SIEMENS

Documentation Supplement

U Periphery
 6ES5 998-0PC22, Release 01

March 1993

This supplement contains additional information and corrections to the U Periphery manual which should be noted.

In the Instructions for the Interface Modules IM 304 and IM 314 (C79000-B8576-C716-02) in Part 4, on pages 14 and 16, the settings of the jumper on the jumper plug X15 are shown incorrectly. For the symmetrical connection CC - EG with IM 304 - IM 314R in S5-115H or S5-155H this jumper must be plugged between connections 1 and 2 (and not between 2 and 3).

The following diagram is therefore correct:
Symmetrical connection CC - EG with IM 304-IM 314R (S5-115H, S5-155H)

Jumper X21/X22

 set to "OFF", if no expansion unit connected.

Note:

A jumper may not be plugged on the jumper plug X15 between the connections 2 and 3.

[^0]1. $6 E S 54 x x-4 U A 13$ modules

The 6ES5 4xx-4UA13 modules function in the same manner as the 6ES5 4xx-4UA12 modules and have the same technical data.
2. Connecting the power supply unit to the mains power supply

With a power supply of $230 \mathrm{~V} / 120 \mathrm{~V}$ AC you may only connect a cable with a maximum cross-section of $0.75 \mathrm{~mm}^{2}$ to terminal 1.
3. Technical data of analog output module 6ES5 470-4UA12

The maximum capacitive load including line capacity is $1 \mu \mathrm{~F}$ for version 04 onwards of this module.
4. Connecting resistance thermometers (e.g. Pt 100) to the 6ES5 465-.. analog output modules If you wish to perform measurements with the Pt 100 resistance thermometer, you can no longer use the channels 12 to 15.
5. Connecting transducers to the modules 6ES5 460-4UA11 and -4UA12

When you use 2-wire transducers, the reference potential (common input) of these channels must be connected to $L-$. This removes the galvanic isolation between the channels and the power supply L+/L-.
6. Power supply module 6ES5 955-3NC13

The technical data for output 4: 24 V at the front terminal are identical to the data for the 6ES5 955-3LC14 module.

SIMATIC S5
 U Periphery

Manual

Order No. 6ES5 998-0PC22 Release 01

Contents		
Warning Information Suggestions/Corrections	C79000-R8576-C017	
Instructions: EG 183 U Expansion Unit EG 184 U Expansion Unit EG 187 U Expansion Unit Central Controller Interface Modules 310 and 312 Expansion Unit Interface Modules 300 and 301	C79000-B8576-C279-04	1
EG 185 U Expansion Unit	C79000-B8576-C096-01	2
EG 186 U Expansion Unit	C79000-B8576-C070-01	3
Symmetrical Interface IM 304 and IM 314	C79000-B8576-C716-02	4
Analog Input Modules Analog Output Modules	C79000-B8576-C300-06	5
Digital Input Modules Digital Output Modules	C79000-B8576-C312-08	6
Digital Input / Digital Output Module DI/DO 482	C79000-B8576-C575-03	7
Monitoring Module 313	C79000-B8576-C582-01	8
Load Current Supply Module 24V/4A 6ES5951-4LB11	C79000-B8576-C441-02	9
Installation Guide: Programmable Controllers of the U Series	C79000-B8576-C452-03	10
Technical Description: Enable Power Supply Module	C79000-T8576-C395-01	11
		12

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agree ment. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Technical data subject to change.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Copyright © Siemens AG 1990 All Rights Reserved

Order no.:	6ES5 998-OPC22
Order from:	Gerätewerk Karlsruhe

SIEMENS

How to Use this Manual

The U Periphery manual contains the Instructions for the available peripheral modules of the U Periphery (not including the "intelligent" modules (IP's); these have their own individual Instructions).
The peripheral modules form the interface between the programmable controller (PLC) and the process.

There are input modules, output modules and combined I/O modules. The output modules convert the digital signals from the programmable controllers specifically into digital or analog signals, depending on the process.
The input modules convert the digital or analog process signals into digital values specific to the programmable controller.
The data transfer between the open-loop, calculating or closed-loop CPU and the peripheral modules is carried out via the S 5 bus.
The process signals determine which input or output module is best suited to the automation task; a distinction must, however, be made between modules with floating or non-floating inputs and outputs. The decisive factor here is the difference in potential of the process signals or the interference voltage conditions (note the galvanic isolation between the process and the programmable controller and also between the individual channels of a module!).

If more than one subrack is required for an automation system, the user will find Instructions in this manual on expansion units (E 's) which can be used in various applications.

The signal exchange between the expansion units and the central controller (CC) or between the individual expansion units is carried out via central controller interface modules or expansion unit interface modules, also known as interface modules (IM's).

The following modules have a special importance in this manual:
The Monitoring module (MM) monitors the data exchange between the central controller and the expansion units.
The Load current supply is principally used to supply 24 V to the process signals with small load (analog outputs, analog inputs, digital inputs and some digital outputs) and interference monitoring (partial short-circuit protection).
The Enable supply is principally used to provide the enable inputs of older programmable controllers with a power supply, which do not have an internal 24 V output for an enable supply. With newer programmable controllers the supply output of the power supply itself should be used (for power supplies with a 24 V enable supply output, see catalog ST54.1).
Parts of the automation system can be isolated from the process via enable inputs.
The Installation Guide gives further information on the installation and connection of CC's and $E G$'s in cabinets.

SIEMENS

SIMATIC S5

Hinweise für den Anwender
Warning
Remarques pour votre sécurité

Achtung!

Bei fehlendem Freigabesignal oder abgezogenem Frontstecker bzw. gezogener Baugruppe wird Quittungsverzug gemeldet. Alle Eingangsdaten dieser Baugruppe werden als 1-Signal gelesen.

Zum Abschalten von Teilprozessen nur die Freigabespannung der betreffenden Ausgabebaugruppe wegnehmen!

Der Programmierer muß im QVZ-OB sicherstellen, daß weder im Fehlerfall noch beim Tauschen einer Baugruppe ein gefährlicher Zustand im Prozeß oder an der Maschine auftreten kann.

Important!
If no enable signal is applied to the module or if the front connector or the modul is removed, all inputs of this module are read as a 1 signal.

In order to switch off subprocesses, only disconnect the enable voltage of the respective output module.
The user must program the QVZ organization block to make sure that neither in the case of a fault nor during replacement of the module a dangerous condition can occur in the process or in the plant.

Important!
En absence de signal de validation, ou si le connecteur frontal est débranché ou encore si la carte est débrochée, toutes les entrées de cette carte sont interprétées comme étant àl'état 1 .

Pour arréter des processus partiels, il suffit de couper la tension de validation de la ou des cartes de sorties concernées.

Le bloc d'organisation de réaction au retard d'acquittement doit être programmé de manière qu'un défaut ou un remplacement de carte en cours de fonctionnement ne provoque pas l'apparition d'une situation dangereuse dans le processus ou sur la machine.

Warning

Risks involved in the use of so-called SIMATIC-compatible modules of nonSiemens manufacture

"The manufacturer of a product (SIMATIC in this case) is under the general obligation to give warning of possible risks attached to his product. This obligation has been extended in recent court rulings to include parts supplied by other vendors. Accordingly, the manufacturer is obliged to observe and recognize such hazards as may arise when a product is combined with products of other manufacture.

For this reason, we feel obliged to warn our customers who use SIMATIC products not to install so-called SIMATIC-compatible modules of other manufacture in the form of replacement or add-on modules in SIMATIC systems.

Our products undergo a strict quality assurance procedure. We have no knowledge as to whether outside manufacturers of so-called SIMATIC-compatible modules have any quality assurance at all or one that is nearly equivalent to ours. These so-called SIMATIC- compatible modules are not marketed in agreement with Siemens; we have never recommended the use of so-called SIMATIC-compatible modules of other manufacture. The advertising of these other manufacturers for so-called SIMATIC-compatible modules wrongly creates the impression that the subject advertised in periodicals, catalogues or at exhibitions had been agreed with us. Where so-called SIMATIC-compatible modules of non-Siemens manufacture are combined with our SIMATIC automation systems, we have a case of our product being used contrary to recommendations. Because of the variety of applications of our SIMATIC automation systems and the large number of these products marketed worldwide, we cannot give a concrete description specifically analyzing the hazards created by these so-called SIMATIC-compatible modules. It is beyond the manufacturer's capabilities to have all these so-called SIMATICcompatible modules checked for their effect on our SIMATIC products. If the use of so-called SIMATIC-compatible modules leads to defects in a SIMATIC automation system, no warranty for such systems will be given by Siemens.

In the event of product liability damages due to the use of so-called SIMATIC-compatible modules, Siemens are not liable since we took timely action in warning users of the potential hazards involved in so-called SIMATIC-compatible modules."

Safety-Related Guidelines for the User

1 General

This manual provides the information required for the intended use of the particular product. The documentation is written for technically qualified personnel such as engineers, programmers or maintenance specialists who have been specially trained and who have the specialized knowledge required in the field of instrumentation and control.

A knowledge of the safety instructions and warnings contained in this manual and their appropriate application are prerequisites for safe installation and commissioning as well as safety in operation and maintenance of the product described. Only qualified personnel as defined in section 2 have the specialized knowledge that is necessary to correctly interpret the general guidelines relating to the safety instructions and warnings and implement them in each particular case.
This manual is an inherent part of the scope of supply even if, for logistic reasons, it has to be ordered separately. For the sake of clarity, not all details of all versions of the product are described in the documentation, nor can it cover all conceivable cases regarding installation, operation and maintenance. Should you require further information or face special problems that have not been dealt with in sufficient detail in this documentation, please contact your local Siemens office.

We would also point out that the contents of this product documentation shall not become a part of or modify any prior or existing agreement, commitment or legal relationship. The Purchase Agreement contains the complete and exclusive obligations of Siemens. Any statements contained in this documentation do not create new warranties or restrict the existing warranty.

2 Qualified Personnel

Persons who are not qualified should not be allowed to handle the equipment/system. Noncompliance with the warnings contained in this manual or appearing on the equipment itself can result in severe personal injury or damage to property. Only qualified personnel should be allowed to work on this equipment/system.

Qualified persons as referred to in the safety guidelines in this manual as well as on the product itself are defined as follows:

- System planning and design engineers who are familiar with the safety concepts of automation equipment;
- Operating personnel who have been trained to work with automation equipment and are conversant with the contents of the manual in as far as it is connected with the actual operation of the plant;
- Commissioning and service personnel who are trained to repair such automation equipment and who are authorized to energize, deenergize, clear, ground and tag circuits, equipment and systems in accordance with established safety practices.

3 Danger Notices

The notices and guidelines that follow are intended to ensure personal safety, as well as protecting the product and connected equipment against damage.
The safety notices and warnings for protection against loss of life (the users or service personnel) or for protection against damage to property are highlighted in this manual by the terms and pictograms defined here. The terms used in this manual and marked on the equipment itself have the following significance:

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Important

If in this manual "Important" should appear in bold type, drawing attention to any particularly information, the definition corresponds to that of "Warning", "Caution" or "Note".

Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are not taken.

Note

is an important information about the product, its operation or a part of the manual to which special attention is drawn.

4 Proper Usage

- The equipment/system or the system components may only be used for the applications described in the catalog or the technical description, and only in combination with the equipment, components and devices of other manufacturers as far as this is recommended or permitted by Siemens.
- The product described has been developed; manufactured, tested and the documentation compiled in keeping with the relevant safety standards. Consequently, if the described handling instructions and safety guidelines described for planning, installation, proper operation and maintenance are adhered to, the product, under normal conditions, will not be a source of danger to property or life.

Warning

- After opening the housing or the protective cover or after opening the system cabinet. certain parts of this equipment'system will be accessible, which could have a dangerously high voltage level.
- Only suitably qualified personnel should be allowed access to this equipmentisystem.
- These persons must be fully conversant with any potential sources of danger and maintenance measures as set out in this manual.
- It is assumed that this product be transported, stored and installed as intended, and maintained and operated with care to ensure that the product functions correctly and safely.

5 Guidelines for the Planning and Installation of the Product

The product generally forms a part of larger systems or plants. These guidelines are intended to help integrate the product into its environment without it constituting a source of danger.
The following facts require particular attention:

Note

Even when a high degree of safety has been designed into an item of automation equipment by means of multichannel configuration, it is still imperative that the instructions contained in this manual be exactly adhered to. Incorrect handling can render ineffective the preventive measures incorporated into the system to protect it against dangerous faults, and even create new sources of danger.

The following advice regarding installation and commissioning of the product should - in specific cases - also be noted.

Warning

- Follow strictly the safety and accident prevention rules that apply in each particular case.
- Units which are designed as built-in units may only be operated as such, and table-mounted or portable equipment only with its casing closed.
- In the case of equipment with a permanent power connection which is not provided with an isolating switch and/or fuses which disconnect all poles, a suitable isolating switch or fuses must be provided in the building wiring system (distribution board). Furthermore, the equipment must be connected to a protective ground (PE) conductor.
- For equipment or systems with a fixed connecting cable but no isolating switch which disconnects all poles, the power socket with the grounding pin must be installed close to the unit and must be easily accessible.
- Before switching on the equipment, make sure that the voltage range setting on the equipment corresponds to the local power system voltage.
- In the case of equipment operating on 24 V DC, make sure that proper electrical isolation is provided between the mains supply and the 24 V supply. Only use power supply units to IEC 364-4-41 or HD 384.04.41 (VDE 0100 Part 410).
- Fluctuations or deviations of the power supply voltage from the rated value should not exceed the tolerances specified in the technical specifications. Otherwise. functional failures or dangerous conditions can occur in the electronic modules/equipment.
- Suitable measures must be taken to make sure that programs that are interrupted by a voltage dip or power supply failure resume proper operation when the power supply is restored. Care must be taken to ensure that dangerous operating conditions do not occur even momentarily. If necessary, the equipment must be forced into the "emergency off" state.
- Emergency tripping devices in accordance with EN 60204/IEC 204 (VDE 0113) must be effective in all operating modes of the automation equipment. Resetting the emergency off device must not result in any uncontrolled or undefined restart of the equipment.

Caution

- Install the power supply and signal cables in such a manner as to prevent inductive and capacitive interference voltages from affecting the automation functions.
- Automation equipment and its operating elements must be installed in such a manner as to prevent unintentional operation.
- Automation equipment can assume an undefined state in the case of a wire break in the signal lines. To prevent this, suitable hardware and software measures must be taken when interfacing the inputs and outputs of the automation equipment.

6 Active and Passive Faults in Automation Equipment

- Depending on the particular task for which the electronic automation equipment is used, both active as well as passive faults can result in a dangerous situation. For example, in drive control, an active fault is generally dangerous because it can result in an unauthorized startup of the drive. On the other hand, a passive fault in a signalling function can result in a dangerous operating state not being reported to the operator.
- This differentiation of the possible faults and their classification into dangerous and nondangerous faults, depending on the particular task, is important for all safety considerations in respect of the product supplied.

Warning

In all cases where a fault in an automation equipment can result in severe personal injury or substantial damage to property, ie. where a dangerous fault can occur, additional external measures must be taken or equipment provided to ensure or force safe operating conditions even in the event of a fault (e.g. by means of independent limit monitors, mechanical interlocks etc.).

7 Procedures for Maintenance and Repair

If measurement or testing work is to be carried out on an active unit, the rules and regulations contained in the "VBG 4.0 Accident prevention regulations" of the German employers liability assurance association (Berufsgenossenschaften) must be observed. Particular attention is drawn to paragraph 8 "Permissible exceptions when working on live parts". Use only suitable electrical tools.

Warning

- Repairs to an item of automation equipment may only be carried out by Siemens service personnel or an authorized Siemens repair center. For replacement purposes, use only parts or components that are contained in the spare parts list or listed in the "Spare parts" section of this manual. Unauthorized opening of equipment and improper repairs can result in loss of life or severe personal injury as well as substantial property damage
- Before opening the equipment, always remove the power plug or open the disconnecting switch.
- Only use the fuse types specified in the technical specifications or the maintenance instructions of this manual.
- Do not throw batteries into an open fire and do not carry out any soldering work on batteries (danger of explosion). Maximum ambient temperature $100^{\circ} \mathrm{C}$. Lithium batteries or batteries containing mercury should not be opened or recharged. Make sure that the same type is used when replacing batteries.
- Batteries and accumulators must be disposed of as classified waste.
- The foilowing points require attention when using monitors:

Improper handling, especially the readjustment of the high voltage or fitting of another tube type can result in excessive X-ray radiation from the unit. The license to operate such a modified unit automatically lapses and the unit must not be operated at all.

[^1]
Guidelines for Handling Electrostatically Sensitive Devices (ESD)

1 What is ESD?

VSLI chips (MOS technology) are used in practically all SIMATIC S5 and TELEPERM M modules. These VLSI components are, by their nature, very sensitive to overvoltages and thus to electrostatic discharge:

They are therefore defined as
"Electrostatically Sensitive Devices"
"ESD" is the abbreviation used internationally.
The following warning label on the cabinets, subracks and packing indicates that electrostatically sensitive components have been used and that the modules concerned are susceptible to touch:

ESDs can be destroyed by voltage and energy levels which are far below the level perceptible to human beings. Such voltages already occur when a component or a module is touched by a person who has not been electrostatically discharged. Components which have been subjected to such overvoltages cannot, in most cases, be immediately detected as faulty; the fault occurs only after a long period in operation.

An electrostatic discharge

- of 3500 V can be felt
- of 4500 V can be heard
- must take place at a minimum of 5000 V to be seen.

But just a fraction of this voltage can already damage or destroy an electronic component.
The typical data of a component can suffer due to damage, overstressing or weakening caused by electrostatic discharge; this can result in temporary fault behavior, e.g. in the case of

- temperature variations,
- mechanical shocks,
- vibrations,
- change of load.

Only the consequent use of protective equipment and careful observance of the precautions for handling such components can effectively prevent functional disturbances and failures of ESD modules.

2 When is a Static Charge Formed?

One can never be sure whether the human body or the material and tools which one is using are not electrostatically charged.
Small charges of 100 V are very common; these can, however, very quickly rise up to 35000 V .
Examples of static charge:

- Walking on a carpet
- Walking on a PVC flooring
- Sitting on a cushioned chair
- Plastic desoldering unit
- Plastic coffee cup
- Plastic bags
- Books, etc. with a plastic binding
up to 35000 V
up to 12000 V
up to 18000 V
up to 8000 V
up to 5000 V
up to 5000 V
up to 8000 V

3 Important Protective Measures against Static Charge

- Most plastic materials are highly susceptible to static charge and must therefore be kept as far away as possible from ESDs.
- Personnel who handle ESDs, the work table and the packing must all be carefully grounded.

4 Handling of ESD Modules

- One basic rule to be observed is that electronic modules should be touched by hand only if this is necessary for any work required to be done on them. Do not touch the component pins or the conductors.
- Touch components only if
- the person is grounded at all times by means of a wrist strap
or
- the person is wearing special anti-static shoes or shoes with a grounding strip.
- Before touching an electronic module, the person concerned must ensure that (s)he is not carrying any static charge. The simplest way is to touch a conductive, grounded item of equipment (e.g. a blank metallic cabinet part, water pipe, etc.) before touching the module.
- Modules should not be brought into contact with insulating materials or materials which take up a static charge, e.g. plastic foil, insulating table tops, synthetic clothing, etc.
- Modules should only be placed on conductive surfaces (table with anti-static table top, conductive foam material, anti-static plastic bag, anti-static transport container).
- Modules should not be placed in the vicinity of monitors, TV sets (minimum distance from screen > 10 cm).

The diagram below shows the required protective measures against electrostatic discharge.

Standing position

Sitting position

Standing/sitting position
a Conductive flooring
b Anti-static table
Anti-static shoes
Anti-static coat
Grounding wrist strap
Grounding connection of the cabinets

5 Measurements and Modification to ESD Modules

- Measurements on modules may only be carried out under the following conditions:
- The measuring equipment is grounded (e.g. via the PE conductor of the power supply system) or
- when electrically isolated measuring equipment is used, the probe must be discharged (e.g. by touching the metallic casing of the equipment) before beginning measurements.
- Only grounded soldering irons may be used.

6 Shipping of ESD Modules

Anti-static packing material must always be used for modules and components, e.g. metalized plastic boxes, metal boxes, etc. for storing and dispatch of modules and components.
If the container itself is not conductive, the modules must be wrapped in a conductive material such as conductive foam, anti-static plastic bag, aluminium foil or paper. Normal plastic bags or foils should not be used under any circumstances.
For modules with built-in batteries ensure that the conductive packing does not touch or shortcircuit the battery connections; if necessary cover the connections with insulating tape or material.

SIEMENS

SIMATIC S5

$\begin{array}{ll}\text { Expansion unit } 183 \mathrm{U} & \text { 6ES5 183-3UA. } \\ \text { Expansion unit } 184 \mathrm{U} & \text { 6ES5 184-3UA. } \\ \text { Expansion unit } 187 \mathrm{U} & 6 E S 5 \text { 187-5UA. } \\ \text { Central controller interface modules } 310 \text { and } 312 & 6 E S 531 .-\ldots . . \\ \text { Expansion unit interface modules } 300 \text { and } 301 & 6 E 5530 .-\ldots . .\end{array}$
Operating instructions

Contents Page Page
1 Technical Description
Maintenance 22
Inserting and Removing Modules 22
Changing the Fans 22
Bus Board Interface 23
Pin Assignment of the Front Connectors 24
Pin Assignment of the Power Supply Unit Interface 25
4.6 26
4.7 Terminator 760 27
5 Spare Parts 28

1 Technical Description

1.1 Application

SIMATIC S5 programmable controllers consist of a central controller (CC) and, if required, one or more expansion units (EU). Expansion units are connected if there are not enough module slots for I / O modules in the central controller.

The interface modules $300-5 C, 301,310$ and $312-5 C$ are used to connect the expansion units to each other and to the central controller.

The expansion units can be used with the S5 $130 \mathrm{~K}, 130 \mathrm{~W}, 135 \mathrm{U}$, $150 \mathrm{~K}, 150 \mathrm{~S}, 150 \mathrm{U}$ and 155 U programmable controllers.

1.2 Design

The 183 U expansion unit consists of a compact housing with cable duct and a power supply unit integrated in the fan unit.

The 184 U expansion unit consists of a compact housing with cable duct and fan unit (without power supply unit).

Both expansion units have 21 module slots.
The 187 U expansion unit consists of a compact housing without cable duct, fan or power supply unit. The 187 U expansion unit has 11 module slots.

Centralized configuration

The units are installed close to each other, however, with a minimum clearance of 90 mm (e.g. in the cabinet).

The total cable length from the central controller to the last expansion unit must not exceed 2 m .

Distributed configuration

The total cable length from the central controller to the last 310-3 CC interface module must not exceed 200 m , otherwise as for centralized configuration.

[^2]
Connecting rugged expansion units

Make sure that the maximum load on the power supply unit in the central controller and/or in the EU 183 is not exceeded (see Section 1.4).

Operating instructions for rugged expansion units - order no. C79000-B8576-C226.

1.3 Possible Configurations of the Expansion Units

Modules Slots	3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139	147	155	163
CC/EU int. mod. 310																					
CCint. mod. 311																					
EU int. mod. 300																					
Digital inputs/outputs																					
Analog inputs/outputs																					
IP 240-245																					
Monitoring mod. 313																					

Possible configurations in expansion unit $184 \cup$

Slots	3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139	147	155	163
CC int. mod. 312																					
Digital inputs/outputs																					
Analog inputsloutputs																					
IP 240-245																					
Monitoring mod. 313																					

Possible configurations in expansion unit 187 U

Slots.	3	19	35	51	67	83	99	115	131	147	163
CCint. mod. 312											
Digital inputs/outputs											
Analog inputs/outputs											
Monitoring mod. 313											

1.4 Technical Data

Safety requirements
Safety class
Degree of protection
Operating temperature
Transport and storage temperature
Humidity rating

Operating altitude
Mechanical requirements

Expansion unit 183 U/184 U
Weight
Dimensions (W x H x D)
Expansion unit 187 U
Weight
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)

Power supply unit 6ES5 955-3LC14

Input

Rated input voltage U_{EN}
Undervoltage signal U_{E}
Input frequency \mathbf{f}_{E}
Current input $I_{\text {EN }}$
at rated load and
$\mathrm{U}_{\mathrm{EN}}=230 \mathrm{~V}$ (or 115 V)
Peak inrush current $I_{\text {Emax }}$
Efficiency at rated load, with fan
${ }^{1}$) Voltage selector

VDE 0160

1
IP 20
0 to $55^{\circ} \mathrm{C}$
-40 to $70^{\circ} \mathrm{C}$
$\max .95 \%$ at $25^{\circ} \mathrm{C}$, (without condensation)
max. 3500 m above sea level
installation in fixed equip-
ment, not necessarily free of vibration; installation on ships and in vehicles possible, observing special regulations, however, not directly on the engine.
approx. $14 \mathrm{~kg} /$ approx. 13 kg $482 \mathrm{~mm} \times 432 \mathrm{~mm} \times 310 \mathrm{~mm}$
approx. 11 kg
$482 \mathrm{~mm} \times 266 \mathrm{~mm} \times 220 \mathrm{~mm}$
$230 / 115 \mathrm{VAC}+10 \% /-18.7 \%^{1}$)
$<187 \mathrm{~V} \mathrm{AC}$ (or 93 V AC)
48 to 63 Hz
1.25 A (or 2.5 A)

100 A (or 50 A)
typ. 61\%

Power supply buffering time	$>5 \mathrm{~ms}$
Power factor	0.65
Input fuse protection	4 A fast-acting; 250 V; 6.3 mm
	x $32 \mathrm{~mm} ;$ location F 26

Output 1

Rated output voltage $\mathrm{U}_{\mathrm{AN} 1}$
Range of output voltage
Rated output current $I_{\text {AN1 }}$
Ripple
Dynamic voltage tolerances
at sudden load change from 50\%
to $100 \% \mathrm{I}_{\mathrm{N}}$
Settling time
Overvoltage cut-off $\mathrm{U}_{\mathrm{A} 1}$
Undervoltage signal U_{Al}
Current limiting at overload

Output 2
Rated output voltage $\mathrm{U}_{\text {AN2 }}$
Rated output current $I_{\text {AN2 }}$
Ripple
Fuse for overcurrent protection
$5.1 \mathrm{~V} \mathrm{DC} \pm 0.5 \%$
(0.95 to 1.05$) \times \mathrm{U}_{\mathrm{AN} 1}$

18 A DC
$\leq 1 \%$ of U_{Al}
$\leq 5 \%$ of U_{Al}
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.75 \mathrm{~V}+5 \%$
(1.05 to 1.15) $\times \mathrm{I}_{\mathrm{AN} 1}$

24 V DC $+25 \% /-17 \%$
$0.8 \mathrm{~A} \mathrm{DC}^{1}$)
$\leq 5 \%$ of $\mathrm{U}_{\mathrm{A} 2}$
1.5 A fast-acting; 250 V ;
$6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$, location F90

Output 4: 24 V front
Rated output voltage $\mathrm{U}_{\text {AN4 }}$
Rated output current $I_{\text {AN4 }}$
Current limiting
(response threshold)
Undervoltage signal
(LED on front panel)
Capacitive load
max. 100 nF
${ }^{1}$) Sum of output currents $I_{A 2}$ and $I_{A 4} \leq 0.8 \mathrm{ADC}$

Fans	2 axial-flow fans
Input voltage	115 V AC, selectable (serial/parallel)
Delivery rate per fan	$160 \mathrm{~m}^{3} / \mathrm{h}$ (no load)
Fan monitoring	Air flow monitoring with PTC thermistor detectors; stoppage of one or both fans is detected and signalled (LED, relay) or cuts off the output voltages (can be disabled with jumper $F-R$).
Service life of a fan	```typ. 30,000 to 40,000 h at 55 typ. 40,000 to 50,000 h at 30'```
Additional monitoring	
24 V load voltage (voltage monitor ext.)	≥ 14 to 20 V
Electrical isolation	yes
primary/secondary	
Power supply unit 6ES5 955-3NC13	
Input	
Rated input voltage U_{EN}	$24 \mathrm{~V} \mathrm{DC}+25 \% /-17 \%$
Undervoltage signal U_{E}	<20 V DC
Current input $I_{\text {EN }}$ at rated load and $\mathrm{U}_{\mathrm{EN}}=24 \mathrm{~V}$	6.9 A
Peak inrush current $I_{\text {Emax }}$	250 A
Efficiency at rated load	typ. 67\%
Power supply buffering time	$>5 \mathrm{~ms}$
Input fuse protection	15 A medium time lag; 250 V ; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$; location F 1

Output 1

Rated output voltage $\mathrm{U}_{\mathrm{AN} 1}$
Range of output voltage
Rated output current $I_{\text {AN1 }}$
Ripple
Dynamic voltage tolerances
at sudden load change from 50\%
to $100 \% \mathrm{I}_{\mathrm{N}}$
Settling time

Overvoltage cut-off $\mathrm{U}_{\mathrm{A} 1}$
Undervoltage signal $\mathrm{U}_{\mathrm{A} 1}$
Current limiting at overload

Output 2

Rated output voltage $\mathrm{U}_{\mathrm{AN} 2}$
Rated output current $I_{\text {AN2 }}$
Total current load of the 24 V and 15 V output

Ripple
Fuse for overcurrent protection

Fans

Input voltage
Delivery rate per fan
Fan monitoring

Service life of a fan
5.1 V DC $\pm 0.5 \%$
(0.95 to 1.05) $\times \mathrm{U}_{\mathrm{AN} 1}$

18 A DC
$\leq 1 \%$ of $\mathrm{U}_{\mathrm{A} 1}$
$\leq 5 \%$ of $\mathrm{U}_{\mathrm{A} 1}$
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.75 \mathrm{~V} \pm 5 \%$
(1.05 to 1.15) $\times \mathrm{I}_{\mathrm{AN} 1}$

24 V DC $+25 \% /-17 \%$
0.8 A DC
$\leq 0.8 \mathrm{~A}$
$\leq 5 \%$ of $\mathrm{U}_{\mathrm{A} 2}$
1.5 A fast-acting; location F90

2 axial-flow fans

24 V DC
$160 \mathrm{~m}^{3} / \mathrm{h}$ (no load)
Air flow monitoring with PTC thermistor detectors; stoppage of one or both fans is detected and signalled (LED, relay) or cuts off the output voltages (can be disabled with jumper $F-R$).
typ. 30,000 to $40,000 \mathrm{~h}$ at $55^{\circ} \mathrm{C}$;
typ. 40,000 to $50,000 \mathrm{~h}$ at 30°

Additional monitoring

24 V load voltage (voltage monitor ext.)	≥ 14 to 20 V	
Interface module	300-5C	301-5C
Maximum current per interface	5 A	$5 \mathrm{~A}^{5}$)
Power supply (internal)	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$
Maximum current input	0.6 A	0.75 A
Approximate weight	0.35 kg	0.3 kg
Interface module	310-3	312-5c-3
Power supply (internal)	$5 \mathrm{~V} \pm 5$ \%	$5 \mathrm{~V} \pm 5$ \%
Maximum current input	0.65 A	0.2 A
Approximate weight	0.3 kg	0.35 kg
Interface module	300-3	301-3
Maximum current input	0.6 A	0.75 A
Power supply (internal)	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm{ }^{\text {\% }}$
Maximum current input	0.6 A	0.75 A
Approximate weight	0.35 kg	0.3 kg

Cable lengths

$312-5 C ~ C C ~ i n t e r f a c e ~ m o d u l e ~ f o r ~$	EU 184 U (compact design)	
Order no.	Cable length	Configuration
6ES5 312-5CA11	0.5 m	EU above CC
6ES5 312-5CA21	1.5 m	EU beside CC
6ES5 312-3AB11	0.5 m 6ES5 312-3AB31	0.95 m

Fan units	6ES5 988-3LA11	6ES5 988-3NA11
for expansion units	6ES5 184-3UA11	6ES5 184-3UA21
Power supply	$220 / 110 \mathrm{~V}$	$24 \mathrm{~V}-$
Tolerance	$\pm 15 \%$	-17 to +25 \%
Current input	0.5 A eff.	1 A eff.

Expansion units EU 183U, EU 184 U

Note: the output voltage ($24 \mathrm{~V}_{\mathbf{\prime}}$) is not wired on the bus board of the expansion unit.

2 Installation

2.1 Installation of the Expansion Unit

The expansion unit is suitable for installation in cabinets (see catalog ST 53), open racks or control desks.

It is secured in position using M6 screws and washers.
To allow unobstructed ventilation, a minimum clearance of 88.9 mm (2 U) must be maintained above, below and behind the expansion unit.

If the unit is wall-mounted, a clearance of 100 mm to the wall is required.

The total heat generated inside a cabinet must be dissipated either by natural convection or cabinet ventilation.

The dimensions of the expansion unit with modules and fans are as follows: ($\mathrm{H} \times \mathrm{X} \times \mathrm{D}$) $440 \mathrm{~mm} \times 490 \mathrm{~mm} \times 352 \mathrm{~mm}$.

2.2 Connecting the Power Supplies

The VDE regulations must be observed, particularly VDE 0100.
Cable clamps should be used to avoid strain on the cables.
Wire cross-section: $0.5 \mathrm{~mm}^{2}$ to $4 \mathrm{~mm}^{2}$
Length of cable to be stripped: 5 mm

1 AC line:
220 V input voltage (depending on type of power supply unit DC line 24 V also possible).

2 Monitor output:
The stoppage of one or both fans is signalled externally via the LED and relay contact and causes the output voltages to be switched off (function can be disabled with jumper $F-R$; then only relay signal and LED display).

123 (suggested wiring, see installation guidelines)

3 Enable power supply:
With one U_{H} output no more than 7 enable inputs (front terminal) may be energized (wiring suggestion see installation guidelines, not with EU 184 U).

4 Voltage monitor:
24 V load voltage monitoring input, must be connected or deactivated by jumper BA-EX in the power supply unit (not with the EU 184 U).

5 Output 24 V DC; 0.4 A:
This output can be used to supply the enable inputs of the U peripherals (not with the EU 184 U).

Fig. 7 Power supply connections

The relevant VDE regulations should be observed, particularly VDE 0100.

The terminals on the front panel are suitable for a cable crosssection up to $4 \mathrm{~mm}^{2}$.

2.3 Notes on Start-up

The 220 V supply cable should be kept as far away from the other cables as possible.

The 24 V ground connection to terminal $\mathrm{D} 1(0 \mathrm{~V})$ must be made via a short, strong cable ($2.5 \mathrm{~mm}^{2}$ cross-section) and be separated from the other signal cables.

The programmable controllers are supplied for operation with an earthed reference potential.

If the programmable controller is installed in a cabinet, the housing must be earthed to the cabinet rails by means of screws.

The metallic parts of the cabinet (side panels, door etc.) must be connected to each other by low-resistance wires (10 to $16 \mathrm{~mm}^{2}$ cross-section). The cabinet must be connected to the PE conductor.

If the input or output cables are shielded, they must be clamped to a shielding bar with a low-resistance connection to the housing of the programmable controller.

The 24 V load voltage power supply unit must have a smoothing capacitor (approx. 200 uF per ampere load current). In addition, a screen winding is required for the transformer.

Inductive voltage peaks are limited on the output modules. To increase noise immunity, you are nevertheless recommended to fit quenching elements (e.g. diode 1 N 4004) to the coils and contactors to be energized.

If contactors are mounted in the same cabinet as the programmable controller, or in the vicinity of the cabinet, it is advisable to connect suppressors across the contactor coils (RC element with 0.25 uF).

The installation guidelines, order no. C79000-B8576-C252 must be followed.

2.4 Fan Monitoring

If a fan fails, adequate cooling cannot be guaranteed. When supplied, all programmable controllers are wired so that the power supply unit is switched off if a fan fails.

If, for technical reasons, the power supply cannot be disconnected immediately, jumper $F-R$ must be removed. You must, however, ensure that the power supply is switched off within 60 seconds.

If several units with fan assemblies are to be monitored together, the EN and U_{H} terminals for fan monitoring must be wired as shown in the following circuit diagram. In this case, all units will be switched off if a fan fails.

With fan unit only 1 (LED "fan fault")

3 Operation

3.1 Controls and Displays

EU interface module 300-5C/300-3

LEDs "I/O module fault"
The LEDs LD1 and/or LD2 are lit when there is a constant RDY signal (acknowledgement signal from an I/O module) at the upper and/or lower terminal strip.

1 LED "Fan Fault"
The red LED is lit if there is a fan malfunction. The power supply unit is then switched off (jumper $F-R$ inserted) after a delay of 6 to 10 s . If, for technical reasons, the power supply cannot be switched off immediately, jumper $F-R$ must be removed. The power supply must, however, be switched off within 60 s , otherwise the module may overheat.

2 LED "Voltage Low"
The red LED is lit if the voltage at the load voltage monitoring input is too low.

3 LED "Batt. Low"
No function in the EU

4 Key "Reset"
No function in the EU

5 LED "Power Supply O.K."
The green LED is lit when the output voltage of 5 V is present.

6 Test socket "Test 5 V"
The output current $I_{A 1}$ can be checked
(standard setting: 5.1 V DC $\pm 0.5 \%$)

7 Test socket "3V $=18 \mathrm{~A}$ "
The output current $I_{A 1}$ can be checked ($3 \mathrm{~V}=$ max. output current of the corresponding power supply unit)

8 LED "Power Supply O.K." (Bus) The green LED is lit when the output voltage of 15 V (if the 15 V additional module is being used) and the output voltage of 24 V are present.

9 Test socket "15 V/24 V DC" (Bus)
a) The output voltage $U_{A 2}$ can be checked (24 V DC + 25\%/-17\%)
b) The output voltage $U_{A 3}$ can be checked (15 V DC $\pm 5 \%$, the 15 V additional module must be inserted)

10 LED "Power Supply O.K." (Front) The green LED is lit if the output voltage of 24 V is present.

Fig. 8 Power supply units 6ES5 955-3...

EU interface module 301-5C/301-3

"Fault" LEDs
During static or dynamic warm restarts, the red LED 1 and/or LED 2 is lit if the internal supply voltage (5 V DC) or the external load voltage (24 V DC) fails.

3.2 Jumper Assignnents/Changing the Function

EU interface module 300-5C

Standard assignment	Function	Jumper	
in	out		
	Clock pulse from front connector $3 / 35$ to base connector $1 z 4$	2	
\mathbf{x}	Clock pulse not switched through	-	2
\mathbf{x}	Test point; cannot be changed	1	
\mathbf{x}	Switch through EANK	-	3
\mathbf{x}	Additional delay of MEMR and MEMW by approx. 500 ns	8	

EU interface module 300-5C

Adress expansion for the extended peripheral area (0 area) only with the S5 135U, 150 U and 155U. Insert jumper 8-9 on jumper base 4.

EU interface module 300-3

Standard assignment	Function	Jumper	
\mathbf{x}	Switch through CPKLA to $2 z 18$	-	1

EU interface module 300-3

Adress expansion for the extended peripheral area (0 area) only with the S5 135U, 150S, 150 U and 155 U . Insert jumper 4-13 on jumper base 12.

EU interface module 301-3/301-5C

Standard assignment	Function	Jumper	
in	out		
\mathbf{x}	Test point;	3	-
\mathbf{x}	Test point;	$27 / 4-13$	2
	CC and all EUs are reset	1	-
\mathbf{x}	Only the EUs are reset	-	1
	Switch through PEU to ZGU	4	-

EU interface module 301-3

* not for 301-5C

Adress expansion for the extended peripheral area (0 area) only with the S5 $135 \mathrm{U}, 150 \mathrm{~S}, 150 \mathrm{U}$ and 155 U . Insert jumper 8-9 on jumper base 7.

CC-EU interface module 310-3

The quartz crystal Q1 is not standard.

Power supply unit

Function	Jumpers
Battery monitoring ($\overline{\mathrm{BAU}})=$ active Battery monitoring (BAU) = inactive	NN-MM inserted NN-MM open
Switch off PS after fan failure PS not switched off after fan failure (only signal LED, relay)	F-R inserted F-R open
Operation with load voltage monitoring Operation without load voltage monitoring	BA-EX open BA-EX inserted
Energizing the signal relay (Relay contact 2-3 inserted) by RLSA \qquad without RLSA by $\overline{B A S P A}$ (UA $<4.75 \mathrm{~V}$ or load voltage monitoring $<20 \mathrm{~V}-25 \%$) without BASPA If both jumpers are open, the energization of the relay is only dependent on the fan monitoring.	RR-LL inserted RR-LL open BB-AA inserted BB-AA open

Relay signal when fan fails, $\overline{\text { RLSA }}, \overline{B A S P A}$:

Situation		Signal		Output voltage switched off		
		LED	Relay contact	$\begin{aligned} & \mathrm{F}-\mathrm{R} \\ & \text { open } \end{aligned}$	$\begin{aligned} & \text { F-R } \\ & \text { inserted } \end{aligned}$	*
Fan fault		lit	2-3 inserted	no	yes	
$\begin{aligned} & \text { and } \overline{\text { RLSA }}=10 w \\ & \text { or } \overline{\text { BASPA }}=10 \mathrm{w} \end{aligned}$		$\begin{aligned} & \text { lit } \\ & \text { lit } \end{aligned}$	2-3 inserted 2-3 inserted	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	
Fan OK		unlit	2-1 inserted	no	no	
and $\overline{\text { RLSA }}=10 w$ or BASPA $=10 w$		unlit unlit	2-3 inserted 2-3 inserted	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	
Enable absent	BB-AA open	unlit	2-1 inserted	yes	yes	
	BB-AA ins.	unlit	2-3 inserted	yes	yes	
$\begin{aligned} & \mathrm{U}_{\mathrm{H}} \text { - } \mathrm{FRG} \\ & \text { open } \end{aligned}$	$\begin{aligned} & \frac{\text { RR-LL ins. }}{\text { RLSA }}=\text { low } \end{aligned}$	unlit	2-3 inserted	yes	yes	

[^3]The jumper assignment shown is the setting when the unit is supplied.

Power supply unit 6ES5 955-3LC14

Power supply unit 6ES5 955-3NC13

4 Maintenance

4.1 Inserting and Removing Modules

The modules are removed by gripping the handles and pulling them out with a gentle rocking motion.

Modules must only be removed or inserted when the central controller, the expansion units and the sensors are switched off.

The fan assembly (with or without power supply unit) must be switched off before it is installed or removed.

4.2 Replacing the Fans

The service life of the fans (see technical data) depends on the number of operating hours, the ambient temperature and ambient conditions. If a fan fails during operation, the fan monitoring (jumper $F-R$ inserted) prevents damage e.g. to the modules by switching off the power supply unit.

In certain cases it may be necessary to replace the fans prophylactically at appropriate intervals.

To replace the fans, the power supply unit must be switched off and dismantled, the mounting screws of the fans must be loosened and the power supply cable to the fans disconnected (plug-in connector). The fans are installed in the reverse order.

4.3 Pin Assignment of the Bus Board Interface

4.4 Pin Assignment of the Front Connectors

EU int. mod. 300-5C		EU int. mod. 301-5C		Pin no.	CC int. mod. 310-3		CCint. mod. 312-5C	
Terminal strip 3	Terminal strip 4	Terminal strip 3	Terminal strip 4		Terminal strip 3	Terminal strip 4	Terminal strip 3	Front connector 4
Mext	Mext	Mext	Mext	1	Mext	Mext	Mext	Mext
+ 5 V	+ 5 V	+ 5 V	ADB4	2	ADB4	ADB4	+ 5 V	+ 5 V
$+5 \mathrm{~V}$	+ 5 V	+ 5 V	ADB4	3	ADB4	ADB4	+ 5 V	$+5 \mathrm{~V}$
$+5 \mathrm{~V}$	+ 5 V	$+5 V$	ADB5	4	ADB5	ADB5	+ 5 V	$+5 V$
$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	+ 5 V	ADB5	5	ADB5	ADB5	+ 5 V	$+5 \mathrm{~V}$
$+5 \mathrm{~V}$	+ 5 V	+ 5 V	ADB6	6	ADB6	ADB6	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$
ADB1	ADB1	ADB1	ADB6	7	ADB6	ADB6	ADB1	ADB1
ADB4	ADB4	ADB4	ADB7	8	ADB7	ADB7	ADB4	ADB4
ADB7	ADB7	ADB7	ADB7	9	ADB7	ADB7	ADB7	ADB7
DB1	DB1	DB1	DB6	10	DB6	DB6	D81	DB1
DB4	DB4	DB4	DB6	11	DB6	DB6	D84	DB4
0 V	OV	0 V	DB7	12	DB7	DB7	0 V	0 V
0 V	OV	0 V	DB7	13	DB7	DB7	0 V	0 V
0 V	O V	0 V	PEU	14	PEU	PEU	0 V	0 V
0 V	OV	0 V	PEU	15	PEU	PEU	0 V	0 V
0 V	0 V	0 V	Rgo	16	-	+ 5 V	0 V	0 V
Mext	Mext	Mext	Mext	17	Mext	Mext	Mext	Mext
$+5 \mathrm{~V}$	+ 5 V	+ 5 V	ADB0	18	ADB0	ADB0	+ 5 V	+ 5 V
$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	ADB0	19	ADB0	ADB0	+5V	$+5 \mathrm{~V}$
$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	ADB1	20	ADB1	ADB1	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$
$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	ADB1	21	ADB1	ADB1	+5V	$+5 \mathrm{~V}$
$+5 \mathrm{~V}$	+5V	+5V	ADB2	22	ADB2	ADB2	+ 5 V	$+5 V$
ADB0	ADB0	ADBO	ADB2	23	ADB2	ADB2	ADBO	ADB0
ADB3	ADB3	ADB3	ADB3	24	ADB3	ADB3	ADB3	ADB3
ADB6	ADB6	ADB6	ADB3	25	ADB3	ADB3	ADB6	ADB6
0 V	0 V	0 V	DB3	26	DB3	DB3	0 V	0 V
DB3	DB3	DB3	DB3	27	DB3	DB3	DB3	DB3
D86	D86	DB6	DB4	28	DB4	DB4	DB6	D86
0 V	0 V	0 V	DB4	29	DB4	DB4	OV	0 V
OV	0 V	OV	DB5	30	D85	DB5	OV	0 V
0 V	0 V	0 V	DB5	31	D85	DB5	OV	0 V
OV	0 V	0 V	ZGU	32	ZGU	ZGU	0 V	0 V
0 V	0 V	0 V	ZGU	33	ZGU	ZGU		
+5V	+5V	$+5 \mathrm{~V}$	MEMR	34	MEMR	MEMR	$+5 \mathrm{~V}$	+ 5 V
FAKT	FAKT	-	MEMR	35	MEMR	MEMR	-	-
CPKL	CPKL	CPKL	MEMW	36	MEMW	MEMW	CPKL	CPKL
MEMR	MEMR	MEMR	MEMW	37	MEMW	MEMW	MEMR	MEMR
MEMW	MEMW	MEMW	PESP	38	PESP	PESP	MEMW	MEMW
PESP	PESP	PESP	PESP	39	PESP	PESP	PESP	PESP
ADB2	ADB2	ADB2	BASP	40	BASP	BASP	ADB2	ADB2
ADB5	ADB5	ADB5	BASP	41	BASP	BASP	ADB5	ADB5
DB0	DBO	DBO	DBO	42	DBO	DBO	DBO	DB0
DB2	DB2	DB2	DBO	43	DBO	DBO	DB2	D82
DB5	DB5	DB5	DB1	44	DB1	DB1	D85	DB5
DB7	DB7	DB7	DB1	45	DB1	DB1	DB7	DB7
RDY	RDY	RDY	DB2	46	DB2	DB2	RDY	RDY
BASP	BASP	BASP	DB2	47	DB2	DB2	BASP	BASP
EANK	EANK	-	RDY	48	RDY	RDY	-	
OV	OV	0 V	RDY	49	RDY	RDY	0 V	0 V
0 V	0 V	0 V	OV	50	-	0 V	0 V	0 V

4.5 Pin Assignment of the Power Supply Unit Interface

- Power connections

Subminiature connector Xl , 8 -pin, with $5 / 8$ high current contacts, series D according to MIL-C24308, seen from the rear of the unit.

For -3LC14, -3NA11, -3NC12:

/ M2 - 0 v / / /				// 5 - $18 \mathrm{Al}^{\text {1 }}$)/ $/$
1/1/1/1/11				/1/1/1/1/
/1/12/13/	4	5	6	/ / 7 / $181 /$
$1 \bullet 10101$	0	0	0	/101/101/
1/1/1/111				1/11/11111
1111111111				111111111
1/1/1/1/1				1/11/1/1/1

For -3LF12:

/1/ / $2 / 13 / 1 / 4 /$	/5//6/1/17/1/8/1
101010110	$0 / 01110110011$
111111111111	1111111111111
111111111111	11111111111111
$1 / 1 / 1 / 1 / 1 / 111$	/ / / / / / / / 1

- Signal connections (incl. $24 \mathrm{~V} / 0.8 \mathrm{~A}$ or $24 \mathrm{~V} / 2.8 \mathrm{~A}$ for power supply unit -3LF12)

Subminiature connector X 2 , 37 -pin, series D according to MILC24308, seen from the rear of the unit:

$\overline{\text { CPKIA }} \overline{\text { CPKI }} \star \overline{\text { DSI }}$ GEP

[^4]
4.6 Connecting Cable 6ES5721-0...

Connector 1 50-pin contact	Bundle tube colour	Identification foil	Wire coulor	Connector 2 50-pin contact
20	red	red	white	20
21			brown	21
4			green	4
5			yellow	5
18			groy	18
19			pink	19
2			blue	2
3			red	3
24	green	green	whito	24
25			brown	25
8			green	8
9			yellow	9
22			grey	22
23			pink	23
6			blue	6
7			red	7
28	3yellow	white	white	28
27			brown	27
10			groen	10
11			yellow	11
42			grey	42
43			pink	43
44			bue	44
45			red	45
28	4brown	white	white	28
29			brown	29
12			groen	12
13			yellow	13
48			grey	48
47			pink	47
30			blue	30
31			red	31
34	5 5	white	white	34
35			brown	35
38			green	38
37			yellow	37
38			grey	38
39			pink	39
40			blue	40
41			red	41
48	blue	red	white	48
49			brown	49
14			groen	14
15			yeilow	15
32			grey	32
33			pink	33
-	Shield			-

