SIEMENS

SIMATIC

WInAC RTX
Open Development Kit (ODK)

Version: 3.0

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to protect the
product and connected equipment. These notices are highlighted in the manual by a warning triangle and are marked as
follows according to the level of danger:

ADanger

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWarning

Indicates a potentially hazardous situation which, if not avoided, could result in death or severe injury.

ACaution

Used with the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury.

Caution

Used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in
property damage.

Notice

NOTICE used without the safety alert symbol indicates a potential situation which, if not avoided, may result in an
undesirable result or state.

Qualified Personnel

The device/system may only be set up and operated in conjunction with this manual. Only qualified personnel should be
allowed to install and work on this equipment. Qualified persons are defined as persons who are authorized to
commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and
standards.

Correct Usage
Note the following:

Warning
This device and its components may only be used for the applications described in the catalog or the technical
descriptions, and only in connection with devices or components from other manufacturers which have been approved or
recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, installed correctly, and operated and
maintained as recommended.

Trademarks

Siemens® and SIMATIC® are registered trademarks of SIEMENS AG.

STEP 7™ and S7™are trademarks of SIEMENS AG.

Microsoft ®, Windows ©, Windows 95 ®, Windows 98 ®, Windows 2000 ®, Windows ME ® and Windows NT © are registered
trademarks of Microsoft Corporation.

RTX™ is a registered trademark of VenturCom, Inc.

Copyright Siemens Energy & Automation, Inc. 2000 Disclaimer of Liability

All rights reserved

The reproduction, transmission or use of this document We have checked the contents of this manual for agreement

or its contents is not permitted without express written with the hardware and software described. Since deviations

authority. Offenders will be liable for damages. All rights, cannot be precluded entirely, we cannot guarantee full

including rights created by patent grant or registration of agreement. However, the data in this manual are reviewed

a utility model or design, are reserved. regularly and any necessary corrections included in subsequent
editions. Suggestions for improvement are welcomed.

Siemens Energy & Automation, ISBU © Siemens Energy & Automation, Inc. 2001
3000 Bill Garland Road

Johnson City, TN 37605-1255, USA Technical data subject to change.

Preface

The Windows Automation Center Real-time Extension Open Development Kit (WinAC RTX ODK)
provides you with tools for creating custom software that interacts directly with the Windows Logic
Controller (WinLC RTX) program scan cycle. With WinAC RTX ODK, you can produce software
for use with the VenturCom Real-time Extensions (RTX™) for WIinLC in a real-time dynamic link
library (RTDLL). This in-process RTDLL is loaded within the WinLC RTX process.

Optionally, you can also produce custom software for WinLC RTX running under Windows NT.
This interaction uses Microsoft's COM (Component Object Model) technology. Your custom
software is a COM object that is loaded as a DLL within the WinLC RTX process.

WinAC RTX ODK consists of the following elements:
* Application wizard for generating C/C++ project framework

e STEP 7 library containing System Function Blocks (SFBs) for accessing your custom
software

* WInAC RTX ODK User Manual (electronic)
* Sample programs

Audience

This manual is intended for engineers, programmers, and maintenance personnel who have a
general knowledge of programmable logic controllers and who are proficient in C or C++.
Knowledge of STEP 7 programming and of WinLC is also required.

Scope of the Manual

This manual describes the operation and features of version 3.0 of the WinAC RTX Open
Development Kit (ODK).

How to Use This Manual

This manual provides the following information:

e QOverview and installation of WinAC RTX ODK

* Getting started with a sample application program

* Programming an extension object (RTDLL or COM object) using the WinAC RTX ODK
Application Wizard and C/C++ Elements

* Programming the STEP 7 program using the ODK System Function Blocks

* Debugging your custom software

* Web-based descriptions of the C/C++ classes that you use to produce custom software

Other Manuals

For additional information, refer to the following manuals:

Title

Content

Windows Logic Controller RTX
(WinLC RTX) User Manual

This manual provides basic information about the WinLC
controller with the real-time extensions.

Additional Assistance

If you have any questions not answered in this or one of the other STEP 7 manuals, if you need
information on ordering additional documentation or equipment, or if you need information on
training, please contact your Siemens distributor or sales office.

Contacting Customer Support

You can find additional information about and updates to this user manual at the Siemens Energy
& Automation web site:

e www.sea.siemens.com/industrialsoftware

This web site includes useful information, such as application notes, in the Technical Service
area. This area also includes downloadable software, including sample programs for linking a
Delta Tau motion control board with WinLC.

Customer Support

North America

Telephone (609) 734-6500
(609) 734-3530

E-mail ISBU.Hotline@sea.siemens.com
simatic.hotline@sea.siemens.com

Internet http://www.sea.siemens.com/IndustrialSoftware/welcome.asp
http://www.ad.siemens.de/meta/index_76.htm

Europe

Telephone ++49 (0) 911 895 7000

E-Mail simatic.support@nbgm.siemens.de

Internet http://www.ad.siemens.de/simatic-cs

Fax ++49 (0) 911 895 7001

Contents

I T O = R i
[VINAC RTX ODK OVEIVIEW --ooooooooooo oo ooooeeoeeeeseeoeeseesoeoeeseeroeereereeeee [
BYSIEM REGUITEMENTS ...ttt eteeeteeieetteeteesteeeteeseessesssessseeseesseassesnseaseeassesseaseans EI
[nStalling WInAC RTX ODK roooooooooorrorooooooooeoeoeoeoeeeeeo oo |

(GEUING STANE ...ttt e e e et eae e et e eaeaeneeeas §|
Bample Program INtrodUCHIONieieiieieiieeieiieeeeeesesesessseseisseseeressareieesreereassaseeans EI
Dverview of the HistoDLL Sample STEP 7 Program...................ooeeeeeueueeeeeeseeeeennn. @
DVErVIew OF The HISTODLL RTDLL ..o oo oeeeereereeeeee (14
Additional Sample Programsc.occooovooveeeeeeeeeceeeneeeeeeeeeeneenseneeeeneeneenrensennennennnns |1'_5'|

R E
Implementing an ODK APPICALION.............uuuueieeeeeeeeeiiiiiiiieeeeeeeeeeiiieiiieeeeesseeeiiieeeeeas Il'_Gi
Using the ApPlICation WIZard..............cccuuuuueeeeeeeiiieeiiiiiiiieeeeeeeeeeiiieeeaeeeeeeeeeivveeaaeaes |1'_7i
Programming the C/C++ EXtENSION SOFWAIE ..o IZZ]
Programming ASYNchronous EVENESociviieeieeieiiieieeie i eseeie e IBE!
Programming MONITOT TRICAUSveeeeeeeeiieeeeeeeeeeeeeeee et eeeeeeeeeeaeeeeaann le
Building the EXtENSION ODJECL.ccooeeeeieeeeeeeeeeeeeeeeee e eeeeeeeeeeee e e e eeeeeneeeeeeas BEI
Loading the WinAC RTX ODK Library INnto0 STEP 7.........ccccoveeeiviveeiiiiieeeiieeeeeie 13'_5'|
Programming the STEP 7 PrOGIAMooeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeasnnnneeeeas I?E!
Debugging the EXENSION ODJECEcceeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenneaeeaan 13'_7'|

ODK SUPPOI SOFIWAIEvveveeeeiiieeeeeeeeeeeeeeeeeee et e eeeaae e E
Data ACCESS HElPEr ClaSSESuiuiieiieiiiiieei it iteeieeeeitseesateaeeesessersareaeesesreaseareaneas 140|
{VinAC RTX ODK Library for STEP 7 oo a1
Auxiliary STEP 7 INterface FUNCHONSeeeiviiieeeiiiieee e eeeeeeeeeiieeeenn I4'_5i
PBIECEWED ... 14'_9i

Vi

Product Overview

Product Overview

WInAC RTX ODK Overview

The Windows Automation Center Real-time Extension Open Development Kit (WinAC RTX ODK)
is an open interface to the Windows Logic Controller (WinLC RTX). It provides a set of tools that
enables you to implement custom software that is executed as part of the STEP 7 program
execution. ODK implements this custom interface as an extension object, which is an RTDLL for
use with WinLC RTX, or as a COM object installed as a DLL for use with WinLC RTX using
Windows NT. WIinAC RTX ODK provides an application wizard for you to develop this custom
software in C/C++. It does not support Visual Basic or Java.

Two special STEP 7 System Function Blocks (SFBs) provide the interface between your custom
C/C++ software and the program logic that is being executed by WinLC RTX. These two SFBs
enable you to create an object containing your custom code and to execute that code.

Your custom software is invoked by an SFB, and executed as part of the WinLC RTX scan cycle.
WinAC RTX ODK publishes the interface that it expects, and you implement your custom logic
according to this interface.

WinLC RTx QDK Application Y our custom
CIC++ code is
STEF 7 FProgram Running in embedded in sn
M T pmmmmsnsssssssssssessssssassey, HT DLL I:lr- CDM
WinLC RTX RTOLL ar ‘4 Obiject created by
COM Ohject H Dk,
OBFEIFC
» W CIC++ #i Third Party
“ el Fumctions [* " Devise
Predefined System Function

Blocks are used in STEP 7 ||
program to implement
connection to youw ETOLL or
CoM ohject,

If your custom software requires too much time to be executed within the WinLC RTX scan cycle,
it must be executed on a separate thread of execution. A separate thread is required if the
execution time of your custom software could cause a scan to exceed the configured watchdog
time. WIinAC RTX ODK includes an application wizard that helps you set up one or more
asynchronous threads for this purpose. Your custom software can also handle events by
scheduling an asynchronous OB to be executed by WinLC RTX.

ACaution

The STEP 7 program executes the SFB that calls the ODK custom software as a single non-
interruptible instruction. During the execution of the ODK custom software, the watchdog timer,
OBs, and process alarms are not available. They are handled after the SFB call completes. ODK
custom software that significantly extends the cycle time can delay the processing of critical
activities in WIinLC RTX, possibly resulting in personal injury.

To avoid this delay, program asynchronous events to handle custom logic of a lengthy duration.

Product Overview

ODK Expands the Capabilities of WinLC RTX

WiInAC RTX ODK expands the capabilities of WinLC for a wide range of possibilities. ODK offers
benefits, for example, in the following situations:

* The S7 controller can incorporate special control logic that was written in C or C++.

* The control solution uses a complex (or proprietary) calculation (such as PID or gas flow),
which has higher performance requirements or is more easily written and maintained in C
or C++.

* The application requires connectivity with another application or hardware, such as for
motion control or vision systems.

