
������� �����

�&%�&�##!$�
����&�$��

�'�& ��$)�"

�&��& �)#��&
 ���
����	���+�
��$)�" �''�#�"* �)#��&
 ��	���������
�!�(�!(!%$

This manual contains the following notices intended to ensure personal
safety, as well as to protect the products and connected equipment against
damage.

DANGER
DANGER indicates an imminently hazardous situation that, if not
avoided, will result in death or serious injury.

DANGER is limited to the most extreme situations.

!

WARNING

WARNING indicates a potentially hazardous situation that, if not avoided,
could result in death or serious injury, and/or property damage.

!

! CAUTION

CAUTION indicates a potentially hazardous situation that, if not avoided,
could result in minor or moderate injury, and/or damage to property.

CAUTION is also used for property-damage-on ly accidents.

Copyright 1995 by Siemens Industrial Automation, Inc.
All Rights Reserved — Printed in USA

Reproduction, transmission or use of this document or contents is not permitted without express consent of Siemens Industrial Auto-
mation, Inc. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Since Siemens Industrial Automation, Inc. does not possess full access to data concerning all of the uses and applications of cus-
tomer’s products, we do not assume responsibility either for customer product design or for any infringements of patents or rights of
others which may result from our assistance.

Safety-Related
Guidelines

MANUAL PUBLICATION HISTORY

SIMATIC TI505 Programming Reference Manual
Order Manual Number: PPX:505–8104–5

Refer to this history in all correspondence and/or discussion about this manual.

Event Date Description

Original Issue 12/89 Original Issue (2592436–0001)
Second Edition 03/90 Second Edition (2592436–0002)
Errata Package 05/90 Corrections to Chapters 2, 11, and 13

(2592435–0001)
Third Edition 04/92 Third Edition (2592436–0003)
Fourth Edition 05/93 Fourth Edition (2592436–0004)
Fifth Edition 02/95 Fifth Edition (2592436–0005)

LIST OF EFFECTIVE PAGES

Pages Description Pages Description

Cover/Copyright Fifth
History/Effective Pages Fifth
iii — xxxvi Fifth

1-1 — 1-27 Fifth
2-1 — 2-7 Fifth
3-1 — 3-16 Fifth
4-1 — 4-11 Fifth
5-1 — 5-43 Fifth
6-1 — 6-185 Fifth
7-1 — 7-74 Fifth

8-1 — 8-15 Fifth
9-1 — 9-33 Fifth
A-1 — A-13 Fifth
B-1 — B-6 Fifth
C-1 — C-27 Fifth
D-1 — D-4 Fifth
E-1 — E-43 Fifth
F-1 — F-1 Fifth

G-1 — G-36 Fifth
H-1 — H-17 Fifth
Index-1 — Index-10 Fifth
Registration Fifth

Contents iii

Contents

Preface

Chapter 1 Series 505/500 System Overview
1.1 The TI545 and TI555 Systems 1-2.

System Components 1-2.
Local and Remote I/O 1-2.
Assigning I/O Point Numbers 1-2.
Program Execution 1-4.
Interrupt RLL Execution 1-4.
Cyclic RLL Execution 1-4.
Discrete Scan 1-4.
Analog Task Processing 1-6.
Cyclic Analog Tasks 1-6.
Non-cyclic Analog Tasks 1-7.
Setting the Scan 1-8.

1.2 The TI560/TI565 System 1-10.
TI560/TI565 System Components 1-10.
TI560/TI565 Remote I/O 1-10.
Assigning I/O Point Numbers 1-12.
TI560 Scan Operation 1-12.
TI565 CPU Functions 1-14.

1.3 The TI575 System 1-16.
TI575 System Components 1-16.
TI575 Local and Remote I/O 1-16.
TI575 Scan Operation 1-16.

1.4 The TI525/TI535 Systems 1-18.
System Components 1-18.
Local and Distributed I/O 1-18.
Series 505 Logical Base 1-19.
Assigning I/O Point Numbers 1-20.
Scan Operation 1-21.

1.5 The TI520C/TI530C/TI530T Systems 1-22.
System Components 1-22.
Local and Distributed I/O 1-22.
Series 500 Logical Base 1-23.
Assigning I/O Point Numbers 1-24.
Using Default I/O Numbers 1-25.
Using Default Numbers with 6-, 12-, 14-Slot Bases 1-26.
Scan Operation 1-27.

iv Contents

Chapter 2 Data Representation
2.1 Definitions 2-2.

2.2 Integers 2-3.

2.3 Real Numbers and Binary-Coded Decimal 2-5.
Real Numbers 2-5.
Binary Coded Decimal 2-5.

2.4 Format for an Address Stored in a Memory Location 2-6.

Chapter 3 I/O Concepts
3.1 Reading and Updating the I/O 3-2.

Discrete Image Register 3-2.
Word Image Register 3-5.

3.2 Normal I/O Updates 3-6.
Discrete Control 3-6.
Analog Control 3-6.

3.3 High Speed I/O Updates 3-8.
Immediate I/O 3-8.
Modules that Support Immediate I/O 3-10.
Configuring Immediate I/O 3-11.

3.4 Interrupt I/O Operation 3-12.
Overview 3-12.
Configuring the Interrupt Input Module 3-12.

3.5 Control Relays 3-14.
Using Retentive and Non-retentive Control Relays 3-16.

Chapter 4 Controller Memory
4.1 Introduction to Controller Memory 4-2.

RLL Access to the Memory Types 4-3.

4.2 Controller Memory Types 4-4.
Ladder Memory 4-4.
Image Register Memory 4-4.
Control Relay Memory 4-4.
Special Memory: TI545, TI555, TI565, TI575 Controllers Only 4-4.
Temporary Memory: TI545, TI555, TI565, TI575 Controllers Only 4-4.
Variable Memory 4-4.
Constant Memory: TI545, TI555, TI560/TI565, TI575 Controllers Only 4-5.
Status Word Memory 4-5.
Timer/Counter Memory 4-5.
Table Move Memory 4-6.
One Shot Memory 4-7.
Shift Register Memory 4-8.

Contents v

Drum Memory 4-9.
PGTS Discrete Parameter Area: TI545, TI555, TI575, TI560/TI565 4-10.
PGTS Word Parameter Area: TI545, TI555, TI575, TI560/TI565 4-10.
User External Subroutine Memory: TI545, TI555, TI575 Controllers Only 4-11.
Global Memory: TI575 Only 4-11.
VME Memory: TI575 Only 4-11.

Chapter 5 Programming Concepts
5.1 RLL Components 5-2.

RLL Concept 5-3.
RLL Contact 5-4.
RLL Coil 5-10.
RLL Box Instruction 5-14.
RLL Rung Structure 5-14.
RLL Scan Principles 5-15.

5.2 Program Compile Sequence 5-16.

5.3 Using Subroutines (TI545, TI555, TI560/TI565, and TI575) 5-18.
RLL Subroutine Programs 5-18.
SF Programs 5-19.
External Subroutines 5-19.

5.4 Cyclic RLL 5-20.
Overview 5-20.
Cyclic RLL Execution 5-22.

5.5 Interrupt RLL 5-24.
The Interrupt RLL Program 5-24.
Operation 5-27.
Performance Characteristics 5-28.
Troubleshooting 5-29.

5.6 Using Real-Time Clock Data (TI545, TI555, TI560/TI565, TI575) 5-30.
BCD Time of Day 5-30.
Binary Time of Day 5-32.
Time of Day Status 5-33.

5.7 Entering Relay Ladder Logic 5-34.
Using APT 5-34.
Using TISOFT 5-34.

5.8 Doing Run-Time Program Edits 5-35.
Using TISOFT 4.2 or Later with the TI545, TI555, or TI575 5-35.
Using TISOFT 4.01 or Earlier (All Controllers) 5-36.
Avoid These Actions During Run-Time Edits 5-37.
Additional Considerations When Doing Run-Time Edits 5-40.

vi Contents

5.9 Password Protection 5-42.
Protected Program Elements 5-42.
Disabled and Enabled Passwords 5-42.
Password Protection Levels 5-43.
Determining the Current State of Password 5-43.
Password Effect on EEPROM 5-43.

Chapter 6 RLL Instruction Set
6.1 Safety Considerations 6-4.

Overview 6-4.
Failure of the Control System 6-4.
Inconsistent Program Operation 6-5.
Editing an Active Process 6-5.

6.2 Introduction 6-6.

6.3 Absolute Value 6-11.
ABSV Description 6-11.
ABSV Operation 6-11.

6.4 Add 6-12.
ADD Description 6-12.
ADD Operation 6-12.

6.5 Bit Clear 6-13.
BITC Description 6-13.
BITC Operation 6-13.

6.6 Bit Pick 6-14.
BITP Description 6-14.
BITP Operation 6-14.

6.7 Bit Set 6-15.
BITS Description 6-15.
BITS Operation 6-15.

6.8 Convert Binary to BCD 6-16.
CBD Description 6-16.
CBD Operation 6-16.

6.9 Convert BCD to Binary 6-18.
CDB Description 6-18.
CDB Operation 6-18.

6.10 Compare 6-20.
CMP Description 6-20.
CMP Operation 6-20.

6.11 Coils 6-22.

6.12 Contacts 6-23.

Contents vii

6.13 Counter (Up Counter) 6-24.

CTR Description 6-24.
CTR Operation 6-24.
Using the Counter Variables 6-25.

6.14 Discrete Control Alarm Timer 6-26.

DCAT Description 6-26.
DCAT State Changes 6-27.
DCAT Operation 6-28.
Open/Close Input Turns On 6-28.
Open/Close Input Turns Off 6-28.
Using the DCAT Variables 6-29.

6.15 Date Compare 6-30.

DCMP Description 6-30.
DCMP Operation 6-31.

6.16 Divide 6-32.

DIV Description 6-32.
DIV Operation 6-32.

6.17 Time Driven Drum 6-34.

DRUM Description 6-34.
DRUM Operation 6-35.
Calculating Counts/Step 6-36.
Using DRUM Variables 6-37.

6.18 Date Set 6-38.

DSET Description 6-38.
DSET Operation 6-39.

6.19 Time/Event Driven Drum 6-40.

EDRUM Description 6-40.
EDRUM Operation 6-41.
Calculating Counts/Step 6-42.
Timer-triggered Advance Only 6-42.
Event-triggered Advance Only 6-42.
Timer and Event- Triggered Advance 6-43.
Timer or External Event-triggered Advance 6-43.
Using EDRUM Variables 6-43.

6.20 Unconditional End 6-44.

END Description 6-44.
END Operation 6-44.

6.21 Conditional End 6-45.

ENDC Description 6-45.
ENDC Operation 6-45.

viii Contents

6.22 Force Role Swap 6-46.

FRS Description 6-46.
FRS Operation 6-47.

6.23 Go To Subroutine 6-48.

GTS Description 6-48.
GTS Operation 6-48.

6.24 Indexed Matrix Compare 6-50.

IMC Description 6-50.
IMC Operation 6-51.

6.25 Immediate I/O Read/Write 6-52.

IORW Description 6-52.
IORW Operation 6-52.

6.26 Jump 6-54.

JMP Description 6-54.
JMP/JMPE Operation 6-54.

6.27 Load Address 6-56.

LDA Description 6-56.
LDA Operation 6-57.
Specifying Source 6-57.
Specifying Index for Source 6-58.
Specifying Destination 6-58.
Specifying Index for Destination 6-59.

6.28 Load Data Constant 6-61.

LDC Description 6-61.
LDC Operation 6-61.

6.29 Lock Memory 6-62.

LOCK Description 6-62.
Acquiring Control of the Lock 6-62.
How the Lock Protects Memory 6-64.

6.30 Motor Control Alarm Timer 6-65.

MCAT Description 6-65.
MCAT State Changes 6-66.
MCAT Operation 6-68.
Open Input Turns On 6-68.
Close Input Turns On 6-68.
Using the MCAT Variables 6-69.

6.31 Master Control Relay 6-70.

MCR Description 6-70.
MCR/MCRE Operation 6-70.

Contents ix

6.32 Maskable Event Drum, Discrete 6-74.
MDRMD Description 6-74.
MDRMD Operation 6-75.
Defining the Mask 6-76.
Calculating Counts/Step 6-76.
Timer-triggered Advance Only 6-76.
Event-triggered Advance Only 6-76.
Timer and Event-Triggered Advance 6-77.
Timer or External Event-triggered Advance 6-77.
Using MDRMD Variables 6-77.

6.33 Maskable Event Drum, Word 6-78.
MDRMW Description 6-78.
MDRMW Operation 6-80.
Defining the Mask 6-81.
Calculating Counts/Step 6-81.
Timer-triggered Advance Only 6-82.
Event-triggered Advance Only 6-82.
Timer and Event-Triggered Advance 6-82.
Timer or External Event-triggered Advance 6-82.
Using MDRMD Variables 6-83.

6.34 Move Image Register From Table 6-84.
MIRFT Description 6-84.
MIRFT Operation 6-84.

6.35 Move Image Register To Table 6-86.
MIRTT Description 6-86.
MIRTT Operation 6-86.

6.36 Move Image Register To Word 6-88.
MIRW Description 6-88.
MIRW Operation 6-88.

6.37 Move Element 6-90.
MOVE Description 6-90.
MOVE Operation 6-91.
Specifying Type of Elements 6-91.
Specifying Source 6-92.
Specifying Index for Source 6-92.
Specifying Destination 6-93.
Specifying Index for Destination 6-93.
Specifying Number of Elements to Move 6-94.

6.38 Move Word 6-98.
MOVW Description 6-98.
MOVW Operation 6-99.

x Contents

6.39 Multiply 6-100.
MULT Description 6-100.
MULT Operation 6-100.

6.40 Move Word From Table 6-102.
MWFT Description 6-102.
MWFT Operation 6-102.

6.41 Move Word with Index 6-104.
MWI Description 6-104.
MWI Operation 6-104.

6.42 Move Word to Image Register 6-106.
MWIR Description 6-106.
MWIR Operation 6-106.

6.43 Move Word to Table 6-108.
MWTT Description 6-108.
MWTT Operation 6-108.

6.44 NOT 6-110.
NOT Description 6-110.
NOT Operation 6-110.

6.45 One Shot 6-111.
One Shot Description 6-111.
One Shot Operation 6-111.

6.46 Parameterized Go To Subroutine 6-112.
PGTS Description 6-112.
PGTS Operation 6-112.

6.47 Parameterized Go To Subroutine (Zero) 6-118.
PGTSZ Description 6-118.
PGTSZ Operation 6-119.

6.48 Return from Subroutine 6-120.
RTN Description 6-120.
RTN Operation 6-120.

6.49 Subroutine 6-121.
SBR Description 6-121.
SBR Operation 6-121.

6.50 Call an SF Program 6-124.
SFPGM Description 6-124.
SFPGM Operation 6-124.

6.51 Call SF Subroutines from RLL 6-126.
SFSUB Description 6-126.
SFSUB Operation 6-127.

Contents xi

6.52 Bit Shift Register 6-128.
SHRB Description 6-128.
SHRB Operation 6-129.

6.53 Word Shift Register 6-130.
SHRW Description 6-130.
SHRW Operation 6-130.

6.54 Skip / Label 6-132.
SKP / LBL Description 6-132.
SKP / LBL Operation 6-134.

6.55 Scan Matrix Compare 6-136.
SMC Description 6-136.
SMC Operation 6-137.

6.56 Square Root 6-138.
SQRT Description 6-138.
SQRT Operation 6-139.

6.57 Scan Synchronization Inhibit 6-140.
SSI Description 6-140.
SSI Operation 6-141.

6.58 Search Table for Equal 6-142.
STFE Description 6-142.
STFE Operation 6-142.

6.59 Search Table for Not Equal 6-144.
STFN Description 6-144.
STFN Operation 6-144.

6.60 Subtract 6-146.
SUB Description 6-146.
SUB Operation 6-146.

6.61 Table to Table AND 6-147.
TAND Description 6-147.
TAND Operation 6-147.

6.62 Start New RLL Task 6-148.
TASK Description 6-148.
TASK Operation 6-148.

6.63 Time Compare 6-151.
TCMP Description 6-151.
TCMP Operation 6-151.

6.64 Table Complement 6-152.
TCPL Description 6-152.
TCPL Operation 6-152.

xii Contents

6.65 Text 6-153.

Text Box Description 6-153.

6.66 Timer 6-154.

TMR/TMRF Description 6-154.
TMR/TMRF Operation 6-154.
Using the Timer Variables 6-155.

6.67 Table to Table OR 6-156.

TOR Description 6-156.
TOR Operation 6-156.

6.68 Time Set 6-157.

TSET Description 6-157.
TSET Operation 6-157.

6.69 Table to Word 6-158.

TTOW Description 6-158.
TTOW Operation 6-159.

6.70 Table to Table Exclusive OR 6-160.

TXOR Description 6-160.
TXOR Operation 6-161.

6.71 Up/Down Counter 6-162.

UDC Description 6-162.
UDC Operation 6-163.
Using the UDC Variables 6-163.

6.72 Unlock Memory 6-164.

UNLCK Description 6-164.
UNLCK Operation 6-165.

6.73 Word AND 6-166.

WAND Description 6-166.
WAND Operation 6-166.

6.74 Word OR 6-168.

WOR Description 6-168.
WOR Operation 6-168.

6.75 Word Rotate 6-170.

WROT Description 6-170.
WROT Operation 6-170.

6.76 Word to Table 6-172.

WTOT Description 6-172.
WTOT Operation 6-173.

Contents xiii

6.77 Word to Table AND 6-174.

WTTA Description 6-174.
WTTA Operation 6-175.

6.78 Word to Table OR 6-176.

WTTO Description 6-176.
WTTO Operation 6-177.

6.79 Word to Table Exclusive OR 6-178.

WTTXO Description 6-178.
WTTXO Operation 6-179.

6.80 Word Exclusive OR 6-180.

WXOR Description 6-180.
WXOR Operation 6-180.

6.81 External Subroutine Call 6-182.

XSUB Description 6-182.
XSUB Operation 6-183.

Chapter 7 Special Function Programs

7.1 Defining Special Function Programs 7-2.

Introduction 7-2.
Special Function Program Types 7-2.
SF Programs Called from RLL 7-3.
SF Programs Called from Loops/Analog Alarms 7-3.

7.2 SF Program Statements 7-4.

7.3 Executing Special Function Programs 7-5.

Priority/non-priority SF Programs 7-5.
Cyclic Programs 7-5.
Restricted Programs Called by Loops 7-6.
Restricted Programs Called by Analog Alarms 7-7.

7.4 Executing Special Function Subroutines 7-8.
Calling SF Subroutines 7-8.
Designing SF Subroutines 7-8.

7.5 Memory Usage by SF Programs 7-10.

7.6 Entering SF Program Header with TISOFT 7-12.

7.7 Reporting SF Program or SFSUB RLL Instruction Errors 7-14.

Reporting Errors with the SFEC Variable 7-14.
Reporting Errors with Discrete Points 7-14.
Reporting Errors with V or WY Memory 7-15.

7.8 Entering Special Function Programming Statements 7-16.

xiv Contents

7.9 Convert BCD to Binary 7-18.
BCDBIN Description 7-18.
BCDBIN Operation 7-18.

7.10 Convert Binary Inputs to BCD 7-19.
BINBCD Description 7-19.
BINBCD Operation 7-19.

7.11 Call Subroutine 7-20.
CALL Description 7-20.
CALL Operation 7-20.

7.12 Correlated Data Table 7-22.
CDT Description 7-22.
CDT Operation 7-23.

7.13 Exit on Error 7-24.
EXIT Description 7-24.
EXIT Operation 7-24.

7.14 Fall Through Shift Register—Input 7-25.
FTSR-IN Description 7-25.
FTSR-IN Operation 7-26.

7.15 Fall through Shift Register—Output 7-29.
FTSR-OUT Description 7-29.
FTSR-OUT Operation 7-30.

7.16 Go To/Label Function 7-33.

7.17 IF/THEN/ELSE Functions 7-34.
IF/THEN/ELSE Description 7-34.
IF Operation 7-35.

7.18 Integer Math Operations 7-36.
IMATH Description 7-36.
IMATH Operation 7-36.

7.19 Lead/Lag Operation 7-38.
LEAD/LAG Description 7-38.
LEAD/LAG Operation 7-39.

7.20 Real/Integer Math Operations 7-40.
MATH Description 7-40.
MATH Operation 7-41.
Using Offset Indexing 7-43.
Using Element Indexing 7-43.
Indexing Loop and Analog Alarm Variables 7-43.
Using Multiple Subscripts 7-44.
MATH Examples 7-44.

Contents xv

7.21 Pack Data 7-45.

PACK Description 7-45.
PACK TO Operation 7-46.
PACK FROM Operation 7-48.

7.22 Pack Analog Alarm Data 7-51.

PACKAA Description 7-51.
PACKAA Operation 7-52.

7.23 Pack Loop Data 7-54.

PACKLOOP Description 7-54.
PACKLOOP Operation 7-54.

7.24 Pack Ramp/Soak Data 7-56.

PACKRS Description 7-56.
PACKRS Operation 7-56.

7.25 Printing 7-62.

PRINT Description 7-62.
PRINT Operation 7-62.

7.26 Return from SF Program/Subroutine 7-65.

7.27 Scaling Values 7-66.

SCALE Description 7-66.
SCALE Operation 7-67.

7.28 Sequential Data Table 7-68.

SDT Description 7-68.
SDT Operation 7-68.

7.29 Synchronous Shift Register 7-70.

SSR Description 7-70.
SSR Operation 7-70.

7.30 Unscaling Values 7-72.

UNSCALE Description 7-72.
UNSCALE Operation 7-72.

7.31 Comment 7-74.

Chapter 8 Programming Analog Alarms

8.1 Overview 8-2.

8.2 Analog Alarm Programming and Structure 8-4.

Analog Alarm Numbers and Variable Names 8-4.
Programming Tables 8-4.
Analog Alarm C-Flags 8-5.

xvi Contents

8.3 Specifying Analog Alarm V-Flag Address 8-6.
Alarm V-Flag Address 8-6.

8.4 Specifying Analog Alarm Sample Rate 8-7.
Sample Rate 8-7.

8.5 Specifying Analog Alarm Process Variable Parameters 8-8.
Process Variable Address 8-8.
PV Range Low/High 8-8.
PV is Bipolar 20% Offset 8-8.
Square Root of PV 8-8.

8.6 Specifying Analog Alarm Deadband 8-9.
Alarm Deadband 8-9.

8.7 Specifying Analog Alarm Process Variable Alarm Limits 8-10.
PV Alarms: Low-low, Low, High, High-high 8-10.

8.8 Specifying Analog Alarm Setpoint Parameters 8-11.
Remote Setpoint 8-11.
Clamp SP Limits 8-11.

8.9 Specifying Analog Alarm Special Function Call 8-12.
Special Function 8-12.

8.10 Specifying Analog Alarm Setpoint Deviation Limits 8-13.
Deviation Alarms: Yellow, Orange 8-13.

8.11 Specifying Other Analog Alarm Process Variable Alarms 8-14.
Rate of Change Alarm 8-14.
Broken Transmitter Alarm 8-14.

Chapter 9 Programming Loops

9.1 Overview 9-2.

9.2 Using the PID Loop Function 9-4.
Manual Mode 9-4.
Auto Mode 9-4.
Cascade Mode 9-4.
Changing Loop Mode 9-5.

9.3 Loop Algorithms 9-6.
PID Position Algorithm 9-6.
PID Velocity Algorithm 9-7.

9.4 Programming Loops 9-8.
Loop Numbers and Variable Names 9-8.
Programming Tables 9-8.
Loop C-Flags 9-9.

Contents xvii

9.5 Specifying Loop PID Algorithm 9-10.
Pos/Vel PID Algorithm 9-10.

9.6 Specifying LOOP VFLAG ADDRESS 9-11.
Loop V-Flag Address 9-11.

9.7 Specifying Loop Sample Rate 9-12.
Sample Rate 9-12.

9.8 Specifying Loop Process Variable Parameters 9-13.
Process Variable Address 9-13.
PV Range Low/high 9-13.
PV is Bipolar 20% Offset 9-13.
Square Root of PV 9-13.

9.9 Specifying Loop Ramp/Soak Profile 9-14.
Defining Ramp/Soak Operation 9-14.
Defining Ramp/Soak Steps 9-14.
Controlling the Ramp/Soak Operation 9-14.
Ramp/Soak for SP 9-16.
Programming Ramp/Soak 9-16.

9.10 Specifying Loop Output Parameters 9-18.
Loop Output Address 9-18.
Output is Bipolar 9-18.
20% Offset on Output 9-18.

9.11 Specifying Loop Alarm Deadband 9-19.
Alarm Deadband 9-19.

9.12 Specifying Loop Process Variable Alarm Limits 9-20.
PV Alarms Low-low, Low-high, High-high 9-20.

9.13 Specifying Loop Setpoint Parameters 9-21.
Remote Setpoint 9-21.
Clamp SP Limits 9-21.

9.14 Specifying Loop Tuning Parameters 9-22.
Loop Gain, Reset, Rate 9-22.
Removing Integral Action 9-22.
Removing Derivative Action 9-22.
Removing Proportional Action 9-22.
Freeze Bias 9-23.
Adjust Bias 9-24.

9.15 Specifying Loop Derivative Gain Limiting 9-25.
Limiting Coefficient 9-25.

xviii Contents

9.16 Specifying Loop Special Function Call 9-26.

Special Calculation/ Special Function 9-26.
Calculation Scheduled on Setpoint 9-26.
Calculation Scheduled on Process Variable 9-26.
Calculation Scheduled on Output 9-27.

9.17 Specifying Loop Locked Changes 9-28.

Lock Setpoint, Auto/Manual, Cascade 9-28.

9.18 Specifying Loop Error Operation 9-29.

Error Operation 9-29.
Error Deadband 9-29.
No Error Calculation 9-29.

9.19 Specifying Reverse Acting Loops 9-30.

Reverse Acting 9-30.
Direct-Acting Loop 9-30.
Reverse-Acting Loop 9-30.

9.20 Specifying Loop Setpoint Deviation Limits 9-31.

Deviation Alarms Yellow, Orange 9-31.

9.21 Specifying Other Loop Process Variable Alarms 9-32.

Rate of Change Alarm 9-32.
Broken Transmitter Alarm 9-32.

Appendix A Memory and Variable Types

A.1 RLL Variable Access (TI545, TI555, TI560, TI575) A-2.

A.2 SF Program Variable Access (TI545, TI555, TI565, TI575) A-3.

A.3 RLL Variable Access — Early Model Controllers A-9.

Appendix B RLL Memory Requirements

B.1 Memory Requirements B-2.

Appendix C Controller Performance

C.1 Calculating Performance for the TI545, TI555, and TI575 C-2.

Calculating Normal Scan Time C-2.
Calculating the Cyclic RLL Execution Time C-4.
Total Scan Time Including Cyclic RLL C-5.

C.2 Tuning the TI545/TI555/TI575 Timeline C-8.

Basic Strategy C-8.
Using Peak Elapsed Time Words C-8.
Using the Status Words C-9.
Concepts to Remember When Calculating Timeline C-10.

