
Contents, Preface

Product Overview 1

System Requirements 2

Installing WinLC Basis ODK 3

Getting Started with a Sample
Program

4

Basic Tasks for Implementing a
Custom COM Interface

5

Creating the STEP 7 Program 6

WinAC Basis ODK COM Object 7

IWinLCServices Interface 8

Data Access Helper Class 9

Asynchronous Processor Class 10

Monitor Class 11

WinAC Basis ODK Library for
STEP 7

12

Debugging the COM Object 13

Remarks Form, Index

Edition: 2

WinAC Open Development Kit
(ODK)

User Manual

SIMATIC

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper
precautions are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Correct Usage
Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the
technical descriptions, and only in connection with devices or components from other manufacturers
which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correct-
ly, and operated and maintained as recommended.

Trademarks
SIMATIC�, SIMATIC HMI� and SIMATIC NET� are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights
may be violated if they are used by third parties for their own purposes.

Safety Guidelines
This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

We have checked the contents of this manual for agreement with the hardware and
software described. Since deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the data in this manual are reviewed regularly
and any necessary corrections included in subsequent editions. Suggestions for
improvement are welcomed.

Disclaimer of LiabilityCopyright Siemens AG 1999 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of a utility model
or design, are reserved.

Siemens AG
Automation and Drives (A&D)
Industrial Automation Systems (AS)
Postfach 4848, D- 90327 Nürnberg

� Siemens AG 1999
Technical data subject to change.

Siemens Aktiengesellschaft

WinAC Basis ODK User Manual 1

Table of Contents
TABLE OF CONTENTS ... 1

PREFACE ... 5

Audience... 5

Scope of the Manual ... 5

How to Use This Manual ... 5

Other Manuals .. 5

Additional Assistance .. 6

Contacting Customer Support ... 6

PRODUCT OVERVIEW .. 7

WinAC Basis ODK Expands the Capabilities of WinLC 7

Tools Provided by WinAC Basis ODK ... 8

WinAC Basis ODK Provides a Mechanism for Defining Custom Logic 8

SYSTEM REQUIREMENTS.. 11

Hardware Requirements ... 11

Software Requirements... 11

INSTALLING WINAC BASIS ODK... 13

If a Version of WinAC Basis ODK Is Already Installed... 14

Uninstalling (Removing) WinAC Basis ODK.. 14

GETTING STARTED WITH A SAMPLE PROGRAM 15

Basic Tasks for Using the Sample Program .. 15

Sample Program ("Histogram") ... 16
STEP 7 Project (Histogram)...17

Sample COM Object ("Histogram") ... 17

Histogram.h... 18

Histogram.ccp ... 19

BASIC TASKS FOR IMPLEMENTING A CUSTOM COM INTERFACE 23

Using the Application Wizard to Create Your COM Object 23

Start the WinAC ODK Application Wizard ... 23

Enter the ATL/COM Class and Interface Information... 24

Select Whether to Enable Asynchronous Processing.. 26

Contents

2 WinAC Basis ODK User Manual

Select Whether to Enable Asynchronous Monitoring... 27

Generate the WinAC Basis ODK Object.. 29

Project Shell.. 30
Class View of the C++ Object Shell..30

CREATING THE STEP 7 PROGRAM .. 31

Loading the WinAC Basis ODK Library into STEP 7 ... 31

Inserting the WinAC Basis ODK SFBs into the STEP 7 Program 32

WINAC BASIS ODK COM OBJECT .. 33

WinAC Basis ODK Application Wizard .. 33

Execution Rules .. 34
IWinLCLogicExtension Execute Method...34
IWinLCLogicExtension Activate and Deactivate Methods34

IWINLCSERVICES INTERFACE.. 35

HRESULT ReadState(WinLCState * state) ..35
HRESULT ScheduleOB(byte class_ID, byte eventNr, byte seqLayer, byte obNum, byte
dataType2, byte dataType1, unsigned short data1, unsigned long data2)...............35

DATA ACCESS HELPER CLASS.. 39

CWinLCReadData Member Functions .. 39
bool ReadS7BOOL(long byteOffset, int bitNo, bool &value)....................................39
bool ReadS7BYTE(long byteOffset, BIT8 &value) ..40
bool ReadS7CHAR(long byteOffset, char &value)..40
bool ReadS7DATE(long byteOffset, UINT16 &value) ...40
bool ReadS7DINT(long byteOffset, SINT32 &value)...40
bool ReadS7DWORD(long byteOffset, BIT32 &value)..41
bool ReadS7INT(long byteOffset, SINT16 &value) ...41
bool ReadS7REAL(long byteOffset, float &value)...41
bool ReadS7S5TIME(long byteOffset, BIT16 &value)...41
bool ReadS7STRING(long byteOffset, UINT8 readMax, char* string).....................42
bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, UINT8 &curLen).....42
bool ReadS7TIME(long byteOffset, SINT32 &value) ..43
bool ReadS7TIME_OF_DAY(long byteOffset, UINT32 &value)43
bool ReadS7WORD(long byteOffset, BIT16 &value) ..43

CWinLCReadWriteData Member Functions .. 44
bool WriteS7BOOL(long byteOffset, int bitNo, bool &value)....................................44
bool WriteS7BYTE(long byteOffset, BIT8 &value) ..44
bool WriteS7CHAR(long byteOffset, char &value) ..45
bool WriteS7DATE(long byteOffset, UINT16 &value) ...45
bool WriteS7DINT(long byteOffset, SINT32 &value)...45
bool WriteS7DWORD(long byteOffset, BIT32 &value)..45

Contents

WinAC Basis ODK User Manual 3

bool WriteS7INT(long byteOffset, SINT16 &value) ...46
bool WriteS7REAL(long byteOffset, float &value) ...46
bool WriteS7S5TIME(long byteOffset, BIT16 &value)...46
bool WriteS7STRING(long byteOffset, char* string)..46
bool WriteS7TIME(long byteOffset, SINT32 &value)...47
bool WriteS7TIME_OF_DAY(long byteOffset, UINT32 &value)...............................47
bool WriteS7WORD(long byteOffset, BIT16 &value) ..47

ASYNCHRONOUS PROCESSOR CLASS .. 49

Asynchronous Events ... 50

AsyncProc Class ... 50
AsyncProc()...50
AsyncProc(IWinLCServices *WinLCSvc)..50
void PauseThread() ...50
void ResumeThread() ..50
void ResumeThread(IWinLCServices* WinLCSvc)...51
void StopThread()..51
void Execute() ...51

EventMsg Class .. 52
EventMsg() ..52
long Execute() ...52
UINT GetDeleteTime()...52
long GetResult() ..52
UINT GetStatus()...53
void SetDelTime(DelTime WhenDelete)...53

Enumerated Types.. 53
DelTime...53
EventStatus ...53

Queue Class ... 54
long Dequeue()..54
long Enqueue() ..54
long GetSize() ...54
Queue(long Size)...54
Queue() ...54

MONITOR CLASS .. 55

MonitorThread Class... 55

Construction Functions ... 55
MonitorThread ()..55
MonitorThread(IWinLCServices* WinLCSvc)..55

Thread Control Functions.. 56
void PauseThread() ...56
void ResumeThread() ..56

Contents

4 WinAC Basis ODK User Manual

void ResumeThread(IWinLCServices* WinLCSvc)...56
void StopThread()..56
void Execute() ...56

WINAC BASIS ODK LIBRARY FOR STEP 7 .. 57

SFB65001 ("CREA_COM") ... 57
Error Codes for SFB65001...58

SFB65002 ("EXEC_COM") ... 58
Error Codes for SFB65002 ("EXEC_COM") ...59

DEBUGGING THE COM OBJECT ... 61

In Case WinLC Crashes while Testing Your COM object 62

REMARKS FORM... 63

INDEX ... 65

WinAC Basis ODK User Manual 5

Preface
The Windows Automation Center (WinAC) Basis Open Development Kit (ODK) provides you with the
tools for creating custom software that interacts directly with the Windows Logic Controller (WinLC)
program scan cycle. This interaction uses Microsoft's COM (Component Object Model) technology:
your custom software is a COM object that is loaded as a DLL within the WinLC process.

WinAC Basis ODK consists of the following elements:

• COM extension for WinLC version 3.0

• Application wizard for Visual C++ version 6.0

• STEP 7 library containing SFBs for interacting with COM objects

• WinAC Basis ODK User Manual (electronic)

• Sample program

Audience
This manual is intended for engineers, programmers, and maintenance personnel who have a
general knowledge of programmable logic controllers and who are proficient in C or C++. Knowledge
of STEP 7 programming and of WinLC is also required.

Scope of the Manual

This manual describes the features and the operation of version3.0 of the WinAC Open Development
Kit (ODK).

How to Use This Manual

This manual provides the following information:

• Overview of WinAC Basis ODK

• Installing WinAC Basis ODK

• Getting started a sample application program

• Creating a COM object (including the WinAC Basis ODK application wizard and C/C++ Elements)

• Creating the STEP 7 program

Other Manuals

For additional information, refer to the following manuals:

Title Content

Windows Logic Controller (WinLC)
User Manual

This manual provides basic information about the performance
characteristics and operation of the WinLC controller.

Preface

6 WinAC Basis ODK User Manual

 Additional Assistance

If you have any questions not answered in this or one of the other STEP 7 manuals, if you need
information on ordering additional documentation or equipment, or if you need information on training,
please contact your Siemens distributor or sales office.

Contacting Customer Support

You can find additional information about WinAC Basis ODK and updates to this user manual at the
Siemens Energy & Automation web site:

• www.sea.siemens.com/industrialsoftware

This web site includes useful information, such as application notes, in the Technical Service area.
This area also includes downloadable software, including sample programs for linking a Delta Tau
motion control board with WinLC.