* The application needs to access features of the computer that is running the VenturCom
Real-time Extensions or the Windows NT operating system that are not accessible by
standard S7 control languages.

Tools Provided by WinAC RTX ODK

The tools provided by WIinAC RTX ODK embed your custom software into either an RTDLL for
use within RTSS (Real-Time Sub System) or into a COM object DLL for use with the Windows NT
operating system. The following tools are included with the WinAC RTX ODK installation:

* Application wizard for generating a program shell with the correct interfaces and functions
for interacting with WinLC RTX

e STEP 7 library containing two SFBs that you can insert into the STEP 7 program:

* SFB65001 (CREA_COM) creates an instance of the extension object (RTDLL or
COM object). You can have more than one extension object, and each one can
contain multiple actions. SFB65001 returns the program handle for the object that it
creates. This program handle can be stored in the WinLC RTX memory to be used by
SFB65002.

* SFB65002 (EXEC_COM) executes a specific function in the RTDLL or COM object
created by SFB65001.

* Documentation in the form of an electronic user manual and linked object webs

e Sample programs including C/C++ projects and their corresponding STEP 7 projects

With WinAC RTX ODK, you can define and implement one or more standard FBs or FCs that
become an easy-to-use block library that you can use throughout the rest of your STEP 7
program. The blocks in this user-defined library, in turn, access the WinAC RTX ODK SFBs. An
example program that is installed with ODK illustrates one way to do this.

WInAC RTX ODK Provides a Mechanism for Defining Custom Logic

WinAC RTX ODK provides the mechanism for you to define one or more custom system
functions that can be integrated into the STEP 7 program logic. The Open Development Kit
connects the SFBs in the program logic to your custom logic extension.

Product Overview

For example, without using the Open Development Kit, a process that uses a motion control
board and a vision board might have a custom application that interacts between the two boards.
This application interacts with WinLC RTX by manipulating the I/O controlled by WinLC RTX
through asynchronous read/write functions provided by STEP 7 or by the Data control of WinAC
Computing:

Application |
|
WinLC Vision Motion

N

By using WinAC RTX ODK, this custom application can now interact directly with the WinLC RTX
program logic:

Application |

WinLC Vision | Motion |

> |F

The WIinAC RTX ODK software allows you to build your extension object as either an RTDLL or a
COM object. An RTDLL is in-process; it runs in the same process as WinLC RTX and is loaded in
the same address space. A COM object is in-process under Windows NT, but its data must be
copied between RTX and Windows NT through a shared memory buffer. For this reason, an
RTDLL allows for faster processing between the application and WinLC RTX because it avoids
the overhead of passing data through the shared memory buffer. In either case, there is no
context switching between the RTDLL or COM Object and WIinLC RTX because they are in the
same process. (When applications run in separate processes, the operating system must stop the
current process and save its context before switching the execution focus to another process.
Additionally, the function input/output data must be marshaled and moved between the
processes.)

Note

Because WInLC RTX can be started as a service, you must be aware that there are some
restrictions on what your custom software can do. For example, if your software activates a
graphical user interface (GUI), that interface would not be visible. The interface (GUI) needs to be
a separate process started in a user context with communication to your extension object,
possibly through shared memory.

Product Overview

WinAC RTX ODK handles the synchronization between the calls to the interface. However, if your
custom software contains other threads or handles other asynchronous events, then your
application must be responsible for coordinating internally between these events and the
functions in the interface.

Note

Because the software in the extension object executes as part of the WinLC RTX scan cycle, it
must finish within the scan requirements. If the software in your extension object requires too
much of the scan cycle, use the asynchronous processor (AsyncProc) to handle this processing
outside of the WinLC RTX scan.

RTDLL or COM Object

AsyncProc: ScheduleEvent

WinlC Execute function S‘a"s‘inL_I(_:I RT)(I
can Threac
RTX l Retum code iEvent Status l
_I ! f L 'Return code
EXEC_COM M | i
! I
! I

¥
Event:: GetStatus ¥
Event::GetResult

i

Asynchronous Processing: Queue of asynchronous tasks
Tranzition to RUM ar RUM-P made

Activate — Resurne Thread AsyncProc
DeActivate — Pause Thread Yo, Thread
Tranzition to HALT or STOP mode

0ODK_ScheduleOB
Tranzition to RUM or RUMN-P mode
Activate — Resume Thread Maonitor
DeActivate — Pause Thread . Thread
Tranzsition to HALT or STOP mode -

ODk_ScheduleOB

Product Overview

WiInAC RTX ODK provides the tools to perform the following tasks:

Create your extension object at some user-defined time, such as startup (by calling
SFB65001 in OB100)

Release the extension object
Call the functions of the extension object

Notify (or activate) your extension object when it is created and before WinLC RTX
makes the transition from STOP to STARTUP or from HALT to RUN or RUN-P mode

Notify (or deactivate) your extension object when WinLC RTX goes to STOP or HALT
mode

Notify WinLC RTX of an event. You can create an event to cause one of the following
OBs to be executed:

e OB4x (Hardware interrupts)

* OBB80 (Time error, such as a watchdog alarm)
* OBB82 (Diagnostic alarm interrupt)

* OB83 (Insert/Remove Module interrupt)

* OB84 (CPU Hardware Fault)

e OB87 (Communication Error interrupt)

Note
Reserve OB84 for handling Windows NT operating system failures. Do not use it for
other purposes.

Read the current operating state of WinLC RTX

Product Overview

System Requirements

Hardware Requirements

To run WIinLC RTX and WIinAC RTX ODK, it is recommended that your computer meet the
following criteria:

A personal computer (PC) with the following:

Pentium processor running at 400 MHz or faster
128 Mbytes RAM

512 Kbytes level 2 cache

Approximately 10 Mbytes on your hard disk

At least 1 Mbyte free memory capacity on drive C for the Setup program (Setup files
are deleted when the installation is complete)

A VGA color monitor, keyboard, and mouse or other pointing device (optional) which are
supported by Microsoft Windows NT

Software Requirements

WiInAC RTX ODK requires that the following software packages be installed on your computer:

Microsoft Windows NT version 4.0 (or higher), with service pack 6 (or higher)

WinLC RTX version 3.0 (or higher)

STEP 7 version 5.0, service pack 3 (or higher), with STEP 7 version 5.1 (or higher)
recommended

A C/C++ compiler (Microsoft Visual Developers Studio version 6 (Visual C++), service
pack 3 (or higher) is recommended.)

VenturCom Software Development Kit (SDK), required for compiling RTSS projects.

Internet Explorer 4.0 (or higher), for viewing product documentation

WinAC RTX and WinAC RTX ODK will not run under Microsoft Windows 3.11, Windows 95,
Windows 98, Windows 2000, Windows ME, or Windows for Workgroups.

Product Overview

Installing WinAC RTX ODK

Before installing WinAC RTX ODK, ensure that your computer meets the recommended system
requirements.

Notice

Do not install any component of WinAC (such as WinAC RTX ODK) on a computer while
any other component of WinAC (such as WIinLC RTX, the Computing SoftContainer,
programs that use the SIMATIC controls provided by Computing, or the panel for the
CPU 416-2 DP ISA) is being executed (is currently running) on that computer.

Because Computing, WinLC RTX, and other elements of WinAC use common files,
attempting to install any component of the WIinAC software when any of the components
of WInAC are being executed by the computer can corrupt the software files. Always
ensure that the following programs are not running when you install :

e WinLC RTX

e Panel for CPU 416-2 DP ISA

e Computing SoftContainer

e Computing TagFile configurator

e SIMATIC Tool Manager

e Computing Configuration

e Any program (such as a program created in Visual Basic) that uses one of the
SIMATIC controls provided by Computing

The Setup program for WinAC RTX ODK guides you step-by-step through the installation
process. You can switch to the next step or to the previous step from any position. Use the
following procedure to start the Setup program:

1.

Start the dialog box for installing software under Windows NT by double-clicking on the
Add/Remove Programs icon in the Control Panel.

Click the Install... button.

Insert the CD and click the Next button. Windows NT searches automatically for the
installation program SETUP.EXE.

Follow the instructions displayed by the Setup program.

Product Overview

Installing ODK When a Version of ODK Is Already Installed

If the Setup program finds another version of ODK on your computer, it displays a dialog that
allows you to modify, repair or remove the installation. Select Remove on this dialog to uninstall
the previous version. Repeat the installation procedure to install .

Your software is better organized if you uninstall any older versions before installing the new
version. Overwriting an old version with a new version has the disadvantage that if you then
uninstall, any remaining components of the old version are not removed.

Uninstalling (Removing)

Use the Windows NT Add/Remove Programs procedure to remove the WinAC RTX ODK

software:
1. Selectthe Start > Settings > Control Panel menu command to display the Windows NT
control panel.
2. Double-click the Add/Remove Programs icon to display the Add/Remove Programs
Properties dialog box.
3. Select the entry for SIMATIC 3.0 and click the Add/Remove button.
4. Follow the instructions of the dialogs to remove the software.

Getting Started

Getting Started

Introduction

WinAC RTX ODK installs several sample programs on your computer during the installation
procedure. The sample program HistoDLL contains the STEP 7 project and RTDLL (C/C++
software) for collecting data about the scan time of WinLC RTX. The data collected by this
custom application can be displayed as a histogram. This sample program consists of the
following elements:
e STEP 7 project HistoDLL, which includes:
e STEP 7 program
* Variable table (VAT) Histogram Status

* Microsoft Visual C++ Project HistoDLL, which is generated as a real-time project.

You can work with this sample program to gain an understanding about how to create your own

custom RTDLL that interacts with WinLC RTX.

How to Use the HistoDLL Sample Program

In order to work with the sample program, you must compile the HistoDLL C/C++ project into an
RTDLL and download it to the real-time environment. You must also retrieve and download the
HistoDLL STEP 7 program to WinLC RTX, and run it. Then you can observe its operation through

the sample Histogram Status variable table.

To compile the sample RTDLL in Microsoft Visual C++, follow these steps:

1. Select Start > Programs > Microsoft Visual Studio 6.0 > Microsoft Visual C++ 6.0 to

open Visual C++. (If you are using another compiler, follow the procedures for the
compiler that you are using for compiling the RTDLL).

2. Select File > Open Workspace and browse to the
Siemens\WinAC\Odk\Examples\HistoDLL directory.

Openworkspace ——————@E|
Lok, i I'a HistoDLL j El

RTS5_Releaze

File namme: IHistDDLL.dsw Open

Filez of type: IWnrkspaces [dzw. mdp) j Cancel |

Getting Started

6.