Contents xix

C.3 Calculating Performance for the TI560 C-12.

Calculating Scan Time C-12.
RCC Performance C-14.
TI565 Performance C-14.
Hot Backup Performance C-15.

C.4 RLL Execution Times for High-End Controllers C-16.

C.5 SF Program Statement Execution Times for the TI545/TI555/TI575 C-21.

C.6 Calculating Performance for the TI520C, TI530C, TI530T, TI525, and TI535 C-24.

Calculating Scan Time C-24.

Appendix D Loop and Analog Alarm Flag Formats

D.1 Loop Flags D-2.

D.2 Analog Alarm Flags D-4.

Appendix E Selected Application Examples

E.1 Using the SHRB E-2.
SHRB Application Example E-2.
Explanation E-2.

E.2 Using the SHRW E-4.

SHRW Application Example E-4.
Explanation E-5.

E.3 Using the TMR E-6.
TMR Application Example #1 E-6.
Explanation #1 E-6.
TMR Application Example #2 E-8.
Application #3 E-9.

E.4 Using the BITP E-10.

BITP Application Example E-10.
Explanation E-10.

E.5 Using the DRUM E-12.
DRUM Application Example E-12.
Explanation E-12.

E.6 Using the EDRUM E-14.
EDRUM Application Example E-14.
Explanation E-14.

E.7 Using the MIRW E-18.

Application E-18.
Explanation E-20.

xx Contents

E.8 Using the MWIR E-22.
Application E-22.
Explanation E-22.

E.9 Using the MWTT E-26.
Application E-26.
Explanation E-26.

E.10 Using the MWFT E-28.
Application E-28.
Explanation E-28.

E.11 Using the WXOR E-30.
Application E-30.
Explanation E-30.
Inputs are Correct E-32.
Inputs are Incorrect E-33.

E.12 Using the CBD E-34.
Application E-34.
Explanation E-34.

E.13 Using the CDB E-36.
Application E-36.
Explanation E-36.

E.14 Using the One Shot E-37.
Application E-37.
Explanation E-37.

E.15 Using the DCAT E-38.
Application E-38.
Explanation E-40.
Normal Operation E-40.
Valve Fails to Open E-41.
Valve Fails to Close E-41.
Sensor Fails E-41.

E.16 Using Status Words E-42.
Application E-42.
Explanation E-42.
Application E-43.

Appendix F Special Function Program Error Codes

Contents xxi

Appendix G Status Words
G.1 Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers G-2.

STW01: Non-fatal Errors and Hot Backup Data G-3.
STW02 – STW09: Base Controller Status G-4.
STW10: Dynamic Scan Time G-5.
STW11 – STW138: I/O Module Status G-6.
STW139: Reserved G-9.
STW140: Reserved G-9.
STW141 – STW144: Date, Time, and Day of Week G-9.
STW145 – STW160: Receive and Timeout Errors G-12.
STW161: Special Function Processor Fatal Errors G-13.
STW162: Special Function Processor Non-fatal Errors G-14.
STW163: RLL Subroutine Stack Overflow G-15.
STW164 – STW165: L-Memory Checksum C0 G-15.
STW166 – STW167: L-Memory Checksum C1 G-15.
STW168 – STW175: Dual RBC Status G-16.
STW176 – STW183: Dual Power Supply Status G-17.
STW184: Module Mismatch Indicator G-18.
STW185 – STW191: Reserved G-18.
STW192: Discrete Scan Execution Time G-18.
STW193 – STW199: Reserved G-18.
STW200: User Error Cause G-19.
STW201: First Scan Flags G-19.
STW202: Application Mode Flags (A – P) G-20.
STW203: Application Mode Flags (Q – Z) G-21.
STW204: Application Installed Flags (A – P) G-22.
STW205: Application Installed Flags (Q – Z) G-23.
STW206 – STW207: U-Memory Checksum C0 G-24.
STW208 – STW209: U-Memory Checksum C1 G-24.
STW210: Base Poll Enable Flags G-25.
STW211 – STW217: Reserved G-26.
STW218: My_Application ID G-26.
STW219: Cyclic RLL Task Overrun G-26.
STW220: Interrupting Slots in Local Base G-26.
STW221: Module Interrupt Request Count G-27.
STW222: Spurious Interrupt Count G-27.
STW223 – STW225: Binary Time of Day G-28.
STW226: Time of Day Status G-28.
STW227 – STW228: Bus Error Access Address G-30.
STW229 – STW230: Bus Error Program Offset G-30.

xxii Contents

G.2 Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers G-31.
STW01: Controller Status G-31.
STW02: I/O Base Status G-32.
STW03 – STW05: Reserved G-33.
STW06: EPROM/EEPROM Programming G-33.
STW07: EPROM/EEPROM Programming Errors G-33.
STW08: EPROM/EEPROM Checksum — RLL Only G-34.
STW09: EPROM/EEPROM Checksum — All Program Data G-34.
STW10: Dynamic Scan Time G-34.
STW11 – STW18: I/O Module Status G-35.

Appendix H External Subroutine Development
H.1 Designing the External Subroutine H-2.

Program Code Requirements H-2.
Loading the Subroutine H-3.

H.2 U-Memory Format H-4.
Header H-4.
Code and Constant Data H-5.
Modifiable Data H-5.
User Stack H-5.

H.3 Guidelines for Creating C Language Subroutines H-6.
Debugging the External Subroutine H-6.
Static Data Initialization H-7.
Accessing Discrete/Word Variables H-10.
Floating Point Operations H-11.
Unsupported C Language Features H-11.

H.4 Developing an External Subroutine — Example H-12.
Example Header File H-12.
Example Subroutine Source H-14.
Preparing the Load Module H-14.
Loading U-Memory H-16.
Using the External Subroutines in RLL H-16.

Contents xxiii

List of Figures

Figure 1-1 Components for the TI545/TI555 System 1-3.
Figure 1-2 Discrete Scan Sequence for the TI545 and TI555 Controllers 1-5.
Figure 1-3 Analog Task Scan Sequence for the TI545 and TI555 Controllers 1-7.
Figure 1-4 Timing Relationship of the TI545/TI555 Controller Scan Operations 1-9.
Figure 1-5 Components for the TI560/TI565 System 1-11.
Figure 1-6 Scan Sequence for the TI560 Controller 1-13.
Figure 1-7 Scan Sequence for the TI565 CPU 1-15.
Figure 1-8 Components for the TI575 System 1-17.
Figure 1-9 Components for the TI525 and TI535 Systems 1-18.
Figure 1-10 Definition of Series 505 Logical Base 1-19.
Figure 1-11 Scan Sequence for the TI525/TI535 Controllers 1-21.
Figure 1-12 Components for the TI520C, TI530C, or TI530T Systems 1-22.
Figure 1-13 Definition of Series 500 Logical Base 1-23.
Figure 1-14 Series 500 I/O Default Numbering 1-25.
Figure 1-15 Default I/O Point Numbers for 14-Slot Base 1-26.
Figure 1-16 Scan Sequence for the TI520C/TI530C/TI530T Controllers 1-27.

Figure 2-1 Format of Signed Integers 2-3.
Figure 2-2 Format of Unsigned Integers 2-4.
Figure 2-3 Format of Real Numbers 2-5.
Figure 2-4 Example of Storing an Address 2-6.

Figure 3-1 Discrete Image Register 3-2.
Figure 3-2 Image Register Update 3-3.
Figure 3-3 Word Image Register 3-5.
Figure 3-4 Relation of Hardwired Field Devices and the RLL Program 3-7.
Figure 3-5 Immediate I/O Update 3-8.
Figure 3-6 IORW Instruction 3-9.
Figure 3-7 Immediate I/O Configuration Chart 3-11.
Figure 3-8 Control Relay 3-14.
Figure 3-9 Control Relay Operation 3-16.

Figure 4-1 Controller Memory Types 4-2.
Figure 4-2 PGTS Discrete Parameter Area 4-10.
Figure 4-3 PGTS Word Parameter Area 4-11.

Figure 5-1 Single Rung of a Relay Ladder Logic Program 5-3.
Figure 5-2 Power Flow and the Contact 5-4.
Figure 5-3 Operation of Normal Contact and Electro-mechanical Relay 5-5.
Figure 5-4 Operation of a NOT-ed Contact and Electro-mechanical Relay 5-7.
Figure 5-5 Power Flow and the Coil 5-10.
Figure 5-6 Example of a Box Instruction 5-14.
Figure 5-7 How Relay Ladder Logic is Solved 5-15.
Figure 5-8 RLL Program Compile Process 5-16.

xxiv Contents

Figure 5-9 Examples of Cyclic RLL Design 5-21.
Figure 5-10 Example of Cyclic RLL Execution Interrupt 5-22.
Figure 5-11 Relationship of Cyclic RLL Execution Time to Cycle Time 5-22.
Figure 5-12 When Cycle Time Changes Take Effect 5-23.
Figure 5-13 Examples of Cyclic RLL Design 5-24.
Figure 5-14 Status Word 220 Format 5-25.
Figure 5-15 Example RLL Interrupt Program 5-26.
Figure 5-16 Status Word Location of Time Data 5-30.
Figure 5-17 Clock Data Example 5-31.
Figure 5-18 Binary Time of Day 5-32.
Figure 5-19 Time-of-Day Status Word 5-33.

Figure 6-1 RLL Instruction Format 6-6.
Figure 6-2 ABSV Format 6-11.
Figure 6-3 ADD Format 6-12.
Figure 6-4 BITC Format 6-13.
Figure 6-5 BITP Format 6-14.
Figure 6-6 BITS Format 6-15.
Figure 6-7 CBD Format 6-16.
Figure 6-8 Examples of CBD Operation 6-17.
Figure 6-9 CDB Format 6-18.
Figure 6-10 Examples of CDB Operation 6-19.
Figure 6-11 CMP Format 6-20.
Figure 6-12 Coil Format 6-22.
Figure 6-13 Contact Format 6-23.
Figure 6-14 CTR Format 6-24.
Figure 6-15 DCAT Format 6-26.
Figure 6-16 DCMP Format 6-30.
Figure 6-17 DIV Format 6-32.
Figure 6-18 Division Example 6-33.
Figure 6-19 DRUM Format 6-34.
Figure 6-20 DSET Format 6-38.
Figure 6-21 EDRUM Format 6-40.
Figure 6-22 END Format 6-44.
Figure 6-23 ENDC Format 6-45.
Figure 6-24 FRS Format 6-46.
Figure 6-25 GTS Format 6-48.
Figure 6-26 Example Call to Subroutine 6-49.
Figure 6-27 IMC Format 6-50.
Figure 6-28 IORW Format 6-52.
Figure 6-29 JMP Format 6-54.
Figure 6-30 Example of JMP Zone of Control 6-55.

Contents xxv

Figure 6-31 LDA Format 6-56.
Figure 6-32 Address/Index Resolution 6-58.
Figure 6-33 Examples of the LDA Instruction 6-60.
Figure 6-34 LDC Format 6-61.
Figure 6-35 LOCK Format 6-62.
Figure 6-36 Example of the LOCK Instruction 6-64.
Figure 6-37 MCAT Format 6-65.
Figure 6-38 MCR Format 6-70.
Figure 6-39 Example of MCR Control of a Box 6-71.
Figure 6-40 Example of the MCR Zone of Control 6-73.
Figure 6-41 MDRMD Format 6-74.
Figure 6-42 MDRMW Format 6-79.
Figure 6-43 MIRFT Format 6-84.
Figure 6-44 Example of MIRFT Operation 6-85.
Figure 6-45 MIRTT Format 6-86.
Figure 6-46 Example of MIRTT Operation 6-87.
Figure 6-47 MIRW Format 6-88.
Figure 6-48 Example of MIRW Operation 6-89.
Figure 6-49 MOVE Format 6-90.
Figure 6-50 Address/Source Index Resolution 6-92.
Figure 6-51 Address/Destination Index Resolution 6-93.
Figure 6-52 Examples of the MOVE Instruction 6-94.
Figure 6-53 MOVW Format 6-98.
Figure 6-54 The MOVW Operation 6-99.
Figure 6-55 MULT Format 6-100.
Figure 6-56 Multiplication Example 6-101.
Figure 6-57 MWFT Format 6-102.
Figure 6-58 The MWFT Operation 6-103.
Figure 6-59 MWI Format 6-104.
Figure 6-60 The MWI Operation 6-105.
Figure 6-61 MWIR Format 6-106.
Figure 6-62 The MWIR Format 6-107.
Figure 6-63 MWTT Format 6-108.
Figure 6-64 The MWTT Operation 6-109.
Figure 6-65 NOT Format 6-110.
Figure 6-66 NOT Example 6-110.
Figure 6-67 One Shot Format 6-111.
Figure 6-68 PGTS Format 6-112.
Figure 6-69 PGTS Instruction Example 1 6-115.
Figure 6-70 PGTS Instruction Example 2 6-116.
Figure 6-71 PGTSZ Format 6-118.
Figure 6-72 RTN Format 6-120.

xxvi Contents

Figure 6-73 SBR Format 6-121.
Figure 6-74 SBR Example 6-123.
Figure 6-75 SFPGM Format 6-124.
Figure 6-76 SFSUB Format 6-126.
Figure 6-77 SHRB Format 6-128.
Figure 6-78 SHRB Example 6-129.
Figure 6-79 SHRW Format 6-130.
Figure 6-80 SHRW Operation 6-131.
Figure 6-81 SKP / LBL Format 6-132.
Figure 6-82 Example of SKP Zone of Control 6-135.
Figure 6-83 SMC Format 6-136.
Figure 6-84 SQRT Format 6-138.
Figure 6-85 SSI Format 6-140.
Figure 6-86 STFE Format 6-142.
Figure 6-87 STFN Format 6-144.
Figure 6-88 SUB Format 6-146.
Figure 6-89 TAND Format 6-147.
Figure 6-90 TASK Format 6-148.
Figure 6-91 Examples of TASK Design 6-149.
Figure 6-92 TCMP Format 6-151.
Figure 6-93 TCPL Format 6-152.
Figure 6-94 Text Box Format 6-153.
Figure 6-95 TMR/TMRF Format 6-154.
Figure 6-96 TOR Format 6-156.
Figure 6-97 TSET Format 6-157.
Figure 6-98 TTOW Format 6-158.
Figure 6-99 TXOR Format 6-160.
Figure 6-100 UDC Format 6-162.
Figure 6-101 UNLCK Format 6-164.
Figure 6-102 WAND Format 6-166.
Figure 6-103 Result of ANDing Bits 6-166.
Figure 6-104 Result of ANDing Two Words 6-167.
Figure 6-105 WOR Format 6-168.
Figure 6-106 Result of ORing Bits 6-168.
Figure 6-107 Result of ORing Two Words 6-169.
Figure 6-108 WROT Format 6-170.
Figure 6-109 WROT Operation 6-170.
Figure 6-110 Result of a WROT Operation 6-171.
Figure 6-111 WTOT Format 6-172.
Figure 6-112 WTTA Format 6-174.
Figure 6-113 WTTO Format 6-176.
Figure 6-114 WTTXO Format 6-178.

Contents xxvii

Figure 6-115 WXOR Format 6-180.
Figure 6-116 Result of an Exclusive OR of Bits 6-181.
Figure 6-117 Result of an Exclusive OR of Two Words 6-181.
Figure 6-118 XSUB Format 6-182.
Figure 6-119 Example of the XSUB Instruction 6-185.

Figure 7-1 SFPGM Instruction Format 7-5.
Figure 7-2 Special Function Program Format 7-12.
Figure 7-3 Word Specification for SF Program Errors 7-15.
Figure 7-4 Example of Valid Entries for the FTSR-IN Statement 7-17.
Figure 7-5 BCDBIN Format 7-18.
Figure 7-6 Example of BCDBIN Operation 7-18.
Figure 7-7 BINBCD Format 7-19.
Figure 7-8 Example of BINBCD Operation 7-19.
Figure 7-9 CALL Format 7-20.
Figure 7-10 CDT Format 7-22.
Figure 7-11 CDT Statement Example 7-23.
Figure 7-12 EXIT Format 7-24.
Figure 7-13 FTSR-IN Format 7-25.
Figure 7-14 Example of FTSR-IN Operation 7-28.
Figure 7-15 FTSR-OUT Format 7-29.
Figure 7-16 Example Of FTSR-OUT Operation 7-32.
Figure 7-17 GOTO/LABEL Format 7-33.
Figure 7-18 Example of GOTO/LABEL Statements 7-33.
Figure 7-19 IF Format 7-34.
Figure 7-20 Example of IF/THEN/ELSE Statements 7-35.
Figure 7-21 IMATH Format 7-36.
Figure 7-22 IMATH Statement Example 7-37.
Figure 7-23 LEAD/LAG Format 7-38.
Figure 7-24 MATH Format 7-40.
Figure 7-25 MATH Statement Example 7-43.
Figure 7-26 PACK Format 7-45.
Figure 7-27 Example of PACKing Bits Into Table 7-46.
Figure 7-28 Example of PACKing Multiple Blocks of Bits Into Table 7-46.
Figure 7-29 Example of PACKing Words Into Table 7-47.
Figure 7-30 Example of PACKing Bits and Words Into Table 7-47.
Figure 7-31 Example of PACKing Bits From a Table 7-48.
Figure 7-32 Example of PACKing Multiple Blocks of Bits From a Table 7-48.
Figure 7-33 Example of PACKing Words From a Table 7-49.
Figure 7-34 Example of PACKing Bits and Words From a Table 7-50.
Figure 7-35 PACKAA Format 7-51.
Figure 7-36 Example of PACKAA TO Table Operation 7-52.

xxviii Contents

Figure 7-37 Example of PACKAA FROM Table Operation 7-53.
Figure 7-38 PACKLOOP Format 7-54.
Figure 7-39 PACKRS Format 7-56.
Figure 7-40 Address Format — Short Form 7-58.
Figure 7-41 Short Form Address Example 7-58.
Figure 7-42 Address Format — Long Form 7-59.
Figure 7-43 Long Form Address Example 7-59.
Figure 7-44 Example of PACKRS to a Table in V-Memory 7-60.
Figure 7-45 Example of PACKRS From a Table in V-Memory 7-61.
Figure 7-46 PRINT Format 7-62.
Figure 7-47 Example of the RETURN Statement 7-65.
Figure 7-48 SCALE Format 7-66.
Figure 7-49 SCALE Example 7-67.
Figure 7-50 SDT Format 7-68.
Figure 7-51 SDT Statement Example 7-69.
Figure 7-52 SSR Format 7-70.
Figure 7-53 Example of SSR Operation 7-71.
Figure 7-54 UNSCALE Format 7-72.
Figure 7-55 UNSCALE Example 7-73.
Figure 7-56 Comment Format 7-74.

Figure 8-1 Example of Analog Alarm Application 8-3.
Figure 8-2 Analog Alarm Programming Table 8-4.
Figure 8-3 Example of Alarm Deadband For Analog Alarms 8-9.
Figure 8-4 Example of Broken Transmitter Alarm 8-15.

Figure 9-1 Example of Loop Control 9-3.
Figure 9-2 Loop Programming Table 9-8.
Figure 9-3 Example Ramp/Soak Cycle 9-14.
Figure 9-4 Ramp/Soak Programming Table 9-16.
Figure 9-5 Ramp/Soak Table Examples 9-17.
Figure 9-6 Example of Alarm Deadband For Loops 9-19.
Figure 9-7 Loop Response to the Freeze Bias Option 9-23.
Figure 9-8 Loop Response to the Adjust Bias Option 9-24.
Figure 9-9 Examples of Direct- and Reverse-Acting Control 9-30.
Figure 9-10 Example of Broken Transmitter Alarm 9-33.

Figure C-1 Loop/Analog Alarm Execution Time for the TI545/TI575* C-7.

Figure E-1 SHRB Application Example E-2.
Figure E-2 RLL for SHRB Application Example E-3.
Figure E-3 20-Bit Shift Register in Discrete Image Register E-3.
Figure E-4 SHRW Application Example E-4.
Figure E-5 RLL for SHRW Application Example E-5.

Contents xxix

Figure E-6 TMR Application Example E-6.
Figure E-7 RLL for TMR Application Example #1 E-7.
Figure E-8 RLL for TMR Application Example #2 E-8.
Figure E-9 Timing Diagram for TMR Application Example #2 E-8.
Figure E-10 RLL for TMR Application Example #3 E-9.
Figure E-11 Timing Diagram for TMR Application Example #3 E-9.
Figure E-12 RLL for BITP Application Example E-11.
Figure E-13 RLL for DRUM Application Example E-13.
Figure E-14 RLL for EDRUM Application Example E-16.
Figure E-15 MIRW Application Example E-19.
Figure E-16 RLL for MIRW Application Example E-21.
Figure E-17 RLL for MWIR Application Example E-23.
Figure E-18 MWTT Application Example E-26.
Figure E-19 RLL for MWTT Application Example E-27.
Figure E-20 RLL for MWFT Application Example E-29.
Figure E-21 RLL for WXOR Application Example E-31.
Figure E-22 RLL for CBD Application Example E-34.
Figure E-23 RLL for CDB Application Example E-36.
Figure E-24 RLL for One Shot Application Example E-37.
Figure E-25 Constructing a One Shot From RLL E-37.
Figure E-26 DCAT Application Example E-38.
Figure E-27 RLL for DCAT Application Example E-40.
Figure E-28 RLL for Status Word Application Example E-42.

Figure G-1 Example of Status Word Reporting Scan Time G-5.
Figure G-2 Example of Status Word Reporting a Module Failure G-8.
Figure G-3 Example of Status Words Reporting Time G-11.

Figure H-1 Externally Developed Subroutine Code Format H-5.
Figure H-2 Initialization Routine Required for Microtec C H-8.
Figure H-3 Example of Passing a Discrete Value H-10.
Figure H-4 Example of Passing a Pointer H-10.
Figure H-5 Example of Passing Normal Values H-10.
Figure H-6 Example Assembly Language Header File H-12.
Figure H-7 Example Subroutine Source File H-14.
Figure H-8 Example Commands for Preparing the Load Module H-14.
Figure H-9 Example Link Command File H-15.
Figure H-10 Example Subroutine Call for Static Variable Initialization H-16.
Figure H-11 Example Call to a Subroutine H-16.

xxx Contents

List of Tables

Table 1 SIMATIC TI500/TI505 Controller Firmware Release Levels xxxiii.

Table 1-1 Remote I/O Channel Address Range 1-12.

Table 2-1 Data Type Codes for Controller Memory Areas 2-7.

Table 3-1 Discrete/Word I/O Permitted 3-4.
Table 3-2 I/O Modules Supporting Immediate I/O 3-10.
Table 3-3 Logical Points Corresponding to Interrupt Inputs 9 – 16 3-13.
Table 3-4 Control Relays Permitted 3-14.

Table 5-1 RLL Instructions and Condition After Edit 5-41.

Table 6-1 RLL Functional Groups 6-8.
Table 6-2 DCAT States 6-27.

Table 7-1 SF Program Statements 7-4.
Table 7-2 Specifying Real or Integer Parameters 7-9.
Table 7-3 SF Statement Field Entry Definitions 7-16.
Table 7-4 Specifying Real or Integer Parameters 7-21.
Table 7-5 IMATH Operators 7-36.
Table 7-6 Order of Precedence for IMATH Operators 7-37.
Table 7-7 MATH Operators 7-40.
Table 7-8 MATH Intrinsic Functions 7-41.
Table 7-9 Order of Precedence for MATH Operators 7-42.
Table 7-10 Analog Alarm Variables 7-53.
Table 7-11 Loop Variables 7-55.

Table 8-1 Analog Alarm C-Flags (ACFH and ACFL) 8-5.
Table 8-2 Analog Alarm V-Flags (AVF) 8-6.

Table 9-1 Loop C-Flags (LCFH and LCFL) 9-9.
Table 9-2 Loop V-Flags (LVF) 9-11.
Table 9-3 Loop Ramp/Soak Flags (LRSF) 9-15.

Table A-1 Controller Variable Types A-2.
Table A-2 Variable Names and Types Used in SF Programs A-3.
Table A-3 Bit Format for Words AACK and LACK A-7.
Table A-4 Early Model Controllers A-9.
Table A-5 Valid RLL Box Entries for Early Model Controllers A-10.

Table B-1 RLL Memory Requirements B-2.

Contents xxxi

Table C-1 Performance and Overrun Indicators C-9.
Table C-2 Loop Execution Rates C-15.
Table C-3 Ladder Logic Execution Times for High-End Controllers C-16.
Table C-4 SF Statement Execution Times for the TI545/TI575 C-21.
Table C-5 Ladder Logic Execution Times for Early Model Controllers C-26.

Table D-1 Loop V-Flags (LVF) D-2.
Table D-2 Loop C-Flags (LCFH and LCFL) D-3.
Table D-3 Analog Alarm V-Flags (AVF) D-4.
Table D-4 Analog Alarm C-Flags (ACFH and ACFL) D-4.

Table F-1 Special Function Error Codes F-1.

Table G-1 Status Words 11 Through 138 G-6.
Table G-2 Receive Errors and Timeout Errors for STW145 through STW160 G-12.
Table G-3 Status Words 11 Through 18 G-35.

Table H-1 Linker Command Functions H-15.

Preface xxxiiiSIMATIC TI505 Programming Reference

Preface

The SIMATIC� TI505 Programming Reference Manual contains the
information that you need to design an application program for any of these
Series 505 and Series 500 programmable controllers:

• SIMATIC� TI525 /TI535

• SIMATIC� TI520C /TI530C /TI530T

• SIMATIC� TI545

• SIMATIC� TI555

• SIMATIC� TI560 /TI565 /TI560T /TI565P

• SIMATIC� TI575

This manual describes the complete instruction set for the complete line of
SIMATIC TI500/TI505 controllers. Your controller will not support every
feature or instruction described, but it will support all instructions common
to the Series 505 and Series 500 families and those particular instructions
or features identified by your controller model number.

Additionally, this manual assumes that the controller referenced is at the
current firmware release at the time of publication, as listed in Table 1. If
your controller is not at the current release, an instruction or feature
described in this manual may not be supported. If your controller is at a
newer firmware release level, the Release Notes included with your
controller or firmware upgrade kit may document new features not covered
in this manual.

Table 1 SIMATIC TI500/TI505 Controller Firmware Release Levels

Controller Release Controller Release Controller Release

TI545-1101 2.1 TI560 3.2* TI530T 1.6

TI545-1102 3.0 TI565 3.3 TI525 2.2

TI555 3.0 TI575 3.0 TI535 1.1

TI560T 6.0 TI520C 2.6

TI565P 2.0 TI530C 2.6

*TI560 Release 3.2 and earlier does not support features new to Rel. 6.0, listed on page xxxiv.

Introduction

Prefacexxxiv SIMATIC TI505 Programming Reference

NOTE: Earlier model controllers (as listed in Table A-4 in Appendix A) have
certain restrictions on the memory locations to which they can read and
write. Refer to Table A-5 for the memory locations that are valid in each
field of an instruction when designing an RLL program for these controllers.

