

ERTEC 200

Enhanced Real-Time Ethernet Controller

PHY Description

Edition (11/2007)

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly. Necessary corrections are included in subsequent editions. Suggestions for improvement are welcomed.

Copyright

© Siemens AG 2007. All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

All product and system names are registered trademarks of their respective owner and must be treated as such.

Technical data subject to change.

Preface

Target Audience of this Manual

This manual is intended for hardware developers who want to use the ERTEC 200 for new products. It describes the internal ERTEC PHY's.

This manual will be updated as required. You can find the current version of the manual on the Internet at http://www.siemens.com/comdec.

Guide

To help you quickly find the information you need, this manual contains the following aids:

- A complete table of contents as well as a list of all figures and tables in the manual are provided at the 0 beginning of the manual.
- A glossary containing definitions of important terms used in the manual is located following the appendices. 0
- References to other documents are indicated by the document reference number enclosed in slashes (/No./). 0 The complete title of the document can be obtained from the list of references at the end of the manual.

Additional Support

If you have questions regarding use of the described block that are not addressed in the documentation, please contact your Siemens representative.

Please send your written questions, comments, and suggestions regarding the manual to the hotline via the email address indicated above.

In addition, you can receive general information, current product information, FAQs, and downloads pertaining to your application on the Internet at:

http://www.siemens.com/comdec

Technical Contacts for Germany / Worldwide

Siemens AG	Phone: 0911/750-2736	
Automation & Drives	Phone: 0911/750-2080 Fax: 0911/750-2100 E-mail: ComDeC@siemens.com	
ComDeC		
Street address:	Mailing address:	
Würzburgerstr.121	P.O. Box 2355	
90766 Fürth Federal Republic of Germany	90713 Fürth Federal Republic of Germany	
ical Contacts for USA		

Techni

PROFI Interface Center: One Internet Plaza PO Box 4991 Johnson City, TN 37602-4991 Fax: (423)- 262- 2103 Phone: (423)- 262- 2576 E-mail: profibus.sea@siemens.com

Contents

M	lultiport	Ethernet PHY's for ERTEC200	6
	1.1 Intro	duction	6
	1.2 PHY	Interface Pin Functions	7
		ctional Description	
	1.3.1	10BASE-T Operation	8
	1.3.2	100BASE-TX Operation	
	1.3.3	100BASE-FX Operation	13
	1.3.4	Auto Negotiation	
	1.3.5	Miscellaneous Functions	
		Related Interfaces	
	1.5 PHY	Register Description	25
	1.5.1	Basic Control Register	
	1.5.2	Basic Status Register	
	1.5.3	PHY Identifier Register REG2OUIIN	
	1.5.4	PHY Identifier Register REG3OUIIN	
	1.5.5	Auto Negotiation Advertisment Register	33
	1.5.6	Auto Negotiation Link Partner Ability Register – Base Page	35
	1.5.7	Auto Negotiation Link Partner Ability Register – Next Page	38
	1.5.8	Auto Negotiation Expansion Register	
	1.5.9	Auto Negotiation Next Page Transmit Register	
	1.5.10	Silicon Revision Register	
	1.5.11	Mode Control/Status Register	
	1.5.12	Special Mode Register	
	1.5.13	Special Conrol/Status Indication Register	
	1.5.14	Interrupt Source Flag Register	
	1.5.15	Interrupt Mask Register	
		PHY Special Control/Status Register	
		rd Design Recommendations	
	1.6.1	Supply Voltage Circuitry	
	1.6.2	10BASE-T and 100BASE-TX Mode Circuitry	
_	1.6.3	100BASE-FX Circuitry	
2		cellaneous	
	2.1 Refe	erences:	57

List of Figures

Figure 1: PHY Block Diagram	8
Figure 2: MLT-3 Encoding Example	
Figure 3: Internal and Remote Loopback Modes	
Figure 4: Phase Offset Indicator Function	
Figure 5: PHY Related Interfaces	
Figure 6: Decoupling Capacitor Usage	
Figure 7: 10BASE-T and 100BASE-TX Interface Circuit Example 1	
Figure 8: 10BASE-T and 100BASE-TX Interface Circuit Example 2	
Figure 9: Circuit for Unused 100BASE-FX Mode	
Figure 10: 100BASE-FX Interface Example	

List of Tables

Table 1: ERTEC 200 Pin function for PHY interface	7
Table 2: 4B/5B Code Table	11
Table 3: Assignment of LED Signals to GPIO Pins	16
Table 4: PHY Interrupt Events.	20
Table 5: MII (Diagnosis) Interface Signals	23
Table 6: SMI (Diagnosis) Interface Signals	23
Table 7: MDI Interface Signals	
Table 8: Other PHY Related Signals	25
Table 9: PHY internal Registers	25
Table 10: Initial Parameter Settings for PHYs	26
Table 11: Basic Control Register Overview	
Table 12: Basic Control Register Description	
Table 13: Basic Status Register Overview	29
Table 14: Basic Status Register Description	31
Table 15: NEC OUI Composition	31
Table 16: PHY ID Number Composition	
Table 17: PHY Identifier Register REG2OUIIN Overview	32
Table 18: PHY Identifier Register REG2OUIIN Description	
Table 19: PHY Identifier Register REG3OUIIN Overview	32
Table 20: PHY Identifier Register REG3OUIIN Description	32
Table 21: Auto-Negotiation Advertisement Register Overview	33
Table 22: Auto-Negotiation Advertisement Register Description	
Table 23: Auto-Negotiation Link Partner Ability Register Overview – Base Page	
Table 24: Auto-Negotiation Link Partner Ability Register Description - Base Page	
Table 25: Auto-Negotiation Link Partner Ability Register Overview - Next Page	
Table 26: Auto-Negotiation Link Partner Ability Register Description - Next Page	38
Table 27: Auto-Negotiation Expansion Register Overview	
Table 28: Auto-Negotiation Expansion Register Description	
Table 29: Auto-Negotiation Next Page Transmit Register Overview	
Table 30: Auto-Negotiation Next Page Transmit Register Description	
Table 31: Silicon Revision Register Overview	42
Table 32: Silicon Revision Register Description	42
Table 33: Mode Control/Status Register Overview	
Table 34: Mode Control/Status Register Description	
Table 35: Special Mode Register Overview	45
Table 36: Special Mode Register Description	46
Table 37: Special Control/Status Indication Register Overview	47
Table 38: Special Control/Status Indication Register Description	
Table 39: Interrupt Source Flag Register Overview	48
Table 40: Interrupt Source Flag Register Description	49
Table 41: Interrupt Mask Register Överview	50
Table 42: Interrupt Mask Register Description	
Table 43: PHY Special Control/Status Register Overview	
Table 44: PHY Special Control/Status Register Description	
Table 45: Generation of PHY-specific Supply Voltages	52
Table 46: Examples for Magnetics Selection	54

Multiport Ethernet PHY's for ERTEC200

1.1 Introduction

ERTEC 200 has integrated a 2 channel multiport Ethernet PHY (Physical Layer Transceiver), that supports the following transmission modes:

- 10BASE-T
- 100BASE-TX
- 100BASE-FX

It can be connected to unshielded twisted-pair (UTP) cable via external magnetics or to optical fiber via fiber PMD modules. Internally on the ERTEC 200 it interfaces to the MAC layer through the IEEE 802.3 Standard Media Independent Interface (MII).

The core has a DSP-based architecture for signal equalization and baseline wander correction. This helps to achieve high noise immunity and to extend UTP cable lengths. The transmission modes can be configured for each port individually. Beside these basic modes, the following (configurable) features are supported as well:

- Auto-negotiation
- Auto-MDI/MDIX detection
- Auto polarity

The PHYs comply to the following standards:

- IEEE802.3
- IEEE802.3u
- ANSI X3.263-1995
- ISO/IEC9314

Communication between the integrated PHYs and the integrated Ethernet MACs is realized with onchip MII interfaces. Internal registers of the PHYs can be accessed via the common (on-chip) serial management interface (SMI). Furthermore certain set-ups for the PHYs can be programmed using the system control registers that are described in **\1\ Chapter 4.8**. A couple of output signals per channel is available to reflect the connection status via LEDs; these signals are shared with GPIO pins. The PHYs need a 25 MHz clock that can be provided on two alternative ways:

- connect a 25 MHz quartz to the CLKP_A and CLKP_B pins
- connect a 25 MHz oscillator to the CLKP_A pin.

In order to reduce power consumption, the PHYs can be driven to a power down mode either manually or automatically, if there is no activity on the Ethernet line.

1.2 PHY Interface Pin Functions

Pin Name	I/O	Function	Number of pins
P(2:1)TxN	0	Differential transmit data output	2
P(2:1)TxP	0	Differential transmit data output	2
P(2:1)TDxN	0	Differential FX transmit data output	2
P(2:1)TDxP	0	Differential FX transmit data output	2
P(2:1)RxN	I	Differential receive data input	2
P(2:1)RxP	I	Differential receive data input	2
P(2:1)RDxN	I	Differential FX receive data input	2
P(2:1)RDxP	I	Differential FX receive data input	2
P(2:1)SDxN	I	Differential FX signal detect input	2
P(2:1)SDxP	I	Differential FX signal detect input	2
EXTRES	I/O	External reference resistor (12.4 k Ω)	1
DVDD(4:1)	I	Digital power supply, 1.5 V	4
DGND(4:1)	I	Digital GND	4
P(2:1)VSSATX(2:1)	I	Analog port GND	4
P(2:1)VDDARXTX	I	Analog port RX/TX power supply, 1.5 V	2
P(2:1)VSSARX	I	Analog port GND	2
VDDAPLL	I	Analog central power supply, 1.5 V	1
VDDACB	I	Analog central power supply, 3.3 V	1
VSSAPLLCB	1	Analog central GND	1
VDD33ESD	I	Analog test power supply, 3.3 V	1
VSS33ESD	I	Analog test GND	1
total			42

The on-chip PHYs of ERTEC 200 use the following pins:

Table 1: ERTEC 200 Pin function for PHY interface

Note that Table 1 includes the specific power supply pins that are needed for operation of the PHYs, however it does not include the status indication signals that are shared with GPIO pins. For the status indication signals see /1/

1.3 Functional Description

This chapter gives a functional description of the integrated PHYs on ERTEC 200 based on the block diagram shown in **Figure 1**. **Figure 1** shows a single channel; both channels have identical structure. The subsequent chapters will frequently refer to signals that are present on the MII interface between on-chip PHY and on-chip MAC. In these cases the signal names that have been introduced in **\1\Table 1.5.7 and 1.5.8** will be used. Note that these signals can be externally monitored when ERTEC 200 has been configured to MII diagnosis mode with the CONFIG(6:1) pins.

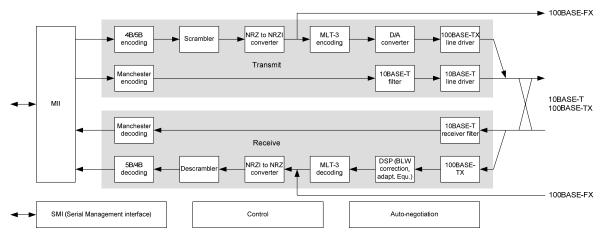


Figure 1: PHY Block Diagram

1.3.1 10BASE-T Operation

A 10BASE-T transceiver is implemented for a 10 Mbps CSMA/CD LAN over two pairs of twisted-pair wires according to the specifications given in clause 14 of the IEEE 802.3 standard. During transmission, 4-bit nibble data comes from the MII interface at a rate of 2.5 MHz and is converted into a 10 Mbps serial data stream. The data stream is then Manchester-encoded and sent to the analog transmitter which drives a signal to the twisted pair cable via external magnetics.

In order to comply with legacy 10BASE-T MAC/Controllers, the transmitted data is looped back to the receive path, if the PHY is configured to work in half-duplex mode.

On the receiver side, the receive clock is recovered from the incoming signal. The received Manchester-encoded analog signal from the cable is recovered to the NRZI data stream using the clock. Then the 10 Mbps serial data stream is again converted to 4-bit data that are passed to the MAC across the MII interface at a rate of 2.5 MHz. The PHY realizes a complete 10BASE-T transceiver function. It includes the receiver, transmitter and the following functions.

