SIEMENS

1
2
3
4
5

Preface

SIMATIC

ET 200S distributed I/O 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

Manual

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning and operation of a device/system may only be performed by **qualified personnel**. Within the context of the safety notes in this documentation qualified persons are defined as persons who are authorized to commission, ground and label devices, systems and circuits in accordance with established safety practices and standards.

Proper use of Siemens products

Note the following:

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

(A)

가

A5E01076865-02 @ 09/2008

Preface

Purpose of the manual

This manual supplements the *ET 200S Distributed I/O System* Operating Instructions. General functions for the ET 200S are described in the *ET 200S Distributed I/O System* Operating Instructions.

The information in this document along with the operating instructions enables you to commission the ET 200S.

Basic knowledge requirements

To understand these operating instructions you should have general knowledge of automation engineering.

Scope of the manual

This manual applies to this ET 200S module. It describes the components that are valid at the time of publication.

Recycling and disposal

Thanks to the fact that it is low in contaminants, this ET 200S module is recyclable. For environmentally compliant recycling and disposal of your electronic waste, please contact a company certified for the disposal of electronic waste.

Additional support

If you have any questions relating to the products described in these operating instructions, and do not find the answers in this document, please contact your local Siemens representative.

http://www.siemens.com/automation/partner

The portal to our technical documentation for the various SIMATIC products and systems is available at:

http://www.siemens.com/automation/simatic/portal

The online catalog and ordering system are available at: http://www.siemens.com/automation/mall

Training center

We offer courses to help you get started with the ET 200S and the SIMATIC S7 automation system. Please contact your regional training center or the central training center in D -90327, Nuremberg, Germany. Phone: +49 (911) 895-3200.

http://www.siemens.com/sitrain

2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0) Manual, 07/2008, A5E01076865-02

Technical Support

You can reach technical support for all A&D projects

- using the support request web form: http://www.siemens.com/automation/support-request
- Phone: + 49 180 5050 222
- Fax: + 49 180 5050 223

For more information about our technical support, refer to our Web site at http://www.siemens.de/automation/service

Service & Support on the Internet

In addition to our documentation services, you can also make use of our comprehensive online knowledge base on the Internet.

http://www.siemens.com/automation/service&support

There you will find:

- Our Newsletter, which constantly provides you with the latest information about your products.
- The right documentation for you using our Service & Support search engine.
- The bulletin board, a worldwide knowledge exchange for users and experts.
- Your local contact for Automation & Drives in our contact database.
- Information about on-site services, repairs, spare parts. Lots more can be found on our "Services" pages.

Table of contents

	Prefac	e	3
1	Proper	ties	7
	1.1	2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)	7
	1.2	Compatibility with the predecessor module	15
2	Param	eters	17
	2.1	Parameters	17
	2.2	Parameter description	18
3	Diagno	ostics	19
	3.1	Diagnostics using LED display	19
	3.2	Error types	20
4	Analog	yvalue representation	21
	4.1	Introduction	21
	4.2	Analog value representation for measuring range with SIMATIC S7	21
	4.3	Measuring ranges	
	4.3.1 4.3.2	Measuring ranges for resistance thermometer Resistance measurement ranges	
	4.4	Effect on analog value representation	
	4.4.1	Effect of the supply voltage and the operating status on analog input values	25
	4.4.2	Effect of the value range on the analog input 2AI RTD Standard	26
5	Conne	cting	27
	5.1	Connecting measuring sensors	27
	5.2	Wiring unused channels on analog input modules	29
	5.3	Using the shield connection	29
	Index		31

Table of contents

1

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

Properties

- 2 inputs (3- and 4-cable connection) / 4 inputs (2-cable connection) for resistance thermometers or resistance measurement
- Input ranges:
 - Resistance thermometers: Pt100 (α = 0,003851); Ni100 (α = 0,00618); resolution 15 bit + sign
 - Resistance measurement: 150 Ω; 300 Ω; 600 Ω, PTC; resolution max. 15 bit + sign
- Isolated from the load voltage L+
- Linearization of the sensor characteristic curves
- Extended temperature range from 0 to 50°C with vertical installation
- supports I&M functions
- compatible with the 2AI RTD ST (6ES7134-4JB50-0AB50). The wiring does not have to be changed. The additional bridges on the terminal module of the 2AI RTD ST (6ES7134-4JB50-0AB50) do not have to be removed.
- Comparison junction for the 2AI TC ST analog electronic module. Channels 0 and 1 have been used as a comparison junction.

