
s

First Steps
The Getting Started for This product is not a stand-alone description.
It is a part of the manual and can be called via "First Steps".

SIMATIC
S7-SCL V5.3 for S7-300/400
Getting Started Release 01/2005

Copyright Siemens AG 2005 All rights reserved
The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including
rights created by patent grant or registration of a utility model
or design, are reserved.

Siemens AG
Automation and Drives
Postfach 4848, 90327 Nuremberg, Germany

Disclaimer of Liability
We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are welcomed.

© Siemens AG 2005
Technical data subject to change.

Siemens Aktiengesellschaft A5E00324655-01

Safety Guidelines

This manual contains notices intended to ensure personal safety, as well as to protect the products and

connected equipment against damage. These notices are highlighted by the symbols shown below and

graded according to severity by the following texts:

!
Danger
indicates that death, severe personal injury or substantial property damage will result if proper
precautions are not taken.

!
Warning
indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

!
Caution
indicates that minor personal injury can result if proper precautions are not taken.

 Caution

indicates that property damage can result if proper precautions are not taken.

 Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons
are defined as persons who are authorized to commission, to ground and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Use as intended

Note the following:

!
Warning
This device and its components may only be used for the applications described in the catalog or the

technical description, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks
SIMATIC®, SIMATIC HMI® and SIMATIC NET® are trademarks of Siemens AG.

Third parties using for their own purposes any other names in this document which refer to trademarks

might infringe upon the rights of the trademark owners.

S7-SCL V5.3 for S7-300/400
A5E00324650-01 3

Designing an S7-SCL Program

Welcome to "Measured Value Acquisition" - A Sample Program
for First-Time Users

What You Will Learn

The sample program for first-time users shows you how to use S7-SCL effectively.
At first, you will probably have lots of questions, such as:

• How do I design a program written in S7-SCL?

• Which S7-SCL language functions are suitable for performing the task?

• What debugging functions are available?

These and other questions are answered in this section.

S7-SCL language Elements Used

The sample program introduces the following S7-SCL language functions:

• Structure and use of the various S7-SCL block types

• Block calls with parameter passing and evaluation

• Various input and output formats

• Programming with elementary data types and arrays

• Initializing variables

• Program structures and the use of branches and loops

Required Hardware

You can run the sample program on a SIMATIC S7-300 or SIMATIC S7-400 and
you will need the following peripherals:

• One 16-channel input module

• One 16-channel output module

Debugging Functions

The program is constructed in so that you can test the program quickly using the
switches on the input module and the displays on the output module. To run a
thorough test, use the S7-SCL debugging functions.

You can also use all the other system functions provided by the STEP 7 Standard
package.

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
4 A5E00324650-01

Task

Overview

Measured values will be acquired by an input module and then sorted and
processed by an S7-SCL program. The results will be displayed on an output
module.

Acquire Measured Values

A measured value is set using the 8 input switches. This is then read into the
measured value array in memory when an edge is detected at an input switch (see
following diagram).

The range of the measured values is 0 to 255. One byte is therefore required for
the input.

Processing Measured Values

The measured value array will be organized as a ring buffer with a maximum of
eight entries.

When a signal is detected at the Sort switch, the values stored in the measured
value array are arranged in ascending order. After that, the square root and the
square of each number are calculated. One word is required for the processing
functions.

Sort switchMeasured value

Sort measured data Calculate resultsRead in measured data

Calcula
tions

x=Signal detection

Enter switch

1

3

7

15

31

63

127

255

255

127

63

31

15

7

3

1

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square Root Square

1 1 1 1 1 1 1 1

255

Data Entry:

X X

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 5

Selectable Outputs

Only one value can ever be displayed on the output module. The following
selections can therefore be made:

• Selection of an element from a list

• Selection of measured value, square root or square

The displayed value is selected as follows:

• Three switches are used to set a code that is copied if a signal is detected at a
fourth switch, the Coding switch. From this, an address is calculated that is
used to access the output.

• The same address identifies three values: the measured value, its square root
and its square. To select one of these values, two selector switches are
required.