Select the HistoDLL.dsw file and click Open.
Select Build > Set Active Configuration... to set the project configuration.

Select HistoDLL - Win32 RTSS Release from the list and click OK to ensure that the
project is configured for real-time.

Select Build > Build HistoDLL.rtdll to build the project.

In Microsoft Visual C++, the Build command for an RTDLL also loads the RTDLL. If you are
working in an environment other than Microsoft Visual C++, you must use the rtssrun command
to register the RTDLL after you build it. To use rtssrun to register the RTDLL after it is built, follow
these steps:

1.

Select Start > Programs > Command Prompt to open a DOS command prompt
window.

Type cd Si emrens\ W nAC\ Odk\ Exanpl es\ Hi st oDLL\ RTSS_Rel ease to change to
the folder containing the RTDLL that you just built.

At the command prompt, typertssrun /dl | Hi stoDLL.rtdl I toregister the
RTDLL.

To retrieve, download and run the HistoDLL STEP 7 program, follow these steps:

10

1.

2.

3.

10.

Select Start > Simatic > SIMATIC Manager to start the SIMATIC Manager.
Select File > Retrieve... from the SIMATIC Manager.

Browse to the directory Siemens\WinAC\Odk\Examples\HistodI\Step7\S7proj and
double-click the file HistoDLL.zip.

Click OK on the "Select destination directory” dialog. The SIMATIC Manager extracts the
HistoDLL STEP 7 project and puts it in the Siemens\Step7\S7proj directory. Click OK on
the Retrieving dialog that informs you of the project location, if it appears.

Click Yes on the final Retrieve dialog to open the HistoDLL project.

If WIinLC RTX is not already running, double-click the WIinLCRTX controller icon on your
desktop to start it.

Set the operating mode of WinLC RTX to STOP, and perform a memory reset (MRES).

From the SIMATIC Manager, click the Blocks folder of the HistoDLL S7 Program and
select PLC > Download to download the HistoDLL program to WinLC RTX.

Change the operating mode of WinLC RTX from STOP mode to RUN or RUN-P mode.
WinLC RTX begins executing the HistoDLL program.

From the SIMATIC Manager, use the Histogram Status variable table in the Blocks folder
of the HistoDLL S7 Program to view the scan data. The table shows a running count of
how many scans fall within specific time values and statistics about the scan times.

Getting Started

Overview of the HistoDLL STEP 7 Program

The STEP 7 program HistoDLL stores data about the scan cycle (current execution time, last
execution time, maximum execution time, minimum execution time, mode or most frequent scan
time, and deviation) and calls the RTDLL that updates the scan cycle data.

The HistoDLL STEP 7 program uses the ODK System Function Blocks SFB65001 (CREA_COM)
and SFB65002 (EXEC_COM). These SFBs encapsulate the calls to the ODK RTDLL functions.
They provide the interface between the STEP 7 program and your custom C++ library.

In addition, the HistoDLL STEP 7 project includes a variable table named Histogram Status.
When the HistoDLL STEP 7 program is running with the ODK HistoDLL RTDLL, you can monitor
this variable table to observe the scan cycle times and related statistics.

STEP 7 Program Structure

The HistoDLL STEP 7 program utilizes three Organization Blocks (OBs):
e OB1: Free Cycle OB - This OB cycles continually.

e OBB80: Scan Deviation - This OB is executed only when a time error occurs, for example,
the maximum cycle time is exceeded.

* OB100: Complete Restart - This OB is executed on a Warm Restart (transition from
STOP to RUN or RUN-P).

The HistoDLL STEP 7 program contains three Functions (FCs):

* FC1000: LoadHistogram - This FC calls SFB65001 (CREA_COM) to create the RTDLL
object.

e FC1001: InitHistogram - This FC initializes the histogram slots to 0 and calls SFB65002
(EXEC_COM) to execute the RTDLL Execute function.

* FC1002: UpdateHistogram - This FC updates the histogram on every scan cycle to load
the clock time into the histogram input data.

STEP 7 Program Execution

When the operating mode of WinLC RTX changes from STOP to RUN, WIinLC RTX executes
OB100 (warm restart). OB100 performs these tasks:

1. OB100 calls FC1000 (LoadHistogram).

a. FC1000 calls SFB65001 (CREA_COM) to create the RTDLL object for the histogram
program.

b. FC1000 verifies that the HistoDLL RTDLL was loaded.
2. OB100 calls FC1001 (InitHistogram).

a. FC1001 calls SFB65002 (EXEC COM) with a command parameter of 0 to initialize
the histogram program. This command sets all initial values to 0.

b. FC1001 sets the deviation factor for the scan cycle in DB1000.

11

Getting Started

After OB100 finishes, WinLC RTX executes OB1 (main program cycle).
1. OB1 calls SFC64 (TIME_TCK) and writes the current clock time to the input data.
2. OB1 calls FC1002 (UpdateHistogram).

a. FC1002 calls SFB65002 (EXEC COM) with the command UpdateCmd to update the
histogram data in the RTDLL . If the C/C++ function that processes the update
command detects that the scan cycle exceeded the deviation factor, it schedules
OB80, the scan deviation OB.

The following picture shows a graphical representation of the HistoDLL STEP 7 program
execution:

Warm Restart > OB100 Complete Restart
Call FC1000 Load Histogram DLL

Call SFBE3001 CREA _COh
Werify RTOLL loaded

Call FC1001 Initialize Histogram

Call SFBESO02 EXEC_COM with Int Command
Zet deviation factor

Main OB Free Cycle OB
Program
Cycle Call SFCE4 TIME_TCH to get clock time

Call FC1002 Update Histogram

Call SFBE3002 EXEC_COM with Update Command

Lo CBE0 Scan Deviation
Deviation Factor —»

Exceeded Increment number of deviation erars

12

Getting Started

Where to Find STEP 7 Program Listings
After you have retrieved the HistoDLL project or other example projects into the SIMATIC
Manager, you can examine the STEP 7 program code. To examine HistoDLL program listings
from the SIMATIC Manager, follow these steps:

1. Select File > Open.

2. Click the Browse... button, and browse to and expand the Siemens\Step7\S7proj
directory.

3. Double-click the Histodll project.

4. Expand the HistoDLL S7 Program from the SIMATIC Manager browser, and open the
Blocks folder.

5. Double-click any of the program blocks to examine them.

13

Getting Started

Overview of the HistoDLL RTDLL

The RTDLL HistoDLL contains C++ functions that read the data about the WinLC RTX scan time
and create a histogram.

The sample C++ program includes the file Histo.cpp for the custom histogram software as well as
the files necessary for the interface (WinLCReadData.h, WinLCReadData.cpp,
WinLCReadWriteData.h, and WinLCReadW riteData.cpp).

The file Histo.cpp shows how to implement the histogram functionality. The application wizard
(WinAC ODK AppWizard) generated the framework for this project.

Histo.cpp produces a single ODK RTDLL which can execute two functions:
* Initialize the histogram (Executelnit subcommand)

* Update the histogram (ExecuteUpdate subcommand)

When the STEP 7 program calls SFB65002 (EXEC_COM), the Execute function in the RTDLL is
called. If the STEP 7 program passes an Init Command (0) to the command parameter of the
Execute function, the Execute function calls the Executelnit function. If the STEP 7 program
passes an Update Command (1) to the command parameter of the Execute function, the Execute
function calls the ExecuteUpdate function. The STEP 7 program calls the Init Command on a
Warm Restart and it calls the Update Command during the main program cycle. Refer to the
HistoDLL Sample STEP 7 Program for a description of the STEP 7 program execution.

Histo.cpp also shows how to schedule an asynchronous error OB in WinLC RTX. The function is
ScheduleOB80, and is included as an example of how to schedule an OB on an exception event.
For most applications, exception cases in the Execute function can be handled with a return
code, while the scheduling of an OB would more commonly be done when an asynchronous
event occurs. The scheduling of the error OB is included as an example of how to schedule an
asynchronous OB in an ODK application.

HistoDLL Object Web

Histo.cpp contains the custom code for the HistoDLL sample project. It contains the functions
Execute, Executelnit, and ExecuteUpdate. Executelnit and ExecuteUpdate are subcommands of
the Execute function. These three functions contain the custom code; the rest of the code is
supplied by the application wizard. Click the link below to examine the classes and functions that
comprise the HistoDLL C/C++ sample project.

|HistoDLL Object Web |

14

Getting Started

Additional Sample Programs

In addition to the HistoDLL sample program, WinAC RTX ODK installs these additional sample
C/C++ projects on your computer in the Siemens\WinAC\ODK\Examples folder:

C/C++ Sample [STEP 7 Sample |Description

Program Program

Histogram Histogram Contains the Histogram program for a Windows NT
application

Demo_RTX DemoRTX Contains combined code from all other sample programs

Demo_RTX2 DemoRTX2 Measures latency between the scheduling of an OB and
its execution

Demo_RTX3 DemoRTX3 Interfaces with external hardware to generate a tone pulse

Demo_RTX4 DemoRTX4 Performs arithmetic calculations on controller data

Demo_RTX5 DemoRTX5 Monitors a counter, creates events that schedule OBs, and
performs file I/O

You can examine each of these programs for further examples of ODK. They illustrate tasks such

as the following:

* Using a monitor thread

* Scheduling OBs

* Managing a counter

* Managing a timer

* Measuring latency in scheduled OB execution

* Performing simple mathematical operations on controller values

* Interfacing with external hardware

* Reading from and writing to files

Note

You must retrieve the STEP 7 example programs into the SIMATIC Manager in order to be able

to use them.

15

Basic Tasks

Basic Tasks

Implementing an ODK Application

Your ODK application combines software that you implement in C/C++ with a STEP 7 program
that can interface with external hardware or software . You must develop both a C/C++ extension
object (RTDLL or COM object), and a STEP 7 program. The STEP 7 program uses the ODK
SFBs to call functions in your extension object during its normal execution. For a real-time (RTX)
application, the extension object is an RTDLL. For a Windows NT application, the extension
object is a COM object that is loaded as a DLL.

Creating the C/C++ Project

To create the C/C++ software that is compiled and loaded as part of the in the WinLC RTX
process, follow these steps:

* Use the application wizard to create the program shell for the RTDLL or COM object.
* Implement custom software in predefined functions.

Creating the STEP 7 Program

To create a STEP 7 program that uses ODK to access your custom C/C++ functions, follow these
steps:

1. Load the STEP 7 library that contains the SFBs supplied by WinAC RTX ODK.

2. Insert the ODK SFBs into your STEP 7 program.

When you have developed both the extension object and the STEP 7 program, you can run the
STEP 7 program on WinLC RTX and debug your extension object.