3 methods for measuring resistance

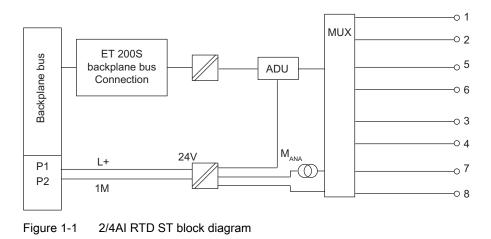
- 4-wire connection: Constant current is fed to the resistance thermometers / resistors by means of connections IC+ and IC-. The voltage measured at the resistance thermometer / resistor is measured at the connections M+ and M-. This ensures highly accurate measurement results with the four-wire connection.
- 3-wire connection: Constant current is fed to the resistance thermometers / resistors by means of connections IC+ and M-. The voltage arising at the resistance thermometer / resistor is measured at the connections M + and M -. The line resistance of M- is compensated for. This ensures highly accurate measurement results with the three-wire connection.
- **2-wire connection:** Up to 4 resistance thermometers / resistors can be connected simultaneously. No bridges are required on the terminal module. However, you have to expect a loss of accuracy in the measurement results with 2-wire connections

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

General terminal assignment

Note

Terminals A4, A8, A3, and A7 are only available on certain terminal modules.


2/4AI RTD ST terminal assignment (6ES7134-4JB51-0AB0)					
Terminal	Assignment	Terminal	Assignment	ssignment Notes	
1	M ₀₊	5	M ₁₊	M _{n+} : Measuring line positive, channel n	
2	M ₀₋	6	M ₁₋	Mn-: Measuring line negative, channel n	
3	M ₂₊ / I _{C0+}	7	M ₃₊ / I _{C1+}	I _{Cn+} : Constant current line positive, Channel n	
4	M ₂₋ / I _{C0-}	8	M ₃₋ /I _{C1-}	Icn-: Measuring line negative, Channel n	
A4	AUX1	A8	AUX1	 AUX1: Protective-conductor terminal or potential bus (freely usable up to 230 VAC) 	
A3	AUX1	A7	AUX1		

Usable terminal modules

Usable terminal modules for 2/4AI RTD ST (6ES7134-4JB51-0AB0)				
TM-E15C26-A1 (6ES7193-4CA50-0AA0)	TM-E15C24-01 (6ES7193-4CB30-0AA0)	Spring terminal		
TM-E15S26-A1 (6ES7193-4CA40-0AA0)	TM-E15S24-01 (6ES7193-4CB20-0AA0)	Screw-type terminal		
TM-E15N26-A1 (6ES7193-4CA80-0AA0)	TM-E15N24-01 (6ES7193-4CB70-0AA0)	Fast Connect		
		Connection examples		
AUX1 AUX1 AUX1 AUX1 AUX1 AUX1 AUX1 AUX1	$ \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	2-wire 3-wire 4-wire M+ $M+$ $M+$ $M+M M I_{c+} I_{c+} I_{c-}$		

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

Block diagram

2/4AI RTD ST technical specifications (6ES7134-4JB51-0AB0)

