as a PG interface, follow the steps 
below: 

1. Install the PG submodule in the CPU 928B. 

2. Connect the PG to the serial interface S12. 

11.5.2 Operation 

Range of If you use the second interface as a PG interface then initially the full range of 
functions functions of the standard PG interface is available on each interface. This 

remains true, providing the individual functions do not influence each other, i.e., 
called sequentially one after the other. 

To understand the exceptions to this, the PG functions can be divided into three 
groups: 

Caution 
With long-running and cyclic functions you must coordinate the activation 
of these functions on both PGs. 

Group 

Short-running functions 

Long-running functions 

Cyclic functions 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Name 

Functions that execute a job and then are terminated. 
(e.g. "transfer", "delete" etc.) 

Functions that process a fixed number of jobs: 
- "force", 
- "program test". 

Functions that execute a job repeatedly until you 
terminate them: 

- "status block", 
- "status variables", 
- "force variables". 



PG Interfaces and Functions 

The table below lists the pairs of functions that you cannot work with 
simultaneously. 

Table 11-3 Functions which cannot run simultaneously on both PGs 
I I I 

l Function active on the first PG: You must not activate this function on 
the second PG 

I "Force" I Any function I 
"Program test" 

A "status" function" 

Any function 

"Force" 

A "status" function" 

A "status" function" 

If you attempt to start one of the illegal functions, the second PG displays an 
error message, e.g.: "ASfunction disabled: function active". 

"Program test" 

"Overall reset" 

"Status" on long running blocks or 
blocks which are not processed 

The same error message or "Overflow in data exchange with PG" appears if the 
CPU 928B is currently processing functions of the other PG, which prevent your 
PG accessing the CPU within the monitoring time. Your input is then rejected. 
Repeat your input once the functions are completed on the other PG. 

Any function 

Note 
Owing to the different performances and range of functions, time 
monitoring and the response to errors is not identical in all PGs and OPs. 

If you activate the function "memory configuration" simultaneously on both 
PGs, the displays may be incorrect. 

Caution 
If you input, correct or delete blocks online on both PGs simultaneously, 
you must make sure that the blocks are not protected by the other PG before 
you access them. 
"Status" of a block which is not processed or "status" in the STOP mode 
blocks the other interface for all functions. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

11.5.3 Sequence in Certain Operating Situations 

Parallel If you work with PGs on both interfaces simultaneously, both PGs want to 
operation with execute their functions independently of each other. As long as they stagger the 
short-running jobs they send to the CPU, the jobs will be processed in the order in which they 
functions arrive. 

The situation may, however, arise that the CPU 928B either receives two jobs 
simultaneously or receives a job from the second PG while a job from the first 
PG is still active. 
Since simultaneous processing is not possible, the jobs are processed one after 
the other; the second job is, however, delayed by such a short time that it is 
hardly noticeable for the user. 

When jobs are sent simultaneously, the sequence is as follows: 

User on PG 1 CPU 9288 User on PG 2 

lnpu t  at  keyboard of PG 1 -l r Input at  keyboard  of  PG 2 

Interpretat ion of  input  1 in PG 1 Interpretat ion of  input  2 in PG 2 

Job 1 t rans fe r red  to  the  CPU 4 1 , 

Job  2 t ransferred to  the  CPU 
Resu l ts  of iob 1 in te rmeted  r 

Job 1 processed in t h e  CPU 

Resul ts of  iob 1 t rans fe r red  to  PG 1 

+ 4 Job 2 p rocessed in the  CPU 
Resul ts of job 1 d isplayed 
on PG 1 Resul ts of  job 2 t rans fe r red  to  PG 2 

* Here PG 2 must wait 
until the CPU 

* processed job 1. 

Resul ts of  job 2 interpreted at  PG 2 

4 Resul ts of  job 2 d isp layed  on  PG 2 

Fig. 11-5 Handling simultaneous jobs 

From this sequence, you can see that both PGs can operate independently from 
each other, but that the one nevertheless affects the other. 
It is possible that both PGs process the same block simultaneously or that a block 
currently being processed by one PG is deleted by the other PG. 
With this configuration, you must always take into account the way in which 
input at one PG affects the other PG. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Parallel The long-running functions "force" and ""program test" cannot interrupt other 
operation with functions and cannot be interrupted by other functions. They can therefore not be 
long-running executed parallel to other functions, i.e. they are treated as a standard job "en 
functions bloc". 

Parallel Cyclic functions can be executed both parallel to other cyclic and to 
operation with short-running functions. The following example shows the standard sequence of 
cyclic functions the "status variables" function. 

User on PG 1 CPU 928B User on PG 2 

PG 1 informs the CPU 
of the variables 
to be output. I 
PG 1 requests the 
current data.  7 

PG 1 requests the 
current data. 

PG 1 requests the 
current data.  

PG 1 must wai t  unt i l  
the CPU is f ree.  

PG 1 requests the 
current data.  

7 PG 2 sends a job 

PG 2 must wait unti l 
the CPU is f ree.  

Job sent by  PG 2 is processed 

r PG 2 job is complete 

4 

Fig. 11-6 Typical sequence of a cyclic function and parallel short-running function 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

To allow a second PG to send a job to the CPU, the status function is interrupted 
between two requests and then continued on completion of the inserted job. 
Since the interrupting function requires CPU facilities, the whole CPU system 
facilities must be divided between the two functions, e.g. the updating of the data 
output by the "status variables" function takes somewhat longer. 

With both PGs working simultaneously, the sequence shown in Figure 11.7 
results. 

This also applies when cyclic functions are active on both PGs; the two PGs then 
access the PLC alternately. 

User on PG 1 CPU 928B 

PG 1 in forms the CPU 
of the var iab les 
to  be  outaut. 'I 

User on PG 2 

PG 1 requests  the 
1 

current data.  'I 

PG 1 requests  the 
current  data.  F PG 2 sends the f irst job 

PG 2 must wait unt i l  
the CPU is  f ree.  

PG 1 requests  the 4- 

current data.  F i rs t  job of PG 2 i s  processed 

PG 1 must  wait unt i l  
the CPU 1s f ree.  L 

I First job of PG 2 complete 

PG 2 sends second job 

PG 1 requests  the 
current data. 7' l 
'l Second job sent  by  PG 2 IS processed 

PG 1 must  walt u n t ~ l  
the CPU is  free. 

l r L Second job of PG 2 complete 

Fig. 11-7 Sequence of two parallel cyclic functions 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



PG Interfaces and Functions 

Special feature If the interrupting function blocks the CPU 948 ("status" in a block that is not 
with cyclic executed) the interrupted function is also blocked. It can only be resumed when 
functions on the interrupting function is terminated. 
both PGs 

When working simultaneously with two PGs, the following sequence results: 

User o n  PG 1 CPU 928B User o n  PG 2 

PG 1 in forms the CPU 
of the variables 
to be output. 1 

1 
PG 1 requests the 
current data. 
(PG signals: status 
processing active) I 
PG 1 requests the 1 
current data. PG2 sends a new job 

(e.g. "Status P B  9"). 