4.7 Terminator 760

5 Spare Parts

Designation	Order no.	Spare part group ${ }^{1}$)	```Order from```
Power supply unit with fan	$\begin{array}{ll} \text { 6ES5 } & 995-3 L C 14 \\ \text { 6ES5 } & 955-3 \text { NC12 } \end{array}$	$\begin{aligned} & R \\ & R \end{aligned}$	$\begin{aligned} & \text { GWE } \\ & \text { GWE } \end{aligned}$
Fan unit	$\begin{array}{ll} \text { 6ES5 } & 988-3 L A 11 \\ \text { 6ES5 } & 988-3 N A 11 \end{array}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	GWE GWE
```Fan set (2 off) for 6ES5 955-3LC14 and 6ES5 988-3LA11 (issue < 4)```	6ES5 988-3LB21	N	GWE
for 6ES5 988-3LA11   (issue up to 4)	6ES5 988-3LB11	N	GWE
for 6ES5 $955-3 N C 12$ and 6ES5 $988-3 N A 11$	6ES5 988-3NB11	N	GWE
Air baffle	C79451-A3079-D501	N	
Fuses   (Dim. $6.3 \times 32 \mathrm{~mm}$ )		N	GWE
15 A slow	299461		
6 A fast	300095		
4 A fast	291963		
1.5 A fast	287268		
Filter holder	6ES5 981-0FA11	N	GWE
Filter mat (10 off)	6ES5 981-0EA11	N	GWE

1) $R=$ can be repaired
$N=$ cannot be repaired
2) If no department is specified, order from GWK.

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Copyright © Siemens AG 1985 All Rights Reserved

## SIEMENS

## SIMATIC S5

EG 185 U Expansion Unit in Compact Design


Siemens has developed this document for its licensees and customers. The information contained herein is the property of Siemens and may not be copied, used, or disclosed to others without prior written approval from Siemens. Users are cautioned that the material contained herein is subject to change by Siemens at any time and without prior notice.

Siemens shall not be responsible for any damages, including consequential damages, caused by reliance on material presented, including but not limited to typographical, electronic, arithmetic, or listing errors.


Only qualified personnel should install or maintain this equipment after becoming thoroughly familiar with all warnings, safety notices, and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon proper handling, installation, operation, and maintenance.

The following are definitions of the terms "qualified person," "danger," "warning," and "caution," as applicable for this document.

## Qualified Person

One who is familiar with the installation, construction, and operation of this equipment and the hazards involved. In addition, the person should have the following qualifications:

- Be trained and authorized to use and tag circuits and equipment in accordance with established safety practices
- Be trained in the proper care and use of protective equipment in accordance with established safety practices
- Be trained in rendering first aid


## DANGER

Indicates that loss of life, severe personal injury, or substantial property damage will result if proper precautions are not taken.

## WARNING

Indicates that loss of life, severe personal injury, or substantial property damage can result if proper precautions are not taken.

## CAUTION

Indicates that minor personal injury or property damage can result if proper precautions are not taken.

STEP $5{ }^{\circledR}$ and SIMATIC ${ }^{\circledR}$ are registered trademarks of Siemens AG.

[^5]
## Preface

This book includes a hardware, installation and maintenance guide for the EG 185 U expansion unit. You will find guidelines for operation and maintenance as well as technical specifications.

This book is intended for engineers, programmers and maintenance personnel who have a general knowledge of programmable controller concepts.

If you have any questions about the EG 185 U not answered in this book, please contact your local Siemens representative. Consult the appendix at the end of the publication no. C79000-B8576-C452 for a list of Siemens offices worldwide.

## How to Use This Book

This section discusses information that may be helpful as you use this book.

## Contents of This Book

- Chapter 1: Technical Description

This chapter describes the area of application in which the EG 185 U expansion unit can be used and provides information on configuring the unit, its mode of operation and how the I/O modules are addressed.
In addition, a list with the technical specifications for the expansion unit, the integrated power supply unit and the $15-\mathrm{V}$ additional module (option) has been included.

- Chapter 2: Installation

This chapter explains how to install the expansion unit together with the integrated power supply unit and the optional $15-\mathrm{V}$ module.

- Chapter 3: Operation

This chapter describes how to operate the programmable controller and discusses the control and display elements of the power supply unit, as well as the relay signals.

- Chapter 4: Maintenance

This chapter gives information on how to change the backup battery, the interface assignment and the wiring of the interrupt signals.

- Chapter 5: Spare Parts

This chapter contains a list of spare parts for the EG 185 U .

## - Index

The index contains an alphabetical list of key terms and subjects covered in this book and their corresponding page numbers.

## - Remarks Form

The remarks form at the end of this book is provided for your comments and recommendations. Only if you are in the United States of America should you use the postage-paid form.

## Training

Contact your local Siemens representative for information on training courses to aid you in becoming familiar with this product.

## Reference Materials

We recommend the following books that support the EG 185 U system:

- Catalog ST54.1: S5-135U, S5-155U and S5-155H Programmable Controllers (Publication No. E86010-K4654-A111-A6-7600)*
- SIMATIC S5 U Periphery Manual
(Publication No. 6ES5 998-OPC21)
Programmer Manuals:
- PG 635 Programmer Manual (Publication No. 6ES5 835-0SC21)*
- PG 675 Programmer Manual (S5-DOS)
(Publication No. 6ES5 875-0SC21)*
- PG 685 Programmer Manual (Publication No. 6ES5 885-0SC21)*
- PG 695 Programmer Manual (Publication No. 6ES5 895-0SC21)*
- STEP 5 for Personal Computers User Guide (Volume 2/2) (Publication No. 04-016-00-0188)*
* order this manual from your local Siemens representative


## Conventions

## Conventions

The following conventions are used in this book and are listed for your reference:

## Convention

Definition
Example
A box that indicates a type of hazard, describes its implications, and tells you how to avoid the hazard is safety notation. Some safety notation includes a graphic symbol representing an electrical or radio frequency hazard.
All safety notation has one of the following levels of caution:


- A danger indicates that loss of life, severe personal injury, or substantial property damage will result if proper precautions
 are not taken.
- A warning indicates that loss of life, severe personal injury, or substantial property damage can result if proper precautions are not taken.

- A caution indicates that minor personal injury or property damage can result if proper precautions are not taken.



## Contents

Preface ..... 0-1
How to Use This Book ..... 0-3
Chapter 1-Technical Description
1.1 Application ..... 1-1
1.2 Design ..... 1-2
1.3 Configuration ..... 1-3
1.4 Technical Specifications ..... 1-4
Chapter 2 - Installation
2.1 Installation of the Expansion Unit ..... 2-1
2.2 Installation of the Power Supply Unit ..... 2-1
2.3 Installation of the 15-V Module ..... 2-2
2.4 Connection of the Supply Voltage ..... 2-3
2.5 Connection of the Interconnecting Cables ..... 2-4
2.6 Notes on Installation ..... 2-4
2.7 Fan Monitor ..... 2-5
Chapter 3 - Operation
3.1 General Instructions ..... 3-1
3.2 Control and Display Elements ..... 3-2
3.3 Power Supply Unit 6ES5 955-3xxyy ..... 3-3
Chapter 4-Maintenance
4.1 Inserting and Removing a Module ..... 4-1
4.2 Change of the Backup Battery and the Fans ..... 4-2
4.3 Interface Assignment of the bus PCB ..... 4-3
Chapter 5-Spare Parts
Page Overview ..... S-1

## Figures

1.1 Example of typical distributed configuration ..... 1-2
1.2 Possible configurations of EG 185 U ..... 1-3
1.3/1 Dimension drawing of EG 185 U ..... 1-14
1.3/2 Dimension drawing of EG 185 U ..... 1-15
2.1 Power supply unit, open ..... 2-2
2.2 Connection of the supply voltage ..... 2-3
2.3 Fan monitor ..... 2-5
3.1 Power supply units 6ES5 955-3. ..... 3-2
3.2 Location of the jumpers ..... 3-4
4.1 Battery compartment ..... 4-2
Tables
3.1 Jumper settings for power supply unit 6ES5 955-3xxyy ..... 3-3
3.2 Reaction of the power supply to faults ..... 3-5
4.1(1) Interface assignment on the bus PCB ..... 4-3
4.1(2) Interface assignment on the bus PCB ..... 4-4
5.1 Spare parts ..... 5-1

## NOTE

These instructions do not cover all details or variations in equipment or provide for every circumstance that can arise with installation, operation, or maintenance. If you want further information or if particular problems arise that are not covered sufficiently for your purposes, contact your local Siemens sales office.

The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

## Chapter 1 <br> Technical Description

This chapter will give you information about the application, the design and possible configurations of the EG 185 U expansion unit. It also includes technical specifications and a dimension drawing.

### 1.1 Application

The EG 185 U expansion unit was developed to allow distributed use of communications processors (CPs) and intelligent I/O modules (IPs).

The unit has a 16 bit-wide address and data bus. It can be addressed by the central controller (CC) via the symmetrical interface (IM 304-IM 314). It is also used in fault-tolerant SIMATIC S5 systems (IM 304-IM 314 H/R).

The EG 185 U can be used in the S5 programmable controllers $135 \mathrm{U}, 150 \mathrm{U}, 155 \mathrm{U}, 150 \mathrm{H}$ and 155 H .

### 1.2 Design

The EG 185 U expansion unit consists of the following:

- Compact housing with cable duct and fan unit with integrated power supply unit,
- 21 slots for modules.


Fig. 1.1 Example of a typical distributed configuration

The total distance between the central controller CC and the most remote $1 M 314$ must not exceed 600 m . A terminator is required at the last IM 314. Up to four EG 185 U expansion units can be connected to each interface of the IM 304.

### 1.3 Possible Configurations

Coordinator ${ }^{1)}$
Communications processors
Interface IM 314R/314 H
Interface 300-5C
Interface 310, 311, IM 314
Intelligent I/O modules
(IPs) 2)
Digital $/ / \mathrm{O}$
Analog I/O
Watchdog module 313


1) For jumper settings, refer to instructions for coordinator.
2) IP $245, \mathrm{IP} 260$ and IP 261 also in slots 147,155 and 163. IP 257 in slots 147 and 155.

Fig. 1.2 Possible Configurations of EG 185 U

### 1.4 Technical Specifications

Insulation class	C to VDE 0110
Test voltage	to VDE 0160
Protection class	1
Degree of protection	IP 00
Operating temperature	0 to $55 \circ \mathrm{C}$
Transport and storage   temperature	-40 to 70 oC
Relative humidity	$\leq 95 \%$ at 25 oC, no condensat.
Operating altitude	Mounting in fixed equipment which is not   necessarily free of vibration; mounting on   ships and in motor vehicles possible   observing special regulations, but not   directly on the engine assembly
Mechanical stress	approx. 14 kg
$482.6 \mathrm{~mm} \times 432 \mathrm{~mm} \times 310 \mathrm{~mm}$	
Weight	

## Power supply unit 6ES5 955-3LC14

Input
Rated input voltage $U_{\text {EN }}$
Undervoltage signal $U_{E}$
Input frequency $f_{E}$
Input current $\mathrm{I}_{\mathrm{EN}}$
230/115 V AC + 10 \%'- 18.7 \% 1)
$<187 \mathrm{~V} \mathrm{AC}$ (or 93 V AC )
48 to 63 Hz
1.25 A (or 2.5 A)
at rated load and
$\mathrm{U}_{\mathrm{EN}}=230 \mathrm{~V}$ (or 115 V )
Max. inrush peak $I_{\text {Emax }}$
$100 \mathrm{~A}($ or 50 A$)$

Efficiency at rated load, with fans
typ. 61 \%

[^6]Stored energy time in case of power failure
Power factor cos
Input fuse

## Output 1

Rated output voltage $U_{\text {AN } 1}$
Setting range of output voltage
Rated output current lan 1
Ripple
Dynamic voltage tolerance in case of load impulse from 50 to $100 \% I_{N}$

Settling time
Overvoltage cutoff $U_{A_{1}}$
Undervoltage signal $U_{A 1}$
Current limit at overload

## Output 2: 24 V bus

Rated output voltage $U_{\text {AN2 }}$	$24 \mathrm{VDC}+25 \% /-16.66 \%$
Rated output current $\mathrm{I}_{\text {AN2 }}$	$\left.0.8 \mathrm{ADC}{ }^{1}\right)$
Ripple	$\leq 5 \%$ of $\mathrm{U}_{\mathrm{A} 2}$
Fuse for overcurrent protection	1.5 A, quick-break; $250 \mathrm{~V} ; 6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$      (F90 on power supply PCB)

Output 3 with 15 V additional module
Rated output voltage $U_{\text {AN } 3}$
Rated output current $\mathrm{I}_{\text {AN3 }}$
Ripple
Overvoltage protection
Overcurrent protection $I_{A 3}$
through current limit
Undervoltage signal
(LED on front panel)
> 5 ms
0.65

4 A , quick-break; 250 V ; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$ (F26 on power supply PCB)
5.1 V DC $\pm 0.5 \%$
(0.95 to 1.05 ) $\times U_{\text {AN } 1}$

18 A DC
$\leq 1 \%$ of $U_{A 1}$
$\leq 5 \%$ of $U_{A 1}$
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.75 \mathrm{~V}+5 \%$
(1.05 to 1.15) $\times \mathrm{I}_{\text {AN } 1}$

[^7]
## Output 4: 24 V front

Rated output voltage $\mathrm{U}_{\text {AN4 }}$	24 V DC + $25 \% /-21 \%$
Rated output current $\mathrm{I}_{\text {AN4 }}$	0.4 A ${ }^{1}$ )
Current limit (response threshold)	$\geq 0.44 \mathrm{~A}$
Undervoltage signal (LED on the front panel)	$16 \mathrm{~V} \pm 20 \%$
Capacitive load	$\leq 100 \mathrm{nF}$
Fans	2 axial fans
Input voltage	115 V AC, convertible (series/parallel)
Delivery rate per fan	$160 \mathrm{~m}^{3} \mathrm{~h}$ (value during no-load operation)
Service life	typ. 30000 to 40000 h at $55^{\circ} \mathrm{C}$ typ. 40000 to 50000 h at $30^{\circ} \mathrm{C}$
Fan monitoring	The air flow is monitored by PTC resistor sensors. If one or both fans stop, this is recognized and indicated by an LED signal and relay contact. This leads to the cut-off of output voltages after approx. 6 to 10 s (can be disabled at jumper F-R).

## Power supply unit 6ES5 955-3NC13

## Input

Rated input voltage $U_{E N}$
Undervoltage signal $U_{E}$
Input current $I_{\text {EN }}$
24 V DC + 25 \%/- 16.66 \%
$<20 \mathrm{VDC}$
at rated load and $U_{E N}=24 \mathrm{~V}$
Max. inrush current $I_{\text {Emax }}$
Efficiency at rated load
Stored energy time
250 A
typ. 67 \%
in case of power failure

Input fuse
15 A, medium-blow; 250 V;
$6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$ (F1 on power supply PCB)

[^8]
## Output 1

Rated output voltage $U_{\text {AN } 1}$
Setting range of output voltage

Rated output current lan ${ }_{\text {AN }}$
Ripple
Dynamic voltage tolerance in case of load impulse from 50 to $100 \% I_{N}$

Settling time
Overvoltage cutoff $\mathrm{U}_{\mathrm{A} 1}$
Undervoltage signal U $\mathrm{U}_{\mathrm{A} 1}$
Current limit at overload

## Output 2:

Rated output voltage UAN2
Rated output current $\mathrm{I}_{\text {AN2 }}$
Ripple
Fuse for overcurrent protection
5.1 V DC $\pm 0.5 \%$
( 0.95 to 1.05 ) $\times \mathrm{U}_{\mathrm{AN} 1}$

18 A DC
$\leq 1 \%$ of $U_{A 1}$
$\leq 5 \%$ of $U_{A 1}$
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.75 \mathrm{~V} \pm 5 \%$
(1.05 to 1.15 ) $\times \mathrm{I}_{\mathrm{AN} 1}$

24 V DC $+25 \% /-16.66 \%$
0.8 A DC ${ }^{1}$ )
$\leq 5 \%$ of $U_{A 2}$
1.5 A, quick-break; 250 V ; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$ (F90 on power supply PCB)

## Output 3 with 15 V additional module

Rated output voltage $U_{\text {AN }}$
Rated output current lan3
Ripple
Overvoltage protection
Undervoltage signal
(LED on the front panel)
Overcurrent protection $I_{A 3}$ through current limit
$15 \mathrm{VDC} \pm 5 \%$
0.5 A DC ${ }^{1}$ )
$\leq 5 \%$ of $U_{\text {AN }}$
$U_{A 3} \geq 18.5 \mathrm{~V}$
$U_{A 3} \leq 14 \mathrm{~V} \pm 3 \%$
0.5 to 1.5 A

## Output 4: 24 V front

Rated output voltage $\mathrm{U}_{\text {AN4 }}$
Rated output current $I_{\text {AN4 }}$
24 V DC $+25 \% /-21 \%$
0.4 A ${ }^{1}$ )

Current limit
$\geq 0.44 \mathrm{~A}$
(response threshold)
Undervoltage signal
$16 \mathrm{~V} \pm 20 \%$
(LED on the front panel)
Capacitive load

## Fans

Input voltage
Delivery rate per fan
Service life

Fan monitoring
$\leq 100 \mathrm{nF}$
2 axial fans

24 V DC
$160 \mathrm{~m}^{3} / \mathrm{h}$ (value during no-load operation)
typ. 30000 to 40000 h at $55{ }^{\circ} \mathrm{C}$
typ. 40000 to 50000 h at $30{ }^{\circ} \mathrm{C}$
The air flow is monitored by PTC resistor sensors. If one or both fans stop, this is recognized and indicated by an LED signal and relay contact. This leads to the cut-off of output voltages after approx. 6 to 10 s (can be disabled at jumper F-R).

## Power supply unit 6ES5 955-3LF12

## Input

Rated input voltage $U_{E N}$
Undervoltage signal $U_{E}$
Input frequency $f_{E}$
Input current $I_{E N}$ at rated load and
$U_{E N}=230 \mathrm{~V}(115 \mathrm{~V})$
Max. inrush current $I_{\text {Emax }}$ Efficiency at rated load

Stored energy time in case of power failure

Power factor cos
Input fuse
$230 / 115 \mathrm{VAC}+10 \% /-18.7 \%$ 2)
$<187 \mathrm{~V}$ AC (93 V AC)
48 to 63 Hz
2.4 A (4.8 A)

250 A (100 A)
typ. $\geq 70 \%$ with fan
$>5 \mathrm{~ms}$
0.73
6.3 A, quick-break; 250 V ; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$ F107 on power supply PCB

[^9]
## Output 1

Rated output voltage $U_{\text {AN1 }}$	$5.1 \mathrm{~V} \mathrm{DC} \pm 0.5 \%$
Setting range of output voltage	(0.95 to 1.05) $\times \mathrm{U}_{\text {AN1 }}$
Rated output current lan ${ }_{\text {A }}$	40 A DC
Ripple	$\leq 1 \%$ of $\mathrm{U}_{\mathrm{A} 1}$
Dynamic voltage tolerance in case of load impulse from 50 to $100 \% \mathrm{I}_{\mathrm{N}}$	$\leq 5 \%$ of $U_{A 1}$
Settling time	$\leq 5 \mathrm{~ms}$
Overvoltage cutoff $U_{\text {A1 }}$	$6 \mathrm{~V}+5 \%$
Undervoltage signal $U_{\text {A1 }}$	$4.75 \mathrm{~V}+5 \%$
Current limit at overload	(1.05 to 1.15) $\times \mathrm{l}_{\mathrm{AN} 1}$

## Output 2:

Rated output voltage UAN2
Rated output current $\mathrm{I}_{\mathrm{AN} 2}{ }^{1}$ )
Total current load of the
24 V and 15 V output
Ripple
Fuse for overcurrent protection
$24 \mathrm{~V} D C+25 \% /-17 \%$
2.8 A DC
$\leq 2.8 \mathrm{~A}$
$\leq 5 \%$ of $U_{A 2}$
4 A, quick-break; 250 V ; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$ (F255 on power supply PCB)

Output 3 with 15 V additional module
Rated output voltage $U_{\text {AN3 }}$
Rated output current lan3 ${ }^{1}$ )
Ripple
Overvoltage protection
Undervoltage signal
(LED on the front panel)
Overcurrent protection $I_{A 3}$ through current limit

15 V DC $\pm 5 \%$
2 A DC
$\leq 5 \%$ of $U_{\text {AN } 3}$
$U_{A 3} \geq 18.5 \mathrm{~V}$
$U_{A 3} \leq 14 \mathrm{~V} \pm 3 \%$

2 to 3 A

[^10]
## Output 4: 24 V front

Rated output voltage UAN4
Rated output current $I_{\text {AN4 }}$
Current limit (response threshold)

Undervoltage signal (LED on the front panel)

Capacitive load

## Fans

Input voltage
Delivery rate per fan
Service life

Fan monitoring

24 V DC (+ $6 \mathrm{~V} /-5 \mathrm{~V}$ )
0.4 A 1 )
$\geq 0.44 \mathrm{~A}$
$16 \mathrm{~V} \pm 20 \%$
$\leq 100 \mathrm{nF}$
2 axial fans
230/115 V AC, convertible
$160 \mathrm{~m}^{3} / \mathrm{h}$ (value during no-load operation)
typ. 30000 to 40000 h at $55{ }^{\circ} \mathrm{C}$
typ. 40000 to 50000 h at 30 O
The air flow is monitored by PTC resistor sensors. If one or both fans stop, this is recognized and indicated by an LED signal and relay contact. This leads to the cut-off of output voltages (can be disabled at jumper F-R).

## Power supply unit 6ES5 955-3NF11

## Input

Rated input voltage $U_{E N}$
Undervoltage signal $U_{E}$
Input frequency $f_{E}$
Input current $I_{\text {EN }}$ at rated load and
$U_{E N}=24 \mathrm{VDC}$
Max. inrush current $I_{\text {Emax }}$
Efficiency at rated load
Stored energy time
in case of power failure
Input fuse

[^11]24 V DC $+25 \% /-17 \%$
< 20 V DC
17.5 A

300 A
typ. 65\%
> 5 ms

30 A, medium-blow; 250 V ;
$6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$
F110 on power supply PCB

## Output 1

Rated output voltage $\mathrm{U}_{\text {AN1 }}$	5.1 V DC + $0.5 \%$
Setting range of output voltage	(0.95 to 1.05$) \times \mathrm{U}_{\text {AN } 1}$
Rated output current $\mathrm{I}_{\text {AN1 }}$	40 A DC
Ripple	$\leq 1 \%$ of $U_{A 1}$
Dynamic voltage tolerance in case of load impulse from 50 to $100 \% I_{N}$	$\leq 5 \%$ of $U_{\text {A1 }}$
Settling time	$\leq 5 \mathrm{~ms}$
Overvoltage cutoff $U_{\text {A1 }}$	$6 \mathrm{~V} \pm 5 \%$
Undervoltage signal $\mathrm{U}_{\mathrm{A} 1}$	$4.75 \mathrm{~V}+5 \%$
Current limit at overload	(1.05 to 1.15) $\times \mathrm{I}_{\text {AN1 }}$

## Output 2:

Rated output voltage $U_{\mathrm{AN} 2}$	$24 \mathrm{VDC}+25 \% /-17 \%$
Rated output current $\mathrm{I}_{\mathrm{AN} 2}{ }^{1}$ )	2.8 ADC
Total current load of the	$\leq 2.8 \mathrm{~A}$
24 V and 15 V output	$\leq 5 \%$ of $U_{\mathrm{A} 2}$
Ripple	4 A, quick-break; $250 \mathrm{~V} ; 6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$
Fuse for overcurrent protection	(F177 on power supply PCB)

Output 3 with 15 V additional module
Rated output voltage $U_{\text {AN3 }}$
$15 \mathrm{~V} D \mathrm{D} \pm 5 \%$

Rated output current $\mathrm{I}_{\mathrm{AN} 3}{ }^{1}$ )
2 A DC

Ripple
Overvoltage protection
Undervoltage signal
(LED on the front panel)
Overcurrent protection $\mathrm{I}_{\mathrm{A}}$
$\mathrm{U}_{\mathrm{A} 3} \leq 14 \mathrm{~V} \pm 3 \%$

2 to 3 A
$\leq 5 \%$ of $U_{\text {AN3 }}$
$U_{A 3} \geq 18.5 \mathrm{~V}$

[^12]| Output 4: 24 V front |  |
| :---: | :---: |
| Rated output voltage $\mathrm{U}_{\text {AN4 }}$ | 24 V DC ( $+6 \mathrm{~V} /-5 \mathrm{~V}$ ) |
| Rated output current $\mathrm{I}_{\text {AN4 }}{ }^{1}$ ) | 0.4 A |
| Current limit (response threshold) | $\geq 0.44 \mathrm{~A}$ |
| Undervoltage signal (LED on the front panel) | $16 \mathrm{~V} \pm 20 \%$ |
| Capacitive load | $\leq 100 \mathrm{nF}$ |
| Fans | 2 axial fans |
| Input voltage | 24 V DC |
| Delivery rate per fan | $160 \mathrm{~m}^{3 / h}$ (value during no-load operation) |
| Service life | typ. 30000 to 40000 h at $55^{\circ} \mathrm{C}$ typ. 40000 to 50000 h at $30^{\circ} \mathrm{C}$ |
| Fan monitoring | The air flow is monitored by PTC resistor sensors. If one or both fans stop, this is recognized and indicated by an LED signal and relay contact. This leads to the cut-off of the output voltages (can be disabled at jumper $F-R$ ). |

[^13]Additional monitoring (common to all power supplies)

```
24 V load voltage }\geq14\mathrm{ to 20 V
("Voltage Monitor Ext.")
```


## Electrical isolation yes primary/secondary

## Back-up battery

Capacity 5 Ah

Voltage
$+3.4 \mathrm{~V}$

Service life
approx. 10 years, without discharging

## Caution: Transportation

The back-up battery contains lithium ( $\geq 0.5 \mathrm{~g}$ ). Special regulations for transportation must be adhered to.

The power supply units 6ES5 955-3LC14 and -3LF12 contain two integrated fans. They can be operated with either 230 VAC or 115 VAC . The appropriate voltage is selected using the voltage selector switch S10/S11 in the power supply unit.

The power supply units 6ES5 955-3NC13 and -3NF11 each contain two fans with a common 24 V DC supply.

## Fan monitoring

The air flow is monitored by PTC resistor sensors.
If one or both fans stop, this is recognized and results in either a signal (LED, relay) being output or $U_{A}$ switched off.

Jumper F-R closed: $U_{A}$ switched off
Jumper F-R open: $U_{A}$ remains on ( $U_{A}=$ output voltage)
Relay contact 1-2 closed: Fan ok
Relay contact 2-3 closed: Fan defective


Fig. 1.3/1 Dimension drawing of EG 185 U


1) Air inlet - clearance for wall and cabinet mounting
2) Clearance for replacing the back-up battery
3) Clamp rail for screened cables
4) Dimensions of housing width, depending on arrangement of the fixing brackets
5) Fixing brackets srewed to the connecting bars
6) Top panel
7) Total width of the housing with fixing screws (height of screw heads)
8) Subrack construction: ES 902 for double Euroformat $233.4 \times 160$; mounting width: 28 standard slots

Fig. 1.3/2 Dimension drawing of EG 185 U

## Chapter 2 <br> Installation

In the following chapter, you will find instructions for installing the expansion unit together with the integrated power supply unit, as well as notes on the start-up and the fan monitoring.

### 2.1 Installation of the Expansion Unit

The expansion unit is designed for installation in cabinets, open racks or control desks.
M6 screws and washers should be used for fixing the unit.
For adequate ventilation, a minimum clearance of 75 mm must be provided above and below the unit, and 50 mm to either side and behind. If several EUs are installed one above the other, it is useful to install a deflector (6ES5 981-ODA11).

If the unit is wall-mounted, a clearance of 100 mm to the wall must be maintained.
The total heat generated inside a cabinet must be dissipated by either natural convection or forced ventilation.

The dimensions of the expansion unit including modules and fans are ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ): $490 \times 440 \times$ 352 mm .

### 2.2 Installation of the Power Supply Unit

The power supply unit can be inserted or removed only if the power supply cable is disconnected. To remove the unit, loosen both screwed connections on the left and right side of the front panel and the protective conductor and pull out the power supply unit towards the front.
$\qquad$ Installation

### 2.3 Installation of the 15-V Additional Module

The additional module can be connected only when the power is disconnected.
The power supply unit is removed as described in Section 2.2. Insert the 15-V additional module into the space provided.


Fig. 2.1 Power supply unit, open

### 2.4 Connection of the Supply Voltage



Fig. 2.2 Connection of the Supply Voltage

Note that the numbers that precede the following explanations correspond to the numbers in Fig. 2.2.

1 Dependent on the type of power supply:
AC Line: 230 V or 115 V (set the selector)
DC Line: 24 V Input voltage

2 Monitor Output:
Stoppage of one or both fans will be indicated by an LED and relay contact and leads to the cut-off of the output voltages (can be disabled by opening jumper F-R; then only relay signal and LED indication).
For other fault signals with additional jumper settings (see Section 3.3).

123 (Recommended switch position, see the Installation Guidelines)


3 Enable Power supply: EN = input; $U_{H}=$ output
Absence of voltage from EN input leads to cut-off of the power supply. Not more than 7 EN-inputs (front connectors) can be triggered by a $\mathrm{U}_{\mathrm{H}^{-}}$output (recommended switch position, see the Installation Guidelines).

4 Voltage Monitor:
24-V voltage input. This input is switched on as standard. If not required, the input can be deactivated by means of the jumper BA-EX (see page 3-3).

5 Output 24 V DC; 0,4 A:
This output can be used to supply the enable inputs of the $U I / O$ modules.
The relevant regulations must be observed, especially VDE 0100.
The cable cross section of the front connectors must not exceed $4 \mathrm{~mm}^{2}$.

### 2.5 Connecting Cables

The connecting cables for communications processors (CPs), intelligent peripherals (IPs) and interface modules of the central controller must be connected with front connectors. The front connectors must be locked by sliding the metal catch on the front side. The allocation of the connectors to the modules must be maintained, otherwise there is danger of damaged equipment.

### 2.6 Notes on Installation

230 V AC supply cables inside a cabinet can be laid in a common cable duct with signal lines providing they are screened.

The 24-V DC ground connection (load current supply to expansion unit) must be fed via a short connection (cross-section $2.5 \mathrm{~mm}^{2}$ ) if used with non-floating modules.

The programmable controllers are supplied for operation with grounded reference potential.
The load power supply is mounted in the upper part of the cabinet.
If the programmable controller is mounted in a cabinet, the housing and the rack must be screwed together so that high conductivity is achieved between them.

The metal parts of the cabinet (side panels, doors, etc.) must have a low-resistance connection with each other (wire cross-section 10 to $16 \mathrm{~mm}^{2}$ ). The cabinet must be connected to the protective ground conductor.

If a screened input/output cable is to be used, the screening must be clamped to a screening bar which has a low-resistance connection to the housing of the programmable controller. The external insulation of the cable should be removed in the immediate vicinity of the cable clamp and the screening screwed firmly to the screening bar, so that high conductivity is achieved.

The 24 V DC power supply unit must be equipped with a smoothing capacitor (approximately 200,uF per Ampere load current). Additionally, a screening coil is required for the transformer.

The Installation Guidelines, publication no. C79000-B8576-C452, must be followed.

### 2.7 Fan Monitoring

If a fan fails, adequate cooling can no longer be guaranteed. On delivery, all programmable controllers are therefore wired so that the power supply unit is switched off if a fan fails.

If, for technical reasons, the power supply cannot be switched off immediately, the jumper F-R must be opened. However, power must be switched off a maximum of 60 s after a fan fails.

If several units with fans are to be monitored together, the fan monitoring terminals EN and $\mathrm{U}_{\mathrm{H}}$ must be connected according to the following diagram. All devices are switched off if a fan fails.


1) Relay, max. $250 \mathrm{~V}, 3 \mathrm{~A}$
2) Enable power supply

Fig. 2.3 Fan monitoring

## Chapter 3 <br> Operation

This chapter explains the operation of the expansion unit, describes the display and control elements and the location of the jumpers.

### 3.1 General Instructions

- Voltage exceeding 50 V must not occur between the output connections and the protective earth conductor potential.
- The protective earth conductor must always be connected.
- In case of overvoltage at the output, the unit will be blocked (holding) ( $\mathrm{U}_{\mathrm{A} 1}$ and $\mathrm{U}_{\mathrm{A} 2}$ $\leq 0.5 \mathrm{~V}$ ).

The power supply unit can be put into service again by switching off and on the supply voltage if the overvoltage is not due to internal errors.

- The correct function of the power supply unit is only guaranteed if a load of at least 1 A is connected to the +5 V side of units with a rated output current of 18 A or 2 A for units with a rated output current of 40 A .
- The supply voltage must reach its rated value within $\leq 200 \mathrm{~ms}$.
- An air filter can be mounted at the bottom of the frame of the power supply unit.


### 3.2 Control and Display Elements



Fig. 3.1 Power supply units 6ES5 955-3...

Note that the numbers that precede the following explanations correspond to the numbers in
Fig. 2.2:

1 LED "Fan Fault":
The red LED lights up if a fan fails. If jumper F-R is closed, the power supply unit stops with a delay of 6 to 10 s . If the expansion unit cannot be immediately switched off for technical reasons, the jumper F-R must be opened. However, the power must be switched off a maximum of 60 s to avoid the module being overheated.

LED "Voltage Low":
The red LED lights up if an overvoltage exists at the load voitage monitoring input.

LED "Batt. Low":
The yellow LED lights up if the battery voltage is below 2.7 V . The data buffered in the RAM is lost after power off/on.

Key "Reset":
After power on/off and with the LED "Batt. Low" lit, the acknowledgment button must be pressed; otherwise the PC remains in the stop condition after the battery has been changed and power switched on.

LED "Power Supply O.K.":
The green LED lights up if the output voltage of 5 V is present.

Test socket "Test 5 V ":
Use this test socket to monitor the output voltage $\mathrm{U}_{\mathrm{A} 1}$
(standard setting: $5.1 \mathrm{VDC} \pm 0.5 \%$ )

Test socket " $3 \mathrm{~V} \hat{=} 18 \mathrm{~A}$ " or $3 \mathrm{~V} \hat{=} 40 \mathrm{~A}$ ":
Use this test socket to monitor the output current $\mathrm{I}_{\mathrm{A} 1}$
( $3 \mathrm{~V} \hat{=}$ max. output current of the corresponding power supply unit)

LED "Power Supply O.K." (bus):
The green LED lights up if the output voltage of 15 V (with the 15 V additional module mounted) and the output voltage of 24 V are present.

Test sockets " $15 \mathrm{~V} / 24 \mathrm{~V}$ DC" (bus):
Use these test sockets to monitor the following output voltage:
a) output voltage $U_{A 2}(24 \mathrm{VDC}+25 \% /-16.66 \%)$
b) output voltage $\mathrm{U}_{\mathrm{A} 3}$ ( $15 \mathrm{VDC} \pm 5 \%$ if the additional 15 V module is connected)

LED "Power Supply O.K." (front):
The green LED lights up if the output voltage of 24 V is present.

### 3.3 Power Supply Unit 6ES5 955-3XXYY

Function of the jumpers on the power supply:

Function	Jumpers
Battery monitoring (/BAU) $=$ on   Battery monitoring (/BAU) $=$ off	NN-MM closed *   NN-MM open
PS switched off if fan fails   PS not switched off if fan fails   (only signal LED, relay)	F-R closed *   F-R open
Operation with load voltage monitoring   Operation without load voltage monitoring	BA-EX open*   BA-EX closed
Activating the signal relay   (relay contact 2-3 closed)   - by fan fault	
- by battery fault signal2)	
- without battery fault signal	independent of other
jumpers	
RR-L closed undervoltage signal1)	
(BASPq $=$ low)	
- without undervoltage signal	

Table 3.1 Jumper settings for power supply unit 6ES5 955-3XXYY

* As supplied

1) If undervoltage ( $\mathrm{U}_{\mathrm{u}}<20 \mathrm{~V}-25 \%$ ) occurs at the monitoring input (Voltage Monitor) (can be disabled with jumper BA-EX) or if undervoltage occurs at the output ( $\mathrm{U}_{\mathrm{A}}<4.75 \mathrm{~V}$ ) the signal "BASPq = low" is output; this means that all digital outputs will be switched off.
2) Undervoltage of the battery ( $\cup_{\text {BATT }}<2,7 \mathrm{~V}$ ) causes the battery error message (can be disabled with jumper MM-NN).
Apart from the "batt low" display and the output of the signal /BAU, the signal relay RR-LL can also be activated with the following power supplies:

Power supply:
6ES5 955-3NC13 from version 6
6ES5 955-3LC14 from version 7
6ES5 955-3NF11 from version 7
6ES5 955-3LF12 from version 5

## Location of the jumpers

The position of the jumpers corresponds with the factory setting.


Power supply unit 6ES5 955-3NF11:

Fig. 3.2 Location of the jumpers

## Reaction of the power supply to faults

If the power supply is switched off, relay contact $2-3$ is closed and relay $1-2$ is open.
If the power supply is free of faults, relay contact $1-2$ is closed and relay contact $2-3$ is open.
Apart from fan faults, other faults can also switch the signal relay (see jumper description) (relay contact 2-3 closed).
The following table describes the reaction of the power supply to faults (condition: jumper MMNN closed, jumper BA-EX open).


Table 3.2
Reaction of the power supply to faults

1) see note 1 ), page $3-3$
2) Depends on the version, see note 2), page 3-3

## Chapter 4 <br> Maintenance

The following chapter explains how to handle modules and change the backup battery and the fans. Furthermore, it discusses the interface assignment of the bus PCB.

### 4.1 Inserting and Removing a Module

The modules are removed by gripping the lugs and pulling with a gentle rocking motion.
Modules must not be inserted or removed while CC, EGs, or field devices are still switched on.

The modules of the U-peripherals may be removed or inserted during operation; the special instructions concerning the functions of the enabling inputs must be observed.

The power supply unit must not be installed or removed whilst the power is switched on.

### 4.2 Changing the Backup Battery and the Fans

The back-up battery can be changed without any loss of data if the power supply unit is on or an external voltage ( 3.4 V ) is present at the terminals "Ext. Batt.". The polarity must be correct.

The back-up battery must be changed at least every 3 years; this change depends neither on the memory configuration (buffer current) nor on the buffer function (capacity: 5.0 Ah).
To change the battery, proceed as follows:

- Pull down the cover.
- Pull out the battery compartment.
- Change the battery.


Fig. 4.1 Battery compartment

The service life of the fans (see Technical Specifications) depends on the operating time, the temperature and the ambient conditions. In case of a fan failure, damage, e.g. to the modules, can be avoided if the fan monitoring is switched on (jumper F-R closed); the power supply unit is then switched off.

Under some circumstances, it may be advisable to change the fans prophylactically at the appropriate maintenance intervals.

To change the fans, proceed as follows:

- Switch off the power suppy
- Remove the power supply unit
- Remove the screws securing the fans
- Disconnect the voltage supply of the fans (plug-in contact)
- The fans are installed following the reverse procedure


### 4.3 Interface Assignment of the Bus PCB



Table 4.1 (1) Interface assignment of the bus PCB

$$
\begin{aligned}
& q=\text { output } \\
& i=\text { input }
\end{aligned}
$$

$\qquad$

	PG-MUX   Communicat. processor Intelligent peripherals I/O modules Slot 19 to 75			
Backpl. enctor.	Pin		Pin row	
	no.	z	b	d
1	2	$+5 \mathrm{~V}$	$\begin{aligned} & 0 \mathrm{~V} \\ & \text { PESP } \end{aligned}$	UBAT
	4			
	6	$\overline{\text { CPKL }}$	ADB0	ADB12
		$\overline{\text { MEMR }}$	ADB1	ADB13
	8 10	$\overline{\text { MEMW }}$	ADB2	ADB14
	12	$\overline{\mathrm{RDY}}$	ADB3	ADB15
		DB0	ADB4	
	14	DB1	ADB5	
	16	DB2	ADB6	
	20	DB3	ADB7	
	22	DB4	ADB8	
	24	DB5	ADB9	
	26	DB6	ADB10	
	28	DB7	ADB11	$\overline{\mathrm{DSi}}$
	30		BASP	
	32		OV	$\overline{\mathrm{BASPa}}$
2	4	$\begin{aligned} & +5 \mathrm{~V} \\ & \mathrm{DB} 12 \end{aligned}$	0 V	
			DB8	
	6	DB13	DB9	
	8	DB14	DB10	
	10	DB15	DB11	
	14	$\overline{\text { NAU }}$		
	16	$\overline{\mathrm{BAU}}$		
	18			
	20			
	22	$\overline{\text { PEU }}$		TxDSn
	24	$\overline{\text { GEP }}$	RxDSn	
	26			
	28			SPRxD
	30	M2	M2	M2
	32	+24V	0 V	+15 V



Table 4.1 (2) Interface assignment of the bus PCB

$$
\begin{aligned}
& \mathrm{q}=\text { output } \\
& \mathrm{i}=\text { input }
\end{aligned}
$$

## Chapter 5 <br> Spare Parts

Table 5.1 lists spare parts for the EG 185 U. Order spare parts from your local Siemens representative. Consult the appendix for a list of Siemens offices worldwide.

Description	Order number	Spare part category ${ }^{1)}$
Power supply unit and fan	$\begin{array}{r} \text { 6ES5 955-3LC14 } \\ \text { 6ES5 955-3NC13 } \\ \text {-3NF11 } \\ \text {-3LF12 } \end{array}$	$\begin{aligned} & R \\ & R \\ & R \\ & R \end{aligned}$
15-V additional module	6ES5 956-0AA12	R
Battery compartment	6XG3400-2AT00	$N$
Backup battery	W79084-L1001-B5	$N$
Air deflector	6ES5 981-0DA11	$N$
$\begin{aligned} & \text { Fuses } \\ & (6.3 \times 32 \mathrm{~mm}) \end{aligned}$		N Order from: GWW-AST Nuremberg
15 A medium-blow	41761815	
4 A quick-break	41761794	
1.5 A quick-break	41761782	
Filter holder	6ES5 981-0FA11	N Order from: GWW-AST
Filter pad (pack of 10)	6ES5 981-0EA11	N Order from: GWW-AST
Fan (pack of 2)		N Order from: GWW-AST
PS: -3LC14/3LF12	6ES5 988-3LB21	
PS: -3NC13/3NF11	6ES5 988-3NB11	

Table 5.1 Spare parts

1) $R=$ item can be repaired
$N=$ item cannot be repaired
If not specified, order from GWK.

## EG 185 U Expansion Unit

## FOLD



## SIEMENS

## SIMATIC S5 <br> EG 186 U Expansion Unit in Compact Design 6ES5186-3UA..



Fig. 1 EG 186 U expansion unit
Contents ..... Page
1 Technical Description ..... 3
1.1 Application ..... 3
1.2 Design ..... 3
1.3 Configurations ..... 4
1.4 Specifications ..... 5
2 Installation ..... 11
2.1 Installation of the Expansion Unit ..... 11
2.2 Installation of the Power Supply Unit ..... 11
2.3 Connection of the Supply Voltage ..... 12
2.4 Connection of the Interconnecting Cables ..... 13
2.5 Notes on Installation ..... 13
3 Operation ..... 15
3.1 General Instructions ..... 15
3.2 Control and Display Elements ..... 16
3.3 Jumper Assignment ..... 17
4 Maintenance ..... 19
4.1 Inserting and Extracting of Modules ..... 19
4.2 Change of Backup Battery ..... 19
4.3 Spare Parts/Accessories ..... 20
4.4 Interface Assignment of the Bus PCB ..... 21
5 Page Overview ..... 23

## 1 Technical Description

### 1.1 Application

The EG 186 U expansion unit has been developed to facilitate a distributed use of communications processors (CPs) and intelligent peripherals (IPs) without fans. The modules to be used with EG 186 U must be suitable for the operation without fan.

It has a 16 bit-wide address and data bus. It can be addressed by the CC via the symmetrical interface (IM 304 - IM 314). It is also used in fault-tolerant SIMATIC S5 systems (IM 304 - IM $314 \mathrm{H} / \mathrm{R}$ ).

The EG 186 U can be used in the programmable controllers 135 U , 150 U and 155 U .

### 1.2 Design

The EG 186 U expansion unit consists of:

- Compact housing with cable duct and power supply unit,
- 11 slots for modules.

Typical distributed configuration:


Up to four expansion units EG 186 U can be connected to each interface of the IM 304.
Important:
The total distance between the CC and the most remote IM 314 must not exceed 600 m . The IM 304 has to be adapted with the appropriate position of jumpers to the actual length of cable (see operation instructions IM 304). A terminator is required at the last IM 314.

### 1.3 Configurations

Coordination processor 1)
Communications processors Interface IM314 H

Interface 300-5C
Interface 310, 311, IM 314
intelligent I/O modules
(IPs) 2)
Digital I/O
Analog I/O
Watchdog module 313


1) Jumper setting: See instructions for the coordination processor
2) IP 245, IP 260 and IP 261 in addition in slots 147, 155 and 163.

[^14] IP 257 in slots 147 and 155

### 1.4 Specifications

Applicable safety regulations	VDE 0160
Protection class	1
Degree of protection	IP 00
Operating temperature	0 to $55^{\circ} \mathrm{C}$
Transport and storage temperature	-40 to $70{ }^{\circ} \mathrm{C}$
Relative humidity	$\leq 95 \%$ at $25^{\circ} \mathrm{C}$, no condensat.
Operating altitude	$\leq 3500 \mathrm{~m}$ above sea level
Mechanical stressing	Mounting in fixed equipment which is not necessarily free of vibration; mounting on ships and in motor vehicles (observing any special regulations) but not directly on the engine assembly.
Weight	approx. 16 kg
Dimensions $\text { (w } \mathrm{w} h \times \mathrm{d} \text { ) }$	482.6 mm x 432 mm x 310 mm

Power supply unit 6ES5 955-5LB11

Input
Rated input voltage $\mathrm{U}_{\mathrm{EN}}$

Undervoltage message $\mathrm{U}_{\mathrm{E}}$
Input frequency $f_{E}$
Rated input current $I_{\text {EN }}$
at rated load and
$\mathrm{U}_{\mathrm{EN}}=230 \mathrm{~V}($ or 115 V$)$
Max. inrush current $I_{E}$
Efficiency at rated load
$230 / 115 \mathrm{~V} \mathrm{AC} \pm 10 \%$,
commutable 1 )
$<187 \mathrm{~V} \mathrm{AC} \mathrm{(or} 93 \mathrm{~V} \mathrm{AC}$ )
47 to 63 Hz
0.8 A (or 1.6 A )
10 A for 5 ms (or 5 A )
typ. $70 \%$
${ }^{1}$ ) Voltage selector; replace fuse

Stored energy time   in case of power failure	$\geq 10 \mathrm{~ms}$
Power factor cos	0.74
Input fuse	$1 \mathrm{~A}($ or 2 A$)$, slow; $250 \mathrm{~V} ;$
	$6.3 \times 32 \mathrm{~mm}$
	$(\mathrm{~F} 1$ on power supply PCB)

## Output 1

Rated output voltage $\mathrm{U}_{\mathrm{AN}}$
Setting range of
output voltage
Rated output current $I_{\text {AN1 }}$

## Ripple

Dynamic voltage tolerance in case of load impulse from 50 to $100 \% I_{N}$ Settling time

Overvoltage cutoff $\mathrm{U}_{\mathrm{A}}$
Undervoltage message $\mathrm{U}_{\mathrm{A} 1}$
Current limit at overload

Output 2: 24 V front
Rated output voltage $\mathrm{U}_{\mathrm{AN} 2}$

Rated output current $I_{\text {AN2 }}$
Total current of
24 V output voltage
Ripple
Undervoltage message
(LED on front panel)
Electronic overcurrent protection

Output 3: 24 V bus
Rated output voltage $\mathrm{U}_{\mathrm{AN} 3}$
Rated output current $I_{\text {AN3 }}$
Ripple
5.1 V DC $\pm 0.5 \%$
4.75 to 5.2 V

15 A DC
$\leq 1 \%$ of $\mathrm{U}_{\mathrm{AN} 1}$
$\leq 5 \%$ of $\mathrm{U}_{\mathrm{AN} 1}$
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.82 \mathrm{~V} \pm 1 \%$
(1.1 to 1.33 ) $\times \mathrm{I}_{\mathrm{AN} 1}$

24 V DC $+25 \% /-15 \%$
(for $I_{A N 1} \geq 2 \mathrm{~A}$ )
$(0.4 \pm 0.1) \mathrm{ADC}$
$\leq 0.5 \mathrm{~A}$
$\leq 0.5 \%$ of $\mathrm{U}_{\mathrm{AN} 2}$
$\mathrm{U}_{\mathrm{A} 2}<14 \mathrm{~V}$ to 19 V
$(0.4 \pm 0.1) \mathrm{A} \mathrm{DC}$

24 V DC $+25 \% /-15 \%$
$0.5 \mathrm{~A} \mathrm{DC}-\mathrm{I}_{\mathrm{AN} 2}$
$\leq 0.5 \%$ of $\mathrm{U}_{\mathrm{AN} 3}$

Undervoltage message (LED on front panel)

Electronic overcurrent protection

## Complementary monitor

```
24 V load voltage
(Voltage Monitor Ext.)
```

Galvanic isolation ..... yes
primary/secondary
Backup battery
Capacity ..... 5 Ah
Voltage ..... $+3.4 \mathrm{~V}$
Service life
without discharge

The power supply unit 6ES5 955-5LB11 can be operated with either 230 V AC or 115 V AC. The appropriate voltage is selected using the voltage selector switch S 1 in the power supply unit. The fuse F1 must be replaced.

## Power supply unit 6ES5 955-5NB11

Input