Data Entry:

Two changeover switches Code

Sorted data Calculated results

Data Output:

Output

Coding switch

x=Signal detection

X

4

Square root
or Square

Measured value or
Calculated result

10

1

3

7

15

31

63

127

255

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square
Root

3

Address

1

1

0

Measured Value

Address

Switches on Input Module

Displays on
Output Module

Select
Output

Access
output data

Change
over switch

Square

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
6 A5E00324650-01

Design of a Structured S7-SCL Program

Block Types

The task defined above is best solved using a structured S7-SCL program. This
means using a modular design; in other words, the program is subdivided into a
number of blocks, each responsible for a specific subtask. In S7-SCL, as with the
other programming languages in STEP 7, you have the following block types
available.

STEP 7-
Blocks

OB

FB

FC

DB

UDT

Organization blocks form the interface between the S7 CPU operating system
and the user program. The organization blocks specify the sequence in which
the blocks of the user program are executed.

Function blocks are logic blocks with static data. Since an FB has a "memory",
it is possible to access its parameters (for example, outputs) at any point
in the user program.

Functions are logic blocks that do not have memory. Since they do not have
memory, the calculated values must be processed further immediately af ter
the function is called.

Data blocks are data areas in which the usr data are stored. There are
shared data blocks that can be accessed by all logic blocks and there are
instance data blocks that are assigned to a specific FB call.

User-defined data types are structured data types you can create yourself as
required and then use as often as you wish. A user-defined data type is useful
for generating a number of data blocks with the same structure. UDTs are
handled as if they were blocks.

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 7

Arrangement of Blocks in S7-SCL Source Files

An S7-SCL program consists of one or more S7-SCL source files. A source file can
contain a single block or a complete program consisting of various blocks.

One source file for
a program

Several source files for
a program

.
FB22

.

.

.
FC2

.

.

.
OB1

.

SCL source file

OB1
FC2

DB

Block folder
offline

SCL
source
file for
OB1

SCL

FC2

SCL

FB22

FB22

source source
file for file for

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
8 A5E00324650-01

 Defining the Subtasks

Subtasks

The subtasks are shown in the figure below. The rectangular shaded areas
represent the blocks. The arrangement of the logic blocks from left to right is also
the order in which they are called.

Organization Block
CYCLE

Function Block
ACQUIRE

Function Block
EVALUATE

Sort
measured

data

Acquire
measured

data

Access
and select
output data

Calculate
results

Cyclic
program

call

Data Block
ACQUIRE_DATA

Data
input

Data
output

Square root,
Square

Store
data

Functions
SQRT

 (Square Root)
and SQUARE

Program flow Data flow

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 9

Selecting and Assigning the Available Block Types

The individual blocks were selected according to the following criteria:

Function Block Name

User programs can only be started in an OB. Since the measured values
will be acquired cyclically, an OB for a cyclic call (OB1) is required. Part
of the program - data input and data output - is programmed in the OB.

 ⇒ "Cycle" OB

The subtask "acquire measured values" requires a block with a memory;
in other words, a function block (FB), since certain local block data (for
example, the ring buffer) must be retained from one program cycle to the
next. The location for storing data (memory) is the instance data block
ACQUIRE_DATA. The same FB can also handle the address and select
output subtask, since the data is available here.

 ⇒ "Acquire" FB

When selecting the type of block for the subtasks sort measured values
and calculate results, remember that you need an output buffer
containing the calculated results "square root" and "square" for each
measured value. The only suitable block type is therefore an FB. Since
this FB is called by an FB higher up in the call hierarchy, it does not
require its own DB. Its instance data can be stored in the instance data
block of the calling FB.

 ⇒ "Evaluate" FB

A function (FC) is best suited for the subtasks calculate square root and
square since the result can be returned as a function value. Morevoer,
no data used in the calculation needs to be retained for more than one
program cycle. The standard S7-SCL function SQRT can be used to
calculate the square root. A special function SQUARE will be created to
calculate the square and this will also check that the value is within the
permitted range.

 ⇒

 ⇒

"SQRT" FC (square root)
and
"Square" FC

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
10 A5E00324650-01

 Defining the Interfaces Between Blocks

Overview

The interface of a block is formed by parameters that can be accessed by other
blocks.

Parameters declared in the blocks are placeholders that have a value only when
the block is actually used (called). These placeholders are known as formal
parameters and the values assigned to them when the block is called are referred
to as the actual parameters. When a block is called, input data is passed to it as
actual parameters. After the program returns to the calling block, the output data is
available for further processing. A function (FC) can pass on its result as a function
value.

Block parameters can be subdivided into the categories shown below:

Block Parameter Explanation Declaration

 Input parameters Input parameters accept the actual input
values when the block is called. They are
read-only.