16

Basic Tasks

Using the Application Wizard

The application wizard helps you perform the following tasks:

Create the C/C++ project that implements the WinAC RTX ODK interface in an RTDLL or
COM object

Configure subcommands for your extension object

Create a C++ class that you can use to execute functions asynchronously from the
WinLC scan cycle (optional)

Create a C++ class that you can use to monitor one or more attributes of your system
(optional)

These tasks are described below. Following completion of these tasks, the application wizard
provides a summary of the options that you selected for the type of COM object or RTDLL that
you configured. After you confirm these choices, the application wizard generates the C/C++
project shell.

Configuring Project Information

To start the WIinAC RTX ODK Application Wizard, and configure project information data, follow
these steps:

1.

2.

Select Start > Simatic > PC Based Control > WinAC ODK AppWizard.
Enter the name for your application in the Name field of the Project Information dialog.

Check Real-time for the Target Platform to create an RTDLL for use with the VenturCom
Real-time Extensions, or check Windows NT to create a COM object for use with
Windows NT.

Accept Microsoft Visual C++ 6.0 for the Compiler field, or select "other" from the drop-
down list if you are using a compiler for a real-time project other than Microsoft Visual
C++6.0.

Note

The application wizard generates a project that uses ATL to implement the COM
interface. The generated project and source files are ready to use with the Microsoft
Visual C++ tool chain. If you select a compiler other than Microsoft Visual C++ 6.0 that
does not support ATL, then you must modify the generated source files to use a COM
implementation that your tool chain supports.

17

Basic Tasks

18

5. Enter a short name for your C++ program in the Short Name field if your project is for
Windows NT. All of the remaining fields for the Windows NT COM object are created
automatically based on the Short Name. You can also modify these fields individually
without changing any of the other fields. (These fields are not used for real-time projects.)

Notes

The ProglD field is required as a parameter for SFB65001 (CREA_COM) in a Windows

NT project.

You cannot change the interface name (IWinLCLogicExtension). This interface is
required by SFB65002 (EXEC_COM) and must be present in all WinAC RTX ODK COM

objects.

6. Click Next after you have entered the correct information for all of the fields.

-] Project Information P ES |

I ame to use far the project, main class,
and filenames

— Praoject Info
I arme Directarny
IM_I,IF'ru:uiect IE:'\.Siemens'\Winﬁ.E'\DDK'\.F‘rDiects'\MyPrDiect

Lozation to generate the project
zource code. Select browse to
browveze ta a directon).

Browsze |

— Target Platfarm — Compiler
¥ Realtime Windows NT Microsoft Yisual C++ 6.0 j
— C++ — COM
Shart Mame I CoClazs I
Clazs I |nterface IIWinLELDgicE whengion
Header File I Type I
CFPFile | FroglD |

< Hack I Hest > I Cancel

Basic Tasks

Entering ODK Project Subcommands

Your C/C++ program can call subcommand functions to further customize your program's
functionality. A subcommand is a unique function within your C/C++ program that can be called
from SFB65002 (EXEC_COM). By using subcommands, you can create one RTDLL or COM
object that performs a variety of tasks, rather than using several RTDLLs or COM objects that
perform single tasks.

From the STEP 7 program, you specify which subcommand to call in the parameter Command for
SFB65002 (EXEC_COM). When your STEP 7 program calls SFB65002 (EXEC_COM), it calls
the Execute function of your RTDLL or COM object, which in turn calls the subcommand function
specified by the Command parameter.

Note

The application wizard requires that you specify at least one subcommand; however,
your RTDLL or COM object does not have to make use of subcommands. If you do not
have more than one type of task for your custom software to perform, you can
implement the custom software directly in the Execute function and eliminate the
subcommand functions produced by the application wizard.

When you click Next on the Project Information dialog, you see the ODK Subcommands dialog
that is shown below. You use this dialog to add or delete subcommands for your C/C++ program.

0ODF Subcommands |

— 0Dk Commandz

Each OOk, object can have multiple subcommands azsociated with it Please list here the
gubcommands and the command index for each command pou would like the appwizard to
generate. Step? references the commands uzing the command index.

— Command Lizt
Mame | Command Index |
Subcomrmand_0 0

< Back Mest = Cancel

19

Basic Tasks

To configure the subcommands for your extension object, follow these steps as needed:
1. Click the Add button to add a new subcommand.

2. Enter the command name and number index in the ODK SubCommand dialog box, and

click OK.
ODK SubCommand]|
Command Mame |Siealsslyy=yi i
Mumber Index |1 =
ITI Cancel |
Note

Highlight a subcommand in the ODK Subcommands window, and click the Delete button
if you need to delete a subcommand. If you need to rename a subcommand, first delete
the subcommand, and then add it using the new name.

3. Click Next on the ODK Subcommands dialog when you have finished subcommand
configuration.

20

Basic Tasks

Enabling Asynchronous Processing

Asynchronous Processing allows commands to be executed outside of the main Execute
function. These commands can then be executed without penalizing the WinLC RTX scan cycle.
The asynchronous processor uses objects derived from the EventMsg class to carry out event
specific functions. Asynchronous processing is optional.

1. Select the Include Asynchronous Processing check box to add asynchronous processing
to the generated WIinAC RTX ODK project.

—] Aszpnchronous Processing [_ =] |

—Azpnchronous Processor — Initial Pricrity
V¥ Include Asynchronous Processing IEELEI'W' MORMAL j
The Aswnchronous processor allows events Thiz iz the initial priority of the thread
to be executed outzide the main line of executing the asynchronous processor.
execution.

— dapnchronous Events

Class Mame | Delete Time | Headsr | cPE File Add

1| | B

< Back | Mest = | Cancel

2. Click the Add button to add an asynchronous event.

Note
Highlight an event on the Asynchronous Processing dialog, and click Delete if you need

to delete an asynchronous event. If you need to rename an asynchronous event, first
delete it, and then add it using the new name.

21

Basic Tasks

3. Accept the default or enter the class name for the event in the Asynchronous Event
dialog box, and click OK. The application wizard names the header file (.h) and C++
source file (.cpp) based on the class name that you entered.

Asynchronous Event Ed |

— Ewent [nformation

Clazs Mame |MEE=0l

Header File |Event_n.h

CFF File IEvent_El.cpp

— Ewvent Deletion

IDeIete by Proceszzor j

The event object may be deleted at
different imez. Select "Delete by
Idzer if you have return statuz
infarmation wou wank ba retrieve from
the event. Uze "Delete by
Proceszzar' if the object zhould be
deleted after it iz executed.

o]

Cancel

4. Select the type of Event Deletion that you prefer, based on the instructions on the dialog,

and click OK.

5. Click Next when you have completed Asynchronous Processing configuration.

22

Basic Tasks

Enabling Asynchronous Monitoring

After all of the event classes have been given a name, the application wizard displays the option
to enable asynchronous monitoring. Like asynchronous processing, asynchronous monitoring is
optional. Use asynchronous monitoring if your RTDLL or COM object needs to implement some
functionality in the background (for example, to monitor data or wait for an event to occur that is
asynchronous from the scan cycle). A monitor thread is a separate line of execution that allows

WinLC RTX to perform this type of background activity.

1. Select the check box for Include Asynchronous Monitoring to include asynchronous
monitoring in the WinAC RTX ODK project.

Azpnchronous Monitoring

— Monitoring

¥ nclude Asynchronous Monitoning

T he Asynchronoug monitor ig a separate line of erecution that serves the purpoze of
manitaring items. [t maintaing a link back bo the WinlC for reparting changes in
gtatus of monitared itemz.

— Monitor Threads

Clazs Name | Pricrity | Headsr | cPE File &dd |

Delete |

1| |]

< Back I Mest = I Cancel

2. Click the Add button to add a monitor thread.

Note

Highlight a monitor thread on the Asynchronous Monitoring dialog and click Delete if you

need to delete a monitor thread. If you need to rename a monitor thread, first delete it,
and then add it using the new name.

23

Basic Tasks

3. Enter a class name for the monitor thread in the Monitor Thread dialog. The application
wizard names the header file and the cpp file based on the class hame that you entered.

4. Choose a thread priority from the drop-down list if your project is configured as a real-
time application. Then, click OK to close the Monitor Thread dialog.

Monitor Thread |
— Manitar Clazz Info — Thread Priarity
Clazz Mame Im INDHM-&L j
Header File Ihal':'”it':'r—l:l'h Thiz iz the initial priority of the thread

. executing the manitar.
CFP File IMDnltn:-r_El.n::pp

k. I Cancel

5. Click Next when you have completed asynchronous monitoring configuration.
Guidelines for Selecting a Thread Priority

For each asynchronous monitor thread in a real-time application, you must assign it an initial
priority level. RTX priorities range from 0 to 127. The application wizard offers five choices for the
initial priority that are relative to the default main program thread priority:

Priority Description RTX Priority Value
LOWEST 25
BELOW_NORMAL 50

NORMAL 75
ABOVE_NORMAL 100

HIGHEST 125

The default monitor thread priority is NORMAL. If an event is of a background nature, then set the
thread priority to be either BELOW_NORMAL, or LOWEST. If the event corresponds to an
important system event or interrupt, assign it a priority of ABOVE_NORMAL or HIGHEST.
Reserve the priority of HHGHEST for critical events in your application.

The thread priority can be changed during run time by your application. You can query the priority
of the main program thread by calling the function GetThreadPriority from a function in this
thread, for example, Activate. Then you can use the function ChangePriority to assign a monitor
thread priority to be less than or greater than the main program thread priority. Use of the
functions GetThreadPriority and ChangePriority allow you to assign a thread priority of an event
relative to the priority of the main program, or relative to any other event. The example program
DemoRTX illustrates the manipulation of thread priority values.

24

Basic Tasks

Generating the WinAC RTX ODK Project

After you have finished the configuration described above, the application wizard displays a
project summary window, shown below:

Create Project

Project Settings Selected: -

Q0K Praject Infarmatiorn:
+ Project Mame : Mudpp

+ Diirectaory : CASiemensthwind CAODEAProjects\Mydpp
+ Compiler - Microsaft Yisual Studio
+ System Type : Realtime

Defined Sub-Commands:
+ 0] Subcommand 0
+1] Subcommand_1

[rata Acceszs Helper Clazzes
+ CwfinLCR eadD ata
+ CwinLCR eadwriteD ata

Azpnchronous Processar Clazses:

+ Azunchronous Proceszor Clasz
- AgpncProc

+ Support Clazses;
- Eventteszzage
- ThreadB aze
- Queue

+ Event Clazzes

- MuydzuncE vent _Ij

< Back

Cancel |

To direct the application wizard to create the project framework, follow these steps:

1. Click Next to confirm the project options and to generate the WinAC RTX ODK project. (If
you want to make changes, click Back and correct the items that you need to change.)
The application wizard creates the C/C++ project for you.