```
Rated input voltage UEN
Undervoltage message UE
Rated input current I EN
at rated load and U}\mp@subsup{U}{EN}{}=24\textrm{V
Max. inrush current I IE
Efficiency at rated load
Stored energy time
in case of power failure
Input fuse
24 V DC + \(25 \% /-16.66 \%\)
\(<16.9\) V DC
5 A
\(85 \mathrm{~A} / 3 \mathrm{~ms}\)
typ. 70 ㅇ
\(>10 \mathrm{~ms}\)
\(10 \mathrm{~A}, \mathrm{slow}, 250 \mathrm{~V} ; 6.3 \mathrm{x} 32 \mathrm{~mm}\) (F1 on power supply PCB)
```

Output 1
Rated output voltage $\mathrm{U}_{\mathrm{AN} 1}$
Setting range of
output voltage
Rated output current $I_{\text {AN1 }}$
Ripple
Dynamic voltage tolerance
in case of load impulse
from 50 to $100 \% I_{N}$
Settling time
Overvoltage cutoff $\mathrm{U}_{\mathrm{A} 1}$
Undervoltage message $\mathrm{U}_{\mathrm{A} 1}$
Current limit at overload
Output 2: 24 V front
Rated output voltage $\mathrm{U}_{\mathrm{AN} 2}$
Rated output current $I_{\text {AN2 }}$
Total current of the
24 V output voltage
Ripple
Undervoltage message
(LED on front panel)
Electronic overcurrent
protection
$\leq 0.5 \mathrm{~A}$
5.1 V DC $\pm 0.5 \%$
4.75 to 5.2 V

15 A DC
$\leq 1 \%$ of $U_{\text {AN1 }}$
$\leq 5 \%$ of $\mathrm{U}_{\mathrm{AN} 1}$
$\leq 5 \mathrm{~ms}$
$6 \mathrm{~V} \pm 5 \%$
$4.82 \mathrm{~V} \pm 1 \%$
(1.1 to 1.33 ) $\times \mathrm{I}_{\mathrm{AN} 1}$

24 V DC +25 \%/- $15 \%$
(for $I_{\text {AN1 }} \geq 2 \mathrm{~A}$ )
$(0.4 \pm 0.1) \mathrm{A} \mathrm{DC}$
$\leq 0.5 \mathrm{~A}$
$\leq 0.5 \%$ of $\mathrm{U}_{\mathrm{AN} 2}$
$\mathrm{U}_{\mathrm{A} 2}<14 \mathrm{~V}$ to 19 V
$(0.4 \pm 0.1) \mathrm{A} \mathrm{DC}$

Output 3: 24 V bus

Rated output voltage $\mathrm{U}_{\mathrm{AN} 3}$	$24 \mathrm{~V} \mathrm{DC}+25 \% /-15 \%$
Rated output current $\mathrm{I}_{\mathrm{AN} 3}$	$0.5 \mathrm{ADC}-\mathrm{I}_{\mathrm{AN} 2}$
Ripple	$\leq 0.5 \%$ of $\mathrm{U}_{\mathrm{AN} 3}$
Undervoltage message   (LED on front panel)	$\mathrm{U}_{\mathrm{A} 3}<14 \mathrm{~V}$ to 19 V
Electronic overcurrent   protection	$(0.5 \pm 0.1) \mathrm{A}$

## Complementary monitor

24 V load voltage (Voltage Monitor Ext.)

Fusing of the internal 24 V
Input and output fuse

Galvanic isolation primary/secondary

Backup battery
Capacity
Voltage
Service life

1 A, slow; 250 V; pigtail fuse (F201, F202 on power supply PCB)
yes
$\geq 15$ to 20 V
$\geq 15$
(

5 Ah
$+3.4 \mathrm{~V}$
approx. 10 years, without discharge


## 2 Installation

### 2.1 Installation of the Expansion Unit

The EU is designed for the installation in cabinets, open racks or control desks (see catalog ST 53).

M6 screws and washers should be used for fixing the unit.
In order to facilitate the necessary ventilation, a minimum space of 88.9 mm (2U) must be provided beneath, behind, and above the EU. If many EUs are mounted in a pile, it is useful to install a deflector (6ES5 981-0DA11).

If the unit is wall-mounted, a distance of 100 mm to the wall must be provided.

The total heat generated inside a cabinet must be dissipated by either natural convection or forced ventilation.

The dimensions of the EU including modules are (w x h x d): 490 x 440 x 352 mm .

### 2.2 Installation of the Power Supply Unit

The power supply unit can be connected or disconnected only if the supply cable conductor is isolated. To disassemble, remove both screwed connections on the left and the right side of the front panel and withdraw the power supply unit forwards.

### 2.3 Connection of the Supply Voltage



1 Depending on the type of the current supply
AC Line: 230 V or 115 V input voltage (commutate the selector on power supply unit; replace fuse)
DC Line: 24 V input voltage

2 Enable Power Supply:
Not more than 7 FRG-inputs (front connector) can be triggered by an $U_{H}$ output (suggested switch position, see the Installation Guidelines).

3 Voltage Monitor:
The 24 V load voltage monitor input must be connected or be switched inactive by means of the jumper BA-EX in the power supply unit.

4 Output 24 V front:
This output can be used to supply the enable inputs of the U-periphery. A voltage of between 20 and 30 V and max. 0.4 A is available.

Fig. 2 Connection of the supply voltage
The relevant regulations must be observed, especially VDE 0100.
The cable section of the front connectors must not exceed $4 \mathrm{~mm}^{2}$.

### 2.4 Connection of the Interconnecting Cables

The interconnecting cables for communications processors (CPs), intelligent peripherals (IPs) and interface modules of the central controller must be connected with front connectors. The front connectors must be locked by displacing the metal top on the front side. The order of the connectors must correspond to that of the modules, otherwise there is a danger of damage resulting.

### 2.5 Notes on Installation

Inside a cabinet, 230 V AC supply cables may be laid in a common cable duct with signal leads only if they are screened.

The 24 V DC ground connection (load current supply to expansion unit) must be fed via a short connection (cross-section $\geq 2.5 \mathrm{~mm}^{2}$ ) if used with non-floating modules.

The programmable controllers are delivered to be used with grounded reference potential.

The load power supply is mounted in the upper part of the cabinet.

If the programmable controller is mounted into a cabinet, the housing and the rack must be screwed together in a manner most beneficial to conduction.

The metal parts of the cabinet (partitions, doors, etc.) must have a low-resistance connection with each other (wire crosssection 10 to $16 \mathrm{~mm}^{2}$ ). The cabinet must be connected to the protective ground conductor.

If a screened input/output cable is to be used, the screening must be clamped to a screening bar which has a low-resistance connection to the housing of the programmable controller. The external insulation of the cable should be removed in the immediate vicinity of the cable clamp and the screening screwed firmly to the screening bar, so that high conductivity is achieved.

The 24 V DC power supply unit must be furnished with a smoothing capacitor (approximately 200 uF per ampere load current). Additionally, a screening coil is required for the transformer.

The Installation Guidelines, reference no. C79000-B8576-C452, must be followed.

## 3 Operation

### 3.1 General Instructions

- Voltage exceeding 50 V must not appear between the output connections and the protective ground conductor potential.
- The protective ground conductor must always be connected.
- In case of overvoltage at the output, the unit will be blocked holding $\left(\mathrm{U}_{\mathrm{A} 1}\right.$ and $\mathrm{U}_{\mathrm{A} 2} \leq 0.5 \mathrm{~V}$ ).

The power supply unit can be put into service again by switching the supply voltage off and on again if the overvoltage is not due to internal errors.

- The correct function of the power suply unit is only guaranteed if a load of at least 1 A is connected to the 5 V side.
- The supply voltage must reach its rated value in a period of time that must not exceed 200 ms .


### 3.2 Control and Display Elements



1 LED "Voltage Low"
The red LED lights up if an undervoltage exists at the load voltage monitor input.

2 LED "Batt. Low"
The yellow LED lights up if the battery voltage is below 2.7 V . The data which is buffered in the RAM is lost upon power off/on.

3 Key "Reset"
After power on/off and when the LED "Batt. Low" still lights up, the acknowledgment button must be pressed; otherwise the progammable controller remains in the stop condition after battery change and power on.

4 LED "Power Supply O.K."
The green LED lights up if the output voltage of 5 V is present.

5 Test sockets "Test 5 V"
Monitoring possibility of the output voltage $U_{\text {AN1 }}$
(standard setting: 5.1 V DC $\pm 0.5 \%$ )

6 Test sockets " $3 \mathrm{~V} \triangleq 15 \mathrm{~A}$ "
Monitoring possibility of the output current $I_{A 1}$
( $3 \vee \triangleq$ max. output current of the corresponding power supply unit)

7 LED "Power Supply O.K." (bus)
The green LED lights up if the output voltage of 24 V is present.

8 LED "Power Supply O.K." (front)
The green LED lights up if the output voltage of 24 V is present.

Fig. 3 Power supply units 6ES5 955-5...

### 3.3 Jumper Assignment

Function	Jumpers
Battery monitoring (BAU) $=$ On   Battery monitoring (BAU) $=$ Off	NN-MM closed $*$   NN-MM open
Operation with load voltage monitoring   Operation without load voltage monitoring	BA-EX open $*$   BA-EX closed

* = Factory setting


## Position of the jumpers

Power supply unit 6ES5 955-5LB11:


Power supply unit 6ES5 955-5NB11:


## 4 Maintenance

### 4.1 Inserting and Extracting of Modules

The modules are removed by gripping the lugs and pulling with a gentle rocking motion.

Modules may only be inserted or removed while the central controller, expansion units or field devices are switched off.

The modules of the $U$-peripherals may be removed or inserted during operation; the special instructions concerning the functions of the enabling inputs must be observed.

The power supply unit must not be installed or removed whilst the power is switched on.

### 4.2 Change of the Backup Battery

The backup battery can be changed without any loss of memorized data if the power supply unit is on or an external voltage (3.4 V) is present at the connectors "Ext. Batt.". The correct polarity is to be observed.

The backup battery is to be changed at least every 3 years; this change depends neither on the memory change (backup current) nor on the backup function (capacity: 5.0 Ah). To change the battery, procede as follows:

- Pull down the cover.
- Pull the battery insert.
- Change the battery.



### 4.3 Spare Parts/Accessories

Description	Order number	$\begin{aligned} & \text { Spare part } \\ & \text { category }{ }^{1} \text { ) } \end{aligned}$	$\begin{aligned} & \text { Order } \\ & \text { from } \end{aligned}$
Power supply units	6ES5 955-5LB11	R	
	6ES5 955-5NB11	R	
Battery insert	6XG3400-3AT00	N	
Backup battery	W79084-L1001-B5	N	
Deflector sheet	6ES5 981-0DA11	N	
Fuses		N	
10 A slow-blow	W79054-L4012-M100		
$(6.3 \times 32 \mathrm{~mm})$   1 A slow-blow	W79054-L4011-T100		
( $6.3 \times 32 \mathrm{~mm}$ )			
2 A medium-blow $(6.3 \times 32 \mathrm{~mm})$	W79054-L4011-F200		
1 A slow, pigtail	W79054-M1011-T100		

1) $R=$ item can be repaired
$\mathrm{N}=$ item cannot be repaired
2) Order from GWK.

### 4.4 Interface Assignment of the Bus PCB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{4}{|l|}{\begin{tabular}{l}
CC interface modules 310, 311, IM 314 \\
I/O modules \\
slot 3
\end{tabular}} \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Coordination processor \\
Intelligent I/O mod. \\
I/O modules \\
Slot 19
\end{tabular}} \& \multicolumn{4}{|l|}{\begin{tabular}{l}
PG-MUX \\
Cormunications proc. \\
Intelligent I/O mod. \\
I/O modules \\
Slots 19 to 115
\end{tabular}} \\
\hline Backplane connector \& Pin no. \& \[
\begin{array}{ll} 
\& p \\
\& \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { Pin row } \\
\& \text { b }
\end{aligned}
\] \& \& Pin no. \& \& \[
\begin{aligned}
\& \text { Pin row } \\
\& \text { b }
\end{aligned}
\] \& \& Pin no. \& \& \[
\begin{aligned}
\& \text { in row } \\
\& b
\end{aligned}
\] \& \\
\hline 1 \& \[
\begin{array}{r}
2 \\
4 \\
6 \\
8 \\
10 \\
12 \\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{array}
\] \& \begin{tabular}{c}
+5 V \\
\(\overline{\text { CPKL }}\) \\
\(\overline{\text { MEMR }}\) \\
\(\overline{\text { MEMW }}\) \\
\(\overline{\text { RDY }}\) \\
DB0 \\
DB1 \\
DB2 \\
DB3 \\
DB4 \\
DB5 \\
DB6 \\
DB7 \\
\hline DSI
\end{tabular} \& 0
P \(V\)
PESP
ADBO
ADB1
ADB2
ADB3
ADB4
ADB5
ADB6
ADB7
ADB8
ADB9
ADB10
ADB11
BASP
0 \&  \& \[
\begin{array}{r}
2 \\
4 \\
6 \\
8 \\
10 \\
12 \\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{array}
\] \& \begin{tabular}{c}
+5 V \\
\(\overline{\mathrm{CPKL}}\) \\
\hline\(\overline{\text { MEMR }}\) \\
\hline MEMW \\
\hline RDY \\
DBO \\
DB1 \\
DB2 \\
DB3 \\
DB4 \\
DB5 \\
DB6 \\
DB7
\end{tabular} \& \begin{tabular}{c}
0 \\
\hline PESP \\
ADBO \\
ADB1 \\
ADB2 \\
ADB3 \\
ADB4 \\
ADB5 \\
ADB6 \\
ADB7 \\
ADB8 \\
ADB9 \\
ADB10 \\
ADB11 \\
BASP \\
0
\end{tabular} \& UBAT ADB12 ADB13 ADB14 ADB15 \(\overline{\text { DSI }}\) \(\overline{\text { BASPq }}\) \& \[
\begin{gathered}
2 \\
4 \\
6 \\
8 \\
10 \\
12 \\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{gathered}
\] \& \[
\begin{array}{|c}
+5 \mathrm{~V} \\
\overline{\mathrm{CPKL}} \\
\hline \text { MEMR } \\
\hline \text { MEMW } \\
\hline \mathrm{RDY} \\
\text { DBO } \\
\text { DB1 } \\
\text { DB2 } \\
\text { DB3 } \\
\text { DB4 } \\
\text { DB5 } \\
\text { DB6 } \\
\text { DB7 }
\end{array}
\] \& \begin{tabular}{c} 
O V \\
PESP \\
ADBO \\
ADB1 \\
ADB2 \\
ADB3 \\
ADB4 \\
ADB5 \\
ADB6 \\
ADB7 \\
ADB8 \\
ADB9 \\
ADB10 \\
ADB11 \\
BASP \\
0 \\
\hline
\end{tabular} \& \begin{tabular}{l} 
UBAT \\
ADB12 \\
ADB13 \\
ADB14 \\
ADB15 \\
IRA \\
IRB \\
IRC \\
IRD \\
\\
\hline\(\overline{\text { BSSI }}\) \\
\hline
\end{tabular} \\
\hline 2 \& \[
\begin{array}{r}
2 \\
4 \\
4 \\
6 \\
8 \\
10 \\
12 \\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{array}
\] \&  \&  \& \(\frac{0 \mathrm{~V}}{\mathrm{CPKL}^{\prime}}\) \& \[
\begin{array}{r}
2 \\
4 \\
6 \\
8 \\
10 \\
12 \\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{array}
\] \& \[
\begin{gathered}
+5 \mathrm{~V} \\
\mathrm{DB12} \\
\mathrm{DB13} \\
\mathrm{DB14} \\
\mathrm{DB15} \\
\overline{\mathrm{NAU}} \\
\overline{\mathrm{BAU}} \\
\overline{\mathrm{CPKLa}} \\
\overline{\mathrm{PEU}} \\
\overline{\mathrm{GEP}} \\
\\
\text { M2 } \\
+24 \mathrm{~V}
\end{gathered}
\] \& 0
0
DB8
DB9
DB10
DB11
RxDS6
TxDS6
RxDS4
TxDS4

RxDS2
TxDS2
M2

0 \& | RxDS8 |
| :--- |
| TxDS8 |
| RxDS7 |
| TxDS7 |
| RxDS5 |
| TxDS5 |
| RxDS3 |
| TxDS3 |
| RxDS1 |
| TxDS1 |
|  |
| SPRXD |
| M2 |
| +15 | \& \[

$$
\begin{array}{r}
2 \\
4 \\
6 \\
8 \\
10 \\
\\
14 \\
16 \\
18 \\
20 \\
22 \\
24 \\
26 \\
28 \\
30 \\
32
\end{array}
$$

\] \& \[

$$
\begin{gathered}
+5 \mathrm{~V} \\
\mathrm{DB12} \\
\mathrm{DB} 13 \\
\mathrm{DB14} \\
\mathrm{DB15} \\
\\
\overline{\mathrm{NAU}} \\
\overline{\mathrm{BAU}} \\
\\
\overline{\mathrm{PEU}} \\
\overline{\mathrm{GEP}} \\
\\
\mathrm{M2} \\
\hline+24 \mathrm{~V}
\end{gathered}
$$
\] \& O V

DB8
DB9
DB10
DB11

RxDSn

$M 2$

0. \& $$
\begin{array}{|c|c|}
\hline \text { TxDSn } \\
\\
\text { SPRxD } \\
\text { M2 } \\
+15 & \mathrm{~V}
\end{array}
$$ <br>

\hline
\end{tabular}

[^15]|  | CC interface IM 314H I/O modules <br> Slots 131, 147 |  |  |  | EU interface 300 I/O modules Slot 163 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Backplane connector | Pin no. | $z^{\mathrm{Pi}}$ | $\begin{aligned} & \text { in row } \\ & \text { b } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { Pin row } \end{aligned}$ |  |
| 1 | $\begin{array}{r} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30 \\ 32 \end{array}$ | +5 V <br> $\overline{\text { CPKL }}$ <br> $\overline{\text { MEMR }}$ <br> $\overline{\text { MEMW }}$ <br> $\overline{\text { RDY }}$ <br> DB0 <br> DB1 <br> DB2 <br> DB3 <br> DB4 <br> DB5 <br> DB6 <br> DB7 | 0 <br> PESP <br> ADBO <br> ADB1 <br> ADB2 <br> ADB3 <br> ADB4 <br> ADB5 <br> ADB6 <br> ADB7 <br> ADB8 <br> ADB9 <br> ADB10 <br> ADB11 <br> BASP <br> 0 | ADB12 <br> ADB13 <br> ADB14 <br> ADB15 <br> 0 V <br> $\overline{\text { BASPq }}$ | $\begin{array}{r} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30 \\ 32 \end{array}$ | +5 V <br> $\overline{\mathrm{CPKL}}$ <br> $\overline{\text { MEMR }}$ <br> $\overline{\text { MEMW }}$ <br> $\overline{\text { RDY }}$ <br> DBO <br> DB1 <br> DB2 <br> DB3 <br> DB4 <br> DB5 <br> DB6 <br> DB7 |  | +5 V ADB12 ADB13 ADB14 ADB15 +5 V +5 V 0 V 0 V 0 V 0 |
| 2 | $\begin{array}{r} 2 \\ 4 \\ 6 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30 \\ 32 \end{array}$ |  |  | $\frac{0 \mathrm{~V}}{\text { CPKL' }}$ | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |  |  |  |

[^16]
## SIEMENS

SIMATIC S5Symmetrical Interface CC-EG / EG-EGIM 304 Interface Module6ES5 304-3UB11
IM 314 Interface Module ..... 6ES5 314-3UA11
Instructions


## Contents

1 TechnicalDescription ..... 5
1.1 Application ..... 5
1.2 Interfacing with other Devices ..... 5
1.2.1 Symmetrical InterfaceCC-EG ..... 5
1.2.2 Parallel Interface CC-CC in the Fault Tolerant System ..... 6
1.2.3 Symmetrical Interface CC-EG in the Fault Tolerant System ..... 6
1.3 TransmissionMode ..... 7
1.4 Design ..... 7
1.5 TechnicalSpecifications ..... 8
2 Installation ..... 9
2.1 Notes on Installation ..... 9
2.2 PermittedPotential Differences ..... 9
2.3 Pin Assignments of the Front and Backplane Connectors. ..... 10
2.4 Operating Modes / Jumper Settings on the IM 304 ..... 13
2.4.1 Jumper Settings ..... 13
2.4.2 Significance of the Jumpers ..... $1 ?$
2.5 Setting the Module Address on the IM 314 ..... 16
3 Operation ..... 19
4 SpareParts ..... 21
4.1 Pin Assignment of Connecting Cable 6ES5 721-Oxxx0 ..... 22
4.2 PinAssignment of Terminator 6ES5760-1AA11 ..... 23
4.3 PinAssignment of Terminator 6ES5760-OHA11 ..... 24
5 Abbreviations and Signal Names ..... 25
6 PageOverview ..... 26

## 1 Technical Description

### 1.1 Application

The IM 304 interface module can be used in the central controllers S5-115U, S5-115F, S5-115H, S5-135U, S5-150U, S5-150H, S5-155U and S5-155H. On the central controller side, it is used for the symmetrical transmission of the central controller bus to the expansion units with a 16-bit address and 16-bit data bus (EG 185, EG 186). On the expansion unit side, the IM 314 interface module is required. Fault tolerant systems require the IM 314H or IM 314R.

The 16-bit address bus and 16-bit data bus are transmitted multiplexed on 16 common lines. The IM 304 interface module is also used in fault tolerant systems to connect the redundant central controllers. (Parallel interface IM 304 - IM 324).

### 1.2 Interfacing with other Devices

The IM 304 and IM $314(H / R)$ interface modules can be used to interface with the following devices:

### 1.2.1 Symmetrical Interface from SIMATIC S5 Central Controllers (CCs) to SIMATIC S5 Expansion Units (EGs)

This permits (in conjunction with the EG 185, EG 186 and ER 701-3) the use of peripheral (I/O) modules, communications processors (CPs) and intelligent peripheral modules (IPs) in a distributed configuration. On the expansion unit side, the IM 314-3UA11 interface module must be used for this interface.


Fig. 1 Distributed configuration with the symmetrical interface IM 304 - IM 314

### 1.2.2 Parallel Interface between Central Controllers in the Fault Tolerant SIMATIC S5 System

The IM 304 interface module can be used in the CCs S5-115F, S5-115H, S5-150H and S5-155H. At the other end of the link, the IM 324-3UAxx (in the S5-115F, S5-150H) or IM 324-3URxx (in the $\mathrm{S} 5-155 \mathrm{H}, 115 \mathrm{H}$ ) must be used. The link is only possible via the X 4 interface (lower front connector).
The IM 304 interface module provides the following functions:

- bidirectional transmission of process-related data between the two central controllers,
- recognition of transmission errors by parity checks and monitoring of the data and addresses (only for $\mathrm{S} 5-115 \mathrm{~F}, \mathrm{~S} 5-150 \mathrm{H}$ ). This function is not possible when the module is used inthe $55-115 \mathrm{H} / 155 \mathrm{H}$ ).


### 1.2.3 Symmetrical Interface from Central Controllers to Expansion Units in the Fault Tolerant SIMATIC S5 System

In this configuration, the IM 304 interface module is served by the IM 314H or IM 314R interface module on the expansion unit side of the connection.


### 1.3 Transmission Mode

The symmetrical interface corresponds to the IEA Standard RS 485.

It is constructed with symmetrical transmitters and receivers. Control signals, addresses and data are input and output via the cable. The monitoring signals PEU (peripheral not ready) and ZGU (central controller not ready) are excluded from this procedure and are transmitted as isolated signals using optocouplers.

The address and data width is 16 bits (bidirectional). The transmission is in the time division multiplex mode. Control and monitoring signals are transmitted separately.

### 1.4 Design

The IM 304 interface module is mounted on a board of double Eurocard ( $233.4 \mathrm{~mm} \times 160 \mathrm{~mm}$ ) height. It occupies $11 / 3$ standard slots in the subrack. The connection to the S 5 bus in the CC is via two 48-pin connectors conforming to DIN 41612, row 2 . On the front panel there are two 50pin D-connectors to connect the symmetrical cable and two LEDs.

The connection from the CCs to the EGs and between the EGs is established with prefabricated cables via the front connectors (for order number see Section 4, Spare Parts). The front connectors must be locked in place by sliding the metal catch. The assignment of front connectors to the modules must be adhered to.

### 1.5 Technical Specifications

- Power supply
- Current consumption
- Cable length
_ from IM 304 to IM 324U
(only on interface X4)
_ from IM 304 to IM 324 R (only on interface X 4 )
_ from IM 304 to last IM 314 (per interface)
_ from IM 304 to last IM 314H/R (per interface)
- IM 304 can be used in
- Number and type of interface
- Transmission rate
- Signal level at cable interface
- Backplane connector
- Front connector
- Front panel width
- Dimensions
- Weight
- Environmental conditions:
- Operating temperature range
- Storage/transport
- Relative humidity max.
- Operating altitude max.
$+5 \mathrm{~V}+/-5 \%$
IM 304 approx. 1.2 A
IM 314 approx. 1.0 A
max. 100 m
max. 10 m
max. 600 m
max. 600 m
S5-115U,S5-135U,S5-150U, S5-155U,
S5-115F,S5-115H,S5-150H, S5-155H,

2 parallel, symmetrical interfaces
2 Mbytes... 100 kbytes/sec.
Differential signal according to RS485

Two 48-pin ES 902, row 2
Two 50-pin male connectors
20.32 mm (1 1/3 standard slots)
$160 \times 233.4 \mathrm{~mm}^{2}$
IM 304: approx. 360 g
IM 314: approx. 300 g

0 to $+55^{\circ} \mathrm{C}$
$-40^{\circ}$ to $+70^{\circ} \mathrm{C}$
$95 \%$ at $25^{\circ} \mathrm{C}$, no condensation
1500 m above sea level

## 2 Installation

The IM 304 can be plugged into the central controller of the S5-115U, S5-115F, S5-115H, S5$135 \mathrm{U}, \mathrm{S} 5-150 \mathrm{U}, \mathrm{S} 5-150 \mathrm{H}, \mathrm{S} 5-155 \mathrm{U}$ and S5-155H. The module is used for symmetrical connection of expansion units.

### 2.1 Notes on Installation

The maximum cable length per interface from the IM 304 in the CC to the last IM 314 or IM $314 \mathrm{H} / \mathrm{R}$ in the $E G$ is 600 metres. The actual cable length must be set at the IM 304 (see Section 2.4).

A maximum of four IM 314 or IM 314H/R interface modules can be connected per interface.
The IM 314 interface module of the last expansion unit of each group must be terminated with the terminator 6ES5 760-1AA11.

The IM 314H/R interface module of the last expansion unit is terminated with terminator 6ES5 760-0HA11.

## Connection with the IM 324

The connection to the second CC up to a distance of maximum 100 m with the IM $324 \mathrm{U} / \mathrm{R}$ is only possible via the front connector X4.

Connecting cable 6ES5-721-xxx (length key see Section 4, Spare Parts) is available to connect CCs or EGs with each other.

### 2.2 Permitted Potential Differences

To ensure the connection functions reliably, the potential differences between two S 5 devices must not exceed 7 V . An equipotential bonding conductor should be connected.

### 2.3 Pin Assignments of the Front and Backplane Connectors

Front connector pin assignment of the IM 304

1	
$2+$	) AD 12
3	
$4+$	) $A D 13$
5 -	
$6+$	3 $A D 14$
7 -	) AD 14
$8+$	3 AD 15
9	
$10+$	) $A D 6$
11	
$12+$	3 $A D 7$
13	
14	PEU
15	PEU
16	------
17	------

Interface X3

1	
$2+$	) $A D 12$
$3-$	) $A D 12$
$4+$	$\} A D 13$
5 -	) $A D 13$
$6+$	3 AD 14
7 -	$\int$ AD 14
$8+$	3 AD 15
9	$3 A D 15$
10 +	) $A D 6$
11	) $A D 6$
$12+$	) $A D 7$
13	) AD 7
14	3 (PEU) **
15	$\}($ PEU )
16	------
17	--

Interface X4

$\begin{aligned} & 18+ \\ & 19- \end{aligned}$	) $A D 8$
$20+$	\} $A D 9$
$\begin{aligned} & 22+ \\ & 22 \end{aligned}$	) $A D 10$
$\begin{aligned} & 24+ \\ & 25- \end{aligned}$	) $A D 11$
$\begin{aligned} & 26+ \\ & 27- \end{aligned}$	) $A D 3$
$\begin{aligned} & 28+ \\ & 29- \end{aligned}$	$\} A D 4$
$\begin{aligned} & 30+ \\ & 31 \quad- \end{aligned}$	\} $A D 5$
32	ZGU
33	$\overline{Z G U}$


$\begin{aligned} & 34+ \\ & 35+ \end{aligned}$	$\} \overline{\text { MEMR }}$
$\begin{aligned} & 36+ \\ & 37- \end{aligned}$	) $\overline{M E M W}$
$\begin{aligned} & 38+ \\ & 39- \end{aligned}$	) ALE
$\begin{aligned} & 40+ \\ & 41- \end{aligned}$	3 BASP
$\begin{aligned} & 42+ \\ & 43- \end{aligned}$	3 AD 0
$\begin{aligned} & 44+ \\ & 45- \end{aligned}$	) $A D 1$
$\begin{aligned} & 46+ \\ & 47 \end{aligned}$	\} $A D 2$
$\begin{aligned} & 48+ \\ & 49- \end{aligned}$	$\} \overline{R D Y}$
50	------

AD = address/data line

$\begin{aligned} & 18+ \\ & 19- \end{aligned}$	) $A D 8$
$\begin{aligned} & 20+ \\ & 21- \end{aligned}$	$\} A D 9$
$\begin{aligned} & 22+ \\ & 23- \end{aligned}$	$\} A D 10$
$\begin{aligned} & 24+ \\ & 25- \end{aligned}$	$\} A D 11$
$\begin{aligned} & 26+ \\ & 27- \end{aligned}$	$\} A D 3$
$\begin{aligned} & 28+ \\ & 29- \end{aligned}$	$\} A D 4$
$\begin{aligned} & 30+ \\ & 31 \quad- \end{aligned}$	$\} A D 5$
$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\}$ ZGU/PAR *


$\begin{aligned} & 34+ \\ & 35 \end{aligned}$	$\} \overline{\text { MEMR }}$
$36+$	) $\overline{M E M W}$
37	$\}$ MEMW
$38+$	3 ALE
39	3 ALE
$40+$	3 BASP/PAF *
41	3 BASP/PAF*
$42+$	) $A D 0$
43 -	
$44+$	) $A D 1$
45	
$46+$	) $A D 2$
47	$\} A D 2$
$48+$	) $\overline{R D Y}$
49	$\} R$
50	-

* For parallel connection to IM 324U
** Signal disabled in parallel connection

Front connector pin assignment of the IM 314

1	
	) $A D 12$
3 -	$\}$ AD 12
$4+$	) $A D 13$
5 -	$\}$ AD 13
$6+$	) $A D 14$
7 -	) AD 14
$8+$	) $A D 15$
9 -	$\} A D 15$
$10+$	3 AD 6
11 -	) AD 6
$12+$	) $A D 7$
13 -	) AD 7
14	PEUq
15	PEUq
16	------
17	------

Interface X3

Interface X4

$\begin{aligned} & 18+ \\ & 19- \end{aligned}$	\} AD 8
$20+$	\} AD 9
21 -	\} $A D$
$22+$	) $A D 10$
23 -	$)$
$24+$	) $A D 11$
25 -	$)$
$26+$	) $A D 3$
27 -	) AD 3
$28+$	) AD 4
29 -	$\}$ AD 4
$30+$	) $A D 5$
$31-$	$\text { > AD } 5$
32	ZGUi
33	$\overline{Z G U i}$


$34+$ $35-$	$\} \overline{M E M R}$
$36+$	$3 \overline{\text { MEMW }}$
37	3 MEMW
38 +	) ALE
39	) ALE
$40+$	3 BASP
41	$\}$ BASP
$42+$	3 ADO
43	
$44+$	) $A D 1$
45	$\}$ AD1
$46+$	) $A D 2$
47	$\}$ AD 2
$48+$	) $\overline{R D Y}$
49 -	$\}$ RDY
50	------

AD=address/data line $\mathrm{i}=$ input $\mathrm{q}=$ output

$18+$ $19-$	$\} A D 8$
$20+$	$\}$ AD 9
21 -	$\} A D O$
$22+$	3 AD 10
23 -	$\}$ AD 10
$24+$	3 AD 11
25 -	$\}$ AD 11
$26+$	3 AD 3
27 -	$\zeta$ AD
$28+$	) $A D 4$
29 -	) AD 4
$30+$	) $A D 5$
31	) ADS
32	ZGUq
33	$\}$ ZGUq


$34+$ $35-$	$\} \overline{M E M R}$
$36+$	) $\overline{M E M W}$
37	3 MEMW
$38+$	3 ALE
39 -	\} ALE
$40+$	3 BASP
41	$\} B A S P$
$42+$	3 AD 0
43	
$44+$	) $A D 1$
45	
$46+$	) $A D 2$
47	$\}$
$48+$	) $\overline{R D Y}$
49	$\}$ RD
50	+5V

$$
\mathrm{i}=\text { input } \mathrm{q}=\text { output }
$$

Backplane connector pin assignment of the IM 304

	d	b	z
2	------	M	$+5 \mathrm{~V}$
4	------		------
6	ADB 12	ADB 0	$\overline{\text { CPKL }}$
8	ADB 13	ADB 1	$\overline{\text { MEMR }}$
10	ADB 14	ADB 2	MEMW
12	ADB 15	ADB 3	$\overline{R D Y}$
14	------	ADB 4	DB 0
16	------	ADB 5	DB 1
18	------	ADB 6	DB 2
20	------	ADB 7	DB 3
22	------	ADB 8	DB 4
24	------	ADB 9	DB 5
26	------	ADB 10	DB 6
28	------	ADB 11	DB 7
30	------	BASP	------
32	------	M	------

Interface X1
(---- = not used)

	d	b	z
2	------	M	+5V
4	------	DB 8	DB 12
6	--	DB 9	DB 13
8	------	DB 10	DB 14
10	------	DB 11	DB 15
12	------	------	------
14	------	------	$(\overline{\mathrm{PEU}})$ *
16	------	------	------
18	----	$\overline{\text { PEU * }}$	----
20	------	------	---
22	------	------	---
24	-	------	---
26	------	------	---
28	------	-----	------
30	------	---	------
32	------	M	------

Interface X2
*dependent on jumper plug X15

Backplane connector pin assignment of the IM 314

	d	b	z
2	----	M	+5V
4	+5V	PESP	------
6	ADB 12	ADB 0	$\overline{\text { CPKLq }}$
8	ADB 13	ADB 1	MEMR
10	ADB 14	ADB 2	MEMW
12	ADB 15	ADB 3	RDY
14	------	ADB 4	DB 0
16	------	ADB 5	DB 1
18	------	ADB 6	DB 2
20	------	ADB 7	DB 3
22	M	ADB 8	DB 4
24	M	ADB 9	DB 5
26	M	ADB 10	DB 6
28	------	ADB 11	DB 7
30	M	BASP	$\overline{\mathrm{DSI}}$
32	$\overline{\text { BASPq }}$	M	------

## Interface X1

(---- = not used)

	d	b	Z
2	------	M	+ 5 V
4	-----	DB 8	DB 12
6	$\overline{\text { CPKLi }}$	DB 9	DB 13
8	--	DB 10	DB 14
10	------	DB 11	DB 15
12	------	+5 V	------
14	--	+5V	------
16	------	+5V	------
18	------	$\overline{\text { NAU }}$	$\overline{\text { CPKL }}$
20	------	-----	------
22	------	M	M
24	------	M	M
26	------	M	M
28	---	M	M
30	------	M	M
32	------	M	M

## Interface X2

$i=$ input, $q=$ output

### 2.4 Operating Modes / Jumper Settings on the IM 304 (6ES5 304-3UB11)

### 2.4.1 Jumper Settings

X11: Adapting to various cable lengths

	Jumper plug X11				
Jumper setting					
Cable length	max. 10 m	10-100m	100-250 m	250-450 m	450-600m

${ }^{*}$ ) This setting is only permitted for the IM 304 - IM 324R link in the S5-155H.
The longest connection at interface X 3 or X 4 is determined by the jumper setting at X 11 .

Symmetrical connection CC - EG with IM 304/IM 314
(S5-115U, S5-135U, S5-150U, S5-155U)


Jumpers as set at the factory

## Symmetrical connection CC - EG with IM 304/IM 314R (S5-115H, S5-155H)



Parallel connection CC - CC with IM 304/IM 324R (S5-115H, S5-155H)


## Symmetrical connection CC - EG with IM 304/IM 314H (S5-150H)



Parallel connection CC - CC with IM 304/IM 324U (S5-115F, S5-150H)


The cable length of the connection between the IM 304 and IM 324U must not exceed 100 m and between the IM 304 and IM 324R must not exceed 10 m . To connect the IM 304 and IM 324 or IM 324 R , only the lower interface (X4) can be used. Jumper X2 must be set to "OFF".

### 2.4.2 Significance of the Jumpers

X12

X13

X14

X15

X21


Interface X3 (upper front connector) is switched to on; the cable is connected.

Interface X3 is switched to off. No cable is connected.

Switchover to redundant mode.

### 2.5 Setting the Module Address on the IM 314

The module address (e.g. P area or $Q$ area) is set at the IM 314. This setting is only valid for the digital and analog I/O modules.

Fifteen address areas are available for the software interface. The digital and analog I/O modules in all areas are addressed by setting the DIP switches appropriately.

In the STEP 5 operation set, it is only possible to address the $P$ and $Q$ area.

## Addressing the $P$ and $Q$ area

Module addresses used in the CC can no longer be used in the EG or in the $P$ or $Q$ area.
If peripheral modules are installed only in the expansion unit, all addresses both in the $P$ and in the $Q$ area can be addressed if the appropriate setting is made on the IM 314.


[^17]
## Jumper settings on the IM 314

Installed in the EG 185 U and EG 186 U


Installed in the EG 183


Installed in the ER 701-2 and ER 701-3 (S5-115)


## 3 Operation

## Control and display elements



The "FAULT" LED is lit if there is a power failure in an expansion unit, if there is no terminator on the last IM 314, if there is a wire break or if the DIP switch S3 is set incorrectly.

## 4 Spare Parts

Mini-jumper coding socket	Order no.:	W79070-G2602-N2
Terminator	Order no.:	6ES5760-1AA11

Connecting cable (721)
Order no.:
Standard lengths: 1m;1.6 m; 2.5 m ; $3.2 \mathrm{~m} ; 5 \mathrm{~m} ; 10 \mathrm{~m}$
Special lengths: up to 600 m
Length: $\quad 1.00 \mathrm{~m}$
1.60 m
2.00 m
2.50 m
3.20 m
5.00 m
8.00 m
10.00 m
12.00 m
16.00 m
20.00 m
25.00 m
32.00 m
40.00 m
50.00 m
63.00 m
80.00 m
100.00 m
120.00 m 160.00 m 200.00 m
250.00 m 320.00 m 400.00 m 500.00 m 600.00 m

### 4.1 Pin Assignment of Connecting Cable 6ES5 721-0xxx0



50-pin connector	Identification sleeve	Identification tape	Core color code	50-pin connector
20	1	rd	wt	20
21			br	21
4	redserial no. 16		gn	4
5			ye	5
18			gr	18
19			pk	19
2			bl	2
3			rd	3
24	2	$g n$	wt	24
25			br	25
8	green		gn	8
9			ye	9
22			gr	22
23	serial no. 17		pk	23
6			bl	6
7			rd	7
26	3	wt	wt	26
27			br	27
10	yellow		gn	10
11			ye	11
42			gr	42
43	serial no. 18		pk	43
44			bl	44
45			rd	45
28	4	wt	wt	28
29			br	29
12	brown		gn	12
13			ye	13
46	serial no. 19		gr	46
47			pk	47
30			bl	30
31			rd	31
34	5   black   serial no. 20	wt	wt	34
35			br	35
36			gn	36
37			ge	37
38			gr	38
39			rs	39
40			bl	40
41			it	41
48	blue serial no. 21	rd	ws	48
49			br	49
14			gn	14
15			yr	15
32			gr	32
33			rd	33
-	Screen			-

### 4.2 Pin Assignment of Terminator 6ES5 760-1AA11



Pin	Resistance 180 ohms or jumper		Pin
28			8
29			9
26		$\square$	6
27			7
46			4
47			5
44		$\square$	2
45			3
42		$5$	24
43			25
38	1)		22
39			23
34	1)	$\square$	20
35			21
36			18
37			19
40	1) $\quad \square$		12
41			13
48		$\sqrt{\square}$	10
49			11
15			30
16			31
14			
50			
1) 100 ohms   2) 150 ohms			

### 4.3 Pin Assignment of Terminator 6ES5 760-0HA11



Pin	Resistance 180 ohms or jumper		Pin
28			8
29			9
26			6
27			7
46			4
47			5
44			2
45			3
42			24
43			25
38			22
39			23
34			20
35			21
36			18
37			19
40			12
41			13
14			10
16			11
50			30
15			31

## 5 Abbreviations and Signal Names

IM Interface module for expansion units

IM 304	6ES5304-3UB 11
IM314	" 6ES5314-3UA 11
IM $314 \mathrm{H}^{\prime \prime}$	" 6ES5314-3UH 12 (S5-150H)
IM $314 \mathrm{R}{ }^{\prime \prime}$	" 6ES5314-3UR 11 ( $55-155 \mathrm{H}$ )
IM 324 U	" 6ES5324-3UA 12 (S5-155F,S5-150H)
IM 324 R "	6ES5324-3UR 11 (S5-115H, S5-155H)

CP Communications processor
IP Intelligent (I/O) peripheral (with preprocessing)
HW Hardware
EG Expansion unit
CC Central controller
PLC Programmable controller

ALE Address latch enable
MEMR Memory read
MEMW Memory write
BASP Disable command output
RDY Ready
PAF Parity error
ZGU Central controller not ready
PAR Parity
PEU Peripheral not ready
CPKL Central processor ready
NAU Powerfailure


1 Range submodules
2 Mode switch

Fig. 1 Analog input module 6ES5465-4UA11

Type of module	Number of inputs	Electrical isolation/groups	Order no. of the module	Range submodules (4 channels)	Order No. of the range submodule	Technical data on page
Analog input and submodules	$\begin{array}{l\|l} 8 \\ 16 / 8 \end{array}$	Yes/8 inputs referred to 0 V and between each other No/none	$\begin{array}{r} 6 \mathrm{ES} 5460-4 \mathrm{UA} 11 \\ -4 \cup \mathrm{~A} 12 \\ 6 \mathrm{ES} 5465-4 \mathrm{~A} 11 \\ -4 \mathrm{UA} 12 \end{array}$	```50/500 mV/Pt }10 12.5/50/500mV/Pt100 50/500 mV/Pt }10 \pm1 V \pm10 V \pm 2 0 ~ m A 4 to 20 mA \pm V 4 to 20 mA/4-wire transducer```	6ES5498-1AA11 6ES5498-1AA11 6ES5498-1AA11 6ES5498-1AA21 6ES5498-1AA31 6ES5498-1AA41 6ES5498-1AA51 6ES5498-1AA61 6ES5498-1AA71	$\begin{aligned} & 5-1 \\ & 5-6 \\ & 5-14 \\ & 5-19 \end{aligned}$
Analog input	4	Yes/4 inputs referred to 0 V and between each other	$\begin{array}{r} 6 \mathrm{ES} 5463-4 \mathrm{U} 111 \\ -4 \cup A 12 \\ -4 \cup B 11 \\ -4 \mathrm{UB} 12 \end{array}$	Ranges $1 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA}$ $4 \text { to } 20 \mathrm{~mA}$		5-11
	Outputs			Output range		
Analog output	8 8 8	Yes/8 outputs referred to 0 V Yes/8 outputs referred to 0 V Yes/8 outputs referred to 0 V	$\begin{array}{r} 6 \mathrm{ES} 5470-4 \cup A 11 \\ -4 \cup A 12 \\ 6 \mathrm{ES} 5470-4 \cup B 11 \\ -4 \cup \mathrm{~B} 12 \\ 6 \mathrm{ES} 5470-4 \cup C 11 \\ -4 \cup C 12 \end{array}$	$\begin{aligned} & \pm 10 \mathrm{~V} / 0 \text { to } 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 1 \text { to } 5 \mathrm{~V} / 4 \text { to } 20 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 5-25 \\ & 5-25 \\ & 5-25 \end{aligned}$

Contents Page
1 Description ..... 1-1
1.1 Application ..... 1-1
1.2 Design ..... 1-1
1.3 Principle of Operation ..... 1-1
1.3.1 Analog Input Modules 460 and 465 ..... 1-3
1.3.2 Analog Input Module 463 ..... 1-8
1.3.3 Analog Output Module 470 ..... 1-11
1.4 Function of the Enable Inputs ..... 1-13
1.5 Pin Assignments of the Backplane Connector ..... 1-17
1.6 General Technical Data ..... 1-17
2 Assembly ..... 2-1
2.1 Removing and Inserting Modules ..... 2-1
2.2 Module Identification Labelling ..... 2-2
2.3 Installation Guidelines ..... 2-3
3 Operation ..... 3-1
3.1 Setting the Module Address ..... 3-1
3.2 Digital Measured-value Representation with Analog ..... 3-4 Input Modules
3.2.1 Digital Measured-value Representation as Two's ..... 3-5Complement
3.2.2 Digital Measured-value Representation as Absolute ..... 3-6
Value and Sign
3.2.3 Digital Measured-value Representation with ..... 3-7
Resistance Thermometers
3.2.4 Digital Measured-value Representation ..... 3-8
(Analog Input Module 463)
3.2.5 Digital Measured-value Representation with Current ..... 3-9
Measurement Ranges of 4 to 20 mA
3.3 Digital Measured-value Representation with Analog ..... 3-10 Output Modules
3.4 Connecting the Signal Lines ..... 3-11
3.5 Connecting Sensors to Analog Input Modules ..... 3-11
3.5.1 Connecting Current-type or Voltage-type Sensors ..... 3-11
3.5.2 Connecting a Compensating Box for Thermo-electric ..... 3-13
Voltage Measurement
3.5.3 Connecting Resistance Thermometers (e.g. Pt 100) to ..... 3-14
Analog Input Modules 460
3.5.4 Connecting Resistance Thermometers (e.g. Pt 100) to ..... 3-15 Analog Input Modules 465
3.5.5 Open-circuit Signalling with Resistance Thermometers ..... 3-17
3.5.6 Connecting Transducers ..... 3-18
3.6 Connecting Loads to Analog Output Modules 470 ..... 3-19
3.6.1 Connecting Loads to Current and Voltage Outputs ..... 3-19
3.6.2 Connection Loads to Voltage Outputs ..... 3-20
4 Spare Parts ..... 4-1
5 Description of the Individual Modules ..... 5-1
5.1 Analog Input Module 6ES5 460-4UA11 ..... 5-1
5.1.1 Technical Data ..... 5-1
5.1.2 Selecting the Mode ..... 5-3
5.1.3 Range Submodule Complement ..... 5-4
5.1.4 Pin Assignments of the Front Connector ..... 5-5
5.2 Analog Input Module 6ES5 460-4UA12 ..... 5-6
5.2.1 Technical Data ..... 5-6
5.2.2 Selecting the Mode ..... 5-8
5.2.3 Range Submodule Complement ..... 5-9
5.2.4 Pin Assignments of the Front Connector ..... 5-10
5.3 Analog Input Module 6ES5 463-4UA11/-4UA12 and ..... 5-11
6ES5 463-4UB11/-4UB12
5.3.1 Technical Data ..... 5-11
5.3.2 Setting the Data Format for the Range of 4 to 20 mA ..... 5-12
5.3.3 Connecting Sensors ..... 5-12
5.3.4 Pin Assignments of the Front Connector ..... 5-13
5.4 Analog Input Module 6ES5 465-4UA11 ..... 5-14
5.4.1 Technical Data ..... 5-14
5.4.2 Selecting the Mode ..... 5-15
5.4.3 Range Submodule Complement ..... 5-17
5.4.4 Pin Assignments of the Front Connector ..... 5-18
5.5 Analog Output Module 6ES5 465-4UA12 ..... 5-19
5.5.1 Technical Data ..... 5-19
5.5.2 Selecting the Mode ..... 5-20
5.5.3 Range Submodule Complement ..... 5-22
5.5.4 Pin Assignments of the Front Connector ..... 5-24
5.6 Analog Output Module 6ES5 470-4UA11/-4UAl2, ..... 5-25470-4UB11/-4UB12 and 470-4UC11/-4UC12
5.6.1 Technical Data ..... 5-25
5.6.2 Pin Assignment of the Front Connector ..... 5-26
6 Addressing the Process Interface Modules ..... 6-1
7 Page Overview ..... 7-1

## 1 Description

### 1.1 Application

Analog input and output modules are used as process interface modules for the input and output of a wide range of analog process signals for programmable controllers which use the digital principle, such as the $\mathrm{S} 5-130 \mathrm{~W},-135 \mathrm{U},-150 \mathrm{~K} / \mathrm{S} / \mathrm{U},-155 \mathrm{U}$ and - 210 A/B.

The analog input and output modules allow the implementation of control systems which require the processing of analog measured variables, or the continuous control of actuators.

### 1.2 Design

The modules are designed as plug-in PCBs for the ES 902 modular packaging system with a backplane and a plug connector which mates with a front connector. By means of screw terminals or crimp connections, the process signal lines can be directly connected to the front connector which is available separately.

Each module is equipped with a addressing switch (6 dip switches) for setting the module address. The analog input modules are additionally provided with two switches (8 dip switches) for selecting the mode and locations for range submodules.

The module is protected on both sides by covers. These covers are secured by means of thermally moulded plastic rivets.

### 1.3 Principle of Operation

Analog input and output modules whose signals are not fed via the process image are addressed over the address range 128 to 255 by the STEP-5 program. In principle, addressing over the range 0 to 127 is also possible with appropriate programming (refer to the load and transfer operations of the operations list).

The CPU emits an address byte (address bits ADB 0 to ADB 7) on the address bus, which contains the starting address of the module and the subaddress for selecting the input and output channels. This allows an arrangement in basic and extension units which is independent of the module locations.

The starting address of the module can be set on an addressing switch by the user. The subaddress (channel address) is decoded automatically on the module.

One data word (two data bytes) is required for processing an input or output. A module with 16 inputs thus occupies 32 byte addresses, and a module with 8 inputs or outputs occupies 16 byte addresses.

The following ranges are available for addressing the analog input/output modules (see also Chapter 6):

Number of   inputs/   outputs	Address   Starting add.   of modules (ADB)					Channe1 add.   (subaddress)	Byte   selection	
16	7	6	5	4	3	2	1	0
8	7	6	5	4	3	2	1	0
Significance	128	64	32	16	8	4	2	1

Address bit ADB 0 in the module address is used for byte selection. It is interpreted as follows:

0 = high byte
1 = low byte

## o Data transfer

For the input and output of an analog measured value, two data bytes are output in immediate succession by the CPU with the TPW instruction (transfer I/O word), or read in with the LPW instruction (load I/O word); this is in word mode.

The data are transferred in bit-parallel mode using 8 bits in two's complement, or as the absolute value with sign (depending on the mode) and in left-justified mode.

## o Data traffic

The CPU transfers the data in 2 bytes. The high byte (byte 0) is transferred under the address with $A D B O=0$, and the low byte (byte 1) under address +1 with $\mathrm{ADB} 0=1$.

For reading or writing, signals PESP' and $\overline{\text { MEMR }} / \overline{M E M W}$ are emitted in addition to the address. The module acknowledges with RDY.

### 1.3.1 Analog Input Modules 460 and 465

Two analog input modules of different design are available:

6ES5465-4UA11/-4UA12

- Non-floating
- 8/16 channels (commutable)
- 2/4 range submodules
- Max. permissible voltage between channels and from channels to 0-V ref.: 1 V

6ES5460-4UA11/-4UA12

- Floating
- 8 channels
- 2 range submodules
- Max. permissible isolated voltage between channels and from channels to $0-V$ ref.: $60 \mathrm{~V} \mathrm{AC} / 75 \mathrm{~V}$ DC

The block diagrams (Figs. 2 and 3) show the principle of operation and signal exchange between the analog input modules and the CPU .

Depending on the application, the process signals are adjusted to the input level of the analog-to-digital converter (ADC) of the module by plug-in resistor dividers or shunt resistor submodules.

An ADC control unit controls the multiplexer, the analog-todigital conversion and the transfer of the digitized measured values to the memory or the data bus of the programmable controller. The module mode, which can be set on two switches, is taken into account in the control system.

With the analog input module $460-4 \mathrm{UA} 12$, the measurement range $\pm 12.5 \mathrm{mV}$ can be selected after an amplifier has been connected. This leads to an improved resolution when measuring thermal e.m.f. With both analog input modules (460-4UA12 and 465-4UA12), the test current for open-circuit signalling can be disconnected, when +24 V is applied to pin 24 of the front connector and 0 V to pin 21 (L-). With a digital voltmeter which is shunted by the analog input channels during commissioning, this test current can cause a false interpretation of the measured quantity.

If the voltage is removed from enable inputs $F+$ and $F-$ (e.g. by removing the front connector), the module is disconnected from the bus.

If, with the analog input modules $460-4 \mathrm{UA} 12$ and 465-4UA12, the enable jumper is removed, the modules can also be operated without enabling voltage. In this case, however, the modules cannot be disconnected from the bus any more.


A/D Analog-to-digital converter (ADC)
ADB Address bus
ADUS ADC controller
CPKL CPU ready signal
DB Data bus
MEMR Memory read (read signal)
MEMW Memory write (write signal)
MUX Multiplexer
PESP' Memory I/O selection signal
RDY Ready (acknowledgement signal)
Fig. 2 Block diagram with signal exchange between floating analog input module 460 and CPU


A/D Analog-to-digital converter (ADC)
ADB Address bus
ADUS ADC controller
CPKL CPU ready signal
DB Data bus
MEMR Memory read (read signal)
MEMW Memory write (write signal)
MUX Multiplexer
PESP' Memory I/O selection signal
RDY Ready (acknowledgement signal)
Fig. 3 Block diagram with signal exchange between non-floating analog input module 465 and CPU

The following can be selected on the mode switches for modes I and II:
Upper range value $50 \mathrm{mV} \quad 500 \mathrm{mV}$

Reference junction
compensation
Open-circuit
signal with
8-ch. operation
16-ch. operation
8-ch. operation
16-ch. operation
AC frequency
suppression
Digital measured-
value representation
Number of channels
Scanning
Gain

With

Channels 0 to 3
Chanels 0 to 7
Channels 4 to 7 Without open-circuit signal
Channels 8 to 15 Without open-circuit signal
50 Hz
Two's complement
16
Single
x 1 ( 50 mV )

Without open-circuit signal
Without

60 Hz
Absolute value and sign 8

Cyclic
x 4 ( 12.5 mV )
(only with AE 460-4UA12)

- Open-circuit signal

When range submodule 6ES5498-1AA11 (continuity submodule) is used, the "open-circuit signalling" mode can be selected to allow monitoring of the sensors connected to the inputs. Open-circuit detection can be activated for 8 or 16 inputs with 16-channel operation, or for 4 or 8 inputs with 8 -channel operation.

Before each coding sequence of the input value, a constant current is briefly fed to the input terminals ( 1.6 ms ) and the voltage developing is checked for a limit. If the signal is measured at the input using a digital voltmeter, these current pulses may result in apparent signal variations. The coded value, however, is not influenced by this.

If these apparent signal variations are not desirable, e.g. during commissioning, with the analog input module 469-4UA12 the test current can be disconnected by applying +24 V to pin 24 of the front connector and 0 V to pin 21 (L-). Further, the switch for selecting the mode must be set to "without broken wire detection".

In the event of an open circuit in the sensor or in the incoming line, the voltage exceeds the limit and an open circuit is signalled (bit 1 in data byte 1). The ADC encodes the value 0.

Open-circuit signalling should only be activated when the range module 6ES5 498-1AA11 is used. When using the measuring modules 6ES5 498-1AA41, -1AA51 and -1AA71 no open circuit can be signalled, since the measuring inputs are provided with low-resistance shunts. With all other measuring modules, open-circuit signalling would lead to faults.

Further details relating to open-circuit signalling can be found in Chapter 3.5.5.

## - Overrange

If the measurement range ( 4095 units) is exceeded, an overflow bit (bit $2^{0}$ of the low byte) is set.
Applies only to 465-4UA11: This bit remains set for all the channels of the analog input module 465 when being operated in the cyclic mode. This is necessary, since, when only one channel is overdriven, the measured values of the subsequent channels may insignificantly be falsified too.

## - Gyclic scanning

In this mode, the controller on the module continuously codes all measuring points. The digitized measured values are stored in the circulating memory under the channel-related address: the high byte under the address and the low byte under the address +1 . The measured values can then be read out of the circulating memory at any time without delay.

## - Single scanning

In this mode, the coding of a measured value takes place on the initiative of the CPU. At the start of the conversion, the module must be addressed once by the CPU under the relevant channel address with a memory write (MEMW). During coding, an activity bit ( $T=1$ ) is set on the data bus.

If $T=0$, the digital value is valid. Repeated scanning of the activity bit causes loading of the bus and CPU. With different measured values, this results in aperiodic measured-value acquisition, which is not desirable for control tasks.

A better method is that of time-controlled program processing. With this type of program processing, certain program segments (e.g. FB 13) are automatically inserted into the program processing sequence by a time-controlled block in the $100-\mathrm{ms}$ clock (OB 13). A constant time reference is thus achieved and the bus and CPU are relieved.

```
FB 13 OPRS-B LEN=22 ABS
```

PAGE 1

SEGMENT 1
NAME :SINGSCAN

0005	:	
0006	:	
0007	:L PW128	Read analog value
0008	:T FW128	IN AUXILIARY FLAG FW 128
0009	:A F 129.2	SCANNING ACTIVITY BIT $=1$ ?
000A	:JC =END	IF = 1, JUMP TO END
000B	:T FW10	$\mathrm{IF}=0$, MEASURED VALUE IN FW 10
000C	:T PB128	initialize scanning
OOOD END	:	(1st Value invalid after
O00E	:	Initial start)
000F	:	
0010	: BE	

## o Signal interchange between analog input module and CPU

Analog values can be read by analog input modules using function block FB 40 ("read analog value").

This function block takes into account the special features of the different analog input modules. With a rated input signal, it provides a value between a lower and an upper limit at the output, irrespective of the module type. These limits are determined by the user.

Both cyclic and single scanning are possible.
See also FB 80 ("read analog value") for closed-loop control with the programmable controller S5-150S.

As an example, input 2 of an analog input module is to be scanned with address 128 (starting address) by the STEP-5 program. This setting of the addressing switch results in addresses 132 and 133 for input channel 2. The CPU reads the 2 bytes (control signal $\overline{M E M R}$ ) from the module memory, e.g. with a word instruction (LPW) or with two byte instructions (LPB). (Refer to the load and transfer operations of the operations list.)

The analog input module acknowledges with signal $\overline{\text { RDY }}$. The entire measured value ( 2 bytes $=16$ bits) is stored in the CPU and subjected to further processing.

The ADC controller is reset with the signal $\overline{C P K L}=1$. The memory contents are retained. If $\overline{C P K L}=0$, the module issues the old stored values for the first cycle; at the second cycle, these values are updated.

Signal BASP is not evaluated by the analog input modules (see Chapter 1.5).

### 1.3.2 Analog Input Module 463

Caution: Apart from the special details and data given for the analog input module 463, Chapter 1.3.1 of these instructions is also applicable:

The analog input module 463 has four electrically isolated input channels. The analog input signals are digitized by voltage/frequency converters ( $V / F$ ) and fed via a fast optocoupler into a counter. The integration time of the module $463-4 \mathrm{UAll}$ is 20 ms and of the module $463-4 \mathrm{UB} 11$ is $16^{2} / 3 \mathrm{~ms}$; these integration times ensure optimum suppression of power frequency interference (50 or 60 Hz ).

The sequential controller coordinates presetting of the counter, duration of the integration time and transfer of the counter values of the four input channels into the four measured-value memories.

Scaling the input range of each channel is achieved by suitable connection of the sensor and inserting jumpers in the front connector of the module (see pin assignments of front connector).
scanned one after the other by the STEP-5 program via the bus, using word instructions. The analog input module 463 thus occupies an address area of 8 bytes.

The measured values of the channels are stored under subaddresses ADB 0 to 2 as shown in the following table.

Module address					Subaddress		
					0	0	0
					0	0	1
					0	1	0
					0	1	1
					1	0	0
					1	0	1
					1	1	0
					1	1	1
ADB							
7	6	5	4	3	2	1	0

high-order byte, channel 0
low-order byte, channel 0
high-order byte, channel 1
low-order byte, channel 1
high-order byte, channel 2
low-order byte, channel 2
high-order byte, channel 3
low-order byte, channel 3

The module address is set via a switch fitted on the module cover (see Chapter 1.3 and 3.1).

The analog input converts the analog value into the following data format as two's complement:


High-order byte


Low-order byte

$C_{0} \ldots 3$
Common input
(reference poten-
tial of inputs 0 to 3)
$\begin{array}{ll}\mathrm{I}_{\mathrm{R}} \ldots 3 & \begin{array}{l}\text { Inputs } 0 \\ \text { Range }\end{array}\end{array}$
Sp Memory
$\mathrm{TS}_{0} \ldots 3$ Transducer supply (supply for 2-wire transducer of inputs 0 to 3) Voltage/frequency converter Counter

Fig. 4 Block diagram of analog input module 463

### 1.3.3 Analog Output Module 470

The block diagram (Fig. 5) shows the principle of operation and signal exchange between the CPU and an analog output module. An analog output module which is operated under its address transfers the digital measured value present on the data bus (DB 0 to DB 7) into the circulating memory via the controller.

The digital data of the circulating memory and the control signals are relayed via optocouplers to the digital-to-analog converter (DAC) and multiplexer, which are isolated by the programmable controller, and converted to an analog voltage.

In accordance with the transferred address, the multiplexer applies the analog value to the holding circuits and amplifiers for voltage and current for the relevant output AO U/I to A7 U/I.

With 470-4U.11 analog output modules, the digital value 0 is written into the circulating memory with signal $\overline{\mathrm{CPKL}}=1$ (with 470-4U.12, with the trailing edge of the CPKL signal). The analog output value in the form of voltage or current goes to 0 . When $\overline{C P K L}=0$, the module is ready to output the new analog values.

Signal BASP is not evaluated by the analog output modules (see Chapter 1.5).

A switched-mode regulator on the PCB supplies the isolated part of the circuit with the necessary operating voltages. Interruption of the voltage from enable inputs $F+$ and $F-$ (e.g. by removing the front connector) causes the module to be disconnected from the bus. If the enable jumper is removed in 470-4U.12-type analog output modules, these can also be operated without enable voltage. Then the modules can no longer be disconnected from the bus.

## o Signal interchange between CPU and analog output module

With function block FB 41 ("output analog value"), analog signals can be output to the process via analog output modules. Values between a lower and an upper limit are to be specified for the function block. See also FB 81 ("output analog value") for closed-loop control with the S5-150S programmable controller.

As an example, output channel 3 of an analog output module is to be addressed with address 128 (starting address). The addresses for output channel 3 are 134 and 135 as given in Chapter 6.

The high byte (data byte 0 ) and the low byte (data byte 1) of the measured value to be output are transferred to the module memory by the CPU with signal MEMW in each case under addresses 134 and 135 respectively. This can be executed in the program with the TPW instruction (word instruction) or TPB instruction (byte instruction). The module acknowledges with signal RDY.

The measured value thus located in the memory of the analog output module is fed to the loads at the output of the module in the form of a voltage and load-independent current, which are, with versions 4UA... and 4UC..., both available simultaneously. Version 4UB... has only voltage outputs.


ADB Address bus
$\overline{\text { CPKL }}$ CPU ready signal
D/A Digital-to-analog converter (DAC)
DB Data bus
MEMW Memory write (write signal)
mUX Multiplexer
PESP' Memory I/O selection signal
$\overline{\text { RDY }}$ Ready (acknowledgement signal)
Fig. 5 Block diagram with signal exchange between CPU and analog output module 470

### 1.4 Function of the Enable Inputs

An enable circuit is provided on the modules of the $U$ series. By means of the enable inputs, certain modules can be interlocked or individual modules can be switched off while the CC is in operation.

Analog input/output modules are activated by applying an external voltage of 24 V to the inputs $\mathrm{F}+/ \mathrm{F}$-. If no voltage is applied to $\mathrm{F}+/ \mathrm{F}-$, no acknowledgement is output by the modules. With analog output modules, the analog value which has been output last remains stored.

With -4U.12-type modules, this enable function can be switched off by removing a plug-in jumper. Then the modules will be activated by request of the bus, irrespective of the voltage applied to $\mathrm{F}+/ \mathrm{F}-$.

When the front connector is withdrawn from the front of the module the voltage to the enable inputs is lost. The module is switched off and sends no further acknowledgement signal. This means that the CC sets an acknowledgement delay bit (QVZ) (timeout).

Examples of the uses of the enable inputs:

- Switching off individual parts of a process; that means that analog outputs of different modules can be operated from a common load current supply and still be activated separately.
- The load voltage of individual modules can be monitored without additional effort. Reactions to load voltage failure can then be programmed in the QVZ organization block.

Please note the following design factors:

Switch on: The voltage on the enable inputs of the $I / O$ modules must be present within 100 ms of switching the $P C$ on.

Switch off: After switching off the PC the voltage on the enable inputs of the $I / O$ modules must be present for as long as the internal 5 V is provided. However, you need to switch off the $24-\mathrm{V}$ load current supply for the analog output modules together with the PC. If the power supply is still applied to the modules and the PC is switched off, the analog output values might drift. (In this case, the analog sample-and-hold elements of the outputs are not updated any more since the 5 V supplied to the modules by the bus is missing.)

Please note the following when switching off the CC and devices supplying the enable inputs:
o Switching off of both the CC/EU and the load power supply with a 220-V mains supply.

- Correct functioning is guaranteed when the $24-\mathrm{V}$ load power supply units have an output impedance of at least 4700 /uF per 10 A load current.

Example: load current supply 6EV1334-4AK (220 V/24 V, 10 A)

- Devices which do not meet this requirement can be adapted by the parallel connection of a 10000 /uF/40 V capacitor.

Example: load current supply 6EV1352-5BK (380 V/24 V, 20 A) and load current supply $6 \mathrm{EV} 1362-5 \mathrm{BK}(380 \mathrm{~V} / 24 \mathrm{~V}, 40 \mathrm{~A})$

o Switching off of the CC/EU and of the load current supply separately or together

If it must be possible to separately switch off the load current supply without influencing the enable condition of the modules, the following possibilities for the enable voltage are provided. These possibilities also exist when using the load current supply without additional capacitor and when switching them off together.

- 220-V mains supply to the CC/EU and load current supply

Enable inputs supplied by:
a) Load current supply 6ES5951-4LB11
b) Enable supply 6ES5958-4UA11
c) Battery


AC 220 V


- 24-V supply to the $C C / E U$ and peripherals

Enable inputs supplied by:
a) Enable supply 6ES5958-4UA11
b) Battery


The enable supply 6ES5 958-4UA11 can only be plugged into CCs and EUs with power supply incorporated.

The enable inputs of $I / O$ modules mounted in EUs without a power supply (e.g. EU 184 U , EU 187 U ) must be connected via a 958 enable supply unit being plugged in devices with a power supply.

o Removal and insertion of peripheral modules during operation
With the programmable controllers S5-130 K, -130 W and -135 U (S processor), the CC stops without acknowledgement when the front connector is removed thereby also removing the enable voltage.

Plugging and unplugging of peripheral modules during operation is possible in the case of S5-135 $U$ ( $R$ processor), $S 5-150 \mathrm{~K} / \mathrm{S} / \mathrm{U}$ and S5-155 U.

## Attention:

- If the enable signal is missing or if the front connector or the module is removed, the low byte and the high byte of this module will always be read as having FFH.
- Only remove the enable voltage from the relevant output module to switch off parts of a process.
- The programmer must ensure in the QVZ OB that neither an error nor the exchanging of a module can lead to a dangerous condition in the process or in the machine.

Attention: The following applies only to the analog input/output modules ...-4UAl2.
o Switching off of the enable inputs via the enable jumper
The enable input ( $\mathrm{F}+/ \mathrm{F}-$ ) can be switched off on the module via the enable jumper located near the address switch.

After removing the enable jumper the module can be activated via the $S 5$ peripheral bus even if the enable input $F+/ F$ has been switched off. Enable voltage need not be connected any more.

Then, the modules respond to the removal or insertion as follows:

- After removing the front connector the module remains connected to the 55 peripheral bus. The module outputs the RDY signal to acknowledge (no acknowledgement delay in CC).

00 H is normally read from the data bus of analog input modules. Analog output modules are connected according to the data applied to them. The load-voltage supply is interrupted.

- Only after removing the module, the acknowledgement delay (timeout) indicates to the CC that the module is missing. FFH is then read from the data bus.

Attention: If you insert or remove modules without enable jumper during operation, this may lead to faults of the $S 5$ peripheral bus.

Be sure not to remove or insert the front connector or the module without enable jumper during operation.

### 1.5 Pin Assignments of the Backplane Connector

	b	z
2	0 V	+5 V
4	PESP'	
6	ADB 0	CPKL
8	ADB 1	MEMR
10	ADB 2	MEMW
12	ADB 3	RDY
14	ADB 4	DB 0
16	ADB 5	DB
18	ADB 6	DB
20	ADB 7	DB
22	ADB 8	DB
24	ADB 9	
26	ADB 10	DB
28	ADB 11	DB
30		
32	0 V	

ADB Address bus
$\overline{\mathrm{CPKL}} \quad \mathrm{CPU}$ ready signal
DB Data bus (bidirectional)
MEMR Memory read (read signal)
MEMW Memory write (write signal)
PESP' Memory I/O selection signal
RDY Ready (acknowledgement signal)

### 1.6 General Technical Data

Address range
128 to 255 (0 to 255)

Supply voltage L+

- rated value
- ripple Upp
- permissible range
(including ripple)
- reference potential

24 V
3,6 V
20 to 30 V
$\mathrm{L}-=\mathrm{M}=0 \mathrm{~V}$

Voltage for the floating
$\mathrm{F}+=+24 \mathrm{~V}$
enable inputs
$\mathrm{F}-=0 \mathrm{~V}$
(with ...-4UA12: only ne-
cessary when enable jumper
is plugged in)
Line lengths for

- analog input modules with rated input range of
$\pm 12.5 \mathrm{mV}$ and $\pm 50 \mathrm{mV}$
Max. 50 m with cables which are shielded and segregated from power cables (see Section 2.3.)
- analog input modules with rated input range of $\pm 500 \mathrm{mV} / \pm 1 / \pm 5 / \pm 10 \mathrm{~V} / \pm 20 \mathrm{~mA}$, 4 to 20 mA and Pt 100
- analog output modules

Max. 200 m, shielded
Max. 200 m, shielded

Temperature range

- operating temperature

0 to $60^{\circ} \mathrm{C}$

- storage and shipping temp.

Relative humidity	Max. $95 \%$ at $25^{\circ} \mathrm{C}$,   no condensation
Operating altitude	Max. 3500 m above sea level
Dimensions (W $\mathrm{W} \mathrm{H} \times \mathrm{D})$	$20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$
Weight	Approx. 400 g

## 2 Assembly

### 2.1 Removing and Inserting Modules

The design of the modules and front connectors is such that the modules can be removed and inserted whilst the programmable controller or extension unit is in operation, without faults occurring when exchanging data with the neighboring modules (see also Chapter 1.3.1).

Applies only to analog input/output modules ...-4JA12:
If you insert or remove modules without an enable jumper during operation, this may lead to faults of the $S 5$ peripheral bus.

Be sure not to remove or insert the front connector or the module without an enable jumper during operation.

A module is replaced as follows:

Detach the upper retaining rail on the subrack and swivel it upwards and out.

The front connector can be pressed out of the female connector of the module by slackening a screw in the upper part of the front connector. Contacts $\mathrm{F}+$ and F - of the enable input at the upper end of the front connector are thus opened first. The module is disconnected from the S 5 bus.

Applies only to 6ES5 ...-4UA12: When the enable jumper is removed the enable voltage is no longer effective and the module is not enabled by the bus.

The front connector can now be swivelled out and lifted out of the lower catch. The width of the catch is also a coding arrangement to prevent the front connector from being plugged into the wrong modules. (The front connectors with $115 / 240-\mathrm{V}-\mathrm{AC}$ wiring, for instance, cannot be plugged into analog or $24 / 60-\mathrm{V}$-DC modules.)

The module is released by turning a locking bolt by 90 degrees on the lower end of the module.

The module can be pulled out of the subrack by means of a swivelmounted grip.

Modules are inserted in the reverse order.


1 Screw
2 Front connector
3 Locking bolt
4 Catch
5 Grip
6 Backplane connector
7 Enable jumper
(only with ...-4UA12)

Fig. 6 Module with front connector

### 2.2 Module Identification Labelling

The module and CPU are supplied with labels for marking the modules and front connectors; the labels are affixed as shown in Fig. 7.


1 Label with module address under which the module is addressed by the STEP-5 program
2 Marking strip with the reference number (MLFB no.) of the module; space to tick the output status of the module and to mark the channels
3 Label with the module address and markings for the required settings of the addressing switch
4 Marking strip for the terminal assignments or connection diagrams (strip in the cover of the front connector)
5 Type label
Fig. 7 Identification and labelling of modules

### 2.3 Installation Guidelines

Wiring of the supply and signal lines which are connected to the programmable controllers and front connectors of the modules, must be implemented in accordance with VDE specifications 0110 and 0160.

The line shields must be connected with clamps to a shield rail in the vicinity of the front connector; this rail is connected to the casing of the controller at low impedance.

Detailed instructions relating to the power supply, cabinet arrangement, cabinet ventilation, cabinet wiring and protective measures can be found in the "Installation Guidelines" (Ref. no. C79000-B8576-C452) and must be observed.

## 3 Operation

### 3.1 Setting the Module Address

The module address is set on an addressing switch on the module.
The label with the desired module address is affixed in a space beneath the addressing switch. Labels for all possible addresses are supplied with the $S 5$ or can be ordered under the number 6ES5497-4UD11.

The individual switches to be switched on (address bit ADB) are marked by dots on the label in order to set the module address specified as a decimal number.

The address of the module is the sum of the decimal values of the switches which are set to the "On" position (•).

The individual switches of the addressing switch are pressed down with a ballpoint pen or similar instrument - do not use a pencil.

Switch position "On"
(pressed)


Fig. 8 Labelling the addressing switch

The address under which the module is addressed by the STEP-5 program is independent of the slot.

For analog input and output modules (4, 8 or 16 inputs or outputs) which are used in the 55 system, only the starting address is set. Other addresses (subaddresses) are decoded on the module.

If one of the 4,8 or 16 inputs or outputs (channels 0 to 3,0 to 7 or 0 to 15) of a module is to be addressed, the relevant subaddress is specified in the program.

The subaddress of the input or output, based on the starting address of the module, can be obtained as follows:

Starting address + channel number $\mathbf{x} 2$ subaddress

For example, a module with 8 inputs and starting address 160 occupies the address range

160 up to address $160+7 \mathrm{x} 2+1=175$.
In this example, the next free address for another module is 176.
Addresses which have already been assigned must not be set again.
However, analog inputs and analog outputs can have the same address with cyclic scanning because they are distinguished by the control signals MEMR and MEMW. This is not possible with single scanning because analog input modules respond with an acknowledgement both for MEMR and for MEMW.

## Example 1

In the case of an analog input module with starting address 160 (IB 160 = input byte 160 ), input channel 3 is to be scanned by the program.

The self-adhesive label with address 160 is affixed to the space on the module beneath the addressing switch. ADB 5 and ADB 7 are marked on the label.

The corresponding individual switches of the addressing switch are pressed down on the side marked by a dot on the module cover. The remaining switches are set to the opposite position. The starting address of the module is thus set. ADB $5+$ ADB 7 results in

$$
2^{5}+2^{7}=32+128=160
$$



The address $160+3 \times 2=166$ is entered into the program for input channel 3. Internal decoding on the module is as follows:

166 for byte 0 ; 167 for byte 1.
The assignments of inputs and outputs for the possible starting addresses can be found in Chapter 6.

## Example 2

Analog output module with 8 outputs, starting address 144
(QB 144 = output byte 144), output channel 7
ADB $4+$ ADB 7 results in

$$
2^{4}+2^{7}=16+128=144
$$



The address $144+7 \times 2=158$ is entered into the program for output channel 7. Internal decoding on the module is as follows:

158 for byte 0; 159 for byte 1.

## Example 3

Analog input module with 16 inputs, starting address 192
(IB 192 = input byte 192), input channel 15
ADB $6+\mathrm{ADB} 7$ results in

$$
2^{6}+2^{7}=64+128=192
$$



The address $192+15 \times 2=222$ is input into the program for
input channel 15. Internal decoding on the module is as follows:
222 for byte 0; 223 for byte 1

### 3.2 Digital Measured-value Representation with Analog Input Modules

When an analog measured value has been coded, the digital result is stored in a RAM. The result is divided into 2 bytes which are addressed in succession.