The following new features are described in this edition of this manual:

• Password protection for application-specific memory areas.

• XSUB VMEbus error bit.

• Text Box, which allows user-supplied text to be stored in L-Memory.

• STW223 through STW225, which represent binary time of day.

• STW226, which provides time of day status.

• STW227 and STW228, which provide the 32-bit VMEbus access
address if a VMEbus access error occurs.

• STW229 and STW230, which provide the U Memory offset of the
instruction that caused a VMEbus access error.

Refer to the Release Notes included with your controller or upgrade package
to determine if your controller model supports these new features.

The RLL instructions that can be used with any of the Series 505/500
controllers are noted by the following tab in the upper left or right corner of
the page near the instruction mnemonic.

Series 500
Series 505

The RLL instructions that can be used with specific controllers are noted by
controller model, as shown in the example below.

Series 500: TI520, TI530, TI560, TI565
Series 505: TI525, TI535, TI545, TI555, TI575

To help you in your program design tasks, you will find the following
additional information in the appendices: Status Words for all controller
models and performance data for the TI545, TI555, and TI575.

New Features

How to Use This
Manual

Preface xxxvSIMATIC TI505 Programming Reference

This manual is not intended to be a primer on RLL or SF programming. If
you are not familiar with the techniques of RLL programming or of loop
dynamics, you should refer to other documentation or call your Siemens
Industrial Automation, Inc., distributor or Sales Office for technical
assistance. Training classes in RLL and Special Function programming are
available at a number of locations. Contact your distributor for more
information. Because there are references to various hardware components,
you should review the appropriate hardware and installation manuals for
your controller as you design your programs.

To program the controller with the latest features, you need an IBM�

PC/AT� compatible personal computer with TISOFT Programmable Logic
Controller Programming Software (Release 5.0 or later) to enter your RLL,
loop, analog alarm, and Special Function programs.

Programming
Software

Prefacexxxvi SIMATIC TI505 Programming Reference

Manual Contents Topics are listed below by chapter.

• Chapter 1 gives an overview of the components of the Series 505 and
Series 500 systems, local, distributed, and remote I/O, the concept of
I/O numbering and the hardware/software interface.

• Chapter 2 describes the formats used to represent data types.

• Chapter 3 describes how I/O is read and updated.

• Chapter 4 describes the various controller memory types.

• Chapter 5 presents programming concepts.

• Chapter 6 describes the RLL and box instructions.

• Chapter 7 describes the Special Function Program statements.

• Chapter 8 describes analog alarm programming.

• Chapter 9 describes loop programming.

• Appendix A lists all the variables used by Series 505/500 controllers.

• Appendix B lists the RLL instructions, the amount of memory each
requires, and instruction numbering guidelines.

• Appendix C gives information needed to calculate controller program
scan times.

• Appendix D provides the formats for the loop and analog alarm flags.

• Appendix E gives application examples for selected RLL instructions.

• Appendix F lists the Special Function Program error codes.

• Appendix G lists the status words supported by the Series 505/500
controllers.

• Appendix H describes how to design an external subroutine, and
includes an example subroutine.

Series 505/500 System Overview 1-1SIMATIC TI505 Programming Reference

Chapter 1

Series 505/500 System Overview

1.1 The TI545 and TI555 Systems 1-2.
System Components 1-2.
Local and Remote I/O 1-2.
Assigning I/O Point Numbers 1-2.
Program Execution 1-4.
Interrupt RLL Execution 1-4.
Cyclic RLL Execution 1-4.
Discrete Scan 1-4.
Analog Task Processing 1-6.
Cyclic Analog Tasks 1-6.
Non-cyclic Analog Tasks 1-7.
Setting the Scan 1-8.

1.2 The TI560/TI565 System 1-10.
TI560/TI565 System Components 1-10.
TI560/TI565 Remote I/O 1-10.
Assigning I/O Point Numbers 1-12.
TI560 Scan Operation 1-12.
TI565 CPU Functions 1-14.

1.3 The TI575 System 1-16.
TI575 System Components 1-16.
TI575 Local and Remote I/O 1-16.
TI575 Scan Operation 1-16.

1.4 The TI525/TI535 Systems 1-18.
System Components 1-18.
Local and Distributed I/O 1-18.
Series 505 Logical Base 1-19.
Assigning I/O Point Numbers 1-20.
Scan Operation 1-21.

1.5 The TI520C/TI530C/TI530T Systems 1-22.
System Components 1-22.
Local and Distributed I/O 1-22.
Series 500 Logical Base 1-23.
Assigning I/O Point Numbers 1-24.
Using Default I/O Numbers 1-25.
Using Default Numbers with 6-, 12-, 14-Slot Bases 1-26.
Scan Operation 1-27.

Series 505/500 System Overview1-2 SIMATIC TI505 Programming Reference

1.1 The TI545 and TI555 Systems

The programmable controller interacts with your equipment through
input/output (I/O) modules that relay information between the equipment
and the programmable controller. When you design your program, you need
to know the physical and logical configuration of these I/O modules, how
your equipment is connected to them, and how they are addressed and
accessed. The relationships among the system components of the TI545 and
the TI555 systems are illustrated in Figure 1-1. For details about hardware
components and installation, refer to the SIMATIC TI545 System Manual or
the SIMATIC TI555 System Manual.

I/O modules are grouped into local and remote I/O categories depending
upon their physical location. The local I/O comprises those modules located
in the same base assembly as the programmable controller. The base
containing the local I/O is numbered 0. Only Series 505 I/O modules can be
installed in the local base.

You can connect up to 15 additional base assemblies to the system,
numbered 1–15. The I/O modules in these bases make up the remote I/O as
shown in Figure 1-1. Both Series 505 and Series 500 I/O can be connected to
a TI545 or TI555 controller as remote I/O.

Individual I/O modules in the remote bases communicate with the controller
through Remote Base Controllers (RBC). The RBC in each remote base
transmits all information from the I/O modules in that base directly to the
controller. The TI545/TI555 remote I/O consists of one channel. A channel
comprises up to 15 remote bases.

You must assign the I/O point and slot numbers from the I/O Configuration
Chart on your programming device. The programmable controller does not
update discrete or word I/O points in non-configured I/O modules. Refer to
your TISOFT user manual for instructions about configuring the I/O.

For the TI545, a maximum of 2048 I/O points can be assigned. Of these, up
to 1024 can be analog or word points, which must be numbered 1–1024. The
next 1024 points are discrete only. Up to 32,768 control relays are available.

For the TI555, a maximum of 8192 I/O points can be assigned in any mix of
discrete and word I/O. Up to 32,768 control relays are available.

You do not need to assign I/O point numbers consecutively. For example, in
a remote system, Base 2 can be assigned I/O points 897–960. If a base is
configured and the modules in the base do not match the configuration, the
programmable controller logs a non-fatal error. Misconfigured modules are
not accessed by your program. Inputs are read as 0; outputs are ignored.

System
Components

Local and
Remote I/O

Assigning I/O
Point Numbers

Series 505/500 System Overview 1-3SIMATIC TI505 Programming Reference

A Special Function Module is divided into the I/O portion and the special
function portion. When a Special Function Module is inserted into a TI545
or TI555 system, the special function portion of the module is automatically
logged in, and can send data to and receive data from the controller.

NOTE: You must configure the I/O portion so that the controller updates the
I/O points. Non-special function modules are not logged in automatically.

P/S

P/S

Local I/O up
to 16 I/O slots

R
B
C

Remote I/O
up to 15
additional bases

Series 500
6, 8*, 12,

14, 16*
I/O slots

P/S

RBC

*The 8-slot and 16-slot I/O bases operate with the PPX:500–5840 Adapter.

Series 500 and
Series 505 I/O
can be used

Series 505 I/O
4, 8, and 16 slots

Series 505 I/O
4, 8, and 16 slots

TI545
or

TI555

PPX:
505–
6851

PPX:
500–
5114

Figure 1-1 Components for the TI545/TI555 System

Series 505/500 System Overview1-4 SIMATIC TI505 Programming Reference

The TI545 and TI555 Systems (continued)

The TI545 and TI555 controllers execute four scan operations during the
programmable controller scan.

• Interrupt RLL execution* • Discrete scan
• Cyclic RLL execution • Analog task processing

The interrupt I/O feature allows you to program a specific response which
executes immediately in response to a field input transition (interrupt
request) from your application. Interrupt I/O operation requires the use of
at least one Interrupt Input Module (PPX:505-4317) installed in the local
base. See Section 3.4 for more information on interrupt I/O operation.

A cyclic RLL program consists of a section of ladder logic, usually short for
quick cycle times, that runs independently of the main RLL program. Cyclic
RLL is executed periodically throughout the entire programmable controller
scan, interrupting the discrete scan and the analog scan as necessary.
Because the execution of a cyclic RLL task is not synchronized with the I/O
update, use the immediate I/O instructions to access the I/O.

The discrete scan consists of three primary tasks that are executed
sequentially (Figure 1-2) and at a rate that can be user-specified.

Normal I/O Update. During the normal I/O cycle update, the programmable
controller writes data from the image registers to the outputs, and stores
data from the inputs into the image registers. The length of the I/O update
cycle is dependent upon the number of bases and types of modules (analog,
discrete, or intelligent). All I/O points are fully updated each scan.

Main Ladder Logic Cycle. The programmable controller executes the main
RLL task.

Special Function Module Communication. Communication with special
function (SF) modules, e.g., NIM, BASIC, PEERLINK , etc., consists of the
following actions.

• Service requests from a previous scan for which processing has been
completed are transmitted to the SF modules.

• Remote bases are polled for initial SF module service requests.

• Remote base communication ports are polled for service requests.

• Service requests from SF modules and remote base communication
ports are processed.

*Interrupt RLL operation available on TI555 Release 1.1 or greater.

Program Execution

Interrupt RLL
Execution

Cyclic RLL
Execution

Discrete Scan

Series 505/500 System Overview 1-5SIMATIC TI505 Programming Reference

Each SF module that requires service increases the scan time, depending
upon the type of module and task. Each type of module is allowed a certain
number of service requests per scan. Once these are completed, this function
is terminated. Some service requests can be deferred, and these are
processed during the analog task time slice described below.

RLL
I/O

update

SF
module
access

Analog
tasks

Analog tasks are also executed
during windows occurring in the

discrete scan.

Cyclic
RLL

Cyclic RLL interrupts the discrete scan as
necessary to complete its cyclical execution.

Main

Interrupt
RLL

Interrupt RLL interrupts all processes below whenever
an interrupt module sends an interrupt request.

Figure 1-2 Discrete Scan Sequence for the TI545 and TI555 Controllers

Series 505/500 System Overview1-6 SIMATIC TI505 Programming Reference

The TI545 and TI555 Systems (continued)

The analog portion of the scan is composed of five general types of tasks
(Figure 1-3), which are cyclical or non-cyclical in their execution.

Analog tasks are guaranteed execution once per scan, following the discrete
scan, provided there is processing to be done. Analog tasks are also
processed during windows of suspended activity that occur during the
normal I/O and SF portions of the scan. RLL execution is not interrupted by
analog tasks.

You can adjust the amount of time spent per controller scan for all analog
tasks, except diagnostics, with a programming unit and using AUX
Function 19. The time allocation for a given analog task is referred to as its
time slice.

The following types of processes are executed cyclically. Each has a sample
rate which determines how often it is executed.

• Loops
• Analog alarms
• Cyclic SF programs

The programmable controller has an analog task that executes each type of
cyclic process. When enabled, each cyclic process is placed in the execution
queue that is managed by the analog task responsible for executing that
type of process.

The cyclic processes are time-ordered in their individual queues according to
when each process is rescheduled for execution, relative to the other cyclic
processes within the same queues. The process with the highest priority
(closest to overrunning) is executed first. The process is executed until it is
completed or until the time specified for that particular task’s time slice
expires. If the executing process is completed before the time slice expires,
the process with the next highest priority is executed. If the time slice
expires before the process is completed, the process (and the task) is put on
hold in its current position.

The programmable controller then advances to the next analog task. When
the programmable controller sequences through its operations and returns
to an analog task with a cyclic process on hold, the process resumes
execution from the hold point, unless a higher priority process was
scheduled since the last respective time slice. If a process in a cyclic time
slice is not finished executing when it is scheduled to execute again, an
overrun flag is set.

Restricted SF programs, which are called by loops or analog alarms, are
executed from within the loop or analog alarm tasks. Therefore, their
execution time is included within the loop or analog alarm time slice.

Analog Task
Processing

Cyclic Analog
Tasks

Series 505/500 System Overview 1-7SIMATIC TI505 Programming Reference

SF subroutines, which are called by SF programs or other SF subroutines,
are processed during the calling program’s time slice.

Cyclic RLL interrupts the analog tasks as
necessary to complete its cyclic execution.

Diagnostics*

*Enabled for execution at the completion of the discrete scan.

Loops
Analog
alarms

SF
programs

Service
requests

Cyclic
RLL

RBE
Event

detection

Figure 1-3 Analog Task Scan Sequence for the TI545 and TI555 Controllers

The following types of processes are executed non-cyclically:

• Priority/Non-priority SF programs.

• RLL-requested SF subroutines.

• Service request messages.

• Report by Exception (RBE) event detection.

• Run-time diagnostics.

Priority and Non-Priority SF Programs are non-cyclic processes that are
queued when the SFPGM RLL box instruction receives power flow. There is
an analog task that executes priority SF programs, and another analog task
that executes non-priority SF programs. These processes are executed in the
order that they are queued in the appropriate task’s execution queue. When
the programmable controller completes one of these processes, it removes
the process from the respective queue and turns on the SFPGM output.
There are no overrun flags associated with these processes.

RLL-requested SF Subroutines are queued into one of two SFSUB
queues when the SFSUB RLL box instruction receives power flow. One
queue handles SFSUB 0 instructions and the other handles all other
SFSUB instructions.

Non-cyclic Analog
Tasks

Series 505/500 System Overview1-8 SIMATIC TI505 Programming Reference

The TI545 and TI555 Systems (continued)

Service Requests received from the communication ports are placed on one
of two communications queues. Read and write commands are placed on the
priority communication queue for fastest response. Commands that may
require several scans to complete, e.g., program edits and the TISOFT FIND
function, are placed in a non-priority communications queue.

Report By Exception event detection task only executes when the
programmable controller is used with SIMATIC PCS , Release 3.0 or later.
The RBE event detection task monitors PCS-defined process events and
notifies the PCS when an event is detected.

Run-time Diagnostics are enabled for execution at the completion of the
discrete scan. The time slice for diagnostics is 1 ms and cannot be changed.

The TI545/TI555 scan is defined as the time between normal I/O updates.
You can set the scan for the controller as follows.

• Fixed — The programmable controller starts a new discrete scan at the
specified time interval. The controller executes the discrete scan once
and then cycles to the analog scan portion, executing the analog tasks
at least one time. If the analog tasks are completed within the specified
time, the controller goes into a loop mode (processing analog tasks or
idling) until time to start the next scan.

A scan overrun status bit is set (bit 14 in Status Word 1) if the total
execution time for the discrete scan portion and the first execution of
the analog scan portion exceeds the fixed scan time.

• Variable — The programmable controller executes all tasks once and
then starts a new scan. All discrete and analog tasks are guaranteed
one execution per scan. Specify variable scan for the fastest possible
execution of the discrete scan.

• Variable with upper limit — The programmable controller executes the
discrete scan once and then executes the analog tasks. The controller
remains in the analog portion of the scan as long as there are analog
tasks to be done. When the upper time limit expires, or no analog tasks
require processing, a new scan is begun.

The analog scan portion is executed at least one time. A scan overrun
status bit is set if the total execution time for the discrete scan portion
and the first execution of the analog scan portion exceeds the upper
limit.

Setting the Scan

Series 505/500 System Overview 1-9SIMATIC TI505 Programming Reference

The TI545 and TI555 Systems (continued)

Cycle time for the cyclic RLL can be a fixed value or a user-specified
variable. As a variable, the cycle time can be changed by logic in your
application program. If the cyclic RLL completes execution in less than the
specified cycle time, execution does not resume until the next cycle begins.
The programmable controller scan time is extended by the amount of time
to execute the cyclic RLL multiplied by the number of times the cyclic RLL
is executed during the programmable controller scan.

The timing relationship of the scan operations is shown in Figure 1-4. Refer
to the Appendix C for details about how to configure the time slices.

Cyclic RLL
execution*

Discrete scan

Time

Analog scan

One programmable controller scan

*Cyclic RLL program is executed to completion each time it runs.

Interrupt RLL
execution

É
É

É
É
É
É

É
É

Figure 1-4 Timing Relationship of the TI545/TI555 Controller Scan Operations

Series 505/500 System Overview1-10 SIMATIC TI505 Programming Reference

1.2 The TI560/TI565 System

The programmable controller interacts with your equipment through
input/output (I/O) modules that relay information between the equipment
and the programmable controller. When you design your program, you need
to know the physical and logical configuration of these I/O modules, how
your equipment is connected to them, and how they are addressed and
accessed. The relationships among the system components of the
TI560/TI565 controllers are illustrated in Figure 1-5. For details about
hardware components and installation, refer to the SIMATIC TI560/TI565
System Manual.

The TI560/TI565 chassis holds the main CPU (TI560), the Special Function
CPU (TI565), the Remote Channel Controllers (RCC), memory expansion
cards, and the Hot Backup Unit.

The I/O modules are housed in I/O base assemblies. An I/O base assembly
has slots for a remote base controller (RBC), a power supply, and the I/O
modules. Individual I/O modules in the remote bases communicate with the
programmable controller through the base controllers. The RBC in each
remote base assembly transmits all information from the I/O modules in
that base assembly to the RCC.

The RCC serves as the master device in servicing the I/O points. The RCC
requests and receives I/O updates from an RBC over the remote link. Each
RCC board contains two channels capable of controlling 1024 I/O points per
channel. A maximum of eight channels (four RCCs) may be used. Up to 16
base assemblies may be connected to a channel.

TI560/TI565 System
Components

TI560/TI565
Remote I/O

Series 505/500 System Overview 1-11SIMATIC TI505 Programming Reference

P/S
TI560

P/S

Series 505 I/O
4, 8, and 16 slots

560–
2126B/

R
C
CTI565

Up to 4 Remote Channel
Controllers (RCCs)

R
B
C

Remote I/O
up to 16 bases
per channel,
2 channels per RCC

Series 500
6, 8*, 12,
14, 16*
I/O slots

P/S

RBC

PPX:

2114/

*The 8-slot and 16-slot I/O bases operate with the PPX:500–5840 Adapter.

Series 500 and/or
Series 505 I/O
can be used in any
combination.

1 2 3 4 5 6 7 8
2127B

5114

Channel numbers

PPX:
505–
6850/
6851

PPX:

500–

Figure 1-5 Components for the TI560/TI565 System

Series 505/500 System Overview1-12 SIMATIC TI505 Programming Reference

The TI560/TI565 System (continued)

You must assign the I/O point and slot numbers from the I/O Configuration
Chart on your programming device. The programmable controller does not
update discrete or word I/O points in non-configured I/O modules. Refer to
your TISOFT user manual for instructions about configuring the I/O.
I/O addresses are restricted to the range of points available in each channel.
Each channel has the address range shown in Table 1-1.

A Special Function Module is divided into the I/O portion and the special
function portion. When a Special Function Module is inserted into a
TI560/TI565 system, the special function portion of the module is
automatically logged in, and can send and receive data from the controller.

NOTE: You must configure the I/O portion so that the programmable
controller updates the I/O points. Non-special function modules are not
logged in automatically.

The channels on the RCC boards are read and assigned channel numbers in
their defined ranges according to where the RCC board is located in the
chassis. The RCC board in the slot closest to the TI560 CPU is assigned
Channels 1 and 2; the next RCC, Channels 3 and 4, etc. The assignment of
I/O identifiers (Xs, Ys, WXs, WYs) to physical points on the bases is limited
only to a block of contiguous points required for the particular module, and
the points must be within the address range for the particular channel.

Table 1-1 Remote I/O Channel Address Range

Channel Address Range Channel Address Range

1 1–1024 5 4097–5120

2 1025–2048 6 5121–6144

3 2049–3072 7 6145–7168

4 3073–4096 8 7169–8192

The TI560 controller requires approximately 8.0 milliseconds (Rel. 1.x) or
11 ms (Rel. 2.0 and later) for overhead tasks. This time is distributed
throughout each scan, illustrated in Figure 1-6.

I/O Update. The RCC cards simultaneously write data from the image
registers to the outputs, and update the image registers with data from the
inputs. The length of the I/O update cycle corresponds to the RCC that
requires the longest update time. This is primarily dependent upon the
number of bases and types of modules on each channel. Each RCC has two
channels which update in parallel. All I/O points are fully updated each
scan.

Assigning I/O Point
Numbers

TI560 Scan
Operation

Series 505/500 System Overview 1-13SIMATIC TI505 Programming Reference

Ladder Logic Cycle. Upon completion of the I/O update, the main CPU
starts the execution of the RLL program. While the program is being
executed, the RCCs run background tasks: polling for unconfigured bases
and servicing operator interfaces connected at the I/O bases if that RBC has
requested service. For NIM 4.0 releases, SF module read requests may be
processed during RLL execution. The main CPU executes RLL programs in
2.2 milliseconds (Rel. 3.0 or earlier) or 1.5 ms (Rel. 5.0 or later) per k words
of program instructions. The entire program is fully executed each scan.

RLLDiagnostics
SF

module
access

Comm
port

access

I/O
update

SF
module
access

Memory updates
from SF modules

Continuously
communicating
with other unit

Start
update Update

complete

Start
update Update

complete

Main
CPU

RCC

HBU

Start
access

SF module
complete

Scan time
check &

acknowledge

Request/
response

Communication
updates

from operator
interfaces &

programmers

Figure 1-6 Scan Sequence for the TI560 Controller

Special Function Module Communication. Upon completion of the RLL
scan, the Special Function (SF) module communications begin. The Main
CPU executes task codes, which were gathered from the SF modules by the
RCC, and the resulting information is made available to the RCCs for
transfer back to the modules.

Each SF module that requires service during this period adds scan time
according to the type of module and the type of task. Each type of module is
allowed a certain number of task code requests, block transfers, or
store-and-forward operations per scan. Once these are completed, the SF
cycle is terminated by the RCC.

Series 505/500 System Overview1-14 SIMATIC TI505 Programming Reference

The TI560/TI565 System (continued)

Communication Port Service. The TI560 services communication port
requests from the two (local) ports on the main CPU and the (remote) ports
on all the RBCs. The amount of time spent executing the port
communication requests depends on the scan type — variable or fixed. For a
variable scan, the port communication cycle is suspended as soon as either
one of the following conditions is true.

• All requests have been serviced, or

• At least 6 ms have been spent executing requests.

For a fixed scan, the port communication cycle is suspended as soon as the
next scan is scheduled to start, and either of the above conditions is true.

Execution of communication requests is time-shared between the ports on a
turn-by-turn basis. A request from local port 1 receives 2 ms, if needed, and
then a request from local port 2 receives 2 ms, if needed. Then, a request
from any remote port receives 2 ms, if needed. This is repeated until
execution is suspended for either one of the reasons listed above.

Hot Backup Unit Communications. During all of the above periods, the
HBU transmits messages between the TI560 or TI565 systems (with
standby unit on line). The HBU adds approximately 9.0 ms for TI560
operation and approximately 1 to 4 ms additional for TI565 updates.

The TI565 CPU executes loops, analog alarms, and special function (SF)
programs throughout the programmable controller timeline. During the I/O
cycle, the TI565 CPU continues to run until it needs to read an I/O point.
Once the I/O cycle completes, the TI565 CPU resumes running.

The TI565 can do 32 loop calculations, update 16 analog alarms, and
execute up to 1200 additional floating point calculations as called from SF
programs in 1 second. This assumes the scan time is equal to, or greater
than, 50 milliseconds to allow the TI565 to complete tasks without having to
process interrupts from the TI560.

NOTE: The PPX:565–2820 can execute loops, analog alarms, and special
function programs approximately three times faster than the rates given
above. Actual execution times are not available at time of publication.

TI565 CPU
Functions

Series 505/500 System Overview 1-15SIMATIC TI505 Programming Reference

A scheduler prioritizes the analog alarm, loop, and cyclic SF program tasks
executed by the processor. If there are no tasks of a particular type to be
executed, the processor does not idle, but spends the minimum time
necessary and then advances to the the next task type. For example, if no
analog alarms are programmed, the processor begins executing SF
programs after processing loop calculations.

TI565 CPU Communications. The Main (TI560) CPU is idle during TI565
CPU communications and gives the TI565 CPU full access to the bus. This
time period typically is less than 1.0 millisecond, but is dependent on the
number of SF programs being called from ladder logic and other requests
queued for processing by the TI565 CPU. Figure 1-7 shows the relationships
of the processors’ operations.

RLLDiagnostics
SF

module
access

I/O
update

SF
module
access

Running until
I/O needed

Start
update Update

complete

I/O
update

complete

Main
CPU

RCC

SF CPU

Start
access

SF modules
complete

Scan time
check &

acknowledge

Continuously
communicating
with other unitHBU

Start
update Update

complete

Resumes running
memory updates
into holding buffer

Checkpoints
to HBU

SF
CPU

access

SF
CPU

access

Memory
update

SF
CPU

access

Memory
update

checkpoint

Comm
port

access

Memory updates
from SF modules

Verify error
check of I/O

Request/
response

Communication
updates

from operator
interfaces &

programmers

Figure 1-7 Scan Sequence for the TI565 CPU

Series 505/500 System Overview1-16 SIMATIC TI505 Programming Reference

1.3 The TI575 System

The TI575 Control System provides a means by which various control
products can communicate over a VMEbus backplane. The TI575 system is
a scaleable/flexible control system that can accept multiple TI575 Central
Processing Unit (CPU) cards.

The TI575 programmable controller system interacts with your equipment
through input/output (I/O) modules that relay information between the
equipment and the CPU. When you design your program, you need to know
the physical and logical configuration of these I/O modules, how your
equipment is connected to them, and how they are addressed and accessed.
The relationships among the system components of the TI575 System are
illustrated in Figure 1-8. For details about the hardware components and
installation, refer to the SIMATIC TI575 System Manual.

I/O modules are grouped into local and remote I/O categories depending
upon their physical location. The local I/O comprises those modules located
in the same base assembly as the CPU.

When you install the optional remote I/O annex card (PPX:575–2126), the
TI575 can communicate with Series 505 and Series 500 I/O. You can connect
up to 15 Series 505/500 base assemblies to each CPU. The I/O modules in
these bases make up the remote I/O as shown in Figure 1-8.

Individual I/O modules in the remote bases communicate with the TI575
through remote base controllers (RBC). The RBC in each remote base
transmits all information from the I/O modules in that base directly to the
CPU. The TI575 CPU remote I/O consists of one channel. A channel on the
TI575 CPU comprises up to 8192 I/O points.