Customer Support

North America

Telephone (609) 734-6500

(609) 734-3530

E-mail ISBU.Hotline@sea.siemens.com

simatic.hotline@sea.siemens.com

Internet http://www.aut.sea.siemens.com/winac/

http://www.aut.sea.siemens.com/simatic/support/index.htm

http://www.ad.siemens.de/support/html_76/index.shtml

Europe

Telephone ++49 (0) 911 895 7000

E-Mail simatic.support@nbgm.siemens.de

Internet http://www.ad.siemens.de/simatic-cs

Fax ++49 (0) 911 895 7001

WinAC Basis ODK User Manual 7

Product Overview
The Windows Automation Center (WinAC) Basis Open Development Kit (ODK) is an open interface
to the Windows Logic controller (WinLC), providing a set of tools that enable you to implement a COM
custom interface. This in-process COM object is implemented as a DLL. WinAC Basis ODK does not
provide a dual interface: it does not directly support Visual Basic.

Special STEP 7 SFBs implement custom logic into the program logic that is being executed by the
WinLC logic. The COM object that you create with the WinAC Basis ODK tools is an in-process COM
object that executes within the WinLC process.

You can create more than one COM object, and each COM object can have more than one
command.

Your COM object is invoked as an SFB, executed as part of the WinLC scan cycle. WinAC Basis
ODK publishes the COM interface that it expects (IWinLCLogicExtension), and you implement your
custom logic in an object with this interface. If the custom logic in the COM object requires too much
time to be executed within the WinLC scan cycle, it must be executed on a separate thread of
execution. WinAC Basis ODK includes a Visual C++ 6.0 application wizard which helps you set up
this thread. Your COM object can also handle events by scheduling an asynchronous OB in the
WinLC logic.

WinAC Basis ODK Expands the Capabilities of WinLC

Some of the benefits of using WinAC Basis ODK to expand the capabilities of WinLC include the
following situations:

• Special control logic that was written in C or C++ needs to be incorporated into the S7 PLC.

• A complex (or proprietary) calculation (such as PID or gas flow) either has higher performance
requirements or is more easily written and maintained in C or C++.

• The control solution requires connectivity with another application or hardware, such as for
motion control or vision systems.

• The control solution needs to access features of the PC or the Windows NT operating system
which are not accessible by standard S7 CPU mechanisms.

Tools Provided by WinAC Basis ODK

Product Overview

8 WinAC Basis ODK User Manual

WinAC Basis ODK provides a set of software tools for developing custom logic that implements a
COM "custom interface" with an interface published in the tool kit.:

• Application wizard for generating a program shell with the correct interfaces and functions for
interacting with WinLC

• STEP 7 library containing two SFBs that you can insert into the STEP 7 program:

q SFB65001 ("CREA_COM") creates an instance of the COM object(s). You can have more
than one object, with multiple actions in each object. SFB65001 returns the program handle
for the COM object. This program handle can be stored in the WinLC memory to be used by
SFB65002.

q SFB65002 ("EXEC_COM") executes a specific function in the COM object created by
SFB65001.

• COM extension for WinLC that enables the COM objects created with WinAC Basis ODK to
communicate with WinLC

• Documentation: an electronic user manual

• Sample program: includes both a C++ project and a STEP 7 project

With WinAC Basis ODK, you can define and implement one or more standard FBs or FCs that
become the block library used throughout the rest of your STEP 7 program. The blocks in this user-
defined library, in turn, access the WinAC Basis ODK SFBs.

WinAC Basis ODK Provides a Mechanism for Defining Custom Logic

WinAC Basis ODK provides the mechanism for you to define one or more custom system functions
that can be integrated into the STEP 7 program logic. Microsoft's COM technology connects the SFBs
in the program logic to your custom logic extension.

For example: Without using WinAC Basis ODK, a process that uses a motion control board and a
vision board might have a custom application that interacts between the two boards. This application
interacts with WinLC by manipulating the I/O controlled by WinLC through asynchronous read/write
functions provided by STEP 7 or by the Data control of WinAC Computing.

Product Overview

WinAC Basis ODK User Manual 9

By using WinAC Basis ODK, this custom application could now interact directly with the WinLC
program logic.

The WinAC Basis ODK software supports only in-process COM objects. An in-process COM object
runs in the same process as WinLC and is loaded in the same address space. This allows for faster
processing between the application and WinLC because there is no context switching between the
applications. (If the application runs in a different process, the operating system must stop the current
process and save its context before switching the execution focus to another process. Also, the
function input/output data must be marshaled and moved between the processes.)

Note

Because WinLC may be started as a service, you must be aware that there are some restrictions
on what your custom COM object can do. For example, if your COM object activates a graphical
user interface (GUI), that interface would not be visible. The interface (GUI) needs to be a
separate process started in a user context with communication to your COM object, possibly
through shared memory.

WinAC Basis ODK handles the synchronization between the calls to the interface. However, if your
COM object contains other threads or handles other asynchronous events, then your application must
be responsible for coordinating internally between these events and the functions in the interface.

Note

Because the COM object executes as part of the WinLC scan cycle, it must finish within the scan
requirements. If processing the COM object requires too much of the scan cycle, use the
asynchronous processor (AsyncProc) to handle this processing outside of the WinLC scan.

Product Overview

10 WinAC Basis ODK User Manual

WinAC Basis ODK provides the tools for performing the following tasks:

• Initializing (or activating) your COM object which implements IWinLCLogicExtension at some
user-defined time, such as startup (by calling SFB65001 in OB100)

• Releasing the the COM object

• Calling the methods of the COM object

• Notifying (or activating) when the COM object is created and before WinLC makes the transition
from STOP to STARTUP or from HALT to RUN or RUN-P mode

• Notifying (or deactivating) your COM object when WinLC goes to STOP or HALT mode

• Notifying WinLC of an event. You can create an event to cause one of the following OBs to be
executed:

q OB4x (Hardware interrupts)

q OB80 (Time error, such as a watchdog alarm)

q OB82 (Diagnostic alarm interrupt)

q OB83 (Insert/Remove Module interrupt)

q OB87 (Communication Error interrupt)

WinAC Basis ODK User Manual 11

System Requirements

Hardware Requirements

To run WinLC and WinAC Basis ODK, it is recommended that your computer meet the following
criteria:

• A personal computer (PC) with the following:

q Pentium processor running at 166 MHz or faster

q 64 Mbytes RAM (recommended)

q Microsoft Windows NT version 4.0 (or higher), with service pack 3 (or higher) required

• VGA color monitor, keyboard, and mouse or other pointing device (optional) which are supported
by Microsoft Windows NT

• Approximately 10 Mbytes of additional memory on your hard disk

• At least 1 Mbyte free memory capacity on drive C for the Setup program (Setup files are deleted
when the installation is complete)

WinLC has been tested and operated successfully on PCs as slow as a 486 processor running at 66
MHz with 24 Mbytes of RAM. WinLC has also been successfully tested on high-end PCs with dual
Pentium processors.

Software Requirements

WinAC Basis ODK requires that the following software packages be installed on your computer:

• WinLC version 3.0 (or greater)

• STEP 7 version 5, service pack 3 (or greater)

• Microsoft Visual Developers Studio version 6 (Visual C++), service pack 3 (or greater)

WinAC Basis ODK will not run under Microsoft Windows 3.11, Windows 95, Windows 98, or Windows
for Workgroups.

System Requirements

12 WinAC Basis ODK User Manual

WinAC Basis ODK User Manual 13

Installing WinAC Basis ODK
Before installing WinAC Basis ODK, ensure that your computer meets the recommended system
requirements.

Caution

Do not install any component of WinAC (such as WinAC Basis ODK) on a computer while any
other component of WinAC (such as WinLC, the Computing SoftContainer, programs that use the
SIMATIC controls provided by Computing, or the panel for the CPU 416-2 DP ISA) are being
executed (are currently running) on that computer.

Since Computing, WinLC, and other elements of WinAC use common files, attempting to install
any component of the WinAC software when any of the components of WinAC are being
executed by the computer can corrupt the software files. Always assure that the following
programs are not running when you install WinLC:

• WinLC

• Panel for CPU 416-2 DP ISA

• WinAC Computing SoftContainer

• TagFile configurator

• Tool Manager

• WinAC Computing Configuration

• Any program (such as a program created in Visual Basic) that uses one of the SIMATIC
controls provided by Computing

The Setup program for WinAC Basis ODK guides you step-by-step through the installation process.
You can switch to the next step or to the previous step from any position. Use the following procedure
to start the Setup program:

1. Start the dialog box for installing software under Windows NT by double-clicking on the
Add/Remove Programs icon in the Control Panel.

2. Click on "Install..."

3. Insert the CD and click on the "Next" button. Windows NT searches automatically for the
installation program SETUP.EXE.

4. Follow the instructions displayed by the Setup program.

Installing WinAC Basis ODK

14 WinAC Basis ODK User Manual

If a Version of WinAC Basis ODK Is Already Installed...

If the Setup program finds another version of WinAC Basis ODK on the PC or programming device, it
displays a list of all components, with the previously installed components deselected. You can select
any of these components if you want to re-install them.

Your software is better organized if you uninstall any older versions before installing the new version.
Overwriting an old version with a new version has the disadvantage that if you then uninstall, any
remaining components of the old version are not removed.

Uninstalling (Removing) WinAC Basis ODK

Use the Windows NT "Add/Remove Programs" procedure to remove the WinAC Basis ODK software:

1. Select the Start > Settings > Control Panel menu command to display the Windows NT control
panel.

2. Double-click on the Add/Remove Programs icon to display the Add/Remove Programs Properties
dialog box.

3. Select the entry for "SIMATIC WinAC Basis ODK" and click on the "Add/Remove" button.

4. Follow the instructions of the dialogs to remove the WinAC Basis ODK software. (If the Remove
Enable File dialog box appears, click on the "No" button if you are unsure how to respond.)