```
Data bit }\begin{array}{lllllllll}{7}&{6}&{5}&{4}&{3}&{2}&{1}&{0}
Byte 0 }\quad\mp@subsup{2}{}{12}\mp@subsup{2}{}{11}\mp@subsup{2}{}{10}\quad\mp@subsup{2}{}{9}\quad\mp@subsup{2}{}{8}\quad\mp@subsup{2}{}{7}\quad\mp@subsup{2}{}{6}\quad\mp@subsup{2}{}{5}\mathrm{ Address n
(high byte)
Data bit }\begin{array}{lllllllll}{7}&{6}&{5}&{4}&{3}&{2}&{1}&{0}
Byte 1 }\quad\mp@subsup{2}{}{4
(low byte)
Two's complement represen-
tation. 2 }\mp@subsup{2}{}{12}=\mathrm{ sign for
representation as absolute
value and sign.
```

0: 0 to 4095 units
1: $\pm 4096$ units (overflow)
0 : no open circuit
1: open circuit
0 : not active (with cyclic free-running scanning)
1: active (with single input scanning, single coding)
3.2.1 Digital Measured-value Representation as Two's Complement (Rated Input Range $\pm 50 \mathrm{mV}$, Analog Input Module 460, 465)

$\mathrm{T}=$ Activity bit $\mathrm{F}=$ Error bit $\quad$ = Overflow bit

### 3.2.2 Digital Measured-value Representation as Absolute Value and Sign <br> (Rated Input Range $\pm 50 \mathrm{mV}$, Analog Input Module 460, 465)

Units	Input   voltage in mV	Byte 0 $\begin{array}{llllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ V Z & 2^{11} & 2^{10} & 2^{9} & 2^{8} & 2^{7} & 2^{6} & 2^{5} \end{array}$	Byte 1 $\begin{array}{llllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & T & F & \end{array}$
$\geq 4096$	100.0	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 / 1 & 1 & \text { Overflow }\end{array}$
4095 2049	$\begin{aligned} & 99.976 \\ & 50.024 \end{aligned}$	$\begin{array}{llllllll} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllllll} 1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 / 1 & 0 & \text { Overdriving } \\ 0 & 0 & 0 & 0 & 1 & 0 / 1 & 0 / 1 & 0 & \text { range } \end{array}$
2048	50.0	$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
2047	49.976	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
1024	25.0	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 / 1 \\ 1 & 0 / 1 & 0\end{array}$
1023	23.976	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$	
1	0.024	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
0	0.0	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 / 1\end{array}$
- 0	0.0	$\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
- 1	- 0.024	1000000000	
-1023	- 24.976	$\begin{array}{llllllll}1 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$	
-1024	- 25.0	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 / 1 \\ 0 / 1 & 0\end{array}$
-2047	- 49.976	$\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
-2048	- 50.0	$1 \begin{array}{llllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 / 1\end{array}$
-2049	- 50.024	$\begin{array}{llllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 0 / 1 & 0 / 1 & 0 & \text { Overdriving }\end{array}$
-4095	- 99.976	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
-4096	-100.0	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 / 1 & 1 & \text { Overflow }\end{array}$

T = Activity bit $\quad$ F = Error bit $\quad$ = Overflow bit $\quad V Z=$ sign
Range limits for measurement range 4 to 20 mA :
Rated range 512 to 2560 units
Overdriving range 2561 to 4095 units
Overflow From 4096 units
Bit $2^{12}$ is evaluated as a sign.

### 3.2.3 Digital Measured-value Representation with Resistance Thermometers

The resolution with Pt 100 resistance thermometers is approximately $1 / 4^{\circ} \mathrm{C} ; 1$ ohm $\hat{=} 10$ units. (Analog input module 460,465 ).

$T=$ Activity bit $F=$ Error bit $\quad$ = Overflow bit
When Pt 100 resistance thermometers are connected, the resulting maximum temperature in the rated range is $266^{\circ} \mathrm{C}$. If steps are taken to ensure that the maximum temperature does not exceed $850^{\circ} \mathrm{C}$, overdriving into the overdriving range is permissible. The resolution is then 4095 units. Unassigned inputs can be used for voltage measurements in the $500-\mathrm{mV}$ range (see front connector assignments).

### 3.2.4 Digital Measured-Value Representation

(Rated Input Range $0 . .1 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$;
Analog Input Module 463)

] = Overflow bit

With the measurement range of 0 to 20 mA , a 50 -ohm shunt resistance is used; with 4 to 20 mA , it is a 62.5 -ohm resistance.

The shunt resistances on the analog input module 463 are fixed mounted resistances. Basically, open-circuit detection is not possible; with the current measurement range of 4 to 20 mA , open circuits can be detected via currents of less than 3 mA .

If the positive and negative terminals of the transducer are short-circuited when using 2 -wire transducers ( 4 to 20 mA ), the current is limited to approx. 28 mA . There is a short-circuit current flow of approx. 250 mA which sets the overflow bit for this duration on the short-circuited channel until the thermal current limiting circuit responds (approx. 3 s).

1) With setting of the data format from 0 to 1023 (switch is located on the module)
2) With setting of the data format from 256 to 1279 (switch is located on the module)
3) Overflow
4) Overdriving range
5) Rated range

### 3.2.5 Digital Measured-value Representation with Current Measurement Ranges of 4 to 20 mA

Measurement range 500 mV ; submodule with 31.25 -ohm shunt (6ES5498--1AA51/AA71).

The measurement range of 4 to 20 mA is resolved as 2048 units. If a representation of 0 to 2048 units is desired, 512 units must be subtracted by software. The following should be noted:

- As a result of the 31.25 -ohm shunt resistance, an open-circuit signal cannot be output.
- Detection of the overdriving range can be achieved by scanning bits $2^{9}$ and $2^{11}$
- Currents of less than 3 mA (open circuit) can be evaluated with bits $2^{11}=0,2^{10}=0,2^{9}=0,2^{8}=1$ and $2^{7}=0$.
- If the positive and negative terminals of the transducer are short-circuited when using the submodule 6ES5 498-1AA51 (for 2wire transducers), the current is limited to approx. 28 mA . There is a short-circuit current flow of approx. 250 mA which sets the overflow bit for this duration on all channels until the thermal current limiting circuit in the submodule responds (approx. 3 s ).

Units	Input current in mA	Input vol tage in $\mathrm{mv}{ }^{1}$ )	Byte 0 $\begin{array}{cccccccc} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ V Z & 2^{11} & 2^{10} & 2^{9} & 2^{8} & 2^{7} & 2^{6} & 2^{5} \end{array}$	Byte 1 $\begin{array}{llllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & T & F & \end{array}$
$\geq 4096$	$\geq 32.000$	1000	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$1 \begin{array}{llllll}1 & 1 & 1 & 0 / 10 & 1 & \text { Overflow }\end{array}$
4095	31.992	999.76	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 & 0 & \text { Overdriving }\end{array}$
3072	24.0	750	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$	$0000000 / 1000$ range
3071	23.992	749.76	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$	
2561	20.008	625.24	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 / 1 & 0 & 0 & \text { 2-wire transduc. }\end{array}$
2560	20.0	625	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 & 0\end{array}$
2048	16.0	500	$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 & 0 & \text { Rated range }\end{array}$
512	4.0	125	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 & 0\end{array}$
511	3.192	124.76	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 & 0 & \text { Undershooting }\end{array}$
384	3.0	93.75	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 / 1 & 0 & 0\end{array}$
383	2.992	93.5	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 0 / 1 & 0 & 0\end{array}$
0	0	0	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	

$T=$ Activity bit $F=$ Error bit $\quad=$ Overflow bit $\quad V Z=s i g n$

[^18]
### 3.3 Digital Measured-value Representation with Analog Output Modules

In the transfer of data from the data bus to the memory of the analog output module, no distinction between bipolar and unipolar types need be made. Two bytes per output are emitted by the CPU.

Data bit	7	6	5	4	3	2	1	0

$\begin{array}{lllllllll}\text { Byte } 0 & 2^{11} & 2^{10} & 2^{9} & 2^{8} & 2^{7} & 2^{6} & 2^{5} & 2^{4}\end{array}$ Address $n$
(high byte)
$\begin{array}{lllllllll}\text { Data bit } & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
Byte $1 \quad 2^{3} 2^{2} 2^{1} \quad 2^{0} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad$ Address $\mathrm{n}+1$ (low byte)

$$
\mathrm{x}=\text { irrelevant }
$$

Bit $2^{11}$ in the two's complement is interpreted as the sign:
0 for positive sign
1 for negative sign

Digital measured-value representation of output voltages and currents:


1) Overdriving range
2) Rated range

### 3.4 Connecting the Signal Lines

The modules are fitted with 42 -way plug connectors with blades of 2.4 mm x 0.8 mm .

For the connection of signal lines, front connectors are available with crimp terminals for mounting widths of 20 mm and 40 mm and with screw terminals for a mounting width of 40 mm . Stranded conductors should be used to facilitate handling of the front connector. With the screw terminals, sleeves are not required because the screw terminals are provided with wire protectors.

Width of the screwdriver blade: 3.5 mm .

Type of cornection	Cornector type 6ES5 497-	Max.   no. of terminals	Wire cross-section		Cornector for rated voltage	Mounting width of module	
			Signal or supply line	Additional jumper in cornector ${ }^{1}$ )			
Crimp contact	$-4 \mathrm{LA} 12{ }^{2}$ )	42	0.5 m ${ }^{2}$	0.5 m ${ }^{2}$	$5 . .60 \mathrm{~V}_{\text {- }}$	20 mm	Operation with fan
	-4UA22 ${ }^{2}$ )	42	0.5 m ${ }^{2}$	0.5 mf	$5 . .60 \mathrm{~V}$.	40 mm	
Screw contact	$-4 \mathrm{UB} 12$	42	$0.5 \ldots 2.5$	$\begin{aligned} & 0.5 \ldots 1.0 \\ & \mathrm{mf}^{2} \end{aligned}$	$5 . .60 \mathrm{~V}$.	40 mm	fan
	-4UB31	42	$\begin{aligned} & 0.5 \ldots 1.5 \\ & \mathrm{mf}^{2} \end{aligned}$	$\underset{\mathrm{mf}^{0.5 \ldots}}{\substack{\text { and } \\ \hline}}$	$5 . .60 \mathrm{v}_{-}$	20 mm	

### 3.5 Connecting Sensors to Analog Input Modules

### 3.5.1 Connecting Current-type or Voltage-type Sensors

In the case of floating sensors it may occur that the measuring circuit assumes a potential against ground which exceeds the permissible potential difference $U_{C M}$ (see maximum values of the individual modules). In order to prevent this, the negative potential of the sensor must be connected to the reference potential of the module ( $0-V$ rail).

1) To provide multiple supply and earth potential connections and for connection of the enable input.
2) For these connector types crimp contacts must be ordered separately.

Example: Temperature measurement on a conductor rail with isolated thermocouples


In the worst case, the measuring circuit can develop an excessively high potential as a result of static charging or contact resistances. This must be prevented by a potential equalizing conductor.

With non-floating sensors, the permissible potential difference ( $U_{C M}$ ) between the inputs and the $0-V$ rail must not be exceeded.

Example: The conductor rail temperature of an electroplating bath is to be measured with a non-isolated thermocouple.


The potential of the conductor rail with respect to the reference potential of the module is, for example, 24 V DC. An analog input module 460 with floating input is used ( $U_{C M}=60 \mathrm{~V} A C / 75 \mathrm{~V}$ DC). A potential equalizing conductor must not be installed in this case.

### 3.5.2 Connecting a Compensating Box for Thermo-electric Voltage Measurement

If room temperature fluctuations at the reference junction (e.g. in the terminal box) affect the measured result and the use of a thermostat is not desired, the influence of the temperature on the reference junction can be compensated for with a compensating box. For this purpose, the compensating box must be positioned so that it is in thermal contact with the terminals.

Of the four resistors, R1 to R4, of a compensating box which are arranged in a bridge circuit aligned at $0^{\circ} \mathrm{C}$, R3 is temperaturedependent. In the event of a temperature deviating from $0^{\circ}$, a corresponding positive or negative compensating voltage is thus produced across the diagonal circuit of the bridge. Between -10 and $70^{\circ} \mathrm{C}$, it cancels out the change in thermo-electric voltage caused by the temperature deviation (see Catalog MP 11 for compensating box). If the compensating box is aligned at $20^{\circ}$, this is to be taken into account when evaluating the temperature ( $20^{\circ}$ measuring point temperature $\hat{=} 0 \mathrm{mV}$ ).

With analog input modules, the group signal line leading out of the multiplexer is connected to pins 22 and 23 as an input for the compensating voltage. An input circuit which is common to all inputs must be set on mode switch 2.

The compensating box must be connected in a floating manner. The power supply unit of the compensating box must be equipped with a grounded shield winding in order to reject AC system interference.

A separate compensating box with its own separate power supply unit is required for each analog input module.


### 3.5.3 Connecting Resistance Thermometers (e.g. Pt 100) to Analog Input Modules 460

The resistance thermometers (maximum of $8 \mathrm{x} \mathrm{Pt} \mathrm{100)} \mathrm{which} \mathrm{are}$ connected in series are supplied with a current of $2.5 \mathrm{~mA}\left(I_{c}+/\right.$ $I_{C^{-}}$) by a constant current generator. The voltage at the Pt 100 is picked off at measuring inputs $M+$ and $M$-.

A 100 -ohm correction ( 100 ohms $\hat{=} 0^{\circ} \mathrm{C}$ ) must be executed by the CPU via the program.

Other voltage-type sensors can be connected in a floating arrangement (voltage range 500 mV ) to inputs $\mathrm{M}+/ \mathrm{M}$ - of a submodule which have not been assigned to resistance thermometers.


1) If no PT 100 is connected to channels CH4 to CH7, other voltages and currents can be measured at these channels with the submodules 6ES5 498-1AA21, -1AA31, -1AA41, -1AA51, -1AA61 and -1AA71.
2) When the submodules 6ES5 498-1AA41, -1AA51 or -1AA71 are used, a short-circuit jumper is not necessary.

### 3.5.4 Connecting Resistance Thermometers (e.g. Pt 100) to Analog Input Modules 465

The resistance thermometer is supplied with a current of 2.5 mA ( $I_{c}+/ I_{c}{ }^{-}$) via a 6ES5498-1AA11 submodule by a constant current generator. The voltage at the Pt 100 is picked off at measuring inputs $\mathrm{M}+$ and M -.

A 100 -ohm correction ( 100 ohms $\hat{=} 0^{\circ} \mathrm{C}$ ) must be executed by the CPU via the program.

If resistance thermometers have been assigned to the inputs 0 to 3 only, other current-type and voltage-type sensors can be connected to the inputs 4 to 7 using the range submodules 6ES5 498 $-1 A A 11,-1 A A 21,-1 A A 31,-1 A A 41,-1 A A 51,-1 A A 61$ and $-1 A A 71$.

Note that the mode of the module must have been set to voltage range 500 mV .


1) When the submodules 6ES5 498-1AA21, -1AA31 and -1AA61 are used, open-circuit signalling may not be activated for this group of channels (CH4 to CH7).
2) When the submodules 6ES5 498-1AA41 and -1AA71 are used, a short-circuit jumper is not necessary.

### 3.5.5 Open-circuit Signalling with Resistance Thermometers

An open circuit in the lines to a resistance thermometer is indicated as follows:

Open-circuit at	Reaction of module, coded value	Error bit F	
		460	465
M+	0	1	1
M-	0	1	1
Pt 100	0 1)	1	
$\mathrm{I}_{\mathrm{c}}+$	0	0	0 2)
$\mathrm{I}_{\mathrm{C}}{ }^{-}$	0	0	1

If the mode "without open-circuit signalling" is selected on the module, an open circuit at the resistance thermometer will be indicated with overflow.

Channels which have not been assigned can be used for voltage or current measurement if the supply outputs associated with the individual measuring channel are short-circuited by means of a wire jumper. Without this jumper, the error bit will be set for this channel and the value 0 coded.

Applies only to -40A11:
The overflow bit remains active for approx. 1.5 s (] = 1), i.e. with cyclic operation all the remaining measuring points also indicate an overflow (] = 1). This is also the case with single scanning as long as the interval between two coding sequences is $\leq 1.5 \mathrm{~s}$.

## Applies only to -4UA12:

Switch 7 on the mode selection switch of the analog input module 465-4UA12 allows the $I_{c+}$ lines to the resistance thermometer to be monitored for an open circuit when in the position "resistance thermometer". If there is an open circuit on this line the error bit will be set as on the other lines.

With analog input module 465, the switch 7 of mode switch I facilitates, when switched to "PT 100", open-circuit monitoring of the $I_{c+}$ lines leading to the resistance thermometer ( $\mathrm{Pt}-100$ constant current supply). If there is an open circuit on these lines, the error bit will be set as on the other lines.
3) When the switch is in the position "voltage/current" (mV/mA), the $I_{c+}$ lines are not monitored for open circuit (in the case of an open circuit on these lines, the error bit is not set, as with 465-4UA11). This position should only be selected to measure voltages and currents.

1) Because the auxiliary circuit is interrupted in the case of analog input module 460 , the value 0 is coded also for unbroken Pt 100 resistors; the error bit is not set for these channels.
2) In case of analog input module 465-4UA12 the error bit is set to 1.
3) Reference from page 5-21, footnote 3).

### 3.5.6 Connecting Transducers

o 2-wire transducer (short-circuit-protected supply voltage via the range submodule of the analog input module)

o 4-wire transducer (transducer with separate supply voltage)

o 4-wire transducer connected to a 2-wire transducer module


### 3.6 Connecting Loads to Analog Output Modules 470

The voltage at the load is measured at high impedance via the sensor leads (S+/S-) of voltage output $Q V$ so that the load voltages are not falsified by voltage drops on the load lines. Leads $S+(x)$ and $S-(x)$ should therefore be directly connected to the load (4-wire circuit). The voltage drops on the lines from QV(x) to and from the load after $\mathrm{M}_{\text {ANA }}$ must not exceed 3 V .


QV(x)	Analog output, v channels 0 to 7
QI	Analog output, current channels 0 to 7
S+(x)	Sensor lead (+) for channels 0 to 7
S-(x)	Sensor lead (-) for channels 0 to 7
$\mathrm{M}_{\text {ANA }}$	Ground terminal of the analog section

### 3.6.1 Connecting Loads to Current and Voltage Outputs

If the current and voltage outputs are used with analog output modules $470-4 \mathrm{UA} / 4 \mathrm{UC} .$. , the loads should be connected as follows:


When a load is connected to a voltage output and a large voltage drop is expected along the cables, the sensor lines $\mathrm{S}+(\mathrm{x})$ and S-(x) must be connected directly to the load.

If the voltage outputs are not used, the sensor lines $S+(x)$ must be connected in the front connector to the appropriate terminals of the voltage outputs (QV(x)) using wire jumpers. The sensor lines $S$-(x) must be connected to $M_{A N A}$ using wire jumpers.

The same jumpers must also be inserted if only current outputs are used. Unused current outputs can be left open.

The maximum load for the current outputs, including the conductor resistance, must not exceed 300 ohms.

### 3.6.2 Connecting Loads to Voltage Outputs

The voltage outputs of the analog output module 470-4UB.. are wired as follows:


The sensor leads $S+(x)$ and $S-(x)$ must be wired to the load (fourwire circuit), if the voltage drop in the lines leading to the load cannot be ignored. The common connection for the voltage outputs is $M_{A N A}$. If the voltage drop in the lines leading to the load can be ignored, then, in the front connector, $S+(x)$ can be connected with $\mathrm{QV}(\mathrm{x})$, and $\mathrm{S}-(\mathrm{x})$ with $\mathrm{M}_{\text {ANA }}$.

If voltage outputs are not used, jumpers must be inserted in the front connector, e.g. $\mathrm{QV}(3)$ to $\mathrm{S}+(3)$ and S -(3) to $\mathrm{M}_{\text {ANA }}$ for unused voltage output 3 (see Chapter 3.6.1).

## 4 Spare Parts

Description	Order no.	Repairable	Order   from
Miniature spring contact   (Junior timer) Strip version 250 individual contacts	$\begin{aligned} & 927973-3 \\ & 927973-2 \text { or } \\ & 6 \times \times 3070 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	Company AMP Company AMP
$\begin{array}{rr} \text { Spare labels for } \\ \text { modules } \\ \text { 6ES5 } 460-4 \mathrm{UA} 11 \\ & -4 \mathrm{UA} 12 \\ 6 \mathrm{ES} 5 & 463-4 \mathrm{U} .11 \\ 6 \mathrm{ES} 5 & 465-4 \mathrm{U} .12 \\ & -4 \mathrm{UA} 11 \\ 6 \mathrm{ES} 5 & 470-4 \mathrm{UA} 11 \\ & -4 \mathrm{UA} 12 \\ 6 \mathrm{ES} 5 & 470-4 \mathrm{UB} 11 \\ & -4 \mathrm{UB} 12 \\ 6 \mathrm{ES} 5 & 470-4 \mathrm{UC} 11 \\ & -4 \mathrm{UC} 12 \end{array}$	$\begin{aligned} & \text { C79451-A3079-C711 } \\ & \text { C79451-A3079-C723 } \\ & \text { C79451-A3079-C721 } \\ & \text { C79451-A3079-C746 } \\ & \text { C79451-A3079-C712 } \\ & \text { C79451-A3079-C748 } \\ & \text { C79451-A3079-C713 } \\ & \text { C79451-A3079-C724 } \\ & \text { C79451-A3079-C714 } \\ & \text { C79451-A3079-C725 } \\ & \text { C79451-A3079-C715 } \\ & \text { C79451-A3079-C726 } \end{aligned}$	N	Siemens GWK
Spare labels for addresses	6ES5 497-4UD11	N	GWK
```42-way front connector (crimp contacts) 20 mm 40 mm```	$\begin{array}{ll} \text { 6ES5 } & 497-4 \mathrm{UA} 12 \\ \text { 6ES5 } & 497-4 \mathrm{UA} 22 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	GWK GWK
```42-way front connector (screw contacts) 20 mm 40 mm```	$\begin{array}{ll} \text { 6ES5 } & 497-4 \mathrm{UB} 31 \\ \text { 6ES5 } & 497-4 \mathrm{UB} 12 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	GWK GWK

$\mathrm{N}=$ Not repairable
R = Repairable

## 5 Description of the Individual Modules

### 5.1 Analog Input Module 6ES5 460-4UA11

### 5.1.1 Technical Data

Rated input range with submodules
for 4 channels each 6ES5498-1AA11
6ES5498-1AA21
6ES5498-1AA31
6ES5498-1AA41
6ES5498-1AA51
6ES5498-1AA61 6ES5498-1AA71

Number of input

Measured-value representation

Measuring principle
Conversion principle

Isolation

Permissible potential difference between the reference potentials of sensors and the module ( $\mathrm{U}_{\mathrm{CM}}$ ), and between the sensors (channels)

Power supply

- digital section from system bus
- analog section from load voltage
- module enable F+/F-

Constant current source for
Pt 100 connection $I_{c}+/ I_{c}{ }^{-}$
Integration time
Coding time per measured value

```
+50 mV/\pm500 mV/Pt 100 1)
\pm1 V
\pm10 V
\pm20 mA
4 to 20 mA for 2-wire transd.
\pm5 V
4 to 20 mA for 4-wire transd.
```

8 voltage/current inputs or
8 resistance inputs ( Pt 100 )
13 bits (two's complement) or
12 bits + sign;
$\pm 2048$ units in rated range;
512 to 2560 units for 4 to 20 mA
Integrating
Voltage-time conversion
(dual slope)
Yes; 8 inputs between $0-V$ ref.
and between inputs (not bet-
ween Pt 100 inputs)

Max. 60 V AC/75 V DC
$5 \mathrm{~V} \pm 5 \%$; typ. 150 mA
24 V ; approx. 100 mA 2)
24 V ; approx. 5 mA
$2.5 \mathrm{~mA} ; \mathrm{TC}= \pm 5 \times 10^{-5} / \mathrm{K}$

20 ms at $50 \mathrm{~Hz} ;$
$16^{2} / 3$ ms at 60 Hz
60 ms at $50 \mathrm{~Hz} ; 50 \mathrm{~ms}$ at 60 Hz

1) 0 to 200 ohms $\hat{=}-220$ to $266^{\circ} \mathrm{C}$ 0 to 400 ohms $\hat{=}-220$ to $850^{\circ} \mathrm{C}$
(overdriving range)
2) Plus 20 mA max. per 2 -wire transducer connected

Cycle time for 8 measured values with 2048 units (max. delay time of measured-value acquisition)

Input impedance (with submodule) for input ranges

- $\pm 50 \mathrm{mV} / \pm 500 \mathrm{mV} / \mathrm{Pt} 100$
- $\pm 1 \mathrm{~V}$
$- \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
- $\pm 20 \mathrm{~mA}$
- 4 to 20 mA

Fault signal

- on overflow
- on open circuit

```
Max. permissible input
voltage without destruction
Noise suppression for
f = n x (50/60 Hz \pm 1%)
- with common-mode interference
- with differential-mode inter-
 ference
```

Error, referred to rated value

- linearity
- tolerance
- reversal error
- temperature error
Error caused by submodules
in input range
- $\pm 1 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
- $\pm 20 \mathrm{~mA} / 4$ to 20 mA
Insulation voltage according
to VDE 0160
Impulse test according to
IEC 266-4
Service life of relays

Approx. 0.48 s at 50 Hz
$\geq 10$ Mohms
90 kohms
50 kohms
25 ohms
31.25 ohms

Yes, for all channels together Yes, configurable (at $\pm 50 \mathrm{mV}$, $\pm 500 \mathrm{mV}$ and Pt $100^{1}$ ))
$\pm 18 \mathrm{~V} ; 75 \mathrm{~V}$ for $\max$. of 1 ms and duty factor of 1:20
$\geq 100 \mathrm{~dB}$
$\geq 40 \mathrm{~dB}$, noise voltage amplitude, but $100 \%$ of measurement range referred to peak value
$\pm 1$ unit
$\pm 1$ unit
$\pm 1$ unit
$1 \times 10^{-4} / \mathrm{K}$
$2 \mathrm{x} 10^{-3} ; \mathrm{TC}= \pm 10 \times 10^{-5} / \mathrm{K}$
$10^{-3} ; \mathrm{TC}= \pm 5 \times 10^{-5} / \mathrm{K}$
Between inputs and ground point: tested with 500 V AC

Between inputs and L-:
$\mathrm{U}_{\mathrm{s}}=1 \mathrm{kV} ; 1.2 / 50$ /us
$10^{9}$ cycles; $\geq 12$ years of cyclic operation with $400-\mathrm{ms}$ cycle

1) In the event of an open circuit in current-carrying lines $I_{c}{ }^{+}$ and $I_{c}{ }^{-}$, digital value 0 is indicated.

### 5.1.2 Selecting the Mode

The desired mode of the analog input module is selected by setting mode switches I and II according to the check list.

It should be noted that all individual dip switches of the two mode switch blocks marked with a dot must be set.

For selecting the desired operating mode, the switches are pressed downwards on the side marked with a dot.


X : switch is not used, any switch position is allowed.

Labelling of the switches on the module cover:


### 5.1.3 Range Submodule Complement

Two submodules for connecting 4 inputs respectively can be plugged into one analog input module 460 , being held in place by means of a screw.

Voltage divider, shunt and continuity submodules for the various measurement ranges are available.

	Range submodule type 6ES5 498-						
	-1AA11	-1AA21	-1AA31	-1AA41	-1AA51	-1AA61	-1AA71
Submodule circuits, 4 x in each case							
Mode $500 \mathrm{mV} /$ mA/Pt 100	$\begin{aligned} & \pm 500 \mathrm{mV} \\ & \mathrm{Pt} 100 \end{aligned}$	$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	4... 20 mA 2-wire transducer	$\pm 5 \mathrm{~V}$	4... 20 mA 4-wire transducer
Mode   50 mV	$\pm 50 \mathrm{mV}$	$(\underset{2)}{ \pm 100 \mathrm{mV}})$	$\begin{gathered} ( \pm 1 \mathrm{~V}) \\ 2) \end{gathered}$	$( \pm \underset{2)}{2 m A})$	-	$\begin{gathered} ( \pm 500 \mathrm{mV}) \\ 2) \end{gathered}$	-

For one specified mode ( 50 mV or 500 mV ), submodules of different measurement ranges can be plugged in for every 4 inputs. For the $500-\mathrm{mV}$ mode, for example:

4 inputs, measurement range $\pm 500 \mathrm{mV}$; 1 submodule 6ES5498-1AA11
4 inputs, measurement range $\pm 10 \mathrm{~V}$; 1 submodule 6ES5498-1AA31
Unused inputs must be terminated with a submodule. If voltage divider or shunt submodules are used, then no jumpers need be inserted in the front connector. With continuity submodules, jumpers must be inserted in the front connector.

If open-circuit signalling can be activated for the unused inputs, terminating submodules are not necessary.

1) These fields are provided to mark the selected switch position.
2) Possible combination for 50 mV , but with greater error

### 5.1.4 Pin Assignments of the Front Connector

Voltage or current input or connection of 2 -wire transducer


Connection of 2 -wire transducers is only possible with $500-\mathrm{mV}$ mode.

Connect L- to central ground point (reference potential).

[^19]
### 5.2 Analog Input Module 6ES5 460-4UA12

### 5.2.1 Technical Data

Rated input range with submodules
for 4 channels each
6ES5498-1AA11
6ES5498-1AA21
6ES5498-1AA31
6ES5498-1AA41
6ES5498-1AA51
6ES5498-1AA61
6ES5498-1AA71

Number of inputs

Measured-value representation

Measuring principle

Conversion principle

Isolation

Permissible potential differ ence between the reference potentials of sensors and the module ( $\mathrm{U}_{\mathrm{CM}}$ ), and between the sensors (channels)

Power supply

- Digital section from system bus
- Analog section from load voltage
- Module enable F+/F-
- Test current disable L+

Constant current source for Pt 100 connection $I_{c+} / I_{c-}$

Integration time

Coding time per measured value

1) 0 to 200 ohms $\hat{=}-220$ to $266^{\circ} \mathrm{C}$

0 to 400 ohms $\hat{=}-220$ to $850^{\circ} \mathrm{C}$
(overdriving range)
2) Plus 20 mA max. per 2 -wire transducer connected

Cycle time for 8 measured values with 2048 units
(max. delay time of measured-value acquisition)

Input impedance (with submodule) for input ranges

- $\pm 12.5 \mathrm{mV} / \pm 50 \mathrm{mV} / \pm 500 \mathrm{mV} / \mathrm{Pt} 100$
$- \pm 1 \mathrm{~V}$
$- \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
$- \pm 5 \mathrm{~mA} / \pm 20 \mathrm{~mA}$
- 4 to 20 mA

Fault signal, specific
to measuring points,

- on overflow
- on open circuit

Max. permissible input voltage without destruction

Noise suppression for
$\mathrm{f}=\mathrm{n} \times(50 / 60 \mathrm{~Hz} \pm 1 \%)$

- with common-mode interference
- with differential-mode interference

Error, referred to rated value

- linearity
- tolerance with $\geq 50 \mathrm{mV}$ with $\pm 12.5 \mathrm{mV}$
- reversal error with $\geq 50 \mathrm{mV}$ with $\pm 12.5 \mathrm{mV}$
- temperature error

Error caused by submodules
in input range

- $\pm 1 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
- $\pm 20 \mathrm{~mA} / 4$ to 20 mA

Insulation voltage according to VDE 0160

Impulse test according to IEC 266-4

Service life of relays

Approx. 0.48 s at 50 Hz
$\geq 10$ Mohms
90 kohms
50 kohms
25 ohms
31.25 ohms

Yes
Yes, configurable
(at $\pm 12.5 \mathrm{mV}, \pm 50 \mathrm{mV}, \pm 500 \mathrm{mV}$ and $\mathrm{Pt} 100^{1}$ ))
$\pm 18 \mathrm{~V} ; 75 \mathrm{~V}$ for max. of 1 ms and duty factor of 1:20
$\geq 100 \mathrm{~dB}$
$\geq 40 \mathrm{~dB}$, noise voltage ampli-
tude, but $100 \%$ of measurement
range referred to peak value
$\pm 1$ unit
$\pm 1$ unit
$\pm 3$ units
$\pm 1$ unit
$\pm 2$ units
$1 \times 10^{-4} / \mathrm{K}$
$2 \times 10^{-3} ; \mathrm{TC}= \pm 10 \times 10^{-5} / \mathrm{K}$ $10^{-3} ; \mathrm{TC}= \pm 5 \times 10^{-5} / \mathrm{K}$

Between inputs and ground point: tested with 500 V AC

Between inputs and L-:
$\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV} ; 1.2 / 50$ /us
$10^{9}$ cycles; $\geq 12$ years of cyc-
lic operation with 400 -ms cycle

[^20]
### 5.2.2 Selecting the Mode

The desired mode of the analog input module is selected by setting mode switches $I$ and II according to the check list.

It should be noted that ali individual dip switches of the two mode switch blocks marked with a dot must be set.

For selecting the desired operating mode, the switches are pressed downwards on the side marked with a dot.

Mode	Mode switch I (digital section)		Mode switch II (analog section)					
Reference junction compensation with without				$x$        $\mid$ $x$         $\|r\| r \mid$   				
```Range 50 mV 500 mV; mA```								
Absolute value and sign Two's complement								
Gain $\times 1$ (normal setting) Gain x 4				$\|$				
Scanning cyclic single		$\begin{array}{\|l\|l\|l\|l\|} \hline x & x & x & x \\ \hline & x & x & x \\ \hline & \begin{array}{\|l\|l\|l\|l} x & x & x \\ \hline & x & x & x \end{array} \\ \hline \end{array}$						
$\begin{aligned} & \text { Mains frequency } \\ & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$								
Channels $0 . .3$ with open-circuit signal Channels 4 4.7								
Channels 0.. 3 without open-circuit signal Channels 4... 7		\|l	l	l	l	x $x\|x\| c\|c\|$		

[^21]Labelling of the switches on the module cover:

5.2.3 Range Submodule Complement

Two submodules for connecting 4 inputs respectively can be plugged into one analog input module 460 , being held in place by means of a screw.

Voltage divider, shunt and continuity submodules for the various measurement ranges are available.

	Range submodule type 6ES5 498-						
	-1AA11	-1AA21	-1AA31	-1AA41	-1AA51	-1AA61	-1AA71
Submodule circuits, 4 x in each case							
Mode $500 \mathrm{mV} /$ mA/Pt 100 + Gain $\times 1$	$\begin{aligned} & \pm 500 \mathrm{mV} \\ & \mathrm{Pt} 100 \end{aligned}$	$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	4... 20 mA 2-wire transducer	$\pm 5 \mathrm{~V}$	$\begin{array}{\|l} \text { 4... } 20 \mathrm{~mA} \\ 4 \text {-wire trans- } \\ \text { ducer } \end{array}$
Mode 500 mV + Gain $\times 1$	$\pm 50 \mathrm{mV}$	$\underset{2)}{(\pm 100 \mathrm{mV}})$	$(\pm 1 \mathrm{~V})$	$(\pm \underset{2)}{2 \mathrm{~mA}})$	-	$\underset{\text { 2) }}{(\pm 500 \mathrm{mV})}$	-
Mode $500 \mathrm{mV} / \mathrm{mA}$ $+ \text { Gain x } 4$	$\underset{\text { 2) }}{ \pm 125 \mathrm{mV}}$	$\underset{\text { 2) }}{ \pm 250 \mathrm{mv}}$	$\pm 2,5 \mathrm{~V}$	$\pm 5 \mathrm{~mA}$	-	$\underset{\text { 2) }}{1_{2}^{1,25 ~ V}}$	-
Mode 50 mV + Gain $\times 4$	$\underset{\text { 2) }}{ \pm 12,5 \mathrm{mv}}$	$\underset{\text { 2) }}{ \pm 25 \mathrm{mv}}$	-	$\pm \underset{2)}{ \pm 1,25 \mathrm{~mA}}$	-	-	-

For one specified mode (50 mV or 500 mV), submodules of different measurement ranges can be plugged in for every 4 inputs. For the $500-\mathrm{mV}$ mode, for example:

4 inputs, measurement range $\pm 500 \mathrm{mV}$; 1 submodule 6ES5498-1AA11
4 inputs, measurement range $\pm 10 \mathrm{~V} ; 1$ submodule 6ES5498-1AA31
Unused inputs need not be short-circuited.

[^22]
5.2.4 Pin Assignments of the Front Connector

Resistance thermometers

Connection of 2 -wire transducers is only possible with $500-\mathrm{mV}$ mode.

Connect L- to central ground point (reference potential).

1) Keep to the permissible potential difference between the sensor ground and the reference potential of the modules, and between the sensor grounds
2) 2-wire transducer
3) Only necessary for switching off the test current with open-circuit signalling inactive; 0 V to L- (see Chap. 1.3.1)

Position of switch I with open-circuit signalling inactive

without broken wire detection

5.3 Analog Input Module 6ES5 463-4UA11/-4UA12 and 463-4UB11/-4UB12

5.3.1 Technical Data

Rated input range
(adjustable on front

Number of inputs
Measured-value representation

Overdriving range
Fault signal on overflow

Measuring principle
Conversion principle

Electrical isolation

Permissible potential difference between reference potentials of sensors and module (U_{CM}) and between the sensors (channels)

Power supply

- digital section from system bus $5 \mathrm{~V} \pm 5 \%$; typ. 150 mA
- analog section from load voltage
- module enable F+/F-

Integration time

- 463-4UA11/-4UA12
- 463-4UB11/-4UB12

Coding time per measured value

- 463-4UA11/-4UA12
- 463-4UB11/-4UB12

Cycle time for 4 measured values (max. delay time of measured-value acquisition)

- 463-4UA11/-4UA12
- 463-4UB11/-4UB12

Input impedance for
input ranges

- 1 V
- 10 V
- 20 mA
- 4 to 20 mA
-0.05 to +1 V
-0.5 to +10 V
-1 to +20 mA
+4 to 20 mA for 2 -wire transd. +4 to 20 mA for 4 -wire transd.

4 voltage/current inputs
11 bits (two's complement)
1024 units in rated range

100\% (with full accuracy)
Yes (when overdrive is 50% or more)
Integrating
Voltage/frequency conversion
Yes; between 4° inputs and M and between the inputs

Max. 25 V AC/60 V DC

```
5 V \pm 5%; typ. 150 mA
24 V, approx. 150 mA
24 V; approx. 7 mA
20 ms at 50 Hz
16}/3/3\textrm{ms}\mathrm{ at }60\textrm{Hz
20 ms at 50 Hz
16}/3/3\textrm{ms}\mathrm{ at 60 HZ
20 ms at 50 Hz
162/3 ms at 60 Hz
> 10 Mohms
90 kohms
50 ohms
62.5 ohms
```

Max. permissible input voltage without destruction

Noise suppression for

- common-mode interference
- differential-mode interference

Error, referred to rated value

- linearity
- tolerance
- temperature error

Insulation voltage according to VDE 0160

Impulse voltage test acc. to IEC 266-4
$\pm 30 \mathrm{~V} ; 75 \mathrm{~V}$ for 1 ms max.
and duty factor 1:10
$\geq 80 \mathrm{db}(\mathrm{f}=0$ to 50 kHz$)$
$\geq 40 \mathrm{~dB}\left(\mathrm{U}_{\mathrm{St}} \mid \mathrm{r} \leq 0.1 * \mathrm{U}_{\mathrm{N}}\right)$
measurement range, referred
to the peak value
$\pm 5 \times 10^{-4}$
± 1 unit
$0.6 \times 10^{-4} / \mathrm{K}$
Between inputs and ground point and between inputs:
tested with 500 V AC
Between inputs and L-:
$\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV} ; 1.2 / 50$ /us

5.3.2 Selecting the Data Format for the Range of 4 to 20 mA

When using the 4 - to $20-\mathrm{mA}$ inputs data representation can be selected either from 0 to 1023 bits or from 256 to 1279 bits by pressing the corresponding switch. In this case, different data formats can be selected for each of the four input channels.

When using the voltage or 0 - to $20-\mathrm{mA}$ inputs the corresponding switches remain in the "Off" position.

Labelling of the switches on the module cover

- Switch position "On" (pressed)

1) These fields are provided to mark the selected switch position

5.3.3 Connecting Sensors

The sensors are connected to the analog input module via shielded cables with a maximum length of 200 m . If these measuring cables are laid separately from power cables, the permissible length can be increased to 500 m .

Voltage sensors, current sensors, 2-wire and 4-wire transducers can be connected in any combination as required. Four short-circuit-proof supply terminals are provided on the front connector for the connection of 2 -wire transducers.

Caution: When using 2 -wire transducers the reference potential (common input) of these channels must be connected to L-. The electrical isolation between the channels and the supply voltage $\mathrm{L}+/ \mathrm{L}-\mathrm{is}$ thus inactivated.

Remember that the module's bus interface is activated with 24 V applied to the enable pins $\mathrm{F}+$ and F - on the front connector.

5.3.4 Pin Assignments of the Front Connector

5.4 Analog Input Module 6ES5 465-4UA11

5.4.1 Technical Data

Rated input range with submodules for 4 channels each 6ES5498-1AA11 6ES5498-1AA21 6ES5498-1AA31 6ES5498-1AA41 6ES5498-1AA51 6ES5498-1AA61 6ES5498-1AA71

Number of inputs

Measured-value representation

Measuring principle
Principle of conversion

Electrical isolation
Permissible potential dif-
ference between the reference potentials of sensors and the module (U_{CM}) and between the sensors (channels)

Power supply

- digital section from system bus
- analog section from load voltage
- module enable F+/F-

Constant current source for Pt 100 connection $I_{c}+/ I_{c}{ }^{-}$

Integration time

Coding time per measured value with 2048 units

```
\pm50 mV/ +500 mV/Pt 100 1)
\pm1 V
\pm10 V
\pm20 mA
4 to 20 mA for 2-wire transd.
\pm5 V
4 \text { to 20 mA for 4-wire transd.}
16 voltage/current inputs or
8 resistance inputs (Pt 100)
13 bit (two's complement) or
12 bits + sign
\pm2048 units in rated range;
512 to 2560 units at 4 to 20 mA
Integrating
Voltage/time conversion
(dual-slope)
No
Max. \pm1 V
```

24 V 2)
24 V ; approx. 5 mA
$2.5 \mathrm{~mA} ; \mathrm{TC}= \pm 5 \times 10^{-5} / \mathrm{K}$

20 ms at 50 Hz ;
$16^{2} / 3 \mathrm{~ms}$ at 60 Hz
60 ms at 50 Hz ;
50 ms at 60 Hz

```
1) 0 to 200 ohms \hat{= - 220 to 266 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ;}
    0 to 400 ohms \hat{= - 220 to }85\mp@subsup{0}{}{\circ}\textrm{C}
    (overdriving range)
2) Only necessary for 2-wire transducers. Max. 20 mA per transd.
```

```
- for }8\mathrm{ measured values
with 2048 units
- for 16 measured values
    with 2048 units
Input impedance (with module)
for input ranges
- }\pm50\textrm{mV}/\pm500 mV/Pt 100
- +1 V
- +5 V/ }\pm10\textrm{V
- }\pm20\textrm{mA
- 4 to 20 mA
Approx. 0.48 s at 50 Hz
\geq10 Mohms
90 kohms
50 kohms
25 ohms
31.25 ohms
Fault signal
- on overflow
- on open circuit
Yes
Yes, configurable (at }\pm50\textrm{mV}\mathrm{ ,
\pm500 mV and Pt 100)
Max. perm. input voltage
without destruction
\pm18 V; 75 V for max. 1 ms
and duty factor 1:20
Noise suppression for
f = n x (50/60 Hz +1%)
- with common-mode interference
- with common-mode inter
    interference
\geq6 dB; but max. \pm1 V
\geq 4 0 ~ d B , ~ n o i s e ~ v o l t a g e ~ a m p l i t u d e
but max. 100% of measurement
range, referred to peak value
```

Error, related to nominal value

- linearity
± 1 unit
- tolerance
- error in reversal
- temperature fault
± 1 unit
± 1 unit $10^{-4} / \mathrm{K}$

Error caused by modules
at input range

- $\pm 1 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
$2 \times 10^{-3} ; \mathrm{TC}= \pm 10 \times 10^{-5} / \mathrm{K}$
$1 \times 10^{-3} ; \mathrm{TC}=+5 \times 10^{-5} / \mathrm{K}$
- $\pm 1 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
- $\pm 20 \mathrm{~mA} / 4$ to 20 mA
$1 \times 10^{-3} ; \mathrm{TC}= \pm 5 \times 10^{-5} / \mathrm{K}$

5.4.2 Setting the Mode

The desired mode of the analog input module is selected by setting mode switches I and II according to the check list.

It should be noted that all individual dip switches of the two mode switch blocks marked with a dot must be set, and some functions are defined by several dip switches (e.g. 8 or 16-channel operation, open-circuit signal for 8 or 16 channels).

To select the desired operating modes, the switches are pressed downwards on the side marked with a dot.

X: switch is not used, any switch position is allowed.

1) With 8 channels 2) With 16 channels

Labelling of the switches on the module cover:

5.4.3 Range Submodule Complement

Four submodules for connecting four inputs respectively can be plugged into an analog input module 465 , being held in place with a screw.

Voltage divider, shunt and continuity submodules for the various measurement ranges are available.

	Range submodule type 6ES5 498-						
	-1AA11	-1AA21	-1AA31	-1AA41	-1AA51	-1AA61	-1AA71
Submodule circuits, 4x in each case							
Mode $500 \mathrm{mV} /$ mA/Pt 100	$\begin{aligned} & \pm 500 \mathrm{mV} \\ & \text { Pt } 100 \end{aligned}$	$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	4... 20 mA 2-wire transducer	$\pm 5 \mathrm{~V}$	$\left\|\begin{array}{c} 4 . .20 \mathrm{~mA} \\ 4 \text {-wire trans- } \\ \text { ducer } \end{array}\right\|$
Mode 50 mV	$\pm 50 \mathrm{mV}$	$(\pm 100 \mathrm{mV})$	$\left(\pm \begin{array}{c} 1 \mathrm{~V}) \end{array}\right.$	$\left.(\pm 2)_{2} \mathrm{~mA}\right)$	-	$\underset{\text { 2) }}{(\pm 500 \mathrm{mV})}$	-

With a specified mode (50 mV or 500 mV), submodules of different measurement ranges can be plugged in for every 4 inputs, e.g. for the $500-\mathrm{mV}$ mode:

4 inputs, measurement range $\pm 500 \mathrm{mV}$; 1 submodule 6ES5498-1AA11
8 inputs, measurement range $\pm 20 \mathrm{~mA} ; 2$ submodules 6ES5498-1AA41
Unused inputs must be terminated with a submodule. If voltage divider or shunt submodules are used, then no jumpers need be inserted in the front connector. With continuity submodules jumpers must be inserted into the front connector. The negative pole of the inputs not used is to be connected to the frame ($M_{e x t}$).

1) These fields are provided to mark the selected switch position.
2) Possible combination for 50 mV , but with a greater error.

If open-circuit signalling can be activated for the unused inputs, terminating submodules and a connection between the negative pole and $M_{\text {ext }}$ are not necessary.

5.4.4 Pin Assignments of the Front Connector

Voltage or current input or connection of 2 -wire transducers

Connection of 2 -wire transducers is only possible with the $500-\mathrm{mV}$ mode.

Connect L- to central ground point (reference potential).

1) Keep to the permissible potential difference between the sensor ground and the reference potential of the modules, and between the sensor grounds
2) 2-wire transducer

5.5 Analog Output Module 6ES5 465-4UA12

5.5.1 Technical Data

1) 0 to 200 ohms $\hat{=}-220$ to $266^{\circ} \mathrm{C}$;

0 to 400 ohms $\hat{=}-220$ to $850^{\circ} \mathrm{C}$
(overdriving range)
2) Only necessary for 2 -wire transducers. Max. 20 mA per transd.

Cycle time (max. delay time
of measured-value acquisition)

- for 8 measured values with 2048 units
- for 16 measured values Approx. 0.96 s at 50 Hz with 2048 units

Input impedance (with module)
for input ranges

- $\pm 50 \mathrm{mV} / \pm 500 \mathrm{mV} / \mathrm{Pt} 100$
- $\pm 1 \mathrm{~V}$
- $\pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
- $\pm 20 \mathrm{~mA}$
- 4 to 20 mA

Fault signal, specific
to measuring points,

- on overflow

Yes

- on open circuit

Max. perm. input voltage without destruction

Approx. 0.48 s at 50 Hz
≥ 10 Mohms
90 kohms
50 kohms
25 ohms
31.25 ohms

Noise suppression for
$\mathrm{f}=\mathrm{n} \times(50 / 60 \mathrm{~Hz} \pm 1 \%)$

- with common mode interference
- with differential mode interference
$\geq 86 \mathrm{~dB}$; but max. $\pm 1 \mathrm{~V}$
$\geq 40 \mathrm{~dB}$, noise voltage amplitude
but max. 100\% of measurement
range, referred to peak value
Error, related to nominal value
- linearity
± 1 unit
- tolerance
- error in reversal
- temperature fault
± 1 unit
± 1 unit
$1 \times 10^{-4} / \mathrm{K}$

Error caused by modules
at input range

- $\pm 1 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
$2 \times 10^{-3} ; \mathrm{TC}= \pm 10 \times 10^{-5} / \mathrm{K}$
- $\pm 20 \mathrm{~mA} / 4$ to 20 mA

5.5.2 Selecting the Mode

The desired mode of the analog input module is selected by setting mode switches I and II according to the check list.

It should be noted that all individual dip switches of the two mode switch blocks marked with a dot must be set, and some functions are defined by several dip switches (e.g. 8 or 16-channel operation, open-circuit signal for 8 or 16 channels).

For selecting the desired operating modes, the dip switches are pressed downwards on the side marked with a dot.

X: switch is not used, any switch position is allowed.
${ }^{1}$) With 8 channels ${ }^{2}$) With 16 channels ${ }^{3}$) See chapter 3.5 .5

Labelling of the switches on the module cover:

5.5.3 Range Submodule Complement

Four submodules for connecting four inputs respectively can be plugged into an analog input module 465 , being held in place with a screw.

Voltage divider, shunt and continuity submodules for the various measurement ranges are available.

	Range submodule type 6ES5 498-						
	-1AA11	-1AA21	-1AA31	-1AA41	-1AA51	-1AA61	-1AA71
Submodule circuits, 4x in each case							
Mode $500 \mathrm{mV} /$ mA/Pt 100	$\begin{aligned} & \pm 500 \mathrm{mV} \\ & \mathrm{Pt} 100 \end{aligned}$	$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	4... 20 mA 2-wire transducer	$\pm 5 \mathrm{~V}$	$\left\lvert\, \begin{aligned} & 4 . .20 \mathrm{~mA} \\ & \text { 4-wire trans- } \\ & \text { ducer } \end{aligned}\right.$
Mode 50 mV	$\pm 50 \mathrm{mV}$	$\underset{2)}{(\pm 100 \mathrm{mV}})$	$(\pm 1 \mathrm{~V})$	$\left(\pm{ }_{2}^{2} \mathrm{~mA}\right)$	-	$(\pm 500 \mathrm{mV})$	-

With a specified mode (50 mV or 500 mV), submodules of different measurement ranges can be plugged in for every 4 inputs, e.g. for the $500-\mathrm{mV}$ mode:

4 inputs, measurement range $\pm 500 \mathrm{mV}$; 1 submodule 6ES5498-1AA11
8 inputs, measurement range $\pm 20 \mathrm{~mA} ; 2$ submodules 6ES5498-1AA41
Unused inputs need not be short-circuited (in PT 100 mode this also applies to unused power outputs).

1) These fields are provided to mark the selected switch position
2) Possible combination for 50 mV , but with a greater error

5.5.4 Pin Assignments of the Front Connector

Voltage or current input or connection of 2 -wire transducers

Connection of 2 -wire transducers is only possible with the $500-\mathrm{mV}$ mode.

Connect L- to central ground point (reference potential).