- <1> Filter and squelch
- <2> Jabber detection
- <3> Signal quality error (SQE) message test function
- <4> Timing recovery from received data
- <5> Manchester encoding/decoding
- <6> Full-duplex or Half-duplex mode In half-duplex mode, the PHY transmits and simultaneously receives in order to provide loopback of the transmitted signal. (Refer to section 14.2.1.3 of IEEE802.3)
- <7> Collision presence function (half duplex mode only)
- <8> Carrier Sense Detection CRS is asserted only to receive activity for Full-Duplex mode. CRS is asserted during either packet transmission or reception for half-duplex mode.

(1) Filter and Squelch

The Manchester encoded signal from the cable is fed into the transceiver's receive path via 1:1 ratio magnetics (see **Chapter 1.6.2** for details of the circuit). It is first filtered to reduce any out-of-band noise. It then passes through a squelch circuit - a set of amplitude and timing comparators that normally reject differential voltage levels below 300 mV and detect and recognize differential voltages above 585 mV.

(2) Jabber detection

Jabber is a condition in which a station transmits for a period of time longer than the maximum permissible packet length - usually due to a fault condition - that results in holding the TX_EN_P(2:1) signal active for a long period. Special logic is used to detect the jabber state and to abort the transmission to the line within 45 ms. The maximum time of of unjab is 350 ms. Once TX_EN_P(2:1) is deasserted, the logic resets the jabber condition. Basic status register 1 indicates that a jabber condition was detected; details about the register functions are given in **Chapter 1.5**.

(3) SQE test function

The PHYs on ERTEC 200 support a signal quality error (SQE) test function. This function controls if data transmission is successful; successful transmission is indicated by activating the COL_P(2:1) signal for 1 μ s, 2 μ s after TX_EN_P(2:1) has been deasserted. This signal is also referred to as "heartbeat" signal.

If desired, the SQE test function can be disabled by setting the SQEOFF bit in control/status register 27 to 1_b . The setting of the SQEOFF bit is irrelevant when the PHY is working in 100BASE-TX or -FX modes.

(4) Manchester encoding/decoding

When encoding, the 4-bit nibble data, that is coming from the MII interface, is converted to a 10 Mbps serial NRZI data stream. The 10M PLL locks onto the external clock and produces a 20 MHz clock signal. which is used to Manchester encode the NRZ data stream.

When no data is being transmitted, normal link pulses (NLPs) are output to maintain communications with the remote link partner.

When decoding, the 10M PLL is locked onto the received Manchester signal and from this, the internal 20 MHz receive clock is generated. Using this clock, the Manchester encoded data is extracted and converted to a 10 MHz NRZI data stream. This stream is then converted from serial to 4-bit nibble data.

1.3.2 100BASE-TX Operation

100BASE-TX specifies operation over two copper media: two pairs of shielded twisted-pair cable (STP) and two pairs of unshielded twisted-pair cable (Category 5 UTP). 100BASE-TX function includes the physical coding sub-layer (PCS), the physical medium attachment (PMA) and physical medium dependent sub-layer (PMD).

When transmitting, 4-bit data nibbles come from the MII interface at a rate of 25 MHz and are converted to 5-bit encoded data. The data is then serialized and scrambled, subsequently converted to a NRZI data stream and MLT-3 encoded.

In the receive path the ADC samples the incoming MLT-3 signal at a sampling frequency of 125 MHz. The resulting MLT-3 signal is reconverted to the NRZI data stream, and then the descrambler performs the inverse function of the scrambler in the transmit path and parallelizes the data. The 4B/5B decoder completes the processing and supplies the data ready for transmission over the MII interface.

This section describes the main functions of the 100BASE-TX portion of the PHYs.

- <1> Full-duplex or Half-duplex mode
- <2> Collision detect indication
- <3> Carrier Sense detection
- <4> MLT-3 to (from) NRZ Decoding/Encoding
- <5> 4B/5B Encoding/Decoding
- <6> Scrambler/Descrambler
- <7> Adaptive Equalization(DSP)
- <8> Baseline Wander Correction
- <9> Timing recovery from received data
- <10> Support MII, RMII and Symbol interface

(1) Timing recovery

The 125M PLL locks onto the 25 MHz reference clock and generates an internal 125 MHz clock used to drive the 125 MHz logic and the 100BASE-TX transmitter. The PLL generates multiple phases of the 125 MHz clock. A multiplexer, controlled by the timing unit of the DSP block, selects the optimum phase for sampling the data. This is used as the recovered receive clock, which is then used to extract the serial data from the received signal.

(2) Adaptive equalizer

The adaptive equalizer compensates phase and amplitude distortion caused by the physical transmission channel consisting of magnetics, connectors, and CAT-5 cable. Thus, the supported cable length is increased.

(3) Baseline wander correction

If the DC content of the signal is such that the low-frequency components fall below the low frequency pole of the isolation transformer, then the droop characteristics of the transformer will become significant and baseline wander (BLW) on the received signal will result. To prevent corruption of the received data, the PHY corrects the baseline wander effects using DSP algorithms.

(4) 4B/5B encoding/decoding

In 100BASE-TX mode, 4B/5B coding is used. The 4B/5B encoder converts 4-bit nibbles coming from the MII interface to 5-bit symbols that are referred to as "code-groups". The relation between original and encoded data is shown in Table 2.

For testing purposes the encoder and decoder can be bypassed with the Enable 4B5B bit in the PHY special control/status register. In this case the 5th bit of the output pattern reflects the current level of the TX_ERR_P(2:1) signal of the MII interface.

Code group	Name	Transmitter		Receiver		
		from MAC via MII Interpretation		Interpretation	to MAC via MII	
11110	0	0000 Data 0		Data 0	0000	
01001	1	0001 Data 1		Data 1	0001	
10100	2	0010	Data 2	Data 2	0010	
10101	3	0011	Data 3	Data 3	0011	
01010	4	0100	Data 4	Data 4	0100	
01011	5	0101	Data 5	Data 5	0101	
01110	6	0110	Data 6	Data 6	0110	
01111	7	0111	Data 7	Data 7	0111	
10010	8	1000	Data 8	Data 8	1000	
10011	9	1001	Data 9	Data 9	1001	
10110	Α	1010	Data A	Data A	1010	
10111	В	1011	Data B	Data B	1011	
11010	С	1100	Data C	Data C	1100	
11011	D	1101	Data D	Data D	1101	
11100	E	1110	Data E	Data E	1110	
11101	F	1111	Data F	Data F	1111	
11111	I	Sent after /T and / until TX_EN_P(aga	2:1) is asserted	ld	le	
11000	J	Sent, when TX asse	` '	1 st nibble of start of stream data (SSD); translates to 0101 if received after "idle"; otherwise RX_ERR_P(2:1) is asserted		
10001	к	Sent a	fter /J	2 nd nibble of SSD; translates to 0101 if received after /J; otherwise RX_ERR_P(2:1) is asserted		
01101	Т	Sent when TX_E	— • /	1 st nibble of end of stream data (ESD): translates to 1010 and		
00111	R	2 st nibble of ESD; tran 1010 and causes deas Sent after /T CRS_P(2:1) when prec otherwise RX_ERR_ asserted		D; translates to s deassertion of n preceded by /T; ERR_P(2:1) is		
00100	н	Sent when TX_ERR_P(2:1) is asserted		Transmit error	Undefined	
all others	V	Invalid code Invalid code; RX_ERR_P(2:1) Invalid code Asserted if received while RX_DV_P(2:1) is active			ceived while	

 Table 2: 4B/5B Code Table

(5) Scrambling/Descrambling

Scrambling the data before transmission helps to eliminate large narrow-band signal power peaks for repeated data patterns, and spreads the signal power more uniformly over the entire channel band-width.

The scrambler encodes a plaintext NRZ bit stream by addition (modulo 2) of 2047 bits generated by the recursive linear function X[n]=X[n-11] + X[n-9] (modulo 2). The scrambler generates the specified non-zero key stream whenever the active output interface is required to transmit a scrambled data stream. The seed for the scrambler is generated from the PHY address, ensuring that in multiple-PHY applications each PHY will have its individual scrambler sequence.

The descrambler descrambles the NRZ ciphertext bit stream coming from the MLT-3 decoder by addition (modulo 2) of a key stream to re-produce a plaintext bit stream. During the reception of IDLE symbols, the descrambler synchronizes its descrambler key to the incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to descramble incoming data.

Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of 1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference.

This core has a scrambler and descrambler bypass mode for testing purposes.

(6) MLT3 Encoding/Decoding

In the transmit direction, the serial 125 MHz NRZI data stream is encoded to MLT-3. MLT-3 is a trilevel code where a change in the logic level represents a code bit "1" and the logic output remaining at the same level represents a code bit "0".

In the receive direction, the MLT-3 code is converted to an NRZI data stream. The NRZI to MLT-3 conversion is illustrated in **Figure 2**.

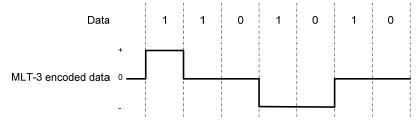


Figure 2: MLT-3 Encoding Example

(7) Receive Data Valid / Receive Error

The receive data valid signal RX_DV_P(2:1) indicates that recovered and decoded nibbles are being presented on the RXD_P1(3:0) respectively RXD_P2(3:0) outputs synchronous to RX_CLK_P(2:1). RX_DV_P(2:1) becomes active after the /J/K/ delimiter has been recognized and RXD_P(2:1) is aligned to nibble boundaries. It remains active until either the /T/R/ delimiter is recognized or link test indicates failure.

RXDV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media Independent Interface (MII).

During a frame, unexpected code-groups are considered as receive errors. Expected code groups are the data set (0H through FH), and the /T/R/(ESD) symbol pair. When a receive error occurs, the RX_ERR_P(2:1) signal is asserted and arbitrary data is driven onto the RXD lines. Should an error be detected during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ERR(2:1) is asserted true and the value 1110_b is driven onto the RXD_P(2:1) lines. Note that the valid vata signal is not yet asserted when the bad SSD error occurs.

1.3.3 100BASE-FX Operation

This section describes main functions within the PHY in 100BASE-FX operation.

- <1> NRZI to(from) NRZ converter
- <2> Far End Fault Indication
- <3> Timing recovery from received data
- <4> Support MII,RMII, SMII and Symbol interface

The 100BASE-FX shares logic with 100BASE-TX; the differences between 100BASE-FX mode and 100BASE-TX mode are following,

- <1> Transmit output/receive input is not scrambled or MLT3 encoded.
- <2> All analog circuits except for the PLL are powered-down.
- <3> Auto-Negotiation is disabled.
- <4> The transmit data is output to a FX transmitter.
- <5> The receive data is input to the FX ECL level detector instead of the equalizer.
- <6> The FX interface has a signal detect input.

(1) Signal Detect

The signal detect signals P(2:1)SDxP/N are input signals to the PHY from the PMD FX transceiver. Assertion of P(2:1)SDxP/N indicates a valid FX signal on the fiber. When SD is deactivated, the LINK goes down and no data is sent to the controller.

(2) Far End Fault indication

Far End fault indication (FEFI) is a mechanism used to communicate physical status across a fiber link. Each PHY monitors the status of its receive link using the Signal Detect input. If the PHY detects a problem with its receive link, it communicates that to its link partner using the FEFI mechanism.

FEFI consists of a modification to the IDLE code patterns. In this mode, every 16 IDLE code groups are followed by a data-0 code group. If the PHY detects a FEFI pattern in its receive stream, it deasserts its link status and transmits only IDLE patterns (not FEFI) on its transmit stream.

A full description of the Far End Fault Function is given in Section 24.3.2.1 in the IEEE 802.3 standard.

1.3.4 Auto Negotiation

The objective of the Auto-Negotiation function is to provide the means to exchange information between two devices that share a link segment and to automatically configure both devices to take maximum advantage of their abilities.

The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC controller. The auto-negotiation function sends fast link pulse (FLP) bursts for exchanging information with its link partner. A FLP burst consists of 33 pulse positions. The 17 odd-numbered pulse positions shall contain a link pulse and represent clock information. The 16 even-numbered pulse positions represent data information. The data transmitted by an FLP burst is known as a "Link Code Word". These are fully defined in clause 28 of the IEEE 802.3 specification.