Both Series 505 and Series 500 I/O can be connected to a TI575 CPU as
remote I/O. The TI575 controller is capable of addressing directly the
PPX:505-6851 RBC in a Series 505 base assembly, or the PPX:500-5114
RBC in a Series 500 base assembly. The I/O numbering scheme for remote
I/O is identical to that of the TI545. For a discussion of the Series 505/500
remote I/O numbering, refer to Section 1.1. For information about
communicating with VME-compatible I/O, refer to the user documentation
for the TI575 system.

The TI575 scan operation is identical to that of the TI545 and TI555
controllers. Refer to Section 1.1 for a detailed discussion of the scan
functions.

TI575 System
Components

TI575 Local and
Remote I/O

TI575 Scan
Operation

Series 505/500 System Overview 1-17SIMATIC TI505 Programming Reference

P/S

Local I/O up to
14 I/O slots

R
B
C

Remote I/O
up to 15 bases

Series 500
6, 8*, 12,
14, 16*
I/O slots

P/S

RBC

*The 8-slot and 16-slot I/O bases operate with the PPX:500–5840 Adapter.

Series 500 and/or
Series 505 I/O
can be used

Series 505 I/O
4, 8, and 16 slots

PPX:
505–
6851

Po
w

er
 s

up
pl

y

TI
57

5
w

ith
 o

pt
io

na
l

TI
57

5
C

PU

TI
57

5
C

PU

3r
d

pa
rty

 b
oa

rd

3r
d

pa
rty

 b
oa

rd

VM
E

I/O

VM
E

I/O

VM
E

I/O

3r
d

pa
rty

 b
oa

rd

re
m

ot
e

I/O
 a

nn
ex

 b
oa

rd

PPX:
505–
5114

Figure 1-8 Components for the TI575 System

Series 505/500 System Overview1-18 SIMATIC TI505 Programming Reference

1.4 The TI525/TI535 Systems

The programmable controller interacts with your equipment through
input/output (I/O) modules that relay information between the equipment
and the programmable controller. When you design your program, you need
to know the physical and logical configuration of these I/O modules, how
your equipment is connected to them, and how they are addressed and
accessed. The relationships among the system components of the
TI525/TI535 controllers are illustrated in Figure 1-9. For details about
hardware components and installation, refer to the hardware manual for
your system.

I/O modules are grouped into local or distributed I/O categories depending
upon their physical location. The local I/O comprises those modules located
in the same base assembly as the programmable controller. The local I/O
includes I/O modules in up to 2 logical (8-slot) bases numbered 0 and 1.

You can connect up to 14 additional logical bases to the system, numbered
2–15. The I/O modules in these bases make up the distributed I/O as shown
in Figure 1-9. Except for the PPX:525–1102, the TI525 and TI535
controllers support both local and distributed I/O. Both Series 500 and 505
I/O can be connected to a TI525/TI535 controller as distributed I/O.

Local
I/O

P/S
Series 505 I/O

4, 8, and 16 slots

I
O
C
C P/S

Series 505 I/O
4, 8, and 16 slots

P/S Series 505 I/O
4, 8, and 16 slots

D
B
C

*The PPX:525–1102 does not support distributed I/O.

Distributed I/O
up to 14 logical
bases

Series 500 and/or
Series 505 I/O
can be used

TI525*

TI535

TI525

TI535PPX:
505–
6830

PPX:
505–
6840

Figure 1-9 Components for the TI525 and TI535 Systems

System
Components

Local and
Distributed I/O

Series 505/500 System Overview 1-19SIMATIC TI505 Programming Reference

For a Series 505 system, a base assembly is composed of one or two logical
bases. A logical base is defined as a group of eight I/O slots, as shown in
Figure 1-10. Therefore, the 16-slot base assembly contains two 8-slot logical
bases, while the 8-slot base assembly contains one logical base. The four-slot
PPX:505–6504 base also contains one logical base, but slots 5–8 do not
physically exist.

Power
supply

TI525/
TI535

controller

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.

.

One logical base
8 slots

Power
supply

TI525/
TI535

controller

Logical base
8 slots

Logical base
8 slots

Power
supply

TI525/
TI535

controller

One logical base
4 physical slots

4 non-existent slots

PPX:505-6508 8-slot base

PPX:505-6516 16-slot base

PPX:505-6504 4-slot base

Figure 1-10 Definition of Series 505 Logical Base

Series 505
Logical Base

Series 505/500 System Overview1-20 SIMATIC TI505 Programming Reference

The TI525/TI535 Systems (continued)

You must assign the I/O point and slot numbers from the I/O Configuration
Chart on your programming device. The TI525/TI535 controller does not
update discrete or word I/O points in non-configured I/O modules. Refer to
your TISOFT user manual for instructions about configuring the I/O.

A Special Function Module is divided into the I/O portion and the special
function portion. When a Special Function Module is inserted into a
TI525/TI535 system, the special function portion of the module is
automatically logged, and can send and receive data from the TI525/TI535.

NOTE: You must configure the I/O portion so that the programmable
controller updates the I/O points. Non-special function modules are not
logged in automatically.

You can configure local I/O to a maximum of 512 I/O points. You can obtain
this with base PPX:505–6516 (16 slots) and 32-point I/O modules.

The programmable controller permits a maximum number of 1023 points
for a distributed system. You do not need to assign the point numbers
consecutively. For example, in a distributed system, Base 2 can be assigned
I/O points 897–960, but the highest number that you can assign to any point
is 1023. After you have entered an I/O configuration, the programmable
controller logs a non-fatal error when a module(s) is present but not
configured. You cannot use that module until it has been configured.

You do not need to assign I/O point numbers to empty slots or to
non-existent slots in logical bases that have fewer than eight slots.

Assigning I/O Point
Numbers

Series 505/500 System Overview 1-21SIMATIC TI505 Programming Reference

The functions executed by the TI525/TI535 controllers are described below
and illustrated in Figure 1-11.

I/O Update. During the I/O cycle update the programmable controller
writes data from the image registers to the outputs, and stores data from
the inputs into the image registers. The length of the I/O update cycle
depends upon the number of bases and types of modules (analog, discrete or
intelligent). All I/O points are fully updated each scan.

Ladder Logic Cycle. The programmable controller executes the relay
ladder logic program. The entire RLL program is executed each scan.

Special Function Module Communication. The programmable controller
executes task codes that were gathered from the Special Function (SF)
modules. The resulting information is transferred back to the SF modules.
Each SF module that requires service adds scan time; how much depends on
the type of module and the type of task. Each type of module is allowed a
certain number of task code requests, block transfers, or store-and-forward
operations per scan. Once these are completed, the SF cycle is completed.

Communication Port Service. The programmable controller executes tasks
received through the communication ports. A minimum of two milliseconds
is allotted for this function. If the scan time has been fixed, then the time
remaining after all other functions are finished is devoted to task
processing. When the allotted time has expired, task processing is continued
on the subsequent scan.

Diagnostics. The programmable controller executes self-diagnostics at the
end of each scan.

Scan time check
& acknowledge

SF module
complete

Entire program
executed
each scan

I/O update
complete

DiagnosticsRLLI/O
update

SF
module
access

Comm
port

access

Figure 1-11 Scan Sequence for the TI525/TI535 Controllers

Scan Operation

Series 505/500 System Overview1-22 SIMATIC TI505 Programming Reference

1.5 The TI520C/TI530C/TI530T Systems

The programmable controller interacts with your equipment through
input/output (I/O) modules that relay information between the equipment
and the programmable controller. When you design your program, you need
to know the physical and logical configuration of these I/O modules, how
your equipment is connected to them, and how they are addressed and
accessed. The relationships among the system components of the
TI520C/TI530C/TI530T controllers are shown in Figure 1-12. For details
about hardware and installation, refer to the hardware manual for your
system.

I/O modules are grouped into local or distributed I/O categories, based on
their physical location. The local I/O comprises those modules located in the
same base assembly as the programmable controller. The local I/O includes
I/O modules in up to two logical (eight-slot) bases numbered 0 and 1.

You can connect up to 14 additional logical bases to the system, numbered
2 to 15. The I/O modules in these bases make up the distributed I/O as
shown in Figure 1-12. The TI530C and the TI530T support both local and
distributed I/O. Both Series 505 and Series 500 I/O can be connected to a
TI530C/TI530T controller as distributed I/O.

Series 500
6, 8*, 12,
14, 16*

P/S

I/O slots

Series 500
6, 8*, 12,
14, 16*
I/O slots

P/S

TI530CI
O
C
C

500–

Series 500
6, 8*, 12,
14, 16*
I/O slots

P/S

Local
I/O

2108

DBC

TI530T

*

**

The 8- and 16-slot bases require the PPX:500–5840 Adapter Base except
when the PPX:500–2103 DBC is used.
The TI520C does not support distributed I/O.

Distributed I/O
up to 14 logical
bases

Series 500 and/or
Series 505 I/O
can be used

TI530C
TI530T

**

PPX:
500–
2103
2109

TI520C

Figure 1-12 Components for the TI520C, TI530C, or TI530T Systems

System
Components

Local and
Distributed I/O

Series 505/500 System Overview 1-23SIMATIC TI505 Programming Reference

For a Series 500 system, a base assembly is composed of one or two logical
bases. A logical base is defined as a group of eight I/O slots, as shown in
Figure 1-13. Therefore, the 16-slot base assembly has two 8-slot logical
bases. The 14-slot base assembly model also has two logical bases, but slots
7–8 on the second base do not physically exist.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.
.
.. . . .

. . . .

8 7 6 5 4 3 2 1Slot #

8 7 6 5 4 3 2 1Slot # 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1 B ASlot # 4 3 2 1578

.

.
6

B A

IOCC

B A

IOCC

One logical base
8 slots

One logical base
8 slots

2 slots do not
physically exist

Power
supply

Power
supply

One logical base
8 slots

One logical base
8 slots

Power
supply

One logical base
8 slots

PPX:500-5864
8-slot base

PPX:500-5840
adapter base

TI520C/TI530C/TI530T
controller

TI520C/TI530C/
TI530T controller

TI520C/TI530C/TI530T
controller

PPX:500-5828 16-slot base
PPX:500-5840
adapter base

PPX:500-5848 14-slot base

Figure 1-13 Definition of Series 500 Logical Base

Series 500
Logical Base

Series 505/500 System Overview1-24 SIMATIC TI505 Programming Reference

The TI520C/TI530C/TI530T Systems (continued)

If you intend to use any modules with more than eight I/O points per
physical I/O slot, you must assign the I/O point numbers yourself when you
configure the I/O numbering. You do this from the I/O Configuration Chart
on your programming device. Refer to your TISOFT user manual for
instructions on how to configure the I/O.

You can configure the local I/O to a maximum of 512* I/O points when you
assign the I/O point numbers. This is obtained by using base PPX:500–5828
(16 slots) with the PPX:500–5840 adapter base and 32-point I/O modules.

The programmable controller permits a maximum number of 1023 points
for a distributed system. You do not need to assign the point numbers
consecutively. For example, in a distributed system, Base 2 can be assigned
I/O points 897–960, but the highest number that you can assign to any point
is 1023. After you have entered an I/O configuration, the programmable
controller logs a non-fatal error when a module(s) is present but not
configured. You cannot use that module until it has been configured.

You do not need to assign I/O point numbers to empty slots or to
non-existent slots in logical bases that have fewer than eight slots.

*I/O Module power consumption requirements may reduce the actual number of I/O points
that can be used.

Assigning I/O Point
Numbers

Series 505/500 System Overview 1-25SIMATIC TI505 Programming Reference

If you do not configure the I/O, the TI520C, TI530C, and TI530T controllers
automatically log in all eight-point modules. Modules having greater than
eight points are not logged in; however, their presence in the I/O base is
indicated when you execute a Read Base function with your programming
unit.

When the programmable controller logs in the modules and configures the
I/O automatically, the module points are assigned numbers according to the
slot and the base in which the module is located. The point number
assignments can be determined by referring to Figure 1-14. You can
calculate the module starting address by using the following equation:

��������
�������	����� ����������� ����� ����� ������ ������ ���� ����� ���

121 113 105 97 89 81 73 65

128 120 112 104 96 88 80 72

57 49 41 33

64 56 48 40

25 17 9 1

32 24 16 8

185 177 169

192 184 176

161 153 145

168 160 152

137 129

144 136

249 241 233

256 248 240

225 217 209

232 224 216

201 193

208 200

377 369 361

384 376 368

353 345 337

360 352 344

329 321

336 328

313 305 297

320 312 304

289 281 273

296 288 280

265 257

272 264

Base 15

441 433 425

448 440 432

417 409 401

424 416 408

393 385

400 392

505 497 489

512 504 496

481 473 465

488 480 472

457 449

464 456

569 561 553

576 568 560

545 537 529

552 544 536

521 513

528 520

633 625 617

640 632 624

609 601 593

616 608 600

585 577

592 584

697 689 681

704 696 688

673 665 657

680 672 664

649 641

656 648

761 753 745

768 760 752

737 729 721

744 736 728

713 705

720 712

825 817 809

832 824 816

801 793 785

808 800 792

777 769

784 776

889 881 873

896 888 880

865 857 849

872 864 856

841 833

848 840

953 945 937

960 952 944

929 921 913

936 928 920

905 897

912 904

1001 993 985 977

1000 992 984

969 961

976 9681008

1009

1016

1017

1023*

Base 14

Base 1 Base 0

Base 3 Base 2

Base 5 Base 4

Base 7 Base 6

Base 9 Base 8

Base 11 Base 10

Base 13 Base 12

8 6 4 27 5 3 1 8 6 4 27 5 3 1

* The total number of I/O points cannot exceed 1023. Therefore, in base 15, slot 8 consists of seven points.

Slot
numbers

I/O point
number

Figure 1-14 Series 500 I/O Default Numbering

Using Default I/O
Numbers

Series 505/500 System Overview1-26 SIMATIC TI505 Programming Reference

The TI520C/TI530C/TI530T Systems (continued)

The 6-, 12-, and 14-slot I/O base assemblies hold at least 1 logical base with
fewer than 8 slots. Because the default numbering is configured on
multiples of the 8-slot logical base, I/O point numbers are assigned to points
on non-existent slots. For example, in the PPX:500–5848 base assembly
with 14 slots, I/O points 113–128 are assigned to the 2 non-existent slots on
the second logical base of this assembly. See Figure 1-15.

If you use the 6- 12- or 14-slot base for the programmable controller and
install an IOCC as well, the power supply must be installed in Slot B and
I/O slot 1 is not available. This slot is covered by the power supply in this
situation and cannot accommodate an I/O module. The I/O point numbers
(1–8) assigned this slot by the default numbering cannot be used.

1

8

9

16

17

24

25

32

33

40

41

48

49

56

57

64

65

72

73

80

81

88

89

96

97

104

105

112

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 B A

113121

120128

One logical base

PPX:500-5848 14-slot baseNon-existent I/O
point numbers

assigned by default Power
supply TI520C/TI530C

TI530T controller

One logical base

I/O point #

I/O point #

Slot #

Figure 1-15 Default I/O Point Numbers for 14-Slot Base

Using Default
Numbers with 6-,
12-, 14-Slot Bases

Series 505/500 System Overview 1-27SIMATIC TI505 Programming Reference

The functions executed by the TI520C/TI530C/TI530T controllers are
described below and illustrated in Figure 1-16.

I/O Update. During the I/O cycle update the programmable controller
writes data from the image registers to the outputs, and stores data from
the inputs into the image registers. The length of the I/O update cycle
depends upon the number of bases and types of modules (analog, discrete or
intelligent). All I/O points are fully updated each scan.

Ladder Logic Cycle. The programmable controller executes the relay
ladder logic program. The entire RLL program is executed each scan.

Special Function Module Communication. The programmable controller
executes task codes that were gathered from the Special Function (SF)
modules. The resulting information is transferred back to the SF modules.
Each SF Module that requires service adds scan time; how much depends on
the type of module and the type of task. Each type of module is allowed a
certain number of task code requests, block transfers, or store-and-forward
operations per scan. Once these are completed, the SF cycle is completed.

Communication Port Service. The programmable controller executes tasks
received through the communication ports. A minimum of two milliseconds
is allotted for this function. If the scan time has been fixed, then the time
remaining after all other functions are finished is devoted to task
processing. When the allotted time has expired, task processing is continued
on the subsequent scan.

Diagnostics. The programmable controller executes self-diagnostics at the
end of each scan.

RLLI/O
update

SF
module
access

Comm
port

access

Scan time check
& acknowledge

SF module
complete

Entire program
executed
each scan

I/O update
complete

Diag-
nostics

Figure 1-16 Scan Sequence for the TI520C/TI530C/TI530T Controllers

Scan Operation

Data Representation 2-1SIMATIC TI505 Programming Reference

Chapter 2

Data Representation

2.1 Definitions 2-2.

2.2 Integers 2-3.

2.3 Real Numbers and Binary-Coded Decimal 2-5.
Real Numbers 2-5.
Binary Coded Decimal 2-5.

2.4 Format for an Address Stored in a Memory Location 2-6.

Data Representation2-2 SIMATIC TI505 Programming Reference

2.1 Definitions

The terms listed below are used throughout this manual and have the
following meanings.

Byte. A byte consists of 8 contiguous bits.

1 8
Most

significant bit
Least
significant bit

Word. A word consists of 2 contiguous bytes, 16 bits.

1 16

Byte 0 Byte 1

Most
significant bit

Least
significant bit

For example, the contents of V-Memory word V100 occupy 16 contiguous
bits; the word output WY551 occupies 16 contiguous bits.

Long Word. A long word consists of 2 contiguous words, 32 bits, that
represent a single value.

1

Byte 0 Byte 1

32

Byte 2 Byte 3

Word 0 Word 1

Most significant word Least significant word

For example, the contents of V-Memory long word V693 occupy two
contiguous words (32 bits), V693 and V694. The next available address is
V695, which can represent a word (16 bits) or another long word (32 bits).

Image Register. The image register is a reserved memory area used to store
the value of all discrete (on/off) and word I/O data. Discrete I/O data is
contained in the discrete image register. Word I/O data is stored in the word
image register. See Section 3.1 for a more complete discussion of the
function of the image register.

I/O Point. An I/O point consists of an I/O type and a reference number that
represent a location in the image register. An I/O point that represents a
discrete bit in the discrete image register is composed of an X or Y I/O type.
An I/O point that represents a word in the word image register is composed
of a WX or WY I/O type.

Data Representation 2-3SIMATIC TI505 Programming Reference

2.2 Integers

Signed integers are stored as 16-bit words in the two’s complement format
as shown in Figure 2-1. The 16-bit format allows you to store values ranging
from –32,768 to +32,767 (decimal integer values). When bit 1 (the sign bit)
is 0, the number is positive; when bit 1 is 1, the number is negative.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 = +2

= +1

= +0

= –1

= –2

= –32767

= –32768

= +32767

Most
significant
bit

Sign
bit

Least
significant
bit

Figure 2-1 Format of Signed Integers

Data Representation2-4 SIMATIC TI505 Programming Reference

Integers (continued)

You can display data on your programming unit as an unsigned integer. The
16-bit format allows you to display integer values ranging from 0 to 65535
as shown in Figure 2-2.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= 65535
= 65534

= 2

= 1

= 0

Most
significant
bit

Least
significant
bit

Figure 2-2 Format of Unsigned Integers

Thirty-two bit signed long word integers are stored as 32-bit long words in
the two’s complement format:

0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Sign bit

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Word 0

Word 1 142,091,084

Decimal
equivalent:

Data Representation 2-5SIMATIC TI505 Programming Reference

2.3 Real Numbers and Binary-Coded Decimal

Real numbers are stored in the single-precision 32-bit (two words) binary
format (Figure 2-3). Refer to ANSI/IEEE Standard 754–1985 for details
about the format.

� � � � � � � 	
 �� �� �� �� �� �� ��

Word 1
� � � � � � � 	
 �� �� �� �� �� �� ��

Word 2

S

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018 � 2.71050535 * 10�20to
Supported Range:

Word
bit
content FractionExponent

S = Sign

Precision: 23.5 binary bits or 7.2 decimal digits

Figure 2-3 Format of Real Numbers

Individual BCD digits from a BCD field device are stored in a word in
groups of four bits. For example, the number 0582 is stored as shown below.

50 8 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0
Most
significant
bit

Least
significant
bit

Each digit of the BCD value must be less than or equal to 9. The binary
values 1010, 1011, 1100, 1101, 1110, and 1111 are invalid.

Normally, you would convert a BCD value to the binary format, as described
in Section 6.9, using the resulting value elsewhere in your program.

Real Numbers

Binary Coded
Decimal

Data Representation2-6 SIMATIC TI505 Programming Reference

2.4 Format for an Address Stored in a Memory Location

The TI545 (≥Rel. 2.0), TI555, and TI575 controllers support the Load
Address (LDA) instruction. This instruction allows you to store a memory
address in a memory location. A description of LDA and examples of its
usage are given in Section 6.27.

When you use LDA to store an address in a memory location, one long word
is required, as shown below. The memory data type is contained in the first
byte. The word offset relative to the base address for the data type is
contained in bytes 2–4. Data type codes are listed in Table 2-1.

Memory type

8 Bits 8 Bits 8 Bits 8 Bits

Word offset

The format for logical addresses in the subroutine work areas differs from
the other data types, as shown below.

Memory type

8 Bits 8 Bits 8 Bits 8 Bits

Parameter
number – 1

Subroutine
number – 1

For example, WY77 is stored in V100 and V101 as shown in Figure 2-4. The
code for the WY data type is 0A. The decimal offset for the 77th word is 76,
which is 00004C in hex.

0A
00

4C00

WY
Memory type (Hex)

00 00 4C
V100

V101

Word offset gives the position in Hex:

WY1 = 0000 (Hex) = 0 (Dec) (1st position)
WY2 = 0001 (Hex) = 1 (Dec) (2nd position)

WY77 = 004C (Hex) = 76 (Dec) (77th position)

Address Offset Offset Position
(Hex) (Dec)

Figure 2-4 Example of Storing an Address

NOTE: An indirect address always references a word boundary.

Data Representation 2-7SIMATIC TI505 Programming Reference

! WARNING
The address that is copied to the destination is a logical, not a
physical, address. The misuse of this address could cause an
unsafe condition that could result in death or serious injury,
and/or damage to equipment.
Do not use this address as a pointer within an external
subroutine.

Table 2-1 Data Type Codes for Controller Memory Areas

Memory Area
Data Type

(Hex) Memory Area
Data Type

(Hex)

Subroutine work area 00 Application G Global Variables E8

Variable 01 Application H Global Variables E7

Constant 02 Application I Global Variables E6

Word Input 09 Application J Global Variables E5

Word Output 0A Application K Global Variables E4

Timer/Counter Preset 0E Application L Global Variables E3

Timer/Counter Current 0F Application M Global Variables E2

Drum Step Preset 10 Application N Global Variables E1

Drum Step Current 11 Application O Global Variables E0

Drum Count Preset 12 Application P Global Variables DF

Status Word 1A Application Q Global Variables DE

Drum Count Current 1B Application R Global Variables DD

VME A24 Space D3 Application S Global Variables DC

VME A16 Space D4 Application T Global Variables DB

My Global Variables EF Application U Global Variables DA

Application A Global Variables EE Application V Global Variables D9

Application B Global Variables ED Application W Global Variables D8

Application C Global Variables EC Application X Global Variables D7

Application D Global Variables EB Application Y Global Variables D6

Application E Global Variables EA Application Z Global Variables D5

Application F Global Variables E9

NOTE: The data type codes are provided to give assistance when you decode
information displayed in TISOFT. You do not have to enter a data type
when you program an LDA. For example, to load V-Memory address V15,
enter V15 in field A of the LDA instruction, not 0100 000E.

I/O Concepts 3-1SIMATIC TI505 Programming Reference

Chapter 3

I/O Concepts

3.1 Reading and Updating the I/O 3-2.
Discrete Image Register 3-2.
Word Image Register 3-5.

3.2 Normal I/O Updates 3-6.
Discrete Control 3-6.
Analog Control 3-6.

3.3 High Speed I/O Updates 3-8.
Immediate I/O 3-8.
Modules that Support Immediate I/O 3-10.
Configuring Immediate I/O 3-11.

3.4 Interrupt I/O Operation 3-12.
Overview 3-12.
Configuring the Interrupt Input Module 3-12.

3.5 Control Relays 3-14.
Using Retentive and Non-retentive Control Relays 3-16.

I/O Concepts3-2 SIMATIC TI505 Programming Reference

3.1 Reading and Updating the I/O

In normal operation the controller updates outputs and reads inputs (the
I/O update shown in Figure 3-2) and then solves the user application
program. The Series 505 Series 500 controllers have reserved memory areas
for storing the value of all discrete and word I/O points. Discrete I/O values
are contained in the discrete image register, which provides storage for all
discrete (on/off) I/O points. Word values are stored in the word image
register, which provides storage for word and analog data.

Following the I/O update, the image registers hold the latest value of all
discrete and word inputs. As the user program is executed, new values for
discrete/word outputs are stored in the image registers. At the completion of
the user program, the controller begins a new cycle. The I/O is updated: the
results of the last program execution are written from the image registers to
the discrete/word outputs and new values are read for use in the user
program. Then the user program is executed.

An area of memory within the controller called the discrete image register
(Figure 3-1) is reserved for maintaining the status of all discrete inputs and
outputs.

1
2
3
4

5
6
7
8

10

11

9

1
2
3
4

5
6
7
8

10

11

9

Discrete image register

X or Y

Force attribute bit

X or Y

I003269

Figure 3-1 Discrete Image Register

Discrete Image
Register

I/O Concepts 3-3SIMATIC TI505 Programming Reference

As a troubleshooting tool, you can use a programming device to force an I/O
point on or off. A record of the forced state of a discrete I/O point is kept by
the force attribute bit, also shown in Figure 3-1. There is a one-bit location
for each of the discrete I/O points. If a discrete I/O point is forced to a
particular state, that point remains in that state and does not change until
it is forced to the opposite state or is unforced. A power cycle does not alter
the value of a forced discrete I/O point as long as the controller battery is
good.

Image register

ControllerPower
Supply

Input
module

Output
module

Limit
switch

1

1

X3 Y9

Pilot
light

Controller scan

Normal I/O update
Controller writes
outputs, reads inputs

RLL execution

I003270

Figure 3-2 Image Register Update

I/O Concepts3-4 SIMATIC TI505 Programming Reference

Reading and Updating the I/O (continued)

The size of the discrete image register depends upon your controller model
(see Table 3-1). Although the discrete and word I/O modules have separate
image registers, they are used in the same physical I/O slots. Therefore, the
total number of both discrete and word I/O cannot exceed the number listed
for your controller model.

! CAUTION
Xs and Ys use the same discrete image register.

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’s actions.

Do not assign the same reference number to both an input (X) and an
output (Y).

NOTE: For users of TISOFT Release 4.01 or earlier: if you assign a synonym
to a discrete point, the same synonym references the word point with the
same address. For example, the synonym “High Pressure Switch” that is
assigned to X11 also references Y11, WX11, and WY11. Do not duplicate
discrete and word point numbers.

