
Preface, Contents

Part 1: Planning Your
Conversion

Introduction 1

Hardware 2

Software 3

Part 2: Converting Programs

Procedure 4

Preparing for Conversion 5

Conversion 6

Editing the Converted Program 7

Compiling 8

Application Example 9

Appendix

Address and Instruction Lists
A

Literature List
B

Glossary, Index

Edition 03/2006
A5E00706929-01

STEP 7
From S5 to S7

Converter Manual

SIMATIC

ii
From S5 to S7, Converter Manual

A5E00706929 01

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions
are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions
are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its componentsmay only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly,
and operated and maintained as recommended.

SIMATICR, SIMATIC NETR, and SIMATIC HMIR are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might
infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with
the hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

Siemens AG 2006
Subject to change without prior notice.

Disclaimer of LiabilityCopyright Siemens AG 2006 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design,
are reserved.

Siemens AG
Bereich Automation and Drives
Geschaeftsgebiet Industrial Automation Systems
Postfach 4848, D-90327 Nuernberg

Siemens Aktiengesellschaft A5E00706929-01

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

iii
From S5 to S7, Converter Manual
A5E00706929-01

Preface

This manual supports you when converting S5 programs into S7. With the
information in this manual you can do the following:

Convert existing S5 programs into S7 programs and subsequently edit them
manually if necessary.

Incorporate pre-converted S7 functions (previous S5 standard function
blocks) into your S7 programs.

This manual is intended for programmers who wish to use existing S5
programs in S7.

This manual is valid for release 4.0 of the STEP 7 programming software.

If you have any technical questions, please get in touch with your Siemens
representative or responsible agent.

You will find your contact person at:

http://www.siemens.com/automation/partner

You will find a guide to the technical documentation offered for the individual
SIMATIC Products and Systems here at:

http://www.siemens.com/simatic-tech-doku-portal

The online catalog and order system is found under:

http://mall.automation.siemens.com

Siemens offers a number of training courses to familiarize you with the
SIMATIC S7 automation system. Please contact your regional training center
or our central training center in D 90327 Nuremberg, Germany for details:

Telephone: +49 (911) 895-3200.

Internet: http://www.sitrain.com

Purpose of the
Manual

Audience

Where is this
Manual Valid?

Further Support

Training Centers

http://www.siemens.com/automation/partner
http://www.siemens.com/simatic-tech-doku-portal
http://mall.automation.siemens.com
http://www.sitrain.com

iv
From S5 to S7, Converter Manual

A5E00706929-01

You can reach the Technical Suport for all A&D products

Via the Web formula for the Support Request
http://www.siemens.com/automation/support-request

Phone: + 49 180 5050 222

Fax:+ 49 180 5050 223

Additional information about our Technical Support can be found on the
Internet pages:
http://www.siemens.com/automation/service.

In addition to our documentation, we offer our Know-how online on the
internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

The newsletter, which constantly provides you with up-to-date information
on your products.

The right documents via our Search function in Service & Support.

A forum, where users and experts from all over the world exchange their
experiences.

Your local representative for Automation & Drives.

Information on field service, repairs, spare parts and more under
“Services”.

Technical Support

Service & Support
on the Internet

http://www.siemens.com/automation/support-request
http://www.siemens.com/automation/service
http://www.siemens.com/automation/service&support

v
From S5 to S7, Converter Manual
A5E00706929-01

Contents

1 Introduction 1-1. .

2 Hardware 2-1. .

2.1 Programmable Logic Controllers 2-2. .

2.2 S7 Modules 2-4. .
2.2.1 Central Processing Units (CPU) 2-6. .
2.2.2 Power Supply Modules (PS) 2-8. .
2.2.3 Interface Modules (IM) 2-9. .
2.2.4 Communications Processors (CP) 2-10. .
2.2.5 Function Modules (FM) 2-13. .
2.2.6 Signal Modules (SM) 2-15. .
2.2.7 Simulation Modules (S7-300) 2-16. .

2.3 Distributed I/O Devices 2-17. .

2.4 Communication 2-18. .
2.4.1 Interface to User Programs 2-20. .

2.5 Operator Interface 2-21. .

3 Software 3-1. .

3.1 General Operating Principles 3-1. .
3.1.1 Installation Requirements 3-1. .
3.1.2 Installing STEP 7 Software 3-2. .
3.1.3 Starting STEP 7 Software 3-3. .

3.2 Structure of an S7 Project 3-4. .

3.3 Editing Projects with the SIMATIC Manager 3-7. .
3.3.1 Creating Projects 3-7. .
3.3.2 Storing Projects 3-8. .

3.4 Configuring Hardware with STEP 7 3-9. .

3.5 Configuring Connections in the Connection Table 3-11.

3.6 Inserting and Editing a Program 3-13. .
3.6.1 Basic Procedure for Creating Software 3-13. .
3.6.2 Inserting Components for Creating Software in S7 and M7 Programs 3-15. . .

3.7 Blocks 3-17. .
3.7.1 Comparison 3-17. .
3.7.2 Functions and Function Blocks 3-18. .
3.7.3 Data Blocks 3-18. .
3.7.4 System Blocks 3-19. .
3.7.5 Organization Blocks 3-20. .
3.7.6 Block Representation during Conversion 3-24. .

vi
From S5 to S7, Converter Manual

A5E00706929-01

3.8 System Settings 3-26. .

3.9 Standard Functions 3-28. .
3.9.1 Floating-Point Math 3-28. .
3.9.2 Signal Functions 3-28. .
3.9.3 Integrated Functions 3-28. .
3.9.4 Basic Functions 3-29. .
3.9.5 Analog Functions 3-29. .
3.9.6 Math Functions 3-29. .

3.10 Data Types 3-30. .

3.11 Address Areas 3-32. .
3.11.1 Overview 3-32. .
3.11.2 New Addresses in S7: Local Data 3-33. .

3.12 Instructions 3-35. .

3.13 Addressing 3-39. .
3.13.1 Absolute Addressing 3-39. .
3.13.2 Symbolic Addressing 3-39. .
3.13.3 New Feature: Complete Addressing of Data Addresses 3-41.
3.13.4 Indirect Addressing 3-43. .

4 Procedure 4-1. .

4.1 Analyzing the S5 System 4-2. .

4.2 Creating an S7 Project 4-4. .

4.3 Configuring Hardware 4-4. .

5 Preparing for Conversion 5-1. .

5.1 Providing the Required Files 5-2. .

5.2 Checking Addresses 5-3. .

5.3 Preparing the S5 Program 5-4. .

5.4 Creating Macros 5-5. .
5.4.1 Instruction Macros 5-6. .
5.4.2 OB Macros 5-7. .
5.4.3 Editing Macros 5-8. .

6 Conversion 6-1. .

6.1 Starting the Conversion 6-1. .

6.2 Generated Files 6-5. .

6.3 Interpreting Messages 6-8. .

7 Editing the Converted Program 7-1. .

7.1 Address Changes 7-2. .
7.1.1 Options for Changing Addressing 7-2. .

7.2 Non-Convertible Functions 7-3. .

7.3 Indirect Addressing -- Conversion 7-4. .

7.4 Working with Direct Memory Accesses 7-5. .

Contents

vii
From S5 to S7, Converter Manual
A5E00706929-01

7.5 Assigning Parameters 7-5. .

7.6 Standard Functions 7-6. .

8 Compiling the Program 8-1. .

9 Application Example 9-1. .

9.1 Analog Value Processing 9-2. .

9.2 Temporary Local Data 9-5. .

9.3 Evaluating the Start Information from the Diagnostic Interrupt OB (OB82) 9-8

9.4 Block Transfer 9-11. .

9.5 Calling the Examples 9-14. .

A Address and Instruction Lists A-1. .

A.1 Addresses A-1. .

A.2 Instructions A-3. .

B Literature List B-1. .

Glossary Glossary-1. .

Index Index-1. .

Contents

viii
From S5 to S7, Converter Manual

A5E00706929-01

Contents

Introduction 1

Hardware 2

Software 3

Part 1: Planning Your
Conversion

-2
From S5 to S7, Converter Manual

A5E00706929-01

1-1
From S5 to S7, Converter Manual
A5E00706929-01

Introduction

Until now you were familiar with the name SIMATIC as the synonym for
SIEMENS programmable controllers of the S5 family. Now the name
SIMATIC stands for fully integrated automation.

The concept fully integrated automation describes a revolutionary new way
of combining the worlds of manufacturing and process engineering. All
hardware and software components are integrated into one single system:
SIMATIC.

This complete integration is made possible by the universal compatibility
offered by the S7 system in the following three areas:

Database

Data are only entered once and are then available to a whole factory.
Transfer errors and inconsistencies are therefore a thing of the past.

Configuring and programming

All the components and systems belonging to a task are planned,
configured, programmed, commissioned, debugged, and monitored with
one single fully integrated software package with a modular design - under
one user interface and with the most suitable utility.

Communication

“Who communicates with whom” is determined simply in a connection
table and can be changed at any time. The various network types can be
configured easily and uniformly.

To be able to meet the wide range of possibilities of SIMATIC as a fully
integrated system, brand new concepts have been shaped in SIMATIC S7.
Some functions are therefore achieved in other ways to those you are familiar
with in S5.

The STEP 7 programming software is based on new technology and concepts.
For example, the user interface is designed to meet modern ergonomic
requirements and runs under Windows 95/NT. In our programming languages,
we have endeavored to adhere to the IEC 1131 standard as closely as possible
without becoming incompatible with STEP 5.

1

1-2
From S5 to S7, Converter Manual

A5E00706929-01

We are convinced that our new STEP 7 system meets the following demands:

A software basis for fully integrated automation

Programming which conforms to IEC 1131

Compatibility with STEP 5

We are also aware that converting from an existing system to a new system
gives rise to a number of questions and we recognize that it will be necessary
to make certain adaptations, particularly with regard to the software.

This manual is intended to provide answers to these questions and, at the same
time, show you simple ways in which you can continue to use your existing
STEP 5 programs in SIMATIC S7.

2-1
From S5 to S7, Converter Manual
A5E00706929-01

Hardware

This chapter describes the hardware that can be used for S7 and makes
comparisons, when necessary, with the hardware used for S5, in order to
facilitate the transition from S5 to S7.

The Siemens CD-ROM “Components for Automation” / catalog CA01 (from
4/97) contains an application designed to aid you in choosing hardware when
converting from S5 to S7. To access the catalog of products, select the menu
command Auswahlhilfen > Simatic. Here you can enter any S5 system
desired; the application uses this system data to create a rack configuration and
a signal list. You can then convert this S5 configuration to an S7 configuration.

Converting
Hardware from S5
to S7 using the
Siemens Catalog
on CD-ROM

2

2-2
From S5 to S7, Converter Manual

A5E00706929-01

2.1 Programmable Logic Controllers

SIMATIC S7 consists of the following three types of programmable logic
controllers classified according to their performance range:

SIMATIC S7-200 is a compact micro programmable logic controller (PLC)
designed for applications having the lowest performance range. S7-200 is
controlled by its own system-specific software package which is not included
in the following comparison of S5 and S7.

SIMATIC S7-300 is a modular mini controller designed for applications
having a low performance range.

SIMATIC S7-400 is designed for applications providing an intermediate to
high performance range.

For easy reference, S7-300 module names always start with a “3” and S7-400
module names with a “4”.

Intermediate
performance range

Lower
performance range

SIMATIC
S7-200

modular

compact

SIMATIC
S7-300

SIMATIC
S7-400

modularCPU 944/945

CPU
941-943

High
performance range

Figure 2-1 SIMATIC Programmable Controllers

SIMATIC S7-200

SIMATIC S7-300

SIMATIC S7-400

Hardware

2-3
From S5 to S7, Converter Manual
A5E00706929-01

Programming device interface MPI (Multipoint Interface) for
programming devices and operator panels

The programming device interface AS511 used in SIMATIC S5 has been
replaced by the multipoint interface, MPI (for S7-300 and S7-400). This
multipoint interface provides a direct electrical connection for HMI devices
(HMI: Human Machine Interface, previously known as COROS) and for
programming devices to the programming device interface used by SIMATIC
S7. The interfaces are completely integrated.

The following table provides a direct comparison of these two interface
specifications:

AS511 MPI

25-pin TTY interface (20 mA) 9-pin sub-D interface with RS485
technology

Transmission rate: 9.6 Kbps Transmission rate: 187.5 Kbps

Protocol: 3964R Protocol: S7 functions

Max. length of network: 50 m
(with bus amplifiers or special
cables: up to 1000 m)

All programmable modules within a
configuration can be addressed via
the multipoint interface

One device can be connected Up to 31 devices can be connected

Bus interface for Operator Panels (OP)

Programmable logic controllers in the SIMATIC S5 and SIMATIC S7
automation families can be connected using the PROFIBUS (previously
known as SINEC L2) bus system. As before, these connections are
bus-specific.

Connecting
Programming
Devices and OPs
to SIMATIC S7

Hardware

2-4
From S5 to S7, Converter Manual

A5E00706929-01

2.2 S7 Modules

The range of modules used in S7 corresponds to and expands on the known
and proven module concept used in SIMATIC S5.

S7 contains the following types of modules:

Central processing units (CPU)

Power supply modules (PS)

Interface modules (IM)

Communications processors (CP); (such as for connecting to PROFIBUS)

Function modules (FM); (such as for counting, positioning, closed-loop
control)

Digital and analog modules are now called “signal modules” (SM)

This chapter describes the similarities and differences in the range of modules
used in SIMATIC S5 and SIMATIC S7.

S7 modules can be distinguished by the following features:

The new modules are not equipped with jumpers or switches.

The new modules do not require cooling fans. As in S5, they have the IP 20
protection class.

The new modules can be assigned parameters and have diagnostic
capability.

The S7 slot assignment is more flexible than for S5.

Expansion devices and ET 200 distributed I/O devices can trigger
interrupts.

No Fundamental
Differences from
S5

New Performance
Characteristics

Hardware

2-5
From S5 to S7, Converter Manual
A5E00706929-01

The following table compares the module parameter assignment in SIMATIC
S5 and SIMATIC S7:

SIMATIC S5 SIMATIC S7

Modules are arranged (hardware
configuration) using the STEP 7
application for configuring hardware

Addresses are set with DIL switches Addresses are set with the STEP 7
application for configuring hardware
or are slot-oriented

System behavior is set with DIL
switches

Module parameters are assigned
with the STEP 7 application for
configuring hardware

CPU parameters for operational
behavior are assigned via system
data areas or DB1 / DX0

CPU parameters are assigned with
the STEP 7 application for
configuring hardware

Compiled configuration data are
downloaded to the CPU;

Module parameters are transferred
automatically on startup

Comparison of
Module Parameter
Assignment in S5
and S7

Hardware

2-6
From S5 to S7, Converter Manual

A5E00706929-01

2.2.1 Central Processing Units (CPU)

Table 2-1 lists the most important performance specifications for S7-300
CPUs. If you want to replace an S5 CPU, you can use the following table to
compare performance in order to select the most suitable CPU:

Table 2-1 Performance Features of the S7-300 CPUs

Feature CPU 312 IFM CPU 313 CPU 314 CPU 314 IFM CPU 315 CPU
315-2 DP

Work memory

(integrated)

6 Kbytes 12 Kbytes 24 Kbytes 24 Kbytes 48 Kbytes

Load memory

integrated 20 Kbytes RAM;
20 Kbytes
EEPROM

20 Kbytes
RAM

40 Kbytes
RAM

40 Kbytes RAM;
40 Kbytes
EEPROM

80 Kbytes RAM

expandable with
memory card

-- up to 512
Kbytes

up to 512
Kbytes

-- up to 512 Kbytes
(in CPU programmable
up to 256 Kbytes)

Process image size,
inputs and outputs

32 bytes

+ 4 on-board

128 bytes 128 bytes 124 bytes

+ 4 on-board

128 bytes

I/O address area

digital
inputs/outputs

Inputs: 128
+ 10 on-board
Outputs: 128
+ 6 on-board

128 512 Inputs: 496
+ 20 on-board
Outputs: 496
+ 16 on-board

1024

analog
inputs/outputs

32 64 Inputs: 64
+ 4 on-board
Outputs: 64
+ 1 on-board

128

Bit memory 1024 2048

Counters 32 64

Timers 64 128

Max. sum of
all retentive data

72 bytes 4736 bytes 144 bytes 4736 bytes

Local data 512 bytes in
total;
256 bytes per
priority class

1536 bytes in total;
256 bytes per priority class

Blocks:

OBs
FBs
FCs
DBs
SFCs
SFBs

3
32
32
63
25
2

13
128
128
127
44
7

13
128
128
127
48
7

13
128
128
127
48
14

13
128
128
127
48
7

14
128
128
127
53
7

S7-300 CPUs

Hardware

2-7
From S5 to S7, Converter Manual
A5E00706929-01

The CPUs for the S7-400 have different performance features. Table 2-2 shows
a comparison of the performance features of these CPUs.

Table 2-2 Performance Features of the S7-400 CPUs

Feature CPU
412-1

CPU
413-1

CPU
413-2 DP

CPU
414-1

CPU
414-2 DP

CPU
416-1

CPU
416-2 DP

Work memory
(integrated)

48 Kbytes 72 Kbytes 128
Kbytes

128/384
Kbytes

512
Kbytes

0.8/1.6
Mbytes

Load memory

integrated
8 Kbytes 8 Kbytes 16 Kbytes

expandable with
memory card

up to 15 Mbytes up to 15 Mbytes up to 15 Mbytes

Process image size,
inputs and outputs

128 bytes each 256 bytes each 512 bytes each

I/O address area
digital inputs/outputs
max.
analog inputs/outputs
max.

2 Kbytes
16384

1024

8 Kbytes
65536

4096

16 Kbytes
131072

8192

Bit memory 4096
M 0.0 to M 511.7

8192
M 0.0 to M 1023.7

16384
M 0.0 to M 2047.7

Counters 256
C 0 to C 255

256
C 0 to C 255

512
C 0 to C 511

Timers 256
T 0 to T 255

256
T 0 to T 255

512
T 0 to T 511

Local data 4 Kbytes in total 8 Kbytes in total 16 Kbytes in total

Blocks:
OBs
FBs
FCs
DBs
SFBs

23
256
256
511
24

31
512
1024
1023
24

44
2048
2048
4095
24

SDBs 512 512 512

SFCs 55 55 58 55 58 55 58

The CPUs for SIMATIC S7-400 require a backup battery to buffer timers,
counters, and bit memory.

The CPUs for S7-300 do not require a battery to buffer timers, counters, or bit
memory. Similarly, the contents of data blocks can also be retained in the event
of a power failure. The CPUs for SIMATIC S7-300 have a maintenance-free
backup that saves those addresses and data which have parameters specifying
that they be retained in event of a power failure.

The size and quantity of the available retentive areas depend on the respective
CPU.

The size of the data retention areas is set in parameter assignment dialog boxes
during hardware configuration with STEP 7.

S7-400 CPUs

Retentive Features
of S7-400

Retentive Features
of S7-300 without
Backup Battery

Parameter
Assignment for the
Retentive Feature

Hardware

2-8
From S5 to S7, Converter Manual

A5E00706929-01

2.2.2 Power Supply Modules (PS)

A selection of power supply modules is available for each programmable logic
controller (PLC).

Any 24-volt power source (industrial) can be used to supply to the CPU in
S7-300.

The range of modules in S7 contains the following power supplies specifically
designed for S7-300:

Module Name Output
Current

Output
Voltage

Input
Voltage

PS 307 2 A 24 VDC 120 / 230 VAC

PS 307 5 A 24 VDC 120 / 230 VAC

PS 307 10 A 24 VDC 120 / 230 VAC

Module Name Output
Current

Output
Voltage

Input
Voltage

PS 407 4A 4 A

0.5 A

5 VDC

24 VDC

120 / 230 VAC

PS 407 10A 10 A

1 A

5 VDC

24 VDC

120 / 230 VAC

PS 407 20A 20 A

1 A

5 VDC

24 VDC

120 / 230 VAC

PS 405 4A 4 A

0.5 A

5 VDC

24 VDC

24 VDC

PS 405 10A 10 A

1 A

5 VDC

24 VDC

24 VDC

PS 405 20A 20 A

1 A

5 VDC

24 VDC

24 VDC

For further information, see the Reference Manuals /71/ and /101/.

Power Supply
Modules for S7-300

Power Supply
Modules for S7-400

Hardware

2-9
From S5 to S7, Converter Manual
A5E00706929-01

2.2.3 Interface Modules (IM)

Some interface modules in S5 have been replaced in S7. This change primarily
affects local area connections. In S7, it is recommended that PROFIBUS be
used to transmit signals for remote area connections.

S5 Module S7-300 Module S7-400 Module Description

IM 305

IM 306

IM 300 / IM 312

IM 365

IM 360 / IM 361

IM 460-0 / IM 461-0

IM 460-1 / IM 461-1

Central configuration

-- -- IM 460-3 / IM 461-3 Remote area (up to
100 m)

IM 301 / IM 310 Connection via
PROFIBUS

Connection via
PROFIBUS

Connection of I/O
modules and signal
preprocessing modules
(up to 200 m)

IM 304 / IM 314 Connection via
PROFIBUS

Connection via
PROFIBUS

Use of distributed I/O in
remote areas (up to
600 m)

IM 463-2 Distributed connection
of S5 expansion devices
in remote areas (up to
600 m)

IM 307 / IM 317 Connection via
PROFIBUS

Connection via
PROFIBUS

Connection via
fiber-optic cable (up to
1500 m)

IM 308 / IM 318 Connection via
PROFIBUS

Connection via
PROFIBUS

Distances up to 3000 m

In S7, the interface module IM 467 can be used in place of IM 308C.

You can use the interface module IM 463-2 to connect S5 digital and analog
modules to the S7 mounting rack with IM 314 via an S5 expansion rack.

The following S5 expansion racks can be connected:

EG 183 expansion unit

EG 185 expansion unit

ER 701-2

ER 701-3

Comparison of IM
Modules

Connectable S5
Expansion Racks

Hardware

2-10
From S5 to S7, Converter Manual

A5E00706929-01

2.2.4 Communications Processors (CP)

The following section lists the S5 and S7 communications processors that can
be used in various subnets. In addition, the services supported by these
processors are also indicated.

In order to meet the varying requirements of different automation levels (such
as on the processing, cell, field, and actuator-sensor levels), SIMATIC provides
the following subnets:

AS Interface

The actuator-sensor interface (AS-i) is a connection system for the lowest
processing level in automation systems. It is primarily used for networking
binary sensors and actuators. Its data quantity is limited to a maximum of
4 bits per slave.

MPI

The multipoint interface (MPI) subnet is intended for short-range field and
cell levels. The MPI is a multipoint interface used in SIMATIC S7/M7 and
C7. It is designed as a programming device interface and is intended for
networking a small number of CPUs and for exchanging small quantities
(up to 70 bytes) of data.

PROFIBUS

PROFIBUS is the network used for the cell and field areas in open,
manufacturer-independent, SIMATIC communication systems. PROFIBUS
is suitable for quick transmission of moderate quantities of data (approx.
200 bytes).

Industrial Ethernet

Industrial Ethernet is the network used for the processing and cell levels in
open, manufacturer-independent, SIMATIC communication systems.
Industrial Ethernet is suitable for quick transmission of large quantities of
data.

Point-To-Point Connection

A point-to-point connection is not a subnet in the traditional sense. This
connection is established in SIMATIC by using point-to-point
communications processors (CP) to connect two communication partners
(such as PLCs, scanners, PCs) with each other.

Subnets in
SIMATIC

Hardware

2-11
From S5 to S7, Converter Manual
A5E00706929-01

The following table provides an overview of the modules available for
communicating via the actuator-sensor (AS) interface.

S5 Module S7-300 Module S7-400 Module

CP 2433 (AS-i functions)
CP 2430 (AS-i functions)

CP 342-2 (AS-i functions) --

Communication via SINEC L1 in S5 has been converted to global data
communication using MPI in S7.

All CPUs in S7-300 and S7-400 as well as the programming devices and
operator panels have an MPI interface.

The following table provides an overview of the modules available for
communicating with PROFIBUS and which services are supported by these
modules.