This core supports auto-negotiation and implements the "Base page", defined by IEEE 802.3. It also supports the optional "Next page" function to get the remote fault number code.

(1) Parallel detection

The parallel detection function allows detection of Link Partners that support 100BASE-TX and/or 10BASE-T, but do not support Auto-Negotiation. The PHY is able to determine the speed of the link based on either 100M MLT-3 symbols or 10M Normal Link Pulses. If the PHY detects either mode, it automatically reverts to the corresponding operating mode. In this case the link is presumed to be half duplex.

If a link is established via parallel detection, then Bit 0 of the Auto-Negotiation Expansion register is cleared to indicate that the link partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, bit 4 of the Auto-Negotiation Expansion register is set.

The Auto-Negotiation Link Partner Ability register is used to store the link partner ability information, which is coded in the received FLPs. If the link partner is not auto-negotiation capable, then the Auto-Negotiation Link Partner Ability register is updated after completion of parallel detection to reflect the speed capabilities of the link partner.

(2) Re-negotiation

Auto-negotiation is started by one of the following events:

- <1> H/W reset
- <2> S/W reset
- <3> setting the Auto-Negotiation Enable bit in the Basic Control register from low to high

When auto-negotiation is enabled, it is re-started by one of the following events:

- <1> Link status is down.
- <2> Setting the Auto-Negotiation Restart bit in the Basic Control register to high.

(3) Priority Resolution

If two Ethernet communication partners negotiate their capabilities, there are four possible matches of the technology abilities. In the order of priority these are:

- 100M full Duplex (highest priority)
- 100M Half Duplex
- 10M full Duplex
- 10M Half Duplex (lowest priority)

Since two devices (local device and remote device) may have multiple abilities in common, a prioritization scheme exists to ensure that the highest common denominator ability is chosen. Full duplex solutions are always higher in priority than their half duplex counterparts. 10BASE-T is the lowest common denominator and therefore has the lowest priority.

If a link is formed via parallel detection, then the Link Partner Auto-negotiation Able bit in the Auto Negotiation Expansion register is cleared to indicate that the link partner is not capable of autonegotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, the Parallel Detection Fault bit in the same register is set. The Auto-Negotiation Link Partner Ability register 5 is used to store the link partner's ability information, which was decoded from the received FLPs. If the link partner is not auto-negotiation capable, then the Auto-Negotiation Link Partner Ability register is updated after completion of parallel detection to reflect the speed capability of the link partner.

(4) Next Page function

Additional information, exceeding that required by base page exchange, is also sent via "Next Pages"; this PHY supports the optional "Next page" function. Next page exchange occurs after the base page has been exchanged. Next page exchange consists of using the normal Auto-Negotiation arbitration process to send next page messages. Two kinds of message encodings are defined: Message Pages, which contain predefined 11 bit codes, and unformatted pages.

Next page transmission ends when both ends of a link segment set their Next Page bits to logic zero, indicating that neither has anything additional to transmit. It is possible for one device to have more pages to transmit than the other device. Once a device has completed transmission of its next page information, it shall transmit message pages with Null message codes and the NP bit set to logic zero while its link partner continues to transmit valid next pages.

Devices, that are able of auto-negotiation, shall recognize reception of message pages with Null message codes as the end of its link partner's next page information. The default value of the next page support is disable (Next Page bit in Auto-Negotiation Advertisement register). To enable next page support, the Next Page bit should be set to 1_b . Auto-Negotiation should be restarted and the message code to be transmitted to the remote link partner should be written to bit(10:0) of the Auto-Negotiation Next Page Transmit register .

(5) Disabling Auto-Negotiation

Auto-negotiation can be disabled by setting the Auto-Negotiation Enable bit in the Basic Control register. When Auto-negotiation is disabled, the speed and duplex mode settings are configured via the serial management interface.

1.3.5 Miscellaneous Functions

This chapter summarizes some additional functions of the PHYs.

(1) LED indicators

Six LED signals are provided per PHY. These provide a convenient means to determine the operation mode of the PHYs. All LED signals are active low. The LED signals are made available through the GPIO pins of the ERTEC 200. The functions of the LED signals are as follows:

• 100BASE-TX/FX status

This signal shows, that operation speed is 100Mbps or during Auto-Negotiation; this signal will go inactive when the operating speed is 10Mbps or during line isolation.

• 10BASE-T status

This signal shows, that operation speed is 10Mbps; this signal will go inactive when the operating speed is 100Mbps or during line isolation.

Link status

This signal shows, that the PHY detects a valid link. The use of the 10Mbps or 100Mbps link test status is determined by the condition of the internally determined speed selection.

• Full/Half Duplex

This signal shows, whether the established link is operating in full or half duplex mode; it is active in full duplex mode.

Transmit Activity

This signal shows, that CRS_P(2:1) is active (high) at transmit. When CRS becomes inactive, the transmit activity LED output is extended by 128ms in order to improve visibility.

Receive Activity

This signal shows, that CRS_P(2:1) is active (high) at receive. When CRS becomes inactive, the receive activity LED output is extended by 128ms in order to improve visibility. In loopback mode, this LED is not active.

Table 3 illustrates how the LED signals are made available at the GPIO pins.

CPIO nin	Function						
GPIO pin	1	2	3				
GPIO0	P1-DUPLEX-LED_N	-	-				
GPIO1	P2-DUPLEX-LED_N	-	-				
GPIO2	P1-SPEED-100LED_N (TX/FX)	P1-SPEED-10LED_N	-				
GPIO3	P2-SPEED-100LED_N (TX/FX)	P2-SPEED-10LED_N	-				
GPIO4	P1-LINK-LED_N	-	-				
GPIO5	P2-LINK-LED_N	-	-				
GPIO6	P1-RX-LED_N	P1-TX-LED_N	P1-ACTIVE-LED_N				
GPIO7	P2-RX-LED_N	P2-TX-LED_N	P2-ACTIVE-LED_N				

Table 3: Assignment of LED Signals to GPIO Pins

(2) MDI/MDI-X crossover detection

The PHYs automatically detect and correct MDI/MDI-X crossover. This function can be disabled by setting the AutoMDIX_en bit in the Mode Control/Status register to 0_b . When it is disabled, crossover must be corrected manually by setting the MDI mode bit in the same register accordingly.

(3) Polarity

This core automatically detects and corrects polarity reversal in wiring in 10BASE-T mode. The result of polarity detection is indicated by the XPOL bit in the Special Control/Status Indications register. Polarity is checked at end of packets in 10BASE-T. When a packet is corrupted by noise, the PHY may mis-interprete information inside the packet as end of packet. In this case, the PHY may invert the polarity and a maximum of three packets is be needed to detect the valid polarity again.

(4) Loopback mode

This ERTEC 200 PHYs support two loopback modes: internal loopback and remote loopback. **Figure 3** illustrates the differences between these two modes.

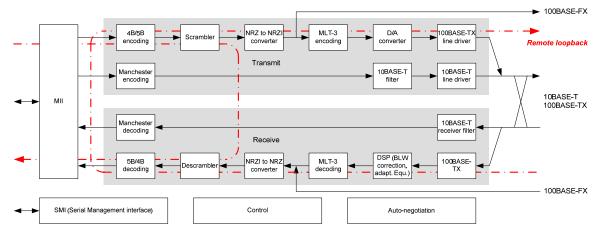


Figure 3: Internal and Remote Loopback Modes

(a) Internal loopback

This loopback mode is defined in the IEEE 802.3 specification; it is enabled by setting the Loopback bit in the Basic Control register to 1_b . In this mode, the scrambled transmit data is looped into the receive logic. The COL_P(2:1) signal will be inactive in this mode, unless the Collision Test bit in the Basic control register is active.

When the internal loopback mode is active, the receive circuitry should be isolated from the network medium. In this mode, the assertion of TX_EN_P(2:1) at the MII interface does not result in the transmission of data on the network medium, and transmitters are powered down.

(b) Remote loopback

This mode is enabled by setting the FARLOOP BACK bit in the Mode Control/Status register to 1_b . This mode can be used only when the PHYs are in 100BASE-TX or 100BASE-FX mode. In this mode, packets that arrive at the receiver are looped back out to the transmitter. In 100BASE-TX mode, the data path includes the ADC, DSP, PCS circuits; in 100BASE-FX mode, the data path includes the PECL logic, clock recovery and PCS logic. As long as no data is received, IDLE symbols are transmitted.

In this mode, the complete preamble, SFD and EFD are re-generated by the PHY so that always complete packets are transmitted, even if received packets lack part of the preamble. The Isolate bit in the Basic Control register needs to be cleared to work in remote loopback mode.

(5) Power Down Modes

(a) Hardware power down

This state is entered after a hardware reset of ERTEC 200. The PHYs are switched off and their power consumption is almost 0 W. This state is left by setting the P1/2_PHY_ENB bits in the PHY_CONFIG register. All analog and digital blocks in the PHYs are initialized and the predefined configuration in the PHY_CONFIG register is copied to the PHYs. Then, the PHY-internal registers can be configured as well.

Setting the P1/2_PHY_ENB bits extends the internal reset signal in the PHYs to 5.2 ms in order to stabilize the PLL and all analog and digital blocks. When the PHYs are ready to operate, this is automatically indicated in the PHY_STATUS registers with the P1/2_PWRUPRST bits (set to 1_b).

(b) Software power down

This state is entered by writing a 1_b into the PowerDown bit of the Basic Control register of the PHYs. The affected PHY will then go into a low power state, where the MDIO interface is still active, but where no activity is possible on the MII interface. The power consumption of the PHYs in low power state is around 15 mW per PHY.

The low power mode is left by writing a 0_b into the PowerDown bit. The digital parts of the circuitry are re-initialised, however the start-up configuration, that is stored in the PHY_CONFIG register, is not copied again into the PHYs and the PHY registers are not set to their initial values. Leaving the low power state generates an internal reset for the PHYs with a duration of 256 μ s for PLL stabilization.

(c) Automatic power down

The PHYs support an automatic power down mode, that is entered, if there is no activity on the Ethernet line. To enable this mode, a 1_b must be written into the EDPWRDOWN bit of the Mode Control/Status register of the PHYs. No activity on the line will then automatically drive the PHY into the low power mode with approximately 15 mW power consumption per PHY. If link pulses or data packets are detected, the low power mode is automatically left with an internal reset of 256 µs and re-initialization of the circuitry. The first and possibly the second packet may be lost during the energy detection process. No configuration data is copied from the PHY_CONFIG register to the PHY at this point.

Automatic power down cannot be used as long as Auto-negotiation is enabled; therefore the Auto-Negotiation Enable bit in the Basic Control register must be set to 0_b for automatic power down.

(6) Resetting the PHYs

(a) Hardware reset

There are two methods to issue a hardware reset to the ERTEC 200 on-chip PHYs; the reset source can be selected using the PHY_RES_SEL bit in the PHY_CONFIG register:

$PHY_RES_SEL = 0_b$	PowerOn reset via RESET_N input resets the PHYs
PHY_RES_SEL = 1 _b	Internal RES_PHY_N signal from IRT switch resets the PHYs

If the PowerOn reset is used, the PHYs are active after reset; if RES_PHY_N is used, the PHYs remain in power down mode after reset and must subsequently be activated with the PowerDown bit in the Basic Control register. The HW reset must be present for at least 100 µs. These reset signals are internally extended by 5.2 ms to ensure that the PHY is properly reset. All analog circuits and all digital logic including management registers are initialized. After initialization, the respective PWRUPRST signal in the PHY_STATUS register is set.

- **Notes: 1.** During the hardware reset and its extension, the clock signal for the PHYs must be supplied.
 - **2.** A hardware reset is commonly issued to both PHYs.

(b) Software reset

Resetting the PHYs core can also be accomplished by setting the Reset bit in the respective Basic Control register to 1_b . This signal is self-clearing. After the register has been written, the internal software reset is extended by 256 µs for PLL stabilization before the logic is released from reset. A software reset affects the PHY registers and resets them to their initial values except where noted.

Note: A software reset can be issued separately for each PHY.

(c) Reset by software and energy detect power down

When the PHYs come out of software and energy detect power down, they are automatically activated. After exiting the power down mode, the PHY-internal power-down reset is extended by 256 µs for PLL stabilization before logic is released from reset.

Note: This PHY-internal power down reset does not affect the PHY management registers.