Table 3-1 Discrete/Word I/O Permitted

TI520C/TI530C/TI530T Discrete / Word I/O TI525/TI535 Discrete / Word I/O

PPX:520C–1102* 1023 PPX:525–1102* 1023

PPX:530C–1104 1023 PPX:525–1104 1023

PPX:530C–1108 1023 PPX:525–1208 1023

PPX:530C–1112 1023 PPX:525–1212 1023

PPX:530T–1112 1023 PPX:535–1204 1023

PPX:535–1212 1023

*The TI520C and the TI525 (-1102) support 512 physical I/O points.

TI545/TI555 Discrete / Word I/O TI575 Discrete / Word I/O

PPX:545–1101
PPX:545–1102

2048/1024* PPX:–575–2102 8192

PPX:555–1101,
PPX:555–1102

8192

*Rel. 1.X of the TI545 supports 1024 discrete/word I/O points. Rel. 2.0 (and greater) of the TI545 supports 2048 points.
Of these, 1024 can be any combination of discrete/word points. The second 1024 points are discrete only.

TI560/TI565 (All Models) Discrete / Word I/O TI560/TI565 (All Models) Discrete / Word I/O

Channel 1 1–1024 Channel 5 4097–5120

Channel 2 1025–2048 Channel 6 5121–6144

Channel 3 2049–3072 Channel 7 6145–7168

Channel 4 3073–4096 Channel 8 7169–8192

I/O Concepts 3-5SIMATIC TI505 Programming Reference

The word image register (Figure 3-3) is an area of memory within the
controller that is reserved for holding the contents of all 16-bit word inputs
and outputs. The size of the word image register depends upon your
controller model (see Table 3-1). The total number of discrete and word I/O
cannot exceed the number listed for your controller model.

WX or WYBit WX or WY

1
2
3
4
5
6
7
8

10
11

9

1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16
1
2
3
4
5
6
7
8

10
11

9

Word image register Force attribute bit

I003271

Figure 3-3 Word Image Register

As a troubleshooting tool, word I/O can be forced. The record of the forced
state of word I/O is kept by a force attribute bit, shown in Figure 3-3. There
is a one-bit location for each of the word I/O points. If an I/O word is forced,
then the value contained within that word does not change until the word
either is forced to a different value or is unforced. A power cycle does not
alter the value of a forced I/O word as long as the controller battery is good.

As with the discrete I/O, the word image register is updated prior to every
controller scan when the contents of the word I/O are read and written.

! CAUTION
WXs and WYs use the same word image register.

If you assign an input module to an WX image register point and an output
module to the same WY image register point, your program may not be able to
affect the output module’s actions.

Do not assign the same reference number to both an input (WX) and an
output (WY).

Word Image
Register

I/O Concepts3-6 SIMATIC TI505 Programming Reference

3.2 Normal I/O Updates

To relate the hardwired connections on the equipment that you are
controlling to the program inputs and outputs, you need to focus on the
function of the image register. For normal I/O updates, the interface
between the software RLL program and the physical hardware occurs
within the image register. Refer to Figure 3-4 for an example of the discrete
operation in which a limit switch controls the state of a pilot light.

Analog control is similar in operation to discrete control except that data is
transmitted as 16-bit words. An analog input signal is converted by the
analog input module into a 16-bit word. This word of data is written to the
word image register.

The controller solves the RLL logic, executing all the necessary tasks
relating to the data. If controlling an analog output is the function of the
program, then a word of data is written to the word image register.

The controller writes the word from the image register to the analog output
module during the normal I/O cycle portion of the scan. The module
converts the 16-bit word into an analog signal, and sends the analog signal
to the appropriate field device.

Discrete Control

Analog Control

I/O Concepts 3-7SIMATIC TI505 Programming Reference

LS 24 PL 99

Point Slot

Slot 1

Slot 2

1 2 3 4 5 6 7 8
number Number

Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

X65 X66 X67 X68 X69 X70 X71 X72

Assigned I/O identifiers

()
X69 Y16

Slot 3
.
..

. . .

Input

Point 5 in

Input module Output module

Output

Point 8 in
Slot 1 = Y16 = high

Slot 1 = X69 = High

PL 99

Controller

X69

1

Y16

0

X69

1

Y16

1

The hardware has been installed in this way:

Limit Switch #24 is connected to Point 5 of the input
module located in Slot 2.

Pilot Light #99 is connected to Point 8 of the output
module located in Slot 1.

These I/O assignments have been made using the
programming unit:

X69 has been assigned to Point 5 in Slot 2.
Y16 has been assigned to Point 8 in Slot 1.

The input module detects when Limit Switch #24
closes.

Slot 2 Slot 1

LS 24

Point 8Point 5

()
X69 Y16

I003272

Discrete
image registers

Discrete
image registers

The controller writes a 1 to Y16 in the discrete
image register.

During the next I/O update, the controller writes
the 1 from Y16 in the image register to the output
module. The output module then turns on power to
Pilot Light #99.

Note that if Limit Switch #24 remains on, the controller
still writes a 1 to X69 in the discrete image register
during this I/O update (not shown in the diagram).

During the next I/O update, the controller reads
the state of the input point from the module, and
writes a 1 to X69 in the discrete image register.
Note that Y16 is off, and so the controller writes
a 0 from Y16 to the output module during this
I/O update (not shown in the diagram).

The controller solves the RLL logic. Since X69 is
on, Y16 is turned on.

Figure 3-4 Relation of Hardwired Field Devices and the RLL Program

I/O Concepts3-8 SIMATIC TI505 Programming Reference

3.3 High Speed I/O Updates

The immediate I/O feature allows your RLL application program to access
an I/O point in the I/O module multiple times per controller scan. This
feature enables you to sample fast-changing inputs more often, providing a
faster response to the application. (Available in the TI545, TI555, and TI575
controllers only.)

Figure 3-5 illustrates the operation for immediate contacts and immediate
coils.

• Use an immediate contact when you want to read an input point
directly from the input module as part of the power flow computation.
The input discrete image register is not updated as the result of an
immediate contact.

• Use an immediate coil when you want to simultaneously write the
result of a power flow computation to the output discrete image register
as well as to the output module.

ControllerPower
Supply

Input
module

Output
module

1

X3 Y9

Image Register

Limit Switch
Pilot Light

I I

Figure 3-5 Immediate I/O Update

Immediate I/O

I/O Concepts 3-9SIMATIC TI505 Programming Reference

Figure 3-6 illustrates the operation of the IORW (immediate I/O read/write)
instruction. For further discussion on immediate I/O read/write, see section
6.25.

• Use an IORW instruction specifying a discrete input image register
address (e.g., X1) or a word input image register address (e.g., WX50) to
read a block of I/O point values from a module into the referenced
image register. The entire block must be contained in a single module.

• Use an IORW instruction specifying a discrete output image register
address (e.g., Y17) or a word output image register address (e.g., WY22)
to write a block of I/O point values from the referenced image register
to a module. The entire block must be contained in a single module.

Power
Supply

Controller Input
Module

Output
Module

IORW
A: X1
N: 8

C1 C2

IORW
A: WY22
N: 2

C1 C2

Discrete IR

X1 0
X2 1
X3 1
X4 0
X5 0
X6 1
X7 0
X8 1

Word IR

WY22 2
WY23 5

⇐

⇒

⇐
⇐
⇐
⇐
⇐
⇐
⇐

⇒ ⇒⇒ ⇒⇒

0
1
1
0
0
1
0
1

2
5

Figure 3-6 IORW Instruction

I/O Concepts3-10 SIMATIC TI505 Programming Reference

High Speed I/O Updates (continued)

Effective with Release 3.0, of the TI545-1102 and TI555, all non-SF
Series 505 I/O modules support the immediate I/O feature. Table 3-2 lists
the specific I/O modules that support the immediate I/O feature on the
TI545-1101 and previous releases of the TI555. The VME-compatible I/O
modules (PPX:575–xxxx) can only be used with the TI575 controller for
immediate I/O.

Table 3-2 I/O Modules Supporting Immediate I/O

Model Description Model Description

PPX:505–4008 8 inputs, 20 – 56 VAC PPX:505–4708 8 outputs, 4.5 – 34 VDC, 2 A

PPX:505–4016 16 inputs, 20 – 56 VAC PPX:505–4716 16 outputs, 4.5 – 34 VDC, 2 A

PPX:505–4032 32 inputs, 20 – 56 VAC PPX:505–4732 32 outputs, 4.5 – 34 VDC, 2 A

PPX:505–4108 8 inputs, 4 – 15 VDC PPX:505–4808 8 outputs, 85 – 265 VAC, 2 A

PPX:505–4116 16 inputs, 4 – 15 VDC PPX:505–4816 16 outputs, 85 – 265 VAC, 2 A

PPX:505–4132 32 inputs, 4 – 15 VDC PPX:505–4832 32 outputs, 85 – 265 VAC, 2 A

PPX:505–4208 8 inputs, 79 –132 VAC PPX:505–4908 8 outputs, 20 – 265 VAC

PPX:505–4216 16 inputs, 79 –132 VAC PPX:505–4916 16 outputs, 20 – 265 VAC or
4.5 – 30 VDC

PPX:505–4232 32 inputs, 79 –132 VAC PPX:505–4932 32 outputs, 20 – 265 VAC or
4.5 – 30 VDC

PPX:505–4308 8 inputs, 14 – 30 VDC PPX:505–5316 16 inputs, 48 VDC

PPX:505–4316 16 inputs, 14 – 30 VDC PPX:505–5416 16 inputs, 120 VDC

PPX:505–4317 16 inputs, (8 interrupt), 24 VDC PPX:505–5417 16 outputs, 120 VDC, relay output

PPX:505–4332 32 inputs, 14 – 30 VDC PPX:505–5516 16 outputs, 24 VDC, relay output

PPX:505–4408 8 inputs, 164 – 265 VAC PPX:505–5517 16 outputs, 24 VDC, high-current
relay output

PPX:505–4416 16 inputs, 164 – 265 VAC PPX:505–5916 16 outputs, 48 VDC

PPX:505–4432 32 inputs, 164 – 265 VAC, doublewide PPX:505–6010 32 inputs, simulator

PPX:505–4508 8 outputs, 4.5 – 34 VDC, 0.5 A PPX:505–6011 32 outputs, simulator

PPX:505–4516 16 outputs, 4.5 – 34 VDC, 0.5 A PPX:505–7012 8 inputs/4 outputs, analog*

PPX:505–4532 32 outputs, 4.5 – 34 VDC, 0.5 A PPX:505–7016 8 inputs/4 outputs, analog, Bipolar

PPX:505–4608 8 outputs, 20 – 132 VAC, 0.5 A PPX:505–7028 8 inputs, isolated, Thermocouple

PPX:505–4616 16 outputs, 20 – 132 VAC, 0.5 A PPX:505–7038 8 inputs, RTD

PPX:505–4632 32 outputs, 20 – 132 VAC, 0.5 A *Use only the inputs for immediate I/O.

PPX:575–4232 32 inputs, 79 – 132 VAC PPX:575–4366 16 inputs, 14 – 36 VDC/
16 outputs, 4.5 – 36 VDC, 0.5 A

PPX:575–4366 16 outputs, 79 – 132 VAC, 1 A

Modules that
Support Immediate
I/O

I/O Concepts 3-11SIMATIC TI505 Programming Reference

When you configure I/O for the controller, do not assign the same number to
both a discrete point and a word point if you intend to access these points as
immediate I/O. For example, if you design your program to access X1
immediately, do not configure the word point WX1. See the example I/O
Configuration Chart in Figure 3-7.

NOTE: Immediate I/O is supported only in modules that are installed in the
local base (Base 0).

Slot 1

I/O Configuration Chart for Channel ...1 Base00
I/O Points

Slot 1

Slot 2

Slot 3

WX0009 WX0010 WX0011

1 2 3

X0001 X0002 X0003

1 2 3

Slot 2

Slot 3

1 2 3

In this configuration, the same number has been assigned
to discrete and word points.

During an immediate I/O access, only the X inputs (X1,
X2, and X3) are updated.

In this configuration, the discrete and word points are
numbered uniquely.

Immediate I/O accesses are allowed for both discrete and
word points.

X0001 X0002 X0003

I/O Configuration Chart for Channel ...1 Base00
I/O Points

WX0001 WX0002 WX0003

1 2 3

Figure 3-7 Immediate I/O Configuration Chart

Configuring
Immediate I/O

I/O Concepts3-12 SIMATIC TI505 Programming Reference

3.4 Interrupt I/O Operation

The interrupt I/O feature allows your application program to be executed
immediately in response to a field input transition generated by your
application. To use the interrupt I/O functionality in the TI545 (Release 2.1
or later) or the TI555 (Release 1.1 or later), you must have at least one
Isolated Interrupt Input Module (PPX:505–4317) and TISOFT Release 4.2
or later in order to develop the interrupt RLL application program.

This module has 16 isolated discrete input points, 8 of which can be
configured to generate an interrupt on the occurrence of an off-to-on
transition, an on-to-off transition, or a transition in either direction.

The Interrupt Input Module has dipswitches that are used to select the
signal behavior at a pair of input points that will cause an interrupt to be
generated by the module. You must correctly select the interrupt type for
the points being used in the interrupt module by using these dipswitches.
(The points are not individually configurable.) See the section on
“Configuring the Module Operating Mode” in the Isolated Interrupt Discrete
Input Module User Manual for a description on how to set the configuration
switches.

To be used as an interrupt module, this module must be installed in the
local base of the system (i.e., the base in which the controller is located or
Base 0), and at least one pair of the configurable input points must be
specified to be interrupting. Multiple interrupt modules can be used in the
local base of the system.

When the module powers up with interrupting input points configured, it is
logged in by the controller as a 32-point discrete module (24X – 8Y). The
points are a mixture of physical field input points and logical (internal)
points used for status purposes, as described below.

• Points 1–8: Non-interrupting field inputs (these points cannot be used
as interrupting inputs).

• Points 9–16: Configurable field inputs (can be interrupting or
non-interrupting, based upon the settings of the interrupt type
switches on the module).

• Points 17–24: Logical (internal) inputs that indicate which of the
interrupting field inputs has generated an interrupt to the controller. A
value of ON for a given logical input indicates that the module has
generated an interrupt due to the detection of a transition matching
the configuration of the corresponding field input. Each of these points
corresponds to one of the interrupting field inputs, as shown in
Table 3-3.

Overview

Configuring the
Interrupt Input
Module

I/O Concepts 3-13SIMATIC TI505 Programming Reference

• Points 25–32: Logical (internal) outputs that act as individual interrupt
enables for each of the interrupting field inputs. Turning on a given
output point enables interrupt operation on the corresponding field
input, as shown in Table 3-3.

Table 3-3 Logical Points Corresponding to Interrupt Inputs 9 – 16

Physical Input
Points (X)

Logical Interrupt Status
Inputs (X)

Logical Interrupt Enable
Outputs (Y)

9 17 25

10 18 26

11 19 27

12 20 28

13 21 29

14 22 30

15 23 31

16 24 32

The interrupt status points (17–24) are used by the interrupt RLL program
to distinguish between interrupt events from each of the configured
interrupt input points. See Section 5.5 for more information. The interrupt
enable output points (25–32) give you the option of selectively enabling or
disabling interrupts under program control. The Interrupt Input Module
powers up with all interrupt inputs disabled, so the interrupt enable
outputs must be turned on to allow interrupts to be generated by the
module.

In order for the controller to accept interrupt requests from an interrupt
module, you must correctly configure the module into the I/O map of the
controller, using, for example, the I/O Configuration function of TISOFT.
The controller ignores interrupt requests from an incorrectly configured
module.

NOTE: For applications requiring quick response to interrupt events, it is
recommended that the 10-ms filtering option provided by the module (set by
dipswitches on the module) be disabled for the interrupting points used in
that type of application. See the Isolated Interrupt Discrete Input Module
User Manual for details about the set-up and usage of this module.

I/O Concepts3-14 SIMATIC TI505 Programming Reference

3.5 Control Relays

Control relays are single-bit internal memory locations (Figure 3-8) and do
not represent actual hardwired devices. The number of available control
relays depends upon your controller model. See Table 3-4.

1
2
3
4

5
6
7
8

10

11

9

1
2
3
4

5
6
7
8

10

11

9

Control
relay

c

Force attribute bit
c

Figure 3-8 Control Relay
As a troubleshooting tool, control relays can be forced. The force attribute
bit, also shown in Figure 3-8, provides a single-bit memory location for
storing the forced status of control relays. If a control relay has been forced,
the control relay retains that forced status during a power cycle as long as
the battery is good.

! CAUTION
Control relays 8193–56320 of the TI560T/TI565P do not retain force status after a
power cycle.

Use the controller’s force capability to force the state of control relays in the
8193–56320 range for temporary debug purposes only.

Do not leave any of these control relays forced in an operational process.

Control relays are retentive or non-retentive. The state of retentive relays
does not change during a power loss when the back-up battery is good.
Non-retentive relays are turned off if power to the controller is lost.

In the TI560T/TI565P models, the number of global control relays depends
upon the number of RCCs that are installed. Local control relays 8193 to
56320 are always available, regardless of the number of RCCs installed in
the system.

Table 3-4 Control Relays Permitted

Controller Control Relays Supported

TI520C/TI530C/TI530T Non-retentive Retentive

PPX:520C–1102 C1–C255 C256–C511

PPX:530C–1104 C1–C255 C256–C511

PPX:530C–1108 C1–C255 C256–C511

I/O Concepts 3-15SIMATIC TI505 Programming Reference

Table 3-4 Control Relays Permitted (continued)

Controller Control Relays Supported

TI520C/TI530C/TI530T Non-retentive Retentive

PPX:530C–1112 C1–C511 C512–C1023

PPX:530T–1112 C1–C511 C512–C1023

TI525/TI535 Non-retentive Retentive

PPX:525–1102 C1–C255 C256–C511

PPX:525–1104 C1–C255 C256–C511

PPX:525–1208 C1–C255 C256–C511

PPX:525–1212 C1–C511 C512–C1023

PPX:535–1204 C1–C255 C256–C511

PPX:535–1212 C1–C511 C512–C1023

TI545, TI555, TI575 Non-retentive Retentive

PPX:545–1101 C1–C768 C769–C1024

PPX:555–1101, PPX:555–1102 C1025–C1792 C1793–C2048

PPX:575–2102 C2049–C2816 C2817–C3072

C3073–C3840 C3841–C4096

C4097–C4864 C4865–C5120

C5121–C5888 C5889–C6144

C6145–C6912 C6913–C7168

C7169–C7936 C7937–C8192

C8193–C10240

C10241–C327681

1For the TI575, this range of non-retentive Cs is C10241–23552.

TI560/TI565 (All Models) Global Control Relays Supported2

Non-retentive Retentive

Channel 1 C1–C768 C769–C1024

Channel 2 C1025–C1792 C1793–C2048

Channel 3 C2049–C2816 C2817–C3072

Channel 4 C3073–C3840 C3841–C4096

Channel 5 C4097–C4864 C4865–C5120

Channel 6 C5121–C5888 C5889–C6144

Channel 7 C6145–C6912 C6913–C7168

Channel 8 C7169–C7936 C7937–C8192

TI560T/TI565P (All Models) Local Control Relays Supported3

Non-retentive Retentive

C8193–C10240

C10241–C56320
2Global control relays are accessed by the TI560 CPU and the TI565 CPU.
3Local control relays are only accessed by the TI560T CPU and the TI565P ≥Release 2.0.
These relays do not retain force status after a power cycle.

I/O Concepts3-16 SIMATIC TI505 Programming Reference

Control Relays (continued)

The difference in operation between retentive and non-retentive control
relays is illustrated in Figure 3-9. The starter circuit shown in Figure 3-9a
requires a manual start. The normally open push-button #1 must be
pressed. In the event of a power loss, a manual restart is required. The
equivalent RLL design, built with non-retentive control relay C100,
functions the same way, requiring a manual restart after power loss.

The starter circuit shown in Figure 3-9b also requires a manual start, but in
the event of a power loss, restart occurs automatically. Push-button #2
breaks the circuit. The equivalent RLL design, built with retentive control
relay C769 (TI545 controller), also restarts automatically after power loss.

X69

PB1
Sol1

Contacts

C100

C100

X69 represents PB1
X70 represents PB2
C100 represents the solenoid.

PB2
X70

X69 represents PB1
X7 represents PB2
C769 represents the solenoid.

Figure 3-9 a Operation of Non-retentive Control Relays

Figure 3-9 b Operation of Retentive Control Relays

X69

PB1
Sol1

Contacts

C769

C769
PB2

X7

Figure 3-9 Control Relay Operation

Using Retentive
and Non-retentive
Control Relays

Controller Memory 4-1SIMATIC TI505 Programming Reference

Chapter 4

Controller Memory

4.1 Introduction to Controller Memory 4-2.
RLL Access to the Memory Types 4-3.

4.2 Controller Memory Types 4-4.
Ladder Memory 4-4.
Image Register Memory 4-4.
Control Relay Memory 4-4.
Special Memory: TI545, TI555, TI565, TI575 Controllers Only 4-4.
Temporary Memory: TI545, TI555, TI565, TI575 Controllers Only 4-4.
Variable Memory 4-4.
Constant Memory: TI545, TI555, TI560/TI565, TI575 Controllers Only 4-5.
Status Word Memory 4-5.
Timer/Counter Memory 4-5.
Table Move Memory 4-6.
One Shot Memory 4-7.
Shift Register Memory 4-8.
Drum Memory 4-9.
PGTS Discrete Parameter Area: TI545, TI555, TI575, TI560/TI565 4-10.
PGTS Word Parameter Area: TI545, TI555, TI575, TI560/TI565 4-10.
User External Subroutine Memory: TI545, TI555, TI575 Controllers Only 4-11.
Global Memory: TI575 Only 4-11.
VME Memory: TI575 Only 4-11.

Controller Memory4-2 SIMATIC TI505 Programming Reference

4.1 Introduction to Controller Memory

Controller memory is composed of several functional types (Figure 4-1). For
the TI545, TI555, TI575, and TI560/TI565 controllers, you can configure the
amount of memory dedicated to each type, depending upon your application.
For the other controllers, each type has a fixed block of memory. The size
depends upon the model. Not all controller models support every type. Refer
to the documentation for a specific controller to see which memory types are
supported and what the maximum size can be.

User Program Memory

• Ladder (L) Memory stores RLL program

• Special (S) Memory stores loops, analog alarms, SF Programs

• User (U) Memory stores user-defined subroutines

Data Area Memory

• Variable (V) Memory stores variable data

• Constant (K) Memory stores constant data

• Global (G) and VME Memory is used for VME data transfers

System Memory

• RLL instruction tables: drum, timer/counter, shift register, etc.

• Image registers and control relays,

• Subroutine parameter areas

• SF Program temporary memory

• Status Word memory

User Control
Program

User Data

System Operation

Figure 4-1 Controller Memory Types

Controller Memory 4-3SIMATIC TI505 Programming Reference

The various memory types are described in the pages that follow. For
controller models TI545 Rel. 2.0 (or later), TI555, TI560/TI565 Rel. 6.0 (or
later), and TI575 memory types may be classified for RLL programming
purposes in the following ways.

• Writeable — This memory type is read/write. It can be used for both
input and output fields of RLL instructions.

• Readable — This memory type is read only. It can be used only for the
input fields of RLL instructions.

• No access — RLL instructions have no access to this memory.

Table A-1 lists the RLL access restrictions for variables that are stored in
the various memory types.

Early model controllers have certain restrictions on the memory locations to
which they can read and write. These controller models are listed in
Table A-4. When you design an RLL program for these controllers, refer to
Table A-5 for the memory locations that are valid in each field of an
instruction.

RLL Access to the
Memory Types

Controller Memory4-4 SIMATIC TI505 Programming Reference

4.2 Controller Memory Types

A block of memory within the controller is reserved for the RLL program.
This memory type is used in all Series 505/500 controllers, and is called
Ladder Memory (L-Memory). Each RLL instruction used in the program
requires one or more 16-bit words of L-Memory. Refer to Appendix B for a
detailed list of the number of words required by each instruction.

A block of memory within the controller is reserved for maintaining the
status of discrete inputs/outputs. This memory type is used in all
Series 505/500 controllers and is called the discrete image register. A word
image register holds the values of word inputs/outputs. Refer to Section 3.1
for information about how the image registers operate.

A block of memory within the controller is reserved for control relays. This
memory type is used in all Series 505/500 controllers. Control relays are
single-bit internal memory locations and do not represent actual hardwired
devices. Refer to Section 3.5 for information about how the control relays
operate.

A block of memory within the controller may be allocated for loops, analog
alarms, and Special Function programs. This memory type is called Special
Memory (S-Memory). All loop and analog alarm parameters are stored in
S-Memory when you program the loop or analog alarm. When you create a
Special Function program or subroutine, the program is stored in
S-Memory.

A block of memory within the controller is temporarily reserved during run
time whenever a Special Function program is run. One block is allocated for
each SF program that is being run. This memory type is 16 words in length
and is called Temporary Memory (T-Memory) since it is not saved when the
program has completed running. The controller writes data related to the
Special Function program to the first seven words. You can read this data
and/or write over it if you choose. You can use all 16 words just as you would
use Variable Memory, except no data is saved when the program has
completed.

A block of memory within the controller may be allocated for user
operations. This memory type is used in all Series 505/500 controllers, and
is called Variable Memory (V-Memory). For example, you can do a math
operation and store the result in V-Memory. You can enter values directly
into V-Memory with a programming unit.

Ladder Memory

Image Register
Memory

Control Relay
Memory

Special Memory:
TI545, TI555, TI565,
TI575 Controllers
Only

Temporary
Memory: TI545,
TI555, TI565, TI575
Controllers Only

Variable Memory

Controller Memory 4-5SIMATIC TI505 Programming Reference

A block of memory within the controller may be allocated for constants
(unchanging data). This memory type is called Constant Memory
(K-Memory). You can use a programming unit to load a table of data into
K-Memory and read the table during run time whenever you need the data
for an operation.

A block of memory within the controller is allocated for storing status
information relating to controller operations. This information is stored in
one or more status words: STW1, STW2, etc. These status words can be
used in the RLL program to signal and/or correct alarm conditions. See
Appendix E for examples. Refer to Appendix G for a list of the status words
supported by your controller model.

A block of memory within the controller is reserved for the operation of the
timer/counter group of RLL instructions, including the following.

• Timer (TMR, TMRF) • Counter (CTR)

• Discrete Control Alarm Timer
(DCAT)

• Motor Control Alarm Timer
(MCAT)

• Up/Down Counter (UDC)

! WARNING
When you assign a number to a timer, counter, up/down counter, or
discrete/motor control alarm timer, be sure that you do not use that number for
any other timer, counter, up/down counter, or discrete/motor control alarm
timer. For example, if you configure a Timer 6 (TMR6), do not configure any
other operation, e.g., a counter (CTR) or a discrete control alarm timer (DCAT)
with the number 6.

Assigning the same number more than once could cause unpredictable
operation by the controller, which could result in death or serious injury and/or
damage to equipment.

Do not use the same reference number more than once for timer, counter,
up/down counter, and discrete/motor control alarm timer instructions.