S5 Module S7-300 Module S7-400 Module

CP 5431 (FMS, FDL, DP)
CPU 95U (FDL, DP *))

CP 342-5
(S7 functions, FDL, DP)
CP 343-5
(S7 functions, FDL, FMS)

CP 443-5 Ext.
(S7 functions, FDL, DP)
CP 443-5 Basic
(S7 functions, FDL, FMS)

IM 308-B/C (DP) CPU 315-2 DP (DP) CPU 413-2 DP (DP)
CPU 414-2 DP (DP)
CPU 416-2 DP (DP)
IM 467 (DP)

*) depends on the specific equipment ordered

The following table provides an overview of the modules available for
communicating with Industrial Ethernet and indicates which services are
supported by these modules.

S5 Module S7-300 Module S7-400 Module

CP 1430 TF (ISO transport) CP 343-1
(S7 functions, ISO transport)

CP 443-1
(S7 functions, ISO transport)

CP 1430 TCP (ISO on TCP) CP 343-1 TCP
(S7 functions, ISO on TCP)

CP 443-1 TCP
(S7 functions, ISO on TCP)

AS Interface
(SINEC S1)

MPI (SINEC L1)

PROFIBUS
(SINEC L2)

Industrial Ethernet
(SINEC H1)

Hardware

2-12
From S5 to S7, Converter Manual

A5E00706929-01

The following table provides an overview of the modules available for
point-to-point connection and which services are supported by these modules.

S5 Module S7-300 Module S7-400 Module

CP 521 (3964(R), ASCII)
CP 523 (3964(R), ASCII)

CP 340-RS 232C (3964(R),
ASCII)
CP 340-20 mA (3964(R),
ASCII)
CP 340-RS 422/485 (3964(R),
ASCII)

CP 441-1 (3964(R), RK512,
ASCII)

CP 544 (3964(R), RK 512,
ASCII)

--

CP 524/525 (3964(R), RK 512,
ASCII, additional special drivers
which can be loaded
CP 544 B (3964(R), RK 512,
ASCII, additional special drivers
which can be loaded

-- CP 441-2 (3964(R), RK512,
ASCII, additional special drivers
which can be loaded

Point-To-Point
Connection

Hardware

2-13
From S5 to S7, Converter Manual
A5E00706929-01

2.2.5 Function Modules (FM)

Some IP and WF modules in SIMATIC S5 can be used in S7-400 with the help
of a special adapter casing. In other cases, there are new function modules
available in S7 to help you obtain the functionality desired.

The following table provides an overview and comparison of the signal
preprocessing modules available in S5 and S7.

Table 2-3 Comparison of Signal-Preprocessing Modules in S5 and S7

S5 Module Adapter
Casing

S7 Module Description

IP 240 yes FM 451
(limited)

Counter, position detection, and positioning modules

IP 241 no FM 451 /
FM 452
(limited)

Digital position detection module

IP 242A no no Counter module

IP 242B yes no Counter module

IP 244 yes FM 455 Controller module

IP 246I/A yes FM 354 /
FM 357 /
FM 453

Positioning module for variable speed drives

IP 247 yes FM 353 /
FM 357 /
FM 453

Positioning module for stepper motors

IP 252 no FM 455
(limited)

Closed-loop control module

IP 260 no FM 355
(limited)

Closed-loop control module

IP 261 no no Proportioning module

IP 281 no FM 350-1 /
FM 450-1

Counter module

IP 288 no FM 451 /
FM 452

Positioning module for regulating rapid/creep feed
and cam control

WF 705 yes FM 451
(limited)

Position detection module

WF 706 no FM 451
(limited)

Positioning and counter module

WF 707 no FM 452
(limited)

Cam control

WF 721 yes FM 354
(limited
because of
assembly
technology)

Positioning module

Hardware

2-14
From S5 to S7, Converter Manual

A5E00706929-01

Table 2-3 Comparison of Signal-Preprocessing Modules in S5 and S7, continued

S5 Module DescriptionS7 ModuleAdapter
Casing

WF 723A yes FM 453 Positioning module

WF 723 B yes FM 357
(limited
because of
assembly
technology)

Positioning module

WF 723 C yes no Positioning module

-- -- FM 456-4 Application module (M7-FM)

-- -- SINUMERIK
FM-NC

Numeric control

-- -- FM
STEPDRIVE

Stepper motor control

-- -- SIMOSTEP Stepper motor

Hardware

2-15
From S5 to S7, Converter Manual
A5E00706929-01

2.2.6 Signal Modules (SM)

The signal modules in SIMATIC S7 are comparable in function to the
input/output modules in S5. However, in addition to simple signal modules, S7
also provides modules that can be assigned parameters and which have
diagnostic capability.

Digital input modules in S7 that can be assigned parameters allow you to
specify (with the STEP 7 application for configuring hardware) which
channels are to trigger a hardware interrupt on edge change.

The input ranges of analog input modules can be easily assigned parameters
with STEP 7.

Modules with diagnostic capability can detect both external errors such as wire
breaks or external short circuits and internal ones such as RAM errors or short
circuits within modules.

A diagnostic event is processed by the controller in the following two ways:

By triggering a diagnostic interrupt. This notifies the appropriate
organization block (OB) in the user program, which then interrupts the
cyclic program.

By making an entry in the diagnostic buffer of the CPU, which can then be
read with a programming device or operator interface device.

The following tables list the signal modules available in S7:

Table 2-4 Signal Modules in SIMATIC S7-300

DI
(SM 321)

DO
(SM 322)

AI
(SM 331)

AO
(SM 332)

32 x 24 VDC 32 x 24 VDC/0.5 A 8 x 12 bit 2 x 12 bit

16 x 24 VDC 16 x 24 VDC/0.5 A 2 x 12 bit

16 x 24 VDC with
hardware and diagnostic
interrupt

8 x 24 VDC/0.5 A with
diagnostic interrupt

Ex: 4 x 15 bit Ex: 4 x 15 bit

16 x 24 VDC
M-reading

8 x 24 VDC/2 A Ex: 12 x 15 bit

8 x 120/230 VAC 8 x 120/230VAC /
2 A

AI 4/AO 2 X 8/8 bit (SM 334)

Ex: 4 x 24 VDC Ex: 4 x 15 VDC/
20m A

Ex: 4 x 24 VDC/
20m A

Signal Modules
which can be
Assigned
Parameters

Signal Modules
with Diagnostic
Capability

Hardware

2-16
From S5 to S7, Converter Manual

A5E00706929-01

Table 2-5 Signal Modules in SIMATIC S7-400

DI
(SM 421)

DO
(SM 422)

AI
(SM 431)

AO
(SM 432)

32 x DC 24 V 32 x 24 VDC/0.5 A 8 x 13 bit 8 x 13 bit

16 x 24/60 VUC
with hardware and
diagnostic interrupt

16 x 24 VDC/2 A 8 x 14 bit
(for temperature
measurement)

16 x 120/230 VUC 16 x 120/230 VAC
/5 A

8 x 14 bit

32 x 120 VUC 16 x 120/230 VAC
/2 A

16 x 16 bit

16 x 30/230 VUC/
Rel. 5 A

2.2.7 Simulation Modules (S7-300)

S7-300 provides a simulation module, SM 374, for testing your program.

This simulation module has the following capabilities:

It can simulate

-- 16 inputs,

-- 16 outputs, or

-- 8 inputs and 8 outputs (each having the same initial address)

Its functions can be set with a screwdriver

It can provide status displays for simulating inputs or outputs

Hardware

2-17
From S5 to S7, Converter Manual
A5E00706929-01

2.3 Distributed I/O Devices

The modules for distributed I/O devices in the ET 200 system which already
existed in SIMATIC S5 can continue to be used in SIMATIC S7.

In addition, there are new ET 200 modules to extend the range.

The following modules can be a DP master in the distributed I/O system:

S7-300 with CPU 315-2 DP or CP 342-5 as DP master

S7-400 with CPU 413-2 DP / 414-2 DP / 416-2DP or CP 443-5, extended
as DP master

The following are examples of devices which can be DP slaves in the
distributed I/O system:

Distributed I/O devices such as ET 200B, ET 200C, ET 200M, ET 200X
(up to 12 Mbps) and ET 200U, ET 200L (up to 1.5 Mbps)

Programmable logic controllers such as

-- S5-115U, S5-135U, or S5-155U with IM 308-C as DP slave

-- S5-95U with DP slave interface (up to 1.5 Mbps)

-- S7-300 with CPU 315-2 DP or CP 342-5 as DP slave

-- S7-400 with CP 443-5 as DP slave

Interface to actuator-sensor interface with the DP/AS-i link

Text displays and operator panels for machine-like operator control and
monitoring

MOBY identification systems

Low-voltage switching devices

Field devices (such as drives, valve islands, etc.) from Siemens or other
manufacturers.

The following can serve as an FMS master:

S7-300 with CP 343-5 as FMS master

S7-400 with CP 443-5 Basic as FMS master

Examples of devices that can serve as an FMS slave are the ET 200U or the
SIMOCODE motor protection and control device.

For further information, refer to the appropriate manuals or the Siemens
catalog CA01.

DP Masters

DP Slaves

FMS Masters

FMS Slaves

Hardware

2-18
From S5 to S7, Converter Manual

A5E00706929-01

2.4 Communication

Communication within SIMATIC S7 is based on different subnets which
provide various services.

Services S7 Communication Functions

(S7 Functions)

ISO transport
ISO-on-TCP

FDL (SDA)

FMS

DP

GD

Subnets Industrial

Ethernet

PROFIBUS MPI

The following is a summary of the communication services used in SIMATIC:

The S7 functions provide services for communicating between S7/M7 CPUs,
S7 OP/OSs and PCs. These S7 functions are already integrated in each
SIMATIC S7/M7 device. Since these S7 functions correspond to a service in
the ISO application layer, they are independent of any one subnet and can thus
be used on all subnets (MPI, PROFIBUS, Industrial Ethernet).

These functions are used for secure data transfer from SIMATIC S7 to
SIMATIC S5.

They are used to transfer moderate amounts of data (up to 240 bytes) via open
communication at ISO transport layer 4 based on the ISO reference model for
Industrial Ethernet.

These functions are used for secure data transfer from SIMATIC S7 to
SIMATIC S5.

They are used to transfer moderate amounts of data (up to 240 bytes) via open
communication according to the TCP/IP protocol at ISO transport layer 4
based on the ISO reference model for Industrial Ethernet.

The ISO-on-TCP service requires the extended RFC1006 standard.

These functions are used for secure data transfer from SIMATIC S7 to
SIMATIC S5.

They are used to transfer moderate amounts of data (up to 240 bytes) via open
communication at Fieldbus Data Link (FDL) layer 2 based on the ISO
reference model for Industrial Ethernet.

Services and
Subnets

S7 Functions

ISO Transport

ISO on TCP

FDL (SDA)

Hardware

2-19
From S5 to S7, Converter Manual
A5E00706929-01

PROFIBUS FMS (Fieldbus Message Specification) provides services for
transferring structured data (FMS variables) over static FMS connections.

The FMS service can be classified at layer 7 of the ISO reference model. It
corresponds to the European standard EN 50170 Vol. 2 PROFIBUS and
provides services for transferring structured data (variables).

PROFIBUS DP services allow transparent communication with distributed I/O
devices. These distributed I/O devices are addressed by the control program in
exactly the same manner as centralized I/O devices.

Global Data Communication is a simple communication option integrated in
the operating system of S7-300/400 CPUs.

GD communication permits cyclic exchange of data between CPUs via the
multipoint interface; for S7-400, it also allows event-driven data exchange.

FMS

DP

GD

Hardware

2-20
From S5 to S7, Converter Manual

A5E00706929-01

2.4.1 Interface to User Programs

The communication interface to a user program consists of the following
blocks:

SFCs (without connection configuration)

SFBs (with connection configuration) (only S7-400)

Loadable FCs / FBs

These blocks replace the S5 handling blocks. The functionality here is similar,
but it is now accomplished using STEP 7 languages. To establish
communication, you will have to adapt an appropriate S5 program with
handling functions to the new blocks.

Network Service Interface in S5 User
Program

Interface in S7 User
Program

Point-to-point
connection

-- Handling blocks * S7-300: loadable FBs

S7-400: loadable SFBs

PROFIBUS FDL
(PLC-PLC)

Free Layer 2

FMS

Handling blocks *

Handling blocks *

Handling blocks *

Loadable FCs

--

Loadable FBs

Industrial Ethernet ISO 4

ISO 4 + AP

STF

MAP

Handling blocks *

Handling blocks *

Handling blocks * + loadable
FBs

Handling blocks * + loadable
FBs

Loadable FCs

--

--

Loadable FBs

* Integrated or loadable, depending on CPU

Hardware

2-21
From S5 to S7, Converter Manual
A5E00706929-01

2.5 Operator Control and Monitoring

The following section provides an overview of the extent to which SIMATIC
HMI (HMI: Human Machine Interface, previously COROS) operator panels
can be used in SIMATIC S7.

The SIMATIC HMI operator panel provides operator control and monitoring
functions for SIMATIC S5, SIMATIC S7, and SIMATIC TI, as well as for
other controllers.

In general, a standard function block, which is called depending on the
operator panel connected, is required in the programmable controller for
connecting SIMATIC OP to SIMATIC S5.

The following operator panels (OP) can be used with S5:

-- TD17, OP5/A1, OP7/PP, OP7/DP-12, OP15/x1, OP17/PP,
OP17/DP-12

-- OP25, OP35, OP37, TP37

When connecting SIMATIC OP to SIMATIC S7/M7, a distinction must be
made between PPI, MPI, and PROFIBUS as MPI nodes.

PPI or MPI connections run via the programming device interface in the CPU.
In doing so, SIMATIC OP uses the communication services of SIMATIC
S7/M7 (S7 functions); this means that a standard function block is not
required.

The PROFIBUS connection from SIMATIC OP to SIMATIC S7/M7 also
involves communication accomplished using S7 functions. Again, this means
that a standard function block is not required. (SIMATIC OPs are “active
nodes” and not PROFIBUS-DP slaves as is the case for the PROFIBUS
connection to SIMATIC S5.) The same number of nodes that applies to an MPI
connection also applies here.

The following operator panels (OP) can be used with S7:

-- TD17, OP3, OP5/A2, OP7/DP, OP7/DP-12, OP15/x2, OP17/DP,
OP17/DP-12

-- OP25, OP35, OP37, TP37

The following restrictions apply to SIMATIC OPs:

-- OP3: up to 2 connections

-- OP5/15/25: up to 4 connections

-- TD17, OP7/17: up to 4 connections

-- OP35: up to 6 connections

-- OP37, TP37: up to 8 connections

Introduction

Operator Panels

STEP 5

STEP 7

Hardware

2-22
From S5 to S7, Converter Manual

A5E00706929-01

SIMATIC ProTool and SIMATIC ProTool/Lite are modern tools for
configuring operator panels. SIMATIC ProTool can be used to configure all
devices, while SIMATIC ProTool/Lite can only be used to configure
line-oriented operator panels. Functionally, ProTool/Lite is a subset of ProTool.

ProTool can be integrated in the SIMATIC STEP 7 configuration software; this
enables direct access to configuration data such as symbol tables and
communication parameters used for control configuration. This feature not
only saves time and money; it also prevents errors resulting from redundant
data entry.

Table 2-6 Configuration Tools for Operator Interface Devices

Device Configuration Tool

Line-oriented OP (TD17, OP3, OP5, OP7, OP15,
OP17)

ProTool/Lite or ProTool

Graphic-oriented OP (OP25, OP35, OP37, TP37) ProTool

WinCC can be used for a single or multi-terminal (client-server arrangement)
system.

WinCC is a system for creating solutions to visualization and process control
tasks used in production and process automation; it is compatible with all
business sectors and technologies. It provides function modules suitable for
displaying graphics and messages, archiving information, and record-keeping
in industrial applications. Its powerful and efficient hardware connection,
quick display updating, and secure data archiving provide users with high
flexibility and availability.

In addition to these system functions, WinCC also provides open interfaces for
creating user-specific solutions. These allow WinCC to be integrated in
complex, company-wide automation solutions. Integrated features allowing
access to data archives via standard interfaces such as ODBC and SQL and
integration of objects and documents via OLE2.0 and OLE Custom Controls
(OCX) are also included. These mechanisms make WinCC an effective
communication partner for Windows applications.

WinCC is based on the 32-bit operating systems MS Windows 95 or MS
Windows NT. Both feature preemptive multitasking, which ensures quick
reaction to process events and provides a high level of security against data
loss. Windows NT provides additional security functions and can also serve as
the basis for server operation in a WinCC multi-terminal system. The WinCC
software is itself a 32-bit application which was developed using the most
modern object-oriented software technology.

Configuration

Integration in
SIMATIC STEP 7

WinCC

Hardware

3-1
From S5 to S7, Converter Manual
A5E00706929-01

Software

3.1 General Operating Principles

The software for configuring and programming SIMATIC S7/M7/C7 is
designed according to modern ergonomic concepts and is thus largely
self-explanatory.

3.1.1 Installation Requirements

Microsoft Windows 95.

Programming device or PC with the following specifications and equipment:

A 80486 processor (or higher)

A minimum 16 Mbytes RAM (32 Mbytes recommended)

A VGA monitor or other type of monitor supported by Windows 95

A keyboard, and optional but recommended, a mouse supported by
Microsoft Windows 95

The following storage space is required on the hard disk:

The Standard package with one language installed occupies 105 Mbytes on
the hard disk. The exact amount of space required depends on the amount
of standard software installed.

STEP 7 should also have about 64 Mbytes of total memory available for
storing swap files. For example, if you have 32 Mbytes of RAM, you will
need an additional 32 Mbytes of virtual memory.

Approx. 50 Mbytes should be available for user data.

A minimum of 1 Mbyte free memory should be available on the hard disk
for setup. (The setup files are deleted once the installation is complete.)

Overview

Operating System

Standard Hardware

Storage Capacity

3

3-2
From S5 to S7, Converter Manual

A5E00706929-01

3.1.2 Installing the STEP 7 Software

STEP 7 contains a setup program that carries out the installation automatically.
User prompts appearing on the screen guide you step-by-step through the
entire installation procedure.

A product-specific user authorization is required to use the STEP 7
programming software. Software protected in this manner can only be used if
the required authorization for the program or software package is located on
the hard disk of the respective programming device or PC.

To obtain this authorization, you need the copy-protected authorization diskette
included in the consignment. This diskette also contains the program
AUTHORS, which is required to display, install, and uninstall STEP 7.

The procedure for transferring and removing this authorization is described in
the User Manual /231/.

Note

Siemens programming devices (such as the PG 740) are supplied with
installable STEP 7 software already on the hard disk.

For further information on installing STEP 7, see the User Manual /231/.

Overview

Authorization

Software

3-3
From S5 to S7, Converter Manual
A5E00706929-01

3.1.3 Starting the STEP 7 Software

After starting Windows 95/NT you will find the icon for the SIMATIC
Manager on the Windows user interface. This is the access point to the STEP 7
software.

Double-clicking the “SIMATIC Manager” icon is the fastest way to start
STEP 7. This icon opens the window for the SIMATIC Manager. From here,
you can access the standard system, all optional software, and all functions that
you have installed.

Alternatively, you can also start the SIMATIC Manager by clicking the “Start”
button in the Windows 95/NT taskbar. The menu title for this is found under
“Simatic/STEP 7.”

The SIMATIC Manager is the initial window used for configuring and
programming. Here you can do the following:

Set up projects

Configure and assign parameters to hardware

Configure communication connections

Create programs

Test programs and start them running

Access to functions is object-oriented, intuitive, and easy to learn.

You can work with the SIMATIC Manager in the following ways:

Offline (not connected to a controller), or

Online (connected to a controller)

(When doing this, be sure to observe the appropriate safety guidelines.)

File

Press F1 for help.

SIMATIC Manager - zebra

Edit Insert PLC View Options Window Help

zebra - <Standard Hierarchy, Offline> (Project) --- C:\SIEMENS\STEP7\S7proj\zebra

zebra

MPI(1)

SIMATIC 400 Station (1)

SIMATIC 400 Station

Figure 3-1 SIMATIC Manager with an Open Project

Starting

SIMATIC Manager

Software

3-4
From S5 to S7, Converter Manual

A5E00706929-01

3.2 Structure of an S7 Project

Projects contain all the data and programs for an automation solution. Their
purpose is to provide organized storage of data and programs created for such
an application.

You will already be familiar with the term “project” from working with
STEP 5. In STEP 5, a project contains all STEP 5 files created for one user
program in a project file.

This project file contains information necessary for convenient editing and
maintenance of a user program, such as parameter settings, as well as catalog
and file names.

In STEP 7, a project contains all the programs and data necessary for an
automation solution, regardless of the number of CPUs involved and how they
are networked. Thus, a project is not just limited to a user program used for a
particular programmable module; instead, it contains several user programs
used for many programmable modules, which are all stored together under a
common project name.

As in STEP 5, it is also possible in STEP 7 to create a simple user program
intended for only one CPU. In this case, a project is limited to one CPU.

The following section discusses the directory structure that STEP 7 provides
for the user programs and data that you create.

Definition

Projects in STEP 5

Projects in STEP 7

Note

Software

3-5
From S5 to S7, Converter Manual
A5E00706929-01

A project in STEP 7 essentially consists of the objects depicted in Figure 3-2.
These objects are listed and explained below.

Project

Station

Symbol table

Programmable
module

Network

Connection
table

Program in
source file form

Container for all the
data for a program

Blocks

Figure 3-2 Basic Objects in a STEP 7 Project with their Hierarchical Structure

The “Network” object contains the definitive properties for a subnet such as
MPI or PROFIBUS. Assigning a station or a communication module within a
station to a network enables STEP 7 to check communication parameters for
consistency.

A station represents the structure of a programmable controller along with all
the racks belonging to it. If a module with a DP interface is part of a station,
then the entire master system (that is, the DP slaves belonging to it) is also part
of this station.

A station consists of one or more programmable modules, such as a CPU.

Hardware is an object containing the configuration data and parameters for a
station. The configuration data and parameters for a station are stored in
system data blocks (SDBs).

Components of a
Project

Network

Station

Hardware

Software

3-6
From S5 to S7, Converter Manual

A5E00706929-01

In contrast to other modules, programmable modules contain user programs. In
the folders (known as “containers” in STEP 7) found in the programmable
modules you will find all the data belonging to the program for the module.
Examples of such programs are the following:

Programs in source file form (created with a text editor)

When the source program is compiled, executable blocks are created in the
“Blocks” container.

Blocks which are loaded into the programmable module

Symbol tables

The connection table depicts all connections for a programmable module, such
as a CPU, in a station. A connection defines the communication properties
between two nodes and is identified by a connection ID. This connection ID is
all that you need to program event-controlled communication using
standardized communication blocks, which are similar to the handling blocks
found in STEP 5.

In S7 programming, source files are the basis for creating blocks. Source files
cannot be downloaded to an S7 CPU.

Blocks are distinct parts of a user program and are distinguished by their
function, structure, and use within it. Blocks can be downloaded to S7 CPUs.

In addition to the executable blocks, the “Blocks” container also contains the
variable tables.

The symbol table shows the assignment of symbolic names, for example, for
inputs, outputs, bit memory, and blocks.

Programmable
Modules

Connection Table

Source Files

Blocks

Symbol Table

Software

3-7
From S5 to S7, Converter Manual
A5E00706929-01

3.3 Editing Projects with the SIMATIC Manager

3.3.1 Creating Projects

To create a project, follow the steps outlined below:

1. Select the menu command File " New in the SIMATIC Manager.

2. Select the option “New Project” in the “New” dialog box.

3. Enter a name for the project and confirm your entry with “OK.”

When editing a project, you are flexible as to the order in which you perform
most of the tasks. Once you have created a project, you can choose one of the
following methods:

First configure the hardware and then create the software for it, or

Start by creating the software independent of any configured hardware. The
hardware configuration of a station does not need to be established before
entering a program.

Table 3-1 Alternative Procedures

Alternative 1 Alternative 2

Configure the hardware first
(see also Section 3.4)

Create the software first

Configure your hardware

(see Section 3.4).

Once the configuration is complete, the “S7
Program” containers required for creating software
are already inserted and available.

Insert the required software containers (S7
Programs) in your project

(see Section 3.6).

Then create the software for the programmable
modules

(see Section 3.6).

Then create the software for the programmable
modules

(see Section 3.6).

Configure your hardware

(see Section 3.4).

Link the S7 program to a CPU once you have
configured the hardware.

The procedure for downloading and testing your program without a hardware
configuration is described in the User Manual /231/.

New Project

Alternative
Procedures

Software

3-8
From S5 to S7, Converter Manual

A5E00706929-01

3.3.2 Storing Projects

To back up a project, you can save a copy of the project under another name or
archive it.