WinAC Basis ODK User Manual 15

Getting Started with a Sample Program
WinAC Basis ODK installs a sample program on your computer during the installation procedure. This
sample program ("Histogram") contains the STEP 7 project and COM object (C++ program) for
collecting data about the scan time "jitter" of WinLC. The data collected by this custom application
can be displayed as a histogram.

By working with this sample program, you can gain an understanding about how to create your own
custom COM object that interacts with WinLC.

Basic Tasks for Using the Sample Program

In order to work with the sample program, you must perform the following tasks:

• Create the COM Object.

1. Open Visual C++.

2. Select the File > Open Workspace menu command and browse to the Histogram program in
the following directory:

Siemens\WinAC\Examples\Histogram

Getting Started with a Sample Program

16 WinAC Basis ODK User Manual

3. Select the Histogram.dsw file and click on Open.

4. Select the Build > Histogram DLL menu command to make the project.

• Run the Histogram program.

1. Open both WinLC and the SIMATIC Manager.

2. Open (load) the WinAC Basis ODK library.

3. Open the Histogram project and download the Histogram program to WinLC.

4. Change the operating mode of WinLC from STOP mode to RUN or RUN-P mode.

5. Use the variable table (in the STEP 7 project) to view the updated data.

Sample Program ("Histogram")

WinAC Basis ODK provides a sample program ("Histogram") that exercises WinLC and builds a
histogram of the execution times. This sample program consists of the following elements:

• STEP 7 project "Histogram" which includes:

• STEP 7 library "Histogram"

• STEP 7 program "Histogram"

• Variable table (VAT)

• COM object "Histogram"

Getting Started with a Sample Program

WinAC Basis ODK User Manual 17

STEP 7 Project (Histogram)

The STEP 7 program stores data about the scan cycle (current execution time, last execution time,
maximum execution time, minimum execution time, mode or most frequent scan time, and deviation)
and calls the COM object.

The Histogram program consists of two parts:

• Histogram library for STEP 7. This library uses WinAC Basis ODK to implement the functions. It
encapsulates the calls to the ODK COM object and presents a meaningful view of the histogram
functions.

• STEP 7 program ("Histogram"). This small program uses the Histogram library.

When the operating mode of WinLC changes from STOP to RUN, WinLC executes OB100 (warm
restart).

• OB100 calls FB1 ("CREA_HISTOGRAM").

• FB1 calls SFB65001 to create the COM object for the histogram program

• FB1 verifies that the COM object was created.

• OB100 calls FB2 ("INIT_HISTOGRAM").

• FB2 calls SFB65002 with the command "Init Command" to initialize the histogram program
(by setting the initial values to 0).

After OB100 finishes, WinLC executes OB1 (main program cycle).

• OB1 calls FB3 (“UPDA_HISTOGRAM”).

• FB3 calls SFC64 ("TIME_TCK") and writes the current clock time to the input data.

• FB3 sets a deviation factor for the scan cycle. (Encountering a deviation from the mode greater
than this value will be used to schedule OB80.)

• FB3 creates the command for updating the data in the COM object.

• FB3 calls SFB65002 ("EXEC_COM").

Sample COM Object ("Histogram")

The COM object "Histogram" is a C++ program that reads the data about the scan time and creates a
histogram of the "jitter" in the WinLC scan time.

The sample program for the Histogram example includes the following key files:

• Histogram.h

• Histogram.ccp

These files show how to implement the histogram functionality. The application wizard (WinAC ODK
AppWizard) generated the framework for this object. These two files contain the implementation.

Getting Started with a Sample Program

18 WinAC Basis ODK User Manual

This sample shows a single ODK COM object which can execute two functions:

• Initialize the histogram

• Update the histogram

This sample program also shows how to schedule an asynchronous error OB in WinLC. This code is
included as an example of how to schedule an OB. For most applications, special cases in the
Execute function can be handled with a return code, while the scheduling of an OB would be more
commonly done when an asynchronous event occurs. The scheduling of the error OB is included
here as an example of how the interface can be used.

Histogram.h

// Histogram.h : Declaration of the CHistogram
#ifndef __WINLCLOGICEXTENSION_H_
#define __WINLCLOGICEXTENSION_H_

#include "resource.h" // main symbols
#include "HistogramIDL.h" // Generated from IDL file
///
// CWinLCLogicExtension
class CWinLCReadData;
class CWinLCReadWriteData;

class ATL_NO_VTABLE CHistogram :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CHistogram, &CLSID_Histogram>,
public IDispatchImpl<IWinLCLogicExtension, &IID_IWinLCLogicExtension,
&LIBID_WinACOdkLib>
{
 // Indexes into the output memory area
 enum OutputIndexes
 {
 idxErrMsec = 0 * sizeof(UINT32),
 idxCurMsec = 1 * sizeof(UINT32),
 idxLastMsec = 2 * sizeof(UINT32),
 idxMinMsec = 3 * sizeof(UINT32),
 idxMaxMsec = 4 * sizeof(UINT32),
 idxModeMsec = 5 * sizeof(UINT32),
 idxHistogram = 6 * sizeof(UINT32),
 };
 ///
 // The data buffer contains these fields:
 //
 // + offset 0 : Maximum acceptable deviation from scan time.
 // |
 // + offset 4 : Time of the current scan cycle
 // |
 // + offset 8 : Time at the last scan cycle
 // |
 // + offset 12 : Minimum cycle time
 // |
 // + offset 16 : Maximum cycle time
 // |
 // + offset 20 : Mode time = histogram peak time
 // |
 // + offset 24 : Start of histogram
 // *

Getting Started with a Sample Program

WinAC Basis ODK User Manual 19

 // *
 // *
 // + offset nOutput-1 : (End of outData)
 //
 ///
public:
DECLARE_REGISTRY_RESOURCEID(IDR_WINLCLOGICEXTENSION)
DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CHistogram)
COM_INTERFACE_ENTRY(IWinLCLogicExtension)
END_COM_MAP()
// Public Class Members
public:
CHistogram()
 : WinLCSvc(0)
{
}
// Protected Class Members
protected:
void ScheduleOB80 (unsigned short mode, unsigned short deviation) const;
HRESULT ExecuteUpdate(CWinLCReadData & Input, CWinLCReadWriteData & Output);
HRESULT ExecuteInit(CWinLCReadWriteData & Output);

IWinLCServices* WinLCSvc;
// IWinLCLogicExtension methods
public:
STDMETHOD(Execute)(unsigned long command, long nInput, byte inData [], long
nOutput, long* nUsedOutput, byte outData []);
STDMETHOD(DeActivate)();
STDMETHOD(Activate)(IWinLCServices * IWinLCSvc);
};
#endif //__WINLCLOGICEXTENSION_H_

Histogram.ccp

///
// Histogram.cpp : Implementation of CHistogram
//

#include "stdafx.h"
#include "Histogram.h"
#include "HistogramIDL.h"
#include "WinLCReadData.h"
#include "WinLCReadWriteData.h"

//
// CHistogram

//**
// Activate is called by WinLC when WinLC goes from stop to Run
//**
STDMETHODIMP CHistogram::Activate(IWinLCServices *IWinLCSvc)
{
 // Set the local IWinLCServices pointer
 WinLCSvc = IWinLCSvc;

 // TODO: Add your implementation code here

Getting Started with a Sample Program

20 WinAC Basis ODK User Manual

 return S_OK;
}

//**
// DeActivate is called by WinLC when WinLC goes from Run to Stop
//**
STDMETHODIMP CHistogram::DeActivate()
{
 // Set the IWinLCServices pointer to NULL
 WinLCSvc = NULL;

 // TODO: Add your implementation code here
 return S_OK;
}

//**
// Execute is called by WinLC when SFB65002 is encountered
//**
STDMETHODIMP CHistogram::Execute(unsigned long command,
 long nInput,
 byte inData [],
 long nOutput,
 long *nUsedOutput,
 byte outData [])
{
 // Create The Helper Data Access Classes
 // - Call Methods on these classes to read and write data
 CWinLCReadData Input(nInput, inData);
 CWinLCReadWriteData Output(nOutput, outData);
// Just return if there is not enough output space for the structure
 if (nOutput <= idxHistogram)
 return E_FAIL;

 // Execute the command
 switch(command)
 {
 case 'INIT':
 ExecuteInit(Output);
 break;
 case 'UPDA':
 ExecuteUpdate(Input, Output);
 break;
 default:
 return E_FAIL;
 } // switch
 *nUsedOutput = Output.LastByteChanged() + 1;
 return S_OK;
} // Execute

///
// Initialize the histogram data area.
HRESULT CHistogram::ExecuteInit(CWinLCReadWriteData & Output)
{
 // reset the histogram data.
 for (int n = 0; n < Output.GetBufferSize(); n++)
 {
 Output.WriteS7BYTE(n, 0);
 }
 // initialize MinMsecs with a giant value.
 Output.WriteS7DWORD(idxMinMsec, 0xffffffff);

Getting Started with a Sample Program

WinAC Basis ODK User Manual 21

 return S_OK;
} // ExecuteINIT

///
// Update the histogram data area.
HRESULT CHistogram::ExecuteUpdate(CWinLCReadData & Input, CWinLCReadWriteData &
Output)
{
 // Get the max word index
 long maxUINT32idx = Output.GetBufferSize() / sizeof(UINT32);

 // Get copy of the input data
 UINT32 curMSecs;
 Input.ReadS7DWORD(idxCurMsec, curMSecs);

 // Compute difference and update histogram if not the first time
 UINT32 lastMSecs;
 Output.ReadS7DWORD(idxLastMsec, lastMSecs);

 if (lastMSecs != 0)
 {
 // Compute the mSecs for last scan
 lastMSecs = curMSecs - lastMSecs;
// Update the min/max value
 UINT minMsecs, maxMsecs;
 Output.ReadS7DWORD(idxMinMsec, minMsecs);
 Output.ReadS7DWORD(idxMaxMsec, maxMsecs);

 if (lastMSecs < minMsecs)
 Output.WriteS7DWORD(idxMinMsec, lastMSecs);
 if (lastMSecs > maxMsecs)
 Output.WriteS7DWORD(idxMaxMsec, lastMSecs);