Dimensions and weight					
Width (mm)	15				
Weight	Approx. 40 g				
Module-s	pecific data				
Supports isochronous operation	No				
Supports I&M functions	Yes				
Number of inputs	2, with 3- and 4-wire connection				
	4, with 2-wire connection				
Cable length					
Shielded	Max. 200 m				
Parameter length	4 bytes, as 6ES7134-4JB50-0AB0				
	7 bytes, as 6ES7134-4JB51-0AB0				
Address space	4 bytes, with 3- and 4-wire connection				
	8 bytes, with 2-wire connection				
Voltages, curr	ents, potentials				
Rated load voltage L+ (from the power module)	24 VDC				
Reverse polarity protection	Yes				
Power supply of the transducers	Yes				
Constant-current supply for resistance-type sensors	1.65 mA ¹				
Short-circuit protection	Yes				
Electrical isolation					
Between the channels and backplane bus	Yes				
Between the channels and load voltage L+	Yes				
Between the channels	No				

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

50
20
80
4
s per module x
jn

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

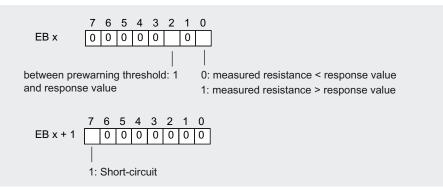
Data for	selecting a sensor	
Input range (rated value)/input resistance		
Resistance-type sensor	150 Ω/min. 2 MΩ	2
	300 Ω/min. 2 MΩ	2
	600 Ω/min. 2 MΩ	2
	PTC min 2 M Ω	
Resistance thermometer	Pt100/min. 2 MΩ	2
	Ni100/min. 2 MΩ	2
Permitted input voltage (destruction limit)	Max. 9 V	
Connection of the sensors		
For measuring resistance		
 2-wire connection 	Yes,	
 3-wire connection 	Yes, internal compensation of line resistances Yes	
 Four-wire connection 		
Characteristic curve linearization	Yes, parameters Ni100	can be assigned for Pt100,
Smoothing of the measured values	Yes, can be assigned parameters in 4 steps by means of digital filtering	
	Step	Time constant
	None	1 x cycle time
	Weak	4 x cycle time
	Medium	32 x cycle time
	Strong	64 x cycle time

¹ with PTC: max. 1.65 mA

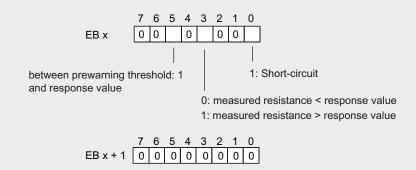
²In accordance with VDE 0660 Part 302/303, Type A, no diagnostics for overrun/underrun

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

Using PTC resistors


PTCs are suitable for temperature monitoring and as thermal protective devices for complex drives and transformer windings.

- Select "Two-wire resistor" and "PTC" when configuring:
- Connect the PTC in accordance with the two-wire connection method.
- Apply PTC resistors of type A (PTC thermistors) in accordance with DIN / VDE 0660, part 302.
- If the diagnosis "Overrun/underrun" is enabled, a diagnosis "Lower limit exceeded" indicating a short-circuit is indicated at resistance values < 18 Ω.
- Sensor data for the PTC resistor:


Property	Technical specifications	Remarks		
Switching points	Behavior with rising temperature			
	< 550 Ω	 Normal range: SIMATIC S7: Bit 0 = "0", bit 2 = "0" (in the PII) SIMATIC S5: Bit 3 = "0", bit 5 = "0" (in the PAE) 		
	550 Ω to 1650 Ω	 Prewarning range: SIMATIC S7: Bit 0 = "0", bit 2 = "1" (in the PII) SIMATIC S5: Bit 3 = "0", bit 5 = "1" (in the PII) 		
	> 1650 Ω	 Addressable range: SIMATIC S7: Bit 0 = "1", bit 2 = "0" (in the PII) SIMATIC S5: Bit 3 = "1", bit 5 = "0" (in the PII) 		
	Behavior with falling te	mperature		
	> 750 Ω	Addressable range: • SIMATIC S7: Bit 0 = "1", bit 2 = "0" (in the PII) • SIMATIC S5: Bit 3 = "1", bit 5 = "0" (in the PII)		
	750 Ω to 540 Ω	 Prewarning range: SIMATIC S7: Bit 0 = "0", bit 2 = "1" (in the PII) SIMATIC S5: Bit 3 = "0", bit 5 = "1" (in the PII) 		
	< 540 Ω	Normal range: • SIMATIC S7: Bit 0 = "0", bit 2 = "0" (in the PII) • SIMATIC S5: Bit 3 = "0", bit 5 = "0" (in the PII)		
(TNF-5) °C	max. 550 Ω	TNF= rated operating temperature		
(TNF+5) °C	min. 1330 Ω			
(TNF+15) °C	min. 4000 Ω			
Measuring circuit voltage	max. 7.5V			
Voltage on the PTC				