Constant Memory:
TI545, TI555,
TI560/TI565, TI575
Controllers Only

Status Word
Memory

Timer/Counter
Memory

Controller Memory4-6 SIMATIC TI505 Programming Reference

Controller Memory Types (continued)

This memory type, which is used in all Series 505/500 controllers, is divided
into areas for storing two types of information. This information consists of
Timer/Counter Preset (TCP) data and Timer/Counter Current (TCC) data.
When you designate a preset value for one of the instructions in this group,
this value is stored as a 16-bit word in TCP-Memory. When the instruction
is actually operating, the current time or count is stored as a 16-bit word in
TCC-Memory.

NOTE: If you use an operator interface to change the time/counter values,
the new values are not changed in the original RLL program. If the RLL
presets are ever downloaded, e.g., as the result of a complete restart
(TISOFT Aux 12) or an edit of the network containing the Timer/Counter
instruction, the changes made with the operator interface are replaced by
the values in the RLL program.

A block of memory within the controller is reserved for the operation of the
table-move instructions, including the following:

• Move Word To Table (MWTT) • Move Word From Table (MWFT)

! WARNING
When you assign a number to a table-move instruction, be sure that you do not
use that number for any other table-move instruction. For example, if you
configure a Move Word To Table #1 (MWTT1) do not configure a Move Word
From Table #1 (MWFT1).

Assigning the same reference number to more than one table-move instruction
could cause unpredictable operation by the controller, which could result in
death or serious injury and/or damage to equipment.

Do not use the same reference number more than once for a table-move
instruction.

This memory type, which is used in all Series 505/500 controllers, consists of
one word per table-move instruction configured. This word is used to
maintain the current count of moves done since the MWTT or MWFT
instruction was last reset.

Table Move
Memory

Controller Memory 4-7SIMATIC TI505 Programming Reference

A block of memory within the controller is reserved for the operation of the
various instructions of the One-Shot group, including the following:

• One Shot
(All Series 500/505 controllers)

• Time Set (TI545, TI555,
TI560/TI565, TI575 only)

• Force Role Swap
(TI560/TI565 only)

• Date Set (TI545, TI555,
TI560/TI565, TI575 only)

! WARNING
When you assign a number to a One-Shot instruction, be sure that you do not
use that number for any other One-Shot instruction type. For example, do not
configure more than one OS11.

Assigning the same number for more than one One-Shot instruction type can
cause unpredictable operation by the controller, which could result in death or
serious injury and/or damage to equipment.

Do not use the same number more than once for the same instruction type (e.g.,
use it only once in One Shot, in Timer Set, etc.).

This memory type consists of one byte per configured One Shot instruction.
This byte is used to save the previous state of the instruction input.

Because the instructions in the One-Shot group use different bits of one
byte, these instructions can be assigned identical reference numbers. That
is, if you configure a One Shot #11 (OS11) you can configure a Force Role
Swap #11 (FRS11).

One Shot Memory

Controller Memory4-8 SIMATIC TI505 Programming Reference

Controller Memory Types (continued)

A block of memory within the controller is reserved for the operation of the
shift registers, which include the following:

• Bit Shift Register (SHRB) • Word Shift Register (SHRW)

! WARNING
When you assign a number to a shift register, be sure that you do not use that
number for any other shift register type. For example, do not configure SHRB11
and SHRW11.

Assigning the same number for more than one shift register could cause
unpredictable operation by the controller, which could result in death or serious
injury and/or damage to equipment.

Do not assign the same reference number to more than one shift-register
instruction.

This memory type, which is used in all Series 505/500 controllers, consists of
one byte per shift register. This byte is used to save the previous state of the
instruction input.

Shift Register
Memory

Controller Memory 4-9SIMATIC TI505 Programming Reference

A block of memory within the controller is reserved for the operation of the
various drum types, including the following:

• Drum (DRUM) • Event Drum (EDRUM)

• Maskable Event Drum Discrete
(MDRMD)

• Maskable Event Drum Word
(MDRMW)

! WARNING
When you assign a number to a drum-type instruction, be sure that you do not
use that number for any other drum-type instruction. For example, if you
configure a Maskable Event Drum Word #1 (MDRMW1), do not configure an
Event Drum #1 (EDRUM1).

Assigning the same reference number to more than one drum-type instruction
could cause unpredictable operation by the controller, which could result in
death or serious injury and/or damage to equipment.

Do not assign the same reference number to more than one drum-type
instruction.

Drum memory, which is used in all Series 505/500 controllers, is divided
into areas for storing the following types of information.:

• Drum Step Preset (DSP) • Drum Step Current (DSC)
• Drum Count Preset (DCP) • Drum Count Current (DCC)

When you specify step and counts-per-step (count preset) values for a drum
type, the step preset is stored as a 16-bit word in DSP-Memory, and the
counts-per-step values are stored as 16 consecutive 16-bit words in
DCP-Memory (except for the DRUM). For the DRUM instruction,
counts-per-step values are stored in L-Memory; DCP is not used.

When the instruction is actually operating, the current step is stored as a
16-bit word in DSC-Memory. The current count for this step is stored as a
16-bit word in DCC-Memory.

NOTE: If you use an operator interface to change the drum preset values
(DSP or DCP), the new values are not changed in the original RLL program.
If the RLL presets are ever downloaded, e.g., as the result of a complete
restart (TISOFT Aux 12) or an edit of the network containing the drum
instruction, the changes made with the operator interface are replaced by
the values in the RLL program.

Drum Memory

Controller Memory4-10 SIMATIC TI505 Programming Reference

Controller Memory Types (continued)

The Parameterized Go To Subroutine (PGTS) discrete parameter area
(Figure 4-2) is an area of memory within the controller that is reserved for
holding the status of discrete bits referenced as parameters in a PGTS RLL
instruction. Because up to 32 PGTS subroutines can be programmed, the
controller has 32 discrete parameter areas, each capable of storing the
status for 20 discrete parameters. When you use a parameter in the
subroutine, refer to discrete points as Bn where n = the parameter number.

1
2
3
4

5
6

15
16
17
18

19
20

Discrete inputs
Discrete outputs
Control relays

PGTS discrete
Parameter area

Values are copied into the
discrete parameter area to
be used by the Subroutine.

When parameters are
specified read/write,
changed values are copied
back into appropriate
memory areas.

Figure 4-2 PGTS Discrete Parameter Area

The PGTS word parameter area (Figure 4-3) is an area of memory within
the controller that is reserved for holding the contents of 16-bit words
referenced as parameters in a PGTS RLL instruction. Because up to 32
PGTS subroutines can be programmed, the controller has 32 word
parameter areas, each capable of storing the status for 20 word parameters.
When you use a parameter in the subroutine, refer to words as Wn, where
n = the parameter number.

PGTS Discrete
Parameter Area:
TI545, TI555, TI575,
TI560/TI565

PGTS Word
Parameter Area:
TI545, TI555, TI575,
TI560/TI565

Controller Memory 4-11SIMATIC TI505 Programming Reference

Bit

1
2
3
4

5
6

1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

Word inputs
Word outputs
Other word data

PGTS word
Parameter area

Values are copied into the
word parameter area to
be used by the
Subroutine.

When parameters are
specified read/write,
changed values are copied
back into appropriate
memory areas.

15
16
17
18

19
20

Figure 4-3 PGTS Word Parameter Area

A block of memory within the controller may be allocated for storing
externally developed programs written in C, Pascal, assembly language, etc.
This memory type is called User Memory (U-Memory). The size of
U-Memory is user configurable.

The TI575 CPU allocates a 32K-word block of memory to allow you to
transfer data over the VME backplane. This memory type is called Global
Memory (G-Memory). Refer to the SIMATIC TI575 System Manual for more
information about G-Memory.

The TI575 controller also allows access to physical VME addresses using the
VMM-Memory or VMS-Memory.

• VMM corresponds to VME address modifier 39 (Standard
non-privileged data access).

• VMS corresponds to VME address modifier 29 (Short non-privileged
access).

! CAUTION
The TI575 controller allows you to use a VME address (VMM or VMS) as a
parameter to most word-oriented RLL instructions, e.g., ADD, SUB, or MOVW,
etc.

When a VME address is used and is not recognized by any installed board, a
VMEbus error occurs. If the instruction that used the address was other than
MOVE or XSUB (with the U-Memory header’s E bit set to 1––see Appendix H),
the controller enters the Fatal Error mode, freezes analog outputs and clears
discrete outputs.

Use the XSUB or MOVE instruction to access the VME address.

User External
Subroutine Memory:
TI545, TI555, TI575
Controllers Only

Global Memory:
TI575 Only

VME Memory:
TI575 Only

Programming Concepts 5-1SIMATIC TI505 Programming Reference

Chapter 5

Programming Concepts

5.1 RLL Components 5-2.

RLL Concept 5-3.
RLL Contact 5-4.
RLL Coil 5-10.
RLL Box Instruction 5-14.
RLL Rung Structure 5-14.
RLL Scan Principles 5-15.

5.2 Program Compile Sequence 5-16.

5.3 Using Subroutines (TI545, TI555, TI560/TI565, and TI575) 5-18.

RLL Subroutine Programs 5-18.
SF Programs 5-19.
External Subroutines 5-19.

5.4 Cyclic RLL 5-20.

Overview 5-20.
Cyclic RLL Execution 5-22.

5.5 Interrupt RLL 5-24.

The Interrupt RLL Program 5-24.
Operation 5-27.
Performance Characteristics 5-28.
Troubleshooting 5-29.

5.6 Using Real-Time Clock Data (TI545, TI555, TI560/TI565, TI575) 5-30.

BCD Time of Day 5-30.
Binary Time of Day 5-32.
Time of Day Status 5-33.

5.7 Entering Relay Ladder Logic 5-34.

Using APT 5-34.
Using TISOFT 5-34.

5.8 Doing Run-Time Program Edits 5-35.

Using TISOFT 4.2 or Later with the TI545, TI555, or TI575 5-35.
Using TISOFT 4.01 or Earlier (All Controllers) 5-36.
Avoid These Actions During Run-Time Edits 5-37.
Additional Considerations When Doing Run-Time Edits 5-40.

5.9 Password Protection 5-42.

Protected Program Elements 5-42.
Disabled and Enabled Passwords 5-42.
Password Protection Levels 5-43.
Determining the Current State of Password 5-43.
Password Effect on EEPROM 5-43.

Programming Concepts5-2 SIMATIC TI505 Programming Reference

5.1 RLL Components

Depending upon your controller model, you can choose from several
programming languages to write your application program. The basic
language that is common to all the Series 505/500 controllers is Relay
Ladder Logic (RLL). The TI545, TI555, TI565, and TI575 controllers support
Special Function (SF) programming, a high-level statement-driven language
that can be used for floating-point math calculations. The TI545 (≥Rel. 2.0),
TI555, and the TI575 can call externally developed subroutines that are
written in other high-level programming languages, such as C, or Pascal.

For a description of these other programming methods, refer to Section 5.3
for the external subroutines, and Chapter 7 for SF programs.

Programming Concepts 5-3SIMATIC TI505 Programming Reference

RLL is similar in form and interpretation to the relay diagram. Two vertical
lines represent power and return rails. Connections between the rails (the
ladder rungs) contain circuit components that represent switches, control
relays, solenoids, etc.

The primary function of the RLL program is to control the state of an
output, based on one or more input conditions. This is done at the level of a
ladder rung. An example is shown in Figure 5-1.

()
X20 Y33

X21

Power Rail Return Rail

Contacts
Coil

Input Condition Output Condition

Figure 5-1 Single Rung of a Relay Ladder Logic Program

In Figure 5-1, the controller tests the input condition, which is represented
by the contacts X20 and X21. When either of the contacts is evaluated as
true, it is defined as having power flow and the circuit is complete to the
next component on the rung, coil Y33. When coil Y33 receives power flow,
the output condition is true, and the circuit is complete to the return rail.

RLL Concept

Programming Concepts5-4 SIMATIC TI505 Programming Reference

RLL Components (continued)

A contact can be used anywhere in the program to represent a condition
that needs to be tested. It can represent an actual field input or an internal
memory location. When representing a field input, the contact is referenced
by an address in one of the image registers. When representing an internal
memory location, the contact is referenced by an address in one of the other
RLL-readable memory locations, such as the control relays.

In Figure 5-2, the address for the contact is X1, a point in the discrete image
register. When X1 contains a 1, the contact evaluates as true or on; when X1
contains a 0, the contact evaluates as false or off.

Y10X1

When the referenced address X1 contains the value of 1,
this contact has power flow and the circuit is complete to
the next component on the rung.

Figure 5-2 Power Flow and the Contact

The normal contact is symbolized by in the RLL program. Use the
normal contact when your application requires the referenced address to
equal 1 in order to turn the output on.

• If the referenced address equals 1, the normal contact closes and passes
power flow.

• If the referenced address equals 0, the normal contact remains open
and does not pass power flow.

• Use the normal contact to represent field devices that operate like a
limit switch. When the limit switch closes, the normal contact closes
and passes power flow.

The operation of the normal contact is compared to that of an
electro-mechanical relay in Figure 5-3.

RLL Contact

Programming Concepts 5-5SIMATIC TI505 Programming Reference

+

–

When TS24 is closed, relay CR5 is energized. In the
ladder diagram, CR5–1 passes power to its output coil
instruction; CR5–2 does not.

CR5–1

CR5–2

Power Return

CR5
Coil

TS24

Electro-mechanical Relay and Ladder Diagram

P/S

TS24

Input

X24

Y10X24

Y11X24
1 I/O Point

X24

Controller

Image
Register

Ladder
Memory

When TS24 is closed, image register point 24 = 1. In
the RLL, the normal contact X24 passes power flow;
the NOT-ed contact X24 does not.

Programmable Controller and RLL

Figure 5-3 Operation of Normal Contact and Electro-mechanical Relay

Programming Concepts5-6 SIMATIC TI505 Programming Reference

RLL Components (continued)

The NOT-ed contact is symbolized by in the RLL program. Use the
NOT-ed contact when your application requires the referenced address to
equal 0 in order to turn the output on.

• If the referenced address equals 0, the NOT-ed contact remains closed
and passes power flow.

• If the referenced address equals 1, the NOT-ed contact opens and
interrupts power flow.

The operation of the NOT-ed contact is compared to that of an
electro-mechanical relay in Figure 5-4.

Several different types of contacts are available to enable you to create the
program control that you need for your application. These types of contacts
are described on Pages 5-8 and 5-9.

Programming Concepts 5-7SIMATIC TI505 Programming Reference

+

–

When TS24 is open, relay CR5 is de-energized. In the
ladder diagram, CR5–2 passes power to its output coil
instruction; CR5–1 does not.

CR5–1

CR5–2

Power Return

CR5
Coil

TS24

Electro-mechanical Relay and Ladder Diagram

P/S

TS24

Input

X24

Y10X24

Y11X24
0 I/O Point

X24

Controller

Image
Register

Ladder
Memory

When TS24 is open, image register point 24 = 0. In the
RLL, the NOT-ed contact X24 passes power flow; the
normal contact X24 does not.

Programmable Controller and RLL

Figure 5-4 Operation of a NOT-ed Contact and Electro-mechanical
Relay

Programming Concepts5-8 SIMATIC TI505 Programming Reference

RLL Components (continued)

An X contact corresponds to a point in the discrete image register. The X
contact represents an input from a field device, for example, a limit switch.

! CAUTION
Xs and Ys use the same discrete image register.

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’s actions.

Do not assign the same reference number to both an input (X) and an
output (Y).

A Y contact corresponds to a point in the discrete image register. The status
of a Y contact is determined by the status of the Y output coil having the
same address as the Y contact.

A C contact represents a control relay. Control relays are internal memory
locations and do not represent actual hard-wired field devices. The control
relay is used to provide control for other RLL instructions.

A bit-of-word contact represents an individual bit in any readable word,
such as a V- or WX-Memory location. Power flow in a bit-of-word contact is
determined by the state of the bit b (1–16) that it represents.

For example, the bit-of-word contact
V100.13

is closed when bit 13 in
V100 equals 1.

Xn

Xn

Yn

Yn

Cn

Cn

Vn.b

Vn.b

Programming Concepts 5-9SIMATIC TI505 Programming Reference

An immediate X contact corresponds to a discrete point in an I/O module
and is updated from the I/O module immediately. The immediate X contact
can be updated any time during the controller scan, and is not limited to the
normal I/O update portion of the timeline.

NOTE: Only the power flow for an immediate X contact is updated. The
value in the image register is not updated.

The power flow through a relational contact depends upon the relational
condition that exists between the values contained in two readable words,
such as V- or WX-Memory locations. When the relational condition is true,
the contact is closed. When the relational condition is not true, then the
contact is open.

For example, the relational contact
V1 V25

< is closed when the content
of V1 is less than the content of V25.

The word on the right of the contact symbol can be a signed integer (INT,
–32768 to 32767) or an unsigned integer (UINT, 0 to 65535).

The relational contact
V112 941

= is closed when the content of V112 is
equal to 941.

Xn

Xn

Vn Vm

< >

= <>

≤ ≥

Vn Vm

Vn Vm Vn Vm

Vn Vm Vn Vm

Programming Concepts5-10 SIMATIC TI505 Programming Reference

RLL Components (continued)

A coil can be used anywhere in the program to represent an output that
needs to be controlled. It can represent an actual field device or an internal
memory location. When representing a field device, the coil is referenced by
an address in one of the image registers. When representing an internal
memory location the coil is referenced by an address in one of the other
RLL-writeable memory locations, such as control relay memory.

In Figure 5-5, the address for the coil is Y10, a point in the discrete image
register. When the coil is true or on, the controller writes a 1 to Y10; when
the coil is not true or off, the controller writes a 0 to Y10.

Y10X1

When the coil has power flow, the controller writes the
value of 1 to the referenced address Y10. Otherwise, the
controller writes the value of 0 to Y10.

Figure 5-5 Power Flow and the Coil

The Normal Coil is symbolized by in the RLL program. Use the
normal coil when your application requires the referenced address to equal
1 when the coil has power flow.

• When the rung logic passes power flow to the normal coil, the coil turns
on and the referenced address equals 1.

• When the rung logic does not pass power flow to the normal coil, the
coil remains off and the referenced address equals 0.

• When the normal coil is on, a normal contact that references the same
address also turns on. A NOT-ed contact that references the same
address turns off.

• Use the normal coil to represent field devices that operate like a
solenoid. When the normal coil has power flow, the solenoid is
energized.

RLL Coil

Programming Concepts 5-11SIMATIC TI505 Programming Reference

The NOT-ed coil is symbolized by in the RLL program. Use the
NOT-ed coil when your application requires the referenced address to
equal 0 when the coil has power flow.

• When the rung logic does not pass power flow to the NOT-ed coil, the
coil remains energized and the referenced address equals 1.

• When the rung logic passes power flow to the NOT-ed coil, the coil is
de-energized and the referenced address equals 0.

• When the NOT-ed coil has power flow, a normal contact that references
the same address turns off. A negative contact that references the same
address turns on.

• The NOT-ed coil does not have any actual field device counterpart. Use
the NOT-ed coil in a situation when you want the output to turn off
when the NOT-ed coil has power flow.

Several different types of coils are available to enable you to create the
program control that you need for your application. These types of coils are
described on Pages 5-12 and 5-13.

Programming Concepts5-12 SIMATIC TI505 Programming Reference

RLL Components (continued)

A Y coil corresponds to a point in the discrete image register. The Y coil can
represent an output to a field device or an internal control relay.

! CAUTION
Xs and Ys use the same discrete image register.

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’s actions.

Do not assign the same reference number to both an input (X) and an
output (Y).

A C coil represents a control relay. Control relays are internal memory
locations and do not represent actual hard-wired field devices. The control
relay is used to provide control for other RLL instructions.

A bit-of-word coil represents an individual bit in any writeable word, such
as a V- or WY-Memory location. Power flow in a bit-of-word coil determines
the state of the bit b (1–16) that it represents.

For example, when this bit-of-word coil
V18.2

is on, bit 2 in V18 is
set to 1. When the coil is off, bit 2 in V18 is cleared to 0.

An immediate Y coil operates as a normal Y coil with the additional function
that an immediate I/O module update is done when the instruction (coil) is
executed. The immediate Y coil is updated any time during the controller
scan, and is not limited to the normal I/O update portion of the timeline.

NOTE: Both the image register and the I/O module are updated when the
immediate Y coil is executed.

Yn

Yn

Cn

Cn

Vn.b

Vn.b

Yn

Yn

Programming Concepts 5-13SIMATIC TI505 Programming Reference

When it has power flow, a SET Y coil sets a specified bit to one. Otherwise,
the bit remains unchanged.
When it has power flow, a RST (Reset) Y coil clears a specified bit to zero.
Otherwise, the bit remains unchanged.

When it has power flow, a SET C coil sets a specified bit to one. Otherwise,
the bit remains unchanged.
When it has power flow, a RST (Reset) C coil clears a specified bit to zero.
Otherwise, the bit remains unchanged.

The SET immediate Y coil operates the same as the set coil, except that the
specified bit is updated immediately, like the immediate Y coil.
The RST (Reset) immediate Y coil operates the same as the reset coil, except
that the specified bit is updated immediately, like the immediate Y coil.

The SET bit-of-word coil operates the same as the set coil, except that the
specified bit is contained in a writeable word, such as a V- or WY-Memory
location.
The RST (Reset) bit-of-word coil operates the same as the reset coil, except
that the specified bit is contained in a writeable word.

NOTE: If the referenced bit is only used by set/reset coils, then the bit acts
as a latch.

Yn

Yn

Cn

Cn

Yn

Yn

Vn.b

Vn.b

Programming Concepts5-14 SIMATIC TI505 Programming Reference

RLL Components (continued)

The RLL box instructions are pre-programmed functions that extend the
capabilities of your program beyond the RLL relay-type contact and coil
instructions. The box instructions are described in detail in Chapter 6.

The counter, shown in Figure 5-6, is an example of a box instruction.

()
X100 Y209

CTR 85

P = 3449
C223

A

B

Figure 5-6 Example of a Box Instruction

The counter is enabled by the lower input line, B in the figure. Then off/on
transitions on the upper input line A are counted as pulses. When the pulse
count reaches the preset value of 3449, the output coil is turned on.

You can design a rung in combinations of series and parallel structures to
provide the required logic for controlling the output. The rung shown below
represents a series circuit. When both input conditions are true, the output
is true. In terms of programming logic, the two input conditions are ANDed:
Y16 = (X69 • X70).

()
X69 Y16X70

This rung represents a parallel circuit. When either input condition is true,
the output is true. In terms of programming logic, the two input conditions
are ORed: Y33 = (X20 + X21).

()
X20 Y33

X21

RLL Box Instruction

RLL Rung Structure

Programming Concepts 5-15SIMATIC TI505 Programming Reference

When processing an RLL program that contains no cyclic or interrupt RLL
tasks, the sequence of controller operation is summarized in these three
steps.

1. The controller reads all inputs, and

2. The controller solves the RLL, and

3. The controller writes all outputs.

The controller solves all the logic in an RLL rung before proceeding to the
next rung, as shown in Figure 5-7. Refer to Section 3.3 for a discussion of
cyclic RLL and Section 3.4 for a discussion of interrupt RLL operation.

Y10X1

Y10 Y11

RLL logic is solved as follows: X1 turns on. This causes Y10 to turn on,
which then causes Y11 to turn on. Contacts and coils that are on after one
scan are shaded and are defined as having power flow.

Box A
Output

A B

A

B

C

If Box A writes a value to memory, Box B can read the value on the same
scan, immediately after Box A executes and turns on its output.

Logic is solved to point A and then to point B. The logic is then solved
to point C before the logic at point D is solved.

D

Figure 5-7 How Relay Ladder Logic is Solved

RLL Scan Principles

Programming Concepts5-16 SIMATIC TI505 Programming Reference

5.2 Program Compile Sequence

If an RLL program has been modified, it is compiled when the controller
mode changes from PROGRAM to RUN or from EDIT to RUN. The compile
sequence for an RLL program is illustrated in Figure 5-8. Note the effect of
the END and SBR RLL instructions on the compile process.

L-Memory

Task Segment

Task Segment

RLL Subroutine

RLL Subroutine

END

RTN

RTN

END

END

NOP

NOP

NOP

The controller compiles RLL instructions until an END instruction
is encountered.

The controller compiles RLL between an SBR and an RTN.

The controller continues to read L-Memory until:

1) Two consecutive END instructions are encountered, or
2) The end of L-Memory is reached.

2

1

SBR

SBR

The compiler ignores any RLL between the
END and an SBR.

The compiler ignores any RLL between an
RTN and the next SBR.

4

Note that when the controller encounters two consecutive END
instructions anywhere in the program, the compile is terminated.

The controller compiles RLL between an SBR and an RTN.

3

The compiler ignores any RLL between an
RTN and an END.

Figure 5-8 RLL Program Compile Process

Programming Concepts 5-17SIMATIC TI505 Programming Reference

Remember these rules as you design the RLL program.

• The TASK instruction, not an END instruction, separates task
segments.

• All TASKs must be located before the first END.

• The zone of control for a SKP is limited to the task segment or
subroutine in which the SKP is used. That is, the matching LBL must
be defined after the SKP and in the same task segment or subroutine
as the SKP.

• An END instruction separates RLL subroutines, if any, from the rest of
the program.

• Subroutines must be terminated with an unconditional RTN
instruction.

• Two consecutive END instructions terminate the compile process.
Otherwise, the controller scans all of L-Memory. If the RLL program is
significantly smaller than configured L-Memory, terminate the
program with two END instructions to reduce the bump caused by a
change to RUN mode after a run-time edit.

NOTE: The TISOFT online FIND function does not search past two
consecutive END instructions. You must position your TISOFT cursor after
the two ENDs when you search for an item occurring after two END
instructions.

NOTE: The TI52x, TI53x, and TI56x controllers do not support the TASK
instruction. Additionally, the TI52x and TI53x do not support SBR.

Programming Concepts5-18 SIMATIC TI505 Programming Reference

5.3 Using Subroutines (TI545, TI555, TI560/TI565, and TI575)

The TI545, TI555, TI560/TI565, and TI575 controllers provide several levels
of subroutine support for your application program. Program subroutines
can be designed as an RLL structure stored in L-Memory, a Special
Function (SF) program located in S-Memory, or, with the TI545, TI555, and
TI575, an externally developed program (written in C, Pascal, or certain
other high-level languages) stored in U-Memory.

You use the SBR, and RTN ladder logic instructions to create an RLL
subroutine that can be called from the main RLL program. The SBR
instruction marks the start of the subroutine; the RTN instruction marks
the end of the subroutine. The GTS instruction transfers program control to
the subroutine and RTN returns control to the instruction that follows the
calling GTS instruction after the subroutine has executed.

The PGTS ladder logic instruction operates similarly to the GTS instruction.
You use PGTS to call a section of the RLL program that is preceded by an
SBR and execute it. Unlike GTS, the PGTS allows you to pass parameters to
a subroutine.

Refer to Chapter 6 for more information about using the RLL subroutine
instructions.