 // clamp input to not exceed the array size
 long histoSlot = idxHistogram + (lastMSecs * sizeof(UINT32));
 if (histoSlot > maxUINT32idx)
 histoSlot = maxUINT32idx;

 // Update the histogram
 UINT32 newCount;
 Output.ReadS7DWORD(histoSlot, newCount);
 Output.WriteS7DWORD(histoSlot, ++newCount);

 // update the mode
 UINT32 modeMSecs, oldCount;
 Output.ReadS7DWORD(idxModeMsec, modeMSecs);
 histoSlot = idxHistogram + (modeMSecs * sizeof(UINT32));
 if (histoSlot > maxUINT32idx)
 histoSlot = maxUINT32idx;
 Output.ReadS7DWORD(histoSlot, oldCount);
 if (newCount > oldCount)
 {
 modeMSecs = lastMSecs;
 Output.WriteS7DWORD(idxModeMsec, modeMSecs);
 }
 // schedule an error OB if the deviation is too much
 if (lastMSecs > modeMSecs)
 {
 UINT32 errDeviation;
 Input.ReadS7DWORD(idxErrMsec, errDeviation);

Getting Started with a Sample Program

22 WinAC Basis ODK User Manual

 if ((lastMSecs - modeMSecs) > errDeviation)
 {
 ScheduleOB80 (modeMSecs, lastMSecs - modeMSecs);
 }
 }
 } // if
 Output.WriteS7DWORD(idxLastMsec, curMSecs);
 return S_OK;
} // ExecuteUPDA
///
// ScheduleOB80
void
CHistogram::ScheduleOB80(unsigned short mode, unsigned short deviation) const
{
 WinLCSvc->ScheduleOB(
 0x35, // execute asynchonous error OB
 0x01, // use cycle time error event number
 0xFE, // fill in configured sequence layer
 80, // execute OB80
 0xC4, // dataType2 (for long word) - two 16 bit words
 0x58, // dataType1 (for short word) - time in milliseconds
 deviation, // data1
 mode); // data2 (half is 0)
}

WinAC Basis ODK User Manual 23

Basic Tasks for Implementing a Custom COM
Interface
1. Create the custom COM object that implements the IWinLCLogicExtension interface:

• Use the application wizard for Visual C++ version 6 (WinAC ODK AppWizard) to create the
program shell for the COM object.

• Implement the IWinLCLogicExtension Execute function.

• Implement the IWinLCLogicExtension Activate function. This can be left as an empty function.

• Implement the IWinLCLogicExtension DeActivate function. This can be left as an empty function.

2. Create your STEP 7 program that interacts with the COM object:

• Load the STEP 7 library that contains the SFBs supplied by WinAC Basis ODK.

• Insert these SFBs into your STEP 7 program.

3. Debug your COM object with the STEP 7 program running on WinLC.

Using the Application Wizard to Create Your COM Object

The application wizard guides you through the following tasks:

• Creating the ATL/COM project that implements the IWinLCLogicExtension interface required by
WinAC Basis ODK

• Creating a C++ class that you can use to execute functions asynchronously from the WinLC scan
cycle (optional)

• Creating a C++ class that you can use to monitor one or more attributes of your system (optional)

The application wizard provides a summary of the options that you selected for the type of COM
object or DLL that you plan to develop. After you confirm these choices, the application wizard
generates the C/C++ program shell.

Note

The WinAC Basis ODK application wizard can only be used in the Microsoft Visual C++ 6.0.

Start the WinAC ODK Application Wizard

1. Start Microsoft Visual C++ V6.

2. Open a new project: select the File > New menu command.

3. Click on the Projects tab and select the WinAC ODK AppWizard icon.

4. Enter the project name and location for the project and click on OK.

Basic Tasks for Implementing a Custom COM Interface

24 WinAC Basis ODK User Manual

Visual C++ starts the WinAC Basis ODK application wizard. Use the wizard to create all of the
elements for the program shell.

Enter the ATL/COM Class and Interface Information

1. Using the WinAC Basis ODK application wizard, enter the ATL/COM class and interface
information by entering the Short Name for the application. Notice that all of the fields for the
application wizard are created automatically, using the Short Name as a default. You can also
modify these other fields individually without changing any of the other fields.

Note:

The ProgID field is the required parameter in SFB65001 ("CREA_COM").

Also, you cannot change the interface name (IWinLCLogicExtension). This interface is required
by SFB65002 ("EXEC_COM") and must be present in all WinAC Basis ODK COM objects.

2. After the correct information has been entered for all of the fields, click on Next.

Basic Tasks for Implementing a Custom COM Interface

WinAC Basis ODK User Manual 25

3. Enter the number of subcommands to be executed for SFB65002 ("EXEC_COM") and click on
Next.

4. A subcommand is a unique function or task within the SFB. Using subcommands allows you to
create one COM object that performs a variety of tasks, rather than several COM objects that
perform single tasks. The application wizard allows you to create up to 100 subcommands.

Basic Tasks for Implementing a Custom COM Interface

26 WinAC Basis ODK User Manual

5. The application wizard displays a dialog box for each of the subcommands to be configured.
Enter the name for the subcommand and click on OK.

Select Whether to Enable Asynchronous Processing

1. Asynchronous Processing allows commands to be executed outside of the main
IWinLCLogicExetension Execute() function. The asynchronous processor uses objects derived
from the EventMsg class to carry out event specific functions.

2. To add asynchronous processing to the generated WinAC Basis ODK project, select the "Include
Asynchronous Processor" check box.

3. Enter the number of events to create in the "Number of Events" field. The number of events that
can be included in the project is limited to 100.

4. Click on Next.

Basic Tasks for Implementing a Custom COM Interface

WinAC Basis ODK User Manual 27

5. The application wizard displays a dialog box for each of the asynchronous event to be configured.
Enter the class name for each event and click on OK.

6. The application wizard places the event classes in the following files: AsyncEvent.h and
AsyncEvent.cpp.

Select Whether to Enable Asynchronous Monitoring

After all of the event classes have been given a name, the application wizard displays the option to
enable asynchronous monitoring. Use asynchronous monitoring if your COM object needs to
implement some functionality in the background (for example, to monitor data or wait for an event to
occur asynchronous from the scan cycle).

Basic Tasks for Implementing a Custom COM Interface

28 WinAC Basis ODK User Manual

1. To include asynchronous monitoring in the WinAC Basis ODK project, select the check box for
the Include Asynchronous Monitoring option.

2. In the Number of Monitors field, enter the number of monitoring classes and threads to be
generated by the application wizard. Each generated class can perform custom functionality by
overloading the Execute() function.

3. Click on Finish. The application wizard displays a New Monitor dialog box that allows you to enter
a name for each class name. (A dialog box is generated for each monitor class that you
configured.)

4. Enter the class name for the monitor and click on OK.

Basic Tasks for Implementing a Custom COM Interface

WinAC Basis ODK User Manual 29

Generate the WinAC Basis ODK Object

1. Click on Finish and review the summary of the files to be created for the new project.

2. Click on OK to confirm the options and to generate the WinAC Basis ODK project.

Basic Tasks for Implementing a Custom COM Interface

30 WinAC Basis ODK User Manual

Project Shell

The WinAC Basis ODK application wizard creates the program shell for the project.

Class View of the C++ Object Shell

WinAC Basis ODK User Manual 31

Creating the STEP 7 Program

Loading the WinAC Basis ODK Library into STEP 7

WinAC Basis ODK installs a custom STEP 7 library that contains the SFBs that allow the STEP 7
program to interact with your custom COM object. Before you can use these SFBs in your STEP 7
program, you must load the library:

1. Start the SIMATIC Manager of STEP 7 by selecting the Start > SIMATIC > SIMATIC Manager
menu command.

2. Select the New > Open Project/Library menu command.

3. If you have not previously loaded the WinAC Basis ODK library, click on Browse and select the
directory where the WinAC Basis ODK library was installed (for example, the directory
D:\SIEMENS\STEP7\S7libs).

4. Select the WinAC Basis ODK library and click on OK.

5. STEP 7 opens the WinAC Basis ODK library. This library contains the following elements:

• SFB65001 ("CREA_COM")

• SFB65002 ("EXEC_COM")

Creating the STEP 7 Program

32 WinAC Basis ODK User Manual

Inserting the WinAC Basis ODK SFBs into the STEP 7 Program

The two SFBs provided by WinAC Basis ODK allow you to use your custom COM object as part of
the STEP 7 program being executed by WinLC:

• SFB65001 ("CREA_COM") creates the instance of your COM object (DLL).

• SFB65002 ("EXEC_COM") sends an execution command to the COM object created by
SFB65001.

WinLC executes these SFBs like any other SFB. The "EXEC_COM" SFB (SFB65002) calls the
execute function of your ODK COM object, and the scan time is extended by the time required to
execute this function. If you need to execute a command that can take a long time (relative to your
scan time requirements), use the asynchronous processor (AsyncProc) to execute the command.
Because SFB65002 ("EXEC_COM") does not finish its execution until the COM object finishes, the
time required to execute your custom application is added to the scan cycle.

In order to use these SFBs in your STEP 7 program, you must have loaded the WinAC Basis ODK
library. You can then insert these SFBs into your program just like any other STEP 7 element:

1. Open the STEP 7 program by selecting the Start > SIMATIC > SIMATIC Manager menu
command.

2. Select and drag the SFBs from the WinAC Basis ODK library to the program blocks of the STEP
7 program.

3. Edit your program to call the SFB65001 ("CREA_COM").

Note

Typically, the STEP 7 program calls SFB65001 ("CREA_COM") when the program starts
in the start-up OB (such as OB100) to create the instance of the COM object. The
program handle returned from this call is then saved to a memory location for further
reference. You can also have the program call SFB65001 from other logic blocks, such
as an FB or in OB1.