(7) Half/Full Duplex

In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD algorithms specified. Half duplex mode is required on those media that are not capable of supporting simultaneous transmission and reception without interference like 10BASE-2 and 100BASE-T4.

The full duplex operation mode can be used when all of the following conditions are fulfilled:

- <1> The physical medium is capable of supporting simultaneous transmission and reception without interference.
- <2> There are exactly two stations on the LAN. This allows the physical medium to be treated as a full duplex point-to-point link between the stations.
- <3> Both stations on the LAN are capable of and have been configured to use full duplex operation.

(8) Interrupt handling

Each PHY can generate a collective interrupt that can be triggered by several PHY-internal events; these two interrupts are routed with a wired-OR to the common IRQ9 input of the ERTEC 200 interrupt controller. Table 4 shows the events that can generate an interrupt from the PHYs:

Interrupt number	Interrupt Event	
INT8	not used	
INT7	ENERGYON generated	
INT6	Auto-negotiation complete	
INT5	Remote fault detected	
INT4	Link down	
INT3	Auto-negotiation LP acknowledge	
INT2	Parallel detection fault	
INT1	Auto-negotiation page received	

Table 4: PHY Interrupt Events

Each of the interrupt events above is described in the protocol of the Interrupt Source Flag register in the PHYs; it can as well be masked or unmasked individually in the Interrupt Mask register in the PHYs (see Table 42: Interrupt Mask Register Description).

(9) Isolate Mode

The PHY data path may be electrically isolated from the MII by setting the Isolate bit in the Basic Control register to 1_b . In isolate mode, the internal MII interface of the respective PHY is made inactive. However the PHYs still respond to management transactions. Isolation provides a means for multiple PHYs to be connected to the same MII without contention occurring and it is not really required to use on ERTEC 200. The PHYs are not in isolate mode on power-up.

(10) Link integrity Test

The PHYs perform a link integrity test as outlined in the IEEE 802.3 Link Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the reportable Link Status bit in the Basic Control register 1, and is driven to the P(2:1)-LINK-LED_N output.

The DSP block indicates a valid MLT-3 waveform present on the P(2:1)RxP and P(2:1)RxN inputs as defined by the ANSI X3.263 TP-PMD standard, to the link monitor state-machine, using an internal signal called DATA_VALID. When it is asserted the control logic moves into a link-ready state, and waits for an enable from the auto-negotiation block. When received, the link-up state is entered, and the transmit and receive logic blocks become active.Should auto-negotiation be disabled, the link integrity logic moves immediately to the link-up state, when the DATA_VALID signal is asserted.

Note that to allow the link to stabilize, the link integrity logic will wait a minimum of 330 µsec from the time DATA_VALID is asserted until the link-ready state is entered. Should the DATA_VALID input be negated at any time, this logic will immediately negate the link signal and enter the link-down state. When the 10/100 digital block is in 10BASE-T mode, the link status generated from the 10BASE-T receiver logic.

(11) Link Lockup Protection

During the reception of 10BASE-T data, the link partner may switch to 100BASE-TX without starting auto-negotiation. In this case, the PHY must recognize this, de-assert the link status, and switch to 100BASE-TX mode.

To achieve this, a counter is activated at the beginning of every 10BASE-T packet. When the counter reaches the count of 157 msec and no end of packet was recognized, then the link will be de-asserted and the PHY will restart either auto-negotiation (if enabled) or try to achieve a 10BASE-T link again.

(12) Phase Offset Indicator

The latency between transmitter and receiver can lead to 5 different phase variations of 125Mbps received packets against the 25Mbps data on the MII interface (only in 100BASE-TX/FX mode). It corresponds to the system latency between MII TX_EN_P(2:1) and MII RX_DV_P(2:1) and it is measured based on the first packet after link-up. This value is then stored in the PHASE_OFFSET field of the Special Controls/Status Indications register. **Figure 4** illustrates this function.

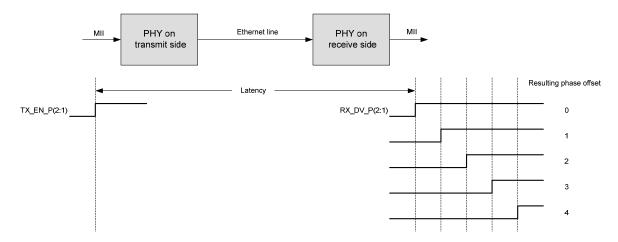
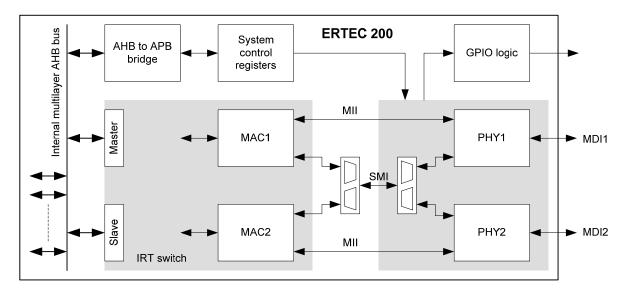



Figure 4: Phase Offset Indicator Function

1.4 PHY Related Interfaces

Like any other peripheral on the ERTEC 200 the PHYs have internal registers that allow control over their behaviour and that reflect their operation status; however in contrast to the other peripherals, the PHY control registrs are not memory mapped and not directly accessible for the ARM CPU core or any other AHB master within ERTEC 200. This is due to the standardized MII/SMI interface between the PHYs and the MACs that are integrated in the IRT switch. **Figure 5** shows the different paths into the PHYs.

Figure 5: PHY Related Interfaces

The control and communication paths into and out of the PHYs can be categorized in four respectively five groups.

(1) MII Interface

The media independent interface (MII) is the data communication interface between MAC and PHY; each PHY (respectively each MAC) has its own MII interface. The two MII interfaces on ERTEC 200 are on-chip interfaces however they can be externally monitored, if ERTEC 200 is configured to MII diagnosis mode. LBU interface pins are used for this purpose.

Table 5 lists the signals that belong to the MII diagnosis interface and the "normal" usage of the same pins for LBU signals.

PHY	Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
	TXD_P2(3:0)	0	Transmit data port 2 bits	LBU_D(9:6)
	RXD_P23	0	Receive data port 2 bit 3	LBU_A11/PIPESTA2
	RXD_P22	0	Receive data port 2 bit 2	LBU_A10/TRACESYNC
	RXD_P21	0	Receive data port 2 bit 1	LBU_A9/TRACEPKT0
	RXD_P20	0	Receive data port 2 bit 0	LBU_A8/TRACEPKT1
	TX_EN_P2	0	Transmit enable port 2	LBU_D10
PHY 2	CRS_P2	0	Carrier sense port 2	LBU_A12
	RX_ER_P2	0	Receive error port 2	PIPESTA0
	TX_ERR_P2	0	Transmit error port 2	LBU_D11
	RX_DV_P2	0	Receive data valid port 2	LBU_A14
	COL_P2	0	Collision port 2	LBU_A15
	RX_CLK_P2	0	Receive clock port 2	LBU_BE1_N
	TX_CLK_P2	0	Transmit clock port 2	LBU_RD_N
	TXD_P1(3:0)	0	Transmit data port 1 bits	LBU_D(3:0)
	RXD_P13	0	Receive data port 1 bit 3	LBU_A3/TRACEPKT6
	RXD_P12	0	Receive data port 1 bit 2	LBU_A2/TRACEPKT7
	RXD_P11	0	Receive data port 1 bit 1	LBU_A1/ETMEXTIN1
	RXD_P10	0	Receive data port 1 bit 0	LBU_A0/ETMEXTOUT
	TX_EN_P1	0	Transmit enable port 1	LBU_D4
PHY1	CRS_P1	0	Carrier sense port 1	LBU_A4/TRACEPKT5
	RX_ER_P1	0	Receive error port 1	LBU_A5/TRACEPKT4
	TX_ERR_P1	0	Transmit error port 1	LBU_D5
	RX_DV_P1	0	Receive data valid port 1	LBU_A6/TRACEPKT3
	COL_P1	0	Collision port 1	LBU_A7/TRACEPKT2
	RX_CLK_P1	0	Receive clock port 1	LBU_BE0_N
	TX_CLK_P1	0	Transmit clock port 1	LBU_WR_N

Table 5: MII (Diagnosis) Interface Signals

Note: MII diagnosis interface pins are alternatively used as local bus interface or trace pins; in this table the I/O type is listed for the MII diagnosis function

(2) SMI Interface

The serial management interface (SMI) between MAC and PHY gives access to the PHY's internal control registers. There is a common SMI interface for both PHYs; the two PHYs have hardwired addresses, that are part of the protocol over the SMI interface. The SMI signals can as well be monitored together with the MII signals in MII diagnosis mode.

Table 6 lists the signals that belong to the SMI (diagnosis) interface and the "normal" usage of the same pins for LBU signals.

Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
SMI_MDC	0	Serial management interface clock	LBU_D12
SMI_MDIO	0	Serial management interface data input/output	LBU_D13

Table 6: SMI (Diagnosis) Interface Signals

Note: SMI diagnosis interface pins are alternatively used as local bus interface or trace pins; in this table the I/O type is listed for the SMI diagnosis function

(3) MDI Interface

The media dependent interface (MDI) is the PHY's data communication interface to the Ethernet network in 10BASE-T, 100BASE-TX or 100BAE-FX mode. It is partly analog and partly digital; the circuitry that is connected to the MDI interfaces must be carefully selected. Proposals can be found in Chapter 1.6.

Pin Name	I/O	Function	Operation mode
P(2:1)TxN	0	Differential transmit data output	
P(2:1)TxP	0	Differential transmit data output	10BASE-TX
P(2:1)RxN	I	Differential receive data input	100BASE-TX
P(2:1)RxP	I	Differential receive data input	
P(2:1)TDxN	0	Differential FX transmit data output	
P(2:1)TDxP	0	Differential FX transmit data output	
P(2:1)RDxN	I	Differential FX receive data input	
P(2:1)RDxP	I	Differential FX receive data input	100BASE-FX
P(2:1)SDxN	I	Differential FX signal detect input	
P(2:1)SDxP	I	Differential FX signal detect input	

Table 7 shows the MDI interface signals arranged for the various supported operation modes.

Table 7: MDI Interface Signals

(4) System control register interface

A few general controls for the PHYs can be directly set via a subset of the system control registers that are described in **\1\Chapter 4.8**.

- select the reset source for the PHYs
- enable auto-MDIX mode
- select the initial start up mode of the PHY, after they have been reset
- enable 100BASE-FX mode
- enable PHYs and release them from power down mode
- check operation status of PHYs

(5) Status LED Outputs

Each PHY provides six status LED outputs; four of these can be made simultaneously available on GPIO(7:0). The following status can be visualized in parallel:

P1/2_DUPLEX_N	Half duplex, full duplex
P1/2_SPEED_N	10BASE-T, 100BASE-TX, 100BASE-FX
P1/2_LINK_STATUS_N	Link up, link down
P1/2_ACTIVITY_N	Receive activity, transmit activity, no activity

Table 3 shows the assignment of GPIO pins to these status informations.

(6) Other Signals

There are a few other signals - mainly supply voltages - related to the PHYs summarized in Table 8.

Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
RES_PHY_N	0	Reset signal to PHYs	LBU_D14
EXTRES	I/O	External reference resistor (12.4 k Ω) ^{Note}	-
DVDD(4:1)	Ι	Digital power supply, 1.5 V	-
DGND(4:1)	I	Digital GND	-
P(2:1)VSSATX(2:1)	I	Analog port GND	-
P(2:1)VDDARXTX	I	Analog port RX/TX power supply, 1.5 V	-
P(2:1)VSSARX	I	Analog port GND	-
VDDAPLL	I	Analog central power supply, 1.5 V	-
VDDACB	I	Analog central power supply, 3.3 V	-
VSSAPLLCB	I	Analog central GND	-
VDD33ESD	1	Analog test power supply, 3.3 V	-
VSS33ESD	I	Analog test GND	-

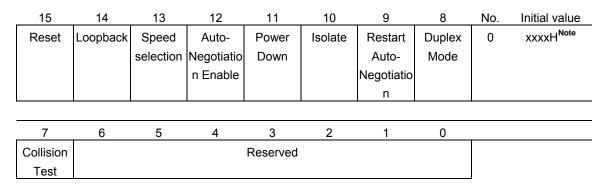
Table 8: Other PHY Related Signals

Note: The external resistor must have a maximum tolerance of 1%.