RLL Subroutine
Programs

Programming Concepts 5-19SIMATIC TI505 Programming Reference

A Special Function program consists of a set of high-level, statement-driven
programming instructions that can be called from loops, analog alarms, or
from the RLL program, much like a GOSUB subroutine in a BASIC
program or a procedure in a C language program. Typically, the types of
operations that you execute within an SF program either cannot be done
with the RLL instruction set, or they involve complex RLL programming.
Such operations include floating point math, If /Then conditional
statements, table transfers, data consolidation, etc.

Refer to Chapter 7 for more information about designing and writing
SF programs.

Use the XSUB instruction to pass appropriate parameters to an externally
developed subroutine and then call the subroutine for execution. The
external subroutine can be developed offline in a non-RLL programming
language, such as C or Pascal. XSUB is supported by the TI545 (≥Rel 2.0),
TI555, and TI575 controllers.

Refer to Appendix H for more information about designing and writing
external subroutines.

! WARNING
Control devices can fail in an unsafe condition that could result in death or
serious injury, and/or damage to equipment.

When you call an external subroutine, the built-in protection features of the
controller are by-passed.

You must take care in testing the external subroutine before introducing it to a
control environment. Failure to do so may cause undetected corruption of
controller memory and unpredictable operation by the controller.

SF Programs

External
Subroutines

Programming Concepts5-20 SIMATIC TI505 Programming Reference

5.4 Cyclic RLL

The cyclic RLL function allows you to partition the RLL program into a
cyclic RLL task and a main RLL task. When used with the immediate I/O
feature, the cyclic RLL task can provide very high rates of sampling for
critical inputs. (Available in the TI545, TI555, and TI575 controllers only.)

The TASK instruction, described in Chapter 6, is used to partition an RLL
program into a main RLL task and a cyclic RLL task.

An RLL application program that contains a cyclic RLL task must be
designed as follows.

• The application program can consist of two or three RLL tasks: the
main RLL task, the cyclic RLL task, and an optional interrupt RLL
task. Each RLL task is preceded by the TASK(n) instruction, where
n = 1 designates the main task, n = 2 designates the cyclic task, and
n = 8 designates the interrupt task. Refer to Figure 5-9a.

• The A field of the TASK2 instruction specifies the cycle time of the
cyclic task in milliseconds. The range for this field is 0–65535. You can
specify cycle time as a constant for A or as a readable variable, where
the run-time content of the variable establishes the cycle time.

• A task can consist of multiple segments, each preceded by a TASK
instruction. The segments do not have to be contiguous (Figure 5-9b).
All segments for a TASK2 are executed within the cycle time specified
in the TASK2 instruction for the first segment in the program. Values
specified in subsequent segments are ignored.

When the cyclic RLL task does not complete execution within the
specified cycle time, the appropriate status word bits are set. These are
described in Appendix G.

NOTE: You can use any of the RLL instructions in a cyclic RLL task. Using
cyclic RLL for immediate I/O applications and keeping the cyclic RLL task
as small as possible minimizes the impact to the normal RLL scan.

Overview

Programming Concepts 5-21SIMATIC TI505 Programming Reference

End

Task 1

Task 1
Main RLL
Task

Task 2

Task 2
Cyclic RLL
Task

RLL
Subroutines

Figure 5-9a
Two Unsegmented Tasks

and RLL Subroutines

End

Task 1 *
Segment 1

Task 1

Task 1
Segment 2

Figure 5-9b
Two Segmented Tasks

*Task 1 is assumed when the first rung
does not contain a TASK instruction.

Task 2

Task 2
Segment 1

Task 2

Task 2
Segment 2

Figure 5-9 Examples of Cyclic RLL Design

Programming Concepts5-22 SIMATIC TI505 Programming Reference

Cyclic RLL (continued)

An RLL program that contains a cyclic RLL task is executed as follows.

• The cyclic RLL task is executed periodically throughout the entire
controller scan, interrupting the discrete scan and the analog scan as
necessary.

NOTE: The execution of a cyclic RLL task is not synchronized with the
normal I/O update or the normal RLL execution. If a cyclic RLL task uses a
value computed by the normal RLL task, you must plan your program
carefully to ensure correct operation when the value is not fully determined.
For example, the cyclic RLL task can run between the execution of the ADD
and SUB boxes in Figure 5-10.

V100
V33
V40

C10X037

A:

ADD

B:
C:

V40
V500
V40

A:

SUB

B:
C:

Cyclic RLL can run after the ADD box is
executed and before the SUB is executed.

Figure 5-10 Example of Cyclic RLL Execution Interrupt

• If the cyclic RLL completes execution in less than the time specified by
cycle time execution does not resume until cycle time expires
(Figure 5-11).

Cyclic RLL
Execution

Time

Cycle 1

Actual
Execution
Time

Idle

Cycle Time

Actual
Execution
Time

Idle

Cycle 2

Figure 5-11 Relationship of Cyclic RLL Execution Time to Cycle Time

Cyclic RLL
Execution

Programming Concepts 5-23SIMATIC TI505 Programming Reference

• Cycle time can be a constant or a variable. As a variable, the cycle time
can be changed by logic in the main program, logic in the cyclic RLL
task itself, or by other processes. The new cycle time does not take
effect until the current execution of the cyclic RLL task has completed.
See the example in Figure 5-12.

• If cycle time expires before a cyclic task completes, an overrun is
reported in STW219, and the cycle that should have executed upon the
expiration of A is skipped.

Cyclic
RLL
execution

Cycle time
= 15 ms

Normal
RLL
execution

Time 15 ms

Exec.
= 5 ms

Cycle time
changed to
10 ms by
normal RLL

Exec.
= 5 ms

10 ms

Exec.
= 5 ms

Exec.
= 5 ms

10 ms

Next scan

Cycle time
= 10 ms

Cycle time
= 10 ms

Cycle time
= 10 ms

Figure 5-12 When Cycle Time Changes Take Effect

Refer to Chapter 6 for more information about how to use the TASK
instruction.

Programming Concepts5-24 SIMATIC TI505 Programming Reference

5.5 Interrupt RLL

The interrupt RLL program is the user program entity that is executed
upon the occurrence of an interrupt request from an interrupt module. You
can create only one interrupt program, and within it, you must include the
RLL instructions required to handle all of the possible interrupt events in
your application.

The TASK instruction, described in Chapter 6, is used to partition the
interrupt RLL task from the main and cyclic RLL tasks. The interrupt RLL
task is denoted as TASK 8 and can be composed of either one segment or
multiple segments in the controller’s L-memory area, but it must be located
before the first END statement of the program. Refer to Figure 5-13 for
examples of user program partitioning.

End

Task 1

Task 1
Main RLL
Task

Task 2

Task 2
Cyclic RLL
Task

RLL
Subroutines

Figure 5-13a
Three Unsegmented Tasks and RLL Subroutines

End

Task 1*
Segment 1

Task 1

Task 1
Segment 2

Figure 5-13b
Two Segmented Tasks and One Unsegmented Task

*Task 1 is assumed when the first rung
does not contain a TASK instruction.

Task 2

Task 2

Task 8

Task 8
Segment 2

Task 8

Task 8
Interrupt
RLL Task

Task 8
Task 8
Segment 1

Figure 5-13 Examples of Cyclic RLL Design

The Interrupt
RLL Program

Programming Concepts 5-25SIMATIC TI505 Programming Reference

TASK 8 of your RLL program is executed whenever the controller receives
an interrupt request from one or more interrupt modules installed in the
local base. An interrupt request is generated by a module when one or more
of its field inputs undergoes a transition matching the transition type
configured for the inputs.

Since multiple field inputs may simultaneously undergo transitions in your
system, a given interrupt request issued to the controller can result from
transitions occurring simultaneously at multiple inputs on one or more
modules. Therefore, your TASK 8 program must be written to handle
interrupts from multiple sources in a single execution pass. Your program
must incorporate the status word STW220 and the module’s interrupt
status points to determine the source(s) of a given interrupt request.

When an interrupt request occurs, the controller determines which modules
are involved (or “participating”) in that request and places that information
into status word STW220 in the format shown in Figure 5-14. If you are
using more than one Interrupt module, you must use the values stored in
STW220 in your TASK 8 program to make decisions on whether or not the
interrupt handlers for a module should be executed. (Remember, more than
one module may be generating interrupt requests simultaneously.)

S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16

MSB LSB

16151413121110987654321

Sx = local base slot number

1 = interrupt request active at module located in this slot

STW220

Figure 5-14 Status Word 220 Format

Once the TASK 8 program has determined that a module is involved in the
current interrupt request, it must determine which of the module’s field
inputs were responsible for the generation of that request. The interrupt
status points (points 17 – 24) of the Interrupt Input module provide that
information. You can use the IORW instruction, described in Chapter 6, to
read the interrupt status points of the module and store their values into
the image register of the controller. Your program can then use these values
to make decisions on which interrupt handlers to execute and which ones to
bypass.

Programming Concepts5-26 SIMATIC TI505 Programming Reference

Interrupt RLL (continued)

Refer to Figure 5-15 for an example of an RLL program that uses STW220,
IORW instructions, TASK 8, and the interrupt status input points of the
module to execute handlers for inputs participating in the current interrupt
request and to bypass handlers for non-participating inputs.

SKP10

C24

SKP11

LBL11

SKP12

LBL12

LBL10

SKP20

C26

SKP21

LBL21

LBL20

STW220.16

C23

X17

X18

STW220.3

C25

X81

TASK 8

IORW 1
A: X17
N: 8

IORW 2
A: X81
N: 8

Interrupt handler for
interrupting input X9
(whose interrupt
status input is X17)

Read interrupt status
points from interrupt
module in Slot 1.

Interrupt handler for
interrupting input X10
(whose interrupt
status input is X18)

Interrupt handler for
interrupting input X73
(whose interrupt
status input is X81)

Read interrupt status
points from interrupt
module in Slot 14.

In the example program, the first interrupt module is installed
in slot 1 of the local base and its configured I/O address is X1
(which means that its interrupt status points begin at X17).
The second interrupt module is installed in slot 14 and its I/O
address is X65.

Interrupt handling routines
for interrupts generated
from the module installed
in Slot 1.

Interrupt handling routines
for interrupts generated
from the module installed
in Slot 14.

Figure 5-15 Example RLL Interrupt Program

Programming Concepts 5-27SIMATIC TI505 Programming Reference

A number of qualifying conditions determine whether the controller
executes the interrupt RLL program upon the occurrence of an interrupt
request. The interrupt RLL program is not executed if:

• The controller is in the PROGRAM or FAULT modes.

• The controller is in the process of switching from EDIT to RUN mode.

• The controller is in the process of reconfiguring I/O.

• Interrupt requests are received from a module that is failed, not
configured, or incorrectly configured in the controller’s I/O map.

If interrupt requests occur simultaneously from both a correctly configured
module and an incorrectly configured module, only the bit in STW220
corresponding to the correctly configured module is set to 1 before the
interrupt RLL routine is executed. (Bit positions corresponding to slots not
participating in the current interrupt request also contain a 0.)

Upon detection of an interrupt request, the controller performs the following
sequence of actions:

• Acknowledges the interrupt request to clear the interrupt request
backplane signal and to obtain an indication of which modules are
participating in this interrupt request.

• Determines whether each participating module is qualified to issue
interrupts (based upon configuration and failure state, as described
above) and then writes the resultant bit pattern into STW220.

• Executes the interrupt RLL task if the qualifying conditions are met.

• Sends a rearm signal to each participating module to clear the current
interrupt request and to allow new interrupt requests.

Operation

Programming Concepts5-28 SIMATIC TI505 Programming Reference

Interrupt RLL (continued)

The interrupt input feature is designed for rapid response to external
events, which is implemented by servicing interrupt requests at a very high
priority. Because of this emphasis, you must take care to minimize the
length of the interrupt RLL program in order to avoid affecting other
time-dependent functions in the controller.

NOTE: Excessive time spent by the controller executing interrupt RLL can
delay the execution of loops, analog alarms, and cyclic SF programs, extend
the scan time of the controller, degrade the performance of the
communication ports and remote I/O, and possibly result in a timeout of the
scan watchdog timer, causing the controller to enter FAULT mode.

The amount of interrupt RLL execution time is determined both by the
length of the TASK 8 program and the rate of interrupt requests. The
execution time of your TASK 8 program can be determined by using the
Ladder Logic Instruction Execution Time data in the Release Notes which
accompanied your controller or firmware upgrade kit. The rate of interrupt
requests is solely dependent upon your application.

It is important to know that the maximum delay through the Interrupt
Input Module of an interrupt event is 0.5 ms (with 10-ms filter off) and that
the maximum delay time in the controller in reacting to the interrupt
generated by the Interrupt Module is also 0.5 ms. Therefore, the TASK 8
interrupt RLL program begins execution within 1 ms of the occurrence of a
signal transition detectable by the Interrupt Module (assuming that no
other interrupt inputs are being processed).

Using the above information, the minimum acceptable sustained interval
between interrupt requests is as follows:

Interrupt interval min (in ms) = 2 * (TASK 8 max. execution time + 1)

For example, if the maximum execution time of your TASK 8 program is
0.75 ms, then the controller can continuously handle interrupt requests
occurring at intervals down to (2*(.75+1)) or 3.5 ms. Note that the controller
can handle bursts of interrupt events occurring at shorter intervals but
sustained interrupt activity occurring at intervals shorter than the
recommended time will result in system degradation, as described in the
NOTE above.

Performance
Characteristics

Programming Concepts 5-29SIMATIC TI505 Programming Reference

Successful operation of the interrupt input feature depends upon the
following conditions.

• The Interrupt Input Module is correctly configured.

• The I/O configuration stored in the controller for the Interrupt Input
Module is correct.

• The interrupt RLL program is correctly designed and implemented.

Each Interrupt module installed in the local base must be correctly
configured in the I/O map of the controller. When in the interrupt mode,
each module logs in as having 24 discrete inputs and 8 discrete outputs.
Additionally, the module must not be reporting itself as failed.

The example of an interrupt RLL program shown in Figure 5-15 provides a
guide for the development of your interrupt RLL program. If problems with
the execution of your interrupt RLL program occur, verify that your logic for
determining the source of the interrupt request is correct. Remember the
following points:

• STW220 identifies which interrupt modules in the local base have an
active interrupt request. Use STW220 to determine which module or
modules triggered the current execution of the interrupt RLL.

• The status of each internal point (17 – 24) of the Interrupt module
indicates the interrupting points responsible for generating the current
request. Use the immediate I/O read instruction (IORW) to read the
interrupt status point values from the module. (Refer to Table 3-3 and
the Interrupt Input Module User Manual.)

Also, remember to enable the interrupting points used in your application.
Typically, this is done in the normal RLL (TASK 1) program. You must set
the interrupt enable output points in the module to allow operation of the
interrupting input points that you are using (see Table 3-3).

Status word STW221 can assist you in tracking down problems with
interrupt input operation. STW221 contains a count of interrupts generated
by modules on the local base. Whenever a module generates an interrupt
request to the controller, STW221 is incremented by one (even though the
module may have multiple actively interrupting points). Interrupt requests
increment STW221 in any operating mode of the controller (except FAULT).
For example, you can debug some of the interrupt operation in Program
mode by manually causing a signal transition of the correct direction at a
field input on the interrupt module and verifying that STW221 increments.
(The interrupt RLL task is not executed since the controller is in Program
mode.) This validates that the interrupt module is detecting the field input
transition and is generating an interrupt to the controller and that the
controller recognizes the interrupt. This does not validate that the module is
correctly configured in the I/O map or that your interrupt RLL program is
correct.

Troubleshooting

Programming Concepts5-30 SIMATIC TI505 Programming Reference

5.6 Using Real-Time Clock Data (TI545, TI555, TI560/TI565, TI575)

Status Words 141–144 contain the status of the real-time clock at the start
of the last I/O update. The real-time clock data includes the following
information.

• Year (two digits), Month, Day of month, and Day of week

• Hour, minute, second, and, depending on the controller model, fraction
of second, in 24-hour format

The clock data is stored in the status words in BCD format and is updated
at the start of the I/O cycle, once per controller scan. The clock is backed up
by battery and continues to keep time during a power shut down.

You can use the Move Element (MOVE byte), or Word Rotate (WROT) and
the Word AND (WAND) instructions to obtain specific segments of the
status words containing the individual time items, such as minutes or
seconds, for use in your RLL program.

Figure 5-16 shows the location of each item of information available with
the clock status words. Each division in the figure represents four bits.

*The resolution of these units of time is controller specific, as listed below.
A controller fills a field with zeros for time units that it does not support.
1TI545, TI555, and TI575
2TI545 and TI555 only
3TI545–1101 only

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

STW141

STW142

STW143

STW144

Year–Tens

Day–Tens

Minute–Tens

*Second–
Tenths1

Year–Units

Day–Units

Minute–Units

*Second–
Hundredths2

Month–Tens

Hour–Tens

Second–Tens

*Second–
Thousandths3

Month–Units

Hour–Units

Second–Units

Day of
Week

Figure 5-16 Status Word Location of Time Data

BCD Time of Day

Programming Concepts 5-31SIMATIC TI505 Programming Reference

Figure 5-17 illustrates how the clock information is displayed, using BCD,
for a TI545–1101 controller on the date: Monday, 5 October, 1992, at
6:39:51.767 P.M. Note that the 24-hour format is used, and Sunday is
assumed to be day 1.

MSB LSB

0000100001001001STW141

MSB LSB

0001100010100000STW142

MSB LSB

1000101010011100STW143

MSB LSB

0100111001101110STW144

Figure 5-17 Clock Data Example

Programming Concepts5-32 SIMATIC TI505 Programming Reference

Using Real-Time Clock Data (TI545, TI555, TI560/TI565, TI575) (continued)

Binary time of day is contained in status words STW223 through STW225.
STW223 and STW224 contain a 32-bit binary representation of the relative
millisecond of the current day. STW225 contains a 16-bit binary
representation of the current day relative to 1-January-1984, (day 0).
Figure 5-18 shows the binary time-of-day status words.

Time of Day represented in binary milliseconds MSW

MSB LSB

16151413121110987654321

STW223

Time of Day represented in binary milliseconds LSWSTW224

Day of year relative to 1-January-1984 represented in binarySTW225

Figure 5-18 Binary Time of Day

NOTE: STW223 through STW225 were not defined before Release 3.0 of
TI545–1102, TI555, and TI575. The TI545-1101 and the TI560/TI565 do not
support binary time-of-day and the time-of-day status word.

Binary Time of Day

Programming Concepts 5-33SIMATIC TI505 Programming Reference

STW226 contains the time of day status. See Figure 5-19. The status word
contains the following information:

• Bit 1 is a 1 when the current time is prior to the time reported on the
last Task 1 RLL scan.

• Bit 10 is a 1 when the time has been set and is valid.

• Bit 11 is a 1 when the time of day is synchronized over a network.

• Bits 12 and 13 define the time resolution as follows:

00 = .001 second
01 = .01 second
10 = .1 second
11 = 1.0 second

• Bit 14 is a 1 when there is a time synchronization error. This bit is set
if the CPU does not receive a time update from the network at the
expected time.

• Bit 15 is a 1 when there is no time-synchronization input from the time
transmitter network.

00 = .001 sec, 01 = .01 sec, 10 = .1 sec, 11 = 1 sec

1 = Current time is prior to time reported on last Task 1 RLL scan

1 = Time Synchronization is over a network

1 = Time is valid (has been set)

Time Resolution

1 = No time synchronization input from the transmitter

1 = Time Synchronization Error.

1

10

11

12 13

14

15

MSB LSB

16151413121110987654321

Figure 5-19 Time-of-Day Status Word

Time of Day
Status

Programming Concepts5-34 SIMATIC TI505 Programming Reference

5.7 Entering Relay Ladder Logic

You can use the Application Productivity Tool — APT to program a
TI530C, a TI530T, a TI545, TI555, or a TI560/TI565 controller. APT is a
graphic programming environment that eliminates the need for you to work
in relay ladder logic when you create your application program. APT
presents a familiar structure for process engineers, allowing them to become
more closely involved in up-front design work. When the APT program is
compiled, an RLL program is produced, generating the language with which
the electrician or maintenance person is already familiar. Refer to the APT
manual set for more information.

You can use the TISOFT programming software to create and edit your
application program. TISOFT allows you to work directly in the ladder logic
environment as you design the RLL program. For loops, analog alarms, and
SF programs, TISOFT presents menu-driven programming tools.

To program all of the features described in this manual, you need TISOFT2
(≥Rel. 5.0), which runs on an IBM PC/AT compatible personal computer.
Refer to your TISOFT manual for detailed instructions about how to enter a
program.

Using APT

Using TISOFT

Programming Concepts 5-35SIMATIC TI505 Programming Reference

5.8 Doing Run-Time Program Edits

Your controller allows you to edit the RLL control program of a process that
is running. This section provides guidelines for doing run-time edits.

! WARNING
Care must be exercised when doing run-time edits.

Incorrect actions can result in the failure of the process being controlled,
which could result in death or serious injury, and/or damage to equipment.

Carefully plan any run-time edits to an active process. Avoid doing run-time
edits to an active process if at all possible.

When you use TISOFT 4.2 or later, run-time edits to the RLL program are
made in the EDIT mode. The controller enters the EDIT mode
automatically when you enter the first edit change. While in EDIT mode,
the process is controlled by the RLL program as it existed prior to the
controller entering the EDIT mode.

! WARNING
Be aware that, if you do a run-time edit and enter an unsupported RLL
instruction or an unsupported memory address, the controller enters
PROGRAM mode and freezes all outputs.

This could cause unpredictable operation, which could result in death or
serious injury, and/or damage to equipment.

TISOFT supports some controller models that do not support certain RLL
instructions and/or memory configurations. TISOFT may allow you to enter
unsupported RLL instructions, and depending upon memory configuration,
may allow you to enter unsupported memory addresses for RLL instructions.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

For the TI545, Rel. 2.0 or later, TI555, and the TI575, you can use the TISOFT
syntax check function to validate a program before setting the controller to
RUN mode.

You can modify one or more networks, as required, to accomplish the
complete modification. After all required modifications are complete,
request a SYNTAX CHECK to verify that the change compiles correctly. If
errors are detected by SYNTAX CHECK, you can correct these errors and then
re-execute the SYNTAX CHECK. This process can be repeated until the syntax
check is successful, at which time you can set the controller to the RUN
mode.

Using TISOFT 4.2 or
Later with the TI545,
TI555, or TI575

Programming Concepts5-36 SIMATIC TI505 Programming Reference

Doing Run-Time Program Edits (continued)

When you select RUN mode, the controller compiles the edited RLL
program. If you did not run the SYNTAX CHECK and errors are detected
during the RLL compilation, the controller transitions to the PROGRAM
mode, freezing the outputs in their current state. Actions that result in an
error are listed in the “Avoid These Actions During Run-Time Edit” Section
on pages 5-37 to 5-39. If no errors are detected during the RLL compilation,
the controller transitions to the RUN mode and the newly-edited RLL
program assumes control of the process.

! CAUTION
The process experiences a temporary scan extension during the compilation of
the edited program.

The length of the scan extension depends upon the size of the RLL program
(30–70 ms per K words of programmed RLL on a TI545).

When you use TISOFT 4.01 or earlier, each change that you make to a
single RLL network takes effect immediately after you select YES
(press F2) after entering the change by selecting ENTER (pressing F8).

! WARNING
The process experiences a scan extension when you select YES (press F2)
after entering a run-time change by selecting ENTER (pressing F8). The length
of the scan extension depends upon the size of the RLL program (30–70 ms per
K words of programmed RLL on a TI545).

Failure to follow appropriate safety precautions could cause unpredictable
controller operation that could result in death or serious injury, and/or damage
to equipment.

Be sure that the process is in a safe state prior to pressing F2.

If errors are detected in the edited network, the controller transitions to the
PROGRAM mode, freezing the outputs in their current state. Actions that
result in an error are listed in the “Avoid These Actions During Run-Time
Edit” Section below.

In addition to the actions listed on pages 5-37 to 5-39, you must also
consider the effect on the process when the control program executes with
the new network and a related network has not yet been entered.
Remember: each edited network immediately takes effect when entered. If
an edit involves multiple networks, you must enter these networks in an
order that preserves the integrity of the process. Each network entered
results in the scan extension, described in the WARNING above.

Using TISOFT 4.01
or Earlier
(All Controllers)

Programming Concepts 5-37SIMATIC TI505 Programming Reference

! WARNING
When you do a run-time edit, you must enter the instructions in this order: END,
RTN, SBR, GTS or PGTS/PGTSZ. If you enter these instructions out of order, the
controller changes to PROGRAM mode and freezes outputs in their current
status.

Be aware that, if you do a run-time edit and enter an unsupported RLL
instruction or an unsupported memory address, the controller enters
PROGRAM mode and freezes all outputs, which could cause unpredictable
operation that could result in death or serious injury, and/or damage to
equipment.

TISOFT supports some controller models that do not support certain RLL
instructions and/or memory configurations. TISOFT may allow you to enter
unsupported RLL instructions, and depending upon memory configuration,
may allow you to enter unsupported memory addresses for RLL instructions.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

The actions listed in this section cause the controller to enter the
PROGRAM mode with outputs frozen in their current state, if done during
RUN mode (TISOFT 4.01 or earlier) or if present when RUN mode is
selected from EDIT mode (TISOFT release 4.2 or later). For users of
TISOFT 4.01 or earlier, you must follow the precautions given in the
“Solution” section under each action. For users of TISOFT 4.2 or later, these
conditions are detected and can be corrected prior to selecting RUN mode
when you use the SYNTAX CHECK function of TISOFT.

! WARNING
The conditions that are described on the following pages can cause the process
to become uncontrolled, which could result in death or serious injury, and/or
damage to equipment.

It is your responsibility to provide for a safe recovery in the event of the
occurrence of any of these conditions.

Be sure to observe the guidelines under the System Commissioning section of
the Safety Considerations document (2588015–0003) included with your
documentation.

Avoid These
Actions During
Run-Time Edits

Programming Concepts5-38 SIMATIC TI505 Programming Reference

Doing Run-Time Program Edits (continued)

SKP instruction without a corresponding LBL: The LBL associated with a
SKP instruction must exist within the same program segment (SBR or
TASK) as the SKP instruction. If this is not the case, the controller
transitions to PROGRAM mode and freeze the outputs.

Solution. When editing with TISOFT 4.01 or earlier, enter the LBL
instruction before you enter the SKP instruction. With TISOFT
4.2 or later, ensure that both instructions have been entered
before selecting RUN mode.

SBR instruction without a terminating RTN: A subroutine must be
terminated by an unconditional RTN instruction. If this is not the case, the
controller will transition to PROGRAM mode and freeze the outputs.

Solution. When editing with TISOFT 4.01 or earlier, enter the RTN
instruction before you enter the SBR instruction. With TISOFT
4.2 or later, ensure that both instructions have been entered
before selecting RUN mode.

GTS, PGTS or PGTSZ without corresponding SBR: The subroutine
referenced by a GTS or PGTS(Z) instruction must be defined before it can be
referenced. If this is not the case, the controller will transition to
PROGRAM mode and freeze the outputs.