1) Keep to the permissible potential difference between the sensor ground and the reference potential of the modules, and between the sensor grounds
2) 2-wire transducer
3) Only necessary for switching off the test current with opencircuit signalling inactive (0 V at common frame with L-)

5.6 Analog Output Module 6ES5 470-4UA11/-4UA12, 470-4UB11/-4UB12 and 470-4UC11/-4UC12

5.6.1 Technical Data

Rated output range

- 6ES5470-4UA11/-4UA12	$\begin{aligned} & 0 \text { to } \pm 10 \mathrm{~V} \text { and } \\ & 0 \text { to } 20 \mathrm{~mA} \text { parallel } \\ & \text { with } \pm 1024 \text { units } \end{aligned}$
- 6ES5470-4UB11/-4UB12	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \text { with } \pm 1024 \text { units } \end{aligned}$
- 6ES5470-4UC11/-4UC12	1 to 5 V and 4 to 20 mA parallel with 0 to 1024 units
Number of outputs	8 voltage and current outputs, open-circuit- and short-circuit-proof
Electrical isolation	Yes; 8 outputs with respect to $M_{\text {ext }}$
Measured-value representation	12 bits (two's complement)
Linearity in the range of ± 1024 units	$\pm 2 \mathrm{LSB}= \pm 0.2 \%$
Operating error limits (0 to $60^{\circ} \mathrm{C}$)	$\pm 0.6 \%$
Permissible overdriving	$\begin{aligned} & \text { Approx. } 25 \% \\ & (\pm 1024 \text { to } \pm 1272 \text { units }) \end{aligned}$
Short-circuit current with voltage output	Approx. 25 mA
No-load voltage with current output	Max. 18 V
Output current with voltage output	Max. 3 mA
Max. capacitive load incl. line capacity	$<100 \mathrm{nF}$
Delay time between data transfer and analog value output	$\leq 1 \mathrm{~ms}$
Load resistance - with voltage output - with current output	$\begin{aligned} & \geq 3.3 \text { kohms } \\ & \leq 300 \text { ohms } \end{aligned}$
Temperature coefficient for voltage and current outputs	$1 \times 10^{-4} / \mathrm{K}$
Permissible voltage drop on voltage output lines	$\pm 0.3 \mathrm{~V}$ at max. output voltage

Power supply

- dig. section from system bus
- analog section from load volt.
- module enable F+/F-

Perm. potential difference U_{CM} between reference potentials of the load and the casing

Insulation voltage acc. to VDE 0160

Impulse test according to IEC 255-4
$5 \mathrm{~V} \pm 5 \%$; approx. 250 mA
24 V ; 200 to 400 mA
24 V ; approx. 7 mA

Max. 60 V AC/75 V DC

Betw. outputs and casing:
tested with 500 V AC
Between outputs and L-: $\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$; 1.2/50 /us

5.6.2 Pin Assignments of the Front Connector

6ES5470-4UB11 6ES5470-4UB12

6ES5470-4UA11/-4UC11
6ES5470-4UA12/-4UC12

6 Addressing the Process Interface Modules

Channel no.					0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15	
Start				0 - 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
				12	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	,	1	0	0	1	1
				2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
				38	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ADB	7	6	5		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DW	128	64	32		HB	LB	HB	18	HB	LB	HB	LB	HB	LB	HB	LB	H8	LB	HB	LB	HB	LB	HB	18	H8	1.8	HB	LB								
Addressing switch	-				128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	15	15	15	158	15
	-		-		160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	18	188	18	190	19
					192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	21.	220	22	222	223
					224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	25	252	25	25.	25

Addressing of process interface modules with 8 channels

DW Binary significance
HB High byte
LB Low byte
LB Low byte

- Dip switch pressed

Addressing of process interface modules with 4 channels (463-4UA../-4UB..):

Channel number							0		1		2		3	
Start address					0	1	0	1	0	1	0	1	0	1
					1	2	0	0	1	1	0	0	1	1
					2	4	0	0	0	0	1	1	1	1
ADB	7	6	5	4	3		HB	LB	HB	LB	HB	LB	HB	LB
DW	128	64	32	16	8									
Addressing switch							128	129	130	131	132	133	134	135
							136	137	138	139	140	141	142	143
							144	145	146	147	148	149	150	151
					-		152	153	154	155	156	157	158	159
	-		-				160	161	162	163	164	165	166	167
			-		-		168	169	170	171	172	173	174	175
	-		-	-			176	177	178	179	180	181	182	183
	-		\bullet	-	-		184	185	186	187	188	189	190	191
							192	193	194	195	196	197	198	199
							200	201	202	203	204	205	206	207
	-	\bullet		\bullet			208	209	210	211	212	213	214	215
				-			216	217	218	219	220	221	222	223
							224	225	226	227	228	229	230	231
							232	233	234	235	236	237	238	239
							240	241	242	243	244	245	246	247
			-				248	249	250	251	252	253	254	255

SIMATIC S5
 Digital Input Modules Digital Output Modules

Digital input module 6ES5 420-4UA12

Digital input module 6ES5 436-4UB12

Type of module	Inputs or outputs		Input or output current	Galvanic isolation/ groups		Order no.	Technical specifications
	Number	Rated voltage					
Digital input	32	24 V DC	8.5 mA	no	-	6ES5420-4UA11/12	Page 33
	32	24 V DC	7.0 mA	yes	1×32	6ES5430-4UA11/12	Page 35
	16	24 to 60 V DC	4.5 to 7.5 mA	yes	16×1	6ES5431-4UA11/12	Page 37
	32	24 V DC	8.5 mA	yes	4×8	6ES5432-4UA11/12	Page 39
	32	5 to $15 \vee \mathrm{DC}$	1.3 mA	yes	1×32	6ES5434-4UA11/12	Page 41
	16	24 to 60 V AC	15 to 25 mA	yes	2×8	6ES5435-4UA11/12	Page 44
	16	115 to 240 V AC	15 to 25 mA	yes	2×8	6ES5436-4UA11/12	Page 46
	8	115 to 240 V AC	15 to 25 mA	yes	8×1	6ES5436-4UB11/12	Page 48
Digital output	32	$24 \vee$ DC	0.5 A	no	-	6ES5441-4UA11/12	Page 50
	32	$24 \vee$ DC	0.5 A	yes	1×32	6ES5451-4UA11/12	Page 53
	16	$24 \vee$ DC	2.0 A	yes	16×1	6ES5453-4UA11/12	Page 56
	16	24 V DC	2.0 A	yes	1×16	6ES5454-4UA11/12	Page 59
	16	24 to 60 V AC	2.0 A	yes	2×8	6ES5455-4UA11/12	$\text { Page } 62$
	16	115 to 240 V AC	2.0 A	yes	2×8	6ES5456-4UA11/12	Page 64
	8	115 to 240 V AC	2.0 A	yes	8×1	6ES5456-4UB11/12	Page 66
	16	24 to 60 V DC	0.5 A	yes	16×1	6ES5457-4UA12	$\text { Page } 68$
	16	Relay 60 V	0.5 A	yes	16×1	6ES5458-4UA11/12	Page 70

Contents Page
1 Description 2
1.1 Application 2
1.2 Construction 2
1.3 Principle of Operation 3
1.3.1 Digital Input Modules 3
1.3.2 Digital Output Modules 5
1.3.3 Digital Input Module 6ES5432-4UAI. (with Group Signal and Interrupt) 7
1.3.4 Signalling Output 13
1.3.5 Functions of the Enable Inputs 14
1.4 General Technical Specifications 19
1.5 Pin Assignment of the Backplane Connector 21
2 Installation 22
2.1 Withdrawing and Inserting Modules 22
2.2 Identification of Modules 23
2.3 Installation Guidelines 24
3 Operation 25
3.1 Setting the Module Address 25
3.2 Connecting the Signal Leads 27
3.3 Connecting Outputs in Parallel and Switching the Load on via a Contact 28
3.4 Connecting Input/Output Modules to Two Power Supply Units 29
3.5 Short-circuit Protection and Fusing of DC Digital Output Modules 30
4 Spare Parts 31
5 Technical Specifications of Modules 33
5.1 Digital Input Modules 6ES5 420-4UA11 and -4UA12 33
5.2 Digital Input Modules 6ES5 430-4UA11 and -4UA12 35
5.3 Digital Input Modules 6ES5 431-4UA11 and -4UA12 37
5.4 Digital Input Modules 6ES5 432-4UA11 and -4UA12 39
5.5 Digital Input Modules 6ES5 434-4UA11 and -4UA12 41
5.6 Digital Input Modules 6ES5 435-4UA11 and -4UA12 44
5.7 Digital Input Modules 6ES5 436-4UA11 and -4UA12 46
5.8 Digital Input Modules 6ES5 436-4UB11 and -4UB12 48
5.9 Digital Output Modules 6ES5 441-4UA11 and -4UA12 50
5.10 Digital Output Modules 6ES5 451-4UA11 and -4UA12 53
5.11 Digital Output Modules 6ES5 453-4UA11 and -4UA12 56
5.12 Digital Output Modules 6ES5 454-4UA11 and -4UA12 59
5.13 Digital Output Modules 6ES5 455-4UA11 and -4UA12 62
5.14 Digital Output Modules 6ES5 456-4UA11 and -4UA12 64
5.15 Digital Output Modules 6ES5 456-4UB11 and -4UB12 66
5.16 Digital Output Module 6ES5 457-4UA12 68
5.17 Digital Output Modules 6ES5 458-4UA11 and -4UA12 70
6 Addressing the Input and Output Modules 73
7 Example of a Label 74
8 Page Overview 75

1 Description

1.1 Application

Digital input and output modules enable the SIMATIC S5 $130 \mathrm{~K} / \mathrm{W}$, $135 \mathrm{U}, 150 \mathrm{~K} / \mathrm{S} / \mathrm{U}$ and 155 U programmable controllers to handle a wide variety of process signals.

Digital input modules convert the external process signals to the internal signal level of the programmable controllers. Any interference and momentary voltage peaks at the inputs are suppressed.

Digital output modules convert the control signals processed in the programmable controller to the appropriate level for the process.

1.2 Construction

The modules are designed as plug-in PCBs of the ES 902 modular packaging system, with a backplane connector and a plug connector which mates with a front connector. By means of screw terminals or crimp snap-on connections, the process signal lines can be connected direct to the front connector, which must be ordered separately.

Alongside the plug connector is a row of green LEDs arranged in byte groups for displaying the signal status of the inputs or outputs.

DC voltage output modules also have red LEDs to indicate shortcircuits between the output lines and ground (L-) within a module.

AC voltage output modules have red LEDs to indicate a blown fuse.

Each module is equipped with a 6,7 , or 8 -pole addressing switch for setting the module address.

The module is protected on both sides by covers secured by means of plastic studs.

The 6ES5...-4U... modules are designed for use in the S5-135 U, S5-150 U and S5-155 U programmable controllers and the respective expansion units of the U range. In order to use the modules in other units, the lower locking bar must be removed from the subrack.

1.3 Principle of Operation

1.3.1 Digital Input Modules

As shown in the block diagram (Fig. 1), the process signals are conditioned in the input circuit of the digital input module for processing at the internal level of the module. The input circuit suppresses any interference and the signal statuses at the inputs are displayed on LEDs on the frontpanel of the module. Most digital input modules supply isolated signals to the data registers.

An external signal at the enable input can disable processing of the input signals and disconnect the module from the S 5 bus. Modules designed for AC voltages have a jumper inserted in the front connector.

The module address is set on an addressing switch. The controller issues a RDY acknowledgement signal to the CPU if the address on the system bus recognized by the address decoder is identical with the address set. The STEP 5 program addresses the modules by their parameters (byte address and bit address).

If, for example, input $I 1.0$ of a digital input module is to be scanned by the STEP 5 program, the CPU transmits the address 1 (byte address $=$ address bits $A D B 0$ to $A D B 7$) and the control signal MEMR. The module with the byte address 1 recognizes this address and transmits the $\overline{R D Y}$ acknowledgement signal to the CPU.

The signal status of the inputs of byte 1 ($D B \quad 0$ to $D B 7$) is transmitted to the CPU via the data bus.

Fig. 1 Signal transfer between the CPU and the digital input module

Fig. 2 Principle of the input circuits

1.3.2 Digital Output Modules

Fig. 3 is a block diagram showing the transfer of signals between the digital output modules and the CPU. The data are transferred from the $S 5$ bus if the module is enabled by a signal at the enable input ($\mathrm{F}+/ \mathrm{F}-$), if the module address set on the addressing switch is identical with that transmitted by the CPU and if the MEMW signal is applied.

The controller causes the data from the data bus (DB 0 to DB 7) to be transferred to the data register and, on most of the modules, reach the outputs in the form of isolated signals.

Modules with the appropriate output circuits are available to supply all the voltages and currents required in the process.

The frontplate of the module has LEDs which indicate the signal status of the outputs (green LEDs) and short-circuts in the lines connected (red LEDs).

In order to set output 1.0 of a digital output module, for example, the address 1 and the control signal MEMW are transmitted by the CPU.

The output module with byte address 1 recognizes the address and transmits the RDY acknowledgement signal to the CPU.

The outputs are driven in keeping with the data on the data bus (DB 0 to DB 7)

In the case of digital output modules, only the outputs are set to 0 by the BASP (Disable command output) signal from the CPU. The data memories on the modules retain their status.

These memories are reset by the $\overline{\mathrm{CPKL}}$ (CPU Ready) signal.

Fig. 3 Signal interchange between CPU and digital output modules

Fig. 4 Block diagram of the output circuits

1.3.3 Digital Input Module 6ES5432-4UA1. (with Group Signal and Interrupt)

The following operating modes are possible on the 432 module when specific jumpers and switches have been set:

- Digital input without group signal and interrupt,
- Digital input with group signal,
- Digital input with interrupt,
- Digital input in mixed operation with group or interrupt signal.

The principle of operation with group signal (byte EO) and interrupt depends on the device used and is therefore described in the manual for your programmable controller.

Signal changes at the process inputs of the digital input module 432 determine the generation of a group signal or an interrupt. The statuses at the inputs are recognized by scanning the peripheral bytes n to ($n+3$). For scanning the peripheral bytes, the start address n is to be set using the address switch S 4 , as with all other I / O modules.

Since the organization blocks for interrupt processing (interrupt OBs) are always automatically accessed by the programmable controller at their "block boundaries", the change of the process signal must be present for at least the time it takes to process the largest program block and the double input delay time.
(Exception: 155U-mode which includes scanning at the "command boundaries": in this case, the double input delay time is sufficient.)

When the module is used in the central controller (CC), the addresses used in the P range are not allowed for applications in the Q range. The module decodes only eight address bits and PESP' as is the case with all other I/O modules.

Digital input without group signal and interrupt

The peripheral bytes may be scanned in any sequence. The module functions like a digital input and offers input delays to be set byte by byte in typical stages of 0.3 and 1.0 and 3.0 ms .

This module can be plugged into all peripheral slots for use with digital inputs.

For how to set the mode of operation see the table "Setting of switches and jumpers" on page 12.

Digital input with group signal (S5-150U, S5-155U: 150U mode)
Any alteration to a bit in the input byte IB 0 ("O" -> "1" or "1" -> "0") leads to a jump in the alarm OB (bit 0.0 in OB 2, bit 0.1 in $O B 3$ etc. bit 0.7 in $O B 9$) at the block limits (S5-150U) or command limits (S5-155U: 150U mode). The triggering of an alarm OB is therefore also possible with normal digital input modules at the input address IB 0.
The 432 module automatically decodes the address byte EO. By scanning byte EO at the block boundaries, the system recognizes every change of the process signal. Each bit of byte EO is active on a specific interrupt $O B$ (refer to programmable controller manual)

Use switch S 2 to assign the 432 module to one of the interrupt OBs. One of these modules must be switched to 'master' which serves bit EO.O and receives acknowledgment from byte EO. The remaining modules function as slaves and do not acknowledge byte EO (also refer to table on page 12 "Setting of switches and jumpers" as well as to the example on page 13).

Scanning the process inputs:
In the interrupt $O B$ that you specified using byte EO and switch S2 you may program the following:

L	PW128	(Load peripheral word)
T	FW0	(Transfer flag word)
L	PW130	etc.
T	FW2	

While the cyclic program is running only the flag word (FW) may be accessed.

- Accessing of the peripheral bytes in the process image leads to a loss of interrupt capability. You must therefore address the module starting from address 128.
- Double accesses to peripheral bytes are not permitted (loss of interrupt capability).
- The four peripheral bytes of a module must be scanned one after the other in ascending order. The scanning of byte n disables the input circuit, the scanning of byte $(n+3)$ enables it again.
- Only one module may be scanned by each interrupt OB. Up to eight modules can thus be plugged into each programmable controller.
- The modules can be plugged into every slot which is used for digital inputs, but only max. 8 modules together in one central controller or one expansion unit (EU).
- While the central controller is in Stop, any alteration of an input signal could lead to setting the interrupt memory on the module. This would mean jumping directly to an interrupt OB after a cold or warm restart and carrying out the procedure in the OB. To prevent this we recommend you proceed as follows: by the absolute setting of a flag bit (e.g. :S FY 0.0) in the corresponding start $O B s$ ($O B 20, O B 21, O B 22$) and the scanning of every interrupt $O B$ used ($O B 2 \ldots O B 9$) the start-up is recognized. Thus the interrupt $O B s$ are prevented from further action. In a
cyclic or time-controlled program the flag bit must be reset (e.g. :R FY 0.0).

Digital input with interrupt (S5-135U, S5-155U: 155U-mode)

A change of the process signal causes an interrupt to be generated on the 432 module. This interrupt is transmitted to the appropriate CPU via slot-oriented interrupt leads (refer to programmable controller manual). The interrupts are processed in the assigned interrupt OBs. To set the module to the respective interrupt line see the table "Setting of switches and jumpers" on page 12.

Scanning the process inputs:
In the corresponding interrupt $O B$ you may program the following command sequence:

```
L PW132 (Load peripheral word)
T FW10 (Transfer flag word)
L PW134 etc.
T FW12
```

While the cyclic program is running only the flag word (FW) may be accessed.

- Accessing of the peripheral bytes in the process image leads to a loss of interrupt capability. You must therefore address the module starting from address 128.
- Double accesses to peripheral bytes, even by different CPUs, are not permitted (loss of interrupt capability).
- The four peripheral bytes of a module must be scanned one after the other in ascending order. The scanning of byte n disables all input circuits of the module, the scanning of byte ($n+3$) re-enables them.
- Several 432 modules may be scanned by each interrupt OB (up to eight modules).
- In 155U-mode the interrupt OBs may be interrupted by OBs of higher priority at the command boundaries. To avoid loss of interrupt capability the $O B$ for process interrupts must be noninterruptible (refer to the Programming Guide of your programmable controller).
- The programmable controller must process the interrupts in level triggering mode (normal case).
- When a module is removed during operation, this is not detected by the programmable controller: no acknowledgment delay (NAK), no addressing error (ADF). The reason is that the interrupt $O B$ is not processed when an interrupt is missing; thus, the peripheral addresses cannot be accessed.
- The modules can be plugged into every interruptible slot of the central controller.
- After switching on the central controller you need to scan the four peripheral bytes in the OBs for cold and warm restart
(OB 20, OB 21, OB 22). Any interrupts which may still be present will then be reset.

Special features:

Do not plug the modules into slots for interfaces and processors.
The D row of the bus connector X 1 ($\mathrm{d} 14, \mathrm{~d} 16, \mathrm{~d} 18, \mathrm{~d} 20, \mathrm{~d} 22, \mathrm{~d} 24, \mathrm{~d} 26$)
can be bridged by the interrupt switch. In this case if the module is plugged in;

- at the interface slot the module will be damaged
- at the processor slot false signals will be produced.

If you nevertheless wish to achieve maximum capacity from your subrack by occupying all interface slots with this module, please observe the following:

Switch block S1 (interrupt switches $\overline{\text { IRA }}$ to $\overline{\text { INT }}$) must be switched off. The S1 rocker switches may not be switched in the direction of the dot ().

During interrupt analysis on the S5 1350 at least one switch on switch block $S 1$ must be switched on. In this case the module may only be plugged into a slot intended for interrupt analysis.

Recognizing the module which is triggering the interrupt
With the jumper $\mathrm{X} 4=\mathrm{ON}$ the module acknowledges the input byte IB 0 . Thus if only one module is being used in the programmable controller its removal is detected by timeout (QVZ). The byte IB 0 can also be used in interrupt mode to ascertain from which module the interrupt signal is being triggered. Here each module occupies one bit in the input byte IB 0 . One module must be set as master on IB 0 , bit 0 . The remaining bits 1...7 can be occupied by modules in the slave setting. The jumper $X 3$ and the switch $S 2$ must be set according to the settings with the group signal.

Input byte IB 0 not activated.

The module 432-4UA12 allows the input byte IB 0 to be switched off by setting the jumper $\mathrm{X} 4=0 \mathrm{FF}$. Then the input byte is not acknowledged and is freely available for other modules.
A 432-4UAl2 module which has been removed is not recognized by a timeout (QVZ).

Digital input in mixed operation with group or interrupt signal

In mixed operation, there are one or more peripheral bytes which are not subject to interrupt triggering. Switch S3 (edge selection) is deactivated for one to three peripheral bytes.

The operation of the module is determined by the interrupt detection

```
- with group signal or
```

- with interrupt
and is to be set accordingly. Those bytes which are not subject to interrupt detection must also be read from the corresponding interrupt OBs, in order to reset the interrupt memory.

The input bytes which are not subject to interrupt triggering may only be read after scanning the interrupt OBs. Reading these input bytes directly is not permitted because alarms may be lost in the process. In order to be able to process the most up-to-date process data of the input bytes, the corresponding interrupt $O B$ must be run as often as possible (cyclically if possible).

Functions of the jumpers and switches on the module (Position on the PCB as shown in the figure in section 5.4):

```
Jumper: X3 plugged in (on) = Module as master
    open (off) = Module as slave
    X4 plugged in (on) = with group signal generation
        open (off) = without group signal generation
        Note: With 6ES5 432-4UA11, X4 must be plugged in
                        (on) even with interrupt.
```

Switch: S1 Signal changes at the inputs placed on interrupt lines IRA... IRG and INT
S2 Parameter assignments for 1 master and 7 slave modules
S3 Selection of the input signal edge which initiates
the generation of a group signal/interrupt
(bytes 0...3)
S4 Module address
S5 Input delay time $0.3 / 1.0 / 3.0 \mathrm{~ms}$ for bytes $0 . .3$
(8 inputs $=1$ byte)

Example

In the example, four 432 modules with group signal generation (1 master module and 3 slave modules) are used.

Jumpers and switches on the master module:
$\mathrm{X} 3=$ on, $\mathrm{X} 4=$ on
S1/0..7 = open
S3: after selecting edge, 1 byte each
S4: according to address label, e.g. IB 128
S5: after selecting delay time, 1 byte each

Jumpers and switches on the slave modules:

$$
\begin{aligned}
& \text { Slave 1: X3 = off, } \mathrm{X} 4=\text { on } \\
& \text { S1/0..7 }=\text { open, } S 4=\text { IB } 132 \\
& \text { Slave 2: X3 = off, X4 = on } \\
& \text { S1/0..7 = open, } \mathrm{S} 4=\mathrm{IB} 136 \\
& \text { Slave 3: } \mathrm{X} 3=\text { off, } \mathrm{X} 4=\text { on } \\
& \text { S1/0..7 = open, S4 = IB } 140
\end{aligned}
$$

Both in the master and in the slave modules, the edge (S3) and the delay time (S5) can be selected for each individual byte.

Setting of switches and jumpers for the different modes

ins. $=$ Plug-in jumper inserted
rem. $=$ Plug-in jumper removed
on $=$ Rocker switch in ON position
off $=$ Rocker switch in OFF position

Rocker
switch

ON

1) Edge selection:
positive edge
negative edge
no edge and negative edge

1.3.4 Signalling Output

In the case of digital output voltages for $D C$, signalling output H+ supplies a signal if a short-circuit to ground (L-) or an overcurrent is detected at one or more outputs of the modules. The signalling outputs are decoupled by means of diodes. Up to sixteen outputs can be connected in parallel. Make sure that galvanic isolation is not defeated by connecting outputs in parallel. To guarantee the function of the signalling output, the input 1L+ of the modules 6ES5 441-4UA1., 6ES5 451-4UA1. and 6ES5 454-4UA1. must be connected to 24 V . On the digital output modules 6ES5 453-4UA1. and 6ES5 457-4UA12 the floating signalling output must be supplied separately.

1.3.5 Function of the Enable Inputs

The modules of the U range incorporate enable circuits. The enable inputs can be used to interlock certain modules or switch individual modules off during operation of the programmable controller.

I/O modules whose order numbers end in ...-4U. 12 offer the additional feature of changing the enable mode. The modules are therefore equipped with a jumper located next to the addressing switch. It can be accessed from the top (see Fig. below).

1.3.5.1 With Active Enable Input (Factory Setting)

Modules with DC inputs or outputs are enabled by applying an external voltage to the inputs $\mathrm{F}+/ \mathrm{F}-$.

Modules with AC inputs or outputs are enabled by means of a jumper in the front connector.

The power supply of the enable inputs is interrupted when the front connector is detached from the front panel of the module; the module is thus switched off and no longer issues acknowledgement signals, i.e. the CC recognizes an acknowledgement delay (timeout).

Examples of the function of enable inputs:

- Individual subprocesses can be switched off individually with very little control power, i.e. the outputs of the individual module can be connected to a common load power supply unit and activated separately.
- The load voltage of each individual module can be monitored without any additional effort. Reactions to load power failures can be programmed in the QVZ (timeout) organization block as required.

The following must be noted when configuring the system:

Power on: Max. 100 ms after switching on the PC, voltage must be present at the enable inputs of the I / O modules.

Power off: After switching off the PC, the supply voltage must be present at the enable inputs of the I / O modules as long as the internal 5 V voltage is present.

Please note the following for switching off the $P C$ and the supply units for the enable inputs:

1. Switching off CCs/EUs and the load power supply simultaneously with $220-\mathrm{D}$ power supply

Proper functioning of the module is ensured if the $24-\mathrm{V}$ load power supply unit has at least a capacitance of 4700 uF connected at its output for every 10 A of load current.

Example: Load power supply 6EV1334-4AK (220 V/24 V, 10 A)
In units which do not fufil this condition, a capacitor of $10,000 / \mathrm{uF} / 40 \mathrm{~V}$ can be connected in parallel.

Example: Load power supply unit 6EV1352-5BK (380 V/24 V, 20 A) and load power supply 6EV1362-5BK (380 V/24 V, 40 A).

$10000 \mu \mathrm{~F} / 40 \mathrm{~V}$
with power supply $1352-5 \mathrm{BK}$
or
1362-5BK
2. Switching off the CGs/EUs and the load power supply separately or simultaneously

The following facilities are available for switching off the load power supply and the power supply for the enable inputs separately. In all these cases, simultaneous switching off and the use of a load power supply unit without additional capacitor are possible.

- 220-V power supply for CC/EU with load power supply

Enable inputs supplied by:
a) Load power supply unit 6ES5951-4LB11
b) Enable power supply unit 6ES5958-4UA11
c) Battery
d) $24 \mathrm{~V} / 0.4 \mathrm{~A}$ terminals on the front panel of the system power supply unit from versions 6ES5955-3LC14
-5LB11 onwards.

- 24 V power supply for $C C / E U$ and I/Os

Enable inputs supplied by:
a) Enable power supply 6ES5958-4UA11
b) Battery
c) $24 \mathrm{~V} / 0.4 \mathrm{~A}$ terminals on the front panel of the system power supply unit from versions 6ES5955-3NA12
-3NC13
-3NF11
-5NB11 onwards.

1.3.5.2 With Switched-off Enable Input
 (applies only to ...-4ण. 12 modules with open plug-in jumper)

If you do not wish to remove and plug in the modules during
operation the enable inputs ($\mathrm{F}+/ \mathrm{F}-$) need not be wired. The jumper for switching the enable mode is then to be removed.

The module is now functionally compatible with the compact and rugged I / O modules.

When the module is used in the programmable controllers 115 U (with processors 941 and 942) $130 \mathrm{~K}, 130 \mathrm{~W}$ and 135 U (S processor) it is advisable to operate the module with switched-off enable input. Else, when the front connector is removed (i.e. it is disconnected from the enable power supply unit) the programmable controller enters the stop state and signals acknowledgment delay (timeout).

1.3.5.3 Removing and Inserting of I/O Modules

- Active enable input:

Removing and inserting modules during operation is possible in the following programmable controllers:

S5-115 U (processors 943 and 944),
S5-135 U (R processor, S/R processor),
S5-150 K/S/U and
S5-155 U.

Important

If no enable signal is applied to the module or if the front connector or the module is removed, acknowledgment delay is signalled. All input data of this module is read as a "l" signal on the $\mathrm{S} 5-150 \mathrm{~S} / \mathrm{U}$ and the $\mathrm{S} 5-135$ with S and R processor and on all other programmable controllers and CPUs as a "0" signal.

- Switched-off enable input:

I/O modules may be removed or plugged in only if the CPU is in the stop state.

Important

When the front connector is removed no further acknowledgment delay is signalled by the module and all input data is read as a "O" signal.
When a module is removed all input data of this module is read as a "1" signal on the $\mathrm{S} 5-150 \mathrm{~S} / \mathrm{U}$ and the $\mathrm{S} 5-135$ with S and R processor and on all other programmable controllers and CPUs as a "0" signal.

The user must program the QVZ organization block to make sure that neither in the case of a fault nor during replacement of the module a dangerous condition can occur in the process or in the plant.

1.4 General Technical Specifications

Programming

```
Operand identifiers
    for inputs
    for outputs
Parameters
I = Input
Q = Output
0.0 to 255.7
```

Environmental conditions
Operating temperature ${ }^{1}$)
with fan
0 to $60{ }^{\circ} \mathrm{C}$
without fan 2)
Storage and transportation temperature
Relative atmospheric humidity

Max. altitude

Terminals

Power supply for inputs and outputs
Rated DC voltage of the module
Reference potential for DC voltage
Rated AC voltage of the module
Reference potential for AC voltage
Permissible length of cable for digital output modules

Enable inputs

Short-circuit signalling output

```
Max. permissible supply voltage
    at 24 V DC rated voltage (L+/L-)
    at 220 V AC rated voltage (L/N)
Ripple \(U_{p p}\) of the supply
voltage at rated DC voltage
```

L+
L-
L
N
The line impedance and the supply voltage tolerance should be noted, for the particular output current F+ (enable voltage cor-F- responding to the rated voltage of the module)
H+ (supply of 1L+, referred to L- of the module)

36 V DC for 100 ms
276 V AC for 100 ms
Max. 15\% 3)

Noise suppression at the $\quad \geq 1.5 \mathrm{~ms}{ }^{4}$)
digital inputs
Max. noise pulse duration of digital outputs
Protective circuits for inductive loads

```
\geq1.5 ms 4)
{ 1.5 ms 4) 5)
protective elements to limit the
cut-off voltage are available on
the digital output modules.
Additional arc suppression circuits
at the load are not required.
Exception: Relay output 458-4UAl
(see technical data).
```

1) Inlet temperature at the bottom of the subrack.
2) Spacing between PCBs 40 mm (1.6 in.).
${ }^{3}$) In the range of supply voltage the ripple is included.
3) Unless otherwise specified.
4) Must not cause the signal receiver (actuator) to respond.

1.5 Pin Assignments of the Backplane Connector

	d	b	z
2		0 V	+5 V
4		PESP	
6		ADB 0	$\overline{\text { CPKL }}$
8		ADB 1	MEMR
10		ADB 2	MEMW
12		ADB 3	RDY
14	$\overline{\text { IRA }}$	ADB 4	DB 0
16	IRB	ADB 5	DB 1
18	IRC	ADB 6	DB 2
20	IRD	ADB 7	DB 3
22	IRE		DB 4
24	IRF		DB 5
26	IRG		DB 6
28			DB 7
30		BASP	INT 1)
32		0 V	

ADB Address bus
BASP Command output disable CPKL CPU Ready
DB Data bus (bidirectional)
IR. Interrupt signal
INT Interrupt signal
MEMR Memory read
MEMW Memory write
PESP' I/O select signal
RDY Ready

1 Only for the module 6ES5 432-4U...

2 Installation

2.1 Withdrawing and Inserting Modules

Modules can be withdrawn and plugged in while the programmable controller is in operation without resulting in faults on the bus (see also Chapter 1.3.5).

Important: When removing or plugging in the front connector during operation, dangerous voltages ($>25 \mathrm{~V}$ AC or $>60 \mathrm{~V}$ DC) can be present at the pins of the module. If voltages of this magnitude are applied to the front connector (e.g. in the 435, 436,455 and 456 modules), the module may only be replaced by electricians or other trained personnel who can assure that the pins of the module are not touched.

To replace a module, proceed as follows:
Undo the screws of the top locking bar on the subrack and swing it up.

The front connector is forced out of the socket connector on the module by slackening a screw at the top of the front connector. This causes the $\mathrm{F}+$ and F - contacts of the enabling input at the top end of the front connector to be opened first. The outputs are thus dead and the module is disconnected from the $S 5$ bus (with active enable input only, see subsection 1.3.5.1).

The front connector can now be lifted out of the bottom bearing. The fork which fits into the bearing also acts as a coding key to prevent front connectors from being plugged onto the wrong modules (e.g. a 220 V AC front connector on modules with 24 V DC outputs).

The module is unlocked by turning a knob at the bottom end of the module through 90°. The module can then be pulled out of the subrack by means of the hinged extraction handle.

The module is plugged into the subrack in the reverse order.

Before plugging the front connector in, the module must be locked in position by turning the knob.

1 Screw
2 Front connector
3 Knob
4 Coding key
5 Extraction handle
6 Backplane connector
Fig. $620-\mathrm{mm}$ wide module and front connector with crimp snap-on contacts

2.2 Identification of Modules

The set of labelling strips is supplied with the modules for identifying them and the front connectors and a set of addressing lables is supplied with the central controller. The figure shows the arrangement of the labels. The address stickers are supplied already printed with the addresses. The strips for identifying the signal cable terminals can be labelled with a typewriter.

a Labelling strip with order number coloured to distinguish between the various module types, as well as fields for marking the revision status and for userspecific labelling of the channels.
Identification colours:
Digital input modules for DC voltages: blue
Digital input modules for AC voltages: red
Digital output modules for DC voltages:
green
Digital output modules for AC voltages:
orange
Always update the revision status when replacing modules.
b/c Labelling strip for terminal identification or terminal connection diagrams in the front connector
d Sticker with the address (output byte $Q B n$ or input byte $I B n$) under which the module is referenced in the STEP 5 program (adddress sticker supplied with PC) and for identifying the settings of the addressing switch
e Nameplate
f Jumper for adjusting the enable mode
Fig. 7 Module identification system

2.3 Installation Guidelines

The power supply and signal lines to the programmable controller and front connectors of the modules should be connected in keeping with VDE 0100,0110 and 0160 or local regulations.

If shielded cables are used, the cable shields should be connected to a shield bar in the immediate vicinity of the front connector. This bar should be connected to the housing of the programmable controller through a low resistance.

For details on the power supply, cabinet configuration, cabinet cooling, wiring and protective measures, please refer to the publication entitled "Installation guidelines".

3 Operation

3.1 Setting the Module Address

The module address is set on an addressing switch on the actual module.

The addresses for digital input modules (input bytes IB 0 to 255) and digital output modules (output bytes $Q B O$ to 255) is the sum of the binary significances obtained by pressing the individual switch toggles into the ON position (o).

The label with the desired module address is attached to a labelling field under the addressing switch (labels for all possible addresses are supplied together with the CC).

The switch toggles are identified by dots on the label to enable the module address specified as a decimal number to be set (IB n or $Q B \mathrm{n}$).

The individual toggles of the addressing switch can be pressed down with a ballpoint pen or similar pointed object (do not use a pencil).

Fig. 8 Labelling the addressing switch

The address byte under which the module is referenced by the STEP 5 program is slot-independent.

In the case of modules with 16 or 32 inputs or outputs, i.e. 2 or 4 bytes, only the lowest address (starting address) for the first byte is set in each case. The addresses of the following bytes of the same module are decoded on the module.

If, for example, the address 20 is set in the case of the 16 -bit module (2 bytes), the following address 21 is decoded internally and is no longer accessible. The next address will then be 22.

On a 32 -bit module (4 bytes) with the starting address 20 , the addresses 21,22 and 23 would be decoded internally. In this case, the next free address would be 24.

Addresses that have already been used must no longer be set. However, digital input and output modules can have the same address since they are distinguished by the $\overline{\text { MEMR }}$ and $\overline{\text { MEMW }}$ control signa1s.

Example 1 (Module address 23)

Digital input module with eight inputs (IB 23) or digital output module with eight outputs (QB 23).

The address is equal to the sum of the binary significances set with the individual coding switches:

$$
23=1+2+4+16=2^{0}+2^{1}+2^{2}+2^{4}
$$

Switch position "On" (pressed)

Example 2 (Module address 80)
Digital input module with 32 inputs (IB 80) or digital output module with 32 outputs (QB 80)

The address is equal to the sum of the binary significances set by means of the individual coding switches:

```
80=16+64=24}+\mp@subsup{2}{}{6
```


3.2 Connecting the Signal Leads

The modules have 20 or 42 -pin plug connectors with pins measuring 2.4 mm x 0.8 mm .

Front connectors for 20 and 40 mm (0.8 and 1.6 in.) mounting width for crimp snap-on connectors and 40 mm mounting width for screw terminals are provided for connecting the individual signal cables (see Fig. 9).

Stranded conductors should be used as these make it easier to work with the front connector. When the crimp snap-on contact is inserted into the plastic body, it clicks into place. This clicking indicates that the contact has locked into position. When marshalling the leads or changing a wrong connection, for instance, the contacts can be extracted by means of a special tool without having to pull out the front connector.

Core end sleeves are not required for the screw terminals since terminals already incorporate facilities to prevent severing of the conductors. However, 7 mm (0.3 in.) long end sleeves to DIN 46288 can be used ${ }^{1}$).

The terminals can take two conductors with cross-sectional areas of $2.5 \mathrm{~mm}^{2}$ (13 AWG).

Width of screwdriver blade: 3.5 mm .

Type of connection	Connector type 6ES5497-	Max. No. of poles	Cross-sectional area of signal of supply conductor	Connector for rated voltage	Fork width mm	Width of front connector	Module typ Type of with fan	e 6ES5... ration without fan
Crimp snap-on contact 1)	4UA12	42	$0.5 \ldots 1.5 \mathrm{~mm}^{2}$	5...60 V DC	12	20 mm	$\begin{aligned} & 420,430,431, \\ & 432,434,441, \\ & 451,458 \end{aligned}$	-
	4UA22	42	$0.5 \ldots 1.5 \mathrm{~mm}^{2}$	5...60 V DC	12	40 mm	453, 454, 457	$\begin{aligned} & 420,430,431, \\ & 432,434,441, \\ & 451,453, \\ & \text { (454), 457, } 458 \end{aligned}$
	4UA42	20	$0.5 \ldots 1.5 \mathrm{~mm}^{2}$	24... 240 V AC	14	40 mm	435, 436, 455, 456	
Screw terminal	4UB12	42	$0.5 \ldots 2 \times 2.5 \mathrm{~mm}^{2}$	5... 60 V DC	12	40 mm	$\begin{gathered} 420,430,431,432,434,441,451 \\ 453,(454), 457,458 \end{gathered}$	
	4UB22	25	$0.5 \ldots 2 \times 2.5 \mathrm{~mm}^{2}$	5...60V DC	12	40 mm	454	
	4UB42	20	$0.5 \ldots 2 \times 2.5 \mathrm{~mm}^{2}$	24... 240 V AC	14	40 mm	435, 436, 455, 456,	

Fig. 9 Terminating methods for front connectors

1) For order number and tools see Chapter 4

3.3 Connecting Outputs in Parallel and Switching the Load on via a contact

Important: Outputs must not be connected in parallel in order to increase the load.

- Digital output modules for DC

Two outputs of a module can be connected in parallel if they are decoupled by means of diodes (453).

An extra diode must be connected in the output lines of modules that do not contain diodes ($441,451,454$). Where the signal
statuses and power supplies of the two outputs differ, the maximum permissible output current corresponds to that of the output with the lower current.

The contact (e.g. for manual mode) is connected to one of the two L+ lines.

Fig. 10 Connecting DC outputs in parallel without load increase

- Digital output modules for AC

Outputs can be connected in parallel without increasing the load if they are connected to the same phase (L) and neutral conductor (N) .

The load per output must be at least 50 mA in order to maintain the permissible residual voltage for " 0 " signal. The maximum switching current of 2 A per load must not be exceeded.

The load can also be switched by means of a contact.

Fig. 11 Connecting AC outputs in parallel without increasing the load

3.4 Connecting Input/Output Modules to Two Power Supplies

The two examples below show the power supply of inputs and outputs of different modules from two different power supply units.

In the case of non-floating input/output modules, the negative poles (L-) of the power supplies are connected to system ground (M) since the inputs of the 420 module are already connected to M (0 V potential) on the module.

Fig. 12 Using two power supply units for non-floating input/ output modules

Fig. 13 Using two power supply units for floating input/output modules

In the case of floating modules, the inputs or outputs can be powered from two separate power supply units due to the fact that groups of input or outputs are isolated internally on the module.

It must be noted that, when connecting the inputs or outputs of two floating modules to one power supply unit, the modules are no longer isolated.

3.5 Short-circuit Protection and Fusing of DC Digital Output Modules

In addition to the electronic short-circuit protection, the module also has fuse links. These fuses also provide protection against polarity reversal of the power supply terminals.

The resistance R specified in the technical specifications for electronic short-circuit protection corresponds to the maximum permissible line impedance.

In the event of a short-circuit, 2 to 3 times the nominal output current flows briefly through the output before the clocked electronic short-circuit protection responds.

When selecting the load power supply unit, make sure that an adequate short-circuit current is available allowing for all output loads connected (number of outputs "On" simultaneously) (diversity factor).

In the case of non-stabilized load power supplies, this higher current is generally ensured.

With stabilized load power supplies, especially if the output loads are low, e.g. up to 20 A , an adequate short-circuit current level must be ensured.

4 Spare Parts

Designation	Order number	repairable (yes/no)	can be ordered from
Mini-snap-in contact (junior timer) supplied as bandolier single contacts	$\begin{aligned} & \text { 927973-3 } \\ & 927973-2 \text { or } \\ & 6 \text { XX3070 } \\ & \text { (in packs of } 250 \text {) } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	```AMP AMP see catalog ET 1```
Cramping tool	6XX3071	no	s. cat. ET 1
Core and sleeves	e.g. A2,5-7 (DIno46 228)	no	
Extraction tool	6ES5 497-4UC11	no	GWK
Labelling set for modules ${ }^{1}$)		no	GWK
6ES5 420-4UA11	C79451-A3079-C700		
-4UA12	C79451-A3079-C728		
6ES5 430-4UA11	C79451-A3079-C701		
-4UA12	C79451-A3079-C729		
6ES5 431-4UA11	C79451-A3079-C702		
-4UA12	C79451-A3079-C732		
6ES5 432-4UA11	C79451-A3079-C722		
-4UA12	C79451-A3079-C733		
6ES5 434-4UA11	C79451-A3079-C703		
-4UA12	C79451-A3079-C734		
6ES5 435-4UA11	C79451-A3079-C718		
-4UA12	C79451-A3079-C735		
6ES5 436-4UA11	C79451-A3079-C709		
-4UA12	C79451-A3079-C736		
6ES5 436-4UB11	C79451-A3079-C716		
-4UB12	C79451-A3079-C737		
6ES5 441-4UA11	C79451-A3079-C704		
-4UA12	C79451-A3079-C738		
6ES5 451-4UA11	C79451-A3079-C705		
-4UA12	C79451-A3079-C739		
6ES5 453-4UA11	C79451-A3079-C706		
-4UA12	C79451-A3079-C740		
6ES5 454-4UA11	C79451-A3079-C707		
-4UA12	C79451-A3079-C741		
6ES5 455-4UA11	C79451-A3079-C719		
-4UA12	C79451-A3079-C742		
6ES5 456-4UA11	C79451-A3079-C710		
-4UA12	C79451-A3079-C743		
6ES5 456-4UB11	C79451-A3079-C717		
-4UB12	C79451-A3079-C744		
6ES5 457-4UA12	C79451-A3079-C727		
6ES5 458-4UA11	C79451-A3079-C708		
-4UA12	C79451-A3079-C745		

1) Labelling sets for -4 U .12 will be delivered in lieu of those
for -4 U .11 if these are no longer available

Designation	Order number	repairable (yes/no)	can be ordered from
Labelling set for addresses	6ES5 497-4UD11	no	GWK
Arc-suppression module	6ES5 498-1AB11	no	GWK
Coding jumper (e.g. for 6ES5 432-4UA11 or for switching the enable mode	W79070-G2602-N2	no	GWK
Fuse for 6ES5 456-4UB12 3.5 A, quick/250V UL/CSA	W79054-L1021-F350	no	GWK
Fuse for 6ES5 455-4UA12 6ES5 456-4UA12 6.3 A, quick/250V	W79054-L1011-F630	no	GWK

5 Specifications of the Modules

5.1 Digital Input Module 6ES5420-4UA11 and 6ES5420-4UA12 (acc. to UL/CSA Requirements)

Rated input voltage	24 V DC
Number of inputs	32
Type of inputs	Non-floating
Input voltage	
"0" signal	-33 to 5 V
"l" signal	13 to 33 V
Rated input current	8.5 mA
Input frequency	max. 100 Hz
Delay	3 ms typ. (1.4 to 5 ms)
Input resistance	$2.8 \mathrm{kohms} \mathrm{(typ)}$.
Diversity factor	
(number of inputs	
"On" simultaneously)	100%
Permissible length of cable	max. 600 m, unshielded;
	$\operatorname{max.~} 1000 \mathrm{~m}$, shielded

Power supply

Digital section from system bus	5 V, typ. 80 mA
Supply voltage for	
2-wire BERO proximity limit switches	22 to 33 V
Enable input (F+)	
Rated input voltage	24 V DC
Input voltage	-33 to 5 V
"0" signal	13 to 33 V
"1" signal	5 mA
Reted input current	max. 200 m

Safety test

Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test to IEC 255-4

Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$; $1.2 / 50$ us waveform
Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$;
1 MHz

Physical data

Dimensions (WxHxD)
Approx. weight
$20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$ (0.8 in $x 10$ in $x 7.7$ in) $0.4 \mathrm{~kg}(1 \mathrm{lb}$.

L- of the power supply unit to reference potential (PE).

1) Enable mode switch (only applies to ...-4UA12),
jumper inserted: enable input is active (factory setting)
2) The connection is not internally connected. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: When connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).
3) The connection is not internally established. When connecting voltages in the input voltage area UL, CSA and the German standards (VDE) are met.

5.2 Digital Input Module 6ES5430-4UA11 and 6ES5430-4UA12 (acc. to UL/CSA Requirements)

```
Rated input voltage 24 V DC
Number of inputs
Type of inputs
Input voltage
    "0" signal
    "1" signal 1)
Rated input current
Input frequency
Delay
Response time
Input resistance
Diversity factor
(number of inputs
"On" simultaneously)
Permissible length of cable
32
Floating, 1 group with 32
inputs
    -3 to 7 V
13 to 33 V
7.0 mA
max. 100 Hz
3 ms typ. (1.4 to 5 ms)
6 ms typ. (4 to 10 ms)
100%
max. 600 m, unshielded;
max. 1000 m, shielded
```

Power supply

Digital section from system bus	5 V , typ. 100 mA
Supply voltage for	22 to 33 V
2 -wire BERO proximity limit switches	
Supply voltage L+/L- Current consumption from L+/L- $24 \mathrm{~V}(20$ to 30 V$)$ approx. 100 mA	

Enable input (F+/F-)
Rated input voltage 24 V DC
Input voltage
" 0 " signal
-33 to 5 V
"1" signal
13 to 33 V
Rated input current
5 mA
Permissible length of cable
$\max .200 \mathrm{~m}$

Safety test

```
Voltage test to
Group to casing: 1250 V AC
VDE 0160
Impulse voltage test to Input to L-: US = 1 kV;
IEC 255-4
RIV (radio interference voltage) test Input to L-: U US = 1 kV;
to IEC 255-4
1.2/50/us waveform
1 MHz
```


Physical data

Dimensions (WxHxD) $20 \mathrm{~mm} \mathrm{x} 255 \mathrm{~mm} \times 195 \mathrm{~mm}$ (0.8 in $x 10$ in $\times 7.7$ in)

Approx. weight
0.4 kg (1 1b.)

1) Polarity reversal of up to eight inputs per module permissible.

2) Enable mode switch (only applies to ...-4UAl2), jumper inserted: enable input is active (factory setting)
3) The connection is not internally connected. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: When connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).
4) The connection is not internally established. When connecting voltages in the input voltage area UL, CSA and the German standards (VDE) are met.

5.3 Digital Input Module 6ES5431-4UA11 and 6ES5431-4UA12 (acc. to UL/CSA Requirements)

Rated input voltage	24 V DC to 60 V DC
Number of inputs	16
Type of inputs	Floating, 16 inputs
Input voltage	
"0" signal	-33 to 8 V
"1" signal	13 to 72 V
Rated input current	$\begin{aligned} & 4.5 \text { to } 7.5 \mathrm{~mA} \\ & (24 \text { to } 60 \mathrm{~V} \mathrm{DC}) \end{aligned}$
Input frequency	max. 100 Hz
Delay	3 ms typ. (1.4 to 5 ms)
Diversity factor (number of inputs	
"On" simultaneously)	100\%
Permissible length of cable	max. 400 m , unshielded; max. 1000 m , shielded

Power supply

```
Digital section from system bus 5 V, typ. }90\textrm{mA
Supply voltage for
2-wire BERO proximity limit switches
Enable input (F+/F-)
\begin{tabular}{ll} 
Rated input voltage & 24 V DC to 60 V DC \\
Input voltage & \\
"0" signal & -72 to 8 V \\
"1" signal & 13 to 72 V \\
Rated input current & \(5 \mathrm{~mA} \mathrm{(at} 48 \mathrm{~V} \mathrm{DC})\) \\
Permissible length of cable & max. 200 m
\end{tabular}
```

5 V , typ. 90 mA 22 to 72 V

```
max. 200 m
```

Safety test

Voltage test to	Group to casing: $1250 \mathrm{~V} \mathrm{AC;}$
VDE 0160	Group to group: 1250 VAC
Impulse voltage test to	Input to L-: $\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV} ;$
IEC 255-4	$1.2 / 50 / \mathrm{us}$ waveform
RIV (radio interference voltage) test	Input to L-: $\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV} ;$
to IEC $255-4$	1 MHz

Physical data

Dimensions (WxHxD)

Approx. weight

Group to casing: 1250 V AC;
to group
$1.2 / 50$ us waveform
Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$;
1 MHz

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: When connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).
3) The connection is not established internally. When connecting voltages in the input voltage area UL, CSA and the German standards (VDE) are met.

5.4 Digital Input Module 6ES5432-4UA11 and 6ES5432-4UA12 (acc. to UL/CSA Requirements)

Rated input voltage
Number of inputs
Type of inputs
Input voltage
for "0" signal
for "l" signal
Rated input current
Input frequency
Delay (selectable)
Input resistance
Diversity factor
(number of inputs
"On" simultaneously)
Permissible length of cable

24 V DC
32
Floating, 4 groups with 32
inputs
-33 to 5 V
13 to 33 V
8.5 mA
$\max .100 \mathrm{~Hz} / 300 \mathrm{~Hz} / 1 \mathrm{kHz}$
$3 \mathrm{~ms} / 1 \mathrm{~ms} / 0.3 \mathrm{~ms}$
2.8 kohms (typ.)

100\%
max. 600 m , unshielded (3 ms) ; max. 200 m , unshielded (1 ms);
max. 50 m , unshielded (0.3 ms)

5 V , typ. 200 mA
22 to 33 V

24 V DC
Rated input voltage
Input voltage
" 0 " signal
"1" signal
Rated input current
Permissible length of cable

Safety tests

Voltage test to
VDE 0160
Impulse voltage test
IEC 255-4
RIV test to
to IEC 255-4

Physical data

Dimensions (WxHxD)
Approx. weight

Group to group: 1250 V AC Group to ground: 1250 V AC Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$; 1.2/50/us waveform Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$; 1 MHz
$20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$ (0.8 in x 10 in 7.7 in) $0.55 \mathrm{~kg}(1.2 \mathrm{lbs})$

Labelling of the module cover:

Example for the labelling of an input
(4) I 3.5
$|\mid+$ Input 5 (5th bit)
Possible: 0 to 7
Address of input
byte
Bytes (3rd byte);
Possible:
0 to 255^{2})
I = Input
4th group
(not specified in the address)
g $\quad=$ Green LED (status display)
F+/F- = Enabling input

1) Enable mode switch (on-
ly applies to ...-4UA12), jumper inserted: enable
input is active
(factory setting)
2) 128 to 255 for group signal and interrupt.
3) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained. Warning: these distances not adequate acc. to UL \& CSA when connecting voltages in input voltage area or above. (VDE/German permissible).
4) The connection is not established internally. UL, CSA and VDE standards are met when connecting voltages in input voltage area.

S4

5.5 Digital Input Module 6ES5434-4UA11 and 6ES5434-4UA12 (acc. to UL/CSA Requirements)

Rated input voltage (LH+)
Rated input voltage (L+)
Number of inputs
Type of inputs
Input voltage
TTL: for "0" signal for "1" signal
CMOS: for "0" signal for "1" signal
Rated input current
TTL: for "O" signal for "1" signal
CMOS: for "O" signal for "1" signal
NAMUR: for "O" signal for "1" signal
Internal resistance
Line impedance
Input frequency
Delay
Diversity factor
(number of inputs "On" simultaneously)
Permissible length of cable
TTL/CMOS
NAMUR

Power supply

```
Digital section from system bus
Supply voltage L+/L-
Current consumption from L+/L-
Current consumption from LH+/LH-
```

Enable input ($\mathrm{F}+/ \mathrm{F}-$)
Rated input voltage
Input voltage
for "0" signal
for "1" signal
Rated input current
Permissible length of cable

5 to 15 V DC
12 to 24 V DC (NAMUR) ${ }^{1}$)
32
Floating, 1 group with 32
inputs
0 to 0.8 V
2.4 to 5.0 V

0 V to $0.3 \mathrm{x} \mathrm{LH}+$
$0.7 \times \mathrm{LH}+$ to $1 \mathrm{x} \mathrm{LH}+$
$-1 \mathrm{~mA}$
0.1 mA or open input
-1 to -3 mA (5 to 15 V)
0.1 to $0.3 \mathrm{~mA}(5$ to 15 V)
$\leq 1.2 \mathrm{~mA}$
$\geq 2.1 \mathrm{~mA}$
1 kohm (typ.)
max. 50 ohms
max. 100 Hz
3 ms (typ.) (1.4 to 5 ms)
100\%
max. 200 m , unshielded
max. 600 m , unshielded

5 V , typ. 80 mA
24 V (20 to 30 V)
100 mA each
150 mA each at 15 V 2)

15 V DC
-15 to 2 V
4 to 33 V
5 mA
max. 100 m

1) NAMUR = Sensor with current output to DIN 19234 (Standards committee for instrumentation and control). The module is, however, not intrinsically safe.
2) As output, each can be loaded with 120 mA . The current consumption from $L+/ L$ - increases accordingly. Output voltage approx. 8.5 V .

Safety tests

```
Voltage test to
VDE 160
Impulse voltage test to
IEC 255-4
RIV test
to IEC 255-4
```

Group to earth: 1250 V AC
Physical data
Dimensions (WxHxD)
$20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$
(0.8 in x 10 in 7.7 in)
Approx. weight
Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$;
1.2/50/us waveform
Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}$;
1 MHz
module via the front connector and the power supply of the sen-
sors:

Sensor type	Bytes 0 and 1 (IO.O to I1.7)			Bytes 2 and 3 (I2.0 to I3.7)		
	1L+	1LH+	1LH-	2L+	2LH+	2LH-
NAMUR	$\begin{aligned} & \mathrm{L}+ \\ & (24 \mathrm{~V}) \end{aligned}$	Sensor supply	Jumper to L-	$\begin{aligned} & \text { L+ } \\ & (24 \mathrm{~V}) \end{aligned}$	Sensor supply	Jumper to L-
cmos	-	5... 15 V	-	-	5...15 V	-
TTL	-	5 V	-	-	5 V	-

With CMOS and TTL sensors the open inputs have signal "1" (LED lit).

g $\quad=$ Green LED (status display)
F+/F- = Enabling input

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained. Warning: when connecting voltages in input voltage area or above, these distances not adequate acc. to UL and CSA. (VDE permissible).