PG 2 must walt u n t ~ l  
the CPU i s  free. 

PG 1 requests the 
current data. l 
PG 1 must wait unti l  
the CPU is f ree.  

Job sent by PG 2 is processed 

(PG s ignals :  status processing active) 

(PG signals: statement 
not processed) 

P- PG 2 aborts the STATUS f u n c t ~ o n ;  
The  CPU processes the abort request 

G PG 2 lob complete 

PG 1 receives new data 1 

Fig. 11-8 Sequence when a function blocks the CPU 928B 

General notes If "status variables", "force variables" (with the status display) or "status" is 
output on one interface and "compress memory", "delete block" or "transfer 
block" on the other, the status display can be corrupted. 

C P U  9 2 8 B - 3 U B 2 1  Programming Guide 
C 7 9 0 0 0 - G 8 5 7 6 - C 8 7 0 - 0 1  



Appendix 

Contents of Appendix A gives you additional information, such as runtime comparison, on 
appendix A several CPU types of the S5-135U programmable controllers. 

Overview of 
appendix A 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Section 

A. 1 

A.2 

A.3 

A.4 

A.5 

Description 

Runtime Comparison between CPU 928-3UA21, 
CPU 928B-3UB21 and CPU 948 

Error Identifiers 

STEP 5 Operations not Contained in the CPU 928B 

Identifiers for the Program Processing Levels 

Example "ISTACK Evaluation" 

Page 

A-2 

A-5 

A-13 

A-14 

A-15 



Appendix 

A.l Runtime Comparison between CPU 928-3UA21, CPU 928B-3UB21 
and CPU 948 

Definition of terms 
Basic time 

The basic time is the part of the cyclic system runtime required without updating 
the process image, without transferring IPC flags and without interrupts or errors. 

Response time 

The response time is the time from activating the program processing level 
PROCESS INTERRUPT for processing the first operation in OB 2. It is a 
prerequisite that OB 2 can be called immediately after recognizing the process 
intermpt. The response time is extended if the program waits until the next operation 
or block boundary 

Runtime comparison 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Operation l processing CPU 928-3UA21 

Typical operation execution times for bit operations: 

CPU 928B-3UB21 

with 
F, 1, Q 
D 
formal operands 

CPU 948 

0.9 ys 
23 ys 
22 ys 

Typical operation execution times for word operations: 

0.57 ys 
3.4 ys 
2.4 ys 

- load operations 
L (byte) 
L F W  (word) 
L FD (double word) 

- fixed point arithmetic 
- floating point arithmetic 

0.18 ys 
0.7 ys 

0.91 ys 

11 ys 
11 ys 
11 ys 

11 ... 23 ys 
25 ys 

Cyclic program execution (single processor mode) 

0.81 ys 
0.9 ys 
1.6 ys 

0.9 ... 10.4 ys 
9.1 ... 15.6 ys 

Basic time calling OB 1/FB 0: 

Additional time for updating the process 
image dependent on the number of 110 
bytes (n) 
where 0 < n ~ 1 2 8  

0.81 ys 
0.5 ys 

0.71 ys 

0.55 ... 3.8 ys 
3.3 ... 6.3 ys 

1041106 ys 

1: 14 ys + n X 1.1 ys 
Q: 5 y s + n X 4 . 1  ys 

651- ys 

n S 64: 
64 ys + n X 2.3 ps 

n > 64: 
92 ys + n X 2.3 ps 



Appendix 

l Operation / processing 1 CPU 928-3UA21 1 CPU928BJUB21 1 CPU948 I 
Additional time for transfer of IPC flags 
depending on the number of IPC flags (n) 
where 0 < n S 256 

Additional time for timer processing 
depending on the timer field length (TFL) 

TFL =O 
TFL #O 
n = number of currently active timers 
(time base: 10 ms) 

every 10 ms 
10 ys 

16 ys + TFL X 0.2 ys 
(no difference between active and inactive 

timers) 

every 10 ms 
11.6 ys 

16 ys + TFL X 0.2 ps 

1 Interrupt-driven program processing 1 
Extension of the cycle time by inserting an 
empty OB 2 (without STEP 5 operations) 
at an operation boundary 

Response time 1 270 ps 1 270 ps 1 175 ps 1 
l Time-driven program processing 1 

Extension of the cycle time by inserting an 
empty OB 13 (without STEP 5 operations) 
at an operation boundary 

310 ys for the first 
time interrupt OB 

170 ys for each 
further interrupt OB 
due at the same time 

310 ys for the first 
time interrupt OB 

170 ys for each 
further interrupt OB 
due at the same time 

1 Clock pulse for calling the time-driven 1 

Resolution times for clock-driven time 
interrupt (OB 9) 

10,20,50,100, 
200,500 ms, 

1 ,2 ,5  sec 

10,20,50,100, 
200,500 ms, 

1 ,2 ,5  sec 

every minute: 
every hour, 
every day, 

every month, 
every year, 

once 

basic pulse rate of 
1 ... 255 ms per 10 ms: 

10,20,50,100, 
200,500 ms, 

1 ,2 ,5  sec 
or 

10,20,40,80, 
160,320,640 ms, 

1.28,2.56 sec 

every minute, 
every hour, 
every day, 

every month, 
every year, 

once 

1 Resolution time for delay interrupt (OF3 6) 1 - 1 m s  1 m s  I 
l Cycle time monitoring I 

default 
selectable between 
triggerable 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

Operation / processing CPU 928-3UA21 

Size of the memory 

CPU 928B-3UB21 

Size of the user memory 
(in Kbytes) per submodule 

Size of the memory for data blocks 
@B-RAM, in Kbytes) 

CPU 948 

64 

approx. 46.6 

Timers and counters, flags 

64 

approx. 46.6 

Number of timers and counters 

Number of flags 

640 or 1664 

- 

256 each 

2048 flags 

256 each 

2048 flags 
t 8192 S flags 

256 each 

2048 flags 
t 32768 S flags 



Appendix 

A.2 Error Identifiers 

Error IDs in system 
data RS 3 and RS 4 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

RS 3 RS 4 Explanation 

Structure of the block address lists (Evaluation of DB 0) 

8001H 

8002H 

8003H 

8004H 

8005H 

yyyyH 

yyyyH 

yyyyH 

yy yyH 

yyyyH 

Wrong block length 
yyyy = addressof the block with the wrong length 

Calculated end address of the block in the memory is wrong 
yyyy = block address 

IllegalblockID 
yyyy = addressof the block with wrong ID 

Organization block number too high (permitted: OB 1 to OB 39) 
yyyy = address of the block with wrong number 