To save the project under another name, proceed as follows:

1. Open the project.

2. Select the menu command File " Save As. The “Save As” dialog box is
displayed.

3. Select either save with or without a consistency check and close the dialog
box with “OK.” The “Save As” dialog box is displayed.

4. Under “Save In,” select the directory in which the project is to be saved.

5. In the “File Name” field, enter a file name in place of the asterisk (*). Do
not change the file extension.

6. Close the dialog box with “OK.”

Make sure that there is enough memory available on the drive selected. For
example, it is not advisable to select a disk drive to back up a project because a
project is generally too large to fit on a diskette. You must archive projects
before saving them on diskettes. Archives can then be split up over several
diskettes.

You can store individual projects or libraries in compressed form in an archive
file located on a hard disk or a transportable data medium (diskette).

In order to be able to access components of an archived project or library, the
project must first be extracted from the archive. Archiving is discussed in
detail in the User Manual /231/.

Overview

Save As...

Archiving

Software

3-9
From S5 to S7, Converter Manual
A5E00706929-01

3.4 Configuring Hardware with STEP 7

SIMATIC S5 did not provide an option for configuring hardware using the
software. In S7, addressing and assigning parameters to modules and
configuring communications is carried out by means of a STEP 7 application.
The advantage of this method is that the user no longer has to make any
settings on the modules, since the configuring and assigning of parameters can
now be done centrally from the programming device.

To configure hardware, a project must already have been created.

To create a new station in a project, open the project to display the project
window (if this has not already been done).

1. Select the project.

2. Create the object for the required hardware by selecting the menu
command Insert " Station.

In the submenu you can select one of the following options:

SIMATIC 300 station

SIMATIC 400 station

PC/programming device

SIMATIC S5

Other stations, meaning non-SIMATIC S7/M7 and SIMATIC S5

The stations PC/programming device, SIMATIC S5, and other stations are only
listed for configuring communication links. Configuration and programming of
S5 stations is not possible.

Click on the “+” sign in front of the project icon in the project window if the
station is not displayed below it.

Prerequisite

Inserting a Station

Software

3-10
From S5 to S7, Converter Manual

A5E00706929-01

To configure the hardware, proceed as follows:

1. Click the new station you have inserted; it contains the “Hardware” object.

2. Open the “Hardware” object. The “HWConfig” window is displayed.

3. In the “Hardware Configuration” window, plan the structure of the station.
A catalog of modules is available to help you do this. If this is not already
displayed, select the menu command View " Catalog to view it.

4. Insert a rack from the module catalog in the empty window. Then select the
modules and place them in the rack slots. At least one CPU must be
configured for each station. During this procedure, HWConfig
automatically checks all entries you make.

For further information on configuring hardware, see the User Manual /231/.

For each CPU you create in your configuration, an S7 program and a
connection table (“Connections” object) are created automatically once you
have saved and exited the hardware configuration. The S7 program contains
the “Source Files” and “Blocks” objects as software containers as well as the
symbol table.

The “Blocks” container contains the object for OB1 and the “System Data”
object with the compiled configuration data.

Configuring the
Hardware

Result of
Configuration

Software

3-11
From S5 to S7, Converter Manual
A5E00706929-01

3.5 Configuring Connections in the Connection Table

In S5, connections are configured with COM NCM. There is a COM package
for each communications processor (CP). In S7, all connections are configured
in the connection table.

Configuring connections is a prerequisite for using SFB communication
functions in a user program.

A connection determines the following:

The communication partners involved in the S7 project,

The type of connection established (such as an S7 connection or FDL
connection),

Special properties such as the active or passive establishment of a
connection or whether operating mode messages are to be sent.

When you configure connections, a unique local identifier (known as the local
ID) is issued for each connection. This local ID is all you require when
assigning communication parameters.

Each CPU that can serve as the end point of a connection has its own
connection table.

If both communication partners are S7-400 stations, a local ID is automatically
issued for both end points of the connection. Only one local ID is generated on
the S7-400 station for connections to an S7-300 station.

The local configuration data for connection end points on an S7 station must
be separately downloaded into each target station.

An (empty) connection table (“Connections” object) is automatically created
for each CPU. This connection table is used to define communication links
between CPUs in a network. After this is opened, a window is displayed
containing a table for defining connections between programmable modules
(For more information about defining connections, see the User Manual /231/).

Overview

Special Feature

Loading
Configuration Data

Software

3-12
From S5 to S7, Converter Manual

A5E00706929-01

This example shows you how to configure a connection to a SIMATIC S5
station. It assumes that you have already inserted a SIMATIC 400 station in
your project.

Insert a SIMATIC S5 station in your project and then set the properties of
the station.

Open the connection table for the S7 station and select the menu command
Insert " Connections to insert a connection. A dialog box is displayed in
which you can enter the communication partner (the SIMATIC S5 station)
and the type of connection.

Once you have entered this information, the connection appears in the
connection table. The properties for the connection must be entered in the
corresponding COM NCM for the S5 station.

Connection Table

Ready

Verbpro - zebra\SIMATIC 400-Station(1)\CPU413-1(1) - Configuring Connections

Edit Insert PLC View Help

Row 1 - Loc. ID: Sel. 0 of 0:

Local ID
(hex.)

Partner ID
(hex.) Partner Type Send Operating Mode

Messages

Station:

SIMATIC 400-Station (1)

Module:

CPU 413-1 (1)

1000 SIMATIC S5 (1) S7 PtP Connection Yes No

Active
Connection Setup

Figure 3-3 Connection Table

Example:
Connection to an
S5 Device

Software

3-13
From S5 to S7, Converter Manual
A5E00706929-01

3.6 Inserting and Editing a Program

The procedure described in this section applies to creating a new program.

3.6.1 Basic Procedure for Creating Software

The software for CPUs is stored in program containers. In SIMATIC S7
modules, such an object is called an “S7 Program.”

The figure below shows an S7 program in the CPU of a SIMATIC 300 station.

File

Press F1 for help.

SIMATIC Manager - zebra

Edit Insert PLC View Options Window Help

zebra - <Standard Hierarchy, Offline> (Project) --- C:\SIEMENS\STEP7\S7p...

zebra

Symbols

Source Files

BlocksSIMATIC 400 Station

CPU 314 (1)

SIMATIC 400 Station

S7 Program (2)

S7 S7 Program (1)

Source Files

Blocks

Figure 3-4 Open S7 Program in the SIMATIC Manager

Overview

Software

3-14
From S5 to S7, Converter Manual

A5E00706929-01

To create the software for your project, proceed as follows:

1. Open the S7 program.

2. Open the “Symbols” object in the S7 program and define the symbols.
(This step can also be done later.) You will find more information on
defining symbols in Section 3.13.2.

3. Open the “Blocks” container if you want to create blocks, or open the
“Source Files” container if you want to create a source file.

4. Insert a block or a source file, as appropriate. (For detailed information, see
Section 3.6.2). The following menu commands are used for this:

-- Insert " S7 Software " Block, or

-- Insert " S7 Software " Source File

5. Open the block or source file and enter a program. You will find more
information on programs in the Programming Manuals /232/-/236/.

Depending on your task, you may not need to perform all these steps.

Program in
source file form

Container for all data in
a program

S7 Program

Container for source
files

Container for blocks

Compile

Generate source file

Blocks

Figure 3-5 Basic Objects in a STEP 7 Project and Their Hierarchical Structure

Procedure

Software

3-15
From S5 to S7, Converter Manual
A5E00706929-01

3.6.2 Inserting Components for Creating Software in S7 and M7
Programs

An S7/M7 program is created automatically for each programmable module as
a container for the software:

The following objects already exist in a new S7 program:

Symbol table (“Symbols” object)

A “Blocks” container for blocks with OB1 as the first block

A “Source Files” container for programs in the form of source files

If you want to create Statement List, Function Block Diagram, or Ladder Logic
programs, select the existing “Blocks” object and then click the menu
command Insert " S7 Software " Block. In the submenu, you can select the
type of block you want to create (such as a data block, user-defined data type
(UDT), function, function block, organization block, or variable table (VAT)).

You can now open the (empty) block and start entering the Statement List,
Ladder Logic, or Function Block Diagram program. You will find more
information in the Statement List /232/, Ladder Logic /233/, and Function
Block Diagram /236/ Programming Manuals.

The “System Data” object (SDB) which may exist in a user program was
created by the system. You can open it to view its contents, but you cannot
make changes to it for reasons of consistency. It is used to make changes to the
configuration once you have loaded a program and to download the changes to
the programmable controller.

You can also use blocks from the standard libraries supplied with the software
to create user programs. You access the libraries using the menu command File
" Open. You will find more information on using standard libraries and
creating your own libraries in the online help.

If you want to create a source file in Statement List, select the “Source Files”
or “Charts” object in the S7 program and then select the menu command
Insert " S7 Software " Source File. In the submenu, you can select the source
file which matches your programming language. You can now open the empty
source file and start entering your program.

An (empty) symbol table (“Symbols” object) is created automatically when the
S7 program is created. When you open the symbol table, the “Symbol Editor”
window opens displaying a symbol table where you can define symbols (refer
to Section 3.13.2 for more details).

Existing
Components

Creating S7 Blocks

Using Blocks from
Standard Libraries

Creating Source
Files

Creating a Symbol
Table

Software

3-16
From S5 to S7, Converter Manual

A5E00706929-01

You can create and edit source files with any ASCII editor. You can then
import these files into your project and compile them into executable blocks.
To insert an external source file, proceed as follows:

1. Select the “Source Files” container to which you want to import the source
file.

2. Select the menu command Insert " External Source File.

3. Enter the source file name in the dialog box which appears.

The blocks created when the imported source file is compiled are stored in the
“Blocks” container.

Inserting External
Source Files

Software

3-17
From S5 to S7, Converter Manual
A5E00706929-01

3.7 Blocks

3.7.1 Comparison

The following table provides a comparison of the blocks in STEP 5 and
STEP 7. The table is intended to answer the question “Which STEP 7 block
should I use for which STEP 5 block?”

This table is not to be interpreted as a fixed one-to-one set of assignments since
the new block environment makes additional programming options available.
The table entries are to be understood as a set of recommendations for starting
STEP 7 programming.

Table 3-2 Comparison of Blocks: STEP 5 / STEP 7

STEP 5 Block STEP 7 Block Explanation

Organization block (OB) Organization blocks (OB) Interface to the operating system

Integrated special OBs System functions (SFC)

System function blocks
(SFBs)

System functions in STEP 7 replace
the special organization blocks (STEP
5) that can be called in the user
program.

Function block (FB, FX) Function (FC) Functions (FCs) in STEP 7 have the
same properties as function blocks in
STEP 5.

Program block (PB) Function block (FB) Program blocks correspond to the
function blocks in STEP 7. Function
blocks in STEP 7 have completely
new properties compared to blocks in
STEP 5 having the same name; thus,
they now provide new programming
options.
Note: During conversion, program
blocks are transformed into functions
(FCs).

Sequence block (SB) -- There are no sequence blocks in
STEP 7.

Data block (DB, DX) Data block (DB) In STEP 7 the data blocks are longer
than in STEP 5 (in S7-300 up to
8 Kbytes, in S7-400 up to 64 Kbytes).

Data block DX0, DB1 in its
special function

System data blocks (SDB)
(CPU parameter assignment)

The new system data blocks contain
all the hardware configuration data,
including the CPU parameter
assignments, which determine the
program processing.

Comment blocks DK, DKX,
FK, FKX, PK

-- In STEP 7 there are no longer any
comment blocks. Comments are
contained in the respective block in
the offline database.

No Fixed
Assignment

Software

3-18
From S5 to S7, Converter Manual

A5E00706929-01

3.7.2 Functions and Function Blocks

Functions (FCs) are logic blocks without a “memory”. The output parameters
contain the calculated function values after the function is processed. It is then
up to the user how the actual parameters are used and saved after the FC is
called.

Do not confuse functions with function blocks! In STEP 7 these are different
types of blocks.

Function blocks (FB) are logic blocks which do have a “memory.” The
memory is in the form of an instance data block which is associated with the
function, in which the actual parameters and static data of the function block
are stored.

Function blocks are used for applications such as programming controller
structures.

3.7.3 Data Blocks

Data blocks store the data for the user program. A distiction is made between
shared data blocks and instance data blocks, as explained in the following:

Shared data blocks are not assigned to any particular block (as in STEP 5).

Instance data blocks are associated with a function block (FB) and contain,
in addition to the FB data, the data from multiple instances that may have
been defined.

Every data block can either be a shared data block or an instance data block.

Functions (FCs)

Function Blocks
(FBs)

Software

3-19
From S5 to S7, Converter Manual
A5E00706929-01

3.7.4 System Blocks

You do not have to program every function yourself. You can also program
communication functions, for example, by using pre-configured blocks that are
available in the operating system on the CPUs. These are the following:

System functions (SFCs), with properties like those of functions (FCs)

System function blocks (SFBs), with properties like those of function
blocks (FBs).

The previous discussion was centered around blocks containing programs or
data from the user program. In addition to these blocks there are other blocks
containing settings such as module parameters or addresses. These are called
system data blocks (SDBs) and are created by special STEP 7 applications,
for example, when entering the hardware configuration or creating connection
tables.

System Functions
(SFCs) and System
Function Blocks
(SFBs)

System Data
Blocks (SDB)

Software

3-20
From S5 to S7, Converter Manual

A5E00706929-01

3.7.5 Organization Blocks

Organization blocks (OBs) form the interface between the operating system
and the user program. Different organization blocks carry out their own
specific tasks.

You assemble the STL user program for your S7 CPU from the organization
blocks (OBs) required for your automation solution.

Table 3-3 Comparison of the OBs in S5 and S7

Function S5 S7

Main program Free cycle OB1 OB1

Interrupts Time-delay (delayed)
interrupt

OB6 OB20 to OB23

Time-of-day
(clock-controlled)
interrupt

OB9 OB10 to OB17

Hardware interrupts OB2 to OB5 OB40 to OB47

Process interrupts OB2 to OB9 (IB 0) Replaced by hardware
interrupts

Cyclic (timed)
interrupts

OB10 to OB18 OB30 to OB38

Multicomputing
interrupt

-- OB60

Startup Manual complete (cold)
restart

OB21 (S5-115U) OB20
(from S5-135U)

OB100

Manual (warm) restart OB21 (from S5-135U) OB101

Automatic (warm)
restart

OB22 OB101

Errors Error OB19 to OB35 OB121, OB122, OB80
to OB87

Other Processing in STOP
mode

OB39 Omitted

Background processing -- OB90

Distribution of
Organization
Blocks

Software

3-21
From S5 to S7, Converter Manual
A5E00706929-01

Error OBs are called if an error occurs during program execution. You can use
them to help program error reactions. If no error OB exists for a particular
error type, then the CPU goes into STOP mode.

Table 3-4 Error Handling in S5 and S7

Function S5 S7

Calling a block which is not loaded OB19 OB121

Timeout with direct access to I/O modules OB23 OB122

Timeout updating the process image and the
IPC flags (interprocessor communication
flags)

OB24 OB122

Addressing error OB25 OB122

Cycle time exceeded OB26 OB80

Substitution error OB27 Omitted

Stop by operator OB28

(S5-135U)

Omitted

Timeout with input byte IB 0 OB28

(S5-155U)

OB85

Illegal instruction code OB29

(S5-135U)

STOP

Timeout with direct access to I/Os in the
extended address area

OB29

(S5-155U)

OB122

Illegal parameter OB30

(S5-135U)

Omitted

Parity error or timeout accessing user memory OB30

(S5-155U)

OB122

Special function group error OB31 Omitted

Load and transfer error with a data block OB32 OB121

Collision of timed interrupts OB33 OB80

Controller error OB34

(S5-135U)

Omitted

Error generating a data block OB34

(S5-155U)

SFC feedback

Communication error OB35 OB84

Error Handling

Error OBs

Software

3-22
From S5 to S7, Converter Manual

A5E00706929-01

As in S5, you can also use the status word bits OV and OS to evaluate a report
of an exceeded signal. The difference in behavior in the two systems is minor.

For further information about the behavior of status bits with reference to
instructions, see the Statement List Programming Manual /232/.

The interface between the user program and the system program in S5 CPUs
consists of accesses made to the operating system area and via special OBs.

In S7 CPUs, this interface has two new block types (“system functions” and
“system function blocks”), in addition to the organization blocks.

System functions (SFCs) and system function blocks (SFBs) are blocks
integrated in the CPU operating system which can be called in a STEP 7 user
program as needed. If an error occurs during processing of a system function
(SFC), this error can be evaluated in the user program with the aid of the
RET_VAL return value.

Table 3-5 Special Functions in S5 and S7

Function S5 Block Replacement in S7

Cycle time triggering OB31 SFC43 RE_TRIGR

Battery failure OB34 OB81 (Error reaction can be
programmed by user)

Access to condition code byte OB110 STEP 7 instruction:
L STW/T STW

Delete ACCU 1 -- 4 OB111 STEP 7 instruction sequence:
L 0; PUSH; PUSH; PUSH

Roll up ACCU OB112 Function not identical:

STEP 7 instruction: PUSH

Roll down ACCU OB113 Function not identical

STEP 7 instruction: POP

Disable all interrupts on/off OB120 SFC41 DIS_AIRT

SFC42 EN_AIRT

Disable cyclic (timed) interrupts
individually on/off

OB121 SFC39 DIS_IRT

SFC40 EN_IRT

Delay all interrupts on/off OB122 SFC41 DIS_AIRT

SFC42 EN_AIRT

Delay cyclic (timed) interrupts
individually on/off

OB123 SFC39 DIS_IRT

SFC40 EN_IRT

Set/read CPU time
(continued on next page)

OB150 SFC0 SET_CLK

SFC1 READ_CLK

Troubleshooting in
S5 and S7

Exceeded Signal

Integrated Special
Functions

System
Functions/System
Function Blocks

Software

3-23
From S5 to S7, Converter Manual
A5E00706929-01

Table 3-5 Special Functions in S5 and S7, continued

Function Replacement in S7S5 Block

Set/read time-controlled
interrupt time

OB151 SFC28 SET_TINT

SFC30 ACT_TINT

SFC31 QRY_TINT

Cycle statistics OB152 Local data in OB1

Counter loop OB160 - 163

(S5-135U)

STEP 7 instruction: LOOP

Variable timed loop OB160

(S5-115U)

SFC47 WAIT

Read block stack OB170 Omitted

Variable data block access OB180 Omitted

Test data block OB181 SFC24 TEST_DB

Copy data area OB182 SFC20 BLKMOV

Transfer flags to data blocks OB190, OB192 SFC20 BLKMOV

Transfer data blocks to flag
areas

OB191, OB193 SFC20 BLKMOV

Functions for multiprocessor
communication

OB200 - 205 Omitted

Page access OB216 - 218 No page addressing in S7

Sign extension OB220 S7 instruction: ITD

Set cycle monitoring time OB221 Parameter assignment with S7

Restart cycle monitoring time OB222 SFC43 RE_TRIGR

Compare startup types OB223 Multicomputing startup only for
same startup type

Transfer IPC flags in blocks OB224 Omitted

Read word from the system
program

OB226 Omitted

Read CRC of the system
program

OB227 Omitted

Read status information of a
program processing level

OB228 SFC51 RDSYSST
SFC6 RD_SINFO

Functions for handling blocks OB230 - 237 Communication with SFBs

Initialize shift register OB240 Omitted

Process shift register OB241 Omitted

Delete shift register OB242 Omitted

Control: Initialize PID algorithm
Control: Process PID algorithm

OB250
OB251

Closed-loop control FBs: FB41 -
FB43
or SFB41 - SFB43

Transfer data blocks (DB/DX)
to DB RAM

OB254, OB255 Omitted

Software

3-24
From S5 to S7, Converter Manual

A5E00706929-01

3.7.6 Block Representation during Conversion

.The block structure has been changed for S7. The figure below shows a
simplified example of a block assignment for STEP 5 and STEP 7 resulting
from the conversion process.

OB FB PB SB DB

STEP 5

STEP 7

OB FC FBDB SDB

Figure 3-6 Blocks with Comparable Function in STEP 5 and STEP 7

Table 3-6 on the following page shows you how block calls are converted.

Block Assignment

Software

3-25
From S5 to S7, Converter Manual
A5E00706929-01

Table 3-6 Block Types in S5 and S7

S5 S7

OB Fixed
numbers

User program Corresponding S7 OB Fixed numbers

OB Fixed
numbers

Special function Not convertible, must be reprogrammed with S7

PB 0 to 255 User program FC blocks without parameters Number is proposed

FB/FX 0 to 255 User program FC blocks with parameters whose
names are retained

Number is proposed

FB Fixed
numbers

Integrated
function blocks

Loadable FCs contained in the
FBlib1 library which must be
loaded to the converted file before
compiling

Fixed numbers

FB/FX Fixed names Standard function blocks Loadable FCs contained in the
FBlib1 library which must be
loaded to the converted file before
compiling

Fixed numbers

SB 0 to 255 User program FC blocks without parameters

(sequencers cannot be converted
and must be created in S7
GRAPH.

Number is
suggested

DB 2 to 255 User data Shared data blocks (DBs) Number taken from
S5

DX 1 to 255 User data Shared data blocks (DBs) Number from 256
onwards is
suggested

DB1/

DX0

Data blocks with system
settings

If the blocks contain CPU-specific entries, the parameter
settings must be made with STEP 7. The converted
contents of DB1 and DX0 are irrelevant and can be
deleted.

Software

3-26
From S5 to S7, Converter Manual

A5E00706929-01

3.8 System Settings

The following tables show how the functions for the parameters in DB1 and
DX0 (system settings) are made:

Table 3-7 Converting the System Settings from DB1

S5 Parameter Block How Implemented in S7

Startup delay Call SFC47 WAIT

IPC flags Set using global data communication, call

SFC60 GD_SND

SFC61 GD_RCV

Location of error code System enters error messages in the diagnostic
buffer. Information about “Location of error code”
omitted

Replace number of integrated FBs Omitted

On-board analog inputs Set in HWConfig using CPU properties

On-board interrupt Set in HWConfig using CPU properties

On-board counter Set in HWConfig using CPU properties

Change priorities of OBs Set in HWConfig using CPU properties

Output/disable process image Call SFC27 UPDAT_PO

Read in/disable process image Call SFC26 UPDAT_PI

Retentive flags Set in HWConfig using CPU properties

Retentive timers Set in HWConfig using CPU properties

Retentive counters Set in HWConfig using CPU properties

SINEC L1 Replaced by MPI bus (global data
communication)

SINEC L2 Set with HWConfig

Software protection In preparation

Clock parameters Set in HWConfig using CPU properties or by
calling SFC28 SET_TINT

Assigning parameters to timed interrupt OBs Set in HWConfig using CPU properties

Cycle time monitoring Set in HWConfig using CPU properties

Converting DB1
and DX0

Software

3-27
From S5 to S7, Converter Manual
A5E00706929-01

Table 3-8 Converting the System Settings from DX0

S5 Parameter Block How Implemented in S7

Addressing error monitoring Call OB121

Updating the IPC flags Global data communication

Startup types after power on Set in HWConfig using CPU properties

Start synchronization in multiprocessor operation Set in HWConfig using CPU properties

Number of timer cells Fixed CPU-specific value (for S7-300) or set in
HWConfig using CPU properties (for S7-400)

Error handling Call:

SFC36 MSK_FLT

SFC37 DMSK_FLT

Floating-point math Present

Process (hardware) interrupt triggering Set in HWConfig using CPU properties

Timed (cyclic) interrupt processing mode Call SFC28 SET_TINT

Cycle time monitoring Set in HWConfig using CPU properties

Software

3-28
From S5 to S7, Converter Manual

A5E00706929-01

3.9 Standard Functions

During conversion, the standard functions present in S5 are automatically
replaced by converted functions having the same functionality. In S7, most of
these functions can be replaced by simplified command sequences, which
conserves memory and reduces the cycle time.

The standard functions are contained in the “StdLib30” S7 library located in
the program container FBLib1.

For further information on working with libraries, refer to the online help.