4. Edit your program to call SFB65002 (EXEC_COM).

WinAC Basis ODK User Manual 33

WinAC Basis ODK COM Object

WinAC Basis ODK Application Wizard

The WinAC Basis ODK Application Wizard provides a skeleton Microsoft Visual C++ 6.0 project that,
when compiled, produces a dynamic link library (DLL) that can be used with the WinAC Basis ODK
update to WinLC. The WinAC Basis ODK application wizard features include the following:

• Data access helper class: The application wizard always generates the CWinLCReadData and
CWinLCReadWriteData classes.

• Asynchronous processor class: The application wizard generates the AsyncProc, EventMsg, and
Queue classes only when you select the Asynchronous Processing option.

• Monitor class: The application wizard generates the MonitorThread class only when you select
the the Asynchronous Monitoring option.

• Skeleton implementation of the IWinLCLogicExtension interface.

The following table lists the support and helper classes generated by the application wizard.

Class Description

Data access helper class

CWinLCReadData The read-only data access helper class serves as a wrapper to the input
buffer passed into the IWinLCLogicExtension Execute() function. Functions
are provided to access the data in the buffer as STEP 7 data types.

CWinLCReadWriteData The read/write data access helper class serves as a wrapper to the output
buffer passed into the IWinLCLogicExtension Execute() function. Functions
are provided in this class to read and write STEP 7 data types to the buffer.

Asynchronous processor class

AsyncProc The asynchronous processor class processes events posted to it on a thread
of execution separate from the main program.

EventMsg This is the base class to Asynchronous Events: all asynchronous events
posted to the asynchronous processor should be derived from this class. The
Execute() function should be overloaded in the derived class to provide
custom processing for the event.

Queue This is a basic queue ("first in, first out") class. The asynchronous processor
uses it for scheduling events to process.

Monitor class

MonitorThread This is the base class for asynchronous monitors: all classes for monitoring
external events and processes should be derived from this class. The
Execute() function should be overloaded to provide customized monitoring
actions.

WinAC Basis ODK COM Object

34 WinAC Basis ODK User Manual

Execution Rules

IWinLCLogicExtension Execute Method

The Execute method is executed when SFB65002 ("EXEC_COM") is called in your STEP 7 program.
It is the function that is called as part of your STEP 7 program and becomes part of the OB execution
time.

IWinLCLogicExtension Activate and Deactivate Methods

The Activate call is made before the switch to STARTUP or RUN. Similarly, DeActivate is called after
the switch. Activate is always called before a call to the Execute method, and DeAQctivare is always
called after any call to the Execute method.

Note

The CPU is in HALT when it reaches a breakpoint in the STEP 7 editor.

The WinLCState returned from IWinLCServices::ReadState should always be START_OB100,
START_OB101, START_OB102, or RUN when queried from Activate, DeActivate, or Execute
functions.

Activate is called after the COM object is created and before the first call to Execute.

• Activate is called before:

q WinLC transition from STOP mode to STARTUP mode

q WinLC transition from HALT mode to RUN mode

• DeActivate is called after:

q WinLC transition from RUN mode to STOP or HALT mode

q WinLC transition from STARTUP mode to STOP or HALT mode

Note

WinLC releases your COM objects on a memory reset (MRES) or on CPU shutdown. Because
both the MRES and CPU shutdown first change WinLC to STOP mode, DeActivate will always be
called before the COM objects are released.

WinAC Basis ODK User Manual 35

IWinLCServices Interface
When WinLC calls the Activate method in your COM object, you are given a pointer to
IWinLCServices. This is a COM object implemented in WinLC that gives you access to WinLC
features that are not otherwise available in the Execute function. The methods of the IWinLCServices
interface can be called from IWinLCLogicExtension Execute, Activate, or DeActivate. They can also
be called asynchronously from the asynchronous processor (AsyncProc) or monitor (MonitorThread)
classes.

The IWinLCServices interface provides three methods:

• ReadState

• ScheduleOB

• ReadSysData (not implemented in the current version of WinAC Basis ODK)

HRESULT ReadState(WinLCState * state)

This function retrieves the current state (operating mode) of the WinLC controller. The value of state
will be one of the following modes:

• STOP

• HALT

• STARTUP_100

• STARTUP_101

• STARTUP_102

• RUN

Return Value

• HRESULT: S_OK means that the call succeeded.

Parameters

• WinLCState *: pointer to a variable of type WinLCState

HRESULT ScheduleOB(byte class_ID, byte eventNr, byte seqLayer, byte obNum,
byte dataType2, byte dataType1, unsigned short data1, unsigned long data2)

This function schedules an OB to be scheduled by WinLC. The OB will be scheduled to run at a
priority relative to other OBs as configured by the Hardware Configuration utility of STEP 7. (That is, if
an OB80 is scheduled, it interrupts OB1, OB35, etc.)

When you schedule an OB, select an OB whose standard S7 behavior is closest to the way you plan
to use the OB. You should also choose an OB that is normally triggered by some asynchronous
event, such as an error or a diagnostic event.

IWinjLCServices Interface

36 WinAC Basis ODK User Manual

When selecting an OB to schedule, consider the following OBs:

• OB80 (Time error, such as a watchdog alarm)

• OB4x (Hardware interrupts)

• OB82 (Diagnostic Alarm interrupt)

• OB83 (Insert/Remove Module interrupt)

• OB87 (Communication Error interrupt)

The parameters that you enter for the ScheduleOB function are stored in the first 12 bytes of local
data (L memory) when the OB which was scheduled by this function is executed by WinLC.

Note

The last 8 bytes of the local data contain the time stamp when the event was created. This data is
entered when you call the ScheduleOB function.

To understand how the parameters of the ScheduleOB function relate to the local data of the specific
OB to be scheduled, refer to the STEP 7 manual System and Standard Functions for S7-300 and S7-
400. The arguments in the ScheduleOB function follow the same order as that in the documentation.

The documentation also describes data words for each OB. Depending on the type of OB, the
documentation divides the data words (the last two parameters) in different ways. However, you can
use these data words according to your own requirements: WinLC does not interpret the data type or
data parameters when scheduling the OB. The data words are copied to the local data (L memory) for
the OB when the OB is scheduled to be executed. You can then access this information in your
implementation of the OB that you schedule.

Note

If you require that the entry in the Module Information/Diagnostic Buffer of STEP 7 be displayed
with descriptive text, you must use the correct data types. These data types are typically listed as
"Reserved" entries and are not documented in the S7 or STEP 7 documentation.

Consider the following valid data types for the datType2 and dataType 1 parameters of the
ScheduleOB function:

For the dataType2 parameter:

Value (hexadecimal) Description

C1 32-bit double word

C4 Two 16-bit binary values

C8 32-bit signed value

C9 Two 16-bit signed values

CA 32-bit floating point value

CD 32 Relative time in milliseconds

IWinLCServices Interface

WinAC Basis ODK User Manual 37

For dataType1 parameter:

Value (hexadecimal) Description

51 16-bit field: unspecified numeric value

58 16-bit field: time in milliseconds

59 16-bit integer value

5B Two 8-bit binary value

IWinjLCServices Interface

38 WinAC Basis ODK User Manual

WinAC Basis ODK User Manual 39

Data Access Helper Class
Caution

Your in-process function (thread) can corrupt WinLC memory if invalid addresses are used when
writing data. When developing your application, always follow proper programming guidelines and
industrial standards. Always ensure that your application has been carefully tested before running
the application with WinLC or any other application.

The CWinLCReadData and CWinLCReadWriteData classes comprise the data access helper class.
The read and write functionality has been divided up as a means of providing very basic security on
the input and output parameters of the Execute function.

Use the functions of the data access helper class to access data in WinLC. These functions help
avoid programming errors, such as out-of-range values or writing to invalid pointers. They also
perform the necessary byte-swapping to convert data from the "big endian" format used in the S7
CPU architecture to the "little endian" format required for Microsoft operating systems, including
Windows NT.

The data access helper class references the data and does not copy it, so it is only valid within the
scope of the Execute function.

CWinLCReadData Member Functions

The CWinLCReadData retrieves data from the input data buffer passed into the
IWinLCLogicExtenston Execute() function as S7 data types. Each function follows the following
format:

ReadS7<datatype>(long byteOffset, <datatype>& value)

(where <datatype> is the name of the S7 data type. For more information about the S7 data
types, refer to the online help for STEP 7.)

These functions return either true or false, depending on whether or not the Read function succeeded
or failed. (For example, the Read function could fail if the value is out of range.) The byte offset is
the beginning location of the value in the data buffer in bytes (for example, the fourth DWORD is at
byte offset 12), and value is the destination location for the data item to be placed. The Read
function automatically performs any byte-format conversions necessary between native byte format
and internal WinLC byte format.

bool ReadS7BOOL(long byteOffset, int bitNo, bool &value)

This function retrieves the value of the bit requested and return that value in value.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• int bitNo: bit number to retrieve (indexing from right to left)

• bool &value: value of the bit to retrieve

Data Access Helper Class

40 WinAC Basis ODK User Manual

bool ReadS7BYTE(long byteOffset, BIT8 &value)

This function retrieves a byte (8 bits) from the input buffer. The value is returned in the value
parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• BIT8 &value: value of the byte retrieved

bool ReadS7CHAR(long byteOffset, char &value)

This function retrieves an 8-bit character from the input buffer. The character is returned in the value
parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• char &value: value of the character retrieved

bool ReadS7DATE(long byteOffset, UINT16 &value)

This function retrieves a 16-bit value from the input buffer and returns it as an unsigned integer (S7
data type: Date) in the value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• UINT16 &value: value of the data retrieved

bool ReadS7DINT(long byteOffset, SINT32 &value)

This function retrieves 32 bits from the input buffer and returns the value as a signed integer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• SINT32 &value: value of the data retrieved

Data Access Helper Class

WinAC Basis ODK User Manual 41

bool ReadS7DWORD(long byteOffset, BIT32 &value)

This function retrieves a 32-bit double word from the input buffer and returns the value as a BIT32 in
the value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• BIT32 &value: value of the data retrieved

bool ReadS7INT(long byteOffset, SINT16 &value)

This function reads 16 bits from the input buffer and returns the value as a signed 16-bit integer in the
value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• SINT16 &value: value of the data retrieved

bool ReadS7REAL(long byteOffset, float &value)

This function reads 32 bits from the input buffer and returns the value as a floating-point number in
the value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• float &value: value of the data retrieved

bool ReadS7S5TIME(long byteOffset, BIT16 &value)

This function retrieves a 16-bit value from the input buffer and returns the data in the value
parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• BIT16 &value: value of the data retrieved

Data Access Helper Class

42 WinAC Basis ODK User Manual

bool ReadS7STRING(long byteOffset, UINT8 readMax, char* string)

This function reads a string from the input buffer, beginning at byteOffset and continuing until all
characters of the string are read or until readMax characters are read. The string is placed in the
buffer pointed to by string.