Data block number 0 (permitted: DB 1 to DB 255) 
yyyy = address of the block with the wrong number 

Structure of the address lists for updating the process image (Evaluation of DB 1) 

0410H 

0411H 

0412H 

0413H 

0414H 

0415H 

0419H 

041AH 

041BH 

041CH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

Illegal iD: 
- header ID missing or incorrect (correct KS MASKO1) 
- ID illegal (permitted KH DEOO, DAOO, CEOO, CAOO, BBOO) 
- end ID missing or incorrect (correct KH EEEE) 
yyyy = illegal ID 

"Digital iputs" , number of addresses illegal (permitted 0 ... 128) 
yyyy = illegal number of addresses 

"Digital outputs" , number of addresses illegal (permitted 0 ... 128) 
yyyy = illegal number of addresses 

"IPC input flags" , number of addresses illegal (permitted 0 ... 256) 
yyyy = illegal number of addresses 

" P C  output flags", number of addresses illegal (permitted 0 ... 256) 
yyyy = illegal number of addresses 

Illegal number of timers (permitted: 256) 
yyyy = illegal number of timers 

Timeout in the digital inputs 
yyyy = address of the non-acknowledged input byte 

Timeout in the digital ioutputs 
yyyy = address of the non-acknowledged output byte 

Timeout in IPC input flags 
yyyy = address of the non-acknowledged IPC flag byte 

Timeout in IPC output flags 
yyyy = address of the non-acknowledged IPC flag byte 

Evaluation of DB 2 

0421H 

0422H 

0423H 

0424H 

0425H 

0426H 

DByyH 

FByyH 

FByyH 

FByyH 

DByyH 

Data block not loaded 
yy = number of the non-loaded data block 

Function block not loaded 
yy = number of the non-loaded function block 

Function block not recognized 
yy = number of the non-recognized function block 

Function block loaded with wrong PG software 
yy = number of the function block 

Wrong closed loop controller data block length 
yy = number of the data block 

There is not enough space in the DB RAM to shift the closed loop 
controller DB from the user EPROM to the DB RAM 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

RS 3 RS 4 Explanation 

Evaluation of DX 0 

0431H 

0432H 

0434H 

0435H 

yyyyH 

yyyyH 

yyyyH 

yyyyH 

Illegal ID 
-header ID missing or incorrect (correct KS MASKXO) 
-field ID illegal 
-end ID missing or incorrect (correct KH EEEE) 
yyyy = illegal ID 

Illegal parameter 
yyyy = illegal parameter 

Illegal number of timers (permitted: 0...256) 
yyyy = wrong number of timers 

Illegal cycle monitoring time (permitted: lms to 13000ms) 
yyyy = incorrect time 

Evaluation of DX 2 

0451H 
0452H 

0453H 

0454H 

0455H 

0456H 

0457H 

0458H 

0459H 

0045AH 

yyyyH 

yyyyH 

xxOOH 

xxyyH 

xxyyH 

yyyyH 

xxOOH 

xxyyH 

xxOOH 

DX 2 length (without block header)< 4 words is not permitted 
DX 2 length (without block header) is too short for the link type 

yyyy = length of DX 2 
Type of link illegal 

yyyy = link type 
Data ID for static parameter set illegal (not 44H, 58H) 

xx = data ID 
Block for static parameter set illegal 

xx = ID / yy = DB number 
Static parameter set does not exist 

xx = ID / yy = DB number 
Static parameter set too short 

yyyy = number of the non-existent DW 
Data ID for dynamic parameter set illegal (not 44H, 58H, OOH) 

xx = data ID 
Block for dynamic parameter set illegal 

xx = ID / yy = DB number 
Data ID for send mail box / job mail box illegal (not 44H, 58H,OOH) 

xx = data ID 

Evaluation of DX 2 (continued) 

045BH 

045CH 

045DH 

045EH 

045FH 

0460H 

0461H 

xxyyH 

xxOOH 

xxyyH 

xxOOH 

xxyyH 

xxyyH 

yyyyH 

Block for send mail box 7 job mail box illegal 
xx = ID / yy = DB number 

Data ID for receive mail box illegal (not 44H, 58H, OOH) 
xx = data ID 

Block for receive mail box illegal 
xx = ID / yy = DB number 

Data ID for coordination byte illegal (not 44H, 58H, 4DH) 
xx = ID 

Block for coordination byte illegal 
xx = ID / yy = DB number 

Block for coordination byte does not exist 
xx = ID / yy = DB number 

Data word for coordination byte does not exist 
yyyy = number of non-existent DW 



Appendix 

Error IDs in ACCU 1 
and ACCU 2 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L ACCU-2-L 

REG-FE (closed loop controller error) 

Explanation 

0801H 

0802H 

0803H 

0804H 

0805H 

0806H 

0880H 

OB called 

DByyH 

DByyH 

FByyH 

FByyH 

FByyH 

DByyH 

OOyyH 

WECK-FE (collision of timed interrupts) 

Sampling time error 
yy = number of the affected controller data block 

Controller data block not loaded 
yy = number of the data block not loaded 

Controller function block not loaded 
yy = number of the function block not loaded 

Controller function block not regcognized 
yy = number of the function block not recognized 

Controller function block loaded with wrong PG software 
yy = function block number 

Wrong controller data block length 
yy = data block number 

Timeout (QV9 during controller processing 
yy = number of the V 0  byte that caused the QVZ 

1001H 

OB 34 

0016H 
0014H 
0012H 
OOlOH 
OOOEH 
OOOCH 
OOOAH 
0008H 
0006H 

BCF (operation code error)/substitution error 

Collision of timed interrupts - OB 10 ( 10 ms) 
Collision of timed interrupts - OB 11 ( 20 ms) 
Collision of timed interrupts - OB 12 ( 50 ms) 
Collision of timed interrupts - OB 13 (100 ms) 
Collision of timed interrupts - OB 14 (200 ms) 
Collision of timed interrupts - OB 15 (500 ms) 
Collision of timed interrupts - OB 16 ( l sec) 
Collision of timed interrupts - OB 17 ( 2 sec) 
Collision of timed interrupts - OB 18 ( 5 sec) 

1801H 
1802H 
1803H 
1804H 
1805H 

1806H 

OB 33 

- 
- 
- 
- 
- 

- 

BCF (operation code error) 

Substitution error with the DO RS operation 
Substitution error with the DO DW, DO FW operations 
Substitution error with the DO= , DI= operations 
Substitution error with the L= , = T operations 
Substitution error with the A=, AN=, 0 = ,  ON=, 