1.5 PHY Register Description

Via the SMI interface access is given to the internal registers listed in Table 9. Note that these registers are implemented for each PHY. During write or read accesses the registers are selected using their register number as an address. The PHY internal registers are not memory mapped.

Register number	Description	Group		
0	Basic control register	Dasia		
1	Basic status register	Basic		
2	PHY identifier 1			
3	PHY identifier 2			
4	Auto negotiation advertisement register			
5	Auto negotiation link partner ability register (base page)	Extended		
	Auto negotiation link partner ability register (next page)			
6	Auto negotiation expansion register			
7	Next page transmit register			
8-15	Reserved	-		
16	Silicon revision register			
17	Mode control/status register			
18	Special mode register			
19-26	Reserved			
27	Special control/status indication register	Vendor specific		
28	Reserved			
29	Interrupt source register			
30	Interrupt mask register			
31	PHY special control/status register			


Table 9: PHY internal Registers

During a hardware reset or when the PHYs are driven out of the power down state (by setting the P1/2_PHY_ENB bits in the PHY_CONFIG register to 1_b), a pre-defined configuration is set in the registers. This configuration is partly hardwired and affects the initial settings of PHY-internal registers. Table 10 shows these settings; the initial configuration can be altered later by writing to the PHY-internal registers.

Name	Description	Port 1	Port 2					
P1/2_PHYADDRESS(4:0)	PHY address	00000 _b	00001 _b					
P1/2_PHYMODE(2:0)	PHY mode	FIG register setting						
P1/2_MIIMODE(1:0)	Interface mode of PHY	permanently set to MII	mode					
P1/2_SMIISOURCESYNC	SMII source mode permanently set to normal mode							
P1/2_FXMODE	100BASE-FX mode depends on PHY_CONFIG register se							
P1/2_AUTOMDIXEN	Enable AutoMDIX state machine	depends on PHY_CON	FIG register setting					
P1/2_NPMSGCODE(2:0)	Test of next page function	permanently set to 000 _b						
P1/2_PHYENABLE	Enables the PHYs	depends on PHY_CON	FIG register setting					
REG2OUIIN(15:0)	Default value for SMII register 2	0033H						
REG3OUIIN(15:0)	Default value for SMII register 3	2001H						

Table 10: Initial Parameter Settings for PHYs

1.5.1 Basic Control Register

Table 11: Basic Control Register Overview

Note: The initial value depends on the setting of the P(2:1)_PHY_MODE(2:0) bits in the PHY1/2 Configuration Register in the System Control Register block.

Bit position	Bit name	R/W			Function						
15	Reset	R/W	Reset								
			Resets	s the complete PH	łY						
				Reset	Software reset						
				Ob	Normal operation (initial value)						
				1 _b	Execute a software reset for the affected PHY						
			Note:	This bit is self-o	clearing; it is automatically set to 0_b by the reset pro						
14	Loopback	R/W	Loopb	ack							
			Contro	ols internal loopba	ick mode						
				Loopback	Internal loopback mode						
				0 _b	Disable internal loopback mode (initial value)						
				1 _b Enable internal loopback mode							
13	Speed	R/W	Speed	selection							
	selection		Select	elects either 10 or 100Mbps transmission speed; the setting of this bit is							
			irrelev	ation is enabled.							
				Speed selection	Speed selection function						
				Ob	Select 10Mbps mode						
					(initial value after device reset)						
				1 _b	Select 100Mbps mode						
			Note:		e, after only the PHY has been reset, is selected by th Pn_PHY_MODE field in the PHY_CONFIG register.						
12	Auto-	R/W	Auto-N	legotiation Enable							
	Negotiation Enable			ols the auto-negot							
			A	uto-Negotiation Enable	Auto-negotiation enable selection						
				Ob	Disable auto-negotiation (initial value after device reset)						
				1 _b	Enable auto-negotiation						
			The in		nly the PHY has been reset, is selected by the con						
			tents o	of the Pn_PHY_M	ODE field in the PHY_CONFIG register.						
11	PowerDown	R/W	Power	Down							
				PowerDown	Power down mode control						
				0 _b	Normal operation (initial value)						
				1 _b Enter general power down mode							
			Puts th	ne PHYs into pow	er down mode						

Bit position	Bit name	R/W			Function						
10	Isolate	R/W	Isolate Isolate	-	cally from MII interface.						
				Isolate	Isolate mode control						
				Ob	Normal operation (initial value after device reset)						
				1 _b	Puts PHY into isolate mode						
			Note:		e, after only the PHY has been reset, is selected by th Pn_PHY_MODE field in the PHY_CONFIG register.						
9	Restart Auto-	R/W	Resta	rt Auto-Negotiatio							
Ŭ	Negotiation		Resta	rts the auto-negot	iation process.						
				Restart Auto- Negotiation	Auto-negotiation restart control						
				Ob	Normal operation (initial value)						
				1 _b	Restarts the auto-negotiation process						
			Note:	This bit is self-c	learing.						
8	Duplex Mode	R/W	Duplex Mode Configures the PHY to half or full duplex mode; the setting of this bit is irrele vant, if auto-negotiation is enabled.								
				Duplex Mode	Duplex mode control						
				Ob	Select half duplex mode (inital value after device reset)						
				1 _b	Select full duplex mode						
			Note:								
7	Collision Test	R/W									
				Collison Test	Collision signal test control						
				Ob	Disable collision signal test (initial value)						
				1 _b	Enable collision signal test						
6:0	-	R	Reser								
			Write	0 _b ; ignore on read	access						

Table 12: Basic Control Register Description

1.5.2 Basic Status Register

15	14	13	12	11	10 9			N0.	Initial value
100BASE	100BASE	100BASE	10Mb/s	10Mb/s		Reserved	-	1	7809H
-T4	-TX Full	-TX Half	Full	Half					
	Duplex	Duplex	Duplex	Duplex					
7	6	5	4	3	2	1	0		
Reserved		Auto-	Remote	Auto-	Link Sta	Jabber	Extended		
		Negotiatio	Fault	Negotiatio	tus	Detect	Capability		
		n		n Ability					
		Complete							

Table 13: Basic Status Register Overview

Bit position	Bit name	R/W		Function				
15	100BASE-T4	R	100BASE-T4					
			Indicates ability to suppo	ort 100BASE-T4 mode				
			100BASE-T4	100BASE-T4 ability indication				
			Ob	No 100BASE-T4 ability (initial value)				
			1 _b	100BASE-T4 ability supported				
14	100BASE-	R	100BASE-TX Full Duple	X				
	TX Full		Indicates ability to supp	ort 100BASE-TX full duplex mode				
	Duplex							
			100BASE-TX Full	100BASE-TX full duplex ability indication				
			Duplex					
			Ob	100BASE-TX full duplex ability				
			1 _b	100BASE-TX full duplex supported (initial value)				
13	100BASE-	R	100BASE-TX Half Duple	ex				
	TX Half Duplex		Indicates ability to suppo	ort 100BASE-TX half duplex mode				
			100BASE-TX Half	100BASE-TX half duplex ability indication				
			Duplex					
			Ob	100BASE-TX half duplex ability				
			1 _b	100BASE-TX half duplex supported (initial value)				
12	10Mb/s Full	R	10Mb/s Full Duplex					
	Duplex		ort 10Mb/s full duplex mode					
			10Mb/s Full Duplex	10Mb/s full duplex ability indication				
			0 _b 10Mb/s full duplex ability					
			1 _b	10Mb/s full duplex supported (initial value)				

Bit position	Bit name	R/W			Function							
11	10Mb/s Half	R	10	Mb/s Half Duplex								
	Duplex			-	ort 10Mb/s half duplex mode							
				·								
				10Mb/s Half Duplex	10Mb/s half duplex ability indication							
				Ob	10Mb/s half duplex ability							
				1 _b	10Mb/s half duplex supported (initial value)							
10:6	-	R	Re	served								
5	Auto-	R		to-Negotiation Compl								
	Negotiation Complete		Ind	licates, if auto-negotia	ation process has been completed							
				Auto-Negotiation Complete	Auto-negotiation completion indication							
				Ob	Auto-negotiation has not been completed (initial value)							
				1 _b	Auto-negotiation has been completed							
4	Remote	R	Re	mote Fault								
	Fault		Ind	ndicates, if a remote fault has been detected								
				Remote Fault	Remote fault detection indication							
				0 _b	No remote fault condition has been detected							
					(initial value)							
				1 _b	Remote fault condition has been detected							
			No	te: This bit is cleare	d, when it has been read.							
3	Auto	R	Au	to-Negotiation Ability								
	Negotiation Ability		Ind	licates ability to perfo	rm auto-negotiation							
	7 tonity			Auto-Negotiation Ability	Auto-negotiation ability indication							
				Ob	Unable to perform auto-negotiation							
				1 _b	Able to perform auto-negotiation (initial value)							
2	Link Status	R	l in	k Status								
_				licates, if a valid link h	nas been established							
				Link Status	Link status indication							
				Ob	Link status is down (initial value)							
				1 _b	Link status is up							
			No	te: This bit is cleare	d, when it has been read.							

Bit position	Bit name	R/W		Function									
1	Jabber	R	Jabber Detect										
	Detect		Indicates, if a jabber cor	ndition has been detected									
			Jabber Detect	Jabber condition detection indication									
			Ob	No jabber condition has been detected									
				(initial value)									
			1 _b	Jabber condition has been detected									
			ote: This bit is cleared, when it has been read.										
0	Extended	R	Extended Capability										
	Capability		Indicates, if the PHY su	pports extended register capabilities									
			Extended Capability	Extended register capabilities indication									
			Ob	Only basic register capabilities supported									
			1 _b	Extended register capabilities supported									
				(initial value)									

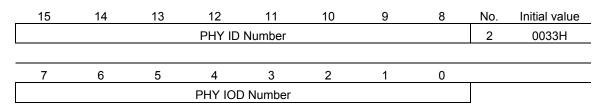
Table 14: Basic Status Register Description

The PHYs on ERTEC 200 have two registers for storage of a PHY identifier pattern; a part of this pattern forms the upper 24 bits of the MAC address and a part of these 24 bits is given by the so-called organizationally unique identifier (OUI).

The information in the REG2/3OUIIN registers is composed respectively interpreted as follows: NEC's OUI number is 003013H. This hexadecimal number is mapped into OUI format according to Table 15.

1	2	3	4																	23	24	Bit
	. (0	_		0					0 3					3			1			_	Hex format
0 _b	0 _b	0 _b	0 _b	0 b	0 b	0 b	O_b O_b O_b O_b O_b O_b O_b 1_b 1_b O_b O_b		1 _b	1 _b	0 b	0 _b	1 _b	0 b	0 b	0 _b	OUI format					

Table 15: NEC OUI Composition


The PHY ID number however, is composed of the OUI (bits (24:3)), a 6-bit wide manufacturer model number and a 4-bit revision number. Table 16 shows the details.

0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 OUI[24:3]													
	Manufacturer Model Number[5:0] 0 0 0 0 0 0 0													
					Revisio	n Number[3:0]	0	0	0	1				
0	0	3	3	2 0 0 2										
	REG2	OUIIN			REG	30UIIN								

Table 16: PHY ID Number Composition

The setting shown in Table 16 is the initial value, after the PHYs have been reset. As both registers as writable, the PHY ID number can be changed arbitrarily.