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

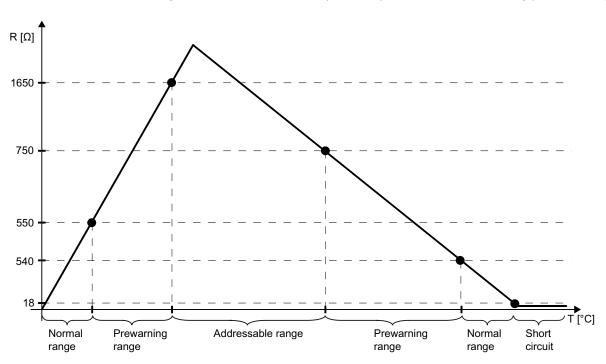
Assignment in the process input image (PII) in the case of SIMATIC S7

Assignment in the process input image (PII) in the case of SIMATIC S5

• Notes on programming

NOTICE

Only the bits 0+2 or 3+5 are relevant for the purposes of evaluation in the process input image. You can use bits 0+2 or 3+5 to monitor the temperature of a motor, for example.


Bits 0+2 or 3+5 in the process input image does not have a retentive function. Make sure at parameter assignment that motor start-up is controlled (by means of an acknowledgment), for example.

Bits 0+2 or 3+5 cannot be set at the same time, but set one after the other.

For safety reasons, always evaluate the diagnostic inputs of the 2/4AI RTD ST, because measurement is not possible when the EM is removed, when the power supply to the EM has failed, or in the event of a wire break or short-circuit of the measuring lines.

1.1 2/4AI RTD ST analog electronic module (6ES7134-4JB51-0AB0)

Example

The diagram below shows the temperature pattern and the switching points belonging to it.

I&M functions

The interface modules identified in the table below (as of order number) can be used to read and write I&M data from the module and for the firmware update:

Interface module	as of order number
IM151-1 STANDARD	6ES7151-1AA05-0AB0
IM151-1 HIGH FEATURE	6ES7151-1BA02-0AB0
IM151-3 PN	6ES7151-3AA22-0AB0
IM151-3 PN HIGH FEATURE	6ES7151-3BA22-0AB0
IM151-3 PN FO	6ES7151-3BB22-0AB0
IM151-7 CPU	6ES7151-7AA20-0AB0

1.2 Compatibility with the predecessor module

1.2 Compatibility with the predecessor module

Compatible with 2AI RTD ST analog electronic module (6ES7134-4JB50-0AB0)

If you configure the 2/4AI RTD ST (6ES7134-4JB51-0AB0) as predecessor module (6ES7134-4JB50-0AB0), then it behaves as if it is compatible.

The following technical specifications of the 2/4AI RTD ST (6ES7134-4JB51-0AB0) have changed values:

2/4AI RTD ST technical specifications 6ES7134-4JB51-0AB0			configured as 6ES7134-4JB50-0AB0	
Conversion time in ms (per module)	60 Hz	50 Hz	60 Hz	50 Hz
	67 ms	80 ms	67 ms	80 ms

Diagnostics data record 1 (DS1)

2AI RTD ST (6ES7134-4JB50-0AB0) plugged in:

- Length of the DS1: 16 bytes
- Number of channels specified in the DS1: 2

2/4AI RTD ST (6ES7134-4JB50-0AB0) plugged in to compatibility mode:

- Length of the DS1: 24 bytes
- Number of channels specified in the DS1: 4

Measuring ranges for measuring resistance

With 2/4AI RTD ST (6ES7134-4JB51-0AB0) there is no undershoot range and underflow with the measuring ranges for the resistors 150 Ω , 300 Ω and 600 Ω .