VAR_INPUT

 Output parameters Output parameters transfer the current
output values to the calling block. Data can
be written to and read from them.

VAR_OUTPUT

 In/out parameters In/out parameters accept the actual value of
a variable when the block is called, process
the value, and write the result back to the
original variable.

VAR_IN_OUT

Cycle OB

The CYCLE OB has no formal parameters itself. It calls the ACQUIRE FB and
passes the measured value and the control data for its formal parameters to it.

Acquire FB

Parameter Name Data Type Declaration
Type

Description

 measval_in INT VAR_INPUT Measured value

 newval BOOL VAR_INPUT Switch for entering measured value in ring
buffer

 resort BOOL VAR_INPUT Switch for sorting and evaluating
measured data

 funct_sel BOOL VAR_INPUT Selector switch for square root or square

 selection WORD VAR_INPUT Code for selecting output value

 newsel BOOL VAR_INPUT Switch for reading in code

 result_out DWORD VAR_OUTPUT Output of calculated result

 measval_out DWORD VAR_OUTPUT Output of measured value

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 11

Evaluate

The ACQUIRE FB calls the EVALUATE FB. The data they share is the measured
value array that require sorting. This array is therefore declared as an in/out
parameter. A structured array is created as an output parameter for the calculated
results Square Root and Square. The following table shows the formal parameters:

Name Data Type Declaration
Type

Description

 sortbuffer ARRAY[..]
OF REAL

VAR_IN_OUT Measured value array, corresponds to
ring buffer

 calcbuffer ARRAY[..]O
F STRUCT

VAR_OUTPUT Array for results:
Structure with "square root" and
"square" components of type INT

SQRT and Square

These functions are called by EVALUATE. They require an input value (argument)
and return their results as a function value.

Name Data Type Declaration
Type

Description

 value REAL VAR_INPUT Input for SQRT

 SQRT REAL Function value Square root of input value

 value INT VAR_INPUT Input for SQUARE

 SQUARE INT Function value Square of input value

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
12 A5E00324650-01

Defining the Input/Output Interface

The figure below shows the input/output interface. Note that when input/output is in
bytes, the lower-order byte is at the top and the higher-order byte is at the bottom.
If input/output is in words, on the other hand, the opposite is true.

Input module

 0 Read in measured value
 1 Start sorting and calculation
 2 Select result: square root or square
 3 Select output: measured value or result
 4 Coding bit 0
 5 Coding bit 1
 6 Coding bit 2
 7 Read in coding

0 to 7 Input byte: measured value

Output
module

0 to 7 Higher-order byte of the output word
 (bits 8 to 15) only required for calculation
 of square, otherwise 0

0 to 7 Lower-order byte of the output word
 (bits 0 to 7): measured value or result:
 square root or square

Programmable controller

Digital input
 module

Digital output
 module

Byte 1

Byte 5

Byte 4

Byte 0

I0.3

I0.4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Byte 0

Byte 1 Byte 5

Byte 4

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 13

Defining the Order of the Blocks in the Source File

When arranging the order of the blocks in the S7-SCL source file, remember that a
block must exist before you use it; in other words, before it is called by another
block. This means that the blocks must be arranged in the S7-SCL source file as
shown below:

FC SQUARE

FB EVAL

FB ACQ

OB CYCLE

calls

calls

calls

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
14 A5E00324650-01

Defining Symbols

Using symbolic names for module addresses and blocks makes your program
easier to follow. Before you can use these symbols, you must enter them in the
symbol table.

The figure below shows the symbol table of the sample program. It describes the
symbolic names that you declare in the symbol table so that the source file can be
compiled free of errors:

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 15

Creating the SQUARE Function

Statement Section of the SQUARE Function

Statement Section

The program first checks whether the input value exceeds the limit at which the
result would be outside the numeric range. If it does, the maximum value for an
integer is inserted. Otherwise, the square calculation is performed. The result is
passed on as a function value.

FUNCTION SQUARE : INT
(***
This function returns as its function value the square of the
input value or if there is overflow, the maximum value that
can be represented as an integer.
***)
VAR_INPUT
 value : INT;
END_VAR
BEGIN
IF value <= 181 THEN
 SQUARE := value * value; //Calculation of function
value
ELSE
 SQUARE := 32_767; // If overflow, set maximum value
END_IF;
END_FUNCTION

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
16 A5E00324650-01

Creating the EVALUATE function block

Flow Chart for EVALUATE

The figure shows the algorithm in the form of a flow chart:

Start

I >= 1 ?

sortbuffer [I-1] >
sortbuffer[I] ?