Example for the labelling of an input
(1)I 1.5

5.6 Digital Input Module 6ES5435-4UA11 6ES5435-4UA12 (acc. to UL/CSA Requirements)

```
Rated input voltage
Number of inputs
Type of inputs
Input voltage
    "0" signal 0 to 15 V AC
    "l" signal
Rated input current
    at 48 VAC
    at 60 V AC
Input current for two-wire BERO
proximity switch
    "0" signal
    "1" signal
Input frequency
Delay
    positive-going edge
    negative-going edge
Input resistance
Diversity factor
(number of inputs
"On" simultaneously)
    with fan
    without fan
Permissible length of cable
24 to 60 V AC (47 to 63 Hz)
1 6
Floating 2 groups of 8
inputs
20 to 72 AC
typ. 15 mA
typ. 20 mA
\leq 5 mA
\geq 1 0 ~ m A
Max. 20 Hz as pulse train
5 ms typ. (2 to 15 ms)
20 ms typ. (10 to 25 ms)
3 kohms (typ.)
100%
75% at 60 V;
100% at 35 '}\mp@subsup{}{}{\circ}\textrm{C
100% at 30 V
max. 600 m, unshielded;
max. 1000 m, shielded
```


Power supply

Digital section from system bus

Enable input (F+/F-)

Safety test

Voltage test to
VDE 0160
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test to IEC 255-4

Physical data

Dimensions (WxHxD)
Approx. weight

5 V , typ. 100 mA

Jumper in front connector Group to casing: 1500 V AC Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}$; $1.2 / 50$ us waveform Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}$; 1 MHz
$40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$ (0.8 in $x 10$ in 7.7 in) 0.55 kg (1.2 lbs)

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
```
5.7 Digital Input Module 6ES5436-4UA11 and
    6ES5436-4UA12 (acc. to UL/CSA Requirements)
```

Rated input voltage
Number of inputs
Type of inputs
Input voltage
"0" signal
"1" signal
Rated input current
at 115 V AC
at 240 V AC

Input frequency
Delay
on positive-going edge
on negative-going edge
Input resistance
Diversity factor
(number of inputs
"On" simultaneously)
with fan
without fan

Permissible length of cable

115 to 240 V AC
(47 to 63 Hz)
16
Floating, 2 groups of 8
inputs

0 to 60 V AC
90 to 264 V AC
typ. 15 mA
typ. 25 mA
(2-wire BERO proximity
switch can be connected)
max. 20 Hz as pulse train
typ. 5 ms (2 to 15 ms)
typ. 20 ms (10 to 25 ms)
typ. 10 kohms

100\%
75% at 240 V AC;
100% at $35{ }^{\circ} \mathrm{C}$;
100\% at 115 V AC
max. 600 m , unshielded;
max. 1000 m, shielded

Power supply

Digital section from system bus

Enabling input ($\mathrm{F}+/ \mathrm{F}-$) Jumper in front connector

Safety test

Voltage test to Group to group: 2000 V AC VDE 0160
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test to IEC 255-4 Group to ground: 1500 V AC Input of $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}$; 1.2/50/us waveform Input to $\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}$; 1 MHz

Physical data

Dimensions (WxHxD) $40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}$ (1.6 in $x 10$ in $x 7.7$ in) 0.55 kg (1.2 lbs)

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)

5.8 Digital Input Module 6ES5436-4UB11 and 6ES5436-4UA12 (acc. to UL/CSA Requirements)

```
Rated input voltage
Number of inputs
Type of inputs
Input voltage
    "0" signal 0 to 60 V AC
    "1" signa1 90 to 264 V AC
Rated input current
    at 115 V AC
    at 240 V AC
Input frequency
Delay
    on positive-going edge
    on negative-going edge
Input resistance
Diversity factor
(number of inputs
"On" simultaneously)
Permissible length of cable
```

115 to 240 V AC

```
115 to 240 V AC
(47 to 63 Hz)
(47 to 63 Hz)
8
8
typ. 15 mA
typ. 15 mA
typ. 25 mA
typ. 25 mA
(two-wire BERO proximity
(two-wire BERO proximity
switch can be connected)
switch can be connected)
max. 20 Hz as pulse train
max. 20 Hz as pulse train
typ. 5 ms (2 to 15 ms)
typ. 5 ms (2 to 15 ms)
typ. 20 ms (10 to 25 ms)
```

typ. 20 ms (10 to 25 ms)

```
```

Floating, 8 inputs

```
Floating, 8 inputs
typ. 10 kohms
typ. 10 kohms
100%
100%
max. 600 m, unshielded;
max. 600 m, unshielded;
max. 1000 m, shielded
```

max. 1000 m, shielded

```

\section*{Power supply}

Digital section from system bus 5 V , typ. 80 mA

Enabling input ( \(F+/ F-\) ) Jumper in front connector

\section*{Safety test}
```

Voltage test to VDE 0160
VDE 0160/UL 508
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test
to IEC 255-4
Group to group: 2000 V AC;
Group to ground: 1500 V AC
Input to L-: U}\mp@subsup{\textrm{U}}{\textrm{S}}{}=2.5\textrm{kV}\mathrm{ ;
1.2/50/us waveform
to L-. Us = 2.5 kV;

```

\section*{Physical data}

Dimensions (WxHxD) \(\quad 40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) ( 0.8 in \(x 10\) in 7.7 in)
Approx. weight

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. When connecting voltages in the input voltage area UL, CSA and the German standards (VDE) are met.

\subsection*{5.9 Digital Output Module 6ES5441-4UAll and 6ES5441-4UA12 (acc. to UL/CSA Requirements)}
```

Rated input voltage L+
Number of outputs
Type of outputs
Supply voltage range
Fusing
Output voltage
"1" signal
"0" signal
Switching current
(resistive, inductive load)
Leakage current at "0" signal
Lamp switching current
Switching frequency
resistive load
inductive load
Voltage induced on circuit
interruption
Total switching current
Diversity factor
(number of inputs
"On" simultaneously)
with fan
without fan
Permissible length of cable
24 V DC
32, current limited ${ }^{1}$)
Non-floating
20 to 30 V DC
6.3 A , slow
1 fuse per 8 outputs
min. L+ - 1.5 V
Max. 3 V
5 mA to 0.5 A
Max. 0.5 mA
Max. 0.22 A (5 W)
Max. 100 Hz
Max. 2 Hz at 0.3 A;
Max. 0.5 Hz at 0.5 A
Limited to L+ - 47 V
Max. 4 A per 8 outputs

```

Power supply
Digital section from system bus
5 V , typ. 80 mA
Current consumption from L+/L-
24 V , typ. 150 mA

Enabling input (F+)
Rated input voltage
24 V DC
Input voltage
"1" signal
13 to 33 V
"0" signal
-33 V to 5 V
Rated input current
Permissible length of cable
5 mA
Max. 200 m

Short-circuit monitoring (F+)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Indication for \\
signal output (H+)
\end{tabular} & Red LED for groups of 8 outputs \\
\hline Output voltage referred to L(supply of 1L+) & \\
\hline "1" signal & Min. 1L+ - 5 V \\
\hline "0" signal & Max. 3 V \\
\hline Switching current & Max. 10 mA , limited \\
\hline 1) Short-circuit protection re \(\leq 15\) ohms. & line resistance \\
\hline
\end{tabular}

\section*{Safety tests}
```

Impulse voltage test to
IEC 255-4
RIV test to
IEC 255-4

```

\section*{Physical data}

Dimensions (WxHxD)
Approx. weight

Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\) \(1.2 / 50\) /us waveform
Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\);
1 MHz
\(20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (0.8 in x 10 in \(x 7.7\) in) 0.45 kg ( 1.1 lbs )


Connect L- of power supply unit to system ground (M)
1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).

\subsection*{5.10 Digital Output Module 6ES5451-4UA11 and 6ES5451-4UA12 (acc. to UL/CSA Requirements)}

Rated input voltage
Number of outputs
Type of outputs

Supply voltage range
Fusing

Output voltage
"1" signal
"0" signal
Switching current
(resistive, inductive load)
Leakage current at "0" signal
Lamp switching current
Switching frequency
Resistive load
Inductive load

Voltage induced on circuit
interruption
Total switching current
Diversity factor
(number of outputs
"On" simultaneously)
with fan
without fan
Permissible length of cable

\section*{Power supply}

Digital section from system bus
Current consumption from L+/L-

\section*{Enable input ( \(\mathrm{F}+/ \mathrm{F}-\) )}

Rated input voltage
Input voltage
"1" signal
"0" signal
Rated input current
Permissible length of cable

\section*{Short-circuit monitoring}
\begin{tabular}{ll} 
Indication for & Red LED for groups of 8 \\
signal output (H+) & \\
output voltage referred to L- \\
(supply of \(1 \mathrm{~L}+\) ) & \\
"1" signal & \\
"0" signal & \(\min .1 \mathrm{Lt}-5 \mathrm{~V}\) \\
Switching current & \(\max .3 \mathrm{~V}\) \\
max. \(10 \mathrm{~mA}, ~ l i m i t e d ~\)
\end{tabular}
1) Short-circuit protection responds at line resistance \(\leq 15\) ohms.

\section*{Safety test}

Voltage test to
VDE 0160
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage)
test to IEC 255-4

Physical data

Dimensions (WxHxD)
Approx. weight

Group to group: 1250 V AC;
Group to casing: 1250 V AC
Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\);
\(1.2 / 50\) /us waveform
Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\);
1 MHz
\(20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (0.8 in \(x 10\) in 7.7 in) 0.45 kg (1.1 lbs )

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).

\subsection*{5.11 Digital Output Module 6ES5453-4UA11 and 6ES5453-4UA12 (acc. to UL/CSA Requirements)}

Rated supply voltage L+
Number of outputs
(decoupled via diodes)
Type of outputs
Supply voltage range
Fusing
Output voltage
"1" signal: (L+) switch
(L-) switch
"O" signal: (L+) switch
(L-) switch
Switching current
(resistive, inductive load)
Leakage current at " 0 " signal
Lamp switching current
Switching frequency
Resistive load
Inductive load
Voltage induced on
circuit interruption
Diversity factor
(number of outputs
"On" simultaneously)
with fan
without fan
Permissible length of cable

\section*{Power supply}

Digital section from system bus

\section*{Enable input ( \(\mathrm{F}+/ \mathrm{F}-\) )}

Rated input voltage
Input voltage
"1" signal
"0" signal
Rated input current
Permissible length of cable

\section*{Short-circuit monitoring}

Indication for
Signal output ( \(\mathrm{H}+\mathrm{H}, \mathrm{H}\) ), floating
Output voltage at L+ switch
"1" signal
"0" signal
Switching current

24 V DC
16, current-limited \({ }^{1}\) )
Floating, 16 outputs
20 to 30 V DC
16 x 2.5 A , slow
min. L+ - 2.5 V
\(\max .2 .5 \mathrm{~V}\)
\(\max .3 \mathrm{~V}\)
min. L+ - 3 V
10 mA to \(2.0 \mathrm{~A}^{2}\) )
\(\max .1 \mathrm{~mA}\)
\(\max .0 .45 \mathrm{~A}(10 \mathrm{~W})\)
\(\max .100 \mathrm{~Hz}\)
\(\max .0 .2 \mathrm{~Hz}\) at 1 A ;
0.1 Hz at 2 A

Limited to L+ - 47 V

100\%
\(25 \%\); \(50 \%\) to \(20{ }^{\circ} \mathrm{C}\)
max. 400 m , unshielded;

5 V , typ. 120 mA

24 V DC
13 V to 33 V
-33 V to 5 V
5 mA
max. 200 m

Red LED for 16 outputs
```

min. L+ - 5 V
max. 3 V
max. 10 mA, limited

```
1) Short-circuit protection responds at line resistance \(\leq 3.6\) ohms
2) One digital input permissible as a minimum load

\section*{Safety test}
\begin{tabular}{|c|c|}
\hline Voltage test to & Group to group: \\
\hline \multirow[t]{5}{*}{VDE 0160} & 500 V AC (in -4UA11) ; \\
\hline & 1250 V AC (in -4UA12); \\
\hline & Group to ground: \\
\hline & 500 V AC (in -4UA11) ; \\
\hline & 1250 V AC (in -4UA12) ; \\
\hline Impulse voltage test to & Output to L-: \(\mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\); \\
\hline IEC 255-4 & 1.2/50/us waveform \\
\hline RIV (radio interference voltage) test to IEC 255-4 & ```
Output to L-: US = 1 kV;
1 MHz
``` \\
\hline
\end{tabular}

\section*{Physical data}

Dimensions (WxHxD)

Approx. weight

Group to group:
500 V AC (in -4UA11);
1250 V AC (in -4UA12);
Group to ground:
00 V AC (in -4UA11);
AC (in -4UA12)
\(1.2 / 50\) /us waveform

1 MHz
\(40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (0.8 in \(x 10\) in \(x 7.7\) in)
0.6 kg (1.3 lbs)

1) Enable mode switch (only applies to ...-4UAl2), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).

\subsection*{5.12 Digital Output Module 6ES5454-4UA11 and 6ES5454-4UA12 (acc. to UL/CSA Requirements)}

Rated input voltage L+
Number of outputs
Type of outputs

Supply voltage range
Fusing
Output voltage
"1" signal
"0" signal
Switching current
(resistive, inductive load)
Leakage current at "0" signal
Lamp switching current
Switching frequency
Resistive load
Inductive load
Voltage induced on circuit
interruption
Total switching current
Diversity factor
(number of outputs
"On" simultaneously)
Permissible length of cable

Power supply
Digital section from system bus
Current consumption from L+/L-

Enable input (\(F+\))
Rated input voltage
Input voltage
"1" signal
"0" signal
Rated input current
Permissible length of cable

\section*{Short-circuit monitoring}

Indication for
signal output (H+)
Output voltage referred to L-
(supply of 1L+)
"1" signal
"0" signal
Switching current

24 V DC
16, current limited \({ }^{1}\))
Floating, 1 group of 16
outputs
20 to 30 V DC
6.3 A, slow;

1 fuse per 4 outputs
min. L+ - 2 V
max. 3 V
10 mA to \(2 \mathrm{~A}^{2}\))
max. 1 mA
\(\max .0 .45 \mathrm{~A}(10 \mathrm{~W})\)
\(\max .100 \mathrm{~Hz}\)
\(\max .0 .2 \mathrm{~Hz}\) at 1 A ;
\(\max .0 .1 \mathrm{~Hz}\) at 2 A
Limited to L+ - 47 V
max. 4 A per 4 outputs

50\%
max. 400 m , unshielded;

5 V , typ. 100 mA
24 V , typ. 100 mA

24 V DC
13 to 33 V
-33 to 5 V
5 mA
max. 200 m
1) Short-circuit protection responds at line resistance \(\leq 4.75\) ohms
2) One digital input permissible as a minimum load

\section*{Safety tests}
```

Voltage test to Group to group: 1250 V AC;
VDE 0160
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test Output to L-: US = 1 kV;
to IEC 255-4
1 MHz

```

\section*{Physical data}
\begin{tabular}{ll}
Dimensions (WxHxD) & \(40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) \\
& \((1.6 \mathrm{in} \times 10 \mathrm{in} 7.7 \mathrm{in})\) \\
Approx. weight & \(0.55 \mathrm{~kg}(1.1 \mathrm{bs})\)
\end{tabular}

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).

\subsection*{5.13 Digital Output Module 6ES5455-4UA11 and 6ES5455-4UA12 (acc. to UL/CSA Requirements)}

Rated supply voltage \(L\)
Number of outputs
Type of outputs
Supply voltage range
Fusing

Output voltage
"1" signal
"O" signal (leakage current)
Switching current
(resistive, inductive load) with fan
without fan

Lamp switching current with fan
without fan

Max. inrush current
\(\leq 3 \mathrm{~ms}\)
\(\leq 20 \mathrm{~ms}\)
\(\leq 50 \mathrm{~ms}\)
Permissible length of cable

\section*{Power supply}

Digital section from system bus

Enabling input (\(\mathrm{F}+/ \mathrm{F}-\))

\section*{Safety tests}

Voltage test to
VDE 0160/UL 508
Impulse voltage test to
IEC 255-4
RIV test
to IEC 255-4

Physical data
Dimensions (WxHxD)

Approx. weight

24 to \(60 \mathrm{~V} \mathrm{AC} \mathrm{(47} \mathrm{to} 63 \mathrm{~Hz}\)) 16, conditionally currentlimited \({ }^{1}\))
Floating, 2 groups, 8 outputs each
20 to 72 V AC
6.3 A, fast;

1 fuse per 4 outputs
min. L - 1.5 V
max. 5 mA

40 mA to 2 A ;
max. 6 A per 4 outputs
40 mA to 1 A ;
max. 4 A per 4 outputs

40 mA to 2 A ;
max. 2.5 A per 4 outputs 40 mA to 1 A ;
max. 2.5 A per 4 outputs
25 A/group
\(15 \mathrm{~A} /\) group
\(13 \mathrm{~A} / \mathrm{group}\)
max. 300 m , unshielded;

5 V , typ. 100 mA

Jumper in front connector

Group to group: 2000 V AC; Group to ground: 1500 V AC Output to L-: \(\mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); \(1.2 / 50\) us waveform Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); 1 MHz
\(40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (1.6 in x 10 in x 7.7 in) approx. 0.7 kg (1.5 lbs)
1) Fused protection

1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)

\subsection*{5.14 Digital Output Module 6ES5456-4UA11 and 6ES5456-4UA12 (acc. to UL/CSA Requirements)}

Rated supply voltage L
Number of outputs

Type of outputs
Supply voltage range
Fusing

Output voltage
"1" signal
"0" signal (leakage current)
Switching current
(resistive, inductive load)
with fan
without fan

Lamp switching current
with fan
without fan

Contactor size
per fuse group
for all outputs

Max. inrush current
\(\leq 3 \mathrm{~ms}\)
\(\leq 20 \mathrm{~ms}\)
\(\leq 50 \mathrm{~ms}\)
Permissible length of cable

115 to \(240 \mathrm{~V} \mathrm{AC} \mathrm{(} 47\) to 63 Hz)
16, conditionally currentlimited \({ }^{1}\))
Floating, 2 groups, 8 outputs each 88 to 264 V AC
6.3 A, fast;

1 fuse per 4 outputs
min. L - 1.5 V
\(\max .5 \mathrm{~mA}\)

40 mA to \(2 \mathrm{~A} ;{ }^{2}\))
max. 6 A per 4 outputs
40 mA to \(1 \mathrm{~A} ;{ }^{2}\))
max. 4 A per 4 outputs
40 mA to 2 A ;
max. 2.5 A per 4 outputs 40 mA to 1 A ;
max. 2.5 A per 4 outputs
00 (type 3TB40) to
14 (type 3TB58) at 240 V AC
00 (type 3TJ..) to
10 (type 3TB54) at 115 V AC
0 (type 3TB40) to
8 (type 3TB52) at 240 V AC
00 (type 3TJ..) to
4 (type 3TB48) at 115 V AC
25 A/group
15 A/group
13 A/group
max. 300 m , unshielded;

Power supply
\begin{tabular}{ll}
Digital section from system bus & 5 V, typ. 100 mA \\
Enabling input (\(\mathrm{F}+/ \mathrm{F}-)\) & Jumper in front connector
\end{tabular}

\section*{Safety tests}
\begin{tabular}{|c|c|}
\hline Voltage test to & Group to group: 2000 V AC; \\
\hline VDE 0160/UL 508 & Group to ground: 1500 V AC \\
\hline Impulse voltage test to & Output to L-: \(\mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); \\
\hline IEC 255-4 & 1.2/50/us waveform \\
\hline RIV (radio interference voltage) test & Output to L-: \(\mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); \\
\hline to IEC 255-4 & 1 MHz \\
\hline
\end{tabular}
1) Fused protection
2) 3TJ-type contactors can only be triggered at 115 V AC

\section*{Physical data}

Dimensions (WxHxD)
Approx. weight
\(40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (1.6 in \(\times 10\) in \(\times 7.7\) in)
0.7 kg (1.5 lbs)

Example for the labelling of an output:
(2) Q 1.6
 Address of output byte (lst byte); Possible: 0 to 255 \(Q=\) Output 2nd terminal (not specified in the address)
```

g = Green LED (status display)
r = Red LED (fuse indicator)
F+/F- = Enabling input (jumper in front connector)

```
1) Enable mode switch (only applies to ...-4UA12), jumper inserted: enable input is active (factory setting)

\subsection*{5.15 Digital Output Module 6ES5456-4UB11 and 6ES5456-4UB12 (acc. to UL/CSA Requirements)}
```

Rated supply voltage
Number of outputs
Type of outputs
Supply voltage range
Fusing
Output voltage
"1" signal
"0" signal
Switching current
with fan
without fan
Lamp switching current
with fan
without fan
Contactor size, applies
to -4UB11/-4UB12
only to -4UB11
on1y to -4UB12
Max. inrush current
\leq 3 ms
\leq 20 ms
\leq 50 ms
Switching capacity per module
for UL
for CSA
Permissible length of cable

```
```

115 to 240 V AC

```
115 to 240 V AC
(47 to 63 Hz)
(47 to 63 Hz)
8, conditionally current-
8, conditionally current-
limited 1)
limited 1)
Floating, 8 outputs
Floating, 8 outputs
88 to 264 V AC
88 to 264 V AC
6.3 A, fast (in -4UB11);
6.3 A, fast (in -4UB11);
3.5 A, fast (in -4UB12;
3.5 A, fast (in -4UB12;
UL/CSA)
UL/CSA)
1 fuse per output
1 fuse per output
min. L - 1.5 V
min. L - 1.5 V
max. 5 mA
max. 5 mA
40 mA to 2 A; 2)
40 mA to 2 A; 2)
40 mA to 1 A; 2)
40 mA to 1 A; 2)
40 mA to 2 A;
40 mA to 2 A;
40 mA to 1 A;
40 mA to 1 A;
0 (type 3TB40) to
0 (type 3TB40) to
14 (type 3TB58) at 240 V AC
14 (type 3TB58) at 240 V AC
00 (type 3TJ..) to
00 (type 3TJ..) to
10 (type 3TB54) at 115 V AC
10 (type 3TB54) at 115 V AC
00 (type 3TJ..) to
00 (type 3TJ..) to
8 (type 3TB52) at 115 V AC
8 (type 3TB52) at 115 V AC
-4UB11 -4UB12
-4UB11 -4UB12
25 A 16 A
25 A 16 A
15 A 8 A
15 A 8 A
13 A 6.5 A
13 A 6.5 A
max. 1440 VA
max. 1440 VA
max. 2000 VA
max. 2000 VA
max. 300 m, unshielded;
```

max. 300 m, unshielded;

```

Power supply

Digital section from system bus

Enabling input (\(\mathrm{F}+/ \mathrm{F}-\))

\section*{Safety tests}

Voltage test to
VDE 0160
Impulse voltage test to
IEC 255-4
RIV (radio interference voltage) test to IEC 255-4

5 V , typ. 100 mA

Jumper in front connector

Group to group: 2000 V AC; Group to ground: 1500 V AC Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); 1.2/50/us waveform Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=2.5 \mathrm{kV}\); 1 MHz
1) Fused protection
2) 3 TJ -type contactors can only be triggered at 115 V AC

\section*{Physical data}

Dimensions (WxHxD)
\(40 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (1.6 in \(x 10\) in \(x 7.7\) in)
\(0.6 \mathrm{~kg}(1.3 \mathrm{lbs})\)
Approx. weight

1) Enable mode switch (only applies to ...-4UB12), jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. When connecting voltages in the input voltage area UL, CSA and the German standards (VDE) are met.

\section*{5. 16 Digital Output Module 6ES5457-4UA12 (acc. to UL/CSA Requirements)}

Rated supply voltage L+
Number of outputs (isol. via diodes)
Type of outputs
Supply voltage range
Fusing
Output voltage
"1" signal: (L+) switch
(L-) switch
"0" signal: (L+) switch
(L-) switch
Switching current
(resistive, inductive load)
Leakage current at "0" signal
Lamp switching current
Switching frequency
Resistive loads
Inductive loads (\(\leq 50 \mathrm{~mA}\))
Voltage induced on circuit
interruption
Diversity factor
with fan
without fan
Permissible length of cable

Power supply

Digital section from system bus

\section*{Enabling input (\(\mathrm{F}+/ \mathrm{F}-\))}
```

Rated input voltage
Input voltage
"1" signal
"0" signal
Rated input current
at 24 V DC
at 48 V DC
at 60 V DC
Permissible length of cable
24 to 60 V DC
13 to 72 V
-72 to 8 V
2.5 mA
5 mA
6.5 mA
max. 200 m

```

\section*{Short-circuit monitoring}
```

Indication
Signal output (H+,H-),
Output voltage referred to L+ switch
"1" signal
"0" signal
Switching current

```
Red LED for 16 outputs
1) Short-circuit protection responds at line resistance \(\leq 9\) ohms
at 24 V DC, \(\leq 30\) ohms at 60 V DC
2) One digital input is permissible for minimum load
min. L+ - 5 V
\(\max .3 \mathrm{~V}\)
max. 10 mA , short-circuit
 proof

\section*{Safety tests}

Voltage test to
VDE 0160
Impulse voltage test to
IEC 255-4
RIV test to
IEC 255-4

Group to group: 1250 V AC;
Group to ground: 1250 V AC
Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\);
1.2/50/us

Output to \(\mathrm{L}-: \mathrm{U}_{\mathrm{S}}=1 \mathrm{kV}\); 1 MHz

\section*{Physical data}

Dimensions (WxHxD)
Approx. weight

\(20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (0.8 in \(x 10\) in \(\times 7.7\) in) 0.6 kg (1.3 lbs)

Example for the labelling of an output:
(7) Q 0.6
 Address of output byte (Oth byte); Possible: 0 to 255
\(\mathrm{Q}=\) output
7st terminal L+ (not specified in the address)
1) Enable mode switch
jumper inserted: enable input is active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above, these distances are, according to UL and CSA, not adequate. (But according to German standards (VDE) permissible).

\subsection*{5.17 Digital Output Module 6ES5458-4UA11 and 6ES5458-4UA12 (acc. to UL/CSA Requirements)}
```

Rated supply voltage L+
Number of outputs
Type of outputs
Supply voltage range
Fusing
Output
Switching capacity for
resistive loads
with arc suppression
without arc suppression
Service life of contacts
Switching current (inductive loads)

```
Lamp switching current
Switching frequency
 Resistive loads
 Inductive loads
Diversity factor
(number of outputs "On"
simultaneously)
Permissible length of cable

\section*{Power supply}
Digital section from system bus
Current consumption from L+/L-

\section*{Enabling input (\(\mathrm{F}+/ \mathrm{F}-\))}

Rated input voltage
Input voltage
"1" signal
"0" signal
Rated input current
Permissible length of cable

\section*{Safety tests}
\begin{tabular}{ll}
Voltage test to & Group to group: \(500 \mathrm{~V} \mathrm{AC} ;\) \\
VDE 0160/UL & Group to ground: 500 V AC \\
Impulse voltage test to & Output to L-: U \(=1 \mathrm{kV} ;\) \\
IEC 255-4 & \(1.2 / 50 / \mathrm{us}\) \\
RIV test to & Output to L-: \(U_{S}=1 \mathrm{kV} ;\) \\
IEC 255-4 & 1 MHz
\end{tabular}
1) The fuse does not protect the contact. If overloaded, the relay must be replaced
2) For UL, resistive loads of max. \(50 \mathrm{~V} / 0.5 \mathrm{~A}\)

Physical data

Dimensions (WxHxD)
Approx. weight
\(20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\) (0.8 in \(x 10\) in \(\times 7.7\) in) 0.45 kg (1 1b.)

\(\mathrm{g} \quad=\) Green LED (status display)
\(\mathrm{F}+/ \mathrm{F}-=\) Enable input

Example for the labelling of an output:
(1) Q 0.1
\(\left|\left\lvert\, \begin{array}{r}+\quad \begin{array}{r}\text { Output } 1 \\ \text { (1st bit) }\end{array} ; ~ ; ~\end{array}\right.\right.\) Possible: 0 to 7 Address of output byte (Oth byte); Possible: 0 to 255 \(\mathrm{Q}=\) output 2nd group (not specified in the address)

Arc-suppression module 6ES5498-1AB11
(four RC elements per module):
1) Enable mode switch (only applies to ...-4UAl2), jumper inserted: enable input active (factory setting)
2) The connection is not established internally. Creepage and ventilation paths of 0.8 mm have been retained.
Warning: when connecting voltages in the input voltage area or above these distances are not adequate according to UL \& CSA. (But permissible acc. to German standards (VDE)).
3) The connection is not established internally. When connecting voltages in the input voltage area UL, CSA \& VDE standards are met.

External arc suppression for inductive load:
- For DC:

M switch;

P switch;
- For AC:

\section*{6 Addressing the Input and Output Modules}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{17}{|l|}{Significance Byte address} \\
\hline & & & & & & & & & & & & & & & & & \begin{tabular}{|c|c|}
\hline 1 & 0 \\
\hline & 0 \\
\hline & 0 \\
\hline & \\
\hline
\end{tabular} \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & \\
\hline
\end{tabular} & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular} & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & + \\
\hline
\end{tabular} & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular} & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & \(\cdot\) & & \\
\hline
\end{tabular} & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & 0 & & \\
\hline
\end{tabular} & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular} & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 \\
\hline C & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline \hline & & & \\
\hline
\end{tabular} & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 \\
\hline , & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline 0 & & & \\
\hline
\end{tabular} & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline 0 & & & \\
\hline & & & \\
\hline
\end{tabular} & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 \\
\hline & & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 & 191 \\
\hline & \begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular} & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 \\
\hline & & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 \\
\hline & & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 & 237 & 238 & 239 \\
\hline (& \begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline & 0 & & & \\
\hline
\end{tabular} & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253 & 254 & 255 \\
\hline & 8 Channels
16 Channels
32 Channels & x
x
x & x & x & x & x
x
x & x & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & x & x
x
x & x & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & x & X
x
x & x & x & x \\
\hline
\end{tabular}
1) Address range for digital input and digital output modules whose signals bypass the process image

Switch position
ON \begin{tabular}{l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}
Significance

\section*{7 Example of a Label}

\section*{SIEMENS}

\section*{SIMATIC S5 \\ Digital Input and Output Modules \\ 6ES5 482-4UA11 DI/DO 482}

Fig. 1 DI/DO 482
Contents Page
1 Technical Description 3
1.1 Application 3
1.2 Design 3
1.3 Mode of Operation 4
1.3.1 Digital Input 4
1.3.2 Digital Output 6
1.3.3 Alarm Output 8
1.3.4 Release Input 8
1.3.5 Synchronization Input/Output 9
1.4 Technical Data 10
1.5 Pin Assignment of the Local Bus Interface 14
1.6 Pin Assignment of the S5 Bus Interface 15
1.7 Front Connector and Diode Strip Pin Assignment 16
2 Installation 17
2.1 Removing and Inserting Modules 17
2.2 Connecting Signal Lines 18
2.3 Installation Guidelines 18
3 Operation 19
3.1 Selecting the Bus Interface 19
3.2 Setting the Module Address 19
3.3 Address Area of the Module 20
3.4 Parallel Wiring of Outputs and Switching on the Load via a Contact 21
3.5 Electrical Isolation and Distribution of the Channels 21
\(3.6 \quad\) Switching over the I/O Byte (Channels 9 to 16) 21
3.7 Short Circuit Protection and Fusing the Digital Output 22
4 Spare Parts 23
5 Page Overview 24

\section*{1 Technical Description}

\subsection*{1.1 Application}

The digital input/output module 6ES5 482-4UA11 is a process interface module which allows the processing of process signals in conjunction with the intelligent \(I / O\) module \(\mathbb{P} 257\) in the SIMATIC S5 programmable controllers 135 U and 155 U and the expansion units EG 185 U and EG 185U. It is also possible to operate the DI/DO 482 without the \(\mathbb{P} 257\) in the S5 130KW. 135U and 155U and corresponding EUs.

With the digital input, the external process signals are matched to the interface signal level of the programmable controllers. Disturbances are suppressed and brief overvoltage peaks are reduced. The digital output converts the internal signal level of the unit to the external process signals.

The DI/DO can operate either with two input bytes and two output bytes or with three input bytes and one output byte.

\subsection*{1.2 Design}

The module is designed as a plug-in PCB with a multipoint connector for the insertion of a front plug. The separately supplied front plug with screw or crimp fasteners can be connected to the process signal cables. The front panel has green LEDs to display the signal status of inputs or outputs. The LEDs are arranged in bytes and identified as bits 0 to 7.

The digital output also has red LEDs to indicate short circuits between output lines and ground (L-) within a group of outputs.

The module differs from the previous digital process interface modules in that in addition to the central controller or expansion unit (backplane connector X 1), it also has a local bus interface (backplane connector X3). This is intended to provide a direct connection to the IP 257
(6ES5 257-4UA11) via a separate local bus (6ES5 751-2AA11). The mechanical connection is via a 37-pin subminiature \(D\) connector and ribbon cable. At the local bus interface and at the front connector there are two additional channels available - a synchronization input and synchronization output.

The bus interface is selected using a sliding switch. It is not possible to operate both interfaces at the same time.

The module also has an addressing switch to set the module address.
The module is protected by covers on both sides.

\subsection*{1.3 Mode of Operation}

\subsection*{1.3.1 Digital Input}

As shown in the block diagram (Fig. 2) the process signals at the digital inputs are conditioned to match the interface module level in the input circuit. The input circuit suppresses disturbances and indicates the signal status at the inputs with LEDs on the front panel of the module. The signals are then isolated and passed on to the data memory.

By removing a jumper at the release input, the processing of input signals can be blocked and the module disconnected from the S5 bus (see section "Release Input").

The module address is set at an address switch. The module is addressed by the STEP 5 user program under its byte address. The DI/DO sends an acknowledgement signal RDY/ to the CPU when the address read on the S5 bus by the address decoder matches the set address and a read or write signal is active.

If, for example, input 1.0 of the digital input is to be scanned by the STEP 5 program, then the address 1 (byte address = address bit ADB 0 to ADB 7) and the control signal MEMR/ are sent by the CPU or the IP module. The module with the byte address 1 recognizes this address. The signal status of the inputs of byte 1 (data bits 0 to 7) is put on the data bus (DB 0 to DB 7). Then the acknowledgement signal RDY/ is sent to the CPU (via the S5 bus) or to the IP module (via the local bus).

Fig. 2 Signal exchange between the CPU or IP 257 and digital input

\subsection*{1.3.2 Digital Output}

Fig. 3 shows the block diagram and signal exchange between the digital output and the CPU or IP 257. The data from the bus are accepted if the module is released by the inserted jumper at the release input F+/F- (see section "Release Input"), the address set at the address switch matches the address sent by the CPU and the signal MEMW/ is active.

The module controller controls the acceptance of the data from the data bus (DB 0 to DB 7) in the data memory and the output of the output circuits (isolated) to the outputs.

On the front panel of the module there are LEDs which indicate the signal status of the outputs (green LEDs) and short circuits on the connected lines (red LEDs).

If, for example, output byte 0 of the digital output is to be set, the address 0 and control signal MEMW/ are sent by the CPU or IP 257. The digital output with the byte address 0 recognizes this address and accepts the data from the data bus (DB 0 to DB 7) in the output register for byte 0 . This data is switched to the outputs of the module via the output circuit. The acknowledgement signal RDY/ is sent to the CPU or IP 257.

Fig. 3 Signal exchange between the CPU or IP 257 and digital output

\subsection*{1.3.3 Alarm Output}

The alarm output \(\mathrm{H}+\) of the digital output provides a signal when there is a short circuit between one or more outputs and ground (L-) or if overcurrent is recognized. The alarm output is isolated by a diode.

\subsection*{1.3.4 Release Input}

The module has a release circuit. Via the release inputs, it is possible to disable certain modules while the PC is in operation.

The release input of the DI/DO 482 can be activated by means of jumper \(\times 20\).
Jumper X20 open: module cannot be disabled via release input (release input inactive).
Jumper X20 inserted: in the front connector a wire jumper must be inserted between pin 1 and pin 2. Removing the front connector then causes the module to be switched off and no further acknowledgement is output.

Examples of using the release input:
- Disabling of individual subprocesses almost without power being required, i.e. outputs of different modules can be operated with a common load current supply and nevertheless be activated separately.
- The load voltage of each individual module can be monitored without difficulty. All reactions to load voltage failure can be programmed in the QVZ organization block.

\section*{IMPORTANT \\ When planning systems, the following must be taken into account:}

Switching on: at least 100 ms after the PC is switched on, the release input must be closed (i.e. \(\mathrm{F}+\) and F - must be electrically connected).

Switching off: after switching off the PC, the release input must remain closed as long as the internal 5 V are present.

\section*{IMPORTANT}

When programming the CPU, the QVZ-OB must be programmed so that neither an error nor replacing a module can result in a dangerous state arising in the process or in the machine.
When operating with the IP 257 , no reaction can be programmed; the \(\mathbb{I P}\) stops if there is no release from the DI/DO 482.

\subsection*{1.3.5 Synchronization Input/Output}

On the front connector of the module there is a synchronization input and a synchronization output (Synin, SynOut).

With an appropriate signal at the synchronization input, the IP 257 can operate with fixed cycles and/or cycles controiled externally. The condition for this mode is that jumper 20 on the \(\mathbb{P}\) is inserted. After an initialization phase, the IP begins cyclic execution. First, the IP checks whether the cycle is to be synchronized. If a synchronization request is active (HIGH level at input) the \(\mathbb{P}\) changes to the wait state. If there is a LOW signal, the IP continues executing the program in the RUN mode (see also the corresponding section in the programming or operating instructions for the IP). If several DI/DO 482's are being used, make sure that the synchronization inputs are ORed. If inputs are not connected, they have a LOW signal.

The following example shows the cycle synchronization with the synchronization input of the DI/DO.

1 Transition from HIGH to LOW level: IP starts cycle
2 LOW level at cycle end: IP continues immediately to next cycle
3 HIGH level at cycle end: IP changes to wait state
The IP sends its own cycle start signal at the beginning of each cycle. This cycle start signal can be passed on from the synchronization output, e.g. to synchronize another IP 257.

When operating the \(\mathrm{DI} / \mathrm{DO} 482\) (without IP 257) via the S5 bus interface, the synchronization input and output have no function.

\subsection*{1.4 Technical Data}

\section*{Programming}

Operand identifiers
\begin{tabular}{ll}
for inputs & I \\
for outputs & Q
\end{tabular}

\section*{Parameters}
when addressing via the bus interface: 0.0 to 255.7, when addressing the local bus: 0.0 to 15.7

\section*{Ambient conditions}

Operating temperature 1)
in devices with a fan
0 to \(60^{\circ} \mathrm{C}\)
in devices without a fan 2)

Storage and transport temperature

Relative humidity

Operating altitude

\section*{Connections}

Power supply for inputs
and outputs
rated DC voltage
reference potential for
DC voltage
Permitted line length with digital output modules

Release inputs (\(\mathrm{F}+\mathrm{F}\) -)
Short circuit alarm output

0 to \(55^{\circ} \mathrm{C}\)
-40 to \(+70^{\circ} \mathrm{C}\)
max. \(95 \%\) at \(25^{\circ} \mathrm{C}\)
no dew
max. 3500 m above sea level
\(L+\)

L -
for each output current the line resistance and the tolerance of the supply voltage must be taken into account.
jumper on the front connector
H + (supplied by L+)

\footnotetext{
1) Temperature of the incoming air below the subrack
2) Distance between the PCBs 40 mm
}

Max. permissible supply voltage at rated voltage \(24 \mathrm{VDC}(\mathrm{L}+\mathrm{L}-)\)

Ripple \(U_{p p}\) of the supply voltage at rated voltage

Interference suppression of the digital inputs

Interference pulse length of the digital inputs

\section*{Power supply}

Current input from system bus

Digital inputs
\begin{tabular}{|c|c|}
\hline Rated input voltage & 24 V DC \\
\hline Number of inputs & min. 16, max. 24 \\
\hline Galvanically isolated & yes \\
\hline Input voltage for signal 0 for signal 1 & \[
\begin{aligned}
& -33 V \text { to }+5 V \\
& +13 V \text { to }+33 V
\end{aligned}
\] \\
\hline Rated input current & typ. 8.5 mA \\
\hline Delay time & typ. \(300 \mu s\) \\
\hline Input resistance & typ. \(2.8 \mathrm{k} \Omega\) \\
\hline Coincidence factor & 100 \% \\
\hline Permitted cable length & max. 50 m \\
\hline Power supply for 2 wire BERO & 22 V to 33 V \\
\hline Release input F+/F- & jumper in front connector \\
\hline Synchronisation input & for technical data see digital inputs \\
\hline
\end{tabular}

\footnotetext{
3) The ripple is included in the range of the supply voltage
4) Must be jumpered by the signal receiver.
}

\section*{Safety tests}

Voltage test according to VDE 100
Surge voltage test according to IEC 255-4

Interference voltage test
according to IEC 255-4

Digital inputs
Supply voltage L+
Number of outputs

Galvanically isolated
Range of supply voltage
Fuse

Output voltage
for signal 1
for signal 0
Switching current
(ohmic, inductive load)
Switching frequency
with ohmic load with inductive load

Voltage induced on circuit interruption

Total switching current
Coincidence factor with fan
Coincidence factor without fan
Permitted cable length
Current consumption L+/L-

\section*{Short circuit monitoring}

Indicator
Alarm (\(\mathrm{H}+\))
group against housing: \(1250 \mathrm{~V}_{\text {eff }}\)
input against \(L-: U_{p p}=1 \mathrm{kV}\) \(1.2 / 50 \mu \mathrm{~s}\)
input against \(L-: U_{p p}=1 \mathrm{kV}\) 1 MHz

24 V DC
min. 8, max. 16
short circuit-proof 5)
yes
20 V to 30 V
6.3 A, slow-blow 1 fuse per 8 outputs
min. \(\mathrm{L}+\) minus 1.5 V
max. +3 V
5 mA to 0.5 A
max. 120 Hz
\(\max .2 \mathrm{~Hz}\) at 0.3 A
\(\max .0 .5 \mathrm{~Hz}\) at 0.5 A
limited to L+ and - 27 V
max. 4 A per 8 outputs
\(100 \%\)
\(50 \%\); \(100 \%\) to \(35^{\circ} \mathrm{C}\)
max. 400 m
24 V , typ. 30 mA
red LED for each of 8 outputs

\footnotetext{
5) Short circuit protection activated when short-circuited load resistance and line resistance \(\leq 15 \Omega\)
}

Output voltage relative to \(L\) for signal 1 for signal 0

Switching current

\section*{Synchronization output}

\section*{Output voltage relative to \(L\) -}
for signal 1
for signal 0
Switching current

\section*{Mechanical data}

Dimensions (w \(\times \mathrm{h} \times \mathrm{d}\))
Weight
min. \(L+\) minus 5 V
\(\max .+3 \mathrm{~V}\)
max. 10 mA , current limited
\(\min . L+\) minus \(5 V\)
max. +3 V
max. 10 mA , current limited
\(20 \mathrm{~mm} \times 255 \mathrm{~mm} \times 195 \mathrm{~mm}\)
approx. 0.4 kg

\subsection*{1.6 Pin Assignment of the S5 Bus Interface}

Backplane connector X1
\begin{tabular}{|c|c|c|c|}
\hline & \(d\) & b & \(z\) \\
\hline 2 & & O V & +5 V \\
4 & & PESP & \\
6 & & ADB 0 & CPKL \\
8 & & ADB 1 & MEMR \\
10 & & ADB2 & MEMW \\
12 & & ADB 3 & ADPY \\
14 & & ADB 4 & DB 0 \\
16 & & ADB 6 & DB 1 \\
18 & & ADB 7 & DB 3 \\
20 & & & DB 4 \\
22 & & & DB 5 \\
24 & & & DB 6 \\
26 & & & BASP \\
28 & & & \\
30 & & & \\
32 & & & \\
\hline
\end{tabular}

ADB Address bus
DB Data bus
BASP Block command output
/CPKL CPU ready signal*
/MEMR Memory read
/MEMW Memory write
PESP Select signal for I/Os
/RDY Ready
* \(X Y Z=X Y Z\) signal is low active.

\subsection*{1.7 Front Connector and Diode Strip Pin Assignment}

\section*{2 Installation}

\subsection*{2.1 Removing and Inserting Modules}

The construction of the module and the front connector allows the module to be removed and inserted while the PC is in operation.

\section*{IMPORTANT}

The module can only be replaced (while voltage is applied) by qualified electronics engineers or trained personnel, who must make sure that the pins of the module are not touched.

The module is replaced as follows:
- Loosen the upper locking bar on the subrack and swing upwards.
- By loosening a screw in the upper part of the front connector, the front connector can be pressed out of the module socket. The contacts F + and F- of the release input at the upper end of the front connector are then opened first. The outputs no longer carry current and the module is disconnected from the S5 bus. The CPU or IP 257 no longer receives an acknowledgement if it addresses the module. The CPU continues to operate if no stop is programmed in the corresponding error OB; the IP 257 stops.
- The front connector can now be tilted out and lifted out of the lower fork.
- By turning a knob at the bottom end of the module through \(90^{\circ}\), the module is released. Using a hinged handle, the DI/DO 482 can be pulled out of the subrack.
- The module is inserted by following the above procedure in reverse.
- Before the front connector can be inserted, the module must be locked by turning the knob.

Fig. 420 mm wide module and front connector with crimp contacts

\subsection*{2.2 Connecting the Signal Lines}

The DI/DO 482 has a 42-pin male multipoint connector with blades of \(2.4 \mathrm{~mm} \times 0.8 \mathrm{~mm}\).
20 mm and 40 mm wide front connectors with crimp or screw connections are available for connecting the signal lines.

Stranded wires should be used to make it easier to work with the front connector.
When using the crimp contact in the plastic body of the front connector, a "click" can be clearly heard. This indicates that the contact is locked. When rewiring or if the incorrect assignment is made, the contacts can be released without the front connector being removed.

When using the screw connection, wire end ferrules are not required, since the screw contacts have a wire protector. Wire end ferrules 7 mm long according to DIN 46288 can, however, be used.

The maximum contact area is \(2 \times 2.5 \mathrm{~mm}^{2}\).
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Type of \\
connec- \\
tion
\end{tabular} & \begin{tabular}{l}
Connec- \\
tor type \\
6ES5497
\end{tabular} & \begin{tabular}{l}
Max. \\
pins
\end{tabular} & \begin{tabular}{l}
Cross section of \\
signal or power \\
line
\end{tabular} & \begin{tabular}{l}
Connector \\
for rated \\
voltage
\end{tabular} & \begin{tabular}{l}
Fork \\
width \\
mm
\end{tabular} & \begin{tabular}{l}
Front \\
connector \\
width
\end{tabular} & \begin{tabular}{l}
Module type 6ES5... \\
Type of operation \\
with \\
without \\
fantact
\end{tabular} & -4 UA12
\end{tabular}

Fig. 5 Connecting the front connector

\subsection*{2.3 Installation Guidelines}

The wiring must comply with legal requirements such as the VDE specifications and accident prevention regulations.

If shielded cables are used, the shields must be connected close to the front connector with cable clamps on a shielding bus which has a low resistance connection to the cabinet of the programmable controller.

Detailed instructions regarding the power supply, the cabinet configuration, cabinet cooling, cabinet wiring and protective measures can be found in "Installation Guidelines" (reference no. C79000-B8576-C452).

\section*{3 Operation}

\subsection*{3.1 Selecting the Bus Interface}

The bus interface is selected using the sliding switch S2.
Switch position 2: DI/DO 482 operates via the local bus interface to the IP 257.
Switch position 1: \(\quad \mathrm{DI} / \mathrm{DO} 482\) (without P 257) operates via the bus interface to the PC.

\subsection*{3.2 Setting the Module Address}

The module address is set on the module with an address switch.
The address of the \(\mathrm{DI} / \mathrm{DO}\) is the sum of the dual values set by pressing down the individual rocker switches.

A label indicating the selected module address is stuck on in the labelling field below the address switch. The rocker switches to be set to the ON position are indicated by dots on the label.

The address byte at which the module is addressed by the STEP 5 user program, is not dependent on the slot.

Only the lowest address (start address) for the first byte is set. The addresses for the three following bytes of the same DI/DO are decoded on the module. For example, if the start address is 20 on this 32 -bit module, the addresses 21,22 and 23 are decoded internally. The next free address would be 24.

Addresses already used for other modules on the same bus or in the same addressing area must not be used again.

\section*{Example: (module address 80)}

The address is the sum of the binary values set with the individual coding switches, as follows:
\(80=16+64=24+2^{6}\)

Switch position "on" (pressed)

\subsection*{3.3 Address Area of the Module}

When addressing via the \(\underline{S 5}\) bus interface, the start address can be set in the range from 0 to 252 . The following assignment applies:

Switch S1/ 1: address bit ADB2
\begin{tabular}{ll}
2: & ADB3 \\
3: & ADB4 \\
4: & ADB5 \\
5: & ADB6 \\
6: & ADB7
\end{tabular}

When addressing via the local bus interface to the IP 257, the start address can be set in the range 0 to 12 as follows:
\(\begin{array}{lll}\text { Switch S1/ } & \text { 1: address bit } & \text { ADB2 } \\ & \text { 2: } & \\ & \text { ADB3 }\end{array}\)
Switch S1/3...6: no function
The address set must be divisible by four without a remainder.

Fig. 6 Labelling of the address switch

\subsection*{3.4 Parallel Wiring of Outputs and Switching on the Load via a Contact \\ IMPORTANT \\ Wiring outputs in parallel to increase the load is not permitted.}

Two outputs of a DI/DO 482 can be wired in parallel providing they are isolated by diodes. Since there are no diodes in the output lines of the module, an external diode must be installed.

The contact (e.g. for manual operation) is connected to \(L+\).

Fig. 7 Wiring outputs in parallel without increasing the load

\subsection*{3.5 Electrical Isolation and Distribution of the Channels}

The module has 32 channels, which are galvanically isolated together: i.e. there is no division into electrically isolated groups within the module.

Channels 1 to 8 are digital outputs, channels 17 to 32 are digital inputs; channels 9 to 16 can be operated individually either as inputs or outputs. Channels not required should neither be connected nor addressed by the program. When using these channels as inputs, care must be taken that the corresponding bits remain set to logical 0 in the output register. The output register is automatically reset when the PC or expansion unit is switched on.

\subsection*{3.6 Switching Over the I/O Byte (Channels 9 to 16)}

The operation of channels 9 to 16 as inputs or outputs depends solely on the user program. When the \(D I / D O\) is read, the byte is used as an input; when the \(D I / D O\) is written to, the byte is used as an output. Owing to the double function of the byte, the output byte can also be read back.

\subsection*{3.7 Short Circuit Protection and Fusing the Digital Output}

To fuse the installation cables and to protect the module, there are also mechanical fuse in addition to the electronic short circuit protection. The mechanical fuses are also a protection against incorrect connection of the power supply terminals.

To ensure the correct function of the electronic short circuit protection the maximum line resistance may not exceed \(15 \Omega\).

In the case of a short circuit, two or three times the rated output current flows at the output before the clocked electronic short circuit protection is activated.

When selecting the load current power supply unit, make sure that taking into account all the connected output loads (including the coincidence factor) the increased short circuit current is available. With non-stabilized power supply units, the excess current is generally available.

With stabilized load power supply units - particularly with low output power (up to 20 A) - a suitable excess current must be taken into account.

\section*{4 Spare Parts}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Spare Part } & \multicolumn{1}{c|}{ Order number } \\
\hline Spring contact for crimping & \multicolumn{1}{c|}{ 6XX3070 (see catalog ET1) } \\
Pliers & 6XX3071 (see catalog ET1) \\
Wire end ferrules & e.g. A2, 5-7 (DIN 46 228) \\
Releasing tool & 6ES5 497-4UC11 \\
Set of labels for module & C79451 - A3079 - C749 \\
Set of labels for addresses & 6ES5 497-4UD11 \\
Fuse, slow-blow 6.3 A \(/ 125 \mathrm{~V}\) & W79054 - M1041 - T630 \\
\hline
\end{tabular}

\section*{SIMATIC S5}

Monitoring Module

Fig. 1 Monitoring module
Contents Page
1 Application 2
2 Design 2
3 Mode of Operation 3
3.1 Block Diagram 3
3.2 Fault Detection 4
3.3 Resetting 5
4 Installation 6
4.1 Possible Configurations 6
4.2 Removing and Plugging 6
4.3 Connecting the RESET Input 7
4.4 Switch Positions of the Relay Contact 7
4.5 Installation Guidelines 7
5 Operation 8
5.1 Addressing 10
5.2 Setting the Address Switches S1, S2, S3, S4 12
5.3 Setting the Switch S5 13
6 Technical Data 14
\(7 \quad\) Address Table 16

\section*{1 Application}

The monitoring module (MM) can be used in the extension units of the programmable controllers S5-115 U, S5-130 K, S5-135 U, S5-150 K/S/U and S5-155 U.

The module monitors the data bus, the address bus as well as the control signals MEMW/, MEMR/ and RDY/. Faults are displayed via four red LEDs on the front panel. A group signal is output simultaneously via a floating contact. Following a fault, the module can be reset by means of the RESET key on the front panel or the RESET input (see Section 4.3).

\section*{2 Design}

The \(M M\) is designed as a plug-in PCB in double Euroformat with a \(32-\) pin blade connector for the S 5 bus.

A connector for the relay contact and RESET input as well as one green LED, four red LEDs and a RESET key are located on the front panel.

Fig. 2 Location of the coding switches

\section*{3 Mode of Operation}

\subsection*{3.1 Block Diagram}

Fig. 3 Block diagram

\subsection*{3.2 Fault Detection}

From an address which has been set at switch Sl , the data (55 H or \(A A H\)) is read by the CPU from the MM. This data is to be written back by the CPU to the address set at switch S2. The module inverts the accurate incoming data bit by bit (from 55 H to AAH or vice versa) which is read again in the next cycle from the address set at S 1 .

\section*{Data bus faults}

If the data which has been set on the MM is not returned within the set monitoring time, the module signals a data bus fault.

Detectable faults: interruption of the data lines; short-circuit against ground and +5 V ; short-circuits between adjacent data lines, e.g. DBO-DB1, DB1-DB2 etc.

Non-detectable faults: short-circuits between even data lines DBO-DB2-DB4-DB6 and between odd data lines DB1-DB3-DB5-DB7.

\section*{Address bus faults:}

The addresses which have been set at switches S3 and S4, are only "listened to" by the MM, i.e. they do not output an acknowledgment signal (RDY/) and are not active on the data bus. If one or both addresses are not accessed again within the monitoring time, the MM signals an address bus fault.

Detectable / non-detectable faults: the same as for the data bus, if the inverse addresses \(85(55 \mathrm{H})\) and 170 (AAH) have been set at the addressing switches S3 and S4 of all MMs.

\section*{Control line faults:}

A control line fault (\(\mathrm{R} / \mathrm{W}\)) occurs, if
- the write signal (MEMW/) and the read signal (MEMR/) are active simultaneously,
- the acknowledgment signal (RDY/) is active without a MEMW/ or MEMR/ signal
- the address line 'peripheral memory' (PESP') has not changed from status "1" to "0".

Evaluation of the control signal PESP' can be turned off with the S5/7 switch. If the module is used in a programmable controller into which only \(I / O\) modules may be plugged (i.e. no memory modules or CPs), this switch must always be turned off. In this configuration, only I/O accesses to the bus are carried out and the PESP' signal always has the status "1".

It should also be turned off when using the AS 301, AS 302 \({ }^{1}\)), AS 304 and AS 308 interface modules for extension units, since a permanent PESP' signal can be applied to them.

\section*{BASP:}

If a command output inhibit (BASP) is active, the "BASP" LED is lit.

\section*{Messages:}

If one or more faults occur, the corresponding LEDs are lit, the relay contact commutes and the module does not acknowledge any more with the RDY/ signal. This acknowledgment delay may be suppressed by opening the \(\mathrm{S} 5 / 8\) switch.

\subsection*{3.3 Resetting}

There are several ways of resetting the module:
- CPKL/ signal = "1" (when the PC is switched on);
- Trailing edge of the BASP signal (during startup of the PC or following return of the load voltage);
- Applying 24 V to the front connector X 4 between connections 4 (RESET input) and 6 (L-) or
- Linking connections 4 (RESET input) and 5 (L+) with connector X4.

\footnotetext{
1
In the 55 115U, the MM cannot be used together with the AS 302/311 coupling.
}

\section*{4 Installation}

\subsection*{4.1 Possible Configurations}

\subsection*{4.2 Removing and Plugging}

The module is to be pulled out by gently lifting and lowering the handles. The MM may only be removed or plugged in if the extension unit is switched off.

\subsection*{4.3 Connecting the RESET Input}

RESET input (floating) with external 24-V supply

\section*{RESET inputwith internal 24 -V supply}

\subsection*{4.4 Switch Positions of the Relay Contact}

\section*{Contact not actuated or fault}

Contact 1-3 closed

Contact actuated

\subsection*{4.5 Installation Guidelines}

The module is to be wired according to the VDE regulations 0100 , 0110 and 0160.

Detailed information on power supply, cabinet design, cabinet ventilation, cabinet wiring and protective measures can be found in the Installation Guide for "Programmable controllers of the Useries" (order no. C79000-B8576-C452) and should be observed.

\section*{5 Operation}

\section*{Switch S1 (Read) and S2 (Write):}

The addresses set at these switches are acknowledged by the MM with RDY/ and are therefore not to be used again for inputs and outputs in this programmable controller (double addressing is not allowed).

\section*{Switch S3 (Listen) and S4 (Listen):}

No acknowledgment signal (RDY/) is returned by the MM to the addresses set the switches S3 and S4. These addresses must be accessed by the programmable controller as input or output addresses. This means that they must be occupied by I/O modules or by one MM at switches S1 and S2. These modules must have been plugged into the last extension unit.

To achieve optimum address bus monitoring, inverse addresses should be used [e.g. 85 (55H) \({ }^{2}\)) and 170 (AAH)].
It is advisable to make sure that the setting of switches S3 and
S4 is the same on all MMs used. The setting of switches S1 and S2
as well as S3 and S 4 should be the same on the MM in the last EU.
\begin{tabular}{|c|c|c|c|}
\hline Switch & \begin{tabular}{c}
Inputaddresscan \\
beaccessed \\
usingMEMR/ \\
(READ)
\end{tabular} & \begin{tabular}{c}
Outputaddresscan \\
beaccessed \\
usingMEMW/ \\
(WRITE)
\end{tabular} & \begin{tabular}{c}
Acknowledged \\
bymodule \\
with
\end{tabular} \\
\hline S1 & \(*\) & & \(*\) \\
S2 & & \(*\) & \(*\) \\
S3 & \(*\) & \(*\) & \(*\) \\
S4 & \(*\) & \(*\) & \\
\hline
\end{tabular}

\footnotetext{
2 Select addresses 213 (D5H) and 170 (AAH) when using the module in the S5 115U. For exceptions refer to page 11.
}

Example:

\subsection*{5.1 Addressing}

Example 1: S5-130 K, S5-135 U, S5-150 U/K/S or S5-155 U
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1st MM & & \multicolumn{2}{|l|}{2nd MM} & \multicolumn{3}{|l|}{3rd MM} \\
\hline e.g. 127 & (7 FH) & e.g. 126 & (7EH) & & (55H) & \\
\hline e.g. 127 & (7 FH) & e.g. 126 & (7EH) & 170 & (AAH) & \({ }_{5}^{4}\)) \\
\hline & (55H) & & (55H) & & (55H) & 5) \\
\hline 170 & (AAH) & 170 & (AAH) & 170 & (AAH) & 5) \\
\hline
\end{tabular}

User program in \(O B 1\) or FB 0
\begin{tabular}{ll}
without & \multicolumn{1}{l}{ with } \\
S5-DOS & \multicolumn{2}{l}{ S5-DOS } \\
\multicolumn{1}{c}{\(:\)} & \multicolumn{2}{c}{\(:\)} \\
L IB 127 & L PY 127 \\
T QB 127 & T PY 127 \\
L IB 126 & L PY 126 \\
T QB 126 & T PY 126 \\
L IB 85 & L PY 85 \\
T PB 170 & T PY 170 \\
DE & \\
&
\end{tabular}

3 Possible addresses: 0 (00 H) to 255 (FFH)
4 To achieve optimum fault detection, set the inverse addresses 85 (55 H) and 170 (AAH) at S1 and \(\mathbf{S 2}\).

5
Since the addresses of the MM switches S3 and S4 are not acknowledged, this must be carried out by the MM contained in the last EU (the most remote from the CC). The addresses 85 (55 H) or 170 (AAH) of this MM must be coded at switches S1 or S2, respectively. These addresses may not be occupied for I/O tasks any more.

\section*{Example 2: \(\underline{\text { S5-115 U }}\)}

S1
\(\left.\begin{array}{lll}\text { e.g. } 129 & (81 \mathrm{H}) & 6 \\ \text { e.g. } 129 & (81 \mathrm{H}) & 6 \\ 213 & (\mathrm{D} 5 \mathrm{H}) & 7 \\ 7 & \left.)^{2}\right) \\ 170(\mathrm{AAH})\end{array}\right)\)

\section*{User program in \(O B 1\) or FB 0}
\begin{tabular}{|c|c|}
\hline without & with \\
\hline S5-DOS & S5-DOS \\
\hline : & : \\
\hline L PB 128 & L PY 128 \\
\hline T PB 128 & T PY 128 \\
\hline L PB 129 & L PY 129 \\
\hline T PB 129 & T PY 129 \\
\hline L PB \(213{ }^{8}\)) & L PY 213 \\
\hline T PB 170 & T PY 170 \\
\hline BE & BE \\
\hline
\end{tabular}

6 When using the MM in the S5-115 \(U\), always select addresses \(>127\) since that is the only way to address byte by byte.