S= and RB= operations 
Substitution error with the RD=, LD=, ER=, SFD=, 

SR=, SP=, SSU= and SEC= operations 

1811H 
1812H 

1813H 

1814H 

1815H 

OB 27 

- 
- 

- 

- 

- 

Operation with illegal opcode 
Illegal opcode for an operation in which the high byte 

of the first operation word contains the value 68H 
Illegal opcode for an operation in which the high byte 

of the first operation word contains the value 78H 
Illegal opcode for an operation in which the high byte 

of the first operation word contains the value 70H 
Illegal opcode for an operation in which the high byte 

of the first operation word contains the value 60H 

OB 29 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L ACCU-2-L 

1821H 
182BH 
182CH 
182DH 
182EH 
182FH 
1830H 
1831H 
1832H 
1833H 
1834H 
1835H 

1836H 
1837H 
1838H 
1839H 
183AH 
183BH 
183CH 

Explanation OB called 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

LZF (runtime errors)/block not loaded 

BCF (operation code error)/parameter error 

Illegal parameter with the following: 

CDBO, 1 , 2  
JU(C) OB 0 
JU(C) OB >39: special function does not exist 
CX DX 0, CX DX 1 and CX DX 2 
LFW/rFW/LPW/rPW/LOW/TOW/LDD/TDD/DOFW: 255 
L IW/T IW/L QW/T QW 127 
L FD / T FD 253,254,255 
L ID/T ID/L QD/T QD 125,126,127 
RLDIRRDISSDISLD 33-255 
SLW/SRW/LIR/TIR 16-255 
SED/SEE 32-255 
A=/AN=/O=/ON=/S=/RB=/==/RD=/FR=/SP=/SR=/ 

SEC=/SSU=/SFD=/L=/LD=/LW=/T= 0,127-255 
DO=/LDW= 0, 126-255 
A S/O S/S S/= S/AN S/ON S/R S byte number > 1023 
A S/O S/S S/= S/AN S/ON S/R S bit number > 7 
L SY/T SY parameter > 1023 
L SW/T SW parameter > 1022 
L SD/T SD parameter >l020 
G DB/GX DX parameter 0, 1 or 2 (DB or DX 0, 1, 2 cannot 

be generated) 

1AOlH 
1A02H 
1A03H 

1A04H 
1A05H 
1A06H 
1A07H 

OB 30 

- 
- 
- 

- 
- 
- 
- 

LZF (runtime error)/load or transfer error 

Block not loaded for C DB operation 
Block not loaded for CX DX operation 
Block not loaded for JU(C) FB, OB 1 to OB 39, 

PB, SB operation 
Block not loaded for DOU/DOC FX operation 
Block not loaded for OB 254 or 255 operation 
Block not loaded for OB 182 operation 
Block not loaded for OB 150/OB 151 operation 

1A11H 
1A12H 
1A13H 
1A14H 
1A15H 
1A16H 
1A17H 
1A18H 
1A19H 

OB 19 

- 
- 
- 
- 
- 
- 
- 
- 
- 

Access to a non-defined data word with A/AN D, O/ON D, S/R D, = D 
Transfer error with TDR to a non-defined data word 
Transfer error with TDL to a non-defined data word 
Transfer error with TDW to a non-defined data word 
Transfer error with TDD to a non-defined data word 
Load error with LDR to a non-defined data word 
Load error with LDL to a non-defined data word 
Load error with LDW to a non-defined data word 
Load error with LDD to a non-defined data word 

OB 32 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L ACCU-2-L 

1A21H 
1A22H 

1A23H 
1A25H 
1A29H 
1A2AH 

1A2BH 
1A2CH 
1A31H 

1A32H 

1A33H 

1A34H 
1A34H 
1A34H 
1A34H 
1A34H 
1A34H 
1A34H 

1A34H 

1A34H 
1A34H 
1A34H 

1A34H 

Explanation OB called 

- 
- 

- 
- 
- 
- 

- 
- 
- 

- 

- 

OOOlH 
OlOOH 
OlOlH 
0102H 
0200H 
0201H 
0202H 

0203H 

0210H 
0211H 
0212H 

0213H 

LZF (runtime error)/other runtime errors 

Error indicated for ... /by ... : 
G DB, GX DX: data block already exists 
G DB, GX DX: illegal number of data words 

(< 1 or > 4091) 
G DB, GX DX: not enough space in the RAM 
DI: illegal parameter in ACCU 1 (< 1 or > 125) 
Bracket stack under of overflow after 'A(', 'O(, ')' 
C DB, CX DX: block length in data block header too short 

(length <5 words) 
Function block loaded with wrong PG software 
ACR: illegal page number in ACCU-1-L (> 255) 
OB 254 or OB 255 (shift) or OB 250: 

destination data block already exists in DB-RAM 
OB 254 or OB 255 (duplicate): 

destination data block already exists in DB-RAM 
OB 254 or OB 255 or OB250: 

not enough space in the DB-RAM 
OB 182: data field written to illegally 
OB 182: address area type illegal 
OB 182: data block number illegal 
OB 182: "number of the first parameter word" illegal 
OB 182: "source data block type" illegal 
OB 182: "source data block number" illegal 
OB 182: "number of the first data word in the source 

to be transferred" illegal 
OB 182: a value c 5 words is entered in the block header 

as the length of the source data block 
OB 182: "destination data block type" illegal 
OB 182: "destination data block number" illegal 
OB 182: "number of the first destination data word 

to be transferred" illegal 
OB 182: a value c 5 words is entered in the block header 

as the length of the destination data block 

OB 31 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L 

1A34H 

1A34H 
1A34H 
1A34H 
1A35H 
1A36H 

1A3AH 

1A3BH 

1A41H 

1A42H 
1A43H 
1A44H 
1A45H 

1A46H 
1A47H 
1A48H 
1A49H 
1A4AH 
1A4BH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 

1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4CH 
1A4DH 
1A4DH 
1A4DH 

ACCU-2-L 

0220H 

0221H 
0222H 
0223H 
- 
- 

- 

- 

- 

- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

OOOlH 
OlOOH 
OlOlH 
0102H 
0103H 

0201H 
0202H 
0203H 
0204H 
0205H 
0206H 
0207H 
0208H 
0209H 
020AH 
OOOlH 
OlOOH 
OlOlH 

Explanation 

LZF (runtime error)/other runtime errors (continued) 

Error indicated for ... /by ... : 
OB 182: "number of data words to be transferred" illegal 