2. Click Next on the Project Creation Status dialog to display the Project Created dialog. If
you are using Microsoft Visual C++ and want to immediately open the project in Visual
Studio, check Open Visual Studio Project.

Note

If you are not using Microsoft Visual C++, you must use your C++ programming interface
to compile the set of .h and .cpp files that the application wizard generates. By default,
these files are located under the directory configured on the Project Information dialog of
the application wizard. This pathname is Siemens\WinAC\ODK\Projects\<your project
name> by default.

25

Basic Tasks

Project Shell

The WIinAC RTX ODK application wizard creates a program shell for your project. It is a C/C++
project where the classes and functions are supplied for you. The places for you to enter your
custom software are marked by comment lines that begin as follows:

/1 TODO

Class View of the C++ Object Shell

The following diagram shows the structure (in a Visual Studio environment) of the classes and
functions in the project that the application wizard created. You supply code in the subcommand
functions and optionally in the Execute function.

=3 MyApp classes’

-8 CasyncProc

- B8 Clueue

-8 CThreadBaze

B CwinLCReadD ata

-8 CwinLCReadwiiteD ata

-8 MpbayncE vent

-8 MyMonitorT hread

-4 Globals

------ & Activate[0DFK_CalBack_HAMDLE service)

...... % Dedctivate(]

------ & DIk ainHINSTAMCE hinstDLL, D'WORD fdwReazon, LPVOID IpvReservec
------ & Execute(unzsigned long cormmand, long ninBytes, bute inDatal], long nOutBy
------ & ODECreate(0DFK_CallBack_HAMDLE)

------ & ODFEReleaze(0DFK_CallBack_HAMDLE)

...... @ Subcommand_0[CwinLCReadData Bnput, CwinL CReadwiiteData &Outpu
...... & Subcommand_1[CwinLCReadData Bnput, CwinL CReadwiiteData &Outpu
------ i q_MytonitarT hread

...... i@ O_processor

------ i@ g_szerviceHandle

1] | |

=

26

Basic Tasks

Programming the C/C++ Extension Software

The WIinAC RTX ODK Application Wizard creates a skeleton C/C++ project that, when compiled,
produces either a real-time dynamic link library (RTDLL) or a COM object. The project is
configured for a RTDLL if you selected Real-time for the target platform on the Project Information
dialog of the application wizard. It is configured for a COM object if you selected Windows NT for
the target platform.

The C/C++ project contains functions that are the interface to the STEP 7 program. In a real-time
project, these functions are global functions. In a Windows NT COM project, these functions
belong to a COM object named IWinLCLogicExtension. The application wizard creates a shell for
each of these functions, and you fill in the custom code to accomplish your objectives. The
custom functions that you implement are:

* ODKCreate (real-time only - can be left empty)
* Activate (can be left empty)

* Deactivate (can be left empty)

* ODKREelease (real-time only - can be left empty)
* Execute

* Execute function subcommands (if configured)
The ODKCreate Function

The ODKCreate function is responsible for creating the extension object for a real-time
application. If you have any processing to perform when the object is initially created, put it in
ODKCreate; otherwise, you can leave this function as is.

Note
The function ODKCreate exists only in real-time applications. The class constructor for the COM
object provides this functionality for a Windows NT application.

The Activate Function

The Activate function is called by WinLC RTX before the transition from STOP or HALT to
STARTUP or RUN. Activate is always called after the extension object is created and before the
first call to the Execute function. If you have any processing to perform before the first call to
Execute, you can put it in the Activate function; otherwise, you can leave this function as is.

Note
The CPU is in HALT when it reaches a breakpoint in the STEP 7 editor.

27

Basic Tasks

The DeActivate Function

The DeActivate function is called by WinLC RTX after the transition from STARTUP or RUN
mode to STOP or HALT mode. If you have any processing to perform following the transition to
STOP or HALT, you can put it in the DeActivate function; otherwise, you can leave this function
as is.

Note

WinLC releases your extension objects on a memory reset (MRES) or on CPU shutdown.
Because both the MRES and CPU shutdown first change WinLC RTX to STOP mode, DeActivate
is always called before the RTDLL and/or COM objects are released.

The ODKRelease Function

The ODKRelease function is responsible for releasing the extension object for a real-time
application. If you have any processing to perform when the object is released, put it in
ODKRelease; otherwise, you can leave this function as is.

Note
The function ODKRelease exists only in real-time applications. The class destructor for the COM
object provides this functionality for a Windows NT application.

The Execute Function and its Subcommands

The Execute function is executed when SFB65002 (EXEC_COM) is called in your STEP 7
program. It is the function that is called as part of your STEP 7 program and becomes part of the
OB execution time. The STEP 7 program can pass parameters to the Execute function, which
can, in turn, call subcommand functions based on the input parameters. You implement most of
your custom software in the Execute function and its subcommand functions. Typically, your
Execute function switches control to one of the subcommand functions based upon the input
parameters to the Execute function.

ACaution

The custom software in the Execute function and the subcommand functions are part of the main
program cycle. The STEP 7 program executes the SFB that calls the ODK custom software as a
single instruction. This instruction call is non-interruptible. During the execution of the ODK
custom software, the watchdog timer, OBs, and process alarms are not available. They are
handled after the SFB call to the ODK custom software completes. Custom software that
significantly extends the cycle time delays the processing of critical activities in WinLC RTX,
which can possibly result in personal injury.

To avoid this delay, do not put any processing in the Execute or subcommand functions that
would extend the scan cycle beyond an acceptable cycle time. Program asynchronous events to
handle custom logic of a lengthy duration.

28

Basic Tasks

ODK Support Classes

The C/C++ project produced by the application wizard also includes the following classes:

* Data access helper classes: The application wizard always generates the
CWinLCReadData and CWinLCReadWriteData classes. These classes are used to
exchange data between the WinLC RTX buffer and the C/C++ program. You do not
program custom software in any of the Data access helper class functions.

* Asynchronous processor classes: The application wizard generates the CAsyncProc,
CQueue, and CThreadBase classes only when you select the Asynchronous Processing
option. The wizard generates classes for each asynchronous event that you request.

* Monitor classes: The application wizard generates Monitor classes only when you select
the Asynchronous Monitoring option. The wizard creates one class for each monitor
thread that you request.

The following table describes the support and helper classes generated by the application wizard:

Type

Class

Description

Data access
helper class

CWinLCReadData

The read-only data access helper class serves as a
wrapper to the input buffer passed into the Execute
function. Functions are provided to access the data in
the buffer as STEP 7 data types.

CWinLCReadWriteData

The read/write data access helper class serves as a
wrapper to the output buffer passed into the Execute
function. Functions are provided in this class to read
and write STEP 7 data types to the buffer.

Asynchronous
processor
class

CAsyncProc

The asynchronous processor class processes events
posted to it on a thread of execution separate from the
main program.

CEventMsg

The CEventMsg class is the base class to
Asynchronous Events: all asynchronous events posted
to the asynchronous processor must be derived from
this class. The Execute function must be overloaded in
the derived class to provide custom processing for the
event.

CQueue

This is a basic queue (first in, first out) class. The
asynchronous processor uses it for scheduling events
to process.

Monitor class

CThreadBase

This is the base class for asynchronous monitors: all
classes for monitoring external events and processes
must be derived from this class. When monitoring is
enabled, the Execute function must be overloaded to
provide customized monitoring actions.

29

Basic Tasks

Programming Asynchronous Events

You can define events to execute asynchronously on a thread of execution separate from the
WinLC RTX scan cycle. This allows the extension object to schedule and execute actions that
can take a long time while allowing WinLC RTX to continue processing. You specify the number
of asynchronous events that you want in your extension object when you set up your project with
the application wizard. The asynchronous processor executes each of these events on a thread
of execution separate from the WinLC RTX scan cycle.

Consider an example where WinLC RTX controls a stapler assembly line. One of the WinLC RTX
tasks is to send an E-mail notification when supplies are running low. This can be accomplished
by using WinAC RTX ODK to create a COM object for this purpose. However, putting all of the E-
mail functionality in the Execute function could cause an unacceptable increase in the scan cycle.
You could avoid this problem by using the asynchronous processor (AsyncProc) to schedule a
"Send E-mail Notification" event. This allows WinLC RTX to maintain a fast scan cycle while
sending E-mail at the same time.

Note
Do not call non-deterministic functions such as RtPrintf from the main thread. Allow the
asynchronous processor to handle these functions in asynchronous event threads.

The following classes comprise the asynchronous processor class:

* CAsyncProc: This class processes events posted to it on a thread of execution separate
from the main program.

* CEventMsg: This is the base class to Asynchronous Events: all asynchronous events
posted to the asynchronous processor must be derived from this class. The Execute
function must be overloaded in the derived class to provide custom processing for the
event.

* CQueue: This is a basic queue (first in, first out) class. The asynchronous processor
uses it for scheduling events to process.

The application wizard adds an event class for each asynchronous event that you added. Each
event class is derived from the CEventMsg base class. The Execute function of each event class
is where you implement your asynchronous processing code and is indicated by the line below:

// TODO Add Code to custom ze this Event

Note

If you add asynchronous event classes outside of the application wizard, you must also derive
them from the CEventMsg class and implement the asynchronous event processing code in its
Execute function.

30

Basic Tasks

To schedule asynchronous event processing, you must implement code in the Execute function
that is called during the main WinLC RTX scan cycle or in one of the Execute subcommands.
This Execute function is a global function in a real-time project and a member function of the
IWinLCLogicExtension class accessed through a pointer in a Windows-NT target platform project.
This Execute function of the main program cycle must perform the following tasks:

1. Create an object of the derived event class using the "new" operator.

2. Call the ScheduleEvent function of the CAsyncProc class to post the event to the
asynchronous processor.

3. Call the GetStatus function of the event class to determine if the event has been
processed.

4. Call the GetResult function of the event class to get the success/fail status returned from
the event's Execute function.

Asynchronous Events

All events posted to the asynchronous processor must be derived from the CEventMsg class. In
the derived class, the event execution code must be placed in an override of the Execute
function. The asynchronous processor calls this Execute function to perform the event-specific
tasks.