7
To achieve maximum fault detection, select inverse addresses > 127, e.g. 213 (D5H) and 170 (AAH). In this combination, the address bit ADB 7 is not monitored.

8 If ADB 7 is also to be monitored, the address \(84 / 85(54 \mathrm{H} / 55 \mathrm{H})\) in the last EU must be occupied by an input or output module and cyclically accessed by the user program. Set address 85 (55 H) in place of 213 (D5H) at switch S3 of all MMs. Select any address between 128 (80 OH) and 255 (FFH) for switch 51 of the MM in the last EU.
As an alternative, you may access the address at \(S 1\) of the MM in the last EU via direct access (without process image) using L PB 85 or L PY 85 . Then, the addresses 84 and 85 , (54 H) and (55 H), in the process image may not be used any longer by other inputs. The address at S 3 of all MMs is then to be set to 85 (55H).

\subsection*{5.2 Setting the Address Switches s1, S2, S3, S4}

The addresses are set as one-byte addresses as in the case of \(1 / 0\) modules.

The significance of the rockers pressed down to \(O N\) at the switches must be added.

Example: Address 85 is to be set.
```

rockers to be pressed
down to ON

```
\(1(\operatorname{ADB} 0) \quad 1\)
3 (ADB 2 2) 4
\(5(\mathrm{ADB} 4) \quad 16\)
7 (ADB 6) \(\quad \frac{64}{85}\)
\[
\begin{array}{llllllll}
8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
\]

\subsection*{5.3 Setting the switch s5}

Select the monitoring time (between 125 ms and 1 s) by activating one of the switches \(S 5 / 1\) to \(55 / 4\). If none of the four switches S5/1 to \(S 5 / 4\) is in \(O N\) position, for safety reasons, the monitoring time has been set to 1 s .

If serial interface modules and the coupling between AS 304 and AS 314 are used, the PESP' monitoring is to be switched off (see Section 3.2: Control line faults).

Should the acknowledgment signal (RDY/) not be suppressed in the event of a fault, the switch \(\mathrm{S} 5 / 8\) must be in OFF position.

When a BASP signal is active the RDY/ signal will always be output.

\section*{6 Technical Data}

\section*{Power supply}

Supply voltage of the system bus Power consumption

\section*{Reset input}
```

Rated input voltage
Electrical isolation
Input voltage
for 0 signal
for 1 signal
Input current
Permissible cable length

```

\section*{Sensor supply for RESET input}

Rated output voltage
Electrical isolation
Output voltage
Output current
\(+5 \mathrm{~V} \pm 5 \%\)
max. 450 mA

24 V DC
yes
-33 to +5 V DC
or input open
+13 to +33 V DC
8.5 mA
max. 100 m , unscreened

24 V DC
yes
20 to 30 V DC
short-circuit-proof to L\(\max .20 \mathrm{~mA}\)

\section*{Relay contact}

Loading of contact with re-
sistive load or inductive load max. 30 V DC / 1 A

\section*{Safety test}

Voltage test acc. to VDE 0160
Relay contacts referred to internal 500 V r.m.s.
RESET input referred to internal 500 V r.m.s.
RESET input ref. to relay contacts 500 V r.m.s.
Impulse voltage test
acc. to IEC 255-4
Input referred to ground \(1 \mathrm{kV} ; 1.2 / 50\) us

Interference test
Radio interference test
acc. to IEC 255-4
Radio interference test
acc. to IEC 65(Co) 39
Input referred to ground:
1 kV ; 1 MHz
Input referred to ground:
1 kV ; burst

\section*{Mechanical data}

Dimensions (\(\mathrm{w} \times \mathrm{h} \times \mathrm{d}\))
\(20 \mathrm{~mm} \times 243 \mathrm{~mm} \times 193 \mathrm{~mm}\)
Weight

\section*{Ambient conditions}

Operating temperature
Storage and transportation temperature
Relative humidity
Operating height
Vibration acc. to IEC 68-2-6

Shock acc. to IEC 68-2-27

0 to \(+60{ }^{\circ} \mathrm{C}\)
-25 to \(+70{ }^{\circ} \mathrm{C}\)
\(\max .95\) of \(25{ }^{\circ} \mathrm{C}\);
no condensation
max. 3500 m above sea level
10 to \(57 \mathrm{~Hz}, 0.15 \mathrm{~mm}\);
57 to \(500 \mathrm{~Hz}, 2 \mathrm{~g}\)
12 shocks, half sine;
\(15 \mathrm{~g} / 11 \mathrm{~ms}\)

Pin assignment of bus connector \(\mathrm{X1}\)
\begin{tabular}{|c|c|c|}
\hline & b & z \\
\hline 2 & 0 V & +5 V \\
4 & PESP & - \\
6 & ADB 0 & CPKL/ \\
8 & ADB 1 & MEMR/ \\
10 & ADB 2 & MEMW/ \\
12 & ADB 3 & RDY/ \\
14 & ADB 4 & DB 0 \\
16 & ADB 5 & DB 1 \\
18 & ADB 6 & DB 2 \\
20 & ADB 7 & DB 3 \\
22 & - & DB 4 \\
24 & - & DB 5 \\
26 & - & DB 6 \\
28 & - & DB 7 \\
30 & BASP & - \\
32 & \(0 ~ V\) & 0 V \\
\hline
\end{tabular}

\section*{7 Address Table}

\section*{Significance Byteaddress}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & \begin{tabular}{|c|}
\hline-1 \\
\hline \\
\hline\(\bullet\) \\
\hline\(\bullet\) \\
\hline
\end{tabular} \\
\hline 3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline - \({ }_{-1}\) & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\
\hline -1. \(\square^{\prime}\) & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\
\hline \(\square\) & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 \\
\hline & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 \\
\hline \[
\begin{array}{|l|l|l|}
\hline \hline & & \\
\hline & & \cdot \\
\hline
\end{array}
\] & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 \\
\hline 1. \(\quad . \quad 3\) & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 \\
\hline 1.1. & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 \\
\hline & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 \\
\hline & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 \\
\hline & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 \\
\hline \[
\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline \cdot & & \cdot & \cdot \\
\hline
\end{array}
\] & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 & 191 \\
\hline & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 & 203 & 304 & 205 & 206 & 207 \\
\hline \[
\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline-\cdot & & \cdot \\
\hline
\end{array}
\] & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 \\
\hline \[
\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline- & \cdot & - & \\
\hline
\end{array}
\] & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 5236 & 237 & 238 & 239 \\
\hline \[
\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline- & \cdot & & \\
\hline
\end{array}
\] & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 1252 & 253 & 254 & 255 \\
\hline
\end{tabular}

\section*{Switchposition ON}

\footnotetext{
Siemens Aktiengesellschaft
}

\section*{SIEMENS}

\section*{SIMATIC S5 \\ Load current supply module 24 V/4 A 6ES5951-4LB11}

Fig. 1 Load current supply module 6ES5951-4LB11
Contents Page
1 Range of application 2
2 Design 2
3 Mode of operation 2
4 Start-up 4
5 Technical data 5
6 Spare parts 6
7 Pin assignment of the front connector 7

\section*{1 Range of application}

The load current supply module 951 supplies an isolated, electronically stabilized DC output voltage of 24 V and can be used with SIMATIC S5 units to supply load current circuits and enable inputs of modules of the \(U\) peripherals.

\section*{2 Design}

The module is in double euroformat for the ES 902 packaging system. All connections for the supply voltage, the DC voltage outputs as well as for the signal output and the inhibit inputs are located on a 20 -way front connector. The module is two slots (40 mm) wide.

\section*{3 Mode of operation}

The module contains a primary switched-mode power supply with a 4-A power output (1L+) for ohmic and inductive loads protected against permanent short-circuits. The fault-free operating status is indicated by a green LED and signaled by the switchover contact of a relay.

The module has, besides the power output, four other outputs (\(2 \mathrm{~L}+\) to \(5 \mathrm{~L}+\)) for ohmic loads, each with a current carrying capacity of 0.5 A . The operating state of every output is signaled by a green LED.

The sum of all load currents of the outputs \(1 \mathrm{~L}+\) to \(5 \mathrm{~L}+\mathrm{is}\) max. 4 A. If one or more outputs are overloaded (short-circuit), the assigned green LEDs go out and these outputs are switched off.

A red LED signals the short-circuit of the outputs \(2 \mathrm{~L}+\) to \(5 \mathrm{~L}+\) and the signal output \(H+\) shows 1-signal. If the short-circuit is eliminated, these outputs automatically return to normal operation.

The outputs 2L+ to 5L+ can be switched off individually by lowlevel at the inhibit inputs.

If the output 1L+ is overloaded with a current \(>5.5\) A for a few seconds, the module switches off. To re-activate, the mains voltage must be switched off and on again after removal of the overload.

The design of the module is shown in the block diagram (Fig. 2).
The output voltage generated by the switch controller is compared with a reference voltage and then led to the pulse width modulator via an optical isolator to control the switch-on time of the switching transistor.

The overload-protection circuit monitors the current of the switching transistor, which is proportional to the output current of the module. If the output current exceeds the set limit value for a few seconds, the pulse width modulator is blocked.

A four-fold driver circuit, with the four outputs 2L+ to 5L+ of 0.5 A each and a common overload signal output with a red LED for indicating an overload, is parallel to the output 1L+ and has a max. load of 4 A.

The outputs of the four-fold driver circuit can be switched off individually by four inhibit inputs.

Fig. 2 Block diagram

\section*{4 Start-up}
- Setting the mains voltage

The module is set at a mains voltage of 230 V AC on delivery
The inscription visible on the voltage selector switch must match the mains voltage at the installation site.

Attention! With 115 V AC, a 2-A mains fuse (slow-blow) must be used.
- Connection of the power supply lines

The following must be provided when connecting the power supply lines to a permanent installation:
- a protection device (fuse or automatic cut-out) and
- a disconnecting device, so that the module can be released.

The power supply lines must be connected in accordance with VDE 0100 and VDE 0160.

\section*{5 Technical data}
```

Input voltage

- nominal value 230/115 V AC
- permitted range
at 230 V AC
at 115 V AC
Mains frequency
- nominal value
- permitted range
47 to 63 Hz
Mains fuse
- at 230 V AC
1 A, slow
- at 115 V AC
2 A, slow
Galvanic isolation yes
Input current
- nominal value
at 230 V AC
0.85 A
at 115 V AC
1.55 A
Starting current
- at 230 V AC
10 A
- at 115 V AC
5 A
Output voltage
- nominal value 24 V
- tolerance
\pm2 V
Maximum output current
- output 1L+
4 A
- outputs 2L+ to 5L+
0.5 A each
(ohmic load only)
Total current for outputs
max. 4 A
1L+ to 5L+
Overload signal output 24 V/10 mA, current-1imited
for outputs 2L+ to 5L+
Contact load of the relay
3 A/max. 250 V AC
with undervoltage signal
Inhibit inputs for outputs
current input 2.5 mA
2L+ to 5L+
Radio interference level
in the range 10 kHz to 30 MHz
limit value class A
accord. to VDE 0871
Temperature range }\mp@subsup{}{}{1)

```
- devices with fan
- devices without fan \({ }^{2)}\)

Temperature for storage and transport
\(230 / 115\) V AC
187 to 253 V AC
93 to 127 V AC

50 Hz
47 to 63 Hz

1 A, slow
2 A, slow
yes
1.55 A

10 A
5 A

24 V
\(\pm 2 \mathrm{~V}\)

4 A
0.5 A each
(ohmic load only)
\(\max .4 \mathrm{~A}\)
\(24 \mathrm{~V} / 10 \mathrm{~mA}\), current-1imited

3 A/max. 250 V AC
current input 2.5 mA
limit value class A accord. to VDE 0871

0 to \(60^{\circ} \mathrm{C}\)
0 to \(55^{\circ} \mathrm{C}\)
-40 to \(70^{\circ} \mathrm{C}\)
```

1) Temperature of incoming air under the module rack
2) Distance between the modules: 40 mm
```

Relative atmospheric humidity

\section*{Altitude}

Insulation voltage accord. to VDE 0160
- mains against earthing point
- output against earthing point

\section*{6 Spare parts}

Fuse
1 A, slow-blow
2 A, slow-blow
Front connector, 20 contacts
(crimp-contacts) 40 mm
Front connector, 20 contacts
(screw contacts) 40 mm
max. \(95 \%\) at \(25^{\circ} \mathrm{C}\) no condensation
max. 3500 m
tested with 1500 V AC tested with 500 V AC

W79054-L4011-T100
W79054-L4011-T200
6ES5497-4UA42

6ES5497-4UB42

\section*{SIEMENS}

\section*{SIMATIC S5}

Programmable Controllers of the U-Series

Siemens has developed this document for its licensees and customers. The information contained herein is the property of Siemens and may not be copied, used, or disclosed to others without prior written approval from Siemens. Users are cautioned that the material contained herein is subject to change by Siemens at any time and without prior notice.

Siemens shall not be responsible for any damages, including consequential damages, caused by reliance on material presented, including but not limited to typographical, electronic, arithmetic, or listing errors.

Only qualified personnel should install or maintain this equipment after becoming thoroughly familiar with all warnings, safety notices, and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon proper handling, installation, operation, and maintenance.

The following are definitions of the terms "qualified person," "danger," "warning," and "caution," as applicable for this document.

\section*{Qualified Person}

One who is familiar with the installation, construction, and operation of this equipment and the hazards involved. In addition, the person should have the following qualifications:
- Be trained and authorized to use and tag circuits and equipment in accordance with established safety practices
- Be trained in the proper care and use of protective equipment in accordance with established safety practices
- Be trained in rendering first aid

\section*{DANGER}

Indicates that loss of life, severe personal injury, or substantial property damage will result if proper precautions are not taken.

\section*{WARNING}

Indicates that loss of life, severe personal injury, or substantial property damage can result if proper precautions are not taken.

\section*{CAUTION}

Indicates that minor personal injury or property damage can result if proper precautions are not taken.

STEP \(5^{\circledR}\) and SIMATIC \({ }^{\circledR}\) are registered trademarks of Siemens AG.

\footnotetext{
Copyright \({ }^{\circ}\) Siemens AG 1989
First Printing, September 1989
Printed in the Federal Republic of Germany
}

\section*{Preface}

This book describes the installation procedure for programmable controllers of the U-Series. It discusses different configurations, power supplies, wiring, fans, heat dissipation, temperature monitoring, and safety measures. This book also provides information on cabinet design, ventilation, and wiring.

This book is intended for engineers, programmers, and maintenance personnel who have a general knowledge of programmable controller concepts.

If you have any questions about installing programmable controllers of the U-Series not answered in this book, please contact your local Siemens representative. Consult the appendix at the end of the entire manual for a list of Siemens offices worldwide. In the United States of America, please call 1-800-322-7224.

\section*{Contents}
Preface iii
How to Use This Book ix
Chapter 1 - Installation in Cabinets
1.1 Centralized Configuration 1-5
1.2 Distributed Configuration 1-6
Chapter 2 - Power Supply
2.1 Internal Power Supply 2-1
2.2 Load Current Supply (External Power Supply) 2-2
2.3 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Grounded Battery or Grounded Power Supply Units 2-3
2.4 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Nongrounded Battery or Nongrounded Power Supply Units 2-4
2.5 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Centrally Grounded Battery or Centrally Grounded Power Supply Units 2-5
2.6 Load Current Supply from Two External Power Supply Units for Floating or Nonfloating U-Series Modules 2-6
2.7 Back-Up Battery 2-8
2.8 Power Supply to Enable Inputs of the Peripheral Modules 2-8
2.8.1 Same Power Off Switch for the Central Controller/Expansion Unit and the Load Power Supply from a 220 V AC/115 V AC Power Supply 2-9
2.8.2 Separate or Same Power Off Switch for the Central Controller/Expansion Unit and the Load Current Supply 2-10
2.8.3 Removing and Plugging In Input/Output Modules While the Programmable Controller is Operating 2-12
Chapter 3 - Installing Configuration Wiring (without Considering Grounding)
Chapter 4 - Fan, Battery, and Temperature Monitoring
Chapter 5 - Cabinet Ventilation and Power Loss (Heat Dissipation)
5.1 Power Loss (Heat Dissipation) of Modules 5-1
5.2 Power Loss (Heat Dissipation) in a Cabinet and Cabinet Cooling 5-4
Chapter 6 - Cabinet Design
6.1 Ventilation Clearances 6-1
6.2 Installation Example 6-2
Chapter 7 - Cabinet Wiring
7.1 Connector Specifications 7-1
7.1.1 Connectors for Power 7-1
7.1.2 Connectors for Process Signal Lines to Peripheral Modules 7-1
7.2 Wiring Layout 7-3
7.2.1 Wiring Layout inside the Cabinet 7-3
7.2.2 Wiring Layout outside the Cabinet 7-3
7.3 Grounding 7-3
7.4 Protection against Dangerous Currents 7-4
7.5 Potential Equalization 7-4
7.6 Measures against Noise Interference 7-5
7.6.1 Noise Suppression on Alternating Current Power Lines Using Filter 7-5
7.6.2 Noise Suppression on Direct Current Power Lines Using Diverting Capacitors 7-6
7.6.3 Inductance Suppression 7-6
7.6.4 Inductance Separation 7-6
7.6.5 Protection against Electrostatic Discharge 7-6
7.6.6 Cabinet Lighting 7-7
7.7 Shielding and Permissible Cable Lengths 7-7
7.7.1 Grounding the Cable Shielding at One End 7-9
7.7.2 Grounding the Cable Shielding at Both Ends 7-9
7.8 Protection against Lightning 7-10
7.9 Main Power Connection for Programmers 7-10
Chapter 8 - Safety Measures
Index Index-1
Figures
1-1 Housing with Power Supply and Fans for a U-Series Central Controller or Expansion Unit 1-1
1-2 Housing Dimensions for a Central Controller or an Expansion Unit 1-2
1-3 Centralized Configuration with the S5-135U, S5-150U, or S5-155U Central Controller and S5-184U Expansion Units 1-5
1-4 Example for Distributed Configuration with the S5-135U, S5-150U, or S5-155U Central Controller and the S5-183U and S5-184U Expansion Units 1-6
2-1 Possible Connections for Sensors or Actuators of Process Peripherals on Grounded Power Supply Units 2-3
2-2 Possible Connections for Sensors or Actuators of Process Peripherals on Nongrounded Power Supply Units 2-4
2-3 Possible Connections for Sensors or Actuators of Process Peripherals on Centrally Grounded Power Supply Units 2-5
2-4 Connection to Floating and Nonfloating Modules 2-6
2-5 Feeding Nonfloating Input/Output Modules from Two External Power Supply Units 2-7
2-6 Feeding Floating Input/Output Modules from Two External Power Supply Units 2-7
2-7 Same 220 V AC/115 V AC Power Supply for Central Controller/Expansion Unit and Load Current Supply for I/Os 2-9
2-8 Separate 220 V AC/115V AC Power Supply for Central Controller/Expansion Unit and Load Current Supply for I/Os 2-10
2-9 24 V DC Power Supply for Central Controller/Expansion Unit and I/Os 2-11
2-10 Supplying Enable Inputs from the Central Controller to Expansion Units without an Integrated Power Supply Unit 2-12
3-1 Configuration Wiring 3-2
4-1 Connection Terminals on the Power Supply Unit of a U-Series Unit 4-1
4-2 Jumper Layout on a Power Supply Unit (e.g., 6ES5 955-3LC12) 4-2
4-3 Wiring Recommendation for Fan/Temperature Monitoring When Using the S5-135U and the S5-183U in the Same Cabinet 4-3
5-1 Maximum Ambient Temperature of a Cabinet Depending on the Installed Power Loss (Heat Dissipation) 5-4
5-2 Cabinet Design 5-6
6-1 Installation Clearances 6-2
6-2 Installation Example 6-3
7-1 Potential Equalization for Distributed Installation 7-5
7-2 Signal Transfer for Distributed Installation 7-5
7-3 Layout of Noise Suppression Capacitors 7-6
7-4 Measures to Suppress Fluorescent Lamp Noise in a Cabinet 7-7
7-5 Connecting the Cable Shielding to the Shielding Bar 7-9
7-6 Placement of Elements That Protect against Lightning 7-10
Tables
1-1 Fan Subassemblies with or without Integrated Power Supply Units 1-3
3-1 Cable Lengths and Cross Sections 3-3
5-1 Power Loss Values of Modules Used in U-Series Units 5-1
5-2 Maximum Ambient Temperature for Specific Cabinet Designs 5-5
7-1 Specifications for Front Connectors 7-2
7-2 Maximum Permissible Cable Length for Digital Signal Lines in the Same Cable 7-7
7-3 Cable Lengths and Differences in Potential for Analog Modules 7-8

\section*{NOTE}

These instructions do not cover all details or variations in equipment or provide for every circumstance that can arise with installation, operation, or maintenance. If you want further information or if particular problems arise that are not covered sufficiently for your purposes, contact your local Siemens sales office.

The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

\section*{How to Use This Book}

This section discusses information that may be helpful as you use this book.

\section*{Contents of This Book}
- Chapter 1 - Installation in Cabinets

This chapter provides the dimensions for the central housing of U-Series programmable controllers and discusses fan subassemblies and integrated power supply units. It explains centralized and distributed configurations.
- Chapter 2 - Power Supply

This chapter discusses the internal power supply for central controllers and expansion units and load current supply for the peripheral modules, sensors, and actuators. It provides information on the back-up battery and on grounded, nongrounded, and centrally grounded power supply units. The chapter also includes details on load current supply from two power supply units for floating and nonfloating peripheral modules and power supply to enable inputs of peripheral modules.
- Chapter 3 - Installing Configuration Wiring (without Considering Grounding)

This chapter provides information on configuration wiring and cable lengths.
- Chapter 4 - Fan, Battery, and Temperature Monitoring

This chapter discusses the function of the fans and their monitor in the subassembly of U-Series housings. It also discusses the option of having the battery monitor operate a relay contact.
- Chapter 5 - Cabinet Ventilation and Power Loss (Heat Dissipation)

This chapter indicates the maximum power loss dissipation per U-Series unit and lists the power loss values of modules used in these devices. It provides recommendations for cabinet design and cabinet cooling.
- Chapter 6-Cabinet Design

This chapter lists required installation clearances and provides an installation example.
- Chapter 7 - Cabinet Wiring

This chapter lists requirements and recommendations for wiring cabinets containing U-Series units. It includes information on connectors, grounding, potential equalization, noise suppression, and shielding.
- Chapter 8 - Safety Measures

This chapter provides safety recommendations for configuring programmable controller systems.
- Index

The index contains an alphabetical list of key terms and subjects covered in this book and their corresponding page numbers.
- Remarks Form

The remarks form is provided for your comments and recommendations. Only if you are in the United States of America should you use the postage-paid form.

\section*{Training}

Contact your local Siemens representative for information on training courses to aid you in becoming familiar with this product. Consult the appendix at the end of the entire manual for a list of Siemens offices worldwide.

\section*{Reference Materials}

It is recommended that you have the following books that support U-Series systems:
- S5-135U Programmable Controller Manual
(Publication No. 6ES5 998-OUL21)¹
- S5-150U Programmable Controller Manual
(Publication No. 6ES5 998-0AL21) \({ }^{1}\)
- S5-155U Programmable Controller Manual
(Publication No. 6ES5 998-OUM21) \({ }^{1}\)
- U Periphery Manual
(Publication No. 6ES5 998-OPC21) \({ }^{1}\)
- S5-135U and S5-150U Programmable Controllers Catalog ST 54.1
(Publication No. E86010-K4654-A111-A3-7600) \({ }^{1}\)

\footnotetext{
1 Order the appropriate book from your local Siemens representative.
}
- Programmer Manuals \({ }^{1}\) :

PG 635 Programmer Manual
(Publication No. 6ES5 835-OSC21)
PG 675 Programming Unit
(Publication No. 6ES5 998-0US21)
PG 675 Programmer Manual (using S5-DOS)
(Publication No. 6ES5 875-OSC21)
PG 685 Programmer Manual
(Publication No. 6ES5 885-OSC21)
PG 695 Programmer Manual
(Publication No. 6ES5 895-OSC21) \({ }^{2}\)
- STEP 5 for Personal Computers User Guide (Volume 2 of 2)
(Publication No. 04-016-03-0788) \({ }^{3}\)
- STEP 5 Language Primer
(Publication No. 05-019-02-1285) \({ }^{3}\)

\footnotetext{
1 Order the appropriate programmer manual from your local Siemens representative.
2 This programmer is not presently available in the U.S.A.
3 Order from Siemens Energy \& Automation, Inc.
Programmable Controls Business Unit
150 Hembree Park Drive
Roswell, GA 30077-9810
U.S.A.
}

\section*{Conventions}

The following conventions are used in this book and are listed for your reference:

\section*{Convention}

Definition
Example
A box that indicates a type of hazard, describes its implications, and tells you how to avoid the hazard is safety notation. Some safety notation includes a graphic symbol representing an electrical or radio frequency hazard. All safety notation has one of the following levels of caution:

- A danger indicates that loss of life, severe personal injury, or substantial property damage will result if proper precautions are not taken.

- A warning indicates that loss of life, severe personal injury, or substantial property damage can result if proper precautions are not taken.

- A caution indicates that minor personal injury or property damage can result if proper precautions are not taken.
\begin{tabular}{|c|}
\hline \(\triangle\) CAUTION \\
\hline nemanom verese \\
\hline mincosm \\
\hline Nasemmm mimm \\
\hline
\end{tabular}

Depending on configuration, central controllers and expansion units can be installed with different fan subassemblies and power supply units (see Table 1-1).

Module power loss (heat dissipation) contributes to temperature increase inside the cabinet. Calculate power loss according to the list in Table 5-1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Fan Subassembly with Power Supply Unit} & \multicolumn{6}{|l|}{Central Controllers and Expansion Units} \\
\hline Input Voltage & 5 V DC & 24 V DC Total \({ }^{1}\) & 15 V DC & \[
\begin{gathered}
\text { CC } \\
135 \mathrm{U}
\end{gathered}
\] & \[
\begin{gathered}
\text { CC } \\
150 \mathrm{U} \\
155 \mathrm{U}
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
183 \mathrm{U}
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
184 U
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
185 \mathrm{u}
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
186 \mathrm{U}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 115 \mathrm{VACI} \\
& 230 \mathrm{VAC} \\
& \text { floating }
\end{aligned}
\] & 18 A & 0.8A & 0.5 A & x & & x & & x & \\
\hline \[
\begin{aligned}
& 115 \mathrm{~V} \mathrm{ACI} \\
& 230 \mathrm{VAC} \\
& \text { floating }
\end{aligned}
\] & 40 A & 2.8 A & 2.0 A & x & x & & & x & \\
\hline 24 V DC nonfloating & 10 A & 0.8 A & 0.5 A & x & & & & & \\
\hline 24 V DC floating & 18A & 0.8 A & 0.5 A & x & & x & & x & \\
\hline 24 V DC floating & 40 A & 2.8 A & 2.0 A & x & x & & & x & \\
\hline \multicolumn{4}{|c|}{Power Supply Unit without Fans} & \multicolumn{6}{|l|}{Central Controllers and Expansion Units} \\
\hline Input Voltage & 5 V DC & \[
24 \mathrm{~V} \mathrm{DC}
\]
\[
\text { Total }{ }^{1}
\] & 15 V DC & \[
\begin{gathered}
\text { CC } \\
135 \mathrm{U}
\end{gathered}
\] & \[
\begin{gathered}
C C \\
150 U \\
1550
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
183 U
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { EU } \\
184 U
\end{array}
\] & \[
\begin{gathered}
\text { EU } \\
185 U
\end{gathered}
\] & \[
\begin{gathered}
\text { EU } \\
186 U
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 115 \mathrm{VAC} \\
& 230 \mathrm{VAC} \\
& \text { floating }
\end{aligned}
\] & 15 A & 0.4 A & & & & & & & x \\
\hline 24V DC & 15A & 0.4 A & & & & & & & X \\
\hline \multicolumn{4}{|l|}{Fan Subassembly without Power Supply Unit} & & & & & & \\
\hline \multicolumn{4}{|l|}{Input Voltage} & & & & & & \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& 115 \mathrm{~V} \mathrm{ACI} \\
& 230 \mathrm{~V} \mathrm{AC}
\end{aligned}
\]} & & & & X & & \\
\hline \multicolumn{4}{|l|}{24 V DC} & & & & x & & \\
\hline
\end{tabular}

1 This is the total current capacity available by either the front terminal or the backplane.
Table 1-1. Fan Subassemblies with or without Integrated Power Supply Units
\(\qquad\)

You can arrange a central controller with various expansion units in the same cabinet or in adjacent cabinets located 2 m (6.6 ft .) or less away. \({ }^{1}\) This is called a "centralized configuration." You can also put expansion units in cabinets that are as far away as 1000 m (3281 ft). \({ }^{2}\) This is called a "distributed configuration."

Hazardous current.
Can cause minor property damage.
Apply no more than 5 A current to the bus cables when you use interface modules to connect central controllers to expansion units that have no power supply units.

\footnotetext{
1 The maximum total cable length from the central controller to the most distant expansion unit is 2.0 m (6.6 ft .). The maximum total cable length between a central controller and an expansion unit is \(1.5 \mathrm{~m}(4.9 \mathrm{ft}\).). Where dimensions are indicated in meters and feet, the conversion factor is 3.281 (\(1 \mathrm{~m}=3.28 \mathrm{ft}\).) with feet rounded off to the nearest tenth of a foot.
2 The maximum total cable length from the central controller to the most distant expansion unit is 1000 m (3281 ft). The maximum total cable length between a central controller and an expansion unit is 1000 m (3281 ft .).
}

\subsection*{1.1 Centralized Configuration}

In a centralized configuration, you can put expansion units in the same cabinet as the central controller or in adjacent cabinets. Maintain a clearance of at least 75 mm (2.93 in .) but no more than 100 mm (3.9 in .) between devices. The maximum total cable length from the central controller to the most distant expansion unit is \(2 \mathrm{~m}(6.6 \mathrm{ft}\).).

Figure 1-3 shows a configuration with the S5-135U, S5-150U, or S5-155U central controller and two S5-184U expansion units with the appropriate interface modules. To achieve a similar centralized configuration, plug an IM 300-5C interface module into the central controller and an IM 312-5C interface module into each expansion unit to connect up to three S5-184Us to the central controller. The cable connector of the IM 312-5C interface module has a maximum length of 1.5 m (4.9 ft .). See the S5-135U and S5-150U Programmable Controllers Catalog ST \(54.1^{1}\) and the \(U\) Periphery Manual \({ }^{2}\) for other configurations.

Figure 1-3. Centralized Configuration with the S5-135U, S5-150U, or S5-155U
Central Controller and S5-184U Expansion Units

\footnotetext{
1 Publication no. E86010-K4654-A111-A3-7600
2 Publication no. 6ES5 998-OPC21
}

\subsection*{1.2 Distributed Configuration}

In a distributed configuration, the expansion units are arranged in a cabinet that is up to 1000 m (3281 ft .) from the central controller. Figure 1-4 shows a version of a distributed configuration with a maximum total cable length of 200 m (656.2 ft .).

Figure 1-4. Example for Distributed Configuration with the S5-135U, S5-150U, or S5-155U Central Controller and the S5-183U and S5-184U Expansion Units

To achieve a distributed configuration similar to the one shown in Figure 1-4, plug an IM 301-5C interface module into the central controller. You can use up to four IM 301-5C interface modules in one central controller. Plug an IM 310-3 interface module into each S5-183U expansion unit to connect up to four expansion units to the IM 301-5C in the central controller for a distributed configuration. Always put a 6ES5 760-0AA 11 terminator in the last IM 310-3 interface module and into any unused distributed configuration connections of the IM 301-5C interface module. The maximum total cable length from the central controller to the most distant expansion unit is 200 m (656.2 ft .). In this distributed configuration, you can connect an IM 301-5C interface module only to an S5-183U expansion unit.

Plug an IM 312-5C interface module into each S5-184U expansion unit to connect up to three S5-184Us to an S5-183U expansion unit or to a central controller in centralized configuration. You can use IM 304 and IM 314 interface modules to cover distances of up to 600 m (1968.6 ft.) between the central controller and the last expansion unit.

See the S5-135U and S5-150U Programmable Controllers Catalog ST 54.1, the U Periphery Manual, or the appropriate hardware and installation guide for other configurations with different interface modules.

\section*{NOTE}

Use only the original cable connectors between interface modules. Connect the shielding of these cables at both ends (do not separate). The low-impedance shielding connection via the contact surfaces on the printed circuit boards and the grounding wiper in the module guide tacks must not be interrupted.

\section*{Chapter 2 \\ Power Supply}

The following power supplies are necessary for installing SIMATIC S5 systems:
- an integrated internal power supply for central controllers and expansion units
- a load current supply (external power supply) for peripheral modules, sensors, and actuators

\subsection*{2.1 Internal Power Supply}

The power supplies built into the housings of U-Series central controllers and expansion units provide internal voltages of 5 V DC, \(15 \mathrm{~V} \mathrm{DC}^{1}\), and 24 V DC from the 230 V AC/115 V AC or 24 V DC input voltage. When configuring central controllers and expansion units, make sure that the rated current of each built-in power supply unit is not exceeded. Consult the S5-135U and S5-150U Programmable Controllers Catalog ST 54.1 for the current consumption of individual modules on the 5 V side.

Floating and nonfloating power supply units are available for the 24 V DC input voltage (see Table 1-1). The permissible input voltages are as follows:
- nominal: 20 V DC to 30 V DC
- surge: 36 V DC for 100 msec .

For power supply units with rated input voltage of 230 VAC 115 VAC , the permissible input voltages are as follows:
- nominal voltage at 115 V AC: 97 V AC to 132 V AC
- nominal voltage at 230 V AC: 187 V AC to 253 VAC

\footnotetext{
1 The power supply unit provides an internal voltage of 15 V DC only if the 15 V submodule is inserted (see the \(55-135 \mathrm{U}\) and S5-150U Programmable Controllers Catalog ST 54.1).
}

\subsection*{2.2 Load Current Supply (External Power Supply)}

For load current supply, you can use Siemens power supply units of the 6EV13.. series (20 A and 40 A output current) to supply peripheral modules and also central controllers and expansion units with 24 V DC input voltage. Consult the S5-135U and S5-150U Programmable Controllers Catalog ST 54.1 and the Modular Packaging Systems and Power Supplies for Industrial Electronics ET 1 Catalog \({ }^{1}\) for more information.

When selecting and calculating the DC load current supplies for digital output modules (U-Series), note the following points:
- In addition to electronic short-circuit protection, the DC digital output modules have fuses to protect the cables and signal lines against overcurrent and to protect themselves against short circuiting. These fuses also protect against polarity reversal of the supply voltage connections.
- The resistance (R) for electronic short-circuit protection of digital output modules corresponds to the maximum permissible cable resistance. The value of resistance (15 ohms for 0.5 A outputs, 3.6 ohms or 4.75 ohms for 2 A outputs) is listed in the technical specifications for digital output modules in the \(U\) Periphery Manual \({ }^{2}\).
- If you consider that all output loads are connected (note the total load rating), and in the event of a short circuit, the timed electronic short-circuit protection does not become effective immediately. Two to three times the rated output current can flow at the output for a short period before the short-circuit protection takes effect. This current surge is generally found in unregulated load current supply devices.
- Where regulated load current supply devices are concerned, especially in the case of small output power up to 20 A , a corresponding current surge must be considered.

NOTE
You must ensure that a secure electric separation exists for all power supply units that feed SIMATIC S5 devices and modules according to specifications required in your country. \({ }^{3}\)

\footnotetext{
1 E86010-P4101-A104-A8-7600
2 Publication no. 6ES5 998-OPC21
3 In the U.S.A., make the electric separation according to specifications outlined in UL 478 (approximate equivalent of VDE 0160).
}

\subsection*{2.3 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Grounded Battery or Grounded Power Supply Units}

The internal reference voltage (\(5 \mathrm{~V} D C\)) of U-Series central controllers and expansion units is grounded. Grounded operation is preferable to nongrounded or centrally grounded operation because of better noise immunity. Figure 2-1 shows possible connections for sensors or actuators of process peripherals on grounded power supply units.

(1) Housing potential (cabinet potential) is equal to protective ground (\(\mathrm{PE}=\) protective earth, protective ground).
(2) Protective ground to housings of sensors and actuators is required.
(3) Load voltage monitor \(\mathrm{L}+(24 \mathrm{VDC})(\mathrm{VM}=\) voltage monitor)
(4) There is no galvanic isolation with a \(24 \mathrm{VDC/10} \mathrm{~A}\) power supply unit. Smooth operation is possible only on a grounded primary power supply unit.
(5) Floating module
(6) Nonfloating module
(7) Use a connecting cable with as large a cross section as possible (black). If you use the shielding as protective ground, connect it at both ends (green-yellow)
(8) Use cable shielding for digital modules, if it is available Provide shielding for relatively long cables (see Table 7-2). You can connect shielding at one or both ends.
(9) For analog modules, connect shielding at the cabinet entry only. Continue it to the module.

Figure 2-1. Possible Connections for Sensors or Actuators of Process Peripherals on Grounded Power Supply Units

\subsection*{2.4 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Nongrounded Battery or Nongrounded Power Supply Units}

Figure 2-2 shows possible connections for sensors or actuators of process peripherals on nongrounded power supply units.

(1) Housing potential (cabinet potential) is equal to protective ground (\(\mathrm{PE}=\) protective earth, protective ground).
(2) Isolation-Monitoring equipment is required if double errors could possibly trigger dangerous movements and/or if voltages are greater than 50 VAC or 120 VDC . Only one isolation monitor is required per supply system.
(3) There is no galvanic isolation with a \(24 \mathrm{VDC/10} \mathrm{~A} \mathrm{internal} \mathrm{power} \mathrm{supply} \mathrm{unit}. \mathrm{Consequently}\), nongrounded primary power supply unit is not possible directly. Voltage feed via \(3 \mathrm{~L}+\mathrm{L}\) - is required.
(4) Protective ground to housings of sensors and actuators is required. This ground is not necessary for safely generated low voltages.
(5) Load voltage monitor \(\mathrm{L}+(24 \mathrm{VDC})(\mathrm{VM}=\) voltage monitor)
\({ }^{6}\) Floating module
(7) Nonfloating module
(8) Use a connecting cable with as large a cross section as possible (black). If you use the shielding as protective ground, connect it at both ends (green-yellow).
(9) Use cable shielding for digital modules, if it is available. Provide shielding for relatively long cables (see Table 7-2) You can connect shielding at one or both ends.
(10) For analog modules, connect shielding at the cabinet entry only. Continue it to the module

Figure 2-2. Possible Connections for Sensors or Actuators of Process Peripherals on Nongrounded Power Supply Units

\subsection*{2.5 Primary Power Supply for Central Controllers, Expansion Units, and Process Peripherals from Centrally Grounded Battery or Centrally Grounded Power Supply Units}

Figure 2-3 shows possible connections for sensors or actuators of process peripherals on centrally grounded power supply units.

Figure 2-3. Possible Connections for Sensors or Actuators of Process Peripherals on Centrally Grounded Power Supply Units

\subsection*{2.6 Load Current Supply from Two External Power Supply Units for Floating or Nonfloating U-Series Modules}

U-Series digital modules are available in nonfloating and floating versions. For the nonfloating modules, the reference voltage of the external process signals (\(M_{\text {ext }}\)) has to be connected to the internal reference voltage (\(M_{\text {int }}\), i.e., PE) (see Figure 2-4). For floating modules, an optocoupler separates the external voltages from the internal ones.

Floating

Nonfloating

Figure 2-4. Connection to Floating and Nonfloating Modules

Figures 2-5 and 2-6 show how inputs and outputs of different U-Series modules are fed from two external power supply units, PS 1 and PS 2.

For U-Series nonfloating input/output modules, the negative pole (L-) of the external power supply units must be connected to the reference potential ground (U-Series unit housing/cabinet housing) since the inputs of module 6ES5 420-4UA11 used in the example (see Figure 2-5) are already connected from the module to the \(U\)-Series housing ground (M is connected to \(P E\)). Q in this example denotes a latching output (e.g., flip-flop).

Figure 2-5. Feeding Nonfloating Input/Output Modules from Two External Power Supply Units

Figure 2-6. Feeding Floating Input/Output Modules from Two External Power Supply Units
Where floating modules are concerned, you can feed inputs and outputs with two power supply units by dividing the I/Os into floating (isolated) groups.

\section*{NOTE}

When inputs or outputs from two floating (isolated) groups are connected to one power supply unit, the modules are no longer isolated.

If you are using central controllers and expansion units with connection to the main power, a Siemens power supply unit of the 6EV13.. or 6ES5 950-8MD.. series with galvanic isolation is recommended to feed the process peripherals (load voltage). Connect the 24 V DC load voltage to the load voltage monitor input ("Monitor Input").

\subsection*{2.7 Back-Up Battery}

Each S5-135U, S5-150U, and S5-155U housing has an integrated back-up battery in addition to the power supply unit. You can change the battery without losing any data if the power supply is switched on or if you apply an external voltage to the "Ext. Batt." terminals (3.4 V).

\section*{NOTE}

Make sure the polarity of the external voltage is correct. The "Monitor Output" signal relay can also report a battery failure.

\subsection*{2.8 Power Supply to Enable Inputs of the Peripheral Modules}

U-Series peripheral modules have an enable circuit for communication between peripheral modules and S 5 bus signals. You can use the enable inputs to switch on certain modules permanently or to switch off certain modules while the programmable controller is operating.

For modules with direct voltage inputs or outputs, supplying an external voltage to the F + /Finputs triggers the enable. For modules with alternating voltage inputs or outputs, a jumper in the front connector triggers the enable.

Pivoting the front connector forward, away from the front of the module, interrupts the voltage supply for the enable inputs. The module is switched off and no longer gives an acknowledge signal when a CPU attempts to access it. A time-out error (QVZ) results.

\section*{NOTE}

When a time-out error occurs, CPUs react as follows:
- CPU 921 (S-Processor) goes into the "STOP" mode.
- CPU 922 (R-Processor), CPU 928, CPU 946/947 (S5-155U), and CPUs of the S5-150U
- continue to run
- react as programmed in error OBs called by QVZ

When an I/O module is not plugged in or does not give the "RDY" signal, CPU 928 and CPU 946/947 (S5-155U) write 0 into the process image input table for all missing inputs. All other CPUs write 1 into the table.

The following two examples illustrate the function of the enable inputs:
- Individual parts of a process can be shut off using very little power. This means that outputs of different modules can be run on the same load current supply and still be activated separately.
- The load voltage of each individual module can be monitored without additional overhead. You can program optional reactions to load voltage failure in the QVZ organization block.

When configuring systems, note the following requirements:
- Power up - Voltage must be at the enable inputs of the \(1 / O\) modules within 100 msec . after the programmable controller has been switched on.
- Power down - After the programmable controller has been switched off, the voltage must remain at the enable inputs of the \(1 / O\) modules as long as the internal 5 V is available.

For switching off programmable controllers and devices supplying the enable inputs, note the information in subsections 2.8.1 through 2.8.3.

\subsection*{2.8.1 Same Power Off Switch for the Central Controller/Expansion Unit and the Load Power Supply from a 220 V AC/115 V AC Power Supply}

Proper functioning is guaranteed if the 24 V DC load power supply has an output capacity of at least \(4700 \mu \mathrm{~F}\) per 10 A rated load current (e.g., the 6EV1 334-4AK [220 V AC/24 V DC, 10 A]). You can adapt devices that do not meet this requirement by connecting a capacitor of \(10000 \mu \mathrm{~F} / 40 \mathrm{~V}\) in parallel (e.g., in the case of the 6EV1 352-5BK [380 V AC \(/ 24 \mathrm{~V}\) DC, 20 A] load current supplies and the 6EV1 362-5BK [\(380 \vee \mathrm{AC} / 24 \vee \mathrm{DC}, 40 \mathrm{~A}\)] load current supply). See Figure 2-7.

Figure 2-7. Same 220 V AC/115 V AC Power Supply for Central Controller/Expansion Unit and Load Current Supply for I/Os

\subsection*{2.8.2 Separate or Same Power Off Switch for the Central Controller/Expansion Unit and the Load Current Supply}

The following capabilities for generating the enable voltage are available if you have to switch off the load current supply separately without influencing the enable of the modules. These capabilities are also available when the load current supply without additional capacitor and same power off switch is used.

Figure 2-8 shows a \(220 \mathrm{VAC} / 115 \mathrm{~V}\) AC power supply for a central controller or an expansion unit and load current supply where the enable inputs of I/O modules are supplied by the following sources:
1. 6ES5 951-4LB11 Load Current Supply
2. 6ES5 958-4UA11 Enable Supply
3. Battery
4. Enable Supply Direct from the Power Supply Unit (Note Load and Order Number)

220 V DC / 115 V AC

Figure 2-8. Separate 220 V AC/115 V AC Power Supply for Central Controller/ Expansion Unit and Load Current Supply for I/Os

Figure 2-9 shows a 24 V DC supply for a central controller or an expansion unit and I/Os where the enable inputs of I/O modules are supplied by the following sources:

Figure 2-9. 24 V DC Supply for Central Controller/Expansion Unit and I/Os
You can plug the 6ES5 958-4UA11 enable supply only into a central controller or an expansion unit housing that has an integrated power supply unit subassembly.

Use a 958 enable supply plugged into a unit with an integrated power supply unit to connect enable inputs of peripheral modules in expansion units that have no integrated power supply unit (e.g., S5-184U or S5-187U). See Figure 2-10.

Figure 2-10. Supplying Enable Inputs from the Central Controller to Expansion Units without an Integrated Power Supply Unit

\subsection*{2.8.3 Removing and Plugging In Input/Output Modules While the Programmable Controller Is Operating}

The S5-130K, S5-130W, and the S5-135U programmable controllers (with the S-Processor only) go into the "STOP" mode with a time-out signal when the front connector is removed, because removing the front connector removes the enable voltage. However, with the S5-135U (with CPU 922 \{the R-Processor\}, and CPU 928), S5-150K/S/U, and S5-155U (CPU 946/947) programmable controllers, you can remove and plug in input/output modules while the programmable controller is running and it will not go into the "STOP" mode. However, the QVZ signal (time-out) will light up on the CPU.

\section*{\ WARNING}

Loss of process control.
Can cause death, severe personal injury, or substantial property damage.

With no enable signal, or with a disconnected front connector or module, all inputs of this module are read as signal level 1. However, CPU 928 and CPU 946/947 write 0 into the process image input table. Maintain the enable input voltage of the modules that affect outputs directly, or ensure that the program can handle all input signals at signal level 1 or 0 , depending on the CPU.

Remove only the enable voltage of the appropriate output modules to switch off parts of a process. Program the QVZ organization block to avoid hazardous conditions in the process if a fault occurs or a module is disconnected.

\section*{Chapter 3}

\section*{Installing Configuration Wiring (without Considering Grounding)}

When supplying power to process peripheral modules with 24 V DC and to central controllers or expansion units with 240 V AC or 24 V DC, note the information in Figure 3-1 and Table 3-1.

(1) Not applicable if the power supply has a protective ground
(2) Current consumption per central controller/expansion unit:

For example, at \(24 \mathrm{VDC}(10=18 \mathrm{~A})\), it is approximately 6.9 A . At \(240 \mathrm{VAC}(10=18 \mathrm{~A})\), it is approximately 1.2 A .
(3) The fuses in the output modules can protect the output lines against short circuit and overload if cross sections and cable lengths are assigned properly (see Table 3-1). However, the input signal lines always need additional fuse protection. Where appropriate, an output can be used

Figure 3-1. Configuration Wiring
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Rated Current (A) of the \\
Protective Device
\end{tabular}} & \multicolumn{2}{|c|}{ Cross Section in mm² (Approximate AWG) } \\
\cline { 2 - 3 } & \begin{tabular}{c}
For Cable Length \\
\(<1 \mathrm{~m}(3.3 \mathrm{ft}\).)
\end{tabular} & \begin{tabular}{c}
For Cable Length \\
1 m to \(2.5 \mathrm{~m}(3.3\) to 8.2 ft.)
\end{tabular} \\
\hline\(<2\) & \(1.0(18)\) & \(1.5(16)\) \\
\hline 2 to 6 & \(1.5(16)\) & \(2.5(14)\) \\
\hline 6 to 10 & \(2.5(14)\) & \(4.0(12)\) \\
\hline 10 to 16 & \(4.0(12)\) & \(6.0(10)\) \\
\hline 16 to \(25{ }^{\circ}\) & \(6.0(10)\) & \(10.0(8)\) \\
\hline 25 to \(40 \odot\) & \(10.0(8)\) & \(16.0(6)\) \\
\hline
\end{tabular}
(1) For fuse protection in this current range, the lines from the terminal strip to the module have to be grounded and short-circuit proof under certain circumstances

Table 3-1. Cable Lengths and Cross Sections
If you supply the process peripheral modules with \(220 \mathrm{VAC} / 115 \mathrm{VAC}\), the same concept applies, but the values of Table 3-1 must be changed accordingly.

\section*{Chapter 4}

Fan, Battery, and Temperature Monitoring
Two fans built into the power supply slide-in subassembly in the bottom of the housing of each compact unit of the U-Series prevent heat accumulation. \({ }^{1}\) A monitor checks the stream of air produced by the fans to make sure that heat is dissipated sufficiently. If one or both fans stop, the monitor uses a relay contact to output a signal that activates an LED ("Monitor Output," see Figure 4-1). The relay contacts function as follows:
- Relay contact 1-2 is closed - The fan is running.
- Relay contact 2-3 is closed - The fan is defective.

Supply voltage \(230 \mathrm{~V} \mathrm{AC} / 115 \mathrm{~V}\) AC or 24 V DC
Signal output for fan monitor ("Monitor Output") and/or optional battery monitor
Enable of the \(+5 \mathrm{VDC} /+15 \mathrm{VDC} /+24 \mathrm{VDC}\) internal supply voltages (e.g., jumper EN-U \(\mathrm{U}_{\mathrm{H}}\) closed)
4 Monitoring of the load voltage ("Voltage Monitor")
5 Enable supply 24 V DC terminals
Back-Up battery
7 External battery voltage points
Figure 4-1. Connection Terminals on the Power Supply Unit of a U-Series Unit

\footnotetext{
1 Some expansion units do not have a power supply unit or fans and some have fans only.
}

A battery failure can also activate this relay contact. This is optional and works in addition to fanfault activation. The relay contacts function as follows:
- Relay contact 1-2 is closed - The fan is running and the battery is functioning properly.
- Relay contact 2-3 is closed - The fan is defective and/or the battery is low.

Use jumper F -R on the power supply unit to select whether the fan monitor shuts off the \(\mathrm{V}_{\text {o }}\) internal voltage (5 V) when a fan stops (see Figure 4-2). The jumper settings function as follows:
- Jumper \(F-R\) is closed \(-V_{0}\) is switched off.
- Jumper \(F-R\) is open \(-V_{0}\) is not switched off. (A contact puts out a signal.)

Figure 4-2. Jumper Layout on a Power Supply Unit (e.g., 6ES5 955-3LC12)
If for any special reasons the voltage (5 V) is not supposed to be shut off immediately for your application, open jumper F-R and make other arrangements to shut off the power. In such a case, a time delay relay (TDR) can implement this, but must shut down the voltage no later than 60 seconds after the monitor gives the signal (see Figure 4-3).

You can use jumper RR-LL to select whether the signal relay ("Monitor Output") is triggered not only by fan fault but also by battery failure. The jumper settings are as follows:
- Open (setting as delivered) - Signal relay is triggered by fan fault.
- Closed - Signal relay is triggered by fan fault and/or battery failure.

Consult the appropriate power supply unit hardware and installation guide for information on the functions and locations of the other jumpers.

\section*{Fan, Battery, and Temperature Monitoring with Several U-Series Units in One Cabinet}

If you want to use one monitor for several U-Series units that have fan subassemblies, wire terminals EN and \(U_{H}\) for monitoring according to the circuit diagram shown in Figure 4-3. In this case, if one fan stops, all units are shut off.

The fan monitor can shut off the units. A thermal contact in the cabinet in combination with a heat exchanger can also shut them off. The heat exchanger can also have a thermal contact. A time delay relay (TDR) activates the contacts. Place the cabinet thermal contact at the top of the cabinet in the exhaust of the top unit. You can mount the heat exchanger (with or without thermal contact) in the cabinet, on the cabinet door, or outside the cabinet.

One \(U_{H}\) output can trigger a maximum of seven EN inputs (F).

Figure 4-3. Wiring Recommendation for Fan/Temperature Monitoring When Using the S5-135U and the S5-183U in the Same Cabinet

\section*{Chapter 5}

Cabinet Ventilation and Power Loss (Heat Dissipation)
When configuring U-Series units, make sure that the fans' capability to dissipate power loss (heat dissipation) is not exceeded. The maximum power loss dissipation per unit with an intake temperature of \(55^{\circ} \mathrm{C}\) is 250 W . This power loss value increases by 20 W for every \(1^{\circ} \mathrm{C}\) decrease of the air intake temperature.

\subsection*{5.1 Power Loss (Heat Dissipation) of Modules}

Table 5-1 indicates the power loss values of modules used in U-Series units.
\begin{tabular}{|c|c|c|}
\hline Module & Order No. & Power Loss \\
\hline \multicolumn{3}{|l|}{Power Supply Units} \\
\hline \(230 \mathrm{~V} \mathrm{AC/115} \mathrm{~V} \mathrm{AC;} 5 \mathrm{~V}, 18 \mathrm{~A}\) & 6ES5 955-3LC14 & Maximum 75.0 W \\
\hline \(230 \mathrm{~V} \mathrm{AC/115V} \mathrm{AC;} 5 \mathrm{~V}, 40 \mathrm{~A}\) & 6ES5 955-3LF12 & Maximum 140.0 W \\
\hline \(24 \mathrm{VDC} ; 5 \mathrm{~V}, 18 \mathrm{~A}\) & 6ES5 955-3NC12 & Maximum 55.0 W \\
\hline 24 V DC; \(5 \mathrm{~V}, 10 \mathrm{~A}\) & 6ES5 955-3NA12 & Maximum 50.0 W \\
\hline 24 V DC; \(5 \mathrm{~V}, 40 \mathrm{~A}\) & 6ES5 955-3NF11 & Maximum 150.0 W \\
\hline \(230 \mathrm{~V} \mathrm{AC/115} \mathrm{~V} \mathrm{AC;} 5 \mathrm{~V}, 15 \mathrm{~A}\) & 6ES5 955-5LB11 & Maximum 25.0 W \\
\hline 24 V DC; \(5 \mathrm{~V}, 15 \mathrm{~A}\) & 6ES5 955-5NB11 & Maximum 25.0 W \\
\hline \multicolumn{3}{|l|}{S5-135U} \\
\hline CPU 920 (M-Processor) & 6ES5 920-3UA11 & 11.0 W \\
\hline CPU 921 (S-Processor) & 6ES5 921-3UA11/12 & 15.0 W \\
\hline CPU 922 (R-Processor) & 6ES5 922-3UA11 & 11.0 W \\
\hline Coordinator 923A & 6ES5 923-3UA11 & 2.5 W \\
\hline Coordinator 923C & 6ES5 923-3UC11 & 5.5 W \\
\hline
\end{tabular}

Table 5-1. Power Loss Values of Modules Used in U-Series Units
\begin{tabular}{|c|c|c|}
\hline Module & Order No. & Power Loss \\
\hline \multicolumn{3}{|l|}{S5-135U} \\
\hline CPU 928 & \[
\begin{aligned}
& \text { 6ES5 928-3UA11 } \\
& \text { 6ES5 928-3UA12 }
\end{aligned}
\] & \[
\begin{aligned}
& 15.0 \mathrm{~W} \\
& 17.5 \mathrm{~W}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{S5-150U} \\
\hline Central Processing Units & 6ES5 924S to 6ES5 927S & 63.5 W \\
\hline External Memory Interface Module & 6ES5 341 & 7.5 W \\
\hline Parity Module & 6ES5 342 & 7.5 W \\
\hline Bus Connection CC/EU & 6ES5 775-3AA 11/21 & 3.5 W \\
\hline \multicolumn{3}{|l|}{S5-155U} \\
\hline CPU 946 & 6ES5 946-3UA11/21 & 30 W \\
\hline CPU 947 & 6ES5 947-3UA \(11 / 21\) & 10 W \\
\hline \multicolumn{3}{|l|}{Interface Modules} \\
\hline EU Interface Module & 6ES5 300 & 3.0 W \\
\hline EU/CC Interface Module & 6ES5 301 & 4.0 W \\
\hline EU Interface Module & 6ES5 302 & 10.0 W \\
\hline EU Interface Module & 6ES5 304 & 7.5 W \\
\hline EU/CC Interface Module & 6ES5 308 & 2.5 W \\
\hline EU/CC Interface Module & 6ES5 310 & 3.0 W \\
\hline EU/CC Interface Module & 6ES5 310 H & 2.0 W \\
\hline EU/CC Interface Module & 6ES5 311 & 7.5 W \\
\hline CC Interface Module & 6ES5 312 & 1.5 W \\
\hline CC Interface Module & 6ES5 314 & 5.0 W \\
\hline CC Interface Module & 6ES5 318-3U & 2.0 W \\
\hline Programmer Interface Module & 6ES5 511 & 8.5 W \\
\hline Interface Module & 6ES5 \(512 \mathrm{C} / \mathrm{H}\) & 7.5 W \\
\hline
\end{tabular}

Table 5-1. Power Loss Values of Modules Used in U-Series Units (Cont.)
\begin{tabular}{|c|c|c|}
\hline Module & Order No. & Power Loss \\
\hline \multicolumn{3}{|l|}{Communications Processors (CPs)} \\
\hline CP 524 & 6ES5 524 & 7.5 W \\
\hline CP 525 & 6ES5 525 & 10.5 W \\
\hline CP 526 & 6ES5 526 & 11.0 W \\
\hline CP 535 & 6ES5 535 & 18.5 W \\
\hline CP 536 & 6ES5 536 & 12.0 W \\
\hline \multicolumn{3}{|l|}{Memory Modules} \\
\hline Memory Module & 6ES5 340-3 & Maximum 4.5 W \\
\hline Memory Module with Submodules & 6ES5 350-3 & Maximum 10.0 W \\
\hline 355 Memory Module & 6ES5 355-3UA11 & 1 \\
\hline \multicolumn{3}{|l|}{Input/Output Modules, Digital} \\
\hline Input Module & 6ES5 420-4U.. & Maximum 7.0 W \\
\hline Input Module & 6ES5 430-4U.. & Maximum 8.3 W \\
\hline Input Module & 6ES5 431-4U.. & 2.2 to 7.7 W (24 to 60 V) \\
\hline Input Module & 6ES5 432-4U.. & Maximum 7.5 W \\
\hline Input Module & 6ES5 434-4U.. & Maximum 5.5 W \\
\hline Input Module & 6ES5 435-4U.. & Maximum 3.5 W at 24 V Maximum 18.0 W at 60 V \\
\hline Input Module & 6ES5 436-4UA. & Maximum 3.5 W at 115 V Maxium 17.0 W at 240 V \\
\hline Input Module & 6ES5 436-4UB. & Maximum 2.0 W at 115 V Maximum 8.5 W at 240 V \\
\hline Output Module & 6ES5 441-4U.. & Maximum 17.0 W \\
\hline Output Module & 6ES5 451-4U.. & Maximum 17.0 W \\
\hline Output Module & 6ES5 453-4U.. & Maximum 49.0 W \\
\hline Output Module & 6ES5 454-4U.. & Maximum 17.5 W \\
\hline
\end{tabular}

1 Maximum without submodules \(=6 \mathrm{~W}\), with three RAM submodules \(=7 \mathrm{~W}\), with three EPROM submodules \(=9 \mathrm{~W}\)
Table 5-1. Power Loss Values of Modules Used in U-Series Units (Cont.)
\begin{tabular}{|c|c|c|}
\hline Module & Order No. & Power Loss \\
\hline Output Module & 6ES5 455-4U.. & Maximum 39.0 W \\
\hline Output Module & 6ES5 456-4UA. & Maximum 39.0 W \\
\hline Output Module & 6ES5 456-4UB. & Maximum 18.0 W \\
\hline Output Module & 6ES5 457-4U.. & Maximum 13.0 W \\
\hline Output Module & 6ES5 458-4U.. & Maximum 5.2 W \\
\hline Input/Output Modules, Analog & & \\
\hline Input Module & 6ES5 460-4U.. & Maximum 3.5 W \\
\hline Input Module & 6ES5 463-4U.. & Maximum 5.0 W \\
\hline Input Module & 6ES5 465-4U.. & Maximum 1.5 W \\
\hline Output Module & 6ES5 470-4U.. & Maximum 9.0 W \\
\hline
\end{tabular}

Table 5-1. Power Loss Values of Modules Used in U-Series Units (Cont.)