3.9.1 Floating-Point Math

STEP 5 STEP 7 STEP 5 STEP 7

FB Name Number Name FB Name Number Name

GP:FPGP FC61 GP_FPGP GP:MUL FC65 GP_MUL

GP:GPFP FC62 GP_GPFP GP:DIV FC66 GP_DIV

GP:ADD FC63 GP_ADD GP:VGL FC67 GP_VGL

GP:SUB FC64 GP_SUB RAD:GP FC68 RAD_GP

3.9.2 Signal Functions

STEP 5 STEP 7 STEP 5 STEP 7

FB Name Number Name FB Name Number Name

MLD:TG FC69 MLD_TG MLD:EZ FC75 MLD_EZ

MELD:TGZ FC70 MELD_TGZ MLD:ED FC76 MLD_ED

MLD:EZW FC71 MLD_EZW MLD:EZWK FC77 MLD_EZWK

MLD:EDW FC72 MLD_EDW MLD:EDWK FC78 MLD_EDWK

MLD:SAMW FC73 MLD_SAMW MLD:EZK FC79 MLD_EZK

MLD:SAM FC74 MLD_SAM MLD:EDK FC80 MLD_EDK

3.9.3 Integrated Functions

STEP 5 STEP 7

FB Name Number Name

COD:B4 FC81 COD_B4

COD:16 FC82 COD_16

MUL:16 FC83 MUL_16

DIV:16 FC84 DIV_16

Software

3-29
From S5 to S7, Converter Manual
A5E00706929-01

3.9.4 Basic Functions

STEP 5 STEP 7 STEP 5 STEP 7

FB Name Number Name FB Name Number Name

ADD:32 FC85 ADD_32 REG:LIFO FC93 REG_LIFO

SUB:32 FC86 SUB_32 DB:COPY FC94 DB_COPY

MUL:32 FC87 MUL_32 DB:COPY FC95 DB_COPY

DIV:32 FC88 DIV_32 RETTEN FC96 RETTEN

RAD:16 FC89 RAD_16 LADEN FC97 LADEN

REG:SCHB FC90 REG_SCHB COD:B8 FC98 COD_B8

REG:SCHW FC91 REG_SCHW COD:32 FC99 COD_32

REG:FIFO FC92 REG_FIFO

3.9.5 Analog Functions

STEP 5 STEP 7 STEP 5 STEP 7

FB Name Number Name FB Name Number Name

AE:460 FC100 AE_460_1 AE:466 FC106 AE_466_1

AE:460 FC101 AE_460_2 AE:466 FC107 AE_466_2

AE:463 FC102 AE_463_1 RLG:AA FC108 RLG_AA1

AE:463 FC103 AE_463_2 RLG:AA FC109 RLG_AA2

AE:464 FC104 AE_464_1 PER:ET FC110 PER_ET1

AE:464 FC105 AE_464_2 PER:ET FC111 PER_ET2

3.9.6 Math Functions

STEP 5 STEP 7 STEP 5 STEP 7

FB Name Number Name FB Name Number Name

SINE FC112 SINE ARCCOT FC119 ARCCOT

COSINE FC113 COSINE LN X FC120 LN_X

TANGENT FC114 TANGENT LG X FC121 LG_X

COTANG FC115 COTANG B LOG X FC122 B_LOG_X

ARCSIN FC116 ARCSIN E^X FC123 E_H_N

ARCCOS FC117 ARCCOS ZEHN^X FC124 ZEHN_H_N

ARCTAN FC118 ARCTAN A2^A1 FC125 A2_H_A1

Software

3-30
From S5 to S7, Converter Manual

A5E00706929-01

3.10 Data Types

STEP 7 uses new data formats. The table below compares the different data
types in S5 and S7:

Table 3-9 Data Types in S5 and S7

Data Types in S5 Data Types in S7 Data Class

BOOL,

BYTE,

WORD,

DWORD,

Integer,

Double integer,

Floating point,

Time value,

-

ASCII character

BOOL,

BYTE,

WORD,

DWORD,

INT,

DINT,

REAL,

S5TIME,

TIME, DATE; TIME_OF_DAY,

CHAR

Elementary data types

-- DATE_AND_TIME,

STRING,

ARRAY,

STRUCT

Complex data types

Timers,

Counters,

Blocks

--

--

TIMER,

COUNTER,

BLOCK_FC, BLOCK_FB,

BLOCK_DB, BLOCK_SDB,

POINTER,

ANY

Parameter types

Software

3-31
From S5 to S7, Converter Manual
A5E00706929-01

Table 3-10 Different Formats for Constants in S5 and S7

Formats in S5 Example Formats in S7 Example

KB L KB 10 k8 L B#16# A

KF L KF 10 k16 L 10

KH L KH FFFF 16# L 16# FFFF

KM LKM1111111111111111 2# L2#11111111_11111111

KY L KY 10,12 B# L B# (10,12)

KT L KT 10.0 S5TIME# (S5T#) L S5TIME# 100ms

KC L KC 30 C# L C#30

DH L DH FFFF FFFF 16# L DW#16# FFFF_FFFF

KS L KS WW ’ xx ’ L ’ WW ’

KG L KG +234 +09 Floating point L +2.34 E+08

Representation: S5 format

Exponent Mantissa

Repr.: Single format compl. with ANSI/IEEE

Exponent Mantissa
31 30 24 23 22 0 31 30 23 22 0

SE 26.. 20 SM 2-1......2-23 S 27.. 20 2-1.. 2-23

Exponent = value of exponent

SE = sign of the exponent

SM = sign of the mantissa

Range of values: 1.5 x 10--39 to 1.7 x 1038

Exponent = actual exponent + bias* (+127)

S = sign of the mantissa

Range of values: approx. 1.18 x 10--38 to 3.4 x

10+38

* Bias: This is an offset factor separating the exponents into positive and
negative areas. The value 127 in the exponent area corresponds to the value 0
in an absolute sense.

For further information about data types see the Statement List Programming
Manual /232/.

Software

3-32
From S5 to S7, Converter Manual

A5E00706929-01

3.11 Address Areas

3.11.1 Overview

Table 3-11 Addresses in S5 and S7

Address Areas Addresses in S5 Addresses in S7 Remark

Inputs I I

Outputs Q Q

I/O P, Q, G PI for load commands Shared I/O is not

PQ for transfer
commands

converted

Bit memory (flag) area F M

S M from M 256.0
(Converter)

“Scratchpad flags” L Converted like flags

Timers T T

Counters C C

Data area D... DB... Converted as shared
data addresses

System data RS, RT, RI, RJ - Not

Page area C - converted

In S7 there are two data block registers: the DB register, which is
predominantly used for shared data blocks and the DI register, which is
preferred for instance DBs. For this reason there are also two types of data
addresses. The addresses DBX, DBB, DBW, and DBD are addresses of shared
data blocks; the addresses DIX, DIB, DIW, and DID are addresses of instance
DBs. During conversion, addresses of shared data blocks are used for the data
block addresses D, DB, DW, DD.

Also note how data blocks are converted (see Section 3.7.6).

!
Warning

Be aware that the size and number areas for address areas and the number and
length of blocks for S7 all depend upon the CPU used. CPU performance
criteria and ratings can be found in Section 2.2.1.

Note on Data
Addresses

Software

3-33
From S5 to S7, Converter Manual
A5E00706929-01

3.11.2 New Addresses in S7: Local Data

Local data in STEP 7 are the data assigned to a logic block which are either
declared in its declaration section or in its variable declaration. Depending on
the block, they consist of formal parameters, static data, and temporary data.
Local data are usually addressed symbolically.

Block parameters of functions (FC) are handled like the block parameters in
S5: the block parameters represent pointers which point to the corresponding
actual parameter.

Block parameters of function blocks (FB) are stored like the static local data in
the instance data block.

Static local data can be used in every function block. They are defined in the
declaration section and stored in the instance data block.

Static local data, like data addresses in shared data blocks, retain their value
until they are overwritten by the program.

Generally, the static local data are only processed in the function block.
However, since they are stored in a data block, the local data can be accessed
in the user program at any time, as is the case with variables in a shared data
block.

Scratchpad flags in STEP 5

In STEP 5, bit memory address areas are used to store data temporarily within
blocks. By common agreement, the flags 200 to 250 are reserved for temporary
storage. The management of scratchpad flags is completely up to the user.

Temporary local data in STEP 7

Temporary local data are storage areas for data that are only valid during block
processing. As soon as the block has been processed, these local data release
the used memory again. Each priority class has its own local data stack. This
prevents intermediate results from being inadvertently overwritten by interrupt
programs.

Local Data in
STEP 7

Block Parameters

Static Local Data

Temporary Local
Data

Software

3-34
From S5 to S7, Converter Manual

A5E00706929-01

In STEP 7, temporary variables are used for the following three applications:

As intermediate storage for data from a user program.

This application is explained above and applies to functions (FCs), function
blocks (FBs), and organization blocks (OBs).

As memory used for transferring operating system information to the user
program.

The information supplied by the operating system to the user program has a
special name: “start information.” This start information is exclusively
provided to the organization blocks (OBs) as an interface between the
operating system and the user program.

To transfer parameters in FCs.

You declare temporary local data within a block. When you create a new
block, you declare symbolic names for the temporary variables at the
beginning and then use them within the block. Each priority class has 256
bytes available in the S7-300. A total of 16 Kbytes are available in the S7-400
which the user can divide among the priority classes when assigning
parameters to the CPU.

Using Temporary
Local Data in
STEP 7

Where Are
Temporary Local
Data Declared?

Software

3-35
From S5 to S7, Converter Manual
A5E00706929-01

3.12 Instructions

The following table provides an overview of the instructions used. In addition,
it also shows which instructions can be converted. If the instructions are not
convertible, then other conversion options are indicated.

Table 3-12 Instructions in S5 and in S7

Instruction Type S5 S7 Conversion Conversion
Option

Accumulator
instructions

TAK, ENT, I, D,
ADDBN, ADDKF,
ADDDH

TAK, ENT, INC,
DEC, +,

New in S7:

CAW, CAD, PUSH,
POP, LEAVE

yes --

Address register
instructions /
Register instructions

MA1, MBR, ABR,
MAS, MAB, MSB,
MSA, MBA, MBS;
TSG, LRB, LRW,
LRD, TRB, TRW,
TRD

New in S7:

LAR1, LAR2,
TAR1, TAR2,
+AR1, +AR2,

CAR

no Use address
register (AR1,
AR2)

Bit logic instructions A, AN, O, ON, A(,
O(,), O, S, R, RB,
RD=

TB, TBN, SU, RU

A, AN, O, ON, A(,
O(,), O, S, R, =

SET; A, SET; AN,
SET; S, SET; R

New in S7:

X, XN, X(, XN(,
FP, FN, NOT, SET,
CLR, SAVE

yes --

Timer instructions SP, SE, SD,
SS/SSU, SF/SFD,
FR, SEC

SP, SE, SD, SS, SF,
FR, S T

yes --

Counter instructions CU/SSU, CD/SFD,
FR, SEC

CU, CD, FR, S C yes --

Load and transfer
instructions

L, LD, LW, LDW,
TL PB, L QB,
L PW, L QW, T PB,
T QB, T PW, T QW

L, LC, T

L PIB, L PIW,
T PQB, T PQW

yes -

(continued on next page)

LY GB / GW / GD /
CB / CW / CD,
LWGW / GD / CW /
CD,
TY GB / GW / GD /
CB / CW / CD,
TWGW / GD / CW /
CD

no Substitute by
access to I/O area

Software

3-36
From S5 to S7, Converter Manual

A5E00706929-01

Table 3-12 Instructions in S5 and in S7, continued

Instruction Type Conversion
Option

ConversionS7S5

Integer math
instructions

+F, --F, xF, :F, +D,
--D

+I, --I, *I, /I, +D,
--D, *D, /D

New in S7:

MOD

yes --

Floating-point math
instructions

+G, --G, xG, :G +R, --R, *R, /R yes --

Comparison
instructions

!=F, ><F, >F, <F,
>=F, <=F, !=D,
><D, D, <D, >=D,
<=D, !=G, ><G,
>G, <G, >=G, <=G

==I, <>I, >I, <I;
>=I, <=I, ==D,
<>D, >D, <D, >=D,
<=D, ==R, <>R,
>R, <R, >=R, <=R

yes --

Conversion
instructions

CFW, CSW, CSD
DEF, DED, DUF,
DUD, GFD, FDG

INVI, NEGI,
NEGD, BTI, BTD,
DTB, ITB, RND,
DTR

New in S7:

ITD, RND+,
RND--, TRUNC,
INVD, NEGR

yes --

Word logic
instructions

AW, OW, XOW AW, OW, XOW

New in S7:

AD, OD, XOD

yes --

Shift and rotate
instructions

SLW, SLD, SRW,
SRD, SVW, SVD,
RLD, RRD

SLW, SLD, SRW,
SRD, SSI, SSD,
RLD, RRD

New in S7:

RLDA, RRDA

yes --

Data block
i t ti

G, CX OPN yes
instructions

G, GX SFC22 no Substitute by
calling SFC22
CREATE_DB

(continued on next page)

New in S7:

CDB

L DBLG, L DBNO,
L DILG, L DINO

Software

3-37
From S5 to S7, Converter Manual
A5E00706929-01

Table 3-12 Instructions in S5 and in S7, continued

Instruction Type Conversion
Option

ConversionS7S5

Logic control
instructions, jump

JU, JC, JN, JZ, JP,
JM, JO, JOS, JUR

JU, JC, JN, JZ, JP,
JM, JO, JOS

New in S7:

JCN, JCB, JNB,
JBI, JNBI, JMZ,
JPZ, JUO, LOOP,
JL

yes --

Block instructions JU, JC, DOU,
DOC, BE, BEU,
BEC

CALL, BE, BEU,
BEC

yes --

Command output
instructions/ Master
control relay
instructions

BAS, BAF New in S7:

MCRA, MCRD,
MCR(,)MCR

no Substitute by
calling SFC26,
SFC27 or master
control relay
instructions

Stop commands STP, STS, STW SFC46 no Substitute by
calling SFC46
STP

Processing functions DO <Formal
parameter>

- no Call of DB / code
block must be
newly
programmed

DO FW, DO DW Memory-indirect
addressing

yes Recommendation:
substitute with
register indirect
addressing

DO RS Area-crossing
register-indirect
addressing

no Must be
substituted with
indirect
addressing (see
Section 3.13.4)

Absolute memory
addressing

LIR, TIR, LDI, TDI -- no Must be
substituted with
indirect
addressing (see
Section 3.13.4)

Block transfers TNB, TNW, TXB,
TXW

SFC20 no Substitute by
calling SFC20
BLKMOV

Interrupt commands

(continued on next page)

LIM, SIM, IAE,
RAE, IA, RA

SFC39 to 42 no Substitute by
calling SFC39 -
42

Software

3-38
From S5 to S7, Converter Manual

A5E00706929-01

Table 3-12 Instructions in S5 and in S7, continued

Instruction Type Conversion
Option

ConversionS7S5

Page commands ACR, TSC, TSG -- no S7 has no page
access.

Math functions -- ABS, COS, SIN,
TAN, ACOS,
ASIN, ATAN, EXP,
LN

-- --

Null instructions BLD xxx

NOP 0, NOP 1

BLD xxx

NOP 0, NOP 1

yes --

Software

3-39
From S5 to S7, Converter Manual
A5E00706929-01

3.13 Addressing

3.13.1 Absolute Addressing

The absolute addressing in S5 and S7 is identical, with one exception:

In S7, data in data blocks are addressed in bytes; that is, word addresses in S5
are transformed into byte addresses by being multiplied by 2.

The following table shows the assignment during this conversion (data area
addressing:

S5 S7

DL 0, 1, 2, 3, ...255 DBB 0, 2, 4, 6, ...510

DR 0, 1, 2, 3, ...255 DBB 1, 3, 5, 7, ...511

DW 0, 1, 2, 3, ...255 DBW 0, 2, 4, 6, ...510

DD 0, 1, 2, 3, ...254 DBD 0, 2, 4, 6, ...508

D x.y DBX 2 x.y for 8 y 15

DBX (2 x+1).y for 0 y 7

3.13.2 Symbolic Addressing

The symbolic addressing in S5 is also used in S7. However, there are now new
options for creating and using the symbols. There are no differences in
programming.

Symbols for STEP 5 programs are declared with the help of the symbol editor.
This editor generates an assignment list which allows you to use the symbols
defined there instead of absolute addresses.

In S7, symbols can be up to 24 characters long.

STEP 7 also has a symbol editor, but the assignment list (ZULI) is now known
as a “symbol table.” In it you can declare all shared symbols such as inputs,
outputs, bit memory (flags), and blocks.

When you assign symbols with the symbol editor, these are valid for a CPU
program.

Symbols in STEP 5

Symbols in STEP 7

Shared Symbols

Software

3-40
From S5 to S7, Converter Manual

A5E00706929-01

Besides being able to declare symbols with the symbol editor, STEP 7 also
gives you the option of specifying local symbols for data addresses and for the
local data area when programming blocks.

If you assign symbols within a block instead of assigning them with the
symbol editor, then this symbol is only “valid” for the block concerned. In this
case the symbol is “local to the block.”

STEP 7 does not stipulate exactly when you have to specify your symbols.
When doing this you have the following two options:

Specify them before beginning to program

(This is required if the user program is input incrementally; that is, if the
program syntax is checked after each line is created.)

Specify them after creating the user program but before compiling

(This is required if the user program is input in free-edit mode; that is, if
the program is created as an ASCII file (source file).)

In S7, you have the option of creating and editing the symbol table with the
editor of your choice.

You can import tables that you created with another tool into your symbol table
and then edit them further. For example, the import function can be used to add
assignment lists created in STEP 5/ST after conversion.

The following data formats are available: *.SDF, *.ASC, *.DIF, and *.SEQ.

To import a symbol table, proceed as follows:

1. Open the S7 program containing the symbol table in the project window.

2. Double-click the “Symbols” container to open the symbol table.

3. Select the menu command Symbol Table " Import in the window
containing the symbol table. A dialog box is displayed.

4. Select the symbol table that you want to import in the dialog box and then
click the “Open” button.

5. Check over the data records in the symbol table and make any corrections
necessary.

6. Save and close the symbol table.

Note

A symbol table in *.SEQ file format that was converted from S5 to S7 can no
longer be imported into S5. The file format *.DIF is recommended for
exchanging symbol tables between S5 and S7.

For further information on symbol tables, see the User Manual /231/.

Local Symbols

When are Symbols
Declared?

Importing a
Symbol Table

Software

3-41
From S5 to S7, Converter Manual
A5E00706929-01

3.13.3 New Feature: Complete Addressing of Data Addresses

Complete addressing means that the data block is specified along with the data
address. This was not possible in S5.

Complete addressing can occur either absolutely or symbolically. Combining
absolute and symbolic addressing within one statement is not possible.

L DB100.DBW6

L DB_MOTOR.SPEED

DB_MOTOR is the symbol for the data block DB100 and is defined in the
symbol table. MOTOR.SPEED is a data address that was declared in the data
block. This means that the symbolic name for the data address
(DB_MOTOR.SPEED) is just as unique as the absolute address
(DB100.DBW6).

Completely addressed data access can only be done in connection with the
shared data block register (DB register). During complete addressing the STL
editor issues statements:

1. Open the data block via the DB register (such as OPN DB100)

2. Access the data address (such as L DBW 6)

You have the option of using completely addressed access for all instructions
that are allowed for the data type in the data address being addressed.

Completely addressed data addresses can also be specified as block
parameters. This is strongly recommended since it is possible for the data
block to be switched when it is called. Complete addressing ensures that the
correct data address is transferred from the correct data block.

Example

Possible
Operations Using
Completely-
Addressed Data
Access

Software

3-42
From S5 to S7, Converter Manual

A5E00706929-01

In principle it is possible to access data addresses in the same way as in
STEP 5 (“partial addressing”).

Example:

L DBW 6
L SPEED

In STEP 7 this may cause problems because STEP 7 changes the registers for
the S7-300/S7-400 CPU during various operations. In some cases the DB
number in the DB register will be overwritten.

The DB register may be overwritten in the following situations. Thus,
particular care must be taken here:

The DB register is overwritten during data access using complete
addressing.

If a function block (FB) is called, then the data block register for the calling
block is overwritten.

After a call is made to a function (FC) which transfers a parameter with a
complex data type (such as STRING, DATE_AND_TIME, ARRAY,
STRUCT, or UDT), the contents of the DB register for the calling block are
overwritten.

After you have assigned an actual parameter to an FC stored in a DB (such
as DB100.DBX0.1), STEP 7 opens the DB (DB100) in which the contents
of the DB register are overwritten.

After an FB has addressed an in/out parameter with a complex data type
such as STRING, DATE_AND_TIME, ARRAY, STRUCT, or UDT,
STEP 7 uses the DB register to access data. This step overwrites the
contents of the DB register.

After an FC has addressed a parameter (input, output or in/out) with a
complex data type (such as STRING, DATE_AND_TIME, ARRAY,
STRUCT, or UDT), STEP 7 uses the DB register to access data. This step
overwrites the contents of the DB register.

Dangers of “Partial
Addressing”

Software

3-43
From S5 to S7, Converter Manual
A5E00706929-01

3.13.4 Indirect Addressing

Indirect addressing using the “DO” function of S5 has been replaced in S7 by
the new indirect memory and register addressing commands.

In S5 the pointer for the indicated processing operation occupies one word.
The structure of the pointer is depicted in Figure 3-7:

15.. ..8 7.. ..0
Word address/
Block number

15.. 8 7.. ..0

Byte address

..10 9

Bit address

Figure 3-7 Structure Pointer S5

In S7 there are two possible pointer formats, word and double-word.

15.. ..8 7.. ..0
n n n n n n n n

Bits 0 to 15 (nnnn nnnn nnnn nnnn): Number (area 0 to 65 535) of a timer (T),
a counter (C), data block (DB), function (FC), or function block (FB)

n n n n n n n n

Figure 3-8 Pointer in Word Format for Memory-Indirect Addressing

Bit 31 = 0 (a) means area-internal addressing
Bit 31 = 1 (a) means area-crossing addressing

Bit 24, 25, 26 (rrr): Area ID for area-crossing addressing

Bits 3 to 18 (bbbb bbbb bbbb bbbb): Number (area 0 to 65 535) of the
addressed byte

Bits 0 to 2 (xxx): Number (area 0 to 7) of the addressed bit

31.. ..24 23.. ..16 15.. ..8 7.. ..0
a 0 0 0 0 r r r 0 0 0 0 0 b b b b b b b b b b b b b b b b x x x

Figure 3-9 Pointer in Double Word Format for Memory-Indirect and Register
Indirect Addressing

Pointer Format in
STEP 5

Pointer Format in
STEP 7

Software

3-44
From S5 to S7, Converter Manual

A5E00706929-01

Memory-indirect addressing corresponds to indirect addressing in S5. During
memory-indirect addressing, the address specifies the address of the value that
will process the instruction. The address consists of the following parts:

An address identifier, such as “IB” for “input byte”, and

A word that contains the number of a timer (T), a counter (C), a data block
(DB), a function (FC) or a function block (FB), or

A double word that specifies the exact address of a value within the
memory area indicated by the address identifier.

The address uses the pointer to indirectly indicate the address of the value or
the number. This word or double word can be located in one of the following
areas:

Bit memory (flag) (M)

Data block (DB)

Instance data block (DI)

Local data (L)

The advantage of memory-indirect addressing is that you can dynamically
modify the address of the statement when editing the program.

Examples

The following examples show how you can work with a pointer in word
format:

STL S5 STL S7 Explanation

L KB 5
T FW 2
DO FW 2
L T 0

L +5
T MW 2

L T [MW 2]]

Load the value 5 as an integer in ACCU 1.
Transfer the contents of ACCU 1 into the memory word
MW2.
Load the time value of the timer T 5.

The following two examples show how you can work with a pointer in
double-word format.

STL S5 STL S7 Explanation

L KB 8
T FY 3
L KB 7
T FY 2
DO FW 2
A I 0.0
DO FW 2
= Q 0.0

L P#8.7
T MD 2

A I [MD 2]

= Q [MD 2]

Load 2#0000 0000 0000 0000 0000 0000 0100 0111 (binary
value) in ACCU 1 (S7).
Save the address 8.7 in the memory word FW 2 (S5) /
memory double word MD 2 (S7).

The controller queries the input I 8.7 and assigns its signal
state to the output Q 8.7.

Memory-Indirect
Addressing

Software

3-45
From S5 to S7, Converter Manual
A5E00706929-01

STL S5 STL S7 Explanation

L KB 8
DO FW 2
DO FW 2
L IB 0
DO FW 2
T FW 0

L P#8.0
T MD2

L IB [MD2]

T MW [MD2]

Load 2#0000 0000 0000 0000 0000 0000 0100 0000 (binary
value) in ACCU 1 (S7).
Save the address 8 in memory word FW 2 (S5) / memory
double word MD 2 (S7).