You are responsible for creating the event object on the heap (for example, using the "new"
operator). However, you can use the SetDelTime function to set the responsibility for deallocating
the object’'s memory. You can specify deallocation either by the asynchronous processor or by
your code, depending on whether or not your application requires post-processing status
information.

31

Basic Tasks

Programming Monitor Threads

You can use monitor classes to provide a separate line of execution for WinAC RTX ODK to
monitor events external to its process. With the application wizard, you can configure whether or
not your application uses asynchronous monitoring and the number of monitoring threads that
you need. The application wizard creates a monitor thread class for each thread, which is derived
from the base class, CThreadBase. You can create monitor thread classes outside of the
application wizard, but they must be derived from the CThreadBase class.

You program the thread monitoring loop in the Execute function of each monitoring thread class.
Place all custom processing or monitoring immediately following the comment:

/1 TODO Add Custom zed Monitoring Code here

Note
The application wizard creates a function shell for the Execute function of each monitor class.
You implement this function, but you do not call the Execute function.

Monitor Thread Considerations

The software in a monitor thread runs asynchronously from the main thread of your extension
object. If an event such as a controller shutdown or memory reset causes your DLL to be
released, WinLC RTX calls the DeActivate function, which calls PauseThread to pause the
monitor threads, and then calls the ODKRelease function, which calls StopThread to stop the
monitor threads. (For a Windows NT DLL, WinLC RTX calls the class destructor for your COM
object, which stops the monitor threads.) The StopThread function stops the threads, sets a
variable named m_ExitThread to true, and then resumes the threads so that they can terminate
appropriately. The software in the monitor thread can check the variable m_ExitThread to see if
the main thread has terminated. If your monitor thread makes calls outside of the DLL, such as a
call to schedule an OB, the monitor thread code must check the m_ExitThread variable.

Notice

If your monitor thread makes a call outside of your DLL, and an event such as a controller
shutdown or memory reset causes the DLL to be released, your code can not return properly.
This is because the DLL is unloaded following the controller shutdown or memory reset event.
Therefore, the call outside of the DLL from the asynchronous thread has no place to return.

You can guard against this possibility by checking the m_ExitThread variable to see if the DLL
has been released. In your monitor thread code, place any calls to functions external to the DLL
within a check of this variable as follows:

if (!'mExitThread)
{

< external call >

}

You can examine the program DemoRTX in the folder Siemens\WinAC\ODK\Examples to see
how to use and program monitor threads.

32

Basic Tasks

Building the Extension Object

After you have programmed your custom software, you must compile it into either an RTDLL or a
COM object. Once it is built and loaded, your STEP 7 program can use it.

Building an RTDLL
To compile your project as an RTDLL in Microsoft Visual C++, follow these steps:

1. Select Build > Set Active Configuration... to set the project configuration.

2. Select <project name> - Win32 RTSS Release from the list and click OK to ensure that
the project is configured for real-time.

3. Select Build > Build <project name>.rtdll to build the project.

In Microsoft Visual C++, the Build command for an RTDLL also loads the RTDLL. If you are
working in an environment other than Microsoft Visual C++, you must build the RTDLL according
to your development environment, and then use the rtssrun command to register the RTDLL after
you build it. To use rtssrun to register the RTDLL after it is built, follow these steps:

1. Select Start > Programs > Command Prompt to open a DOS command prompt
window.

2. Typecd Si enmens\ W nAC\ Odk\ Proj ect s\ <Proj ect Nane>\ RTSS Rel ease to
change to the folder containing the RTDLL that you just built.

3. Typertssrun /dll <project nane>.rtdll atthe DOS command prompt to
register the RTDLL.

Building a COM Object for Windows NT

To compile your project as a COM object DLL in Microsoft Visual C++, follow these steps:
1. Select Build > Set Active Configuration... to set the project configuration.

2. Select <project name> - Win32 Release from the list and click OK to ensure that the
project is configured for Windows NT.

3. Select Build > <project name>.dll to build the project.

You do not have to load the DLL for your COM object.

33

Basic Tasks

Building a Windows NT Debug Version of an RTDLL

To compile your real-time project so that you can debug it from Windows NT, follow these steps:

1. Select Build > Set Active Configuration... from the Visual C++ menu to set the project
configuration.

2. Select <project name> - Win32 RTX Debug from the list and click OK to ensure that the
project is configured as a Windows NT debug version of a real-time project.

3. Select Build > Rebuild All to recompile the project. This step produces a DLL that can
run in Windows NT under the NTRTX_Debug directory of your project.

Further directions for using this debug version are described in Debugging the Extension Object.

34

Basic Tasks

Loading the WinAC RTX ODK Library Into STEP 7

WiInAC RTX ODK includes a custom STEP 7 library that contains the SFBs that allow the STEP 7
program to interact with your custom RTDLL or COM object. Before you can use these SFBs in
your STEP 7 program, you must retrieve the library and load it into STEP 7. To retrieve and load
the library, follow these steps:

1.
2.
3.

Select Start > SIMATIC > SIMATIC Manager to start the SIMATIC Manager.
Select the File > Retrieve... menu command.

Browse to the directory Siemens\WinAC\Odk\Step7\S7libs and double-click the file
OdkRtLib.zip.

Select S7libs on the "Select destination directory” dialog and click OK. The SIMATIC
Manager extracts the WinAC RTX ODK library into OdkRtLib in the
Siemens\Step7\S7libs directory. If it appears, click OK on the Retrieving dialog that
informs you of the project location.

Click Yes on the final Retrieve dialog to open the WinAC RTX ODK library.
STEP 7 opens the library. This library contains the following blocks:

* SFB65001 (CREA_COM)

* SFB65002 (EXEC_COM)

35

Basic Tasks

Programming the STEP 7 Program

The two SFBs that WinAC RTX ODK provides allow you to use your custom RTDLL or COM
object as part of the STEP 7 program that WinLC RTX executes. These two SFBs are listed
below:

* SFB65001 (CREA_COM), which creates the instance of your RTDLL or COM object

* SFB65002 (EXEC_COM), which sends an execution command to the RTDLL or COM
object created by SFB65001

WinLC RTX executes these SFBs like any other SFB. SFB65002 (EXEC_COM) calls the Execute
function of your ODK RTDLL or COM object, and the scan time is extended by the time required
to execute this function. If you need to execute a command that can take a long time (relative to
your scan time requirements), use the asynchronous processor (AsyncProc) to execute the
command. Because SFB65002 (EXEC_COM) does not finish its execution until the COM object
finishes, the time required to execute your custom application is added to the scan cycle.

In order to use these SFBs in your STEP 7 program, you must have loaded the WinAC RTX ODK
library. You can then insert these SFBs into your program just like any other STEP 7 element. To
open the WinAC RTX ODK library and insert the ODK SFBs into your program, follow these
steps:

1. Select Start > SIMATIC > SIMATIC Manager to open the SIMATIC Manager.

2. Select File > Open... and select your project from the list of User Projects.

Note
If you are creating a new STEP 7 project, select File > New... and enter a filename for
your project.

3. Select File > Open... and select the Libraries tab. Double-click WinAC RTX ODK Library.

4. Select and drag the SFBs from the WinAC RTX ODK library to the program blocks of the
STEP 7 program. The ODK SFBs are now available for you to use in your STEP 7
program.

5. Edit your program to call SFB65001 (CREA_COM).

Note

Typically, the STEP 7 program calls SFB65001 (CREA_COM) when the program starts
in the start-up OB (such as OB100) to create the instance of the RTDLL or COM object.
The program handle returned from this call is then saved to a memory location for
further reference. Your STEP 7 program can also call SFB65001 from other logic blocks,
such as an FB.

6. Edit your program to call SFB65002 (EXEC_COM).

Note
If you want your program to execute your custom RTDLL software every scan cycle,
then put this call in OB1, or an FB called from OB1.

Your STEP 7 program is now programmed to use the custom C/C++ software that you created.

36

Basic Tasks

Debugging the Extension Object

You use the debugger of Visual C++ to test your extension object with the STEP 7 program
running on WinLC RTX.

Note
The use of breakpoints in your extension object can cause WinLC RTX to exceed the maximum
scan cycle.

For real-time applications, you must first build your project as a Windows NT DLL for debugging.
To debug either a Windows NT DLL or a COM object, you must perform these tasks:

* Create the STEP 7 program (using the SFBs).

* Provide the path name for the WinLC RTX executable.

e Download the STEP 7 program to WinLC RTX.

e Debug your application (RTDLL or COM object).
Building a Windows NT Debug Version of an RTDLL
If you are debugging a COM object, it is already built as a Windows NT DLL. If you are debugging
an RTDLL, you must build an NTRTX_DEBUG version of the RTDLL. To do this, follow these
steps:

1. Select Build > Set Active Configuration... from the Visual C++ menu.

2. Select Win32 RTX Debug for your project and click OK.

3. Select Build > Rebuild All to recompile the project. This step produces a DLL that can
run in Windows NT under the NTRTX_Debug directory of your project.

4. Find and open the block that calls SFB65001 (CREA_COM) in your STEP 7 program.
Change the initial value of the variable InstancelD in the block's variable declaration table
to specify the full pathname to the debug DLL, using the syntax in this example:

"*dl|: C\Si enens\ WnAC\ ODK\ Exanpl es\ Hi st oDLL\ NTRTX Debug\ Hi st oDLL
.die

5. Update any blocks that call this block and recompile and download all affected blocks to
WinLC RTX.

37

Basic Tasks

Testing Your Custom Application

To test your custom application with WinLC RTX, follow these steps:

1. Select Project > Settings... from the Visual C++ menu and then select the Debug tab.

2. Click IZI next to the "Executable for debug session:" field, and then click Browse.
Browse to the directory where you installed WinLC RTX (typically,
Siemens\WinAC\WIinLCRTX) and select the following file:

STWLCRTX.EXE

3. Wait for Visual C++ to start WinLC RTX, and then start the SIMATIC Manager and open
the STEP 7 program that uses the SFBs of .

4. Download your STEP 7 program to WinLC RTX.
5. Place WinLC RTX in RUN mode or RUN-P mode.

6. Test your RTDLL or COM object by triggering events and setting breakpoints.

Note
If you use breakpoints to test your application, you could cause WIinLC RTX to exceed
the maximum scan cycle time.

You can use the tuning panel of WinLC RTX to monitor the effects of the extension object on the
scan cycle.