(=0 or > 4091) 
OB 182: source data block too short 
OB 182: destination data block too short 
OB 182: destination data block in EPROM 
OB 250: number of the transfer block illegal 
OB 250: different length in DB X and DB x t l  or DX X 

and DX x t l  
OB 221: illegal value for the new cycle time (cycle time 

< l  ms or > 13 000 ms) 
OB 223: different start-up types for the CPUs involved in 

multiprocessor operation 
OB 240, OB 241 or OB 242: 

illegal shift register or data block number 
(no. < 192 or > 255) 

OB 241: shift register not initialized 
OB 240: not enough space in the DB-RAM 
OB 240: data word DW 0 dof the data block does not 

contain the value '0' 
OB 240: illegal shift register length in DW 1 

(not between 2 and 256) 
OB 240: illegal pointer position or number of pointers > 5 
OB 120: illegal value in ACCU l or ACCU-2-L 
OB 122: illegal value in ACCU l 
OB 110: illegal value in ACCU l or ACCU-2-L 
OB 121: illegal value in ACCU l or ACCU-2-L 
OB 123: illegal value in ACCU l 
OB 150: function number illegal (= 0 or > 2) 
OB 150: address area type illegal 
OB 150: data block number illegal 
OB 150: "number of the first data field word" illegal 
OB 150: a value c 5 words is entered in the block header 

as the length of the data block 
OB 150: year specified in data field illegal 
OB 150: month specified in data field illegal 
OB 150: day of month specified in data field illegal 
OB 150: weekday specified in data field illegal 
OB 150: hour specified in data field illegal 
OB 150: minute specified in data field illegal 
OB 150: second specified in data field illegal 
OB 150: "11100 second" specified in data field not 

equal to 0 
OB 150: data field word 3 bits 0 to 3 not equal to 0 
OB 150: hour format does not match setting in OB 151 
OB 151: function number illegal (= 0 or > 2) 
OB 151: address area type illegal 
OB 151: data block number illegal 

OB called 

OB 31 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L 

1A4DH 
1A4DH 

1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 
1A4DH 

1A4EH 

1A4FH 
1A4FH 

1A50H 

1A51H 

1A52H 

1A53H 

1A54H 

1A55H 

1A56H 

1A57H 

ACCU-2-L 

0102H 
0103H 

0201H 
0202H 
0203H 
0204H 
0205H 
0206H 
0207H 
0208H 
0209H 
020AH 

OOOlH 

OOOlH 
0002H 

- 

- 

- 

- 

- 

- 

- 

- 

Explanation 

LZF (runtime error)/other runtime errors (continued) 

Error indicated for ... /by ... : 
OB 151: "number of the first data field word" illegal 
OB 151: a value c 5 words is entered in the block header 

as the length of the data block 
OB 151: year specified in the data field illegal 
OB 151: month specified in the data field illegal 
OB 151: day of month specified in the data field illegal 
OB 151: weekday specified in the data field illegal 
OB 151: hour specified in the data field illegal 
OB 151: minute specified in the data field illegal 
OB 151: second specified in the data field illegal 
OB 151: "11100 second" specified in data field is not equal to 0 
OB 151: job type in data field illegal (> 7) 
OB 151: hour format does not match setting in OB 150 

OB 152: function number illegal (not 0 to 3 or 
8 to 15) 

OB 153: function number illegal (=0 or <O) 
OB 153: delay time illegal 

LRW, TRW: the calculated memory address c BR + constant> 
is not in the range "0 .. EDFFH" (see Chapter 9) 

LRD, TRD: the calculated memory address c BR + constant> 
is not in the range "0 .. EDFEH" (see Chapter 9) 

TSG, LY GB, LW GW, TY GB, TW GW: 
the calculated linear address c BR + constant> 
is not in the range "0 .. EFFFH" 

LY GW, LW GD, TY GW, TW GD: 
the calculated linear address c BR + constant> 
is not in the range "0 .. EFFEH" 

LY GD, TY GD: 
the calculated linear address c BR + constant> 
is not in the range "0 .. EFFCH" 

TSC, LY CB, LW CD, TY CW, TW CD: 
the calculated page address c BR + constant> 
is not in the range "F400H .. EBFFH" 

LY CW, LW CD, TY CW, TW CD: 
the calculated page address c BR + constant> 
is not in the range "F400H .. FFFEH" 

LY CD, TY CD: 
the calculated page address c BR + constant> 
is not in the range "F400H .. FBFCH" 

OB called 

OB 31 



Appendix 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

ACCU-1-L 

1A58H 

1A59H 

ACCU-2-L 

- 

- 

QVZ (timeout) 

Explanation 

LZF (runtime error)/other runtime errors (continued) 

Error indicated for ... /by ... : 
TNWRNB: the source block is not completely in one of 

the following areas: 
0000 .. 7FFF user memory (see Chapter 9) 
8000 .. DD7F DB-RAM 
DD80.. E3FF DB 0 
E400 .. E7FF S flags 
E800 .. EDFF system data (RI, RJ, RS, RT, C, T) 
EEOO .. EFFF flags, process image 
F000 .. FFFF peripherals 

TNWRNB: the destination block is not completely in one of 
the following areas: 
0000 .. 7FFF user memory (see Chapter 9) 
8000 .. DD7F DB-RAM 
DD80.. E3FF DB 0 
E400 .. E7FF S flags 
E800 .. EDFF system data (RI, RJ, RS, RT, C, T) 
EEOO .. EFFF flags, process image 
F000 .. FFFF peripherals 

1E23H 

1E25H 

1E26H 

1E27H 

1E28H 

OB called 

OB 31 

yyyyH 

YYYYH 

y y y y ~  

YYYYH 

YYYYH 

ADF (adressing error) 

Timeout ( Q V 9  in the user program when accessing the 
peripherals 
yyyy = QVZ address 

Timeout outputting the process image of the digital 
outputs 
yyyy = address of the non-acknowledged output byte 

Timeout updating the process image of the digital 
inputs 
yyyy = address of the non-acknowledged input byte 

Timeout updating the IPC input flags 
yyyy = address of the non-acknowledged IPC flag byte 

Timeout updating the IPC output flags 
yyyy = address of the non-acknowledged IPC flag byte 

1E40H 

OB 23 

OB 24 

yyyyH Adressing error (ADF) in the user program 
yyyy = ADF address 

OB 25 



Appendix 

A.3 STEP 5 Operations not Contained in the CPU 928B 

Please note that the following STEP 5 operations belonging to the 
CPU 9461947 and CPU 948 cannot be processed in the CPU 928B. 

l BAF 
1 Release command output 

Operation 

BAS 

/ TB I, Q, F, C, T, D, RI, RJ, RS, RT I Test bit for signal status '1' 

Function 

Block command output 

TBN I, Q, F, C, T, D, RI, RJ, RS, RT Test bit for signal stauts '0' 

1 SU I, Q, F, C, T, D, RI, RI, RS, RT Set bit unconditionally 

RU I, Q, F, C, T, D, RI, RJ, RS, RT Reset bit unconditionally 

I LIM 
Load interrupt mask 

l Set interrupt mask 

1 UBE 1 Interrupt block end 

STW 

IAE 

Stop operation in time-driven interrupt 
processing 

Disable addressing error interrupt 

l Enable addressing error interrupt 

l - Enable requested interrupt processing 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 

1.41 Disable requested interrupt processing 



Appendix 

A.4 Identifiers for the Program Processing Levels 

The identfiers correspond to the identifiers entered in the ISTACK under 
LEVEL (hexadecimal). 