The controller loads input byte IB 8 and transfers the
contents to memory word FW 8 (MW 8 in STEP 7).

When working with a memory-indirect address that is stored in the memory
area of the data block, you must first open the data block by using the “Open
data block” instruction (OPN). After this, you can use the data word or data
double word as the indirect address, as shown in the following example:

OPN DB10
L IB [DBD 20]

When accessing a byte, word, or double word, first make sure that the bit
number of the pointer is “0.”

In STEP 7, the address registers AR1 and AR2 are used for indirect
addressing.

With indirect addressing, the address specifies the memory location of the
value that will process the instruction. The address consists of the following
two parts:

An address identifier

An address register and a pointer for indicating the offset added to the
content of the address register in order to determine the exact address that
the instruction is to process. The pointer is indicated by P#Byte.Bit.

The address points indirectly to the address of the value. It does this by using
the address register plus the offset.

An instruction that uses area-internal, register-indirect addressing does not
change the value in the address register.

For further information, see the Statement List Programming Manual /232/.

Using the Correct
Sequence Syntax

Register-Indirect
Addressing

Software

3-46
From S5 to S7, Converter Manual

A5E00706929-01

Software

Procedure 4

Preparing for Conversion 5

Conversion 6

Editing the Converted Program 7

Compiling 8

Application Example 9

Part 2: Converting Programs

3-2
From S5 to S7, Converter Manual

A5E00706929-01

4-1
From S5 to S7, Converter Manual
A5E00706929-01

Procedure

The programming of S7 in STL is largely compatible with S5 STL. Similarly,
programming Ladder in S7 is compatible to S5 LAD and programming FBD in
S7 is compatible to S5 CSF. Thus, if you are an S5 user and want to use
existing programs in S7, this change is made much easier for you. You can
base the new system on your tried and tested S5 programs and convert them to
S7 programs.

The following list tells you how to convert your S5 program and lists the
sections where you will find the required information.

The list is intended as an example and as a guideline (individual steps can also
be skipped).

How to Proceed

4

4-2
From S5 to S7, Converter Manual

A5E00706929-01

4.1 Analyzing the S5 System

Before you convert your S5 program you should clarify the following
questions:

How can the functionality of the modules used in your S5 program be achieved
in S7? Can your S5 modules be used in S7 with the help of adapter or interface
modules? Can your S5 modules be replaced with S7 modules?

How can the required system settings be implemented in S7?

How can the range of instructions used by the S5 CPU be implemented using
your S7 CPU?

If individual instructions cannot be converted, a message is output indicating
the corresponding program sections and the instructions must be
reprogrammed manually.

Do the S5 standard function blocks called in the program to be converted also
exist as functions in S7?

The S7 Standard software supplied includes the standard software packages
already converted for basic functions, floating-point math, integrated
functions, signal functions, and math functions.

Can integrated special functions used in S5 programs be replaced?

Functionality of
the Modules
(see Chapter 2)

System Settings
(see Section 3.8)

Range of
Instructions
(see Section 3.12)

Standard Software
(see Section 3.9)

Special Functions
(see Table 3-5)

Procedure

4-3
From S5 to S7, Converter Manual
A5E00706929-01

In general, not all the parts of a program can be converted. Considering the
following points will help you decide whether to convert your S5 program or
to recreate it in S7.

Programs only containing digital and binary logic operations do not need to
be revised.

Absolute addresses cannot be addressed in S7. The corresponding
instructions (such as LIR, TIR, etc.) are not converted. If a program
frequently works with absolute addresses, it is a good idea to rewrite these
parts of the program or, if necessary, the entire program.

Processing functions (such as DO FW, DO DW) are partially converted;
however, in this case you can save memory by reprogramming the
functions in S7. This functionality can be obtained with indirect addressing.

The parameter values of block calls must be always be checked and
adapted since the actual parameters used are transferred during conversion
without being changed.

Which Parts of
Your Program
Should be
Reprogrammed in
S7?

Procedure

4-4
From S5 to S7, Converter Manual

A5E00706929-01

4.2 Creating an S7 Project

STEP 7 provides you with the following two options for creating a project:

The STEP 7 wizard helps you create a STEP 7 program quickly with the CPU
you want to use. After completing this step, you can start programming.

In addition, you have the option of creating your project manually. The
procedure for this is described in Section 3.3.1.

4.3 Defining Hardware

At this point it is a good idea to configure the hardware since data are
determined in HWConfig that can be then be used to prepare for conversion.

However, if you do not want to configure your hardware yet, you can still do it
later.

The information found in Chapter 2 (“Hardware”) will help you select the S7
or S5 modules required for your configuration and fill out the hardware
configuration table (see Section 3.4).

The address allocation for the modules is done automatically by HWConfig.
This means that you can already use the addresses during conversion.

When assigning parameters to the CPU in HWConfig you can also make
system settings which were created in DB1/DX0 in S5 or by system utilities
(see Section 3.4).

The retentive behavior can also be set in the parameter data in the CPU. The
retentive behavior is, however, dependent on the battery backup (see
Section 3.4).

Creating a Project
with the STEP 7
Wizard

Creating a
Program Manually

Defining Hardware

Address Allocation

Making System
Settings

Specifying
Retentive Behavior

Procedure

5-1
From S5 to S7, Converter Manual
A5E00706929-01

Preparing for Conversion

Providing the required files (see Section 5.1) Program file <Name>ST.S5D
Cross-reference list <Name>XR.INI
Optional assignment list
<Name>Z0.SEQ

Checking addresses
(see Section 5.2)

Number of addresses
Number of blocks

Preparing the S5 program
(see Section 5.3)

Evaluate and delete the
data blocks DB1 / DX0
Remove calls from the
integrated blocks
Remove access to the
system data area
Adapt the address areas
Assign macros to non-convertible
program parts
Delete data blocks without
structure down to one data word

Creating macros
(see Section 5.4)

Command macros
Organization block (OB) macros

Overview

5

5-2
From S5 to S7, Converter Manual

A5E00706929-01

5.1 Providing the Required Files

The following data are required as the basis for converting your S5 program:

Program file <Name> ST.S5D and

Cross-reference list <Name> XR.INI

The cross-reference list is required when converting in order to retain the
program structure and call hierarchy of the S5 program.

If you want to use symbolic names in your program instead of absolute
addresses, you also require the following data to generate the converted
assignment list:

S5 assignment list <Name> Z0.SEQ.

To prepare the conversion, proceed as follows:

1. Create a current cross-reference list for your S5 program using the S5
software.

2. Copy your STEP 5 program file, the corresponding cross-reference list and,
if necessary, the assignment list into a DOS directory.

Optional
Requirement

Procedure

Preparing for Conversion

5-3
From S5 to S7, Converter Manual
A5E00706929-01

5.2 Checking Addresses

It may be necessary to adapt the converted program to the S7 CPU being used.

To gain an overview of the range of functions of the S7 CPU, proceed as
follows:

1. Determine the S7 CPU that you want to use.

2. Find this S7 CPU in the performance specifications tables in Section 2.2.1
and compare the following two specifications:

Number of addresses

Number of blocks

with the addresses and blocks to be used,

or

1. Open the SIMATIC Manager.

2. Select the S7 CPU in the online view of the project structure.

3. Use the menu command PLC "Module Information to open a dialog box
which includes, among other things, the following information:

In the “General” tab you can identify the CPU type, obtain information on
the memory configuration, and read the size of the available address areas.

In the “Blocks” tab there is information on the available blocks. This
includes the maximum number and length of the blocks types, as well as all
OBs, SFBs, and SFCs present on the CPU.

To adapt the STL program being converted so that it can run on the CPU,
check it for the permitted number of blocks and addresses, and modify as
necessary.

Range of
Functions of the
CPU

Adapting the
Converted
Program

Preparing for Conversion

5-4
From S5 to S7, Converter Manual

A5E00706929-01

5.3 Preparing the S5 Program

Before actually converting your STEP 5 program, you can prepare it for its
future use as a STEP 7 program. (However, you do not have to do this first; all
necessary corrections can also be made in the STEP 7 source file after the
conversion.) This initial adaptation will reduce the number of error messages
and warnings occurring during conversion.

For example, you can make the following adaptations to the STEP 5 program
before proceeding with the conversion:

Evaluate system settings in the data blocks with the program properties
DB1 or DX0. After this, you can delete DB1 and DX0.

Remove all calls from integrated blocks or accesses to the system data area;
this functionality can be achieved by assigning parameters to the S7 CPU.

Adapt all input, output, and peripheral address areas to the (new) module
addresses by using the STEP 5 function “Rewire.” (When doing this, you
should make sure that the STEP 5 address area is not exceeded; otherwise,
an error will be reported during the first cycle of the conversion process. If
this occurs, these instructions will not be converted.)

Delete all repeated non-convertible parts of the program until there is only
one “unique” STEP 5 instruction for each part of the program. This
“unique” instruction can be assigned a macro to replace the part of the
program (see Section 5.4)

If your program contains very many (and long) data blocks having no
structure (such as those used as data buffers), you can delete the data words
in these data blocks until only one data word remains. After converting but
before compiling, you can program the contents of these data blocks in the
source file by using an array declaration, such as buffer: ARRAY [1..256]
of WORD.

With the converter you can not only convert complete programs but also
individual program blocks.

Preparing for Conversion

5-5
From S5 to S7, Converter Manual
A5E00706929-01

5.4 Creating Macros

When converting, you can define macros for the following:

S5 instructions that cannot be automatically converted and

S5 instructions that you want to convert differently from the standard
conversion.

Macros can be useful if your program contains many S5 instructions which
correspond to the characteristics listed above.

Macros can replace the following:

S5 instructions

S5 organization blocks (OBs)

The macros are saved for the SIMATIC instruction set in the S7S5CAPA.MAC
file and for the international instruction set in the S7S5CAPB.MAC file. If you
work with both instruction sets, you must specify the macros for each file. A
distinction is made between instruction macros and OB macros. You can create
256 instruction macros and 256 OB macros.

Uses of Macros

Macro Functions

Preparing for Conversion

5-6
From S5 to S7, Converter Manual

A5E00706929-01

5.4.1 Instruction Macros

Instruction macros must be structured as follows:

$MACRO: <S5 instruction>

S7 instruction sequence

$ENDMACRO

When defining a macro, enter the complete statement (instruction and absolute
address) for <S5 instruction>.

The table below shows a macro for the statement G DB 0, which is used to set
up data blocks in S5. The length (in words) of the data block to be set up is in
ACCU 1. In S7, the function is realized using the system function SFC22
CREAT_DB. The length of the data block must be converted into bytes.

Table 5-1 Example of an Instruction Macro

Macro S5 S7

$MACRO: G DB 0 //Replaces instruction
//for setting up a DB

L Constant

DO FW 100

L Constant;

SLW 1 //Number of words
//into number of bytes

T MW 102

CALL SFC 22(//Call SFC CREAT_DB

LOW_LIMIT := MW 100,

UP_LIMIT := MW 100,

COUNT := MW 102,

RET_VAL := MW 106,

DB_NUMBER := MW 104);

$ENDMACRO

G DB 0 SLW 1;

T MW 102;

CALL SFC22(

LOW_LIMIT := MW 100,

UP_LIMIT := MW 100,

COUNT := MW 102,

RET_VAL := MW 106,

DB_NUMBER := MW 104);

Preparing for Conversion

5-7
From S5 to S7, Converter Manual
A5E00706929-01

5.4.2 OB Macros

Due to the differences in the organization blocks between S5 and S7 it may be
advisable to control the conversion of your instructions with S5 OBs yourself.
In this case, OB macros must be structured as follows:

$OBCALL: <Number of the OB>

CALL <S7 system function>;

$ENDMACRO

If an instruction with the address OB x is found in the S5 source file, this
instruction is replaced by the defined macro instructions. Exceptions to this are
the FB calls that use OBs as formal parameters.

Table 5-2 Example of an OB Macro

Macro S5 S7

$OBCALL: 31 //Replaces instructions
//with OB31

CALL SFC 43;

$ENDMACRO

JU OB 31 CALL SFC43;

The functions of the organization blocks in S5 are different from those of the
OBs in S7. OBs that cannot be converted automatically must be replaced by
the following:

OBs with a different range of functions

New S7 instructions, or

System settings which are defined when assigning the hardware parameters

For detailed information about replacing S5 OBs, see Section 3.7.5.

Note

There is no check to determine whether a macro is defined twice. If this
happens to be the case, then the first macro defined is used. There is no check
to determine whether the specified S7 instruction sequence is correct. Make
sure that keywords and special characters (colon) are correctly written.

Notes on Creating
OBs

Preparing for Conversion

5-8
From S5 to S7, Converter Manual

A5E00706929-01

5.4.3 Editing Macros

Macros are created as follows:

1. Start the S5/S7 Converter by clicking the “Start” button in the Windows 95
taskbar and selecting Simatic/STEP 7/Convert S5 files.

2. Select the menu command Edit " Replace Macro (There must be no
program file open!).

Result: The S7S5CAPB.MAC file is opened.

3. Enter the macros as described above and save the file with the menu
command File " Save.

4. Close the file with the menu command File " Close.

Result: The S7S5CAPB.MAC file is closed. The macros are valid the next
time you start a conversion run.

Press F1 for help.

Converting S5 Files - [s7u5capB.mac]

1:1

$MACRO: G DB0
SLW 1;
T MW 102;
CALL SFC 22(

LOW_LIMIT := MW 100,
UP_LIMIT := MW 100,
COUNT := MW 102,
RET_VAL := MW 106,
DB_NUMBER := MW 104);

$ENDMACRO

File Edit View Help

Figure 5-1 Macro in the Window “Converting S5 Files”

Preparing for Conversion

6-1
From S5 to S7, Converter Manual
A5E00706929-01

Conversion

6.1 Starting the Conversion

Before you start to convert programs, make sure that the S5 file you want to
convert, the cross-reference list and, if necessary, the assignment list are in the
same directory (see Section 5.1).

After you have installed the STEP 7 software on your programming device,
start the S5/S7 Converter using the “Start” button in the taskbar of
Windows 95.

Click on the entry “Simatic/STEP 7/Convert S5 files”.

The S5/S7 Converter then displays the following initial screen:

File Edit

Press F1 for help.

View Help

Converting S5 Files

Figure 6-1 Initial Screen of the S5/S7 Converter

Prior
Requirements

Starting the S5/S7
Converter

6

6-2
From S5 to S7, Converter Manual

A5E00706929-01

To select a program file, proceed as follows:

1. Select the menu command File " Open.

2. Select the drive and the directory containing the files to be converted.

3. Select the file to be converted and click “OK” to confirm your selection.

Result: The S5/S7 Converter displays the source and target files and an
assignment of the old and new block numbers.

The figure below shows the dialog box “Converting S5 Files
[<Test>ST.S5D]”.

Press F1 for help.

Converting S5 Files - [Test@@st.s5d]

No. Name Std. New No.

Start

Cancel

Help

S5 File: D:\S5CONV\S5_PROGR\TEST@@ST.S5D

XRF File: D:\S5CONV\S5_PROGR\TEST@@R.INI

STL File: D:\S5CONV\S7_PROGR\TEST@@AC.AWL

Error File: D:\S5CONV\S7_PROGR\TEST@@AF.SEQ

S5 Assignment List: D:\S5CONV\S5_PROGR\TEST@@Z0.SEQ

Converted Assignment List: D:\S5CONV\S7_PROGR\TEST@@S7.SEQ

File Edit View Help

FB242 MUL:16 * -FC83
FB243 DIV:16 * -FC84
FX3 Check -FC5
FX100 STANDARD -FC6
OB1 -OB1
OB21 -OB101
PB1 -FC7
SB1 -FC8

Figure 6-2 “Converting S5 Files -- [<Test>ST.S5D]” Dialog Box

If required, you can modify the names of the target files “STL File”, “Error
File” and “Converted Assignment List” proposed by the software. This may be
necessary if the editor with which you want to process the converted files
requires certain name conventions (for example TEST.TXT).

To change the name of a file, proceed as follows:

1. Click the text box with the path name of the target file you want to modify.

2. Modify the text as required.

The software proposes new numbers for the blocks to be converted and
displays them in the dialog box “Converting S5 Files [<Test>ST.S5D]”. If you
want to assign different numbers, proceed as follows:

1. Double-click the block number you want to modify.

2. Enter the new number in the “New Block Number” dialog box and click
the “OK” button to confirm your entry.

Selecting a
Program File

Changing the
Target File Names

Assignment
No. --> New No.

Conversion

6-3
From S5 to S7, Converter Manual
A5E00706929-01

If your S5 program contains standard function blocks (SFBs), these are marked
by an asterisk in the “Std.” column.

By clicking on the “Start” button, you start the conversion. The conversion
consists of two conversion runs and the conversion of the assignment list.

In the first conversion run, the S5 program is converted into an S5 source file
with all blocks and comments.

Convert File

Cancel

Status: 1st run

Files:

STEP 5 File D:\..\TEST@@ST.S5D
Block: SB 39

Statistics: Total Block

Lines: 750 389

Warnings: 12 6

Errors: 0 0

Figure 6-3 First Conversion Run

In the second run, the S5 source file is converted to the STL source file with
the new block types, block numbers, and S7 syntax.

S5 Standard
Function Blocks

Starting the
Conversion

Conversion

6-4
From S5 to S7, Converter Manual

A5E00706929-01

The symbols in the S5 assignment list are converted into a form which can be
imported by the Symbol Editor.

Convert File

Cancel

Status: Assignment List

Files:

STL D:\..\TEST@@S7.SEQ
Block:

Statistics: Total Block

Lines: 640 640

Warnings: 8 0

Errors: 0 0

Figure 6-4 Converting the Assignment List

Converting the
Assignment List

Conversion

6-5
From S5 to S7, Converter Manual
A5E00706929-01

6.2 Generated Files

During conversion, the S5/S7 convertor generates the following files:

The file <Name>A0.SEQ:

This file is generated during the first conversion run. It contains the file
<Name>ST.S5D in ASCII form.

The file <Name>AC.AWL:

This file is generated during the second conversion run. It contains the STL
program. Any messages resulting from incorrect macro definitions
originate from this run.

The file <Name>S7.SEQ:

This file is generated from the conversion of the assignment list. It contains
the converted assignment list in a form suitable for importing with the
Symbol Editor.

The error file <Name>AF.SEQ:

This file is displayed in the upper list box in the “Converting S5 Files”
window and contains the errors and warnings in the converted program.
These messages are generated during both conversion runs and also during
conversion of the assignment list.

Conversion

6-6
From S5 to S7, Converter Manual

A5E00706929-01

After the conversion runs are completed, a dialog box displays the total
number of errors and warnings made in the converted program.

File Edit

Press F1 for help.

View Help

Converting S5 Files - [012625st.s5d]

C:\S5CONV\S5_PROGR\TEST@@AF.SEQ

Warning in Line 169 STEP 5 ASCII File:
*** FB 16, rel. Addr. 0H : Preheader not available ***
Warning in Line 169 STEP 5 ASCII File:
*** FB 185, rel. Addr. 0H : Output not allowed (product no.) ***
*** Error in Line 7060 (PB 211): Block not available ***

CALL FB 180;
*** Error in Line 12270 (SB 38): Block not available ***

CALL FB 16;
*** Error in Line 13459 (SB 40): Block not available ***

CALL FB 16;

D:\S5CONV\S5_PROGR\TEST@@a0.seq

#FB99
#N FILL

DB (B).

OK

Conversion complete

Errors: 3

Warnings: 2

S7U5CAPX

Figure 6-5 Messages When Converting

Conversion

6-7
From S5 to S7, Converter Manual
A5E00706929-01

In the lower list box in the window you can display the location in the file at
which the error occurred.

Messages are output in the STL source file at the points in the program at
which errors were detected. This file also contains warnings or indications that
problems might occur (for example, due to changes in the instruction
semantics).

Select the menu command File " Print to print out the message files you
require.

Print

Help

Printer: Standard printer (HP LaserJet 4Si MX)

OK Cancel

Setup...

Print

Error List:

S5 ASCII File:

STL Source File:

S5 Assignment List:

Converted Assignment List:

Macros:

Print Quality: 600 dpi

Block Assignment:

Figure 6-6 “Print” Dialog Box

Localizing Errors

Printing Messages

Conversion

6-8
From S5 to S7, Converter Manual

A5E00706929-01

6.3 Interpreting Messages

The messages generated during conversion consist of error messages and
warnings. To analyze these messages, proceed as follows:

1. Display the file containing the error in the lower list box of the “Messages”
window.

2. The meaning of the messages can be found in the online help.

3. Correct the error as suggested under “Remedy.”

Error messages are displayed if parts of the S5 program cannot be converted
and are only included as comments in the S7 program. The table below lists all
the error messages, their meaning, and possible remedies.

Chapter 3 (Software) contains the rules for converting S5 programs to S7. Here
you can also find further references to possible error sources and assistance
when subsequently editing the STL program.

Table 6-1 Error Messages, Meaning, and Remedy

Error Message Source Meaning Remedy

Absolute parameter does not
match address

1st run Wrong address ID Check the instruction

Bit access to T/C is no longer
allowed (please check)

2nd run S5 program contains bit access to
timers and counters

Check the STL program

Block not available 1st run Called block (FB, FX) missing or
block is shown in the block list but
it does not exist in the program file

Check the program structure

2nd run Block is called that does not exist
in the program file

Check whether the cross-reference
list was specified, or check the
program structure

CALL OB is not allowed 2nd run Calling OBs is not allowed in S7 If necessary, use the statement
CALL SFC

CALL SFC xy generating,
please extend parameter list

2nd run Parameters for SFC missing Complete the SFC parameter list

Command in block not
allowed

1st run For example, jump within a
program block

Check the instruction

Comment too long 1st run Error in S5 file Check the program file

Conversion error 2nd run BI without constant Include a constant with the load
instruction

Directory not available 1st run Program file does not contain any
blocks

Check the program file

Error in macro file. Macro xy
ignored

2nd run Macro error Check the macro instruction

Error in parameter 1st run Error in the S5 program Check the program file

Analyzing
Messages

Error Messages

References to
Rules

Conversion

6-9
From S5 to S7, Converter Manual
A5E00706929-01

Table 6-1 Error Messages, Meaning, and Remedy

Error Message RemedyMeaningSource

File not found general Selected file does not exist Check the program file

Invalid MC5 code was
converted

1st run Conversion of an older S5
instruction

None

Invalid operator 1st run Operator in S5 file not known or
cannot be converted

Replace the operator with the
appropriate S7 instruction

Invalid operator, may be
replaced by the instruction
\”L P# formal parameter\”

2nd run The operator cannot be loaded into
S7 in this form

You may have to use the specified
instruction

Jump label cannot be
generated

2nd run JUR instruction exceeds block
limit

Correct the error in the S5 program

Label invalid 1st run Jump label contains invalid
characters

Check the S5 file

Label undefined 1st run Jump label not defined in the
preheader

Check the S5 file

Memory overflow in
programming device (space
problem)

1st run Not enough main memory Delete files you no longer require
in the main memory

No access rights general File is read-only Clear the read-only attribute

No block name given 1st run Block name consists of only
blanks

Enter a block name

Undefined command 1st run Invalid MC5/STL instruction Correct the S5 program file

2nd run Instruction does not exist in S7 Edit a macro or replace the
instruction with the appropriate S7
instruction sequence

Undefined formal parameter 1st run More parameters than in calling
block

Check the S5 program file

Write error on diskette general File is read-only or there is no
space on the diskette

Clear the read-only attribute or
delete unnecessary data

Wrong address 1st run Address does not match instruction Check the S5 source fileg

2nd run Address does not match instruction Modify the STL file

Wrong comment length 1st run Error in S5 file Check the program file

Wrong nesting depth 1st run End of bracketed expression
incorrect

Check the nesting levels, correct
the programming error

Wrong number of parameters 1st run Error in the S5 program Check the program file

Wrong parameter type 1st run Error in the S5 program Check the program file

Conversion

6-10
From S5 to S7, Converter Manual

A5E00706929-01

Warnings are displayed if parts of the S5 program are converted but should be
checked once more.