2/4AI RTD STANDARD with IM151-1 BASIC, IM151-1 COMPACT or IM151-1 FO STANDARD

If you use the electronics module 2/4AI RTD STANDARD with the interface modules IM151-1 BASIC, IM151-1 COMPACT or IM151-1 FO STANDARD, then the electronics module can be operated only as 2AI RTD STANDARD.

1.2 Compatibility with the predecessor module

Parameters

2.1 Parameters

Table 2- 1	Parameters for the 2/4AI RTD ST analog electronic module

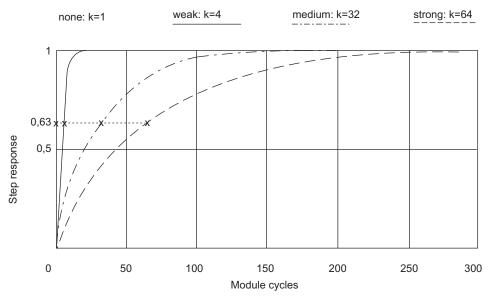
Parameter	Range of values	Default setting	Applicability
Group diagnostics	locking	locking	Module
	enabling		
Diagnostics:	locking	locking	Module
overflow/underflow	enabling		
Diagnostics: Wire break	• disable ¹	Disable	Channel
	Enable		
Smoothing	None	None	Channel
	• Weak		
	Medium		
	Strong		
Type of measurement	De-activated	4-wire	Channel
	Four-wire resistor	thermal resistor	
	Three-wire resistor		
	Two-wire resistor		
	Four-wire thermal resistor		
	Three-wire thermal resistor		
	Two-wire thermal resistor		
Measurement range	 150 Ω 	Pt100 Standard	Channel
	 300 Ω 		
	 600 Ω 		
	• PTC		
	Pt100 Climatic		
	Ni100 Climatic Range		
	Pt100 Standard		
	Ni100 Standard		
¹ Wire break diagnostic is d	isabled if - type of measurement = "d	eactivated" or measuring	range = "PTC" was assigned.

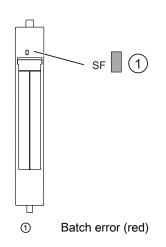
2.2 Parameter description

Smoothing

The individual measured values are smoothed by digital filtering. The smoothing can be adjusted in four steps, in which the smoothing factor k multiplied with cycle time of the electronic module equals the time constant of the smoothing filter. The higher the smoothing the greater the time constant of the filter.

The following diagrams show the step response with the various smoothing factors depending on the number of subassembly cycles.




Figure 2-1 Smoothing on the 2AI RTD ST

3

Diagnostics

3.1 Diagnostics using LED display

LED display

Status and error displays

Event (LED) SF	Cause	Remedy
On	No configuration or incorrect module plugged in. No load voltage.present There is a diagnostic message.	Check the parameter assignment. Check the load voltage. Evaluate the diagnostics.

3.2 Error types

3.2 Error types

Analog input module error types

	Fault type	Meaning	Remedy
16 _D	10000: Configuration error	Module cannot use the parameter for the channel:	Correct the configuration (align actual and preset configuration).
		Inserted module does not match the one configured.	Correct the parameter assignment (diagnostics wire
		Faulty parameter assignment.	break only for the allowed measuring range parameterized).
9 _D	01001: Errors	Internal module error (diagnostics message at channel 0 applies to the entire module)	Replace the module.
7 _D	00111: Violation of higher limit	Value is above the overshoot range.	Correct the module/actuator tuning.
8 _D	01000: Lower value limit fallen below	Value is below the underrange.	Correct the module/actuator tuning.
6 _D	00110: Open circuit	Line to the sensor interrupted.	Correct the process wiring.