1.5.3 PHY Identifier Register REG2OUIIN

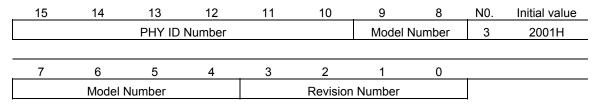


Table 17: PHY Identifier Register REG2OUIIN Overview

Bit position	Bit name	R/W	Function
15:0	PHY ID	R/W	PHY ID Number(15:0)
	Number		Reflects bits (18:3) of the organizationally unique identifier (OUI) for the
			ERTEC 200 (see Table 16 for exact bit assignment)

Table 18: PHY Identifier Register REG2OUIIN Description

1.5.4 PHY Identifier Register REG3OUIIN

Table 19: PHY Identifier Register REG3OUIIN Overview

Bit position	Bit name	R/W	Function	
15:10	REG3OUIIN	R/W	REG3OUIIN(15:0)	
			Reflects bits (24:19) of the organizationally unique identifier (OUI) for the	
			ERTEC 200 (see Table 16 for exact bit assignment)	
9:4	Model	R/W	/odel Number(5:0)	
	Number		Reflects a manufacturer depending revision number; initial value is 00H	
3:0	Revision	R/W	Revision number(3:0)	
	number		Reflects a manufacturer depending revision number; initial value is 1H	

Table 20: PHY Identifier Register REG3OUIIN Description

1.5.5 Auto Negotiation Advertisment Register

15	14	13	12	11	10	9	8	No.	Initial value
Next	Reserved	Remote	Reserved	Pause	Operation	100BASE	100BASE	4	xxxxH ^{Note}
Page		Fault				-T4	-TX Full		
							duplex		
7	6	5	4	3	2	1	0		
100BASE	10BASE-	10BASE-		5	Selector Fie	ld			
-TX	T Full	Т							
	Duplex								

Table 21: Auto-Negotiation Advertisement Register Overview

Note: The initial value depends on the setting of the P(2:1)_PHY_MODE(2:0) bits in the PHY1/2 Configuration Register in the System Control Register block.

Bit position	Bit name	R/W	Function						
15	Next Page	R/W	Next Page						
			Sele	Selects, if next page capablility is indicated to the link partner					
				Next Page	Next page capability indication				
				Ob	No next page capability is indicated				
					(initial value) Next page capability is indicated				
14	-	R	Res	erved					
			Writ	e 0 _b ; ignore on read	access				
13	Remote	R/W	Ren	note Fault					
	Fault		Indi	cates, if a remote fau	It has been detected				
				Remote Fault Remote fault detection indication					
				0 _b No remote fault condition has been detected (initial value)					
				1 _b	Remote fault condition has been detected				
12	-	R	Res	eserved					
			Write 0 _b ; ignore on read access						
11:10	Pause	R/W	Pau	Pause Operation					
	Operation		Indi	cates the supported	pause operation functions to the link partner				
			Pause Operation Pause operation support indication						
				00 _b No pause operation supported (initial value)					
				01 _b Asymmetric pause operation towards link partner supported					
				10 _b	Symmetric pause operation supported				
				11 _b Symmetric pause operation and asymmetric pause operation towards local device supported					

Bit position	Bit name	R/W	Function						
9	100BASE-T4	R	100BASE-T4						
			Indicates, if 100BASE-T4 operation is supported						
			100BASE-T4 100BASE-T4 operation support indication						
			0 _b No 100BASE-T4 operation support (initial value after device reset)						
			1 _b 100BASE-T4 operation support						
			Note: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_PHY_MODE field in the PHY_CONFIG register.						
8	100BASE- TX Full Duplex	R	100BASE-TX Full Duplex Indicates, if 100BASE-TX full duplex operation is supported						
			100BASE-TX Full 100BASE-TX full duplex operation support Duplex						
			0 _b No 100BASE-TX full duplex operation support (initial value after device reset)						
			1 _b 100BASE-TX full duplex operation support						
			Note: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_PHY_MODE field in the PHY_CONFIG register.						
7	100BASE- TX	R/W	100BASE-TX Indicates, if 100BASE-TX operation mode is supported						
			100BASE-TX 100BASE-TX operation support indication						
			0 _b No 100BASE-TX operation support (initial value after device reset)						
			1 _b 100BASE-TX operation support						
			Note: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_PHY_MODE field in the PHY_CONFIG register.						
6	10BASE-T Full Duplex	R/W							
			10BASE-T Full 10BASE-T full duplex operation support Duplex						
			0 _b No 10BASE-T full duplex operation support (initial value after device reset)						
			1 _b 10BASE-T full duplex operation support						
			Note: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_PHY_MODE field in the PHY_CONFIG register.						

Bit position	Bit name	R/W			Function				
5	10BASE-T	R/W	10BA	SE-T					
			Indica	Indicates, if 10BASE-T operation mode is supported					
				10BASE-T 10BASE-T operation support					
				Ob	No 10BASE-T operation support (initial value after				
					device reset)				
			1 _b 10BASE-T operation support						
			Note: The initial value, after only the PHY has been reset, is selected by the						
			contents of the Pn_PHY_MODE field in the PHY_CONFIG register.						
4:0	Selector	R/W	Selector Field						
	Field		Indica	Indicates basic capabilities according to the IEEE802.3 specification					

Table 22: Auto-Negotiation Advertisement Register Description

1.5.6 Auto Negotiation Link Partner Ability Register – Base Page

15	14	13	12	11	10	9	8	No.	Initial value
Next	Acknowl	Remote	Rese	erved	Pause	100BASE	100BASE	5	0001H
Page	edge	Fault			Operation	-T4	-TX Full		
							duplex		
7	6	5	4	3	2	1	0		
100BASE	10BASE-	10BASE-		:	Selector Fie	ld			
-TX	T Full	Т							
	Duplex								

Table 23: Auto-Negotiation Link Partner Ability Register Overview – Base Page

Bit position	Bit name	R/W		Function					
15	Next Page	R	Next Page Indicates if additional next page with link information will follow.						
				Next Page	Next page indication				
				O _b	No additional next page will follow (initial value)				
				1 _b	Additional next page will follow				
14	Acknowl edge	R		knowledge icates if the link part	ner's link code word has been successfully received				
				Acknowledge	Next page indication				
				Ob	Not successfully received the link partner's link code word (initial value)				
				1 _b	Successfully received the link partner's link code word				
13	Remote Fault	R	Remote Fault Indicates, if a remote fault has been detected						
				Remote Fault	Remote fault detection indication				
				Ob	No remote fault condition has been detected (initial value)				
				1 _b	Remote fault condition has been detected				
12:11	-	R		Reserved Ignore on read access					
10	Pause	R		use Operation					
10	Operation	i v		-	ation functions is supported by the remore link partner				
				Pause Operation	Pause operation support indication				
				O _b	No pause operation supported by remote link part				
					ner (initial value)				
				1 _b	Pause operation supported by remote link partner				
9	100BASE-T4	R 100BASE-T4 Indicates, if 100BASE-T4 operation is supported by			Γ4 operation is supported by the link partner				
				100BASE-T4	100BASE-T4 operation support indication				
				Ob	100BASE-T4 operation not supported by the link				
				1 _b	partner (initial value) 100BASE-T4 operation supported by the link				
					partner				

Bit position	Bit name	R/W		Function
8	100BASE-	R	100BASE-TX Full Duple	x
	TX Full		Indicates, if 100BASE-TX	K full duplex operation is supported by the link
	Duplex		partner	
			100BASE-TX Full	100BASE-TX full duplex operation support
			Duplex	
			0b	100BASE-TX full duplex operation not supported by the link partner (initial value)
			1 _b	100BASE-TX full duplex operation supported by the link partner
7	100BASE-	R	100BASE-TX	
	ТХ		Indicates, if 100BASE-T>	X operation is supported by the link partner
			100BASE-TX	100BASE-TX operation support indication
			Ob	No 100BASE-TX operation not supported by the
				link partner (initial value)
			1 _b	100BASE-TX operation supported by the link
				partner
	Full Duplex		10BASE-T Full Duplex Indicates, if 10BASE-T ft	Il duplex operation is supported by the link partner
			10BASE-T Full Duplex	10BASE-T full duplex operation support
			Ob	10BASE-T full duplex operation not supported by the link partner (initial value)
			1 _b	10BASE-T full duplex operation supported by the link partner
5	10BASE-T	R	10BASE-T	
			Indicates, if 10BASE-T o	peration mode is supported
			10BASE-T	10BASE-T operation support
			Ob	10BASE-T operation not supported by the link partner (initial value)
			1 _b	10BASE-T operation supported by the link partner
4:0	Selector	R	Selector Field	
	Field		Indicates basic capabilition specification	es of the link partner according to the IEEE802.3

Table 24: Auto-Negotiation Link Partner Ability Register Description – Base Page

1.5.7 Auto Negotiation Link Partner Ability Register – Next Page

15	14	13	12	11	10	9	8	No.	Initial value	
Next	Acknowle	Message	Acknowle	Toggle	Message	e/Unformat	ted Code	5	0000H	
Page	dge	Page	dge 2			field				
7	6	5	4	3	2	1	0			
	Message/Unformatted Code field									

Bit position	Bit name	R/W		Function					
15	Next Page	R	Next Page						
			Indicates if additional ne	xt page with link information will follow.					
			Next Page	Next page indication					
			Ob	No additional next page will follow (initial value)					
			1 _b	Additional next page will follow					
14	Acknowl	R	Acknowledge						
	edge		Indicates if the link partn	er's link code word has been successfully received					
			Acknowledge	Next page indication					
			Ob	Not successfully received the link partner's link					
				code word (initial value)					
			1 _b	Successfully received the link partner's link code					
				word					
13	Message	R	Message Page						
	Page		Page type indication						
			Message Page	Page type indication					
			Ob	Next page is an unformatted page (initial value)					
			1 _b	Next page is a message page					
12	Acknowl	R	Acknowledge 2						
	edge 2		Indicates if device comp	lies to message					
			Acknowledge 2	Message compliance indication					
			Ob	Device does not comply to message (initial value)					
			1 _b	Device complies to message					
11	Toggle	R	Toggle						
			Indicates, if the toggle b	it of the previous page equalled 0_b or 1_b ; this function					
			is used by the next page	arbitration protocol.					
			Toggle	Toggle bit indication					
			Ob	Toggle bit in the previously transmitted link code					
				word has been 1_b (initial value)					
			1 _b	Toggle bit in the previously transmitted link code					
				word has been 0_b					
10:0	Message/	R	Message/Unformatted C	ode field					
	Unformatted		-	unformatted 11-bit code word from the link partner					
	Code field		depending on the setting of the Message Page bit						

Table 26: Auto-Negotiation Link Partner Ability Register Description – Next Page

1.5.8 Auto Negotiation Expansion Register

15	14	13	12	11	10	9	8	No.	Initial value
		6	0000H						
7	6	5	4	3	2	1	0		
	Reserved		Parallel	Link	Next	Page	Link		
			Detection	Partner	Page Able	Received	Partner		
			Fault	Next			Auto-		
				Page Able			Negotia		
							tion Able		

Table 27: Auto-Negotiation Expansion Register Overview

Bit position	Bit name	R/W		Function							
15:5	Reserved	R	Reserved	Reserved							
			Ignore on read access								
4	Parallel	R	Parallel Detection Fault								
	Detection		Indicates if a fault occure	ndicates if a fault occured during parallel detection							
	Fault										
			Parallel Detection	Parallel detection fault indication							
			Fault								
			Ob	No fault has occured during parallel detection (initial value)							
			1 _b	A fault has occured during parallel detection							
3	Link Partner	R	Link Partner Next Page	Able							
	Next Page		Indicates, if the link partr	ner is next page able or not							
	Able										
			Link Partner Next	Link partner next page ability indication							
			Page Able								
			Ob	0 _b Link partner is not next page able (initial value)							
			1 _b	Link partner is next page able							
2	Next Page	R	Next Page Able								
	Able		Indicates if the local devi	ice is next page able or not							
			Next Page Able	Next page ability indication							
			Ob	Local device is not next page able							
			1 _b	Local device is next page able (initial value)							
1	Page	R	Page Received								
	Received		Indicates, if a new page	dicates, if a new page has been received							
			Page Received	Page received indication							
			Ob	No new page has been received (initial value)							
			1 _b	A new page has been received							

Bit position	Bit name	R/W	Functi	ion						
0	Link Partner	R	Link P	ink Partner Auto-Negotiation Able						
	Auto-		Indicat	ndicates if the link partner is auto-negotiation able or not						
	Negotiation									
	Able		L	Link Partner Auto- Link partner auto-negotiation ability indication						
				Negotiation Able						
				0 _b	Link partner is not auto-negotiation able (initial					
				value)						
				1 _b	Link partner is auto-negotiation able					

Table 28: Auto-Negotiation Expansion Register Description

1.5.9 Auto Negotiation Next Page Transmit Register

15	14	13	12	11	10	9	8	No.	Initial value	
Next	Reserved	Message	Acknowle	Toggle	Message	e/Unformat	ted Code	7	2001H	
Page		Page	dge 2			field				
7	6	5	4	3	2	1	0			
	Message/Unformatted Code field									

 Table 29: Auto-Negotiation Next Page Transmit Register Overview

Bit position	Bit name	R/W		Function						
15	Next Page	R/W	Next Page							
			Indicates if next page wi	th link information exists.						
			Next Page	Next page indication						
			Ob	0 _b No next page exists (initial value)						
			1 _b	Next page exists						
14	-	R	Reserved							
			Write 0 _b ; ignore on read	access						
13	Message	R/W	Message Page							
	Page		Page type indication							
			Message Page	Page type indication						
			O _b	Next page is an unformatted page						
			1 _b	Next page is a message page (initial value)						
12	Acknowl	R/W	Acknowledge 2							
	edge 2		Indicates if device comp	lies to message						
			Acknowledge 2	Message compliance indication						
			Ob	Device does not comply to message (initial value)						
			1 _b	Device complies to message						
11	Toggle	R	Toggle							
			Indicates, if the toggle b	it of the previous page equalled 0_b or 1_b ; this function						
			is used by the next page	arbitration protocol.						
			Toggle	Toggle bit indication						
			0 _b	Toggle bit in the previously transmitted link code						
				word has been 1_b (initial value)						
			1 _b	Toggle bit in the previously transmitted link code						
				word has been 0 _b						
10:0	Message/	R/W	Message/Unformatted C	code field						
	Unformatted		Contains a message or	unformatted 11-bit code word to be transmitted to the						
	Code field			t message, that is stored in this field after reset, is the						
			Null message (001H).							