Table 6-2 Warnings, Meaning, and Remedy

Warning Source Meaning Remedy

ID only influences Accu 1-L,
now whole Accu 1

2nd run S7 accumulators extended to
32 bits

Check the consequences of an
indirect
INCREMENT/DECREMENT
instruction in the STL program

If S5 115U, then change to
OB 100

2nd run The startup OB21 in S5 is
automatically converted to OB101

If the S5 program ran on an
S5-115U, you have to change
OB101 to OB100

Jump instruction after EDIT
cannot be compiled

2nd run An EDIT instruction with JU
cannot be converted automatically

Replace the instruction in the STL
file by JL and check the jump

Note block numbers may be
changed

2nd run An indirect block call does not
take into account new block
numbers (number is fetched from
corresponding memory word or
data word)

Change the logic in S5 or use fixed
block calls

OB 23 and OB 24 have been
converted to OB 122

2nd run OB 23 and OB 24 are both
replaced by OB 122 in S7

Put the contents of OBs 23 and 24
into OB 122 and delete the other
OB 122

OB was interpreted as OB 34
from S5-115U

2nd run Depending on the CPU used, the
OB 34 can have different
meanings

Check whether this OB matches
your program

Output not allowed
(GRAPH5 block)

1st run GRAPH 5 blocks cannot be
converted

You may have to insert a
GRAPH 7 block

Output not allowed
(product no.)

1st run S5 standard function block must
be replaced by an S7 FC

None

Please check time interval
settings

2nd run Time intervals can be more
precisely set in S7 than in S5

Adjust the time interval using the
function “Hardware
Configuration”

Please observe different STOP
commands

2nd run No distinction has been made
between STP, STS, and STW

Check the program file

Preheader not available 1st run For FBs and FXs the jump label
identifiers are missing, for DBs
and DXs the data formats are
missing

Check whether the preheaders
exist in another file

RLO is set 2nd run With the S5 instructions SU and
RU the RLO is set in S7

If necessary, insert the instruction
CLEAR

S5 screen DB was not used to
assign parameters to S7

1st run MASK is in DW0 and DW1 Assign parameters to the
programmable controller using
STEP 7

System preferences cannot be
set by the S5/S7 Converter

2nd run DB and DX will be converted but
do not have the same meaning as
in S5

Make the system settings using the
configuration table

Warnings

Conversion

7-1
From S5 to S7, Converter Manual
A5E00706929-01

Editing the Converted Program

The following preparations are necessary to edit the STL source file generated
during conversion:

Make a printout of the messages generated during conversion.

Create an S7 program in a project in the SIMATIC Manager, if you have
not already done so.

Import the STL source file program into the “Source Files” container of
this S7 program, using the menu command Insert "External Source File,

Open the converted file.

To edit the generated STL source file, we recommend the following procedure:

Work through the program in interactive mode and modify or supplement
the S5 instructions and organization blocks that were not converted based
on the warnings (see Part 1).

Preparing to Edit

Editing the File

7

7-2
From S5 to S7, Converter Manual

A5E00706929-01

7.1 Address Changes

Usually, input and output modules are affected by address changes. The
addresses for these modules can be found in HWConfig.

7.1.1 Options for Changing Addresses

Before converting you can use the “Rewire” function to adapt the addresses of
individual addresses in S5 to the new addresses in S7.

The SIMATIC Manager contains a function for automatically rewiring blocks
generated from your source file.

To rewire blocks, proceed as follows:

1. Select the blocks in your program to be rewired in the SIMATIC Manager.

2. Open the table used for rewiring by selecting the menu command
Options " Rewire.

3. Enter the old and new addresses for each address in the table and then save
them.

The blocks now contain the changed addresses.

In your program, adapt access to inputs and outputs as well as direct I/O access
to the new module addresses in S7.

In the S7 source file you can easily make changes to the absolute addresses by
selecting the menu command Edit " Replace.

Caution: If the old and new address areas overlap, then unintended changes can
occur.

If you want to use symbolic addressing, you can also use the symbol table to
do the rewiring.

Before rewiring, you must already have a compiled program that is error-free
and a symbol table that contains all the symbols necessary for modifying the
absolute addresses.

Rewiring in S5

Rewiring in S7

Changing
Addresses in the
S7 Source File

Generating a New
(Symbolically
Addressed) S7
Source File

Prerequisite

Editing the Converted Program

7-3
From S5 to S7, Converter Manual
A5E00706929-01

To change the addresses, proceed as follows:

1. Open a block containing addresses to be changed. Select the option
“Symbolic Representation” in the “Editor” tab of the dialog box opened
with the menu command Options " Customize.
Repeat this procedure for all blocks containing addresses that you wish to
change.

2. Generate a source file from the blocks by selecting the menu command File
" Generate Source File. The blocks can be selected in a dialog box after
you have entered the name of the source file.

When creating a sequence of blocks, remember to take the call hierarchy into
account. As a rule, called blocks must already exist. This means that they must
be entered in the source file in front of the blocks from which they are called.

Result: The source file generated contains the instructions with symbolic
addressing.

3. Now you can carry out the rewiring in the symbol table. Replace the
changed S5 addresses with the new S7 addresses.

4. Once the source file is compiled, the blocks contain the new addresses.

7.2 Non-Convertible Functions

Addresses and instructions that cannot be converted automatically are only
included as comments in the generated S7 program. These you must revise
yourself.

As the user, there are two ways in which you can convert these instructions:

You can define your own S7 STL instruction sequence (macros) for these
instructions (if they occur in the user program). These can then be used
during conversion.

You can edit the instruction sequences in the resulting S7 program.

Which method is better depends on the number of occurrences of such
instructions in your user program.

You can read about non-convertible addresses and instructions in Sections 3.11
and 3.12. These sections also contain suggestions for creating non-convertible
functions in S7.

Procedure

Editing the Converted Program

7-4
From S5 to S7, Converter Manual

A5E00706929-01

7.3 Indirect Addressing -- Conversion

The S5/S7 Converter uses STEP 7 instructions to convert indirect addressing
with DO FW and DO DW. The instruction sequence generated is generally
very extensive since the STEP 5 pointer has to be converted into STEP 7
format, and the accumulator contents and the status word must be buffered
when doing so.

If your program contains very frequent indirect addressing, then it is worth
adapting to the indirect addressing in STEP 7. A substantial amount of
memory space can be saved by using appropriate programming techniques.

The list below explains how the S5/S7 Converter converts indirect addressing
in different cases:

Indirect addressing of timers and counters is converted into memory-indirect
addressing by using a temporary local data word.

Indirect addressing of blocks is converted into memory-indirect addressing by
using a temporary local data word.

The new block numbers cannot be taken into account during conversion and
must therefore be corrected.

The indirect addressing of addresses is converted by bits and words into
register-indirect addressing by using the address register AR1 and temporary
local data as a buffer for the status word STW, ACCU 1, and ACCU 2.

The instructions are not converted. Indirect addressing must be reprogrammed
in S7.

The instructions must be reprogrammed in S7.

For further information on indirect addressing, see Section 3.13.4.

Timers and
Counters

Blocks

Addresses

Indirect
Addressing via the
BR Register

Other Types of
Indirect
Addressing

Editing the Converted Program

7-5
From S5 to S7, Converter Manual
A5E00706929-01

7.4 Working with Direct Memory Access

In STEP 5, access to absolute memory addresses was used for some functions.
This type of access no longer exists in STEP 7.

STEP 5 STEP 7

Addressing data addresses in “extra long” data
blocks

Addressing data addresses greater than 255 can
now be done with standard instructions (L, T, ...).

Indirect addressing with the BR register Indirect addressing can be done with
register-indirect addressing (see Section 3.13.4
and the Statement List Programming Manual
/232/).

Using block transfers For block transfers there is now a system function
SFC20 BLKMOV. The memory areas to be
copied are specified at the block parameters. If the
memory areas are variable, then they can be
specified at the parameters “ANY pointer”, which
can be accessed in the user program.

7.5 Assigning Parameters

Depending on the type of block transferred, the statement B <Formal
Parameters of Type “B”> runs in S5 as the following:

“JU Logic Block” or as

“A DB Data Block”.

In this case, automatic conversion is not possible because of missing type
information in the formal parameter. Check your program for X instructions
with parameters of type “B” and then convert these instructions manually.

For function blocks with parameters assigned, the S5/S7 Converter applies the
actual parameters to block calls without changing them. If you have already
defined addresses with an actual parameter, you will have to check this address
definition and change it if necessary.

Examples:

Defining a data word number:

This must be converted into addressing done in bytes

Defining an I/O address:

The new module address must be used.

Transferring a block:

The block must include the new block number.

S5 Command
B<Block
Parameters>

Actual Parameters

Editing the Converted Program

7-6
From S5 to S7, Converter Manual

A5E00706929-01

7.6 Standard Functions

If your S5 program contains standard function blocks (SFBs), they are
indicated as follows:

Before conversion: by an asterisk in the “Std.” column of the dialog box
“Converting S5 Files [<Name>ST.S5D]”, and

After conversion: by displaying the message “Output not allowed (product
no.)”.

The STEP 7 Standard software is supplied with S7 functions that have already
been converted (former S5 standard function blocks) for floating-point math,
signal functions, integrated functions, basic logic functions, and math functions
with the names FC61 to FC125 (see Section 3.9).

To integrate the S7 functions into your S7 program, proceed as follows:

1. Open the project into which you want to insert the functions.

2. Open the standard library in the SIMATIC Manager with the converted S5
functions (StdLib30).

3. Copy the required S7 functions from the standard library into the S7
program.

S5 Standard
Function Blocks

Inserting FCs

Editing the Converted Program

8-1
From S5 to S7, Converter Manual
A5E00706929-01

Compiling the Program

Before you can run the converted and edited program, it must be compiled
with the STL compiler. The procedure is exactly the same as for compiling a
newly written text file.

Select the the menu command File " Consistency Check to check the syntax
and consistency of the source file at any time without causing blocks to be
generated. Among other things, this function checks the following:

The syntax,

The symbols, and

For the presence of called blocks in the program

Once the check is complete, a compiler report is generated which contains the
name of the compiled file, the number of lines compiled, the number of errors
present, as well as any warnings that occurred.

Select the menu command File " Compile to convert your source file into a
block.

Once the compiling is complete, a compiler report is displayed containing any
errors that occurred. This report is similar to the one displayed after a file has
been checked for consistency. If a source file contains several blocks, then only
the error-free ones are compiled and saved.

Checking Data
Consistency

Compiling the
Source File

8

8-2
From S5 to S7, Converter Manual

A5E00706929-01

LAD/STL/FBD - [Example_V4\S7 Program(1)\...\Local Data1]
File Edit Insert PLC Debug View Options Window Help

FUNCTION MEASVALS: INT

TITLE = Calculating measured value

NAME: MEASURED VALUE

VERSION : 01.00

VAR_INPUT

INPUT VALUE : REAL;

UPPER LIMIT : REAL ;

LOWER LIMIT : REAL ;

VAR_TEMP

LOCAL : REAL;

END_VAR

Error in Line 2, Column 150 Level 2: Symbol MEASVALS not in symbol table.
Error in Line 2, Column 10, Level 2: Type conflict for MEASVALS.
Error in Line 8, Column 1, Level 2: Error writing to comment block.
Error in Line 22, Column 16, Level 2: Variable INPUT VALUE does not match either
Error in Line 26, Column 2, Level 2: Syntax error in L.
Error in Line 26, Column 14, Level 2: Variable UPPER LIMIT does not match either
Error in Line 27, Column 15, Level 2: Variable LOWER LIMIT does not match either
Error in Line 29, Column 9, Level 2: Variable LOCAL does not match either a decl
Error in Line 30, Column 5, Level 2: Syntax error in ;.
Error in Line 33, Column 1, Level 2: Variable RET_VAL does not match either a decl
Compiler Result: 10 Errors, 0 Warnings

Compiler Report

OK

File Name: LocalData1

No. of Lines: 43

No. of Warnings: 0 No. of Errors: 10

Help

Figure 8-1 Consistency Check and Compiling Source Files

If there are errors and/or warnings present in your converted program after it
has been checked for consistency or compiled, they are listed under the source
file in a second window section, along with their cause. If you then select an
error message, the location of the corresponding error in the source file will be
displayed. This coupling of error message with error location enables quick
troubleshooting and error correction.

You can correct errors and make changes in overwrite mode. Press the INSERT
key to toggle between the insert and overwrite modes.

Troubleshooting

Compiling the Program

9-1
From S5 to S7, Converter Manual
A5E00706929-01

Application Example

This chapter presents an application example illustrating four areas of
operation that are either new in S7 or are now performed differently than in S5:

Analog value processing

Local data

Evaluation of startup information in the organization blocks

Block transfer

In this example, a motor operating to the right (clockwise) and left
(counter-clockwise) is controlled by means of a digital I/O module. The speed
is read by an analog input module and can be output by an analog output
module. The digital and analog modules used in this example must be able to
trigger a diagnostic interrupt.

PS CPU DI AI AODO

Motor

Speed measurement

Speed control

Figure 9-1 Configuration of the Application Example

Configuration

9

9-2
From S5 to S7, Converter Manual

A5E00706929-01

9.1 Analog Value Processing

The analog values are only processed in digital form by the CPU.

Analog input modules convert the analog processing signal into digital form.

Analog output modules convert the digital output value into an analog signal.

Table 9-1 Example of the Analog Input Module 6ES5 460-7LA13

Resolution Analog Value

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Value PS 211 210 29 28 27 26 25 24 23 22 21 20 A E O

The values for analog output modules are depicted as 12-bit twos complement.

Analog input modules can evaluate the value as a signed 12-bit number or as a
13-bit twos complement, as required.

The “O” bit indicates the amount of overflow.

The “E” bit is the error bit, which is set when an error occurs (for example, a
wire break, if thius has been assigned parameters).

The “A” bit corresponds to the activity bit. If the bit is “0”, then the value
displayed is valid.

For the same nominal range, the digitalized analog value is the same for input
and output values.

Analog values are represented as a twos complement.

Table 9-2 Example of Analog Input Modules in S7

Resolution Analog Value

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Value S 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

The sign preceding (S = sign) the analog value is always in bit 15; here, a “0”
stands for a positive and a “1” for a negative value.

In S7 there are no error bits.

If an error occurs, the value W#16#7FFF is output.

In the case of an error, blocks having diagnostic capability can trigger a
diagnostic interrupt. The parameters for this interrupt are set in HWConfig.

Conversion of
Analog Values

Analog Value
Representation in
S5

Analog Value
Representation in
S7

Application Example

9-3
From S5 to S7, Converter Manual
A5E00706929-01

If the resolution of an analog module is less than 15 bits, the analog value is
left-aligned in the user data. Unoccupied low values have the signal state “0”.

In this example, the speed of the motor is read by an analog input module
having a resolution of 14 bits. This measured value has a bipolar range, such as
+/--10V.

Upper and lower limits are transferred as parameters.

The analog value is checked for an upper and lower limit. If the value read lies
outside of the permissible range, an error is reported using the binary result
(BR = 0) and output as the value “0”. If the value is acceptable, it is output.

The analog value is output via the return value RET_VAL of the function. This
RET_VAL is a functional value. In S7, this is a new functionality compared to
S5.

Example

Application Example

9-4
From S5 to S7, Converter Manual

A5E00706929-01

FUNCTION FC1: REAL
TITLE = Analog Value Processing
NAME: ANALOG
VERSION: 01.00
VAR_INPUT

INPUT VALUE : INT; // Input value
UPPER LIMIT : REAL; // Upper limit for the analog value
LOWER LIMIT : REAL; // Lower limit for the analog value

END_VAR

BEGIN
NETWORK
TITLE = Checking Upper and Lower Limits

O(;
L INPUT VALUE; // Input value > Upper limit
L +27648;
>I;
);
O(; // or
L INPUT VALUE; // Input value < Lower limit
L -27648;
<I;
);
NOT;
L 0;
JNB END; // If upper or lower limit exceeded, no further

// processing, return value = 0 and BR = “0”
// If no upper or lower limt exceeded => BR = “1”

NETWORK
TITLE = Converting Digital Value into Revolutions

L UPPER LIMIT; // Formula for converting INPUT VALUE into
// revolutions:

L LOWER LIMIT; // Analog value = (UPPER LIMIT - LOWER LIMIT)
// * INPUT VALUE

-R; // / (55296 (number of units))
L INPUT VALUE;
ITD; // Convert value into floating-point number
DTR;
*R;
L 55296.0;
/R;

END: T RET_VAL;

BE;

END_FUNCTION

Figure 9-2 Analog Value Processing

Application Example

9-5
From S5 to S7, Converter Manual
A5E00706929-01

9.2 Temporary Local Data

Temporary local data function as buffer storage and thus replace the scratchpad
flags used in S5. Temporary local data can be used in all logic blocks. These
data are lost after a logic block has been processed; they are located in the local
data stack (L stack).

This first example uses the temporary local data that are symbolically
addressed as a buffer. A preset speed is converted into the digitalized measured
value for the analog output module having a resolution of 14 bits. This
measured value has a bipolar range, such as +/--10V.

Upper and lower limits are transferred as parameters.

The measured value is output via the return value (RET_VAL) for the function.
Each function can optionally provide a return value. The data type of the return
value is indicated in the description of the function. If no return value is
provided, then the position for the data type has the entry VOID.

FUNCTION FC2: INT
TITLE = Calculating Measured Value
NAME: MEASURED VALUE
VERSION: 01.00
VAR_INPUT

INPUT VALUE : REAL; // Input value (current value)
UPPER LIMIT : REAL; // Upper limit
LOWER LIMIT : REAL; // Lower limit

END_VAR

VAR_TEMP
LOCAL : REAL; // Local data as intermediate result

END_VAR
BEGIN
NETWORK
TITLE = Calculating Measured Value

L INPUT VALUE; // Formula for calculating units:
L 55296.0; // Measured value = INPUT VALUE
*R; // * 55296 (number of units)

// / (UPPER LIMIT - LOWER LIMIT)
T LOCAL; // Intermediate result in local data
L UPPER LIMIT; // Buffer
L LOWER LIMIT;
-R;
L LOCAL;
TAK;
/R;
RND; // Convert floating-point number into integer
T RET_VAL;

END_FUNCTION

Figure 9-3 Calculating Measured Value

Example 1

Application Example

9-6
From S5 to S7, Converter Manual

A5E00706929-01

The second example uses local data which are addressed absolutely, such as
the S5 scratchpad flags, and shows how the clockwise and counter-clockwise
operation of a motor is controlled. In this example, the input byte and the
output byte are copied into the local data area. The user must reserve an area in
the local stack for temporary local data use since the L stack is being used by
the LAD/STL/FBD editor. The absolute addresses of the local data can be read
in the block located in the declaration section. The local data bits are linked to
each other by logic operations in the program. This produces the output signals
which are written back at the end of the block to the output byte from the local
data. The addresses for the input and output bytes can be assigned parameters.

Note

Inserting new variables in front of existing local data will cause the
subsequent local data addresses to be shifted.

Table 9-3 Assignment of Inputs, Outputs, and Local Data

Address Local Data Name Description

I n.0 L 0.0 ON ON switch

I n.1 L 0.1 STOP Stop motor

I n.2 L 0.2 EMERGENCY_STOP Emergency stop button

I n.3 L 0.3 MOTOR_RIGHT Motor: clockwise on

I n.4 L 0.4 MOTOR_LEFT Motor: counter-clockwise on

I n.5 L 0.5 LIMIT SWITCH RIGHT Limit switch, right

I n.6 L 0.6 LIMIT SWITCH LEFT Limit switch, left

I n.7 L 0.7 - Free

Q m.0 L 1.0 READY Motor is ready

Q m.1 L 1.1 CLOCKWISE Clockwise active

Q m.2 L 1.2 COUNTER-CLOCKWISE Counter-clockwise active

Q m.3 L 1.3 POSITION REACHED Position reached

The voltage is applied via the ON switch. The motor is now ready for use; this
status is signaled by the output READY. The motor can be operated in a
clockwise or counter-clockwise direction as required by using the buttons
MOTOR_RIGHT and MOTOR_LEFT, respectively. The motor can only be
operated in one direction at a time. Before changing the direction of motor
rotation, the motor must be paused with the STOP switch. If a travel limit
switch is reached, the motor is stopped. The EMERGENCY_STOP button also
stops the motor; if this occurs then the motor can be restarted only after the
EMERGENCY_STOP button has been reset.

Example 2

Operation

Application Example

9-7
From S5 to S7, Converter Manual
A5E00706929-01

FUNCTION FC3: VOID
TITLE = Motor Control
NAME: MOTOR
VERSION: 01.00

VAR_INPUT
INPUT BYTE : BYTE; // Input byte

END_VAR
VAR_IN_OUT

OUTPUT BYTE : BYTE; // Output byte
END_VAR
VAR_TEMP

IMAGE_INPUT BYTE : BYTE;// Image of input byte
IMAGE_OUTPUT BYTE : BYTE;// Image of output byte

END_VAR

BEGIN
NETWORK
TITLE = Motor Control

L INPUT BYTE; // Copy input byte into local data area
T IMAGE_INPUT BYTE;
L OUTPUT BYTE; // Copy output byte into local data area
T IMAGE_OUTPUT BYTE;
ON L0.0; // Motor not switched on (no voltage)
ON L0.2; // or EMERGENCY_STOP button pushed
R L1.0; // => Motor is ready to reset
R L1.1; // => Reset motor control
R L1.2;
R L1.3; // => Reset position reached
JC END; // => No further signal evaluation
A L0.0; // Motor switched on
S L1.0; // => Set motor switched on
A L0.3; // Operate motor clockwise
AN L0.4; // Disable: no operation counter-clockwise
AN L1.2; // and counter-clockwise not active
FP M0.0; // Create positive edge
S L1.1; // Then: switch on clockwise
R L1.3; // Reset position reached
A L0.4; // Operate motor counter-clockwise
AN L0.3; // Disable: no operation clockwise
AN L1.1; // and clockwise not active
FP M0.1; // Create positive edge
S L1.2; // Then: switch on counter-clockwise
R L1.3; // Reset position reached
O(;
A L0.5; // Right limit switch reached and
A L1.1; // clockwise active
);
O(; // or
A L0.6; // Left limit switch reached and
A L1.2; // counter-clockwise active
);
S L1.3; // => Position set reached
O L0.1; // Stop motor switch pushed or
O L1.3; // position reached
R L1.1; // => Reset motor operation
R L1.2;

END: L IMAGE_OUTPUT BYTE; // Copy local data to output byte
T OUTPUT BYTE;

END_FUNCTION

Figure 9-4 Motor Control Function

Application Example

9-8
From S5 to S7, Converter Manual

A5E00706929-01

9.3 Evaluating the Startup Information from the Diagnostic Interrupt OB
(OB82)

If the organization blocks are called by the operating system, the user is
provided with system-wide startup information in the local data stack. This
startup information is 20 bytes long and is available after OB processing has
started.

The startup information from the diagnostic interrupt OB contains the logical
base address with four bytes of diagnostic information. The exact structure of
this startup information is described in the Reference Manual /235/. Templates
for the corresponding variable declaration table are located in the “StdLib30”
standard library under the heading “StdOBs”.

Based on diagnostic interrupt parameters previously configured in HWConfig,
the digital modules make a request to the CPU for a diagnostic interrupt. This
function applies to both incoming and outgoing events. After this request, the
operating system calls the organization block OB82.

You can disable, delay, or re-enable the calling of the diagnostic interrupt OB
with the help of the system functions (SFCs) 39 to 42. For further information,
see the Reference Manual /235/.

The following sample program shows how the external auxiliary voltage is
evaluated. If the external auxiliary voltage is interrupted, the bit
NO_EXT_VOLTAGE is set in DB82 “DB_DIAG”. In addition, the module
address and the time of the event are also saved. This information can be
processed later in the program.

Before the STL source file is compiled, the symbol for the data block DB82
“DB_DIAG” must be entered in the symbol table.