Swap the values
of sortbuffer[I-1] and

sortbuffer[I]

SWAP = TRUE

I := I-1

End

swap := FALSE

I := LIMIT

I := 0

I := I+1

EVALUATE
Function Block

Start of
REPEAT loop

Start of
FOR loop

I represents index

no

yes

yes

no

TRUE
FALSE

no

yes

End of
FOR loop

End of
REPEAT loop swap?

I <= LIMIT ?

Start of
FOR loop

SQRT

SQUARE

Enter results in the structured
 results array

Enter results in the structured
 results array

End of
FOR loop

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 17

Declaration Section of FB EVALUATE

Structure of the Declaration Section

The declaration section of this block consists of the following subsections:

• Constants: between CONST and END_CONST.

• In/out parameters between VAR_IN_OUT and END_VAR.

• Output parameters: between VAR_OUTPUT and END_VAR.

• Temporary variables: between VAR_TEMP and END_VAR.

CONST
 LIMIT := 7;
END_CONST

VAR_IN_OUT
 sortbuffer : ARRAY[0..LIMIT] OF INT;
END_VAR

VAR_OUTPUT
 calcbuffer : ARRAY[0..LIMIT] OF
 STRUCT
 squareroot : INT;
 square : INT;
 END_STRUCT;
END_VAR

VAR_TEMP
 swap : BOOL;
 index, aux : INT;
 valr, resultr: REAL ;
END_VAR

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
18 A5E00324650-01

Statement Section of FB EVALUATE

Program Sequence

The in/out parameter "sortbuffer" is linked to the ring buffer "measvals" so that the
original contents of the buffer are overwritten by the sorted measured values.

The new array "calcbuffer" is created as an output parameter for the calculated
results. Its elements are structured so that they contain the square root and the
square of each measured value.

The figure below shows you the relationship between the arrays.

EVALUATION

measured values

sort buffer

calculate buffer

This interface shows the heart of the data exchange for processing the measured
values. The data is stored in the instance data block ACQUIRE_DATA since a local
instance for FB EVALUATE was created in the calling FB ACQUIRE.

Statement Section of EVALUATE

First, the measured values in the ring buffer are sorted and then the calculations
are made.

• Sort algorithm
The permanent exchange of values method is used to sort the measured value
buffer. This means that consecutive values are compared and their order
reversed until the final order is obtained throughout. The buffer used is the
in/out parameter "sortbuffer".

• Starting the calculation
Once sorting is completed, a loop is executed in which the functions SQUARE
for squaring and SQRT for extracting the square root are called. Their results
are stored in the structured array "calcbuffer".

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 19

Statement Section of EVALUATE

The statement section of the logic block is as follows:

BEGIN
(**
Part 1 Sorting : According to the "bubble sort" method: Swap
pairs of values until the measured value buffer is sorted.
**)
REPEAT
 swap := FALSE;
 FOR index := LIMIT TO 1 BY -1 DO
 IF sortbuffer[index-1] > sortbuffer[index]
 THEN aux
:=sortbuffer[index];
 sortbuffer[index] := sortbuffer[index-1];
 sortbuffer[index-1] := aux;
 swap := TRUE;
 END_IF;
 END_FOR;
 UNTIL NOT swap
END_REPEAT;
(**
Part 2 Calculation : Square root with standard function
SQRT and squaring with the SQUARE function.
**)
FOR index := 0 TO LIMIT BY 1 DO
 valr := INT_TO_REAL(sortbuffer[index]);
 resultr := SQRT(valr);
 calcbuffer[index].squareroot := REAL_TO_INT(resultr);
 calcbuffer[index].square := SQUARE(sortbuffer[index]);
END_FOR;
END_FUNCTION_BLOCK

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
20 A5E00324650-01

Creating the function block ACQUIRE

Flow Chart for ACQUIRE

The following figure shows the algorithm in the form of a flow chart:

Start

End

newval yes

yes

yes

no

no

no

TRUE

FALSE

new code

resort

function
choice?

changed?

changed?

changed?

RECORD
Function Block

Copy measured value to cyclic
buffer, recalculate index

Cyclic buffer is imple
mented by means of
MOD operation:
when limit is reached
start from beginning again

Sort cyclic buffer and
perform calculations
(set up results array)

Load from instance
data block

First shift relevant bits to right
margin then hide spaces not
required by means of AND

Load:
Write list items with output addresses
to the output parameters so that their
values can be displayed afterwards.