Table 30: Auto-Negotiation Next Page Transmit Register Description

1.5.10 Silicon Revision Register

15	14	13	12	11	10	9	8	No.	Initial value
	Reserved							16	0040H
7	6	5	4	3	2	1	0		
Silicon F	Silicon Revision Reserved								

Table 31: Silicon Revision Register Overview

Bit position	Bit name	R/W	Function	
15:10	-	R	Reserved	
			Ignore on read access	
9:6	Silicon	R	Silicon Revision	
	Revision		A 4-bit silicon revision identifier, that is hardwired to 1H	
5:0	-	R	Reserved	
			Ignore on read access	

Table 32: Silicon Revision Register Description

1.5.11 Mode Control/Status Register

15	14	13	12	11	10	9	8	No.	Initial value
Rese	erved	EDPWR	Reserved	LOW	MDPRE	FAR	Reserved	17	xxxxH
		DOWN		SQEN	BP	LOOP			
						BACK			
7	6	5	4	3	2	1	0		
AutoMDIX	MDI mode	Rese	erved	PHY	Force	ENER	Reserved		
_en				ADBP	Good Link	GYON			
					Status				

Table 33: Mode Control/Status Register Overview

Bit position	Bit name	R/W			Function
15:14	-	R/W	Re	served	
			Wr	ite 0 _b ; ignore on read	d access
13	EDPWR	R/W	ED	PWRDOWN	
	DOWN		En	ables the energy det	ect power down function
				EDPWRDOWN	Energy detect power down enable
				0 _b	Energy detect power down disabled (initial value)
				1 _b	Energy detect power down enabled
12	-	R/W	Re	served	
			Wr	ite 0 _b ; ignore on read	d access
11	LOWSQEN	R/W	LO	WSQEN	
			Se	ts a lower threshold	for the sqelch function
				ŀ	
				LOWSQEN	Energy detect power down enable
				Ob	Higher threshold for squelch function set
					(less sensitive, initial value)
				1 _b	Lower threshold for squelch function enabled
					(more sensitive)
10	MDPREBP	R/W		PREBP	
			Ма	nagement data prea	mble bypass
				MDPREBP	Management data proomble bypage anable
					Management data preamble bypass enable Ignore SMI packets without preamble (initial value)
				1 _b	Detect SMI packets without preamble
9	FARLOOPB	R/W	E٨	RLOOPBACK	
9	ACK	F\/ V V			pback mode in which all received packets are immedi
					he PHY is set to 100BASE-TX or 100BASE-FX mode.
				FARLOOPBACK	Remote loopback mode enable
				0 _b	Remote loopback mode disabled (initial value)
				1 _b	Remote loopback mode enabled
8	-	R/W		served	
			٧Vr	ite 0 _b ; ignore on read	access

Bit position	Bit name	R/W			Function			
7	AutoMDIX_	R/W	AutoMDIX_en					
	en –			_	ine for automatic detection of MDI/MDIX mode			
			A	utoMDIX_en	Automatic MDI/MDIX detection enable			
				0 _b	State machine for automatic MDI/MDIX detection			
					disabled (initial value after device reset)			
				1 _b	State machine for automatic MDI/MDIX detection enabled			
			Note:		e, after only the PHY has been reset, is selected by the Ph AUTOMDIXEN bit in the PHY CONFIG register.			
6								
6	MDI mode	R/W	MDI mo		ando monuelly			
			Selects	MDI or MDIX m				
					Manual MDI/MDIX setting			
				0 _b 1 _b	Set MDI mode (initial value) Set MDIX mode			
			Note:	This bit is only i	relevant, if the AutoMDIX_en bit is set to 0 _b .			
5:4	-	R/W						
				; ignore on read	d access			
3	PHYADBP	R/W	PHYAD					
				-	ore PHY address during SMI write access; this bit can			
			be <u>use</u> c		us write access to several PHYs			
				PHYADBP	PHY address bypass enable			
				Ob	Do not ignore PHY address during SMI write			
					access (initial value)			
				1 _b	Ignore PHY address during SMI write access			
2	Force Good	R/W		Bood Link Status				
	Link Status			an active 100BA	ASE-X link irrespective of what is happening on			
			the line					
			FC	rce Good Link	Force active 100BASE-X link			
				Status	Nermal exerction (initial value)			
				0 _b	Normal operation (initial value)			
				1 _b	Force an active 100BASE-X link			
1	ENER	R	Note: ENERC		only be used during laboratory testing			
I	GYON	к	Indicate	s wheter energy	y is detected on the line. If no (respetively too little) 256ms, this bit automatically goes to 0_b .			
				ENERGYON	Energy detected indication			
				0 _b	No sufficient energy level detected (initial value)			
				1 _b	Sufficient energy level detected			
0	-	R/W	Reserv	ed				
				; ignore on read	d access			

Table 34: Mode Control/Status Register Description

1.5.12 Special Mode Register

15	14	13	12	11	10	9	8	No.	Initial value
MIIMO	DE		Reserved		FX_MOD	Res	erved	18	000xH
					Е				
7	6	5	4	3	2	1	0		
PH	IY_MODE				PHY_ADD				

Table 35: Special Mode Register Overview

Bit position	Bit name	R/W		Function			
15:13	MIIMODE	R/W	MIIMODE Selects different interface types between PHY and MAC.				
			MIIMODE 00b others	MIIMODE selection MII interface (initial value) Reserved			
13	-	R	Reserved Ignore on read access				
12:11	-	R/W	Reserved Write 0₀; ignore on read access				
10	FX_MODE	R/W					
			FX_MODE	100BASE-TX mode enable			
				X_MODE disabled (initial value after hardware eset)			
			1b FX_MODE enabled Notes: 1. The initial value after a software reset of the PHYs, is selected by the contents of the Pn FX MODE field in the PHY CONFIG reg				
			ister. 2. When FX_MODE is set to 1_b , the PHY_MODE field must be set to either 011 _b or 010 _b . A consistent setting of both fields is required; otherwise proper operation of the PHYs cannot be guaranteed.				
9:8	-	R/W	Reserved Write 0₀; ignore on rea	d access			

Bit position	Bit name	R/W		Function
7:5	PHY_MODE	R/W	PHY_MODE	
			Selects between dif	ferent operation modes of the PHYs.
			PHY_MOD	E PHY operation mode
			000 _b	Select 10BASE-T HD, Auto-negotiate disabled,
				(initial value after hardware reset)
			001 _b	Select 10BASE-T FD, Auto-negotiate disabled
			010 _b	Select 100BASE-TX/FX HD, Auto-negotiate disa- bled
			011 _b	Select 100BASE-TX/FX FD, Auto-negotiate disa- bled
			100 _b	Select 100BASE-TX, HD advertised, Auto-negoti- ate enabled
			101 _b	Select 100BASE-TX, HD advertised, Auto-negoti- ate enabled, repeater mode
			110 _b	PHY starts in power down mode
			111 _b	Auto-negotiate enabled, AutoMDIX enabled
			required	stent setting of both FX_MODE and PHY_MODE fields is ; otherwise proper operation of the PHYs cannot be guar
			anteed	
4:0	PHY_ADD	R/W	PHY_ADD Selects the internal	PHY address for accesses via the management interface.
			PHY_ADD	PHY address setting
			00000b	Address for PHY 1 is 00H, address for PHY2 is 01H (initial value after hardware reset)
			00001 _b	
			00010b	Address for PHY 1 is 02H, address for PHY2 is 03H
			00011 _b	
			11110 _b	Address for PHY 1 is 1EH, address for PHY2 is 1FH
			11111 _b	
				bit of the PHY_ADD fiels is ignored; it is internally hard for PHY1 and to 1b for PHY2

Table 36: Special Mode Register Description

1.5.13 Special Conrol/Status Indication Register

15	14	13	12	11	10	9	8	No.	Initial value
	Reserved		SWRST_	SQEOFF		Reserved		27	xxxxH
			FAST						
7	6	5	4	3	2	1	0		
Re	eserved	FEFIEN	XPOL		Res	served			

Table 37: Special Control/Status Indication Register Overview

Bit position	Bit name	R/W	Function						
15:13	-	R/W	Reserved						
			Write 000 _b ; ignore on read access						
12	SWRST_	R/W	SWRST_FAST						
	FAST		Accelerates software reset extension from 256µs to 10µs for production test						
			SWRST_FAST Software reset extension acceleration						
			0 _b Software reset is extended to 256µs (initial value)						
			1 _b Software reset is extended to 10μs (initial value)						
11	SQEOFF	R/W	SQEOFF						
			Disables the SQE ("heartbeat") test						
			SQEOFF SQE test disable						
			0 _b SQE test is enabled (initial value after HW reset)						
			1 _b SQE test is disabled						
			Note: The value is unchanged after a software reset of the PHYs.						
10:6	_	R/W	Reserved						
			Write 00H; ignore on read access						
5	FEFIEN	R/W	FEFIEN						
			Enables far end fault indication.						
			FEFIEN Far end fault indication enable						
			0 _b Far end fault indication is disabled (initial value,						
			when FX_MODE bit is 1 _b during reset)						
			1 _b Far end fault indication is enabled (initial value,						
			when FX_MODE bit is 0 _b during reset)						
4	XPOL	R	XPOL						
			Indicates polarity state of a 10BASE-T link						
			XPOL 10BASE-T link polarity indication						
			0 _b Normal polarity (initial value)						
			1 _b Reversed polarity						
3:0	-	R	Reserved						
			Ignore on read access						

Table 38: Special Control/Status Indication Register Description

1.5.14 Interrupt Source Flag Register

15	14	13	12	11	10	9	8	No.	Initial value
			Rese	erved				29	0000H
7	6	5	4	3	2	1	0		
INT7	INT6	INT5	INT4	INT3	INT2	INT1	Reserved		

Table 39: Interrupt Source Flag Register Overview

Bit position	Bit name	R/W		Function				
15:8	-	R	Reserved					
			Ignore on read access					
7	INT7	R	INT7					
			Indicates, if the ENER	GYON bit has been set				
			INT7	Energy detection interrupt				
			O _b	No sufficient energy level detected (initial value)				
			1 _b	Sufficient energy level detected				
6	INT6	R	INT6					
			Indicates, if auto-nego	tiation process has been completed				
			<u></u>					
			INT6	Auto-negotiation completion interrupt				
			Ob	Auto-negotiation has not been completed				
				(initial value)				
			1 _b	Auto-negotiation has been completed				
5	INT5	R	INT5					
			Indicates, if a remote f	fault condition has been detected				
			INT5	Remote fault detection interrupt				
			0 _b	No remote fault condition has been detected				
				(initial value)				
			1 _b	Remote fault condition has been detected				
4	INT4	R	INT4					
			Indicates, if a link dow	n situation has been detected				
				+1				
			INT4	Link down interrupt				
			Ob	No link down interrupt has been generated				
				(initial value)				
			1 _b	Link down interrupt has been generated				