Caution

Reading a value larger than the buffer size could cause loss of data. The readMax value should
always be equal to or less than the size of the buffer pointed to by char*string. Otherwise, this
operation could inadvertently write over data.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• UINT8 readMax: maximum number of characters to retrieve

• char* string: buffer to place the string in

bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, UINT8 &curLen)

This function retrieves the length information about a string. The maximum length of the string is
returned in the maxLen parameter, and the current length of the string is returned in the curLen
parameter.

Caution

Reading a value larger than the buffer size could cause loss of data. The readMax value should
always be equal to or less than the size of the buffer pointed to by char*string. Otherwise, this
operation could inadvertently write over data.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• UINT8 &maxLen: maximum length of the string

• UINT8 &curLen: current length of the string

Data Access Helper Class

WinAC Basis ODK User Manual 43

bool ReadS7TIME(long byteOffset, SINT32 &value)

This function retrieves a 32-bit value from the input buffer and returns it as a signed 32-bit integer in
the value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• SINT32& value: value of the data retrieved

bool ReadS7TIME_OF_DAY(long byteOffset, UINT32 &value)

This function reads a 32-bit value from the input buffer and returns it as an unsigned 32-bit integer in
the value parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• UINT32 &value: value of the data retrieved

bool ReadS7WORD(long byteOffset, BIT16 &value)

This function retrieves a 16-bit value from the input buffer and returns it as a BIT16 in the value
parameter.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to retrieve

• BIT16 &value: value of the data retrieved

Data Access Helper Class

44 WinAC Basis ODK User Manual

CWinLCReadWriteData Member Functions

The CWinLCReadWriteData class extends the CWinLCReadData class by adding methods for writing
data as S7 data types to the input/output data buffer passed into the IWinLCLogicExtension Execute()
function. Each function follows the following format:

WriteS7<datatype>(long byteOffset, <datatype>& value)

(where <datatype> is the name of the S7 data type. For more information about the S7 data
types, refer to the online help for STEP 7.)

These functions return either true or false, depending on whether or not the write succeeded or failed.
The byte offset is the value’s beginning location in the data buffer, and value is the data item to
be placed into the buffer. The function automatically performs any byte-format conversions necessary
between native byte format and internal WinLC byte format.

Note

The CWinLCReadWriteData class inherits from the CWinLCReadData class, so all of the read
functions appearing in the CWinLCReadData class are available in the CWinLCReadWriteData
class.

bool WriteS7BOOL(long byteOffset, int bitNo, bool &value)

This function sets the bit at position bitNo in byte byteOffset to the value of value.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• int bitNo: bit number to write (indexing from right to left)

• bool &value: value of the bit to write

bool WriteS7BYTE(long byteOffset, BIT8 &value)

This function writes the data in value to a byte (8 bits) in the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• BIT8 &value: value of the byte to be written

Data Access Helper Class

WinAC Basis ODK User Manual 45

bool WriteS7CHAR(long byteOffset, char &value)

This function writes an 8-bit character to the output buffer in position byteOffset.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• char &value: value of the character to write

bool WriteS7DATE(long byteOffset, UINT16 &value)

This function writes the 16-bit value to the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• UINT16 &value: value of the data to write

bool WriteS7DINT(long byteOffset, SINT32 &value)

This function writes the 32-bit value to the output buffer at position byteOffset.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• SINT32 &value: value of the data to write

bool WriteS7DWORD(long byteOffset, BIT32 &value)

This function writes the 32-bit double word value to the output data buffer at position byteOffset.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• BIT32 &value: value of the data to write

Data Access Helper Class

46 WinAC Basis ODK User Manual

bool WriteS7INT(long byteOffset, SINT16 &value)

This function writes the 16-bit signed integer value to the output buffer at position byteOffset.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• SINT16 &value: value of the data to write

bool WriteS7REAL(long byteOffset, float &value)

This function writes the 32-bit floating-point value to the output buffer at position byteOffset.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• float &value: value of the data to write

bool WriteS7S5TIME(long byteOffset, BIT16 &value)

This function writes a 16-bit value to the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• BIT16 &value: value of the data to write

bool WriteS7STRING(long byteOffset, char* string)

This function writes a string to the output buffer. The string is expected to be NULL terminated. If the
entire string cannot fit into the allocated space (for example, the current length is larger than the
maximum length, or there is not enough space left in the output buffer), the write operation fails.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• char* string: pointer to a NULL terminated string

Data Access Helper Class

WinAC Basis ODK User Manual 47

bool WriteS7TIME(long byteOffset, SINT32 &value)

This function writes the 32-bit value to the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• SINT32& value: value of the data to write

bool WriteS7TIME_OF_DAY(long byteOffset, UINT32 &value)

This function writes the 32-bit value to the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• UINT32 &value: value of the data to write

bool WriteS7WORD(long byteOffset, BIT16 &value)

This function writes a 16-bit value to the output buffer.

Return Value:

• bool: success or fail of the operation (true = success)

Parameters:

• long byteOffset: buffer index of the data to write

• BIT16 &value: value of the data to write

Data Access Helper Class

48 WinAC Basis ODK User Manual

WinAC Basis ODK User Manual 49

Asynchronous Processor Class
The asynchronous processor executes user-defined events on a thread of execution separate from
the WinLC Logic Extension (IWinLCLogicExtension). This allow the COM object to schedule and
execute actions that may take a long time while allowing WinLC to continue processing.

For example: WinLC controls a stapler assembly line. One of the WinLC tasks is to send an E-mail
notification when supplies are running low. This can be accomplished by using WinAC Basis ODK.
However, putting all of the E-mail functionality in the SFB65002 Execute() function could cause an
unacceptable increase in the scan cycle. You could avoid this problem by using the asynchronous
processor (AsyncProc) to schedule a "Send E-mail Notification" event. This allows WinLC to maintain
a fast scan cycle while sending E-mail at the same time.

The following classes comprise the asynchronous processor class:

• AsyncProc: This class processes events posted to it on a thread of execution separate from the
main program.

• EventMsg: This is the base class to Asynchronous Events: all asynchronous events posted to the
asynchronous processor should be derived from this class. The Execute() function should be
overloaded in the derived class to provide custom processing for the event.

• Queue: This is a basic queue ("first in, first out") class. The asynchronous processor uses it for
scheduling events to process.

The following table lists the general sequence of events for using the asynchronous processor:

Pre-runtime 1. Create a new event class derived from the class EventMsg.

2. Add your new data and methods in the new class.

3. Override the Execute() function to perform the required actions (using the
data and methods that were added to the derived class).

Runtime 1. Create an event class using the "new" operator.

2. Use the ScheduleEvent method to post the event to the asynchronous
processor.

3. Call the GetStatus() method of the event to determine if the event has
been processed.

4. Call the GetResult() method of the event to get success/fail information
returned from the Execute() function.

If you use the WinAC Basis ODK application wizard to create the COM object, the COM object
accesses the asynchronous processor through the WinLC Logic Extension class (the class containing
the IWinLCLogicExtension interface).

Asynchronous Processor Class

50 WinAC Basis ODK User Manual

Asynchronous Events

All events posted to the asynchronous processor should be derived from the EventMsg class. In the
derived class, the event execution code needs to be placed in an override of the Execute() function.
The asynchronous processor calls this Execute() function to perform the event-specific tasks.

You are responsible for creating the event object on the heap (for example, using the "new" operator).
However, you can set the responsibility for deallocating the object’s memory. Using the SetDelTime()
method for the event, the event object can be set for deallocation either by the asynchronous
processor or by the your code, depending on whether or not post-processing status information is
required.

AsyncProc Class

The AsyncProc class processes events posted to it on a thread of execution separate from the main
program (IWinLCLogicExtension).

AsyncProc()

Default Constructor. This function constructs a AsyncProc object. The object creates a new thread of
execution and waits to be started using the ResumeThread() function.

Return: none

Parameters: none

AsyncProc(IWinLCServices *WinLCSvc)

This constructor sets the IWinLCServices interface pointer in the member data.

Parameters:

• IWinLCServices* WinLCSvc: the pointer to an IWinLCServices interface

void PauseThread()

This function temporarily stops the thread execution. Use the ResumeThread function to continue
processing.

Return: none

Parameters: none

void ResumeThread()

This function restarts the thread processing.

Return: none

Parameters: none

Asynchronous Processor Class

WinAC Basis ODK User Manual 51

void ResumeThread(IWinLCServices* WinLCSvc)

This function restarts the thread processing and reset the IWinLCServices interface pointer.

Return: none

Parameters: none

void StopThread()

This function signals the thread to terminate.

Return: none

Parameters: none

void Execute()

Note

The Execute function is a member of the derived class that you created with the application
wizard. You "implement" or "define" this function, but you do not call the Execute function.