Copy calculated results
to results array

 Analyze code and
 calculate output address

Load square root result Load square result

 Load measured value

ANALYZE

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 21

Declaration Section of FB ACQUIRE

Structure of the Declaration Section

The declaration section in this block consists of the subsections:

• Constants: between CONST and END_CONST.

• Input parameters: between VAR_INPUT and END_VAR.

• Output parameters: between VAR_OUTPUT and END_VAR.

• Static variables: between VAR and END_VAR.
 This also includes declaration of the local instance
 for the EVALUATE block.

CONST
 LIMIT := 7;
 QUANTITY := LIMIT + 1;
END_CONST
VAR_INPUT
 measval_in : INT ; // New measured value
 newval : BOOL; // Measured value in
"measvals" ring buffer
 resort : BOOL; // Sort measured values
 funct_sel: BOOL; // Select calculation square
root/square
 newsel : BOOL; // Take output address
 selection : WORD; // Output address
END_VAR
VAR_OUTPUT
 result_out : INT; // Calculated value
 measval_out : INT; // Corresponding measured value
END_VAR
VAR
 measvals : ARRAY[0..LIMIT] OF INT := 8(0);
 resultbuffer : ARRAY[0..LIMIT] OF
 STRUCT
 squareroot : INT;
 square : INT;
 END_STRUCT;
 pointer : INT := 0;
 oldval : BOOL := TRUE;
 oldsort : BOOL := TRUE;
 oldsel : BOOL := TRUE;
 address : INT := 0; // Converted
output address
 outvalues_instance: EVALUATE; // Define local instance
END_VAR

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
22 A5E00324650-01

Static Variables

The FB block type was chosen because some data needs to be retained from one
program cycle to the next. These are the static variables declared in the declaration
subsection "VAR, END_VAR".

Static variables are local variables whose values are retained throughout the
processing of every block. They are used to save values of a function block and
are stored in the instance data block.

Initializing Variables

Note the initialization values that are entered in the variables when the block is
initialized (after being downloaded to the CPU). The local instance for the
EVALUATE FB is also declared in the declaration subsection "VAR, END_VAR".
This name is used subsequently for calling and accessing the output parameters.
The shared instance ACQUIRE_DATA is used to store the data.

Name Data Type Initialization
Value

Description

measvals ARRAY [..]
OF INT

8(0) Ring buffer for measured values

resultbuffer ARRAY [..]
OF STRUCT

- Array for structures with the components
"square root" and "square" of the type INT

index INT 0 Index for ring buffer identifying location for
next measured value

oldval BOOL FALSE Previous value for reading in measured value
using "newval"

oldsort BOOL FALSE Previous value for sorting using "resort"

oldsel BOOL FALSE Previous value for reading in code using
"newsel"

address INT 0 Address for output of measured value or
result

eval_instance Local instance - Local instance for the EVALUATE FB

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 23

Statement Section of FB ACQUIRE

Structure of the Statement Section

The statement section of ACQUIRE is divided into three subsections:

• Acquire measured values:
If the input parameter "newval" is different from the "oldval", a new measured
value is read into the ring buffer.

• Start sorting and calculation
Sorting and calculation are started by calling the EVALUATE function block
when the input parameter "resort" has changed compared with "oldsort".

• Evaluating the coding and preparing output data
The coding is read word by word. According to SIMATIC conventions, this
means that the upper group of switches (byte 0) contains the higher-order eight
bits of the input word and the lower group of switches (byte 1) the lower-order
bits. The figure below shows the location of the coding switches.

Calculating the Address

The figure below shows how the address is calculated: Bits 12 to 14 of input word
IW0 contain the coding that is read in when an edge is detected at the coding
switch (bit 15). The "address" is obtained by shifting right using the standard
function SHR and masking the relevant bits using an AND mask.

This address is used to write the array elements (calculated result and
corresponding measured value) to the output parameters. Whether square root or
square is output depends on "funct_sel".

An edge at the coding switch is detected because "newsel" is different from
"oldsel".