Recovering from a WinLC RTX Crash

If your application causes WinLC RTX to crash (to abort unexpectedly), use this procedure:

* If you are using the Debugger of Visual C++ to test your application, select the Debug >
Stop Debugging to recover from the crash.

* If you are not testing your application with the Visual C++ Debugger, terminate the
following process:

STWLCRTX.EXE

To confirm that the real-time components have terminated, follow these steps:
1. Open an MS-DOS window.

2. Typertsskill inthe DOS window. This command displays all currently
loaded and running real-time processes, with line numbers on each process. If
the s7wlcvmx.rtss process is still running, type rt sskill <li ne nunber >
where the line number is the line number corresponding to the s7wlcvmx.rtss
process.

Do not terminate the STWLSAPX.EXE process. This is a daemon process that always
runs in the background.

38

Basic Tasks

Recovering from an Infinite Loop

If your custom software executes an infinite loop, your computer will lock up. You must reboot the
computer if this happens. An infinite loop exhibits the following symptoms:

* When an RTDLL executes an infinite loop, the system either displays a blue screen or it
displays a dialog such as the following:

i Spstem Process - Fatal Application Exit

FiTi MT Stareation Timeout (5000 FS] - Al BTSS processes stopped. Debug anddor use "RTSSkIll" command to
unload all process images. [Proc=80580CC083, Thread=805B6210]

Regardless of any attempted corrective action, a Windows NT system failure ("blue
screen" event) occurs. You can not recover with RTSSKill or the debugger.

* When a COM object executes an infinite loop, the system locks up with only mouse
movement possible.

In either case, you must reboot the system.

39

ODK Support Software

ODK Support Software

Data Access Helper Classes

The data access helper classes provide access to data in WinLC RTX. The two data access
helper classes are:

e CWinLCReadData

e CWinLCReadWriteData

The read and write functionality has been divided up as a means of providing very basic security
on the input and output parameters of the Execute function.

Use the functions of the data access helper classes to access data in WinLC RTX. These
functions help avoid programming errors, such as out-of-range values or writing to invalid
pointers. They also perform the necessary byte-swapping to convert data from the "big endian”
format used in the S7 CPU architecture to the "little endian” format required for Microsoft
operating systems, including Windows NT.

In the ODK Execute function, the data input and output buffers are declared of classes
CWinLCReadData and CWinLCReadWriteData respectively. They are not accessible outside of
the Execute function. The data access helper classes are described in the Object Web.

ACaution

Your in-process function (thread) can corrupt WinLC RTX memory if invalid addresses are used
when writing data. Memory corruption can result in injury or property damage.

When developing your application, always follow proper programming guidelines and industrial
standards. Always ensure that your application has been carefully tested before running the
application with WinLC RTX or any other application.

40

ODK Support Software

WIinAC RTX ODK Library for STEP 7

WinAC RTX ODK provides a STEP 7 library ("WinAC RTX ODK") that includes two SFBs:

« SFB65001 (CREA_COM)

* SFB65002 (EXEC_COM)

You insert these SFBs into your STEP 7 program to execute your application program as part of
the WInLC RTX scan cycle. In order to use these SFBs in your STEP 7 program, you must

perform the following tasks:

* Load the WIinAC RTX ODK library into STEP 7.

* Insert both SFBs into your STEP 7 program.

SFB65001 (CREA_COM)

SFB65001 creates an instance of the extension object specified by the InstancelD parameter.
Your STEP 7 program must supply the InstancelD parameter. The following table shows the
interface for SFB65001 (CREA_COM):

Address Declaration

Name

Data Type

Comment

0.0 in

InstancelD

STRING[254]

ID of the extension object to be
created (Includes a routing prefix
that indicates whether the
extension object is a COM object,
an RTDLL, or an NT debug version
of an RTDLL)

256 out

Status

WORD

SFB return code: Error code or
object instance handle

The InstancelD string contains a routing prefix that specifies the execution context for the
extension object. The forms of the InstancelD are as follows:

Extension Object Type

Syntax of InstancelD

COM object

'<InstancelD>'

RTSS DLL

*RTSS:<DLL name>'

NT debug version of an RTSS DLL

"*DLL:<DLL name>'

41

ODK Support Software

SFB65001 evaluates input conditions and performs the following actions:

1. If the extension object has not already been created, SFB65001 creates it, using the
InstancelD parameter to create a ClassID. (There is only one instance of this object
created.) The specific actions depend upon whether the application is targeted for
Windows NT or RTX.

* InaWindows NT application, SFB65001 calls the ColnitializeEx function (or ensures
that it was previously called) with the COINIT_MULTITHREADED option. SFB65001
then converts the input parameter ExtensionID to a ClassID and then calls the

CoCreatelnstance function to create the object.

* In areal-time application, SFB65001 calls the ODKCreate function.

* In both cases, SFB65001 adds this object instance to the internal list of created
WiInAC RTX ODK objects.

2. If the extension object has already been created, SFB65001 maintains the WinAC RTX
ODK handle for the previously created object (an index to locate the object pointer).

3. If this is the first call to this SFB after leaving STOP or if the extension object was just

created, SFB65001 invokes the Activate function

4. SFB65001 sets the Status parameter to the WIinAC RTX ODK handle (or error code) and
sets the BR bit. To see ways to check for the return value, refer to the sample program
"HistoDLL" installed by WinAC RTX ODK.

Error Codes for SFB65001

Error Code Message Description
0 NO_ERRORS Success
0x807F ERROR_INTERNAL An internal error occurred.
0x8001 E_EXCEPTION An exception occurred.
0x8102 E_CLSID_FAILED The call to CLSIDFromProgID failed.
0x8103 E_COINITIALIZE_FAILED The call to ColnitializeEx failed.
0x8104 E_CREATE_INSTANCE_FAILED The call to CoCreatelnstance failed.
0x8105 E_LOAD_LIBRARY_FAILED The library failed to load.
0x8106 E_NT_RESPONSE_TIMEOUT An NT response timeout occurred.

42

ODK Support Software

SFB65002 (EXEC_COM)

SFB65002 calls the Execute function of the extension object specified by the OBJHandle
parameter. The following table shows the interface for SFB65002 (EXEC_COM):

Execute.

Address | Declaration Name Data Type Description

0.0 in OBJHandle WORD Handle returned from SFB65001
(CREA_COM)

2.0 in Command DWORD Index of function or command to
execute

6.0 in InputData ANY Pointer to input function area

16.0 in OutputData ANY Pointer to function output area

26.0 out Status WORD SFB error code or return code from

SFB65002 performs the following actions:

1. SFB65002 verifies that SFB65001 (CREA _COM) was called and that the object handle is
valid.

2. SFB65002 processes the ANY pointers and returns error codes for invalid ANY pointer
parameters.

3. SFB65002 invokes the customer WinAC RTX ODK Execute function.

4. SFB65002 assigns the input and output ANY pointer areas to the WinLC Data Access
Helper Classes.

5. SFB65002 sets the Status parameter with the Execute return code (unless there was a
previous error) and returns to the STEP 7 program.

43

ODK Support Software

Error Codes for SFB65002 (EXEC_COM)

All other error codes are user-defined in the individual COM servers.

Error Code Message Description

0 NO_ERRORS Success

0x807F ERROR_INTERNAL An internal error occurred.

0x8001 E_EXCEPTION An exception occurred.

0x8002 E_NO_VALID_INPUT Input: the ANY pointer is invalid.

0x8003 E_INPUT_RANGE_INVALID Input: the ANY pointer range is invalid.

0x8004 E_NO_VALID_OUTPUT Output: the ANY pointer is invalid.

0x8005 E_OUTPUT_RANGE_INVALID |Output: the ANY pointer range is invalid.

0x8006 E_OUTPUT_OVERFLOW More bytes were written into the output buffer
by the extension object than were allocated.

0x8007 E_NOT _INITIALIZED ODK system has not been initialized: no
previous call to SFB65001 (CREA_COM).

0x8008 E_HANDLE_OUT_OF_RANGE [The supplied handle value does not
correspond to a valid extension object.

0x8009 E_INPUT_OVERFLOW More bytes were written into the input buffer
by the extension object than were allocated.

44

ODK Support Software

Auxiliary STEP 7 Interface Functions

WiInAC RTX ODK provides a set of auxiliary functions that are available to your extension object.
These three functions are discussed below.

ODK_ReadState

ODK_ReadState retrieves the current state (operating mode) of the WinLC RTX controller. The
value of state will be one of the following modes:

* STOP
e HALT
* STARTUP_100
e STARTUP_101
e STARTUP_102

* RUN

Note
ODK_ReadState is the function name in a real-time application. It is named ReadState in
a Windows NT application.

ODK_ScheduleOB

ODK_ScheduleOB causes an OB to be scheduled by WinLC RTX. The OB will be scheduled to
run at a priority relative to other OBs as configured by the Hardware Configuration utility of STEP
7. (That is, if an OB80 is scheduled, it interrupts OB1, OB35, or any OB at a lower priority.)

Note
ODK_ScheduleOB is the function name in a real-time application. It is named
ScheduleOB in a Windows NT application.

When you schedule an OB, select one whose standard S7 behavior is closest to the way you
plan to use the OB. You should also choose an OB that is normally triggered by some
asynchronous event, such as an error or a diagnostic event. When selecting an OB to schedule,
consider the following OBs:

* OBB80 (Time error, such as a watchdog alarm)

e OB4x (Hardware interrupts)

e OBB82 (Diagnostic Alarm interrupt)

* OB83 (Insert/Remove Module interrupt)

* OB84 (CPU Hardware Fault)

e OB87 (Communication Error interrupt)

Note
Reserve OB84 for handling Windows NT operating system failures. Do not use it for other
purposes.

45

ODK Support Software

To understand how the parameters of ODK_ScheduleOB function relate to the local data of the
specific OB to be scheduled, refer to the STEP 7 manual System and Standard Functions for S7-
300 and S7-400. The arguments in the ScheduleOB function follow the same order as that in the
documentation.

Note
The last 8 bytes of the local data contain the time stamp when the event was created. This data is
entered when you call the ODK_ScheduleOB function.

The documentation also describes data words for each OB. Depending on the type of OB, the
documentation divides the data words (the last two parameters) in different ways. However, you
can use these data words according to your own requirements. WinLC RTX does not interpret the
data type or data parameters when scheduling the OB. The data words are copied to the local
data (L memory) for the OB when the OB is scheduled to be executed. You can then access this
information in your implementation of the OB that you scheduled.