The maximum values in Table 5-1 apply for full load or for permissible module power loss when the total load rating is considered.

\subsection*{5.2 Power Loss (Heat Dissipation) in a Cabinet and Cabinet Cooling}

The power loss that can be dissipated from a cabinet depends on the cabinet design, its ambient temperature, and the arrangement of units in the cabinet (see Figure 5-1).

Ambient Temperature in Degrees Centigrade

Power Loss
1 Closed cabinet with heat exchanger
2 Cabinet with air intake slots
3 Closed cabinet with convection and forced circulation using fans
Figure 5-1. Maximum Ambient Temperature of a Cabinet Depending on the Installed Power Loss (Heat Dissipation)

Figure 5-1 shows the permissible ambient temperature of a cabinet with dimensions of \(600 \mathrm{~mm} \times 600 \mathrm{~mm} \times 2200 \mathrm{~mm}\) (\(23.4 \mathrm{in} . \times 23.4 \mathrm{in} \times 85.8 \mathrm{in}\).) depending on the installed power loss. The values indicated apply only to an arrangement of units as shown in Figures 6-1 and 6-2.

The following example calculates the total power loss for a specific device configuration.
Table 5-2 lists the maximum ambient temperature for specific cabinet designs.
Example: Total Power Loss for a Configuration with One Central Controller and Two Expansion Units

One central controller 200 W
Two expansion units, each with 250 W power loss 500 W
One load power supply unit, 24 V DC/40 A, 6EV1 360 (full load) 200 W
Total power loss 900 W
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Cabinet Design } & Maximum Ambient Temperature \\
\hline \begin{tabular}{l}
Closed, with convection and forced \\
circulation
\end{tabular} & Not possible \\
\hline Open & Approximately \(33^{\circ} \mathrm{C}\) \\
\hline Closed, with heat exchanger & Approximately \(42^{\circ} \mathrm{C}\) \\
\hline FrameworkWall & Maximum \(55^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Table 5-2. Maximum Ambient Temperature for Specific Cabinet Designs

The environmental conditions where you set up the programmable controller are a deciding factor in selecting the type of cabinet protection (see Figure 5-2).

\begin{tabular}{|c|c|c|c|}
Framework \(/\) Wall & \begin{tabular}{l}
Open Cabinet with \\
Airflow Ventilation
\end{tabular} & \begin{tabular}{l}
Closed Cabinet with \\
Convection and Forced \\
Circulation
\end{tabular} & \begin{tabular}{l}
Closed Cabinet with \\
Heat Exchanger
\end{tabular} \\
\hline\(\leq\) IP1X \(^{3}\) & \(\geq\) IP2X \(^{4}\) & \(\geq\) IP5 \(^{5}\) & \(\geq\) IP5X \(^{5}\) \\
\hline \multicolumn{2}{|c|}{ Locate only in clean, dry rooms. } & \multicolumn{2}{|c|}{ Locate where desired. } \\
\hline
\end{tabular}
Locate only in electrical operating areas or closed electrical operating areas.
1 Note protection against electric shock.
\({ }^{2}\) Cross section of the air slots \(>600 \mathrm{~cm}^{2}\) (\(93 \mathrm{in}^{2}{ }^{2}\))
3 IP1X stands for an environmental rating. The first number (0 to 6) after IP is the dry particle rating and the second number (0 to 8) is the moisture ratıng. For this example, the moisture rating is not specified so it is denoted by an "X." IP1X = protection against large solids (750 mm or 29.25 in .)
4 IP2X = protection against medium solids (712 mm or 27.77 in .)
5 IP5X = protection against surface dust

Figure 5-2. Cabinet Design

\section*{Chapter 6 \\ Cabinet Design}

This chapter provides requirements and recommendations for cabinet design.

\subsection*{6.1 Ventilation Clearances}

No more than three U-Series units can be arranged one over the other because of the required clearance and the maximum permissible height for controls (see Figure 6-1).
\(\qquad\)

Figure 6-1. Installation Clearances

\subsection*{6.2 Installation Example}

Figure 6-2 shows an example of a U-Series unit installation. Dimensions are in millimeters with inches indicated in parentheses.

See section 7.9 for more information on the programmer receptacle

The example shows an installation on mounting rails in an 8 MF cabinet (\(2200 \mathrm{~mm} \times 600 \mathrm{~mm} \times\) \(600 \mathrm{~mm},=85.8 \mathrm{in} . \times 23.4 \mathrm{in} . \times 23.4 \mathrm{in}\).). In addition to being economical, this design has the following advantages:
- You can make this installation in all cabinets without additional parts.
- The installation is independent of the cabinet width (550 mm to 1200 mm possible, \(=\) 21.45 in . to 46.8 in .).
- You can install the units asymmetrically. You can gain more space on one side for running signal cables.
- All devices, including load power supplies, can be installed and removed from the front, even after initial installation. You do not need to remove the nuts on the U-Series units. You need only loosen them. Then you can install or remove the units (one-man installation).
- Running analog, digital, and power lines in separate ducts increases noise immunity against signals interfering with each other.
- A power line filter is recommended to suppress interference on the power line where it enters the cabinet.

\section*{Chapter 7 \\ Cabinet Wiring}

This chapter lists requirements and recommendations for wiring cabinets containing U-Series units.

\subsection*{7.1 Connector Specifications}

This section provides specifications for power and process signal line connectors.

\subsection*{7.1.1 Connectors for Power}

The connection terminals for U-Series units are suitable for the following types of wire:
- maximum \(4 \mathrm{~mm}^{2}\) (approximately AWG 12) solid
- maximum \(2.5 \mathrm{~mm}^{2}\) (approximately AWG 14) stranded with solderless crimp connector

\subsection*{7.1.2 Connectors for Process Signal Lines to Peripheral Modules}

The peripheral modules have 20-, 25-, or 42-point front connectors. Connector blade dimensions are \(2.4 \mathrm{~mm} \times 0.8 \mathrm{~mm}\) (\(0.09 \mathrm{in} . \times 0.03 \mathrm{in}\).).

Front connectors with crimp snap-on contacts and screw-type contacts for an installation width of 20 mm (0.78 in .) and 40 mm (1.56 in .) are available to connect signal lines (see Table 7-1). Use stranded conductors for easy handling of the front connector. If you use screw-type contacts, solderless crimp connectors (wire pin) are not necessary since the screw contact terminals have wire protection. Use screwdrivers with the following flat blade widths:
- 2.8 mm (0.11 in .) for the 4 UB31
- 3.5 mm (0.14 in .) for all others
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Connection Type} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Connec- } \\
& \text { tor } \\
& \text { Type } \\
& 6 \text { ES5497 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max. \\
No. of Pins
\end{tabular}} & \multirow[t]{2}{*}{Cross Section of Signal or Power Line} & \multirow[t]{2}{*}{Connector for Rated Voltage} & \multirow[t]{2}{*}{Fork Width mm (in.) \({ }^{2}\)} & \multirow[t]{2}{*}{Front Connector Width mm (in.)} & \multicolumn{2}{|l|}{Module Type 6ES5... Type of Operation} \\
\hline & & & & & & & with Fans & without Fans \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Crimp \\
Snap-On \\
Contact \({ }^{1}\)
\end{tabular}} & 4UA12 & 42 & \[
\begin{aligned}
& 0.5 \text { to } 1.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 16 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \vee D C \text { to } \\
& 60 \vee D C
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& (.47)
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& (0.78)
\end{aligned}
\] & \[
\begin{aligned}
& 420,430, \\
& 431,432, \\
& 434,441, \\
& 451,458
\end{aligned}
\] & - \\
\hline & 4UA22 & 42 & \[
\begin{aligned}
& 0.5 \text { to } 1.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 16 \text {) }
\end{aligned}
\] & \(5 \vee D C\) to 60 VDC & \[
\begin{aligned}
& 12 \\
& (.47)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (1.56)
\end{aligned}
\] & 453,454 & \[
\begin{aligned}
& 420,430, \\
& 431,432, \\
& 434,441, \\
& 451,453, \\
& (454), 458
\end{aligned}
\] \\
\hline & 4UA42 & 20 & \[
\begin{aligned}
& 0.5 \text { to } 1.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 16 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& 24 \mathrm{VAC} \text { to } \\
& 240 \mathrm{~V} \mathrm{AC}
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& (.55)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (1.56)
\end{aligned}
\] & 435, 436, 4 & 5,456 \\
\hline \multirow[t]{4}{*}{Screw-Type Contact} & 4UB12 & 42 & \[
\begin{aligned}
& 0.5 \text { to } 2 \times 2.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 2 \\
& \times \text { AWG 14) }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \mathrm{VDC} \text { to } \\
& 60 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& (.47)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (1.56)
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 420,430,431,432, \\
& 434,441,451,453, \\
& (454), 458
\end{aligned}
\]} \\
\hline & 4UB22 & 25 & \[
\begin{aligned}
& 0.5 \text { to } 2 \times 2.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 2 \\
& \times \text { AWG 14) }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \mathrm{~V} D C \text { to } \\
& 60 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& (.47)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (1.56)
\end{aligned}
\] & \multicolumn{2}{|l|}{454} \\
\hline & 4UB31 & 42 & \[
\begin{aligned}
& 0.5 \text { to } 2 \times 1.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximately } \\
& \text { AWG } 20 \text { to } 2 \\
& \times \text { AWG } 16 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \mathrm{~V} D C \text { to } \\
& 60 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& (.47)
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& (0.78)
\end{aligned}
\] & \[
\begin{aligned}
& 420,430 \\
& 431,432, \\
& 434,441, \\
& 451,458
\end{aligned}
\] & - \\
\hline & 4UB42 & 20 & \[
\begin{aligned}
& 0.5 \text { to } 2 \times 2.5 \\
& \mathrm{~mm}^{2} \\
& \text { (approximateiy } \\
& \text { AWG } 20 \text { to } 2 \\
& \times \text { AWG 14) }
\end{aligned}
\] & \[
\begin{aligned}
& 24 \mathrm{VAC} \text { to } \\
& 240 \mathrm{VAC}
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& (.55)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (1.56)
\end{aligned}
\] & \multicolumn{2}{|l|}{435, 436, 455,456} \\
\hline
\end{tabular}

\footnotetext{
1 Consult the S5-135U and S5-150U Programmable Controllers Catalog ST 54.1 for information on contacts and tools
2 To protect against plugging the wrong front connector into a module, the front connectors for AC voltage connections have a pivot hinge width of \(14 \mathrm{~mm}(0.55 \mathrm{in}\).) and those for \(D C\) voltage connections have a pivot hinge width of 12 mm (0.47 in .).
}

Table 7-1. Specifications for Front Connectors

\subsection*{7.2 Wiring Layout}

With reference to interference, differentiate among the following wiring groups:
- 110 V AC to 380 V AC supply lines for programmable controllers, expansion units, and external power supplies
- 24 V DC supply lines
- Digital signal lines for alternating voltage
- Digital signal lines for direct voltage
- Analog signal lines

When running signal and supply lines in a cabinet, follow the guidelines in IEC 439. When running them outside the cabinet, follow the guidelines in IEC 364.

Generally, analog lines must be run in shielded cables both inside and outside a cabinet (see section 7.7).

\subsection*{7.2.1 Wiring Layout inside the Cabinet}

For wiring layouts inside the cabinet, run all wiring groups separately in the cabinet. The term "separate" applies to the following groups:
- wiring ducts (minimum clearance \(2 \mathrm{~cm},=0.78 \mathrm{in}\).)
- wiring bundles
- cables
- shielded cables

You can run \(220 \mathrm{VAC} / 115 \mathrm{~V}\) AC line voltage cables in the same wiring duct as signal lines only if the supply lines are properly shielded. Run single lines for digital direct voltage and alternating voltage signals in separate wiring ducts in the cabinet.

\subsection*{7.2.2 Wiring Layout outside the Cabinet}

For wiring layouts outside the cabinet, run separate cables for direct voltage digital signals, alternating voltage digital signals, and analog signals. You can run signal cables in the same ducts as power cables. You can run signal cables and power cables up to 380 V AC without any clearance. However, to decrease noise interference, run the cables with a clearance of approximately 10 cm (3.9 in .). Maintain a minimum clearance of 10 cm (3.9 in .) between signal cables and power cables over 500 V AC. Maintain a clearance greater than 30 cm (11.7 in .) for power cables over 1 kV AC.

\subsection*{7.3 Grounding}

Grounding refers to a conducting connection of inactive metal parts (see VDE 0160). In accordance with this, use tooth-lock washers to fasten the U-Series unit frames to the cabinet braces to form a good metallic contact. The braces must also form a good contact with the cabinet housing. When mounting a unit on a wall, connect the unit housing to the ground potential (e.g., protective ground bar) with a cross section \(\geq 10 \mathrm{~mm}^{2}\) (approximately AWG 6).

\subsection*{7.4 Protection against Dangerous Currents}

Use a protective conductor (\(\geq 10 \mathrm{~mm}^{2}\), approximately AWG 6) to connect the cabinet to the protective ground of the distribution board. The \(220 \mathrm{VAC} / 115 \mathrm{~V}\) AC supplies of the units in the cabinet are connected to this board.

For 24 V DC power, connect the unit to the central grounding point or to the protective ground of the distribution board that supplies power to the outlet for the programmer (\(\geq 10 \mathrm{~mm}^{2}\), approximately AWG 6). Connect the protective ground of the leads of the central controller, expansion unit, or power supply unit to their own protective ground terminals.

If you have several adjacent cabinets, either bolt them together to provide good contact or connect a protective ground (\(\geq 10 \mathrm{~mm}^{2}\), approximately AWG 6) to each cabinet. Follow the instructions listed in this section as a protective measure against dangerous currents from the cabinet and the installed equipment.

\subsection*{7.5 Potential Equalization}

For distributed configurations, differentiate between the following cases:
- A separate location (up to \(200 \mathrm{~m},=656.2 \mathrm{ft}\).) of central controllers and expansion units when connected by the IM 301/IM 310 interface modules (see Figure 7-1). The IM 301/IM 310 interface modules are nonfloating. Potential differences up to 7 V are permissible.
- A separate location (up to \(1000 \mathrm{~m},=3281 \mathrm{ft}\).) of central controllers and expansion units with serial connection using the IM 302/IM 311 interface modules (see Figure 7-1). The IM 302/IM 311 interface modules are floating.
- Signal transfer between separate systems via floating input/output modules (see Figure 7-2).

In the first case, provide a potential equalization line (connecting line \(\geq 10 \mathrm{~mm}^{2}\), approximately AWG 6), between the braces of the cabinet or the housing frames. For the other two cases, a potential equalization line is recommended.

If the IM 301/IM 310 nonfloating interface modules are used for centralized configuration in the same cabinet or in adjacent ones, you can make an additional signal transfer using nonfloating input/output modules. A potential equalization line is required in this case.

Figure 7-1. Potential Equalization for Distributed Installation

Figure 7-2. Signal Transfer for Distributed Installation

\subsection*{7.6 Measures against Noise Interference}

This section provides recommendations for system noise suppression to prevent noise interference peaks on signal and supply lines in a cabinet.

\subsection*{7.6.1 Noise Suppression on Alternating Current Power Lines Using Filter}

When supplying the cabinet from a \(220 \mathrm{~V} \mathrm{AC/115} \mathrm{~V} \mathrm{AC} \mathrm{power} \mathrm{line}\), line (e.g., B84299-K64, 250 V AC/10 A) (see Figure 6-2). Connect the ground of the power line filter to the central grounding point in the cabinet via the shortest route possible.
\(\qquad\)

\subsection*{7.6.2 Noise Suppression on Direct Current Power Lines Using Diverting Capacitors}

When a 24 V DC power line supplies a cabinet, noise interference can be brought in over the power line. It is recommended that you install noise suppression capacitors where the 24 V DC power line enters the cabinet. Mount them on the cabinet ground or the shielding bar.

Figure 7-3. Layout of Noise Suppression Capacitors

\subsection*{7.6.3 Inductance Suppression}

Provide RC arc suppression elements for inductances that are installed in the same cabinet and are not connected directly to SIMATIC outputs (e.g., contactor and relay coils).

\subsection*{7.6.4 Inductance Separation}

Sheet metal barriers are recommended to separate the part of the cabinet that contains large inductances such as transformers or contactors.

\subsection*{7.6.5 Protection against Electrostatic Discharge}

Use metal housings or cabinets that are closed in on all sides to protect controllers and modules against electrostatic discharge. Connect these housings or cabinets to the grounding point where you set them up so as to form a good contact. If you are using enclosures for smaller units (e.g., PC/ET 100U), cast metal or sheet metal housings are preferable to plastic ones. Use grounding bands or contact clips to connect doors or top plates of housings to the grounded housing bodies.

If you must work on the system when the cabinet is open, follow the guidelines to protect components and modules against electrostatic discharges (e.s.d.). See the appropriate guide for handling components and modules sensitive to electrostatic discharge \({ }^{1}\).

\footnotetext{
1 Order No. C79000-B0676-C070-01
}

\subsection*{7.6.6 Cabinet Lighting}

For reasons of noise immunity, do not use fluorescent lamps to light the cabinet. If you must use fluorescent lamps, take the precautions illustrated in Figure 7-4.

Figure 7-4. Measures to Suppress Fluorescent Lamp Noise in a Cabinet

\subsection*{7.7 Shielding and Permissible Cable Lengths}

It is recommended that analog signal lines be shielded. However, digital lines can be unshielded up to certain lengths. See Tables 7-2 and 7-3 for information on permissible cable lengths.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|c|}{ Module } & \multicolumn{2}{|c|}{\begin{tabular}{c}
Cable Length in Meters \\
(and Feet, in Parentheses)
\end{tabular}} \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ Unshielded } & Shielded \\
\hline Outputs & \(400(1312.4)\) & \(1000(3281.0)\) \\
Inputs, 24 V DC & \(600(1968.6)\) & \(1000(3281.0)\) \\
Inputs, 220 V AC & \(600(1968.6)\) & \(1000(3281.0)\) \\
Inputs, 431, 24 V DC to 60 V DC & \(400(1312.4)\) & \(1000(3281.0)\) \\
Inputs, 434, 5 V DC to 15 V DC & \(200(656.2) /\) & \(600(1968.8) /\) \\
\hline
\end{tabular}

Table 7-2. Maximum Permissible Cable Length for Digital Signal Lines in the Same Cable
\begin{tabular}{|c|c|c|}
\hline Module 6ES5 ... (Input Range) & Cable Lengths in Meters \({ }^{1}\) (and Feet, in Parentheses) & Potential Differences \({ }^{2}\) \\
\hline \[
\begin{aligned}
& 460 \\
& \left(\mathrm{~V}_{\mathrm{i}}=50 \mathrm{mV}\right) \\
& \left(\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV}\right)
\end{aligned}
\] & \[
\begin{aligned}
& 50(164.1) \\
& 200(656.2)
\end{aligned}
\] & 60 V AC/75 V DC \\
\hline 463 & 200 (656.2) & \(25 \mathrm{~V} \mathrm{AC/60} \mathrm{~V} \mathrm{DC}\) \\
\hline \[
\begin{aligned}
& 465 \\
& \left(V_{i}=50 \mathrm{mV}\right) \\
& \left(\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV}\right)
\end{aligned}
\] & \[
\begin{aligned}
& 50(164.1) \\
& 200(656.2)
\end{aligned}
\] & \(\pm 1.0 \mathrm{~V}\) \\
\hline 470 & 200 (656.2) & \(60 \mathrm{~V} \mathrm{AC/75} \mathrm{~V}\) DC (only to chassis ground) \\
\hline
\end{tabular}

1 These figures represent the recommended cable lengths of input and output lines to analog modules when they are in the same, shielded cable.
2 These figures represent the permissible difference in potential of input and output channels to the grounding point (potential ground) and of the channels among themselves.
Table 7-3. Cable Lengths and Differences in Potential for Analog Modules
The following recommendations apply to shielding:
- Connect cable shieldings to a shielding bar in the cabinet near the cable entry. Connect braided shielding to the shielding bar with as large a cross section as possible (e.g., with metal cable clamps that enclose the shielding).
- For cables with foil shielding, connect sheath wire to the shielding bar by the shortest route possible (approximately \(3 \mathrm{~cm},=1.17 \mathrm{in}\).). The shielding bar must have good metallic contact to the cabinet's supporting braces, the cabinet itself, and the central grounding point in the cabinet.
- Shielding bars for analog signal lines can be isolated and connected at a central point to the reference potential or to ground.

Figure 7-5. Connecting the Cable Shielding to the Shielding Bar

\subsection*{7.7.1 Grounding the Cable Shielding at One End}

For grounding analog signal lines at one end that carry low-level signals (mV or \(\mu \mathrm{A}\)), connect one end of the cable shielding in the cabinet to the shielding bar.

Extending the shielding found within the cable from the shielding bar to the module may be necessary for your application. In such a case, do not connect this shielding to the module because such a connection could establish a grounding loop. For grounding digital signal lines at one end, the shielding always ends at the shielding bar.

Grounding the cable shielding at one end is practical when it is not possible to run a lowresistance potential equalization line to the other end of the cable or when you only have to deal with low-frequency or static noise.

\subsection*{7.7.2 Grounding the Cable Shielding at Both Ends}

Grounding cable shielding of digital signal lines at both ends guarantees especially good suppression of high-frequency interference. A low-resistance potential equalization line is necessary to accomplish such grounding. The resistance must be approximately \(10 \%\) of the resistance of the braided shielding.

Factory supplied bus cables that transmit the device-internal bus entirely or partially (e.g., expansion unit interface modules) have shielding connected to ground at both ends. Do not disassemble these connectors.

Use the shielding connections on the modules themselves only in exceptional cases (e.g., when there is only one shielded cable and therefore no shielding bar is necessary).

\subsection*{7.8 Protection against Lightning}

If you run S 5 device cables and lines outside buildings, use shielded cables. The shielding must be able to carry a current and be connected to ground at both ends. For analog signal lines, use double- shielded cables. The inner shielding can be grounded at one end only, as described in section 7.7.

Also, connect the signal lines to elements that provide overvoltage protection (varistors and lightning arresters filled with inert gas). If possible, these elements should be at the point where the cable enters the building or at least where it enters the cabinet.

Figure 7-6. Placement of Elements That Protect against Lightning

\subsection*{7.9 Main Power Connection for Programmers}

In each cabinet group, provide a grounded receptacle to supply power for a programmer. The receptacle should have the protective ground from the distribution board to which the cabinet is connected.

\section*{Chapter 8 \\ Safety Measures}

When configuring systems that have programmable controllers, as is the case with protective equipment, follow the relevant VDE regulations (e.g., VDE 0113 and VDE 0100). Pay special attention to the following points:
- Prevent conditions that can injure people or property.
- When power is restored after a power failure or after EMERGENCY STOP units are released, machines must not be able to restart automatically.
- When a programmable controller malfunctions, commands for EMERGENCY STOP units and safety limit switches must remain effective under all circumstances. These safety measures must have a direct effect on the actuators in the power circuit.
- When EMERGENCY STOP units are activated, safety must be guaranteed for people and the controlled system as follows:
- Actuators and drives that could cause dangerous situations (e.g., main spindle drives for machine tools) must be shut off.
- On the other hand, actuators and drives that could endanger people or the controlled system by being shut off (e.g., clamping devices) must not be shut off by EMERGENCY STOP devices.
- The programmable controller must be able to record the activation of EMERGENCY STOP equipment and the user program must be able to cope with this activation and evaluate it.

\section*{A}

Acknowledge signal, 2-8
Air circulation clearance, 6-2
Air intake clearance, 6-2
Alternating current lines, noise suppression, 7-5
Alternating voltage, cable duct, 6-3
Analog module, potential difference, 7-8
Analog signal line, 7-3
cable duct, 6-3
double-shielded cable, 7-10
grounding at one end, 7-9
outside buildings, 7-10
shielding bar, 7-8

\section*{B}

Battery
centrally grounded, 2-5
failure, 2-8, 4-1 to 4-2
grounded, 2-3
monitoring, 4-1 to 4-2
nongrounded, 2-4
Bus, reference, 2-6

\section*{C}

Cabinet
cooling, 5-4 to 5-6
design, 6-1 to 6-4
lighting, 7-7
ventilation, 5-1
wiring, 7-1 to 7-10
Cable
digital signal lines, 7-7
double-shielded, 7-10
outside buildings, 7-10
power, 7-3
shielded, 7-3
Cable bracket, 6-3, 7-6
Cable duct, 1-1, 6-3
Cable length, 3-3, 7-7 to 7-8
Cable shielding, 7-9
Capacitor
diverting, 7-6
noise suppression, 7-6
Central grounding point, 7-4
Centralized configuration, 1-4, 1-5, 7-4
Circuit breaker, 6-3
Clearance
air circulation, 6-2
air intake, 6-2
cable, 7-3
exhaust, 6-2
installation, 6-2 to 6-4
ventilation, 6-1 to 6-2

Communication between peripheral modules and S 5 bus signals, 2-8
Communications processor, 5-3
Configuration
centralized, 1-4, 1-5
distributed, 1-4, 1-6, 7-4
Configuration wiring, 3-1 to 3-3
Connection
actuator, 2-3, 2-4, 2-5
floating module, 2-6
nonfloating module, 2-6
sensor, 2-3, 2-4, 2-5
Connection terminal, 4-1, 7-1
Connection type, 7-1, 7-2
Connector
crimp, 7-1, 7-2
front, 2-8, 7-1 to 7-2
powerline, 7-1
signal line, 7-1
Connector pins, 7-2
Connector specifications, 7-1 to 7-2
Contacts
crimp snap-on, 7-1 to 7-2
relay, 4-1, 4-2
screw-type, 7-1 to 7-2
thermal, 4-2, 4-3
Contact terminals, 7-1
Controls, maximum permissible height, 6-1 to 6-2
CPU, reaction to time-out error, 2-8
Crimp connector, 7-1, 7-2
Crimp snap-on contacts, 7-1 to 7-2
Cross section, 3-3, 7-8
power line, 7-2
signal line, 7-2
Current consumption, 3-2
individual modules, 2-1

\section*{D}

Dangerous currents, protection against, 7-4
Design, cabinet, 6-1 to 6-4
Digital output module, load current supply, 2-2
Digital signal line
alternating voltage, 7-3
cable duct, 6-3
direct voltage, 7-3
grounding at one end, 7-9
same cable, 7-7
Dimensions, housing, 1-2
Direct current power line, noise suppression, 7-6
Direct voltage, cable duct, 6-3

Distributed configuration, 1-4, 1-6
potential equalization, 7-4
potential equalization line, 7-5
signal transfer, 7-5
Distribution board, 7-4
Diverting capacitor, noise suppression, 7-6

\section*{E}

Electric separation, 2-2
Electronic short-circuit protection, 2-2
resistance, 2-2
Electrostatic discharge, protection against, 7-6
EMERGENCY STOP devices, 8-1
Enable, supply voltage, 4-1
Enable circuit, 2-8
Enable inputs, 2-8 to 2-13
Enable power supply, 4-3
Enable signal, 2-13
Enable supply 6ES5 958-4UA11, 2-10, 2-11
Enable voltage, 2-13
EN inputs (F), 4-3
Environmental rating (IP), 5-6
Exhaust clearance, 6-2
Expansion unit without power supply unit, 1-4, 2-11
Expansion unit interface module, 7-9
External power supply, 2-2
lines, 7-3
External process signal, reference voltage (\(\mathrm{Mext}_{\text {et }}\)), 2-6

\section*{F}

Fan, 1-1, 1-3
Fan airflow plate, 6-3
Fan fault (See fan monitoring)
Fan monitoring, 4-1 to 4-3
Fan subassembly
with power supply unit, 1-3
without power supply unit, 1-3
Filter, power line, 7-5
Flip-Flop, 2-7
Fluorescent lamps, noise, 7-7
Fork width, 7-2
Front connector, 2-8, 7-1 to 7-2
removing, 2-13
width, 7-2
Fuse, 2-2, 3-2
digital output module, 2-2
supporting plate, 6-3

\section*{G}

Galvanic isolation, 2-3, 2-4, 2-5
Ground, 2-3, 2-4, 2-5
housing, 2-7
reference potential, 2-7

Grounding, 7-3
analog signal lines at one end, 7-9
cable shielding at one end, 7-9
digital signal lines at one end, 7-9
Grounding loop, 7-9
Grounding plate, 6-3
Grounding point, 7-6
Ground potential, cross section, 7-3
Groups
floating, 2-8
isolated, 2-8

\section*{H}

Heat accumulation, 4-1
Heat dissipation, 5-1 to 5-6
in a cabinet, 5-4 to 5-6
Heat exchanger, 4-2, 4-3
Housing
compact, 1-1
dimensions, 1-2
ground, 2-7
U-Series CC/EU, 1-1

1
Inductance suppression, 7-6
Input
enable, 2-8 to 2-13
voltage monitor, 2-8
Input/output
alternating voltage, 2-8
direct voltage, 2-8
Input/output module, power loss, 5-3, 5-4
Input voltage, 2-1
alternating current, 2-1
direct current, 2-1, 2-2
nominal, 2-1
surge, 2-1
Installation
cabinet, 1-1
clearance, 6-2 to 6-4
example, 6-2 to 6-4
heights, 6-3
Interface module
cable connector, 1-6
expansion unit, 7-9
floating, 7-4
IM 300-5C in centralized configuration, 1-5
IM 300/IM 312 in distributed configuration, 7-5
IM 301-5C in distributed configuration, 1-6
IM 301/IM 302 in distributed configuration, 7-5
IM 301/ IM 310 potential equalization, 7-4, 7-5
IM 302/IM 311 potential equalization, 7-4, 7-5
IM 304 in distributed configuration, 1-6

IM 310-3 in distributed configuration, 1-6
IM 310/IM 311 in distributed configuration, 7-5
IM 312-5C in centralized configuration, 1-5
IM 312-5C in distributed configuration, 1-6
IM 314 in distributed configuration, 1-6 nonfloating, 7-4
power loss, 5-2
Interference, 7-3
noise, 7-5 to 7-7
Interference suppression, grounding cable shielding, 7-9
Internal reference voltage \(\left(M_{\text {int }}\right)\), 2-3, 2-6
IP (See Environmental rating)
Isolation, galvanic, 2-3, 2-4, 2-5
Isolation monitor, 2-4

\section*{J}

Jumper layout, power supply unit, 4-2

\section*{L}

LED
"Monitor Output," 4-1
Lighting, cabinet, 7-7
Lightning, protection against, 7-10
Limit switch, safety, 8-1
Load current supply, 2-1, 2-2, 2-9
digital output module, 2-2
from two external power supply units, 2-6
regulated, 2-2
unregulated, 2-2
Load power supply, 6-3
220 V AC/115 V AC, 2-9
Load voltage
failure, 2-9
monitor, 2-3, 2-4, 2-5

\section*{M}

Main switch, 6-3
Memory module, 5-3
\(M_{\text {ext }}\) (See Reference voltage of external process signals)
\(\mathrm{M}_{\text {int }}\) (See Internal reference voltage)
Module
floating, 2-6
floating input/output, 2-7 to 2-8
heat dissipation, 5-1 to 5-6
nonfloating, 2-6
nonfloating input/output, 2-7, 7-4
power loss, 5-1 to 5-6
process peripheral, 3-1
removing input/output, 2-12
Monitor
fan, 4-1 to 4-3
isolation, 2-4
load voltage, 2-3, 2-4, 2-5
temperature, 4-1 to 4-3
voltage, 3-2, 4-1
Monitoring,
battery, 4-1 to 4-2
Monitor input, voltage, 2-8
Monitor output, 4-3
"Monitor Output"
LED, 4-1
signal relay, 2-8, 4-1, 4-2
Mounting plate, 6-3

\section*{N}

Noise, fluorescent lamp, 7-7
Noise immunity, 2-3, 6-5, 7-7
Noise interference, 7-3
measures against, 7-5 to 7-7
Noise suppression, 7-5 to 7-7
alternating current lines, 7-5
capacitor, 7-6
direct current power lines, 7-6

\section*{0}

Optocoupler, 2-6
Output, latching, 2-7
Overload protection, 3-2
Overvoltage protection, 7-10

\section*{P}

Pins, connector, 7-2
Pivot hinge, width, 7-2
Potential
cabinet, 2-3, 2-4, 2-5
housing, 2-3, 2-4, 2-5
Potential difference, 7-4, 7-8
Potential equalization, 7-4
Potential equalization line, 7-5, 7-9
Power cable, 7-3
Power connection, programmer, 7-10
Power down, 2-9
Power line, cross section, 7-2
Power line filter, 6-3, 6-5, 7-5
Power loss, 5-1 to 5-6
in a cabinet, 5-4 to 5-6
Power off switch, 2-9
same for CC/EU and load current supply, 2-10 to 2-11
separate for \(\mathrm{CC/EU}\) and load current supply, 2-10 to 2-11
Power supply, 2-1 to 2-13
24 V DC, 2-11
220 V AC/115 V AC, 2-10
enable, 4-3
external, 2-2
integrated internal, 2-1
internal voltages, 2-1
load current, 2-1, 2-2
primary, 2-3, 2-4, 2-5
to enable inputs, 2-8 to 2-9
Power supply unit, 1-1, 1-3
24 V DC, 1-3
115 V AC/240 V AC, 1-3
centrally grounded, 2-5
connection terminals, 4-1
external, 2-6, 2-7
floating, 1-3, 2-1
grounded, 2-3
jumper layout, 4-2
nonfloating, 1-3, 2-1
nongrounded, 2-4
power loss, 5-2
Power up, 2-9
Primary power supply, 2-3, 2-4, 2-5
from centrally grounded battery or centrally grounded power supply units, 2-5
from grounded battery or grounded power supply units, 2-3
from nongrounded battery or nongrounded power supply units, 2-4
Process, parts of, 2-9, 2-13
Process peripheral, 2-3, 2-4, 2-5
Process peripheral module
220 V AC1.15 V AC supply, 3-3
supplying power to, 3-1
Process signal, external, 2-6
Programmer
main power connection, 7-10
receptacle, 6-3
Protection
against dangerous currents, 7-4
against lightning, 7-10
fuse, 3-2
overvoltage, 7-10
Protective earth, 2-3, 2-4, 2-5
Protective ground, 2-3, 2-4, 2-5, 7-4
Protective ground bar, 7-3

\section*{Q}

QVZ organization block, 2-8, 2-9, 2-13
QVZ signal (See Time-Out signal)

\section*{R}

Rail, mounting, 6-3
Rated current of protective devices, 3-3
Rated voltage, connector for, 7-2
Rating
dry particle, 5-6
environmental (IP), 5-6
Reference bus, 2-6
Reference potential, shielding bar connection
to, 7-8

Reference potential ground, 2-7

Reference voltage
external process signals (\(\mathrm{M}_{\text {ext }}\)), 2-6
internal (\(\mathrm{M}_{\text {int }}\)), 2-3, 2-6
Relay,
contacts, 4-1, 4-2
signal, 4-1, 4-2
time delay (TDR), 4-2, 4-3
Resistance
cable, 2-2
electronic short-circuit protection, 2-2
S
S5-135U
back-up battery, 2-8
centralized configuration example, 1-5
distributed configuration example, 1-6
fan and temperature monitoring, 4-3
fan subassembly, 1-3
power loss, 5-1
power supply unit, 1-3
S5-150U
back-up battery, 2-8
centralized configuration example, 1-5
distributed configuration example, 1-6
fan subassembly, 1-3
power loss, 5-2
power supply unit, 1-3
S5-155U
back-up battery, 2-8
centralized configuration example, 1-5 distributed configuration example, 1-6 power loss, 5-2
S5-183U
distributed configuration example, 1-6
fan and temperature monitoring, 4-3
fan subassembly, 1-3
power supply unit, 1-3
S5-184U
centralized configuration example, 1-5
distributed configuration example, 1-6
fan subassembly, 1-3
Safety limit switch, 8-1
Safety measures, 8-1
Screw-Type contacts, 7-1 to 7-2
Separation, electric, 2-2
Shielding, 2-3, 2-4, 2-5, 7-7 to 7-9, 7-10
analog module, 2-3, 2-4, 2-5
braided, 7-8
connected to ground at both ends, 7-10
connection at both ends, 2-3, 2-4, 2-5
connection at one end, 2-3, 2-4, 2-5
connection to modules, 7-9
digital modules, 2-3, 2-4, 2-5
foil, 7-8
Shielding bar, 2-3, 2-4, 2-5, 6-3, 7-6, 7-8, 7-9 analog signal lines, 7-8

Short-Circuit protection, 3-2
electronic, 2-2
Signal, acknowledge, 2-8
Signal lines
analog, 7-3
cross section, 7-2
digital, 7-3
Signal relays, 4-1, 4-2
Signal transfer, distributed installation, 7-4, 7-5
Specifications, connector, 7-1 to 7-2
"STOP" mode, 2-12
Subassembly, 1-1
fan, 1-1, 1-3
fan with power supply unit, 1-3
integrated power supply unit, 1-1, 1-3
Supply lines, 7-3
24 V DC, 7-3
110 V AC to 380 V AC, 7-3
Supply voltages, enable, 4-1
T
TDR (See Relay, time delay)
Temperature, cabinet, 5-4 to 5-5
Temperature monitoring, 4-1 to 4-3
Terminal
contact, 7-1
"Ext. Batt.," 2-8
protective ground, 7-4
Terminal strip, 3-2
for \(\mathrm{L}+\) and L - (lateral), 6-3
Terminator 6ES5 760-0AA11, distributed configuration example, 1-6
Thermal contacts, 4-2, 4-3
Time delay relay (TDR), 4-2, 4-3
Time-Out signal (QVZ), 2-8, 2-12
Tools, crimp snap-on contact, 7-2

U
\(U_{H}\) output, 4-2, 4-3

\section*{V}

Varistor, 7-10
Ventilation, cabinet, 5-1
Ventilation clearance, 6-1 to 6-2
Voltage
external, 2-8
input, 2-1
internal reference, 2-3
reference, 2-6
Voltage monitor, 3-2, 4-1
Voltage monitor input, 2-8
Voltage monitor load, 2-3, 2-4, 2-5

\section*{W}

Wire protection, 7-1
Wire types
solid, 7-1
stranded, 7-1
Wiring
cabinet, 7-1 to 7-10
configuration, 3-1 to 3-3
Wiring groups, 7-3
Wiring layout, 7-3
inside the cabinet, 7-3
outside the cabinet, 7-3
Wiring recommendation, fan and temperature monitoring, 4-3

\section*{European Companies and Representatives}
\begin{tabular}{|c|c|c|}
\hline Austria & Federal Republic & Ireland \\
\hline Siemens AG Österreich & of Germany (cont.) & Siemens Ltd. \\
\hline Vienna & Hannover & Dublin \\
\hline Bregenz & Mannheim & \\
\hline Graz & Munich & Italy \\
\hline Innsbruck & Nuremberg & Siemens S. p. A. \\
\hline Klagenfurt & Saarbrücken & Milan \\
\hline Linz & Stuttgart & Bari \\
\hline Salzburg & & Bologna \\
\hline & Finland & Brescia \\
\hline Belgium & Siemens Osakeyhtiö & Casoria \\
\hline Siemens S.A. & Helsinki & Florence \\
\hline Brussels & & Genoa \\
\hline Liège & France & Macomer \\
\hline Siemens N.V. & Siemens S.A. & Padua \\
\hline Brussels & Paris, Saint-Denis & Rome \\
\hline Antwerp & Lyon, Caluire-et-Cuire & Turin \\
\hline Ghent & Marseilles & \\
\hline & Metz & Luxembourg \\
\hline Bulgaria & Seclin (Lille) & Siemens S.A. \\
\hline Office RUEN at the & Strasbourg & Luxembourg \\
\hline INTERPRED Association, representative of & Great Britain & Malta \\
\hline Siemens AG & Siemens Ltd. & J.R. Darmanin \& Co., Ltd. \\
\hline Sofia & London, Sunbury-onThames & Valletta \\
\hline Czechoslovakia & Birmingham & Netherlands \\
\hline EFEKTIM & Bristol, Clevedon & Siemens Nederland N.V. \\
\hline Technical Consulting & Congleton & The Hague \\
\hline Office Siemens AG & Edinburgh & \\
\hline Prague & Glasgow & Norway \\
\hline & Leeds & Siemens A/S \\
\hline Denmark & Liverpool & Oslo \\
\hline Siemens A/S & Newcastle & Bergen \\
\hline Copenhagen, Ballerup & & Stavanger \\
\hline Hojbjerg & Greece & Trondheim \\
\hline & Siemens A.E. & \\
\hline Federal Republic & Athens & Poland \\
\hline of Germany & Thessaloniki & PHZ Transactor S.A. \\
\hline Siemens AG & & Warsaw \\
\hline Branch Offices & Hungary & Gdañsk-Letnica \\
\hline Berlin (West) & SICONTACT GmbH & Katowice \\
\hline Bremen & Budapest & \\
\hline Cologne & & Portugal \\
\hline Dortmund & Iceland & Siemens S.R.A.L. \\
\hline Düsseldorf & Smith \& Norland H/F & Lisbon \\
\hline Essen & Reykjavik & Faro \\
\hline Frankfurt/Main & & Leiria \\
\hline Hamburg & & Porto \\
\hline
\end{tabular}
\(\qquad\)
Romania
Siemens birou de
consultaţii tehnice
Bucharest

Spain
Siemens S.A.
Madrid

Sweden
Siemens AB
Stockholm
Eskilstuna
Göteborg
Jönköping
Luleå
Malmö
Sundsvall

Switzerland
Siemens-Albis AG
Zurich
Bern
Siemens-Albis S.A.
Lausanne, Renens
Turkey
ETMAS
Istanbul
Adana
Ankara
Bursa
Izmir
Samsun

\section*{Companies and Representatives outside Europe}
\begin{tabular}{ll}
Africa & \begin{tabular}{c}
Ivory Coast \\
Siemens AG \\
Succursale Côte d'Ivoire \\
\\
Abidjan
\end{tabular} \\
Algeria & \\
Siemens Bureau & Kenya \\
Alger & Achelis (Kenya) Ltd. \\
Algiers & Nairobi \\
& \\
Angola & Libya \\
Tecnidata & Siemens AG \\
Luanda & Branch Office Libya \\
& Tripoli \\
Burundi & \\
SOGECOM & Mauritius \\
Bujumbura & Rey \& Lenferna Ltd. \\
& Port Louis \\
Egypt & \\
Siemens Resident & Morocco \\
Engineers & SETEL \\
Cairo-Mohandessin & Société Electrotechnique \\
Alexandria & et de Télécommunica- \\
Centech & tions S.A. \\
Zamalek-Cairo & Casablanca \\
& \\
Ethiopia & Mozambique \\
Addis Electrical & Siemens Resident \\
Engineering Ltd. & Engineer \\
Addis Ababa & Maputo
\end{tabular}

\section*{Namibia}

Siemens Resident
Engineer
Windhoek
Nigeria
Electro Technologies
Nigeria Ltd. (Eltec)
Lagos

Rwanda
Etablissement Rwandais
Kigali
South Africa
Siemens Ltd.
Johannesburg
Cape Town
Durban
Middleburg
Newcastle
Port Elizabeth
Pretoria
Sudan
National Electrical \&
Commercial Company
(NECC)
Khartoum
\begin{tabular}{|c|c|}
\hline Swaziland & Brazil \\
\hline \multirow[t]{3}{*}{Siemens (Pty.) Ltd. Mbabane} & Siemens S.A. \\
\hline & São Paulo \\
\hline & Belém \\
\hline Tanzania & Belo Horizonte \\
\hline Tanzania Electrical & Brasilia \\
\hline Services Ltd. & Campinas \\
\hline \multirow[t]{2}{*}{Dar es Salaam} & Curitiba \\
\hline & Florianópolis \\
\hline Tunensia & Fortaleza \\
\hline Sitelec S.A. & Porto Alegre \\
\hline \multirow[t]{2}{*}{Tunis} & Recife \\
\hline & Rio de Janeiro \\
\hline \multirow[t]{2}{*}{Zaire
SOFAMATEL S.P.R.L.} & Salvador de Bahía \\
\hline & Vitoria \\
\hline \multirow[t]{2}{*}{Kinshasa} & \\
\hline & Canada \\
\hline Zambia & Siemens Electric Ltd. \\
\hline Electrical Maintenance & Montreal, Québec \\
\hline Lusaka Ltd. & Toronto, Ontario \\
\hline \multicolumn{2}{|l|}{Lusaka} \\
\hline for mining: & Chile \\
\hline General Mining & INGELSAC \\
\hline Industries Ltd. & Santiago de Chile \\
\hline \multirow[t]{2}{*}{Kitwe} & \\
\hline & Columbia \\
\hline Zimbabwe & Siemens S.A. \\
\hline Electro Technologies & Bogotá \\
\hline Corporation (Pvt.) Ltd. & Baranquilla \\
\hline \multirow[t]{8}{*}{Harare} & Cali \\
\hline & Medellín \\
\hline & Costa Rica \\
\hline & Siemens S.A. \\
\hline & San José \\
\hline & Ecuador \\
\hline & Siemens S.A. \\
\hline & Quito \\
\hline \multirow[t]{2}{*}{America} & OTESA \\
\hline & Guayaquil \\
\hline Argentina & Quito \\
\hline \multicolumn{2}{|l|}{Siemens S.A.} \\
\hline Buenos Aires & El Salvador \\
\hline Bahía Blanca & Siemens S.A. \\
\hline Córdoba & San Salvador \\
\hline \multicolumn{2}{|l|}{Mendoza} \\
\hline \multirow[t]{2}{*}{Rosario} & Guatemala \\
\hline & Siemens S.A. \\
\hline Bolivia & Ciudad de Guatemala \\
\hline Sociedad Comercial e & \\
\hline Industrial Hansa Ltd. & \\
\hline La Paz & \\
\hline
\end{tabular}

\section*{Honduras}

Representaciones Electro-
industriales S. de R.L.
Tegucigalpa
Mexico
Siemens S.A.
México, D.F.
Culiacán
Gómez Palacio
Guadalajara
León
Monterrey
Puebla

Nicaragua
Siemens S.A.
Managua
Paraguay
Rieder \& Cia., S.A.C.I.
Asunción
Peru
Siemsa
Lima

United States
of America
For programmable
controls:
Siemens Energy \&
Automation, Inc.
Programmable
Controls Business Unit
Roswell, Georgia
Uruguay
Conatel S.A.
Montevideo

Venezuela
Siemens S.A.
Caracas
Valencia
\(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Asia & Japan & Qatar \\
\hline & Siemens K.K. & Trags Electrical \\
\hline & Tokyo & Engineering and \\
\hline Bahrain & & Air Conditioning Co. \\
\hline Transitec Gulf & Jordan & Doha \\
\hline Manama & Siemens AG (Jordan & or \\
\hline or \({ }^{\text {or }}\) & Branch) & Siemens Resident Engineer \\
\hline Siemens Resident Engineer & Amman & Abu Dhabi \\
\hline Abu Dhabi & or & \\
\hline & A.R. Kevorkian Co. & Saudi Arabia \\
\hline \begin{tabular}{l}
Bangladesh \\
Siemens Bangladesh Ltd.
\end{tabular} & Amman & Arabia Electric Ltd. (Equipment) \\
\hline Dacca & Korea (Republic) & Jeddah \\
\hline & Siemens Electrical & Damman \\
\hline Siemens Represen- & Engineering Co., Ltd. Seoul & Riyadh \\
\hline tative Office & Pusan & Sri Lanka \\
\hline Beijing & & Dimo Limited \\
\hline Canton & Kuwait & Colombo \\
\hline Shanghai & National \& German & \\
\hline & Electrical and Electronic & Syria \\
\hline Hong Kong & Service Co. (INGEECO) & Siemens AG \\
\hline Jebsen \& Co., Ltd. & Kuwait, Arabia & (Damascus Branch) \\
\hline Hong Kong & & Damascus \\
\hline & Lebanon & \\
\hline India \({ }_{\text {Siemens India }}\) & Ets. F.A. Kettaneh S.A. & Taiwan \\
\hline Siemens India Ltd. Bombay & Beirut & Siemens Liaison Office Taipei \\
\hline Ahmedabad & Malaysia & TAI Engineering Co., Ltd. \\
\hline Bangalore & Siemens AG & Taipei \\
\hline Calcutta & Malaysian Branch & \\
\hline Madras & Kuala Lumpur & Thailand \\
\hline New Dehli & & B. Grimm \& Co., R.O.P. \\
\hline Secundarabad & Oman & Bangkok \\
\hline & Waleed Associates & \\
\hline Indonesia & Muscat & United Arab \\
\hline P.T. Siemens Indonesia & or & Emirates \\
\hline Djakarta & Siemens Resident & Electro Mechanical Co. \\
\hline P.T. Dian-Graha Elektrika & Engineers & Abu Dhabi \\
\hline Djakarta & Dubai & \\
\hline Bandung & & Siemens Resident Engineer \\
\hline Medan & Pakistan & Abu Dhabi \\
\hline Surabaya & Siemens Pakistan & Scientechnic \\
\hline & Engineering Co., Ltd. & Dubai \\
\hline Iran & Karachi & or \\
\hline Siemens Sherkate & Islamabad & Siemens Resident Engineer \\
\hline Sahami Khass & Lahore & Dubai \\
\hline Tehran & Peshawer & \\
\hline & Quetta & Yemen (Arab Republic) \\
\hline Iraq & Rawalpindi & Tihama Tractors \& \\
\hline Samhiry Bros. Co. (W.L.L.) & & Engineering Co.o., Ltd. \\
\hline or & Philippines \({ }_{\text {Maschinen }}\) \& Technik Inc. & Sanaa \\
\hline Siemens AG (Iraq Branch) & (MATEC) & Siemens Resident Engineer \\
\hline Baghdad & Manila & Sanaa \\
\hline
\end{tabular}

\section*{Australia}

\section*{Australia}

Siemens Ltd
Melbourne
Brisbane
Perth
Sydney
New Zealand
Siemens Liaison Office
Auckland

\section*{SIEMENS}

SIMATIC S5
Enable power supply module
6ES5 958-4UA11

Technical Description
Order No. C79000-T8576-C395-01

\section*{Application}

The module supplies a system-compatible \(24-\mathrm{V}\) voltage for the enable inputs of up to 80 compact modules 6ES5 4.. -4U.11, which permits a problem-free operation, particularly when switching the programmable controller on or off.

\section*{Mode of operation}

The 24-V auxiliary voltage is fed into the enable power supply module from the following power supply units via the lower bus plug. The maximum current to be drawn must not exceed the values given below.
\begin{tabular}{lrl}
& & \begin{tabular}{l}
Maximum current of the \\
auxiliary voltage
\end{tabular} \\
\hline 6ES5 955-3LC13 & \(115 \mathrm{~V} / 220 \mathrm{~V} / 5 \mathrm{~V} / 18 \mathrm{~A}\) & 0.8 A \\
-3LF11 & \(115 \mathrm{~V} / 220 \mathrm{~V} / 5 \mathrm{~V} / 40 \mathrm{~A}\) & 2.8 A \\
-3NA11 & \(24 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~A}\) & 0.8 A \\
-3NC11 & \(24 \mathrm{~V} / 5 \mathrm{~V} / 18 \mathrm{~A}\) & 0.8 A \\
-3NF11 & \(24 \mathrm{~V} / 5 \mathrm{~V} / 40 \mathrm{~A}\) & 2.8 A \\
\hline
\end{tabular}

The following locations are available:
\begin{tabular}{|c|}
\hline AG 135 U: & & & 19 & 27 & 35 & 43 & 51 & 59 & 67 & & & & & & & & & \(\cdots\) & & \\
\hline AG 1504 & 3 & 11 & 19 & 27 & & & & & & & & & & 107 & 115 & 123 & 131 & & - & \\
\hline EG 185 U & & 11 & 19 & 27 & 35. & 43 & 51 & 59 & 67 & 75 & 83 & 91 & 99 & 207 & 175 & 123 & 131 & 139 & - & \(\cdots\) \\
\hline
\end{tabular}

Output voltage

Front plug

Connector pin assignments
\(24 \mathrm{~V} / \mathrm{max} .400 \mathrm{~mA}\) (electronically short-circuit-proof)

42 pin
Pins 1 to 21 positive
Pins 22 to 42 negative```

[^0]: In the descriptions for the expansion units in Parts 1, 2 and 3 you should ensure that the mains connection cable for the power supply units does not exceed a maximum cross-section of $0.75 \mathrm{~mm}^{2}$.

[^1]: The information in this manual is checked regularly for updating and correctness and may be modified without prior notice. The information contained in this manual is protected by copyright. Photocopying and translation into other languages is not permitted without express permission from Siemens.

[^2]: 1) Terminator 6ES5 760-0AA11
 2) Terminator 6ES5 760-0AB11
[^3]: * As supplied

[^4]: 1) $5 \mathrm{~V} / 10$ A for power supply unit -3NA11.
) 2.8 A for power supply unit -3LF12. Signals for MC-210 application.
[^5]: Copyright ${ }^{\ominus}$ Siemens AG 1990
 First Printing, December 1986
 Printed in the Federal Republic of Germany

[^6]: ${ }^{1}$) Voltage selector

[^7]: ${ }^{1}$) The sum of the output currents $I_{A 2}, I_{A 3}$ and $I_{A 4} \leq 0.8 \mathrm{ADC}$.

[^8]: 1) The sum of output currents $I_{A 2}, I_{A 3}$ and $I_{A 4} \leq 0.8 \mathrm{ADC}$.
[^9]: 1) The sum of the output currents $I_{A 2}, I_{A 3}$ and $I_{A 4} \leq 0.8 \mathrm{ADC}$.
 2) Voltage selector
[^10]: ${ }^{1}$) The sum of the output currents $\left.\right|_{\text {AN2 }}, I_{\text {AN } 3}$ and $\mathrm{I}_{\mathrm{AN} 4} \leq 2.8 \mathrm{~A}$

[^11]: 1) The sum of the output currents $I_{A 2}, I_{A 3}$ and $I_{A 4} \leq 2.8 \mathrm{~A}$.
[^12]: 1) The sum of the output currents $I_{A N 2}, I_{A N 3}$ and $I_{A N 4} \leq 2.8 \mathrm{~A}$
[^13]: 1) The sum of the output currents $\mathrm{I}_{\mathrm{AN} 2}, \mathrm{I}_{\mathrm{AN} 3}$ and $\mathrm{I}_{\text {AN4 }} \leq 2.8 \mathrm{~A}$
[^14]: :3
 $=$ possible slot

[^15]: $q=$ output
 $i=$ input

[^16]: $q=$ output
 i = input

[^17]: * Factory setting

[^18]: 1) Equivalent
 2) These ranges must be scanned by software.
[^19]: 1) Keep to the permissible potential difference between the sensor ground and the reference potential of the modules, and between the sensor grounds
 2) 2-wire transducer
[^20]: ${ }^{1}$) In the event of an open circuit in current-carrying lines $I_{c}+$ and $I_{c}{ }^{-}$, digital value 0 is indicated.

[^21]: X: switch is not used, any switch position is allowed.

[^22]: 1) These fields are provided to mark the selected switch position.
 2) Possible combination for 50 mV , but with greater error