0
1
2
3
4
5
6
7

0
1
2

3
4
5
6

Switches
for code
number

Coding
switch

0
1
2

3
4
5
6
7

8
9
10
11

15

12
13
14

Switches on
module

Word in
memory

After SHR
by 12 places

After AND,
mask 0007

0
1
2

3
4
5
6
7

8
9
10
11

15

12
13
14

0
1
2

3
4
5
6
7

8
9
10
11

15

12
13
14

address"

7

Byte 0

Byte 1 IW0

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
24 A5E00324650-01

Statement Section

The statement section of the logic block is shown below:

BEGIN
(***
Part 1 : Acquiring measured values. If "newval" changes, the
measured value is entered. The MOD operation is used to
implement a ring buffer for measured values.
**)
IF newval <> oldval THEN
 pointer := pointer MOD QUANTITY;
 measvals[pointer] := measval_in;
 pointer := pointer + 1;
END_IF;
oldval := newval;
(**
Part 2 : Start sorting and calculation
if "resort" changes, start sorting the
ring buffer and run calculations with the
measured values. Results are stored in a new array called
"calcbuffer".
**)
IF resort <> oldsort THEN
 pointer := 0; //Reset ring buffer pointer
 eval_instance(sortbuffer := measvals); //Call EVALUATE
END_IF;
oldsort := resort;
resultbuffer := eval_instance.calcbuffer; //Square and square
root

(**
Part 3 : Evaluate coding and prepare output: If
"newsel" changes, the coding for addressing the array element
for output is recalculated: The relevant bits of "selection"
are masked and converted to integer. Depending on the setting
of
the "funct_sel" switch, "squareroot" or "square" is selected
for output.
**)
IF newsel <> oldsel THEN
 address := WORD_TO_INT(SHR(IN := selection, N := 12) AND
16#0007);
END_IF;
oldsel := newsel;
IF funct_sel THEN
 result_out := resultbuffer[address].square;
ELSE
 result_out := resultbuffer[address].squareroot;
END_IF;
measval_out := measvals[address]; //Measured value display
END_FUNCTION_BLOCK

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 25

Creating the CYCLE Organization Block

Tasks of the CYCLE OB

An OB1 was chosen because it is called cyclically. It performs the following tasks
for the program:

• Calls and supplies the ACQUIRE function block with input and control data.

• Reads in the data returned by the ACQUIRE function block.

• Outputs the values to the display

At the beginning of the declaration section, there is the 20-byte temporary data
array "system data".

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
26 A5E00324650-01

Program Code of the CYCLE OB

ORGANIZATION_BLOCK CYCLE
(***
CYCLE is like an OB1, i.e. it is called cyclically by the S7
system.
Part 1 : Function block call and transfer of
the input values Part 2 : Reading in of the output values
and output
with output switchover
***)
VAR_TEMP
 systemdata : ARRAY[0..20] OF BYTE; // Area for OB1
END_VAR
BEGIN
(* Part 1 :
***)
ACQUIRE.ACQUIRE_DATA(
 measval_in:= WORD_TO_INT(input),
 newval := "Input 0.0", //Input switch as signal
identifier
 resort := Sort_switch,
 funct_sel := Function_switch,
 newsel := Coding_switch,
 selection := Coding);

(* Part 2 :
**)
IF Output_switch THEN
//Output changeover
 Output := ACQUIRE_DATA.result_out; //Square root
or square
ELSE
 Output := ACQUIRE_DATA.measval_out; //Measured value
END_IF;
END_ORGANIZATION_BLOCK

Data Type Conversion

The measured value is applied to the input as a BYTE data type. It must be
converted to the INT data type. You will need to convert it from WORD to INT (the
prior conversion from BYTE to WORD is made implicitly by the compiler). The
output on the other hand requires no conversion, since this was declared as INT in
the symbol table.

 Designing an S7-SCL Program

S7-SCL V5.3 for S7-300/400
A5E00324650-01 27

Test Data

Requirements

To perform the test, you require an input module with address 0 and an output
module with address 4.

Before performing the test, set all eight switches in the upper group to the left ("0")
and all eight switches in the lower group to the right ("1").

Reload the blocks on the CPU, since the initial values of the variables must also be
tested.

Test Procedure

Run the test as described in the table .

Test Action Result

 1 Set the code to "111" (I0.4, I0.5 and I0.6)
and enter this with the coding switch
(I0.7).

All outputs on the output module (lower-order byte) are
activated and the LEDs light up.

 2 Display the corresponding square root by
setting the output switch (I0.3) to "1".

The LEDs on the output module indicate the binary
number "10000" (=16).