Table 3-1 Error types

Analog value representation

4.1 Introduction

Electronic modules with analog outputs

With the electronic module with analog inputs, continuously variable signals, such as those occurring in temperature measurement and resistance measurement, can be acquired, evaluated, and converted to digital values for further processing.

4.2 Analog value representation for measuring range with SIMATIC S7

Analog value representation

With the same nominal range, the digitized analog value is the same for input and output values. Analog values are represented in two's complement.

The following table shows the analog value representation for the analog electronic modules.

Resolution		Analog value														
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Significance of the bits	S	214	2 ¹³	212	211	2 ¹⁰	2 ⁹	2 ⁸	27	26	25	24	2 ³	2 ²	2 ¹	20

Sign

The sign (S) of the analog value is always in bit number 15:

- "0" → +
- "1" → **-**

4.3 Measuring ranges

Analog values

The following table shows the representation of the binary analog values and the corresponding decimal and hexadecimal representation of the units of the analog values.

The table below shows the 11, 12, 13, 14, and 15 bit resolutions + sign. Each analog value is entered left aligned in the ACCU. The bits marked with "x" are set to "0".

Resolution in bits	Units		Analog value			
	Decimal	Hexadecimal	High byte	Low byte		
11+S	16	10 _H	S000000	0001xxxx		
12+S	8	8н	S000000	00001xxx		
13+S	4	4 _H	S000000	0 0 0 0 0 1 x x		
14+S	2	4 _H	S000000	0 0 0 0 0 0 1 x		
15 + sign	1	1н	S000000	0000001		

Table 4-2 Analog values (SIMATIC S7 format)

4.3 Measuring ranges

4.3.1 Measuring ranges for resistance thermometer

Introduction

The following tables contain the digitized analog values for the measuring ranges of the analog input modules.

Measured values in the case of a wire break depending on diagnostic being enabled

 Table 4- 3
 Measured values in the case of a wire break depending on diagnostic being enabled

Format	Parameter assignment	Measu	ured values	Explanation		
		Decimal	Hexadecimal			
S7	"Wire break" diagnostics enabled	32767	7FFF _H	"Open circuit" diagnostics message		
	 "Wire break" diagnostics disabled "Overflow/underflow" diagnostics enabled 		8000 _H	 Measured value after leaving the underrange "Lower limit value undershot" diagnostics message 		
	 "Wire break" diagnostics disabled "Overflow/underflow" diagnostics disabled 		8000 _H	Measured value after leaving the underrange		

4.3 Measuring ranges

Measuring ranges for resistance thermometer Pt 100 standard

Pt 100 Standard in °C	Un	iits	Range
(1 digit = 0.1°C)	Decimal	hexadecimal	
> 1000,0	32767	7FFF _H	Overflow
1000,0	10000	2710н	
:	:	:	Overshoot range
850,1	8501	2135н	
850,0	8500	2134 _H	
:	:	:	Rated range
-200,0	-2000	F830 н	
-200,1	-2001	F82F _H	
:	:	:	Underrange
-243,0	-2430	F682 н	
< -243,0	-32768	8000н	Underflow

Table 4-4 SIMATIC S7 format: Measuring ranges Pt 100 standard in °C

Measuring ranges for resistance thermometer Pt 100 Climate

Pt 100 Climate in °C	Un	its	Range
(1 digit = 0.01°C)	C) Decimal hexadecim		
> 155,00	32767	7FFF _H	Overflow
155,00	15500	3С8Сн	
:	:	:	Overshoot range
130,01	13001	32C9 _Н	
130,00	13000	32С8н	
:	:	:	Nominal range
-120,00	-12000	D120н	
-120,01	-12001	D11F _H	
:	:	:	Underrange
-145,00	-14500	С75Сн	
< -145,00	-32768	8000 _H	Underflow