1 Identifier 

0002H 
0004H 
0006H 
0008H 
OOOAH 
OOOCH 
OOOEH 

OOlOH 
0012H 
0014H 
0016H 
0018H 
OOlAH 
OOlCH 
OOlEH 

Level 

Cold restart 
Cycle 
Time-driven interrupt 5 sec 
Time-driven interrupt 2 sec 
Time-driven interrupt 1 sec 
Time-driven interrupt 500 ms 
Time-driven interrupt 200 ms 

Time-driven interrupt 100 ms 
Time-driven interrupt 50 ms 
Time-driven interrupt 20 ms 
Time-driven interrupt 10 ms 
Timed job 
Not used 
Closed loop control 
Not used 

Delay interrupt 
Not used 
Process interrupt 

Not used 
Retentive manual cold restart 
Retentive automatic cold restart 
Abort 
Interface error 

Collision of timed interrupts 
Closed loop controller error 
Cycle error 
Not used 
Operation code error 
Runtime error 
Addressing error 
Timeout 

Not used 
Not used 
Manual warm restart 
Automatic warm restart 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Appendix 

A.5 Example " ISTACK Evaluation" 

This (simplified) example illustrates how to evaluate the ISTACK. 

For more detailed information, you should also refer to Section 5.3 "Control Bits 
and the Interrupt Stack". 

Ready to start? The CPU has interrupted cyclic program processing and has changed to the stop 
mode. 

Error analysis To find the cause of the interruption, select the programmer online function "output 
ISTACK". 

The control bits then appear on the PG screen as shown below: 

>>STP<< STP-6 FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP 
X X 

>>ANL<< ANL-6 NEUSTA M W A A W A ANL-2 NEUZU MWA-ZUL 
X X X 

>>RUN<< RUN-6 EINPROZ BARB OB1 GEL FBOGEL OBPROZA OBWECKA 
X X 

32WRAM 16WRAM 8WRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS 
X X X 

URGELOE URL-IA STP-VER ANL-ABB UA-PG UA-SYS UA-PRFE UA-SCH 

DXO-FE FE-22 MOF-FE RAM-FE DBO-FE DBI -FE DB2-FE KOR-FE 

N A U  P E U  B A U  STUE-FE Z Y K Q V Z  A D F  WECK-FE 

B C F FE-6 FE-5 FE-4 FE-3 L Z F  REG-FE DOPP-FE 

The "X"s in the control bits indicate the current operating status of the CPU 
(>>STP<< ), and certain characteristics of the CPU are marked (OB 1 loaded, 
single processor mode, 16 KW user memory etc.). In the top line the cause of the 
stoppage is indicated as STP-BEF. It is assumed that you have not programmed an 
STP operation in your STEP 5 user program. This means that the stoppage was 
caused by a stop operation from the system program because an error OB was not 
loaded. The identifier LZF is marked in the bottom line. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Appendix 

It is possible that the system program has detected a runtime error and that the 
corresponding error organization block is not programmed. Since there are various 
runtime errors, and you cannot possibly know which of them has occurred, the 
information shown in the control bits is not yet sufficient for reliable diagnosis. 

You can now display the actual ISTACK: 

[ INTERRUPT STACK \ 
DEPTH: 01 

OP REG: 0000 SAC: 0000 DB-ADD: 0000 BA-ADD: 0000 

BST-STP: 0001 SAC-NO.: 226 DB-NO.: -NO.: 
REL-SAC: 0006 DBL-REG.: 0000 

LEVEL: 003A UAMK: 0120 ICRW: 0000 

ACCUI : 0000 OAOl ACCU2: 0000 0000 ACCU3: 0000 0000 ACCU4: 0000 0000 

CONDITION CODE: CC1 CC0 OVFL OVFLS OR ERAB 

STATUS RLO 

CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK QV2 

ADF STP BCF S-6 LZF REG-FE 
X 

STUEB STUEU WECK DOPP 

The ISTACK at depth 01 represents the program processing level that was last 
active before the transition to the stop mode. From the identifier 003A (after 
LEVEL) you can see that this is the ISTACK of the program processing level 
RUNTIME ERROR. The error identifier OOOOlAOl is entered in ACCU 1. 
This tells you that the runtime error was caused by calling a data block that was 
not loaded using the operation "C DB". Since the corresponding error, OB 19, 
does not exist in our user program, the system program aborted program 
execution (STP). The interrupt display mask word ICMK also contains the cause 
of interrupt. The identifier 0120 corresponds to the bit pattern 
"0000 0001 0010 0000". Bit 25 (LZF) and Bit 28 (STP) are set. 

You must now find out which block and which operation caused the runtime 
error. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Appendix 

You can now move on in the ISTACK to depth 02: 

INTERRUPT STACK 

DEPTH 02 

OP REG: 2006 SAC: 0037 DB-ADD: 0000 BA-ADD: 0000 

BST-STP: 0001 08-NO.: 1 DB-NO.: -NO.: 
REL-SAC: 0004 DBL-REG.: 0000 

LEVEL: 0004 ICMK: 0020 ICRW: 0000 

ACCUI: 0001 1001 ACCU2: 0000 0101 ACCU3: 0000 0000 ACCU4: 0000 0000 

CONDITION CODE: CC1 CC0 OVFL OVFLS OR ERAB 

STATUS VKE 

CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK QV2 

ADF STP BCF S-6 LZF REG-FE 
X 

STUEB STUEU WECK DOPP 

The identifier 0004 (after LEVEL) tells you that this is the ISTACK of the 
intempted program processing level CYCLE. The STEP address counter (SAC) 
indicates the address 0037H. The operation that caused the error is stored at this 
absolute address in the user memory. Its code is specified as 2006 (OP-REG). 
From the listing of the machine codes in the operations list, you can see that this is 
the STEP 5 operation 'ADB 6'. 

The interrupt occurred in organization block OB 1. Within OB 1, the operation 
that caused the error is at the relative address 0004 (REL-SAC). As you have 
already established, this operation led to a runtime error (see ICMK, bit 25, and 
CAUSE OF INTERR.). 