Startup
Information

Start Information
for OB82

Example

Application Example

9-9
From S5 to S7, Converter Manual
A5E00706929-01

DATA_BLOCK DB_DIAG
TITLE = Diagnostic Data
NAME: DB_DIAG
VERSION: 01.00

STRUCT
MDL_ADDR : INT; // Module address
NO_EXT_VOLTAGE : BOOL; // No error bit for ext. aux. voltage
DATE_TIME : DATE_AND_TIME; // Date and time at which the

// diagnostic interrupt was triggered
SFC_RET_VAL : INT; // Return code of SFC BLKMOV

END_STRUCT;

BEGIN
END_DATA_BLOCK

ORGANIZATION_BLOCK OB82
TITLE = Diagnostic Interrupt
NAME: Diagnostic
VERSION: 01.00
VAR_TEMP

OB82_EV_CLASS : BYTE;// Event class and IDs:
// B#16#38: outgoing event
// B#16#39: incoming event

OB82_FLT_ID : BYTE;// Error code (B#16#42)
OB82_PRIORITY : BYTE;// Priority class 26 or 28
OB82_OB_NUMBR : BYTE;// OB number
OB82_RESERVED_1 : BYTE;// Reserved
OB82_IO_FLAG : BYTE;// Input module: B#16#54

// Output module: B#16#55
OB82_MDL_ADDR : INT; // Logical base address of module

// where the fault occurred
OB82_MDL_DEFECT : BOOL;// Module is defective
OB82_INT_FAULT : BOOL;// Internal fault
OB82_EXT_FAULT : BOOL;// External fault
OB82_PNT_INFO : BOOL;// Channel fault
OB82_EXT_VOLTAGE : BOOL;// External voltage failed
OB82_FLD_CONNCTR : BOOL;// Front panel connector not plugged
OB82_NO_CONFIG : BOOL;// Module is not configured
OB82_CONFIG_ERR : BOOL;// Incorrect parameters on module
OB82_MDL_TYPE : BYTE;// Bit 0 to 3: Module class

// Bit 4: Channel information exists
// Bit 5: User information exists
// Bit 6: Diag. interrupt from substitute
// Bit 7: Reserve

OB82_SUB_MDL_ERR : BOOL;// Submodule is missing or has an error
OB82_COMM_FAULT : BOOL;// Communication problem
OB82_MDL_STOP : BOOL; // Operating mode (0: RUN, 1: STOP)
OB82_WTCH_DOG_FLT : BOOL;// Watchdog timer responded
OB82_INT_PS_FLT : BOOL;// Internal power supply failed
OB82_PRIM_BATT_FLT : BOOL;// Battery dead
OB82_BCKUP_BATT_FLT : BOOL;// Entire backup failed
OB82_RESERVED_2 : BOOL;// Reserved
OB82_RACK_FLT : BOOL;// Rack failure
OB82_PROC_FLT : BOOL;// Processor failure
OB82_EPROM_FLT : BOOL;// EPROM fault
OB82_RAM_FLT : BOOL;// RAM fault continued

Figure 9-5 Diagnostic Data Evaluation

Application Example

9-10
From S5 to S7, Converter Manual

A5E00706929-01

OB82_ADC_FLT : BOOL; // ADC/DAC error
OB82_FUSE_FLT : BOOL; // Fuse blown
OB82_HW_INTR_FLT : BOOL; // Hardware interrupt lost
OB82_RESERVED_3 : BOOL; // Reserved
OB82_DATE_TIME: DATE_AND_TIME; // Date and time when OB was called

END_VAR

BEGIN
NETWORK
TITLE = Diagnostic Interrupt

L OB82_MDL_ADDR; // Save module address
T DB_DIAG.MDL_ADDR;
L OB82_EV_CLASS; // Event class = B#16#38:
L B#16#38; // Outgoing event
==I;
JC GO;

// Incoming event:
A OB82_EXT_VOLTAGE; // Check if no ext. auxiliary voltage
S DB_DIAG.NO_EXT_VOLTAGE; // Set bit
JU TIME;

// Outgoing event:
GO: A OB82_EXT_VOLTAGE; // Ext. auxiliary voltage present
again

R DB_DIAG.NO_EXT_VOLTAGE; // Reset bit

NETWORK
TITLE = Save Time
TIME: CALL SFC20(// SFC BLKMOV

SRCBLK :=OB82_DATE_TIME, // Save date and time at which
RET_VAL:=DB_DIAG.SFC_RET_VAL, // diagnostic interrupt
DSTBLK :=DB_DIAG.DATE_TIME); // was requested

END_ORGANIZATION_BLOCK

Figure 9-6 Diagnostic Data Evaluation, continued

Application Example

9-11
From S5 to S7, Converter Manual
A5E00706929-01

9.4 Block Transfer

You can use the system function SFC20 “BLKMOV” (block move) to copy the
contents of one memory area, the “source field”, into another memory area, the
“target field”.

You can use SFC20 “BLKMOV” to copy all inputs, outputs, bit memory, and
data.

Parameter Declaration Data Type Memory
Area

Description

SRCBLK INPUT ANY I, Q, M, D, L Indicates the memory area to be copied
(source field).

RET_VAL OUTPUT INT I, Q, M, D, L If an error occurs during processing of
the function, the return value will
contain an error code.

DSTBLK OUTPUT ANY I, Q, M, D, L Indicates the memory area into which
the data is to be copied (target field)

Note

The source and target fields must not overlap. If the target field specified is
larger than the source field, than only the amount of data contained in the
source field is copied into the target field.

If the target field specified is smaller that the source field, then only the
amount of data that the target field can accept is copied.

If you want to have the parameters for the source and target areas of SFC20
“BLKMOV” filled with variable values instead of constant pointers, you can
do this by using temporary variables of the data type ANY.

Parameters

Application Example

9-12
From S5 to S7, Converter Manual

A5E00706929-01

The following tables show the structure of the ANY pointer.

Table 9-4 ANY Pointer

Byte n Byte
n+1

Byte
n+2

Byte
n+3

Byte
n+4

Byte
n+5

Byte
n+6

Byte
n+7

Byte
n+8

Byte
n+9

B#16#10 Type
(see
Table
9-5)

Length Data block no. for
data blocks

Area pointer

(see Figure 9-7)

Table 9-5 Type (Byte n+1)

Value: 01 02 03 04 05 06 07

Type: BOOL BYTE CHAR WORD INT DWORD DINT

Value: 08 09 0A 0B 0C 0E 13

Type: REAL DATE TOD TIME S5TIME DT String

31.. ..24 23.. ..16 15.. ..8 7.. ..0
a 0 0 0 0 r r r 0 0 0 0 0 b b b b b b b b b b b b b b b b x x x

Bit 31 = 0 (a) indicates area-internal addressing
Bit 31 = 1 (a) indicates area-crossing addressing

Bits 26 to 24:
Area ID for
area-crossing addressing
r r r:
0 0 0 = P
0 0 1 = I
0 1 0 = Q
0 1 1 = M
1 0 0 = DBX
1 0 1 = DIX
1 1 1 = L

Bits 2 to 0 (xxx): Bit address;
Number of addressed bit (area
0 to 7)

Bits 18 to 3 (bbbb bbbb bbbb bbbb): Byte address;
Number of addressed byte (area 0 to 65 535)

Byte n+6 Byte n+7 Byte n+8 Byte n+9

Figure 9-7 Area Pointer (Byte n+6 to Byte n+9)

Structure of the
ANY Pointer for
Data Types

Application Example

9-13
From S5 to S7, Converter Manual
A5E00706929-01

The example shows a function which uses the the system function SFC20
“BLKMOV” to copy data area (in data blocks). Variable source and target
areas can be entered as parameters.

The function contains two ANY pointers in the local data area and one ANY
pointer for the target area. As a rule, the ANY data type can only be used for
variables in the local data area.

In the function, the ANY pointer is assigned a value as indicated in the
structure previously described. This value is indicated in the parameters when
the SFC20 “BLKMOV” is called.

FUNCTION FC4: INT
TITLE = Copying Data Areas
NAME: COPY
VERSION: 01.00

VAR_INPUT
SOURCE_DBNO : INT; // DB no. of source area
SOURCE_BEGIN : INT; // Data word no. of beginning of source area
SOURCE_LENGTH : INT; // Length of source area in bytes
DEST_DBNO : INT; // DB no. of destination area
DEST_BEGIN : INT; // Data word no. of beginning of dest. area
DEST_LENGTH : INT; // Length of destination area in bytes

END_VAR

VAR_TEMP
POINTER_SOURCE: ANY; // ANY pointer for the source area
POINTER_DEST : ANY; // ANY pointer for the destination area

END_VAR

BEGIN
NETWORK
TITLE = Preparing Source Pointer

L P##POINTER_SOURCE; // Load address of pointer in source area
LAR1; // into address register 1
L W#16#1002; // Write area ID for data area in
T LW[AR1, P#0.0]; // ANY pointer for source
L SOURCE_DBNO; // Write DB no. in ANY pointer for source
T LW[AR1, P#4.0];
L SOURCE_BEGIN; // Convert beginning of data area
SLD 3; // into pointer format,
OD DW#16#84000000; // Link area ID
T LD[AR1, P#6.0]; // and write in ANY pointer for source
L SOURCE_LENGTH; // Write length of data area in ANY pointer
T LW[AR1, P#2.0]; // for source

continued

Figure 9-8 Copying Data Areas

Example

Principle

Application Example

9-14
From S5 to S7, Converter Manual

A5E00706929-01

NETWORK
TITLE = Preparing Destination Pointer

L P##POINTER_DEST; // Load address of pointer to dest. area
LAR1; // in address register 1
L W#16#1002; // Write area ID for data area in
T LW[AR1, P#0.0]; // ANY pointer for destination
L DEST_DBNO; // DB no. in ANY pointer for destination
T LW[AR1, P#4.0];
L DEST_BEGIN; // Convert beginning of data area
SLD 3; // into pointer format
OD DW#16#84000000; // Link area ID
T LD[AR1, P#6.0]; // and write in ANY pointer for destination
L DEST_LENGTH; // Write length of data area to ANY pointer
T LW[AR1, P#2.0]; // for destination

NETWORK
TITLE = Copying Data

CALL SFC 20(// Copy data with SFC BLKMOV (block transfer)
SRCBLK := POINTER_SOURCE, // Pointer to source area
RET_VAL:= RET_VAL, // Return code of SFC BLKMOV
DSTBLK := POINTER_DEST); // Pointer to destination area

END_FUNCTION

Figure 9-9 Copying Data Areas, continued

9.5 Calling the Examples

This section contains the symbol table, the data blocks required for assigning
values to the block parameters, and the organization block OB1 with the calls
for the functions previously described.

Table 9-6 Symbol Table

Symbol Address Data Type Comments

DB_DIAG DB82 DB82 Diagnostic data block

DB_MEASVALS DB100 DB100 Data block for measured values

DB_MOTOR_1 DB110 DB110 Data block for motor 1

ERROR MW 100 WORD Return value of the function FC4 for block
transfer

Application Example

9-15
From S5 to S7, Converter Manual
A5E00706929-01

DATA_BLOCK DB_MEASVALS
TITLE = Measured Values
NAME: DB_MEASVALS
VERSION: 01.00
STRUCT

ANALOGVAL_1 : REAL; // Analog value 1 from FC1
ANALOGVAL_2 : REAL; // Analog value 2 from FC2
DIGITALVAL_2 : INT; // Digitalized measured value from FC2

END_STRUCT;
BEGIN
END_DATA_BLOCK

DATA_BLOCK DB_MOTOR_1
TITLE = Motor Data
NAME: DB_MOTOR_1
VERSION: 01.00
STRUCT

CONTROL WORD : WORD; // Control of motor 1
SPEED : REAL; // Speed of motor 1
TEMPERATURE : REAL; // Temperature of motor 1
CURRENT : REAL; // Current consumption of motor 1

END_STRUCT;
BEGIN
END_DATA_BLOCK

ORGANIZATION_BLOCK OB1
TITLE = Call in Cycle
NAME: CYCLE
VERSION: 01.00
VAR_TEMP
STARTINFO: ARRAY [1..20] of BYTE;

END_VAR
BEGIN
NETWORK
TITLE = Call of Functions
CALL FC1(// Call function for

INPUT VALUE := IW 0, // analog value processing
UPPER LIMIT := +10.0, // Measured range: +/-10V
LOWER LIMIT := -10.0,
RET_VAL := DB_MEASVALS.ANALOGVAL_1);

// RET_VAL = Analog value
// Call function for calculating

CALL FC2(// digitalized measured value
INPUT VALUE := DB_MEASVALS.ANALOGVAL_2,//
UPPER LIMIT := +10.0, // Measured range: +/-10V
LOWER LIMIT := -10.0,
RET_VAL := DB_MEASVALS.DIGITALVAL_2);

// RET_VAL = digitalized meas. value
CALL FC3(// Call function for motor control

INPUT BYTE := IB 4,
OUTPUT BYTE := QB 8);

CALL FC4(// Call function for block transfer
SOURCE_DBNO := 100, // Source: DB100
SOURCE_BEGIN := 0, // From data byte DBB 0
SOURCE_LENGTH := 8, // Length: 4 Byte
DEST_DBNO := 110, // Destination: DB110
DEST_BEGIN := 2, // From data byte DBB 6
DEST_LENGTH := 8, // Length: 4 bytes
RET_VAL := ERROR); // RET_VAL = Error code for SFC20 BLKMOV

END_ORGANIZATION_BLOCK

Figure 9-10 OB1

Application Example

9-16
From S5 to S7, Converter Manual

A5E00706929-01

Application Example

Address and Instruction Lists
A

Literature List
B

Glossary, Index

Appendix

I-2
From S5 to S7, Converter Manual

A5E00706929-01

A-1
From S5 to S7, Converter Manual
A5E00706929-01

Address and Instruction Lists

A.1 Addresses

The following addresses are converted:

Table A-1 Convertible Addresses

S5 STL
(German)

S5 STL
(International)

S7 STL
(German)

S7 STL
(International)

”A” ”Q” ”A” ”Q”

”AB” ”QB” ”AB” ”QB”

”AD” ”QD” ”AD” ”QD”

”AW” ”QW” ”AW” ”QW”

”BF” ”BN” ”” ””

”D” ”D” ”DBX” ”DBX”

”DW” ”DW” ”DBW” ”DBW”

”DD” ”DD” ”DBD” ”DBD”

”DR” ”DR” ”DBB” ”DBB”

”DL” ”DL” ”DBB” ”DBB”

”E” ”I” ”E” ”I”

”EB ”IB” ”EB” ”IB”

”ED” ”ID” ”ED” ”ID”

”EW” ”IW” ”EW” ”IW”

”M” ”F” ”M” ”M”

”MB” ”FY” ”MB” ”MB”

”MD” ”FD” ”MD” ”MD”

”MW” ”FW” ”MW” ”MW”

”PW” ”PW” ”PEW/PAW” ”PIW/PQW”

”PY” ”PY” ”PEB/PAB” ”PIB/PQB”

”QB” ”OY” ”PEB/PAB” ”PIB/PQB”

”QW” ”OW” ”PEW/PAW” ”PIW/PQW”

”S” ”S” ”M” ”M”

”SD” ”SD” ”MD” ”MD”

”SW” ”SW” ”MW” ”MW”

Convertible
Addresses

A

A-2
From S5 to S7, Converter Manual

A5E00706929-01

Table A-1 Convertible Addresses

S5 STL
(German)

S7 STL
(International)

S7 STL
(German)

S5 STL
(International)

”SY” ”SY” ”MB” ”MB”

”T” ”T” ”T” ”T”

”Z” ”C” ”Z” ”C”

”= <Formal
parameter>”

”= <Formal
parameter>”

”# <Formal
parameter>”

”# <Formal
parameter>”

Table A-2 shows the addresses that cannot be converted.

Table A-2 Non-Convertible Addresses

S5 STL (German) S5 STL (International)

”A1” ”A1”

”A2” ”A2”

”BA” ”RI”

”BB” ”RJ”

”BR” ”BR”

”BS” ”RS”

”BT” ”RT”

”CB” ”CY”

”CD” ”CD”

”CW” ”CW”

”GB” ”GY”

”GD” ”GD”

”GW” ”GW”

”SA” ”SA”

Non-Convertible
Addresses

Address and Instruction Lists

A-3
From S5 to S7, Converter Manual
A5E00706929-01

A.2 Instructions

Table A-3 shows all the S5 instructions (without addresses) in STL that can be
converted automatically into S7 STL:

Table A-3 Convertible Instructions (without Addresses)

S5 STL
(German)

S5 STL
(International)

S7 STL
(German)

S7 STL
(International)

”AF” ”RA” ”CALL SFC42” ”CALL SFC42”

”AS” ”IA” ”CALL SFC41” ”CALL SFC41”

”BEA” ”BEU” ”BEA” ”BEU”

”BEB” ”BEC” ”BEB” ”BEC”

”+D” ”+D” ”+D” ”+D”

”--D” ”--D” ”--D” ”--D”

”!=D” ”!=D” ”==D” ”==D”

”><D” ”><D” ”<>D” ”<>D”

”>D” ”>D” ”>D” ”>D”

”>=D” ”>=D” ”>=D” ”>=D”

”<D” ”<D” ”<D” ”<D”

”<=D” ”<=D” ”<=D” ”<=D”

”DED” ”DED” ”BTD” ”BTD”

”DEF” ”DEF” ”BTI” ”BTI”

”DUD” ”DUD” ”DTB” ”DTB”

”DUF” ”DUF” ”ITB” ”ITB”

”ENT” ”ENT” ”ENT” ”ENT”

”+F” ”+F” ”+I” ”+I”

”--F” ”--F” ”--I” ”--I”

”:F” ”:F” ”/I” ”/I”

”xF” ”xF” ”*I” ”*I”

”!=F” ”!=F” ”==I” ”==I”

”><F” ”><F” ”<>I” ”<>I”

”>F” ”>F” ”>I” ”>I”

”>=F” ”>=F” ”>=I” ”>=I”

”<F” ”<F” ”<I” ”<I”

”<=F” ”<=F” ”<=I” ”<=I”

”FDG” ”FDG” ”DTR” ”DTR”

”+G” ”+G” ”+R” ”+R”

”--G” ”--G” ”--R” ”--R”

”:G” ”:G” ”/R” ”/R”

”xG” ”xG” ”*R” ”*R”

Conversion
Instructions
without Addresses

Address and Instruction Lists

A-4
From S5 to S7, Converter Manual

A5E00706929-01

Table A-3 Convertible Instructions (without Addresses), continued

S5 STL
(German)

S7 STL
(International)

S7 STL
(German)

S5 STL
(International)

”!=G” ”!=G” ”==R” ”==R”

”><G” ”><G” ”<>R” ”<>R”

”>G” ”>G” ”>R” ”>R”

”>=G” ”>=G” ”>=R” ”>=R”

”<G” ”<G” ”<R” ”<R”

”<=G” ”<=G” ”<=R” ”<=R”

”GFD” ”GFD” ”RND” ”RND”

”KEW” ”CFW” ”INVI” ”INVI”

”KZD” ”CSD” ”NEGD” ”NEGD”

”KZW” ”CSW” ”NEGI” ”NEGI”

”O” ”O” ”O” ”O”

”O(” ”O(” ”O(” ”O(”

”OW” ”OW” ”OW” ”OW”

”STP” ”STP” ”CALL SFC 46” ”CALL SFC 46”

”STS” ”STS” ”CALL SFC 46” ”CALL SFC 46”

”STW” ”STW” ”CALL SFC 46” ”CALL SFC 46”

”TAK” ”TAK” ”TAK” ”TAK”

”U(” ”A(” ”U(” ”A(”

”UW” ”AW” ”UW” ”AW”

”XOW” ”XOW” ”XOW” ”XOW”

”)” ”)” ”)” ”)”

”***” ”***” ”NETWORK” ”NETWORK”

Table A-4 shows all the S5 instructions (with addresses) in STL that can be
converted automatically into S7 STL:

Table A-4 Convertible Instructions (with Addresses)

S5 STL
(German)

S5 STL
(International)

S7 STL
(German)

S7 STL
(International)

”A” ”C” ”AUF” ”OPN”

”ADD BF”
”ADD DH”
”ADD KF”

”ADD BF”
”ADD DH”
”ADD KF”

”+”
”+”
”+”

”+”
”+”
”+”

”AX” ”CX” ”AUF” ”OPN”

”B” ”DO” ”Instruction
sequence for
indirect
addressing”

”Instruction
sequence for
indirect
addressing”

Conversion
Instructions with
Addresses

Address and Instruction Lists

A-5
From S5 to S7, Converter Manual
A5E00706929-01

Table A-4 Convertible Instructions (with Addresses), continued

S5 STL
(German)

S7 STL
(International)

S7 STL
(German)

S5 STL
(International)

”BA” ”BA” ”” ””

”BAB” ”DOC” ”SPB” ”JC”

”D” ”D” ”DEC” ”DEC”

”E” ”G” ”CALL SFC22” ”CALL SFC22”

”EX” ”GX” ”CALL SFC22” ”CALL SFC22”

”FR” ”FR” ”FR” ”FR”

”I” ”I” ”INC” ”INC”

”L” ”L” ”L” ”L”

”LC” ”LD” ”LC” ”LC”

”NOP” ”NOP” ”NOP” ”NOP”

”O” ”O” ”O” ”O”

”ON” ”ON” ”ON” ”ON”

”P” ”TB” ”SET;
U”

”SET;
A”

”PN” ”TBN” ”SET;
UN”

”SET;
AN”

”R” ”R” ”R” ”R”

”RB” ”RB” ”R” ”R”

”RD” ”RD” ”R” ”R”

”RLD” ”RLD” ”RLD” ”RLD”

”RLW” ”RLW” ”RLW” ”RLW”

”RRD” ”RRD” ”RRD” ”RRD”

”RRW” ”RRW” ”RRW” ”RRW”

”RU” ”RU” ”SET;
R”

”SET;
R”

”S” ”S” ”S” ”S”

”SA” ”SF” ”SA” ”SF”

”SAR” ”SFD” ”SA” Timer
”ZR” Zähler

”SF” Timer
”CD” Counter

”SE” ”SD” ”SE” ”SD”

”SI” ”SP” ”SI” ”SP”

”SLD” ”SLD” ”SLD” ”SLD”

”SLW” ”SLW” ”SLW” ”SLW”

”SPA” ”JU” ”SPA” ”JU”

”SPB” ”JC ”SPB” ”JC”

”SPM” ”JM” ”SPM” ”JM”

”SPN” ”JN” ”SPN” ”JCN”

”SPO” ”JO” ”SPO” ”JO”

”SPP” ”JP” ”SPP” ”JP”

Address and Instruction Lists

A-6
From S5 to S7, Converter Manual

A5E00706929-01

Table A-4 Convertible Instructions (with Addresses), continued

S5 STL
(German)

S7 STL
(International)

S7 STL
(German)

S5 STL
(International)

”SPR” ”JUR” ”SPA” ”JU”

”SPS” ”JOS” ”SPS” ”JOS”

”SPZ” ”JZ” ”SPZ” ”JZ”

”SRD” ”SRD” ”SRD” ”SRD”

”SRW” ”SRW” ”SRW” ”SRW”

”SS” ”SS” ”SS” ”SS”

”SSV” ”SSU” ”SS” Timer
”ZV” Zähler

”SS” Timer
”CU” Counter

”SU” ”SU” ”SET;
S”

”SET;
S”

”SV” ”SE” ”SV” ”SE”

”SVD” ”SSD” ”SSD” ”SSD”

”SVW” ”SSW” ”SSI” ”SSI”

”SVZ” ”SEC” ”SV” Timer
”S” Zähler

”SE” Timer
”S” Counter

”T” ”T” ”T” ”T”

”TNB” ”TNB” ”CALL SFC20” ”CALL SFC20”

”TNW” ”TNW” ”CALL SFC20” ”CALL SFC20”

”U” ”A” ”U” ”A”

”UN” ”AN” ”UN” ”AN”

”ZR” ”CD” ”ZR” ”CD”

”ZV” ”CU” ”ZV” ”CU”

”=” ”=” ”=” ”=”

The following table shows the S5 STL instructions that cannot be converted
automatically.