Note

If you require that the entry in the Module Information/Diagnostic Buffer of STEP 7 be displayed
with descriptive text, you must use the correct data types. These data types are typically listed as
Reserved entries and are not documented in the S7 or STEP 7 documentation.

The tables below show valid data values and descriptions for the dataType2 and dataTypel
parameters of the ODK_ScheduleOB function:

DataType2

Value (hexadecimal) Description

C1 32-hit double word

C4 Two 16-bit binary values

C8 32-bit signed value

C9 Two 16-bit signed values

CA 32-bit floating point value

CD 32 Relative time in milliseconds
DataTypel

Value (hexadecimal) Description

51 16-hbit field: unspecified numeric value
58 16-bit field: time in milliseconds
59 16-bit integer value

5B Two 8-bit binary value

46

ODK Support Software

Error Codes from ODK_ScheduleOB

The table below lists the error codes that the ODK_ScheduleOB function can return:

Error Message Description
0x8107 E_INVALID_OB_STATE WinLC RTX is not in a valid state
(RUN or RUN-P) to execute a
scheduled OB.
0x8108 E_INVALID_OB_SCHEDULE A scheduled OB is invalid.

ODK_ReadSysData

ODK_ReadSysData is not implemented in the current version of WinLC RTX ODK.

Note

ODK_ReadSysData is the function name in a real-time application. It is named ReadSysData in a
Windows NT application.

47

ODK Support Software

Examples of Calling an Auxiliary Function

In a real-time application, the auxiliary functions are available in the project framework and you
can call them directly from your code. The following example (taken from the HistoDLL sample
project) shows a function that calls ODK_ScheduleOB in a real-time application:

/1 Schedul eOB80
voi d Schedul eOB80(unsi gned short node, unsigned short deviation)

i f (g_serviceHandl e)

{
ODK_Schedul eOB(g_servi ceHandl e,

0x35, // execute asynchonous error OB
0x01, // use cycle time error event nunber
OxFE, // fill in configured sequence |ayer
80, // execute OB80
OxC4, // dataType2 (for long word) - two 16 bit words
0x58, // dataTypel (for short word) - tine in nilliseconds
deviation, // datal
node) ;
}
}

In a Windows NT application, you must access these functions through a pointer to
IWinLCServices. When your STEP 7 program calls SFB65001 (CREA_COM), WinLC RTX
creates your extension object and calls the Activate function, which returns a pointer to
IWinLCServices. You can call any of the IWinLCServices member functions from the Execute,
Activate, or DeActivate functions. The following example (taken from the Histogram sample
project) shows a function that calls ScheduleOB in a Windows NT application:

/1 Schedul eOB80
voi d
CHi st ogr am : Schedul eOB80(unsi gned short node, unsigned short
devi ati on) const
{
m W nLCSvc- >Schedul eOB(
0x35, // execute asynchonous error OB
0x01, // use cycle tinme error event nunber
OxFE, // fill in configured sequence |ayer
80, // execute 0B80
OxC4, // dataType2 (for long word) - two 16 bit words
0x58, // dataTypel (for short word) - tine in nilliseconds
devi ation, // datal
node); // data2 (half is 0)

}
The auxiliary STEP 7 functions are included in the Object Web.

48

ODK Support Software

Object Web

The class, function, and parameter descriptions that are used in ODK are described in an object
web. This is a web-based display of the classes used in your C/C++ project. Directions for
navigating within the site are included on the site home page.

There are differences in the project structure between a real-time application and a Windows NT
application. Most of the functions that you use in programming your extension object have the
same interface, but not all. Click the appropriate link below to view the object web for the platform
of your choice:

|Real-time ODK Object Web |

[Windows NT ODK Object Web |

49

Index

Index

A

Activate function,

Add/Remove Programs,
Additional Assistance, ﬂ
Additional sample programs,
Application wizard,
Applications (Customer Support),
Asynchronous Events,

Asynchronous monitoring,

CThreadBase,

Asynchronous processing,

Asynchronous processor,
CAsyncProc class,|29}|30
CEventMsg,@ 30

CQueue, |29{|30
Authorization, [7]

Auxiliary STEP [7| Interface functions,

B

Basic tasks,

Breakpomts

Building, 3 .
COM object,
extension object,
RTDLL,[3

Windows NT debug version, E.

CIC++, E.
C/C++ application I .
C/C++ custom software,

Non-deterministic functions,

Programming,
SFBs, [36]

CAsyncProc,[29|30
CEventMsg,|29}|30
Classes, 49
CoCreatelnstance, [42

COINIT MULTITHREADED,
ColnitializeEx,

COM Object, ||. 3|[37]
Debugging, .
Computer requirements, @

Index-1

Configuring,
asynchronous events,
asynchronous monitoring,
asynchronous processing,
monitor threads,
project information,
subcommands,

CQueue,
35

CREA_COM,

Creating .
asynchronous events n.
C/C++ project, |1 .
monitor threads,
STEP EI program

CThreadBase, .

Custom COM Interface,
Implementing,

Customer Support, \

CWinLCReadData,

CWinLCReadWriteData,

D

Data access helper classes,

DataTypel,
DataType2,
DeActivate function,

Debugger,

Visual C++,
Debugging,

COM Object,[37]

effect on scan cycle,

RTDLL,[3
Delta Tau sample program, M
DemoRTX, [15]
DemoRTX2,
DemoRTX3,
DemoRTX4,
DemoRTXS5,

E

E-mail (Customer Support), Izl

Enabling, |1
Asynchronous monitoring,

Index

Asynchronous processing,
Error Codes,

ODK_ScheduleOB, [47]

SFB65001,

SFB65002,
Events, E .
Example Program .
Example project, E
EXEC_COM,[35] [3¢]
Execute function,
Execution threads,
Extension object, ﬂ

building,
Extension Software,
F
Functions,
G

GetResult function,
GetStatus function,
Getting Started,El

H

Hardware requirements, @

HistoDLL, [g} [11] [14]

HistoDLL STEP ﬂ program .
execution,
listings,
Object Web,
structure,

Histogram,

HotIine,M

Implementing,

COM object,

custom software,

ODK Application,

RTDLL, [27]
In-process applications,
Inserting,

SFBs,
Installation,

System requrrements @
InstancelD, |3
Internet (Customer Support),
Introduction,

Invalid addresses,

IWmLCLogrcExtensron n. .

IWinLCServices,
L

Loading,|3
Loading STEP EI I|brary .

Loading the WIinAC RTX ODK L|brary Ig
WinAC RTX ODK Library,[35]

M

Microsoft Visual C++,
Monitor classes,
Monitor threads, |17} |32

N
Non-deterministic functions,
Number,

,

scheduling,
Object Shell,

Object Web, (1 . .
OBs, I.

ODK Application,

Implementing,
ODK support classes,

ODK_ReadState,
ODK_ReadSysData,
ODK_ScheduleOB,
ODKCreate function,
ODKRelease function,
OdkRtLib, [35]

Open Development Kit,
Open Development Kit Installation,EI
Overview,

P

Priority,
Thread, .

Product Overvrew

gagon e | S T ESEI ET

Index-2

Index

Programming,
CIC++,
Extension software,
Project Information,
Project SheII,

Q

Queue Class,
R
RAM, [g]

ReadState,
ReadSysData,
Recovering,
from a blue screen event,
from a WinLC RTX crash,
from an infinite loop,
Removing Installation, [7
Requirements, E
RTDLL, [}
debugging,
sample program,
rtsskill,
rtssrun,

Running in Debug,

Index-3

Index

STWLCRTX.EXE,
S7TWLSAPX.EXE, |37
Sample program, ,
Scan cycle,
ScheduleEvent function,
ScheduleOB,
ScheduleOBS80,

Scheduling,
OB,

Set Active Configuration,
SetDelTime, |30
SFB65001, (36} (41
Error Codes, E
SFB65002, [36] [41
Error Codes, |44

SFBs, [1] [35} [36][41

Short Name, |17

SIMATIC Manager, f9]
Software requirements, (6

STEP ﬂ mterface functrons 4
STEP|7 I|brary,

STEP ﬁ program . 36

roi ram cycle

36} (37
Stop Debugging, .
Subcommands,

Support,

Support classes,
System Function Blocks,

System Requirements, EI

T

Technical support, M
Telephone (Customer Support), M

Testing, |3

your custom application,
Thread priorities,

Threads, EI
U

Uninstalling, EI

Updates (Customer Support) M
Using subcommands,

Using the Application Wizard,

\%
Visual C++,
Debugger,

Visual Studio (application Wizard),

w

WinAC RTX ODK, 1
WiInAC RTX ODK handle,
WinAC RTX ODK Library,
Windows NT Debug Version,

Building, [33]

WinLC RTX data, [40]

WinLC RTX le, fii] |1} [12] [27] [27] [0
scan cycle

Index-4

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it to
Siemens.

Please give each of the following questions your own personal mark within a range from 1 (very
good) to 5 (very poor).

I:'DO the contents meet your requirements?

Dls the information you need easy to find?

Dls the text easy to understand?

DDoes the level of technical detail meet your requirements?

DPIease rate the quality of the graphics and tables.

Additional comments:

Please check any industry that applies to you:
O Automotive

0 Chemical

O Electrical Machinery

O Food

O Instrument and Control
O Non electrical Machinery
O Petrochemical

O Pharmaceutical

O Plastic

O Pulp and Paper

O Textiles

O Transportation

0O Other

Mail your response to:

SIEMENS ENERGY & AUTOMATION, INC

ATTN: TECHNICAL COMMUNICATIONS M/S 519
3000 BILL GARLAND ROAD

PO BOX 1255

JOHNSON CITY TN USA 37605-1255

Include this information:

From

Company Name

street; .

	WinAC RTX�Open Development Kit (ODK)
	Copyright and Safety Notification
	Preface
	Contacting Customer Support
	Contents
	Product Overview
	WinAC RTX ODK Overview
	System Requirements
	Installing WinAC RTX ODK

	Getting Started
	Introduction
	Overview of the HistoDLL STEP 7 Program
	Overview of the HistoDLL RTDLL
	Additional Sample Programs

	Basic Tasks
	Implementing an ODK Application
	Using the Application Wizard
	Programming the C/C++ Extension Software
	Programming Asynchronous Events
	Programming Monitor Threads
	Building the Extension Object
	Loading the WinAC RTX ODK Library Into STEP 7
	Programming the STEP 7 Program
	Debugging the Extension Object

	ODK Support Software
	Data Access Helper Classes
	WinAC RTX ODK Library for STEP 7
	Auxiliary STEP 7 Interface Functions
	Object Web

	Index
	Remarks Form