This function contains the monitoring loop for the thread. All custom user logic should go in this
function, following the "// Add Thread execution code here" comment.

Return: none

Parameters: none

Asynchronous Processor Class

52 WinAC Basis ODK User Manual

EventMsg Class

This is the base class to Asynchronous Events: all asynchronous events posted to the asynchronous
processor should be derived from this class. The Execute() function should be overloaded in the
derived class to provide custom processing for the event.

EventMsg()

Default constructor.

long Execute()

This function performs the event-specific tasks. Execute() should be overridden in the derived event
class to provide user-defined functionality. This function can only be called by the asynchronous
processor.

Note

You "implement" or "define" this function, but you do not call the Execute() function.

Return:

• Long: success or fail of the Execute() function. Your code determines the definition of success or
failure.

Parameters: None

UINT GetDeleteTime()

This function returns the currently set deletion time for the event object. Return values can be:
ON_EXECUTE or USER_DELETE. For more information, refer to the description of the DelTime
enumeration.

Return:

• UINT: DelTime enumeration value

Parameters: None

long GetResult()

This function returns the success or failure status, as received from the Execute() function.

Return:

• Long: The return value from the Execute() function

Parameters: None

Asynchronous Processor Class

WinAC Basis ODK User Manual 53

UINT GetStatus()

This function returns the current processing state of the event. Return values can be: PENDING,
EXECUTING, or COMPLETE. For more information, refer to the description of the EventStatus
enumeration.

Return:

• UINT: EventStatus enumeration value

Parameters: None

void SetDelTime(DelTime WhenDelete)

This function sets the responsibility for deallocating the memory space for the object. The
asynchronous processor will delete the object if the delete time is ON_EXECUTE. Otherwise, you are
responsible for managing the deallocation of the memory space for the object.

Return: None

Parameters:

• DelTime WhenDelete: Enumerated type defined in EventMsg. WhenDelete can be one of two
values:

• ON_EXECUTE : The asynchronous processor deletes the object.

• USER_DELETE: Your logic deletes the object.

Enumerated Types

DelTime

DelTime is an enumeration of constants used to define when the event object should be deleted:

• ON_EXECUTE: The asynchronous processor deletes the object after it has been executed.

• USER_DELETE: You are responsible for deleting the object. Use this when post-processing
information is required from the event.

EventStatus

EventStatus is an enumeration of values used to define the current processing status of the event:

• PENDING: The event has been queued, but has not yet been processed.

• EXECUTING: The event is currently being executed.

• COMPLETE: The event has finished being processed, and return information is available

Asynchronous Processor Class

54 WinAC Basis ODK User Manual

Queue Class

This is a basic queue ("first in, first out") class. The asynchronous processor uses it for scheduling
events to process.

long Dequeue()

This function removes an object from the queue of objects to be executed by the asynchronous
processor.

Return: none

Parameters: none

long Enqueue()

This function places an object into the queue of objects to be executed by the asynchronous
processor.

Return: none

Parameters: none

long GetSize()

This function returns the current size of the queue.

Return:

Parameters: none

Queue(long Size)

This function allocates a specified amount of memory for the queue.

Return: none

Parameters:

• Long Size: Inital size of the queue.

Queue()

This function allocates memory for the queue..

Return: none

Parameters: none

WinAC Basis ODK User Manual 55

Monitor Class
The Monitor class consists of the MonitorThread class.

MonitorThread Class

The MonitorThread class provides a separate line of execution for the WinAC Basis ODK to monitor
events external to the its process.

The Execute() function is where the main thread monitoring loop is located. Place all custom
processing or monitoring immediately following the comment: "// Add Thread execution code here"

Note

The Execute function is a member of the derived class that you created with the application
wizard. You "implement" or "define" this function, but you do not call the Execute function.

The MonitorThread class consists of:

• Construction functions

• Thread Control functions

Construction Functions

MonitorThread ()

Default Constructor. This function constructs a MonitorThread object. The object creates a new
thread of execution and waits to be started using the ResumeThread() function.

Parameters: none

MonitorThread(IWinLCServices* WinLCSvc)

This constructor sets the IWinLCServices interface pointer in the member data. The IWinLCServices
interface provides the mechanism for scheduling an OB to be processed by WinLC. This can also be
set using the ResumeThread(IWinLCServices* WinLCSvc) overloaded function.

Parameters:

• IWinLCServices* WinLCSvc: the pointer to an IWinLCServices interface

Monitor Class

56 WinAC Basis ODK User Manual

Thread Control Functions

void PauseThread()

This function temporarily stops the thread execution. Use the ResumeThread function to continue
processing.

Return: none

Parameters: none

void ResumeThread()

This function restarts the thread processing.

Return: none

Parameters: none

void ResumeThread(IWinLCServices* WinLCSvc)

This function restarts the thread processing and reset the IWinLCServices interface pointer.

Return: none

Parameters: none

void StopThread()

This function signals the thread to terminate.

Return: none

Parameters: none

void Execute()

Note

The Execute function is a member of the derived class that you created with the application
wizard. You "implement" or "define" this function, but you do not call the Execute function.

This function contains the monitoring loop for the thread. All custom user logic should go in this
function, following the "// Add Thread execution code here" comment.

Return: none

Parameters: none

WinAC Basis ODK User Manual 57

WinAC Basis ODK Library for STEP 7
WinAC Basis ODK provides a STEP 7 library ("WinAC Basis ODK") that includes two SFBs:

• SFB65001 ("CREA_COM")

• SFB65002 ("EXEC_COM")

You insert these SFBs into your STEP 7 program to execute your application program as part of the
WinLC scan cycle. In order to use these SFBs in your STEP 7 program, you must perform the
following tasks:

• You must have loaded the WinAC Basis ODK library into STEP 7.

• You must insert both SFBs into your STEP 7 program.

SFB65001 ("CREA_COM")

SFB65001 creates an instance of the COM object specified by the ProgID parameter. Your COM
object is required to implement the interface specified for WinAC Basis ODK objects. The following
table shows the interface for SFB65001 ("CREA_COM"):

Address Declaration Name Data Type Comment

0.0 in ProgID STRING[254] Program ID of the object to be
created

256 out Ret_Val WORD SFB return code: Error code or
object instance handle

SFB65001 performs the following actions:

1. SFB65001 calls the CoInitializeEx function (or ensures that it was previously called) with the
COINIT_MULTITHREADED option. SFB65001 then converts the input parameter ProgID to a
ClassID.

2. If the COM object has already been created, SFB65001 maintains the WinAC Basis ODK handle
for the object already created (an index to locate the object pointer). If the COM object has not
been created, SFB65001 calls the CoCreateInstance function to create the object.

3. SFB65001 creates the IWinLCServices COM object if it hasn't been created yet. (There is only
one instance of this object created.)

4. If the COM object has not already been created, SFB65001 creates it, using the ClassID from the
program and the interface ID defined by WinAC Basis ODK. SFB65001 adds this object instance
to the internal list of created WinAC Basis ODK objects.

5. SFB65001 invokes the Activate method if this is the first call to this SFB after leaving STOP or if
the COM object was just created.

6. SFB65001 sets the Ret_Val to the WinAC Basis ODK handle (or error code) and sets the BR bit.
To see ways to check for the return value, refer to the sample program ("Histogram") installed by
WinAC Basis ODK.

WinAC Basis ODK Library for STEP 7

58 WinAC Basis ODK User Manual

Error Codes for SFB65001

Error Code Message Description

0x807F ERROR_INTERNAL An internal error occurred.

0x8001 E_EXCEPTION An exception occurred.

0x8102 E_CLSID_FAILED The call to CLSIDFromProgID failed.

0x8103 E_COINITIALIZE_FAILED The call to CoInitializeEx failed.

0x8104 E_CREATE_INSTANCE_FAILED The call to CoCreateInstance failed.

SFB65002 ("EXEC_COM")

SFB65002 calls the Execute function of the COM object specified by the OBJHandle parameter. The
following table shows the interface for SFB65002 ("EXEC_COM"):

Address Declaration Name Data Type Description

0.0 in OBJHandle WORD Handle returned from SFB65001
("CREA_COM")

2.0 in Command DWORD Index of function or command to execute

6.0 in InputData ANY Pointer to input function area

16.0 in OutputData ANY Pointer to function output area

26.0 out STATUS WORD SFB error code or return code from
Execute.

SFB65002 performs the following actions:

1. SFB65002 verifies that SFB65001 ("CREA_COM") was called and that the object handle is valid.

2. SFB65002 processes the ANY pointers and returns error codes for invalid ANY pointer
parameters.

3. SFB65002 assigns the input and output ANY pointer areas to the WinLC Data Access COM
object.

4. SFB65002 invokes the customer WinAC Basis ODK Execute function.

5. SFB65002 sets the STATUS with the Execute return code (unless there was a previous error)
and returns to the STEP 7 program.

WinAC Basis ODK Library for STEP 7

WinAC Basis ODK User Manual 59

Error Codes for SFB65002 ("EXEC_COM")

All other error codes are user-defined in the individual COM servers.

Error Code Message Description

0 NO_ERRORS Success

0x807F ERROR_INTERNAL An internal error occurred.

0x8001 E_EXCEPTION An exception occurred.

0x8002 E_NO_VALID_INPUT Input: the ANY pointer is invalid.

0x8003 E_INPUT_RANGE_INVALID Input: the ANY pointer range is invalid.

0x8004 E_NO_VALID_OUTPUT Output: the ANY pointer is invalid.

0x8005 E_OUTPUT_RANGE_INVALID Output: the ANY pointer range is invalid.

0x8006 E_OUTPUT_OVERFLOW More bytes were written into the output buffer
by the COM object than were allocated.

0x8007 E_NOT_INITIALIZED COM system has not been initialized: no
previous call to SFB65001 ("CREA_COM").