You can now display the incorrect operation on the screen using the SEARCH 
online function. Enter the appropriate block (OB 1) and the relative address of 
the operation. 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Appendix 

DlSP SYMB LIB.NO. 

OUTPUT DEVICE: PC BLOCK: OB1 SEARCH: 4H 

RE L-SAC 

Following the search, you can see the operation "C DB 6", that caused the 
interruption; there is no data block with the number 6 in the user memory. 

SEGMENT 1 0000 
0004 :C DB 6 operation that  caused the  error 
0005 
0006 
0007 
0008 : BE 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Further reading 

/l/ s5-135u/155u 
CPU 922lCPU 928lCPU 928BlCPU 948 
Pocket Guide 

Order no. 6ES5 997-3UA22 

/2/ S5-135Ul155U System Manual 

Order no. 6ES5 998-OSH21 

/3/ STEP 5 Manual 

Order no. C79000-G8576-C140 

/4/ GRAPH 5: Graphic programming of 
sequential controls under the 
SS-DOS SIMATIC S5 operating system 

Order no. 6ES5 998-1SA01 

/S/ Standard Function Blocks 
Data Handling Blocks CPU 922, CPU 928, CPU 928B 
S5-135U, S5-155U Programmable Controllers 

/6/ SINEC 
Manual 
CP 143 with COM 143 

Order no. 6GK1970-1AB43-OABO 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Further readina 

171 Hans Berger: 
Automating with the SIMATIC S5-135U 

SIEMENS AG 
Order no. A19100-L531-F505-X-7600 

/8/ Programmable Controllers 
Basic Concepts 

SIEMENS AG 
Order no. E80850-C293-X-A2 

/g/ Catalog ST 59: Programmers 
SIMATIC S5 

/l01 Catalog ST 54.1: Programmable Controllers 
S5-135U, S5-155U and S5-155H 

/11/ Catalog ST 57: Standard Function Blocks 
and Driver Programs for 
Programmable Controllers of the U Series 
SIMATIC S5 

1121 SCL Manual 

Order no. C79000-G8576-C162 

1131 R64 Controller Structure 

1141 S5-135U 
Communication CPU 928B 

Order no. 6ES5 998-OCN21 

CPU 928B-3UB21 Programming Guide 
C79000-G8576-C870-01 



List of Abbreviations 

(An explanation of the ISTACK abbreviations can be found in Section 5.4) 

ACCU-1 (2,3,4)-L low word in accumulator 1 (2,3,4), 16 bit 
ACCU-1 (2, 3, 4)-H high word in accumulator 1 (2,3,4), 16 bit 
ACCU-1 (2,3,4)-LL low byte of low word in accumulator 1 (2,3,4), 8 bit 
ACCU-1 (2, 3, 4)-LH high byte of low word in accumulator 1 (2,3, 4), 8 bit 
ADF addressing error 
ANZW condition code word 

BASP disable command output (signal on S5 bus) 
BCD binary coded decimal 
BR base address register 
BSTACK block stack 

CC 1, CC0 condition code bits for digital operations 
COR coordinator module 
CP communications processor 
CPU central processing unit 
CSF control system flowchart 

DB 
DBA 
DBL 
DX 

EPROM 
ERAB 
EU 

data block 
data block start address (in register 6) 
data block length (in register 8) 
extended data block 

erasable programmable read only memory 
first scan @it code) 
expansion unit 

function block 
extended function block 

IM interface module 
INT (system)interrupt 
IP intelligent peripheral module 
ISTACK interrupt stack 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



List of Abbreviations 

KB 
KDB 

LAD 
LED 

NAU 

PAFE 
PARE 
PB 
PEU 
PG 
PI 
PI1 
PIQ 
PLC 

QVZ 

RAM 
RLO 

SAC 
SB 
SPU 
STA 
STL 
STS 
SUE 
STUEB 
STUEU 

ZYK 

call for a non-existent code block 
opening a non-existent DB/DX data block 

ladder diagram 
light-emitting diode 

power failure 

organization block 
or @it code) 
overflow latching (word code) 
overflow (word code) 

parameter assignment error byte 
parity error 
program block 
power failure on expansion unit 
programmer 
process image 
process image of the inputs 
process image of the outputs 
programmable controller 

timeout 

random-access memory 
result of logic operation 

step address counter 
sequence block 
operating system processor 
status @it code) 
statement list 
stop statement 
substitution error 
BSTACK ovefflow 
ISTACK overflow 

transfer or load error 

cycle error 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



Index 

Accumulators (ACCUs) 3-13,6-10 
Actual operands 

of function blocks 2-27 
Addressing 1-12 
ADF (addressing error) 5-22,5-45 
Arithmetic operations 3-52 
Assignment list 2-5,2-22 
AUTOMATIC COLD RESTART 

See RESTART 
AUTOMATIC WARM RESTART 

See RESTART 

Basic levels 4-6,4-9 
Basic operations 2-2,3-17 
BASP LED 4-4 
BASP signal 4-24 
BCF (operation code error) 

operation code error 5-22,5-33,5-35 
parameter error 5-22,5-33,5-35 
substitution error 5-22,5-33 - 5-34 

Binary numbers 2-6 
Block 

address list 3-6 
block ID 2-34 
body 2-11, 2-22,2-34 
calls 2-14,3-6,3-30 
formal operands (block parameters) 2-25 
header 2-11,2-34 
number 2-10, 2-34,3-31 
preheader 2-11,2-33 

Block operations 3-30 
Blocks 

nesting blocks 3-6 
BR register 9-24 
BSTACK 

output 5-5 

BSTACK (block stack) 
evaluating 
read 

CC 1 and CC 0 
See Results codes 

Clock-driven time interrupts 
interrupt points 4-30 
special features 4-31 

Closed loop controller structure R64 4-35 
Closed-loop control 6-99 
Communication OBs 10-21 

parameters 10-22 
runtimes 10-29 

Communication processors (CPs) 10-6 
Comparison operations 3-30 
COMPRESS MEMORY 2-13 
Control bits 5-3,5-7 - 5-8 
Controller 

processing closed-loop controller 
interrupts 4-35 

CONTROLLER 
INTERRUPT 4-6,4-8,4-25,4-35 

interrupt points 4-35 
Conversion operations 3-58 
Counter value 3-26 
Counters C 1-11 
CSF (control system flowchart) 2-2 
Current data block 1-12 
CYCLE 3-10,4-26 

cyclic processing 3-2,3-10 
interrupt points 4-27 
program processing levels 4-6 
user interface OB 1 4-27 

Cycle boundary 6-35 
Cycle statistics 6-37 
Cycle time 6-35 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 Index - l 