Table 4-5 SIMATIC S7 format: Measuring ranges Pt 100 Climate in °C

4.3 Measuring ranges

Measuring ranges for resistance thermometer Ni 100 Standard

Ni 100 Standard in °C	Un	its	Range
(1 digit = 0.1°C)	Decimal	hexadecimal	
> 295,0	32767	7FFF _H	Overflow
295,0	2950	В86н	
:	:	:	Overshoot range
250,1	2501	9С5н	
250,0	2500	9C4 _H	
:	:	:	Nominal range
-60,0	-600	FDA8 _H	
-60,1	-601	FDA7 _H	
:	:	:	Underrange
-105,0	-1050	FBE6 _H	
< -105,0	-32768	8000н	Underflow

Table 4-6 SIMATIC S7 format: Measuring ranges Ni 100 Standard in °C

Measuring ranges for resistance thermometer Ni 100 Climate

Table 4- 7	SIMATIC S7 format: Measuring ranges Ni 100 Climate in °C
------------	--

Ni 100 Climate in °C	Ur	iits	Range
(1 digit = 0.01°C)	Decimal	hexadecimal	
> 295,00	32767	7FFF _H	Overflow
295,00	29500	733Сн	
:	:	:	Overshoot range
250,01	25001	61А9 _Н	
250,00	25000	61А8н	
:	:	:	Nominal range
-60,00	-6000	Е890н	
-60,01	-6001	E88F н	
:	:	:	Underrange
-105,00	-10500	D6FCH	
< -105,00	-32768	8000 _H	Underflow

4.4 Effect on analog value representation

4.3.2 Resistance measurement ranges

Measuring ranges for resistive sensors: 150 $\Omega,$ 300 $\Omega,$ 600 Ω

Measuring range 150 Ω	Measuring range 300 Ω	Measuring range	Ur	nits	Range
		600 Ω	Decimal	hexadeci mal	
> 176.38	> 352,77	> 705,53	32767	7FFF _H	Overflow
176,38	352,77	705,53	32511	7EFFн	
:	:	:	:	:	Overshoot range
150,005	300,01	600,02	27649	6C01н	
150,00	300,00	600,00	27648	6C00 _H	
112,50	225,00	450,00	20736	5100н	
:	:	:	:	:	Nominal range
0,00	0,00	0,00	0	0н	

Table 4-8 SIMATIC S7 format: Measuring ranges 150 Ω , 300 Ω , 600 Ω

4.4 Effect on analog value representation

4.4.1 Effect of the supply voltage and the operating status on analog input values

The input values of the analog modules are dependent on the supply voltage for electronics/encoders and on the operating status of the PLC (CPU of the DP master). The table below shows this dependency..

Table 4-9	Relationship between the analog input values for the operating status of the PLC (CPU
	of the DP master) and the supply voltage L+

Operating state of the PLC (CPU of the DP master)		Power supply L+ on ET 200S (power module)	Input value of the electronic module with analog inputs (evaluation possible on the CPU of the DP master)			
POWER ON	RUN	L+ present	Process values			
			$7FFF_H$ until first conversion after startup, or after assignment of parameters for the module is completed.			
		L+ missing	7FFF _H			
POWER ON	STOP	L+ present	Process value			
		L+ missing	7FFF _H			
POWER OFF	-	L+ present	-			
		L+ missing	-			

4.4 Effect on analog value representation

4.4.2 Effect of the value range on the analog input 2AI RTD Standard

The response of the electronic modules with analog inputs depends on the part of the value range in which the input values are located. The table below shows this dependency..

Table 4-10 Response of the analog modules, depending on the location of the analog input value in the range of values

Measured value within	Input value in SIMATIC S7 format	Input value in SIMATIC S5 format			
Rated range	Measured value	Measured value			
Over-/Undershoot range	Measured value	Measured value			
Overflow	7FFF _H	End of the overshoot range +1 plus overflow bit			
Underflow	8000 _H	End of the undershoot range -1 plus overflow bit			
prior to parameter assignment, or incorrect parameter assignment	7FFF _H	7FFF _H			

Connecting

5.1 Connecting measuring sensors

Introduction

You can connect resistances as measuring sensors to the analog input module.