Table A-5 Non-Convertible Instructions

S5 STL (German) S5 STL (International)

”AAS” ”IAI”

”AAF” ”RAI”

”ABR” ”ABR”

”ACR” ”ACR”

”AFF” ”RAE”

”AFS” ”IAE”

”ASM” ”ASM”

”BAF” ”BAF”

Non-Convertible
Instructions

Address and Instruction Lists

A-7
From S5 to S7, Converter Manual
A5E00706929-01

Table A-5 Non-Convertible Instructions

S5 STL (German) S5 STL (International)

”BAS” ”BAS”

”BI” (can only be converted for
parameter type D/constant)

”DI” (can only be converted for
parameter type D/constant)

”BLD” ”BLD”

”LB” ”LB”

”LD” ”LD”

”LD=<Formal parameter>” (can only be
converted for parameter type D/constant)

”LD=<Formal parameter>” (can only be
converted for parameter type D/constant)

”LDI” ”LDI”

”LIM” ”LIM”

”LIR” ”LIR”

”LRB” ”LRB”

”LRD” ”LRD”

”LRW” ”LRW”

”LW” ”LW”

”LW=<Formal parameter>” (can only be
converted for parameter type D/constant)

”LW=<Formal parameter>” (can only be
converted for parameter type D/constant)

”MA1” ”MA1”

”MAB” ”MAB”

”MAS” ”MAS”

”MBA” ”MBA”

”MBR” ”MBR”

”MBS” ”MBS”

”MSA” ”MSA”

”MSB” ”MSB”

”SEF” ”SEE”

”SES” ”SED”

”SIM” ”SIM”

”TB” ”TB”

”TDI” ”TDI”

”TIR” ”TIR”

”TSC” ”TSC”

”TSG” ”TSG”

”TRB” ”TRB”

”TRD” ”TRD”

”TRW” ”TRW”

”TW” ”TW”

”TXB” ”TXB”

Address and Instruction Lists

A-8
From S5 to S7, Converter Manual

A5E00706929-01

Table A-5 Non-Convertible Instructions

S5 STL (German) S5 STL (International)

”TXW” ”TXW”

”UBE” ”UBE”

Address and Instruction Lists

B-1
From S5 to S7, Converter Manual
A5E00706929-01

Literature List

/21/ Technical Overview: S7/M7 Programmable Controllers,
Distributed I/O with PROFIBUS-DP and AS-i

/30/ Primer: S7-300 Programmable Controller,
Quick Start

/70/ Manual: S7-300 Programmable Controller,
Hardware and Installation

/71/ Reference Manual: S7-300 and M7-300 Programmable Controllers,
Module Specifications

/72/ Instruction List: S7-300 Programmable Controller,
CPU 312 IFM, 314 IFM, 313, 314, 315-2DP

/100/ Manual: S7-400, M7-400 Programmable Controllers,
Hardware and Installation

/101/ Reference Manual: S7-400, M7-400 Programmable Controllers,
Module Specifications

/102/ Reference Guide: S7-400 Instruction List,
CPU 412, 413, 414, 416

/231/ User Manual: Standard Software for S7 and M7,
STEP 7

/232/ Manual: Statement List (STL) for S7-300 and S7-400,
Programming

/233/ Manual: Ladder Logic (LAD) for S7-300 and S7-400,
Programming

/234/ Programming Manual: System Software for S7-300 and S7-400,
Program Design

/235/ Reference Manual: System Software for S7-300 and S7-400,
System and Standard Functions

/236/ Manual: Function Block Diagram (FBD) for S7-300 and S7-400,
Programming

/249/ Manual: Continuous Function Chart (CFC),
Volume 2: S7/M7

/250/ Manual: Structured Control Language (SCL) for S7-300 and S7-400,
Programming

/251/ Manual: GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

B

B-2
From S5 to S7, Converter Manual

A5E00706929-01

/252/ Manual: HiGraph for S7-300 and S7-400,
Programming State Graphs

/253/ Manual: C Programming for S7-300 and S7-400,
Writing C Programs

/254/ Manual: Continuous Function Chart (CFC),
Volume1

/270/ Manual: S7-PDIAG for S7-300 and S7-400,
Configuring Process Diagnostics for LAD, STL, and FBD

/271/ Manual: NETPRO,
Configuring Networks

/280/ Programming Manual: System Software for M7-300 and M7-400,
Program Design

/281/ Reference Manual: System Software for M7-300 and M7-400,
System and Standard Functions

/282/ User Manual: System Software for M7-300 and M7-400,
Installation and Operation

/290/ User Manual: ProC/C++ for M7-300 and M7-400,
Writing C Programs

/291/ User Manual: ProC/C++ for M7-300 and M7-400,
Debugging C Programs

/500/ Manual: SIMATIC NET,
NCM S7 for Industrial Ethernet

/501/ Manual: SIMATIC NET,
NCM S7 for PROFIBUS

/800/ DOCPRO
Creating Documentation (CD only)

/801/ TeleService for S7, C7, and M7
Remote Maintenance for Automation Systems (CD only)

/802/ PLC Simulation for S7-300 and S7-400 (CD only)

/803/ Reference Manual: Standard Software for S7-300 and S7-400,
STEP 7 Standard Functions, Part 2 (CD only)

Literature List

Glossary-1
From S5 to S7, Converter Manual
A5E00706929-01

Glossary

A

Actual parameters replace formal parameters when a function block (FB) or
function (FC) is called, for example, the formal parameter “START” is
replaced by the actual parameter “I3.6”.

An address includes the address identifier and the physical memory location
where the address is stored. Examples: Input I12.1; Memory Word MW25;
Data Block DB3.

An address is part of a STEP 7 statement and specifies what the processor
should execute the instruction on. Addresses can be absolute or symbolic.

Assigning parameters means setting the behavior of a module.

B

Blocks are part of the user program and can be distinguished by their function,
their structure, or their purpose. STEP 7 provides the following types of
blocks:

Logic blocks (FB, FC, OB, SFB, SFC)

Data blocks (DB, SDB)

User-defined data types (UDT)

A block call is the branch into the called block taken during program
processing.

Block parameters are token values within multipurpose blocks which are
supplied with current values when the corresponding block is called.

Actual Parameter

Address

Assigning
Parameters

Block

Block Call

Block Parameter

Glossary-2
From S5 to S7, Converter Manual

A5E00706929-01

C

The compiler program for compiling a program written in a higher
programming language to the machine code the CPU uses is known as a
compiler.

Configuring is the selection and putting together of the individual components
of a programmable logic controller (PLC), and the installation of the required
software and adapting it to the specific task (such as assigning parameters to
the modules.)

D

Data blocks are areas in the user program which contain user data. There are
shared data blocks which can be accessed by all logic blocks, and there are
instance data blocks which are associated with a particular function block (FB)
call. Data blocks contain no logic instructions, in contrast to all other types of
block.

Static data are local data in a function block which are stored in the instance
data block and thus remain stored until the next function block call.

Temporary data are local data in a block which are kept in the L stack while
the block is in use and are no longer available once the block is closed.

With the help of data types you can specify how the value of a variable or a
constant is to be used in the user program. There are two data types according
to IEC 1131-3 available to users of SIMATIC S7: elementary and complex
data types.

Complex data types are defined by the user with the data type declaration.
They do not have their own name and cannot be used more than once. A
distinction is made between arrays and structures. The data types String and
Date and Time also belong to this category.

Elementary data types are predefined data types according to IEC 1131-3, for
example, the data type BOOL defines a binary variable (“bit”); the data type
INT defines a 16-bit fixed-point variable (integer).

The local data of a logic block are declared in the declaration section if the
program is generated using a text editor.

Compiler

Configuring

Data Block (DB)

Data, Static

Data, Temporary

Data Type

Data Type,
Complex

Data Type,
Elementary

Declaration
Section

Glossary

Glossary-3
From S5 to S7, Converter Manual
A5E00706929-01

F

A formal parameter is a token value for the “actual parameter” of logic blocks
which can be assigned parameters. The formal parameters are declared by the
user in the case of function blocks and functions, but are already present in the
case of system function blocks and system functions.

When calling the block, an actual parameter is assigned to the formal
parameter so that the called block works with its current value. The formal
parameters are included amongst the local data of the block and are divided
into input, output, and I/O parameters.

According to the International Electrotechnical Commission’s IEC 1131--3
standard, functions are logic blocks that do not reference an instance data
block, meaning they do not have a ’memory’. A function allows you to pass
parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
calculations. As there is no memory available, the calculated values must be
processed immediately following the FC call.

According to the International Electrotechnical Commission’s IEC 1131--3
standard, function blocks are logic blocks that reference an instance data block,
meaning they have static data. A function block allows you to pass parameters
in the user program, which means they are suitable for programming complex
functions that are required frequently, for example, control systems, operating
mode selection. As function blocks have a ’memory’ in the form of the
associated instance data block, its parameters (outputs, for example) can be
accessed at any time and any point in the user program.

I

The distributed I/O consists of analog and digital modules which are located at
a physical distance from the central rack. Characteristic of the distributed I/O
is the modular rack system whose aim it is to save connecting wires, thereby
saving costs by placing the I/O modules close to the process.

An “instance” is the call of a function block; an instance data block is
associated with this call.

An instance data block stores the formal parameters and static data for function
blocks. An instance data block can be associated with a function block call or a
call hierarchy of function blocks.

Formal Parameter

Function (FC)

Function Block
(FB)

I/O, Distributed
(DP)

Instance

Instance Data
Block

Glossary

Glossary-4
From S5 to S7, Converter Manual

A5E00706929-01

An instruction is part of a STEP 7 statement and specifies what the processor
should do.

L

Local data are data assigned to a logic block which are declared in its
declaration section or its variable declaration. They cover (depending on the
block): formal parameters, static data, temporary data.

In SIMATIC S7, a logic block is a block that contains part of the STEP 7 user
program. The other type of block is a data block which contains only data. The
following list shows the types of logic blocks:

Organization block (OB)

Function block (FB)

Function (FC)

System function block (SFB)

System function (SFC)

M

A macro is a sequence of instructions which are combined into a mnemonic
call optimized for execution.

O

STEP 7 enables you to display context-sensitive help on the screen while you
are working with the programming software.

Organization blocks form the interface between the CPU operating system and
the user program. The sequence in which the user program should be
processed is laid down in the organization blocks.

Instruction

Local Data

Logic Block

Macro

Online Help

Organization Block
(OB)

Glossary

Glossary-5
From S5 to S7, Converter Manual
A5E00706929-01

P

A pointer is a variable which does not possess a particular value but the
address of another variable. With pointer instructions, the type on the right side
of the operator must correspond to the type on the left side.

A programming language is used to create user programs and provides a
specific ’vocabulary’ for this purpose in the form of text instructions or graphic
elements. These instructions are entered by the user using an editor and
compiled into an executable user program.

A project is a container for all objects in an automation task, independent of
the number of stations, modules, and how they are connected in a network.

R

Data are called retentive if they have the same value after a power supply
failure as before the power supply failed. The data are backed up in two ways:

Voltage backup

Backup memory

S

An S7 program is a container for blocks, source files, and charts for S7
programmable modules which also contains the symbol table.

Shared data are data which can be accessed from any logic block (function
(FC), function block (FB), organization block (OB)). These are bit memory
(M), inputs (I), outputs (Q), timers (T), counters (C), and elements of data
blocks (DB). You can access shared data either absolutely or symbolically.

A statement is the smallest independent part of a user program created in a
textual language. It represents a command for the processor.

Statement List is a textual representation of the STEP 7 programming
language, similar to machine code.

Pointer

Programming
Language

Project

Retentive

S7 Program

Shared Data

Statement

Statement List
(STL)

Glossary

Glossary-6
From S5 to S7, Converter Manual

A5E00706929-01

A symbol is a name defined by the user, taking syntax rules into consideration.
This name can be used in programming and in operating and monitoring once
you have defined it (for example, as a variable, a data type, a jump label, or a
block).

Example: Address: I5.0, Data Type: BOOL, Symbol: Emer_Off_Switch

A distinction is made between shared symbols and block-specific symbols.
Shared symbols are available to all parts of the program, therefore the symbol
you assign must be unique for the whole user program. Block-specific symbols
are only recognized within the block for which they were assigned.

A table used to assign symbols (or symbolic names) to addresses for shared
data and blocks.
Examples: Emer_Off (Symbol), I1.7 (Address)

Controller (Symbol), SFB24 (Block)

V

A variable defines an item of data with variable content which can be used in
the STEP 7 user program. A variable consists of an address and a data type,
and can be identified by means of a symbolic name.

Symbol

Symbol Table

Variable

Glossary

Index-1
From S5 to S7, Converter Manual
A5E00706929-01

Index

A
Absolute address, 4-3
Accumulator instructions, 3-35
Actuator-sensor interface, 2-10
Adapter casing, 2-13
Address

convertible, A-1
non-convertible, A-2

Address allocation, 4-4
Address areas, overview, 3-32
Address changes, 7-2
Address register, 3-45
Addressing

absolute, 3-39
data addresses, 3-41
indirect, 3-43

converting, 7-4
memory-indirect, 3-44
register-indirect, 3-45
symbolic, 3-39

Analog functions, 3-29
Analog value processing, example, 9-2
ANY pointer, 9-12
AS-i, 2-10
AS511, 2-3
ASCII source file, 3-16
Assignment list, 3-39, 6-1, 6-4
Authorization, 3-2

B
Background processing, 3-20
Backup battery, 2-7
Basic functions, 3-29
Battery failure, 3-22
Bit logic instructions, 3-35
Bit memory, CPU, 2-6, 2-7
Block instructions, 3-37
Block transfer, 7-5

example, 9-11

Block transfers, 3-37
Block types, in S5 and S7, 3-25
Blocks

comparison STEP 5/STEP 7, 3-17
CPU, 2-6, 2-7

Blocks container, STEP 7 object, 3-6
BR register, 7-5

C
Cam control, 2-13
CD-ROM, 2-1
Command output instructions, 3-37
Comment block, 3-17
Communication, event-driven, 2-19
Communication functions, 2-18
Communications processors, 2-10
Comparison instructions, 3-36
Compiling, 8-1
Complete restart, 3-20
Configuration tool, 2-22
Configuring

communication connections, 3-11
hardware, 3-9

Connection, configured to S5 station, 3-12
Connection table, 3-11

STEP 7 object, 3-6
Consistency check, 8-1
Constant format, 3-31
Controller module, 2-13
Conversion, requirements, 4-2
Conversion instructions, 3-36
Convertible

address, A-1
instruction, A-3, A-4

COROS, 2-3
Counter instructions, 3-35
Counter module, 2-13
Counters, CPU, 2-6, 2-7
CP modules, 2-10

Index-2
From S5 to S7, Converter Manual

A5E00706929-01

CPU, 5-3
analog inputs, 2-6, 2-7
analog outputs, 2-6, 2-7
bit memory, 2-6, 2-7
blocks, 2-6, 2-7
counters, 2-6, 2-7
DBs, 2-6, 2-7
digital inputs, 2-6, 2-7
digital outputs, 2-6, 2-7
FBs, 2-6, 2-7
FCs, 2-6, 2-7
load memory, 2-6, 2-7
local data, 2-6, 2-7
OBs, 2-6, 2-7
process image, 2-6, 2-7
retentive data, 2-6
S7-300, 2-6
S7-400, 2-7
SDBs, 2-7
SFBs, 2-6, 2-7
SFCs, 2-6, 2-7
timers, 2-6, 2-7
work memory, 2-6, 2-7

CRC, 3-23
Creating software, 3-13

inserting components, 3-15
Cross-reference list, 6-1
Cycle monitoring time, 3-23
Cyclic interrupt, 3-20

D
Data block (DB), 3-17, 3-18
Data block instructions, 3-36
DB. See Data block
DB register, 3-41, 3-42
DB1, 3-26
DB1/DX0, 4-4, 5-4
Diagnostic buffer, 2-15
Diagnostic interrupt, 2-15, 9-2
DIL switches, 2-5
Distributed I/O, 2-17
DP master, modules, 2-17
DP slave, modules, 2-17
DX. See Data block
DX0, 3-26

E
Edge change, 2-15
Error handling, 3-21

Error messages, 6-8
ET 200, 2-17
Ethernet, 2-10
Example

analog value processing, 9-2
block transfer, 9-11
start information, 9-8
temporary local data, 9-5

Expansion rack, 2-9

F
FB. See Function block
FC. See Function
FDL (SDA), 2-18
File formats, 3-40
Floating-point math, 3-28
Floating-point math instructions, 3-36
FM modules, 2-13
FMS master, 2-17
FMS service, 2-19
FMS slaves, 2-17
Fully integrated automation, 1-1
Function (FC), 3-17, 3-18
Function block (FB), 3-17, 3-18
Function modules, 2-13
FX. See Function block

G
GD communication. See Global data

communication
Global data communication, 2-19

H
Handling block, 2-20
Hardware, STEP 7 object, 3-5
Hardware interrupt, 2-15, 3-20
HMI (Human Machine Interface), 2-3, 2-21

I
IM modules, 2-9
Importing

ASCII source file, 3-16
symbol table, 3-40

Indirect addressing, converting, 7-4

Index

Index-3
From S5 to S7, Converter Manual
A5E00706929-01

Industrial Ethernet, 2-10, 2-18
interface in user program, 2-20
modules, 2-11

Inputs
analog, 2-6, 2-7
digital, 2-6, 2-7

Installation, STEP 7 software, 3-2
Instruction

convertible, A-3, A-4
non-convertible, A-6

Instruction macro, 5-6
Instructions, overview, 3-35
Integer math instructions, 3-36
Interface modules, 2-9
Interprocessor communication flags, 3-23
Interrupt, 3-20, 3-22
Interrupt commands, 3-37
IP modules, 2-13
ISO transport, 2-18
ISO-on-TCP, 2-18

J
Jump instructions, 3-37

L
LIR, 4-3
Load instructions, 3-35
Load memory

CPU S7-300, 2-6
CPU S7-400, 2-7

Local data, 3-33
CPU, 2-6, 2-7

M
Macro, 5-5

creating, 5-8
Math functions, 3-29, 3-38
Memory, 4-3
Module catalog, 3-10
Module information, 5-3
Module parameters, comparison S5/S7, 2-5
Modules, overview, 2-4
MPI, 2-3, 2-10, 2-18
Multicomputing interrupt, 3-20
Multipoint interface, 2-3

N
Network, STEP 7 object, 3-5
Non-convertible

address, A-2
instruction, A-6

Null instructions, 3-38

O
OB. See Organization block
OB macro, 5-7
OB1, example, 9-14
Operator control and monitoring, 2-21
Operator Panel (OP), 2-21
Organization block (OB), 3-17, 3-20
Outputs

analog, 2-6, 2-7
digital, 2-6, 2-7

P
Page commands, 3-38
PB. See Program block
Performance, 2-2
PG interface, 2-10
Point-to-point connection, 2-10

interface in user program, 2-20
modules, 2-12

Pointer format, 3-43
Position detection modules, 2-13
Positioning module, 2-13
Power supply modules, 2-8
Process image, CPU, 2-6, 2-7
Processing functions, (DO FW, DO DW), 4-3
PROFIBUS, 2-3, 2-10, 2-18

interface in user program, 2-20
modules, 2-11

Program block (PB), 3-17
Programmable controllers, overview, 2-2
Programmable modules, 3-6
Programming device interface

AS511, 2-3
MPI, 2-3

Project, 3-4
creating, 3-7

Project file, 3-4
Proportioning module, 2-13
ProTool, 2-22

Index

Index-4
From S5 to S7, Converter Manual

A5E00706929-01

R
Register instructions, 3-35
Restart, 3-20
RET_VAL, 9-3
Retentive behavior, 4-4
Retentive data, CPU, 2-6
Retentivity, 2-7
Return value

of a function, 9-3
of a system function, 3-22

Rewire, 5-4, 7-2
Rotate instructions, 3-36

S
S5 expansion unit, 2-9
S5 handling block, 2-20
S5 standard function blocks, 7-6
S7 blocks, creating, 3-15
S7 project, creating, 4-4
SB. See Sequence block
Scratchpad flags, 3-33, 9-6
SDB. See System data block
Sequence block (SB), 3-17
Set/read CPU time, 3-22
SFB. See System function block
SFC. See System function
Shift instructions, 3-36
Shift register, 3-23
Signal functions, 3-28
Signal modules, 2-15
Signal preprocessing modules, 2-13
SIMATIC Manager, 3-3

window, 3-13
SIMATIC S7, overview, 2-2
Simulator module, 2-16
SINEC H1, 2-11
SINEC L1, 2-11, 3-26
SINEC L2, 2-11, 3-26
SINEC S1, 2-11
SM modules, 2-15
Software, overview of components, 3-14
Source file, STEP 7 object, 3-6
Special functions, 3-22
Special OBs, 3-17
Standard functions, 3-28
Standard library, 3-15
Start information, 3-34, 9-8
Startup, 3-20

Station, STEP 7 object, 3-5
STEP 5 block, 3-17
STEP 5 project, 3-4
STEP 7

installing, 3-2
starting, 3-3

STEP 7 project, 3-4
archiving, 3-8
components, 3-5
creating, 3-7
storing, 3-8

STL compiler, 8-1
Stop instructions, 3-37
Subnet, 2-10
Symbol, local, 3-40
Symbol table, 3-40

creating, 3-15
example, 9-14
STEP 7 object, 3-6

System data block (SDB), 3-17, 3-19
System function (SFC), 3-17, 3-19
System function block (SFB), 3-17, 3-19
System settings S5, 3-26

T
Time-delay interrupt, 3-20
Time-of-day interrupt, 3-20
Timer instructions, 3-35
Timers, CPU, 2-6, 2-7
TIR, 4-3
Tool, hardware conversion, 2-1
Transfer instructions, 3-35

U
User authorization, 3-2

V
Visualization, 2-22

W
Warning, Converter messages, 6-10
WinCC, 2-22
Word logic instructions, 3-36
Work memory, CPU, 2-6, 2-7

Index

	Title
	Preface
	Contents
	Part 1: Planning Your Conversion
	1 Introduction
	2 Hardware
	2.1 Programmable Logic Controllers
	2.2 S7 Modules
	2.2.1 Central Processing Units (CPU)
	2.2.2 Power Supply Modules (PS)
	2.2.3 Interface Modules (IM)
	2.2.4 Communications Processors (CP)
	2.2.5 Function Modules (FM)
	2.2.6 Signal Modules (SM)
	2.2.7 Simulation Modules (S7-300)

	2.3 Distributed I/O Devices
	2.4 Communication
	2.4.1 Interface to User Programs
	2.5 Operator Control and Monitoring

	3 Software
	3.1 General Operating Principles
	3.1.1 Installation Requirements
	3.1.2 Installing the STEP 7 Software
	3.1.3 Starting the STEP 7 Software

	3.2 Structure of an S7 Project
	3.3 Editing Projects with the SIMATIC Manager
	3.3.1 Creating Projects

	3.3.2 Storing Projects
	3.4 Configuring Hardware with STEP 7
	3.5 Configuring Connections in the Connection Table
	3.6 Inserting and Editing a Program
	3.6.1 Basic Procedure for Creating Software
	3.6.2 Inserting Components for Creating Software in S7 and M7 Programms

	3.7 Blocks
	3.7.1 Comparison
	3.7.2 Functions and Function Blocks
	3.7.3 Data Blocks
	3.7.4 System Blocks
	3.7.5 Organization Blocks
	3.7.6 Block Representation during Conversion

	3.8 System Settings
	3.9 Standard Functions
	3.9.1 Floating-Point Math
	3.9.2 Signal Functions
	3.9.3 Integrated Functions
	3.9.4 Basic Functions
	3.9.5 Analog Functions
	3.9.6 Math Functions

	3.10 Data Types
	3.11 Address Areas
	3.11.1 Overview
	3.11.2 New Addresses in S7: Local Data

	3.12 Instructions
	3.13 Addressing
	3.13.1 Absolute Addressing
	3.13.2 Symbolic Addressing
	3.13.3 New Feature: Complete Addressing of Data Addresses
	3.13.4 Indirect Addressing

	Part 2: Converting Programs
	4 Procedure
	4.1 Analyzing the S5 System
	4.2 Creating an S7 Project
	4.3 Defining Hardware

	5 Preparing for Conversion
	5.1 Providing the Required Files
	5.2 Checking Addresses
	5.3 Preparing the S5 Program
	5.4 Creating Macros
	5.4.1 Instruction Macros
	5.4.2 OB Macros
	5.4.3 Editing Macros

	6 Conversion
	6.1 Starting the Conversion
	6.2 Generated Files
	6.3 Interpreting Messages

	7 Editing the Converted Program
	7.1 Address Changes
	7.1.1 Options for Changing Addresses
	7.2 Non-Convertible Functions
	7.3 Indirect Addressing -- Conversion
	7.4 Working with Direct Memory Access
	7.5 Assigning Parameters
	7.6 Standard Functions

	8 Compiling the Program
	9 Application Example
	9.1 Analog Value Processing
	9.2 Temporary Local Data
	9.3 Evaluating the Startup Information from the Diagnostic Interrupt OB (OB82)
	9.4 Block Transfer
	9.5 Calling the Examples

	Appendix
	A Address and Instruction Lists
	A.1 Addresses
	A.2 Instructions

	B Literature List

	Glossary
	A
	B
	C
	D
	F
	I
	L
	M
	O
	P
	R
	S
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