Bit position	Bit name	R/W		Function					
3	INT3	R	INT3 Indicates, if a link partner acknowledge has been received during the auto negotiation process						
			INT3	Link partner acknowledge interrupt					
			Ob	No link partner acknowledge interrupt has been generated (initial value)					
			1 _b	Link partner acknowledge interrupt has been generated					
2	INT2	R	INT2 Indicates, if a parall	lel detection fault has occurred					
			INT2	Parallel detection fault interrupt					
			O _b	No parallel detection fault interrupt has been gen erated (initial value)					
			1 _b	Parallel detection fault interrupt has been gener ated					
1	INT1	R	INT1 Indicated, if an auto	o-negotiation page has been received					
			INT1	Auto-negotiation page receive interrupt					
			Ob	No auto-negotiation page receive interrupt has been generated (initial value)					
			1 _b	Auto-negotiation page receive interrupt has been generated					
0	-	R	Reserved						
			Ignore on read acce	ess					

Table 40: Interrupt Source Flag Register Description

1.5.15 Interrupt Mask Register

15	14	13	12	11	10	9	8	No.	Initial value
			Rese	rved				30	0000H
7	6	5	4	3	2	1	0		
			Mask bits				Reserved		

Table 41: Interrupt Mask Register Overview

Bit position	Bit name	R/W	Function						
15:8	-	R	Reserved						
			Write 0b; ignore on read access						
7:1	Mask bits	R/W	Mask bits						
			Mask each interrupt from interrupt flag register separately						
			Mask bit n (n=1,, 7) Interrupt n masking (n=1,, 7)						
			0 _b Interrupt source n from interrupt flag register is						
			masked (initial value)						
			1 _b Interrupt source n from interrupt flag register is						
			enabled						
0	-	R	Reserved						
			Write 0b; ignore on read access						

Table 42: Interrupt Mask Register Description

1.5.16 PHY Special Control/Status Register

15	14	13	12	11	10	9	8	No.	Initial value
	Reserved		Autodone		Res	erved		31	0040H
7	6	5	4	3	2	1	0		
Reserved	Enable	Reserved	Speed indication			Reserved	Scramble		
	4B5B						Disable		

Table 43: PHY Special Control/Status Register Overview

Bit position	Bit name	R/W	Function				
15:13	-	R/W					
			Write 000 _b ; ignore on	read access			
12	Autodone	R	Autodone				
			Indicates, if auto-negotiation is done				
			Autodone	Auto-negotiation done indication			
			Ob	Auto-negotiation is not done or is disabled (initial value)			
			1 _b	Auto-negotiation is done			
11:7	-	R/W	Reserved				
			Write 00H; ignore on r	read access			
6	Enable 4B5B	R/W	Enable 4B5B				
			Allows to bypass the 4	IB/5B encoder/decoder.			
				1			
			Enable 4B/5B	4B/5B encoder/decoder bypass selection			
			Ob	4B/5B encoder/decoder is bypassed			
			1 _b	4B/5B encoder/decoder is enabled (initial value)			
5	-	R/W	Reserved				
			Write 000 _b ; ignore on	read access			
4:2	Speed	R	Speed Indication				
Indication Indicates Speed and HD/FD mode of the currently estab				ID/FD mode of the currently established link			
			Speed Indication	Current link speed indication			
			000 _b	No link (initial value)			
			001 _b	10BASE-T half duplex			
			010 _b	100BASE-TX half duplex			
			101 _b	10BASE-T full duplex			
			110b	100BASE-TX full duplex			
			others	Reserved			
1	-	R/W	Reserved				
			Write 0 _b ; ignore on rea	ad access			
0	Scramble	R/W	Scramble Disable				
	Disable		Allows to bypass the c	lata scrambler/descrambler blocks.			
			Scramble Disable	Data scrambler/descrambler bypass selection			
			0 _b	Data scrambler/descrambler enabled (initial value)			

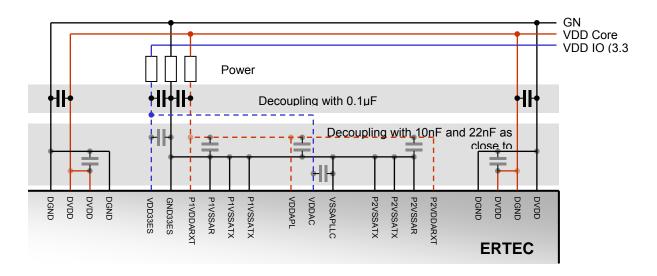
Table 44: PHY Special Control/Status Register Description

1.6 Board Design Recommendations

In this chapter some board design recommendations will be given with respect to

- supply voltage circuitry
- "line" interfaces for 10BASE-T, 100BASE-TX and 100BASE-FX
- unused "line" interfaces

1.6.1 Supply Voltage Circuitry


ERTEC 200 works with two operating voltages: VDD Core (1.5 V) and VDD IO (3.3 V). Additionally the on-chip PLL for the device clock generation requires a supply voltage called PLL_AVDD of 1.5 V, that is typically a filtered version of VDD Core.

The on-chip PHYs of ERTEC 200 require additional filtered operating voltages as shown in **\1\ Table 1.5.8.** The subsequent Table 45 illustrates, how these supply voltage are related to the "normal" VDD Core and VDD IO.

Pin Name	Function	Supply Voltage Generation
P(2:1)VDDARXTX	Analog port RX/TX power supply, 1.5 V	Must be generated from VDD
		Core (1.5 V) via a filter.
VDDAPLL	Analog central power supply, 1.5 V	
VDDACB	Analog central power supply, 3.3 V	Must be generated from VDD IO
		(3.3 V) via a filter.
VDD33ESD	Analog test power supply, 3.3 V	
DVDD(4:1)	Digital power supply, 1.5 V	No filter required; just capacitive
		decoupling from VDD Core
P(2:1)VSSARX	Analog port GND	Must be generated from GND
		Core /IO via a filter or connected
		to GND Core/IO at the far end
		from ERTEC 200.
P(2:1)VSSATX(2:1)	Analog port GND	
VSSAPLLCB	Analog central GND	
VSS33ESD	Analog test GND	
DGND(4:1)	Digital GND	No filter required; just capacitive
		decoupling from GND Core

Table 45: Generation of PHY-specific Supply Voltages

Beside filtering, the PHY-specific supply voltages should be equipped with pairs of decoupling capacitors: 10nF and 22 nF capacitors should be used for DVDD(3:2), VDDESD, VDDAPLL, VDDACB and P(2:1)VDDARXTX; they should be placed as close as possible to the chip. Additonally pairs of 0.1 and 22μ F capacitors should be applied to DVDD4, DVDD1, VDD3ESD and P(2:1)VDDARXTX. **Figure 6** shows the proposed circuit.

Figure 6: Decoupling Capacitor Usage

1.6.2 10BASE-T and 100BASE-TX Mode Circuitry

The analog input and output signals are very noise sensitive and PCB layout of these signals should be done very carefully. P(2:1)TxN, P(2:1)TxP, P(2:1)RxN and P(2:1)RxP must be routed with differential 100 Ω impedance and the trace length must be kept as short as possible. The EXTRES input must be connected to analog GND with a 12.4 k Ω resistor (1% tolerance). **Figure 7** and **Figure 8** show typical circuit examples for 10BASE-T and /or 100BASE-TX operation modes.

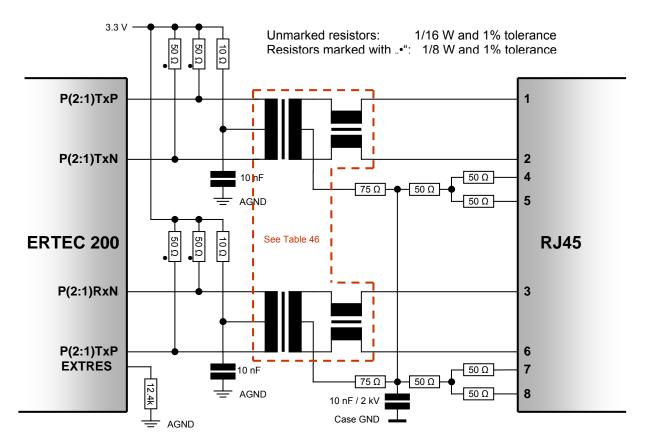
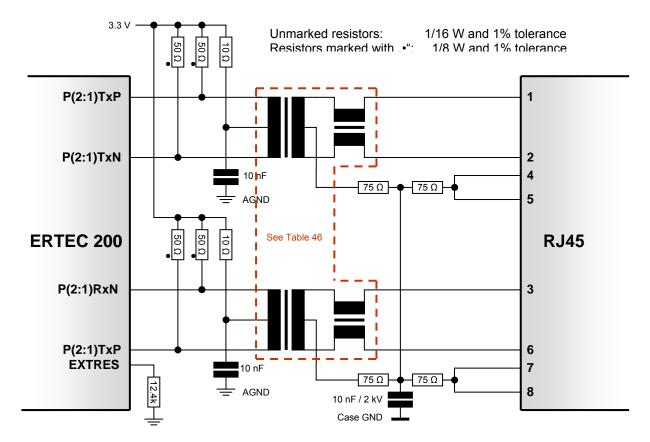



Figure 7: 10BASE-T and 100BASE-TX Interface Circuit Example 1

Figure 8: 10BASE-T and 100BASE-TX Interface Circuit Example 2

Table 46 shows some alternatives for the magnetics used in the previous circuits.

Manufacturer	Туре	Remarks
Pulse Engineering	H1102	single channel, 070°C operating temperature
Pulse Engineering	HX1188	single channel, -4085°C operating temperature
Pulse Engineering	H1270	dual channel, 070°C operating temperature
Pulse Engineering	HX1294	dual channel, -4085°C operating temperature

Table 46: Examples for Magnetics Selection

In applications, that do not use the 100BASE-FX mode, the related inputs P(2:1)RDxN, P(2:1)RDxP, P(2:1)SDxN and P(2:1)SDxP should be connected to analog GND, while the related outputs P(2:1)TDxN and P(2:1)TDxP should be left open. **Figure 9** shows the circuit for this case.

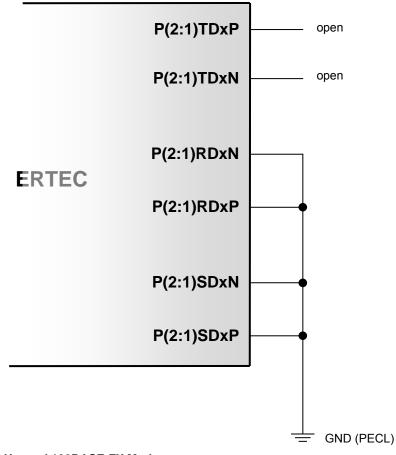


Figure 9: Circuit for Unused 100BASE-FX Mode

1.6.3 100BASE-FX Circuitry

In case of 100BASE-FX operation a standard optical transceiver module (like Agilent HFBR-5803) is connected to the P(2:1)RDxN, P(2:1)RDxP, P(2:1)SDxN, P(2:1)SDxP, P(2:1)TDxN and P(2:1)TDxP pins. The connection is straight forward and consists mainly of pull-up and pull-down resistors. The signals between the PHYs and the transceiver module(s) are 100 Ω differential respectively 50 Ω single-ended signals. This must be taken into account during PCB design. The external resistors should be placed as close to the ERTEC 200 pins as possible. **Figure 10** shows the details of the circuit.

Figure 10: 100BASE-FX Interface Example

Note: The circuitry in the transmit path deviates slightly from the examples that are typically given in optical transceiver data sheets. However it is required to implement the circuit above in order to provide pECL-compliant output levels.

In applications that do not use 10BASE-T respectively 100BASE-TX modes, but only the 100BASE-FX mode, the analog I/Os P(2:1)TxN, P(2:1)TxP, P(2:1)RxN and P(2:1)RxP should be left open. Only EXTRES must still be connected with the 12.4 k Ω resistor to analog GND.

2 <u>Miscellaneous</u>

2.1 References:

/1/ ERTEC 200 Manual V1.1.0 (ERTEC200_Manual_V110.pdf);