 3 Display the corresponding square by
setting the function switch (I0.2) to "1".

15 LEDs on the output module light up. This indicates an
overflow since the result of 255 x 255 is too high for the
integer range.

 4a Reset the output switch (I0.3) back to
"0".

The measured value is displayed again. All LEDs on the
outputs of the lower-order output byte are set.

 4b Set the value 3 (binary "11") as the new
measured value at the input.

The output does not change at this stage.

 5a Monitor reading in of the measured
value: Set the code to "000" and enter it
with coding switch (I0.7) so that you can
later watch the value input.

The output module shows 0; i.e none of the LEDs lights
up.

 5b Switch over the input switch "Input 0.0"
(I0.0). This reads in the value set in test
stage 4.

The output displays measured value 3, binary "11".

 6 Start sorting and calculation by switching
over the sort switch (I0.1).

The output again indicates 0 since the sorting process has
moved the measured value to a higher position in the
array.

 7 Display the measured value after sorting:
Set the code "110" (I0.6 = 1, I0.5 = 1,
I0.4 = 0 of IB0; corresponds to bit 14, bit
13 and bit 12 of IW0) and read it in by
switching over the coding switch.

The output now indicates the measured value "11" again
since it is the second highest value in the array.

 8a Display the corresponding results as
follows: Switching over the output switch
(I0.3) displays the square of the
measured value from the 7th step.

The output value 9 (binary "1001") is displayed.

 8b Switch over the function switch (I0.2) to
obtain the square root.

The output value 2 (binary "10") is displayed.

Designing an S7-SCL Program

 S7-SCL V5.3 for S7-300/400
28 A5E00324650-01

Additional Test

The following tables describe the switches on the input module and the examples
for square and square root. These descriptions will help you to define your own
tests:

• Input is made using switches. You can control the program with the top eight
switches and you can set the measured value with the bottom 8 switches.

• Output is indicated by LEDs. The top group displays the higher-order output
byte, the bottom group the lower-order byte.

Switch Parameter Name Description

Channel 0 Enter switch Switch over to read in measured value

Channel 1 Sort switch Switch over to start sorting/calculation

Channel 2 Function switch Switch left ("0"): Square root,
Switch right ("1"): Square

Channel 3 Output switch Switch left ("0"): Measured value,
Switch right ("1"): Result

Channel 4 Code Output address bit 0

Channel 5 Code Output address bit 1

Channel 6 Code Output address bit 2

Channel 7 Code switch Switch over to enter code

The following table contains eight examples of measured values that have already
been sorted.

You can enter the values in any order. Set the bit combination for each value and
transfer this value by operating the input switch. Once all values have been
entered, start sorting and calculation by changing over the sort switch. You can
then view the sorted values or the results (square root or square).

Measured Value Square Root Square

 0000 0001 = 1 0, 0000 0001 = 1 0000 0000, 0000 0001 = 1

 0000 0011 = 3 0, 0000 0010 = 2 0000 0000, 0000 1001 = 9

 0000 0111 = 7 0, 0000 0011 = 3 0000 0000, 0011 0001 = 49

 0000 1111 = 15 0, 0000 0100 = 4 0000 0000, 1110 0001 = 225

 0001 1111 = 31 0, 0000 0110 = 6 0000 0011, 1100 0001 = 961

 0011 1111 = 63 0, 0000 1000 = 8 0000 1111, 1000 0001 = 3969

 0111 1111 = 127 0, 0000 1011 = 11 0011 1111, 0000 0001 = 16129

 1111 1111 = 255 0, 0001 0000 = 16 0111 111, 1111 1111 = Overflow!

	Title
	Designing an S7-SCL Program
	Welcome to "Measured Value Acquisition" - A Sample Program for First- Time Users
	Task
	Design of a Structured S7-SCL Program
	Defining the Subtasks
	Defining the Interfaces Between Blocks
	Defining the Input/Output Interface
	Defining the Order of the Blocks in the Source File
	Defining Symbols
	Creating the SQUARE Function
	Statement Section of the SQUARE Function

	Creating the EVALUATE function block
	Flow Chart for EVALUATE
	Declaration Section of FB EVALUATE
	Statement Section of FB EVALUATE

	Creating the function block ACQUIRE
	Flow Chart for ACQUIRE
	Declaration Section of FB ACQUIRE
	Statement Section of FB ACQUIRE

	Creating the CYCLE Organization Block
	Test Data