In this chapter you will find out how to connect the measuring sensors and what to watch for when doing so.

Lines for analog signals

You should use shielded and twisted-pair lines for the analog signals. This reduces the effect of interference. You should ground the shield of the analog lines at both ends of the line. If there are differences in potential between the ends of the line, a compensating current flows via the shield that can interfere with the analog signals. If this is the case, you should only ground the shield at one end of the line.

Analog input modules

In the case of the analog input modules there is electrical isolation:

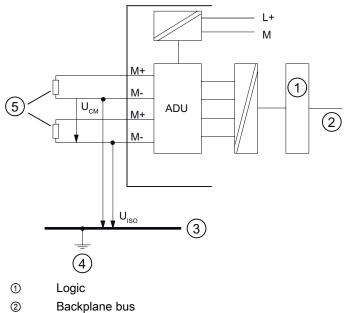
- Between logic and backplane bus.
- Between load voltage and the channels
 - Isolation: No link between MANA and the central grounding point (UISO)

Note

Ensure that this potential difference U_{ISO} does not exceed the permitted value.

Abbreviations used

The meanings of the abbreviations in the figures below are as follows:


- M + Measuring line (positive)
- M Measuring line (negative)
- Ic + Constant-current cable (positive)
- Ic Constant-current cable (negative)
- U_{CM} Potential difference between inputs
- UISO Potential difference between M- and central grounding point

5.1 Connecting measuring sensors

Connection of isolated measuring sensors to analog inputs

The isolated measuring sensors are not connected to the local ground potential. They can be floating.

The following figure illustrates the connection of isolated measuring sensors to a floating analog input module:

- ③ Ground bus
- ④ Central grounding point
- Isolated measuring sensors

Connecting

5.2 Wiring unused channels on analog input modules

5.2 Wiring unused channels on analog input modules

Rules

Pay attention to the following instructions when wiring unused channels:

- "Disable" unused input channels when setting parameters.
- A disabled channel always returns the value 7FF_H.
- The cycle time of the module reduces by 80 ms (e.g. 84 ms) per disabled channel.
- To adhere to the permissible potential differences, you must wire jumpers on the terminal module for the unused channels.

Analog input module	TM connection terminal							
2AI RTD ST	Channel 0				Channel 1			
	1	2	3	4	5	6	7	8
		•-•			••			
2/4AI RTD ST	RTD ST Channel 0 Channel 2		Channel 2		Channel 1		Channel 3	
	1	2	3	4	5	6	7	8
	•	-	•	•	•	-•	•	-•

5.3 Using the shield connection

Rules

To prevent interference we recommend the following for analog electronic modules:

- Use shielded wires to the sensors and actuators.
- Lay out the wire shields on the shield connection.
- Connect the shield connection to the ground bus with low impedance.

Connecting

5.3 Using the shield connection

Index

2

2/4AI RTD ST analog electronic module Block diagram, 9 Properties, 7 Technical specifications, 9 Terminal assignment, 8

Α

Analog input modules Error types, 20 Analog value representation, 27 for resistance thermometer, 23, 24 for resistance thermometers, 23

В

Basic knowledge requirements, 3 Behavior of the analog modules, 25 at faults, 25 During operation, 25

С

Connecting, 27

D

Disposal, 3

I

Internet Service & Support, 4 Isolated measuring sensors, 28

L

LED display, 19 Lines for analog signals, 27

М

Measured value resolution, 22 Measuring ranges with SIMATIC S7, 21 Measuring sensors, 27

Ρ

Parameter, 17

R

Recycling, 3

S

Scope Manual, 3 Service & Support, 4 Shield connection, 29 Smoothing, 18

Т

Technical Support, 4 Training center, 3 Index