Cyclic processing 1-3, 1-14,4-26 
Cyclic program execution 1-14 

Data area 
Data block DB 0 
Data block DB 1 
Data block DB 2 
Data block DX 0 
Data block DX 1 
Data block RAM (DB RAM) 
Data blocks 

general 
Data blocks (DBJDX) 

accessing data blocks 
general 
generating 
programming 
structure 
validity 

Data word 
DBA (data block start address) 
DBL (data block length) 
Decimal numbers 
Decrementing 
Default 

system reaction 
Defaults, modifying 
Definition of the "9th track 
DELAY INTERRUPT 

interrupt points 
special features 

Delay time 
Delay interrupt 
Display generation operation 

F flags 
Fixed point numbers 
Floating point numbers 
Formal operands 
Function blocks (EBJFX) 

general 
programming 
standard function blocks 
structure 

ERAB 
See Results codes 

Error handling 
using organization blocks 5-22 

Error IDs 5-5 
Error information 5-3 
Error levels 4-7,4-9 
Error OBs 2-17 
Executive operations 3-54 

Global memory 
access 
general 

GRAPH 5 

Handling blocks 6-89 

v o s  
address distribution 8-5 
modules 1-9 
0 area 1-9 
P area 1-9 

ICMK 8-19 
ICRW 8-17 
Incrementing 3-60 
Interface 

second serial interface 5-29 
to system program 1-6, 1-8,2-16 

Interprocessor communication flags 
data exchange via IPCs 10-4 
general 3-12,lO-4 
jumper settings 10-4 

Interrupt condition codeword 8-16 
Interrupt events 3-12 
Interrupt-driven processing 1-4 
IPC flags 

transferring blocks of IPC flags 6-85 
ISTACK (interrupt stack) 

code bits 5-14 
contents 5-13 
error information 5-3 
information in ISTACK 5-14 
output 5-3,5-7 

Index - 2 
CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



No operation 3-31 
Normalized fixed point numbers 6-107, 6-112 

Jump operations 

LAD (ladder diagram) 
LED RUN 
LED STOP 
Library number 
Load operations 
Local memory 

access 
general 

Logic operations 
binary 
digital 

LZF (runtime errors) 

MANUAL COLD RESTART 
See RESTART 

MANUAL WARM RESTART 
See RESTART 

Memory access 
general 
via the BR register 

Memory organization 
Mode of operation of a CPU 
Multiprocessor communication 

application examples 
assignment list 
buffering data 
data amount 
initializing 
modes 
receive data 
send data 
sequence 

Multiprocessor mode 
data exchange between CPUs 
and CPs 

Multiprocessor operation 
communications mechanisms 
V 0  assignment 
restart types 

Nesting 
program processing levels 

Nesting depth 

0 area 
See 110s 

Operand areas 
Operand substitution 
Operating modes 
Operation code 
OR 

See Results codes 
Organization blocks (OBs) 

as user interfaces 2-16 
control of the start-up procedure 2-17 
error OBs 2-17 
general 2-10,2-14 
special functions OBs 2-19 

OS (overflow latching) 
See Results codes 

OV (overflow) 
See Results codes 

P area 
See 110s 

Page arealpage memory 9-7,9-31 
busy location 9-32 

Pages 
accessing pages 9-31 

Parallel operation of serial PG interfaces 11-17 
cyclic functions 11-22 
long-running functions 11-19, 11-22 
short-running functions 11-19, 11-21 

Parameter 2-5 
Parameters for DX 0 1-6,7-2,7-6 
PG functions 11-2 
PG interface module 11-17 
PG screen form 

for generating DB1 10-9 
PID controller 6-99 
Priority 1-4,4-9 
Process image 

general 1-9,3-12 
inputs (PII) 1-3, 1-9 
outputs (PIQ) 1-3, 1-9 
updating 4-24 

PROCESS INTERRUPT 4-6, 4-8,4-25 
Process interrupt signals 

level-triggered 4-37 
Process interrupts 

disabling 3-66,4-38 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



edge-triggered 
enabling 
interrupts 
multiple interrupts 
processing 

Processing operations 
Program 

program organization 
system program 
user program 

Program blocks (PB) 
Program processing levels 

general 
level number 

Programming 
general 

Programming language 
GRAPH 5 
SCL 
STEP 5 

Programming tools 

QVZ (timeout error) 5-22,5-46 

REG-FE (controller error) 
Response time 
RESTART 

errors during restart 
errors in restart 
restart types 

Results codes 
ERAB 
CC 1 and CC 0 3-15,3-56 
OR 3-15 
OS 3-15 
OV 3-15 
RLO 2-5,3-15,3-18 
STA 3-15,3-18 

RETENTIVE AUTOMATIC COLD RESTART 
See RESTART 4-6 

RETENTIVE MANUAL COLD RESTART 
See RESTART 4-6 

RLO 
See Results codes 

RS/RT area 8-13 
RUN 

errors in RUN 5-32 
general 4-2,4-24 

S flags 
Scratchpad flags 
Second serial interface 
Semaphores 
Sequence blocks 
Sequence blocks (SB) 
Serial link PG - PLC 
Setlreset operations 
Shift operations 
Shift register 
Special functions 

errors during special function 
processing 
general 
interfaces 

Special functions OBs 
STA (status) 

See Results codes 
Standard function blocks 

See also Function blocks 
START-UP 

general 
STEP 5 operations 
STEP 5 programming language 
STL (statement list) 
STOP 
Stop operations 
Structure of the memory area 
Structured programming 
Suitability of the CPU 948 
Supplementary operations 
System checkpoint 
System data 
System data words 

bit assignment 
System data words RS 3 and RS 4 
System operations 
System program 
System program defaults 
System time 

TIME INTERRUPT 4-6,4-8,4-25 
Time interrupts 

at fixed intervals 4-25 
clock-controlled 4-25 
interrupt points 4-32 

Time-controlled processing 1-4 
Time-driven program execution 

clock-driven time interrupt 4-25,4-28 
delay interrupt 4-28 

Index - 4 
CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 



in fixed time bases 
time interrupts 

TIMED JOB 
Timed job, generate 
Timer and counter operations 
Timer value 
Timers T 
Transfer operations 
Transferring fields of memory 

User checkpoints 11-3 
User interface 

for clock-driven time interrupt 4-30 
for closed loop controller interrupt 4-35 
for cyclic program execution 4-27 
for delay interrupt 4-28 
for process interrupt 4-36 
for restart 4-21 
for time interrupts 4-31 

User memory 1-8 
organization 8-7 

User program 1-5, l -7  
See also Program 
processing 3-2,3-10 
storing 1-8 
tasks 1-8 

WECK-FE (collision of 
time interrupts) 4-31,4-33, 5-22,5-49 

ZYK-FE (cycle time exceeded) 5-48 

CPU 928B-3UB21 Programming Guide 

C79000-G8576-C870-01 Index - 5 