0x8008 E_HANDLE_OUT_OF_RANGE The supplied handle value does not
correspond to a valid COM object.

WinAC Basis ODK Library for STEP 7

60 WinAC Basis ODK User Manual

WinAC Basis ODK User Manual 61

Debugging the COM Object
Use the debugger of Visual C++ to test your COM object with the STEP 7 program running on
WinLC.

Note

The use of breakpoints in your COM object can cause WinLC to exceed the maximum scan
cycle.

Debugging your application requires the following steps:

• Create the STEP 7 program (using the WinAC Basis ODK SFBs).

• Provide the path name for the WinLC executable.

• Download the STEP 7 program to WinLC.

• Debug your application (DLL).

Use the following procedure to test your custom application (DLL) with WinLC:

1. In Visual C++, select the Debug tab. Visual C++ requests the path name for the executable
(.EXE) that uses your COM object.

2. Enter the path name for WinLC by browsing to the directory where you installed WinLC and
select the following file:

S7WLCAPX.EXE

3. After Visual C++ starts WinLC, start the SIMATIC Manager and open the STEP 7 program that
uses the SFBs of WinAC Basis ODK.

4. Download your STEP 7 program to WinLC.

5. Place WinLC in RUN mode or RUN-P mode.

6. Test your COM object by triggering events and setting breakpoints.

Note

Using breakpoints to test your application could cause WinLC to exceed the maximum
scan cycle time.

You can use the tuning panel of WinLC to monitor the effects of COM object on the scan cycle.

62 WinAC Basis ODK User Manual

In Case WinLC Crashes while Testing Your COM object

If your application causes WinLC to crash (to abort unexpectedly):

• If you are using the Debugger of Visual C++ to test your application, select the Debug > Stop
Debugging to recover from the crash.

• If you are not testing your application with the Visual C++ Debugger, terminate the following
process:

q S7WLCAPX.EXE

q S7WLPMSX.EXE

Do not terminate the S7WLSAPX.EXE process. This is a daemon process that always runs in the
background.

WinAC Basis ODK User Manual 63

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it to
Siemens.

Please give each of the following questions your own personal mark within a range from 1 (very
good) to 5 (very poor).

£ Do the contents meet your requirements?

£ Is the information you need easy to find?

£ Is the text easy to understand?

£ Does the level of technical detail meet your requirements?

£ Please rate the quality of the graphics and tables.

Additional comments:
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
 
Please check any industry that applies to you:
r Automotive
r Chemical
r Electrical Machinery
r Food
r Instrument and Control
r Non electrical Machinery
r Petrochemical
r Pharmaceutical
r Plastic
r Pulp and Paper
r Textiles
r Transportation
r Other ___________________________
 

64 WinAC Basis ODK User Manual

Mail your response to:

SIEMENS ENERGY & AUTOMATION, INC

ATTN: TECHNICAL COMMUNICATIONS M/S 519

3000 BILL GARLAND ROAD

PO BOX 1255

JOHNSON CITY TN USA 37605-1255

Include this information:

From

Name: _

Job Title: _

Company Name _

Street: _

City and State: _

Country: _

Telephone: _
 

WinAC Basis ODK User Manual 65

Index
A

Application wizard.. 23
Asynchronous processor / AsyncProc class ... 50
Asynchronous processor / EventMsg class 52
Asynchronous processor / Queue class 54
Asynchronous Processor Class...................... 49
AsyncProc class .. 50

B
Basic tasks .. 23

C
C/C++ application .. 7
Calling the C/C++ application......................... 32
COM Object/Debugging................................. 61
Computer requirements 11
CREA_COM.. 57
Create the shell for the C++ program 23
Creating the SFBs ... 32

D
Debugging ... 61

E
EventMsg Class... 52
EXEC_COM .. 58
Execution rules .. 34

G
Getting Started .. 15
Getting started/Basic tasks 23
Guidelines ... 34

H
Hardware requirements 11
Histogram program (sample) 16
Histogram Program Listing............................. 17

I
Inserting the SFBs into the STEP 7 Program.. 32
Installation ... 13
Installation/System requirements 11
Introduction.. 7
IWinLCServices Interface 35

L
Loading the WinAC Basis ODK Library 31

O
Open Development Kit/Installation..................13
Overview..7

P
Product Overview...7

Q
Queue Class ..54

R
Requirements...11
Rules ...34
Running in Debug ..61

S
Sample program ..16
SFB ... 32, 57
SFB65001..57
SFB65002..58
SFBs..7, 31
Shell

created by the application wizard23
Software/installation13
Software/Requirements11
STEP 7 .. 7, 31, 32
System Function Blocks57
System Requirements11

T
Tasks for implementing WinAC Basis ODK.....23

U
Use the Application Wizard23

V
Visual Studio (application wizard)23

W
WinAC Basis ODK library31
WinAC Basis ODK/Basic tasks23
WinAC Basis ODK/Installation........................13
WinAC ODK SFBs ...57
WinLC Logic Extensions...................................7

	Cover
	Table of Contents
	Preface
	Audience
	Scope of the Manual
	How to Use This Manual
	Other Manuals
	Additional Assistance
	Contacting Customer Support

	Product Overview
	WinAC Basis ODK Expands the Capabilities of WinLC
	Tools Provided by WinAC Basis ODK
	WinAC Basis ODK Provides a Mechanism for Defining Custom Logic

	System Requirements
	Hardware Requirements
	Software Requirements

	Installing WinAC Basis ODK
	If a Version of WinAC Basis ODK Is Already Installed...
	Uninstalling (Removing) WinAC Basis ODK

	Getting Started with a Sample Program
	Basic Tasks for Using the Sample Program
	Sample Program ("Histogram")
	STEP 7 Project (Histogram)

	Sample COM Object ("Histogram")
	Histogram.h
	Histogram.ccp

	Basic Tasks for Implementing a Custom COM Interface
	Using the Application Wizard to Create Your COM Object
	Start the WinAC ODK Application Wizard
	Enter the ATL/COM Class and Interface Information
	Select Whether to Enable Asynchronous Processing
	Select Whether to Enable Asynchronous Monitoring
	Generate the WinAC Basis ODK Object
	Project Shell
	Class View of the C++ Object Shell

	Creating the STEP 7 Program
	Loading the WinAC Basis ODK Library into STEP 7
	Inserting the WinAC Basis ODK SFBs into the STEP 7 Program

	WinAC Basis ODK COM Object
	WinAC Basis ODK Application Wizard
	Execution Rules
	IWinLCLogicExtension Execute Method
	IWinLCLogicExtension Activate and Deactivate Methods

	IWinLCServices Interface
	Data Access Helper Class
	CWinLCReadData Member Functions
	bool ReadS7BOOL(long byteOffset, int bitNo, bool &value)
	bool ReadS7BYTE(long byteOffset, BIT8 &value)
	bool ReadS7CHAR(long byteOffset, char &value)
	bool ReadS7DATE(long byteOffset, UINT16 &value)
	bool ReadS7DINT(long byteOffset, SINT32 &value)
	bool ReadS7DWORD(long byteOffset, BIT32 &value)
	bool ReadS7INT(long byteOffset, SINT16 &value)
	bool ReadS7REAL(long byteOffset, float &value)
	bool ReadS7S5TIME(long byteOffset, BIT16 &value)
	bool ReadS7STRING(long byteOffset, UINT8 readMax, char* string)
	bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, UINT8 &curLen)
	bool ReadS7TIME(long byteOffset, SINT32 &value)
	bool ReadS7TIME_OF_DAY(long byteOffset, UINT32 &value)
	bool ReadS7WORD(long byteOffset, BIT16 &value)

	CWinLCReadWriteData Member Functions
	bool WriteS7BOOL(long byteOffset, int bitNo, bool &value)
	bool WriteS7BYTE(long byteOffset, BIT8 &value)
	bool WriteS7CHAR(long byteOffset, char &value)
	bool WriteS7DATE(long byteOffset, UINT16 &value)
	bool WriteS7DINT(long byteOffset, SINT32 &value)
	bool WriteS7DWORD(long byteOffset, BIT32 &value)
	bool WriteS7INT(long byteOffset, SINT16 &value)
	bool WriteS7REAL(long byteOffset, float &value)
	bool WriteS7S5TIME(long byteOffset, BIT16 &value)
	bool WriteS7STRING(long byteOffset, char* string)
	bool WriteS7TIME(long byteOffset, SINT32 &value)
	bool WriteS7TIME_OF_DAY(long byteOffset, UINT32 &value)
	bool WriteS7WORD(long byteOffset, BIT16 &value)

	Asynchronous Processor Class
	Asynchronous Events
	AsyncProc Class
	AsyncProc()
	AsyncProc(IWinLCServices *WinLCSvc)
	void PauseThread()
	void ResumeThread()
	void ResumeThread(IWinLCServices* WinLCSvc)
	void StopThread()
	void Execute()

	EventMsg Class
	EventMsg()
	long Execute()
	UINT GetDeleteTime()
	long GetResult()
	UINT GetStatus()
	void SetDelTime(DelTime WhenDelete)

	Enumerated Types
	DelTime
	EventStatus

	Queue Class
	long Dequeue()
	long Enqueue()
	long GetSize()
	Queue(long Size)
	Queue()

	Monitor Class
	MonitorThread Class
	Construction Functions
	MonitorThread ()
	MonitorThread(IWinLCServices* WinLCSvc)

	Thread Control Functions
	void PauseThread()
	void ResumeThread()
	void ResumeThread(IWinLCServices* WinLCSvc)
	void StopThread()
	void Execute()

	WinAC Basis ODK Library for STEP 7
	SFB65001 ("CREA_COM")
	Error Codes for SFB65001

	SFB65002 ("EXEC_COM")
	Error Codes for SFB65002 ("EXEC_COM")

	Debugging the COM Object
	In Case WinLC Crashes while Testing Your COM object

	Remarks Form
	Index