Solution. When editing with TISOFT 4.01 or earlier, enter the subroutine
as described above before you enter the GTS, PGTS or PGTSZ
instruction. With TISOFT 4.2 or later, ensure that both
instructions have been entered before selecting RUN mode.

Use of unsupported features: Your RLL program must not use an
instruction that is not supported by the software release installed in your
controller, nor may it reference undefined or unconfigured data elements.

TISOFT has been designed to support a wide range of controllers. Since a
given controller may not support all instructions supported by TISOFT, it is
possible to enter an instruction using TISOFT that is not supported by your
controller. If you enter an unsupported instruction or reference an
unconfigured variable location, the CPU will transition to PROGRAM mode
and freeze the outputs.

Solution. Ensure that the instruction that you intend to use is supported by
the software release installed in your controller. For TISOFT 4.2
or later, use the SYNTAX CHECK function to verify the program
before selecting RUN mode.

Avoid These
Actions During
Run-Time Edits
(continued)

Programming Concepts 5-39SIMATIC TI505 Programming Reference

Exceeding L-Memory When you edit an RLL program, it is possible for
the edited program to exceed L-Memory. This can occur in two ways, as
described below.

First, when you modify or insert a new network, the networks following the
edited network are “pushed down” toward higher L-Memory addresses. If
the configured L-Memory capacity is exceeded, one or more networks at the
end of the program will be deleted to make room for the edit. TISOFT 4.2 or
later provides a warning of this condition prior to entering the editing
change, but TISOFT 4.01 and earlier does not. After the edit (TISOFT 4.01
and earlier) or when you select RUN mode (TISOFT 4.2 and later), the
controller enters RUN mode, assuming none of the other conditions
described above is present.

Solution: Prior to making run-time edits, ensure that L-Memory can hold
the entire program by following the steps below.

1. Determine the configured L-Memory size by using the TISOFT Memory
Configuration function. Remember to convert K bytes (shown on the
Memory Configuration display) to K words (1 word = 2 bytes).

2. Find the end of the RLL program.

3. Subtract the rung number of the NOP, which follows the last network
of your program, from the configured K words of L-Memory that you
determined in step 1. This is the amount of available L-Memory.

4. If the size of the additional logic exceeds the amount of available
L-Memory, do not do the run-time edit.

The second way of exceeding configured L-Memory can occur when the
compiled RLL program is more than twice as large as the uncompiled
program. When you configure L-Memory, the system allocates two bytes for
the compiled program for every byte of RLL memory. Usually this is
sufficient to ensure that the compile does not run out of memory. However, if
your RLL program contains a high percentage of SKP instructions relative
to contacts and coils, it is possible to exceed the allocated compiled program
memory. If this happens following an edit, the controller transitions to
PROGRAM mode and freezes the outputs at the current state.

Solution. If you are using TISOFT 4.01 or earlier, there is no way to detect
this problem prior to its occurrence. If you have TISOFT 4.2 or
later, you can use the SYNTAX CHECK function to detect this
problem before selecting the RUN mode.

Programming Concepts5-40 SIMATIC TI505 Programming Reference

Doing Run-Time Program Edits (continued)

When you edit an existing network, TISOFT deletes the existing network
and then inserts the edited network in its place. If the existing (pre-edit)
network has an instruction with retained state information, and if this
instruction remains in the network after the edit, unexpected results may
be obtained following the edit. These unexpected results occur due to
initialization of the state information for the “retained state” instruction.

! WARNING
When editing an existing network, TISOFT deletes the existing network and
then inserts the edited network in its place.

If the existing (pre-edit) network has an instruction with retained state
information, and if this instruction remains in the network after the edit, you
could experience unexpected results (following the edit) that could result in
death or serious injury and/or damage to equipment..

Table 5-1 lists RLL instructions with retained state information along with the
initialization performed by these instructions when they are compiled on the
to-RUN transition following an edit. If you must edit a network containing one of
these instructions, you must consider the effect upon the process caused by
this initialization and ensure that the process state can safely handle this effect.
Additional information concerning state initialization can be found in Section
4.2.

For example, consider the following edit operation:

C2C3C1C2C1

Before edit. after edit

: O :: O :: O : : O :

1 1

In this edit, the intent is to add a dependency on C3 for the C2 output. Due
to the edit, however, the C2 output may be unexpectedly driven for one scan.
This will occur, for example, if C1 is on during the edit process and both C1
and C3 are on when the controller enters the run mode following the edit.

Additional
Considerations
When Doing
Run-Time Edits

Programming Concepts 5-41SIMATIC TI505 Programming Reference

Table 5-1 lists the RLL instructions that have retained state and also gives
their initial state on the first run-mode scan following the edit operation.

Table 5-1 RLL Instructions and Condition After Edit

Instruction Initial Condition After Run-Time Edit

CTR Initialized to require a 0 to 1 transition of the count input with TCP (count preset) set to the
instruction’s preset value and TCC (current count) set to 0.

DCAT TCP (time preset) and TCC (time remaining) are set to the preset value in the DCAT
instruction; i.e., the alarm timer is restarted.

DRUM DSP (preset step) and DSC (current step) are set to the preset step specified in the DRUM
instruction. DCC (current count) is set to the programmed count for his preset step. (The
process is now controlled by the preset step.)

DSET Initialized to require a 0 to 1 transition of the input.

EDRUM The count preset values for each of the drum’s steps are copied from the EDRUM instruction
to the corresponding DCP (count preset) variables. DSP (preset step) and DSC (current step)
are set to the preset step specified by the instruction and DCC (current count) is set to the
programmed count for this preset step. Finally, the jog input is initialized to require a 0 to 1
transition. (The process is now controlled by the preset step.)

FRS Initialized to require a 0 to 1 transition of the input.

MCAT TCP (time preset) and TCC (time remaining) are set to the preset value in the MCAT
instruction; i.e., the alarm timer is restarted.

MDRMD
MDRMW

The count preset values for each of the drum’s steps are copied from the
MDRUM/MDRUMW instruction to the corresponding DCP (count preset) variables. DSP
(present step) and DSC (current step) are set to the preset step specified by the instruction
and DCC (current count) is set to the programmed count for this preset step. Finally, the jog
input is initialized to require a 0 to 1 transition. (The process is now controlled by the preset
step.)

MWFT
MWTT

The table pointer is set to the table base and the move count is set to 0.

OS Initialized to set the output on the first scan for which the input is a 1.

SHRB
SHRW

Initialized to require a 0 to 1 transition on the input.

TMR TCP (time preset) and TCC (time remaining) are set to the preset value in the TMR/TMRF
instruction; i.e., the timer is restarted.

TSET Initialized to require a 0 to 1 transition of the input.

UDC Initialized to require a 0 to 1 transition of the count input with TCP (count preset) set to the
upper limit specified in the UDC instruction and TCC (current count) set to 0.

Programming Concepts5-42 SIMATIC TI505 Programming Reference

5.9 Password Protection

NOTE: TISOFT, Release 5.0 or later, is required to use the password
protection feature. Refer to SIMATIC TI505/TI500 TISOFT Release 5.0
User Manual (PPX:TS505–8101-5) for password protection programming
information.

The password protection feature is available on the TI545–1102, TI555, and
TI575 with Release 3.0 or later. This feature allows you to protect the
following elements of the application program from unauthorized access:

• Memory configuration

• I/O configuration

• Scan tuning parameters (scan watchdog, scan type, time–line values,
etc.)

• RLL Program, including constants (K-Memory)

• Loop Configurations

• Analog Alarm Configurations

• Special Function Programs and Subroutines

• User External Subroutines

• Application Dependencies (TI575 only)

• Password Protection Level

The programmable controller may be in one of three states of password
protection:

• No Password: The application program is not protected. Any user may
enter an initial password. TISOFT, Release 4.0 and later, can be used.

• Disabled Password: The application program is not protected. Only an
authorized user may change or delete the password. Any user may
enable the password. TISOFT Release 5.0 is required.

• Enabled Password. The application program is protected according to
the protection level assigned to the password (see below). If a protected
operation is attempted from any communications port, the operation is
denied and an error response is given. Only an authorized user may
change, delete, or disable the password. TISOFT Release 5.0 is
required.

Protected Program
Elements

Disabled and
Enabled Passwords

Programming Concepts 5-43SIMATIC TI505 Programming Reference

Three levels of protection are available when a password has been entered
and enabled.

No Access: The application program cannot be read or
 modified.

Read-only Access: The application program can be read but it
 cannot be modified.

Full Access: The application program is not protected.

The application program may dynamically determine the current state of
password protection by examining status bits defined in STW1. (See
Appendix G, Status Words.)

When the application program is stored in EEPROM the password
information is stored as well. If an application program stored in EEPROM
is password protected, the password will be automatically enabled following
a power cycle or whenever you select to run out of EEPROM.

Password
Protection Levels

Determining the
Current State of
Password

Password Effect on
EEPROM

RLL Instruction Set 6-1SIMATIC TI505 Programming Reference

Chapter 6

RLL Instruction Set

6.1 Safety Considerations 6-4.

6.2 Introduction 6-6.

6.3 Absolute Value 6-11.

6.4 Add 6-12.

6.5 Bit Clear 6-13.

6.6 Bit Pick 6-14.

6.7 Bit Set 6-15.

6.8 Convert Binary to BCD 6-16.

6.9 Convert BCD to Binary 6-18.

6.10 Compare 6-20.

6.11 Coils 6-22.

6.12 Contacts 6-23.

6.13 Counter (Up Counter) 6-24.

6.14 Discrete Control Alarm Timer 6-26.

6.15 Date Compare 6-30.

6.16 Divide 6-32.

6.17 Time Driven Drum 6-34.

6.18 Date Set 6-38.

6.19 Time/Event Driven Drum 6-40.

6.20 Unconditional End 6-44.

6.21 Conditional End 6-45.

6.22 Force Role Swap 6-46.

6.23 Go To Subroutine 6-48.

6.24 Indexed Matrix Compare 6-50.

6.25 Immediate I/O Read/Write 6-52.

6.26 Jump 6-54.

6.27 Load Address 6-56.

6.28 Load Data Constant 6-61.

6.29 Lock Memory 6-62.

RLL Instruction Set6-2 SIMATIC TI505 Programming Reference

6.30 Motor Control Alarm Timer 6-65.

6.31 Master Control Relay 6-70.

6.32 Maskable Event Drum, Discrete 6-74.

6.33 Maskable Event Drum, Word 6-78.

6.34 Move Image Register From Table 6-84.

6.35 Move Image Register To Table 6-86.

6.36 Move Image Register To Word 6-88.

6.37 Move Element 6-90.

6.38 Move Word 6-98.

6.39 Multiply 6-100.

6.40 Move Word From Table 6-102.

6.41 Move Word with Index 6-104.

6.42 Move Word to Image Register 6-106.

6.43 Move Word to Table 6-108.

6.44 NOT 6-110.

6.45 One Shot 6-111.

6.46 Parameterized Go To Subroutine 6-112.

6.47 Parameterized Go To Subroutine (Zero) 6-118.

6.48 Return from Subroutine 6-120.

6.49 Subroutine 6-121.

6.50 Call an SF Program 6-124.

6.51 Call SF Subroutines from RLL 6-126.

6.52 Bit Shift Register 6-128.

6.53 Word Shift Register 6-130.

6.54 Skip / Label 6-132.

6.55 Scan Matrix Compare 6-136.

RLL Instruction Set 6-3SIMATIC TI505 Programming Reference

6.56 Square Root 6-138.

6.57 Scan Synchronization Inhibit 6-140.

6.58 Search Table for Equal 6-142.

6.59 Search Table for Not Equal 6-144.

6.60 Subtract 6-146.

6.61 Table to Table AND 6-147.

6.62 Start New RLL Task 6-148.

6.63 Time Compare 6-151.

6.64 Table Complement 6-152.

6.65 Text 6-153.

6.66 Timer 6-154.

6.67 Table to Table OR 6-156.

6.68 Time Set 6-157.

6.69 Table to Word 6-158.

6.70 Table to Table Exclusive OR 6-160.

6.71 Up/Down Counter 6-162.

6.72 Unlock Memory 6-164.

6.73 Word AND 6-166.

6.74 Word OR 6-168.

6.75 Word Rotate 6-170.

6.76 Word to Table 6-172.

6.77 Word to Table AND 6-174.

6.78 Word to Table OR 6-176.

6.79 Word to Table Exclusive OR 6-178.

6.80 Word Exclusive OR 6-180.

6.81 External Subroutine Call 6-182.

RLL Instruction Set6-4 SIMATIC TI505 Programming Reference

6.1 Safety Considerations

A programmable controller is a programmed system. When you create or
modify the control program, you must be aware that your program affects
control actions that manipulate physical devices. If the program contains
errors, these errors can cause the controlled equipment to operate in
unpredictable ways. This could cause harm to anyone who uses the
equipment, damage to the controlled equipment, or both. You must ensure
that the control program is correct before you introduce it to the operational
environment of the controlled process. Read this section carefully before you
create or modify the control program.

The Series 500 and Series 505 controllers are highly reliable systems.
However, you must be aware that these systems can fail. If a failure occurs,
and if the control system is able to respond to the failure, the controller
enters the Fatal Error mode. The Fatal Error mode sets all the discrete
outputs to zero (off) and freezes all the word outputs at their values when
the failure was detected. Your control system design must take the Fatal
Error mode into consideration and ensure that the controlled environment
can react safely if a Fatal Error occurs.

! WARNING
It is possible that the system could fail without being able to execute the Fatal
Error actions. It is also possible for the system to continue to operate while
producing incorrect results.

Operating and producing incorrect results could cause unpredictable controller
behavior that could result in death or serious injury and/or damage to
equipment.

You must provide for manual overrides in those cases where operator safety
could be jeopardized or where equipment damage is possible because of a
failure. Refer to the safety guidelines sheet.

NOTE: Some user program errors can also cause the controller to enter the
Fatal Error mode. Examples include corruption of SF instruction control
blocks retained in V-memory (all systems supporting SF programming), and
VMEbus bus errors (for TI575 only; see page 4-11).

Overview

Failure of the
Control System

RLL Instruction Set 6-5SIMATIC TI505 Programming Reference

You must ensure the correctness of your control program before you
introduce it to the controlled process. An incorrect control program can
cause the process to act incorrectly or inconsistently. Although any number
of programming errors can cause control problems, one of the more subtle
problems occurs with the incorrect assignment of instruction numbers for
box instructions that have retained state information. The timer, counter,
and drum instructions are examples of these instructions. Section 4.2 lists
the various memory areas in the controller where retained state information
is maintained. Section 4.2 also lists the restrictions that exist in assigning
instruction numbers for the boxes that reference these areas. You must
design your program to accommodate these requirements.

! WARNING
Incorrect assignment of instruction numbers for retained state instructions
could result in inconsistent controller action.

If this occurs, it could cause unpredictable controller action that could result in
death or serious injury and/or damage to equipment.

You must ensure that instruction numbers are assigned uniquely for boxes with
retained state information. Refer to Section 4.2.

Performing edits on an active process involves a number of considerations
that are detailed in Section 5.8. You must read and fully understand this
information before you make any edits to the control program of an active
process.

! WARNING
Incorrect application of run-time edits could cause the controller to transition to
the program mode, freezing both discrete and word outputs at their current
status.

This could cause failure of the process that could result in death or serious
injury and/or damage to equipment.

Avoid doing run-time edits if you can. If you cannot avoid doing a run-time edit,
then ensure that you have read and fully understood Section 5.8, and that your
edits conform to the requirements of that section.

Inconsistent
Program Operation

Editing an Active
Process

RLL Instruction Set6-6 SIMATIC TI505 Programming Reference

6.2 Introduction

This chapter describes the RLL instruction set that is supported by the
Series 505/500 controllers. Figure 6-1 shows how the instructions are
illustrated. The fields that you use to program the instruction are defined
below.

DIV #

AA :
B :
CC :

Input Output

Field Valid Values Function

#

AA Any readable word Memory location for the dividend. This is a long
word. AA holds the 16 most significant bits, and
AA + 1 holds the 16 least significant bits.

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Instruction
format

I003294

B Any readable word
or constant
(–32768 to +32767)

Memory location of the divisor (one word).

or constant
(–32768 to +32767)

Value of the dividend if a constant is used.

Value of the divisor if a constant is used.

CC Any writeable word Memory location for the result. CC holds the
quotient (a word); CC + 1 holds the remainder
(a word).

Figure 6-1 RLL Instruction Format

RLL Instruction Set 6-7SIMATIC TI505 Programming Reference

Instruction Format illustrates how the instruction appears on the
programming unit.

Field contains the various fields used to define an instruction. For a field
that is denoted by a single character, e.g., B, the entry defines one word. If
you enter V110 for field B in the division example (Figure 6-1), the
controller reads the word at V110. For a field that is defined by a double
character, e.g., AA the entry consists of one long word. If you enter V55 for
field AA in Figure 6-1, the controller reads the long word at V55 and V56.

Some fields are defined by two characters that are descriptors for the field.
For example, TD = table destination; AI = an index into field A. For these
fields, the parameter description specifies the field size.

Valid Values lists the valid constants and memory locations that can be
used in this field.

A writeable memory location is defined as any memory location to which
an RLL instruction can both read and write (Section A.1).

A readable memory location is defined as any memory location that an
RLL instruction can read (Section A.1).

NOTE: Early model controllers have certain restrictions on the memory
locations to which they can read and write. These controller models are
listed in Table A-4 in Appendix A. When you design an RLL program for
these controllers, refer to Table A-5 for the memory locations that are valid
in each field of an instruction.

Function describes the purpose of the field.

Following an instruction’s format and description, the function of the
instruction is described.

RLL instructions are presented alphabetically for ease in reference.
Table 6-1 lists the RLL instructions by functional groups.

RLL Instruction Set6-8 SIMATIC TI505 Programming Reference

Introduction (continued)

Table 6-1 RLL Functional Groups

Operation Type Instruction Function Page

Electro-mechanical
Replacement

Coil Normal or NOT output coil; control relay;
set/reset coil; immediate coil; bit-of-word coil.

6-22

Contact Normal or NOT contact; control relay;
immediate contact; bit-of-word contact;
relational contact.

6-23

NOT Inverts power flow. 6-110

MCR/MCRE Master control relay. 6-70

JMP/JMPE Freezes outputs in zone of control. 6-54

SKP/LBL Selectively enable/disable program segments during
scan.

6-132

SHRB Bit shift register. 6-128

TMR/TMRF Times events. 6-154

DCAT Discrete control alarm timer. 6-26

MCAT Motor control alarm timer. 6-65

CTR Counts recurring events. 6-24

UDC Counts events up or down. 6-162

DRUM Simulates electro-mechanical stepper switch. 6-34

EDRUM Simulates electro-mechanical stepper switch. Can be
indexed by timer, event, or timer and event.

6-40

MDRMD Drum; uses configurable mask to control coils. 6-74

MDRMW Drum; uses configurable mask to write to words. 6-78

Bit Manipulation BITC Clears a specified bit. 6-13

BITS Sets a specified bit. 6-15

BITP Examines status of a specified bit. 6-14

WAND Does logical bit-by-bit AND on two words. 6-166

WOR Does logical bit-by-bit OR on two words. 6-168

WXOR Does logical bit-by-bit EXCLUSIVE OR on two words. 6-180

WROT Rotates the 4-segment bits of a word. 6-170

SMC Compares status of discrete points with a set of
specified bit patterns.

6-136

IMC Compares status of discrete points with a specified bit
pattern in a set of patterns.

6-50

BCD Conversions CDB Converts BCD inputs to binary. 6-18

CBD Converts binary to BCD value. 6-16

RLL Instruction Set 6-9SIMATIC TI505 Programming Reference

Table 6-1 RLL Functional Groups (continued)

Operation Type Instruction Function Page

Word Move Instructions LDC Loads a constant to a memory location. 6-61

LDA Copies the logical address of a memory location into a
memory location.

6-56

MIRW Copies bit status from control relays or discrete image
register to a word.

6-88

MWIR Copies bits of a word to the discrete image register, or
the control relay memory.

6-106

MOVW Copies words from one location to another. 6-98

MOVE Copies bytes, words, or long words from a source
location to a destination location.

6-90

MWTT Copies a word to a table. 6-108

MWFT Copies a word from a table. 6-102

SHRW Word shift register. 6-130

MWI Copies words from one location to another using
indexed addresses.

6-104

Math Instructions ADD Addition. 6-12

SUB Subtraction. 6-146

MULT Multiplication. 6-100

DIV Division. 6-32

SQRT Square Root. 6-138

CMP Compare. 6-20

ABSV Take absolute value of a word. 6-11

Relational
Contacts

Power flow depends on relational condition that exists
between values in two readable words.

6-23

Table Instructions MIRTT Copies status of control relays or discrete image
register bits to table.

6-86

MIRFT Copies a table into the control relay memory or
discrete image register.

6-84

TAND ANDs the corresponding bits in two tables. 6-147

TOR ORs the corresponding bits in two tables. 6-156

TXOR Does an EXCLUSIVE OR on the corresponding bits in
two tables.

6-160

TCPL Inverts status of each bit in a table. 6-152

WTOT Copies a word into a table. 6-172

TTOW Copies a word from a table. 6-158

WTTA ANDs bits of a word with the bits of a word in a table. 6-174

WTTO ORs bits of a word with the bits of a word in a table. 6-176

RLL Instruction Set6-10 SIMATIC TI505 Programming Reference

Introduction (continued)

Table 6-1 RLL Functional Groups (continued)

Operation Type Instruction Function Page

Table Instructions
(continued)

WTTXO Does an EXCLUSIVE OR on the bits of a word with
the bits of a word in a table.

6-178

STFE Searches for a word in a table equal to a specified
word.

6-142

STFN Searches for a word in a table not equal to a specified
word.

6-144

Clock Instructions DCMP Compares current date with a specified date. 6-30

TCMP Compares current time with a specified time. 6-151

TSET Sets time in real-time clock. 6-157

DSET Sets date in real-time clock. 6-38

Subroutine Instructions GTS Calls a subroutine. 6-48

PGTS Calls an RLL subroutine and passes parameters to it. 6-112

PGTSZ Calls an RLL subroutine and passes parameters to it.
Discrete parameters indicated as outputs are cleared
when the subroutine is not executed.

6-118

SBR Designates the beginning of an RLL subroutine. 6-121

RTN Returns control from an RLL subroutine to the main
RLL program.

6-120

XSUB Calls an externally developed subroutine and passes
parameters to it.

6-182

SFPGM Calls a special function program from RLL. 6-124

SFSUB Calls a special function subroutine from RLL. 6-126

Miscellaneous
Instructions

OS (One Shot) Turns on output for a single scan. 6-111

END Unconditionally terminates a scan. 6-44

ENDC Terminates a scan conditionally. 6-45

SSI Controls synchronization between active and standby
controllers.

6-140

FRS Takes active controller offline & puts standby unit
online.

6-46

LOCK

UNLCK

Used together and provide a mechanism whereby
multiple applications in the TI575 system can
coordinate access to shared resources.

6-62

6-164

TASK Start a new RLL program segment. 6-148

TEXT Places textual information into L-Memory. 6-150

Immediate I/O
Instructions

Immediate
Contact/Coil
SETI/RSTI Coil

Immediate I/O update.

Immediate set/reset of a bit.

6-22
6-23
6-22

IORW Does immediate read or write to discrete or word I/O. 6-52

RLL Instruction Set 6-11SIMATIC TI505 Programming Reference

6.3 Absolute Value

The ABSV instruction (Figure 6-2) calculates the absolute value of a signed
integer.

ABSV #

A:

Input Output

I003295

Field Valid Values Function

0–65535 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies word that contains number of which
absolute value is calculated.

Figure 6-2 ABSV Format

When the input is turned on, the ABSV box executes. If the input remains
on, the instruction executes on every scan. The operation executed is A =
|A|.

• If A ≥ 0, A is not changed, and the output turns on.

• If –32768 < A < 0, A is replaced with the value (0 – A) and the output
turns on.

• If A = –32768, A does not change, and the output is off.

When the input is off, the instruction is does not execute, and there is no
power flow at the box output.

These RLL instructions can also be used for math operations.

ADD CMP DIV MULT SQRT SUB

Relational Contact

ABSV Description

ABSV Operation

See Also

ABSV
TI545, TI555

TI560T, TI575

RLL Instruction Set6-12 SIMATIC TI505 Programming Reference

6.4 Add

The ADD instruction (Figure 6-3) adds a signed integer in memory location
A to a signed integer in memory location B, and stores the result in memory
location C.

ADD #

A:
B:
C:

Input Output

I003296

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Memory location for first addend (a word).

B Any readable word Memory location for second addend (a word).

or constant
(–32768 to +32767)

Value to be added if a constant is used.

C Any writeable
word

Specifies memory location for the sum (a word).

Figure 6-3 ADD Format

When the input is on, the ADD box is executed. If the input remains on, the
instruction is executed on every scan. The operation executed is: C = A + B.

• If –32768 ≤ sum ≤ 32767, then the output is turned on. Otherwise, the
output is turned off, indicating an addition overflow, and C contains the
truncated (16 bits) sum.

If the input is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions can also be used for math operations.

ABSV CMP DIV MULT SQRT SUB

Relational Contact

ADD
Series 500
Series 505

ADD Description

ADD Operation

See Also

RLL Instruction Set 6-13SIMATIC TI505 Programming Reference

6.5 Bit Clear

The Bit Clear instruction (Figure 6-4) clears a specified bit to zero.

BITC #

A:
N:

Input Output

I003297

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies memory location of word containing bit
to be cleared.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-4 BITC Format

When the input is on, the BITC box executes. If the input remains on, the
instruction executes on every scan. The operation executed is Bit N of word
A is cleared to 0.

• The output is turned on during each scan in which the instruction is
executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITP BITS IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

BITC Description

BITC Operation

See Also

BITC
Series 500
Series 505

RLL Instruction Set6-14 SIMATIC TI505 Programming Reference

6.6 Bit Pick

The Bit Pick instruction (Figure 6-5) examines the status of a specified bit.

BITP #

A:
N:

Input Output

I003298

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of word containing bit
to be examined.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-5 BITP Format

When the input is turned on, the BITP box executes. If the input remains
on, the instruction executes on every scan. The operation executed is the
status of bit N of word A is checked.

• The output is turned on if the selected bit is 1.

• The output is turned off if the selected bit is 0.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

Refer to Section E.4 for an application example of the BITP.

BITP
Series 500
Series 505

BITP Description

BITP Operation

See Also

RLL Instruction Set 6-15SIMATIC TI505 Programming Reference

6.7 Bit Set

The Bit Set instruction (Figure 6-6) sets a specified bit to one.

BITS #

A:
N:

Input Output

I003299

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies memory location of word containing bit
to be set to one.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-6 BITS Format

When the input is on, the BITS box executes. If the input remains on, the
instruction executes on every scan. The operation executed is Bit N of word
A is set to 1.

• The output is turned on during each scan in which the instruction is
executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITP IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

BITS Description

BITS Operation

See Also

BITS
Series 500
Series 505

RLL Instruction Set6-16 SIMATIC TI505 Programming Reference

6.8 Convert Binary to BCD

The Convert Binary to BCD instruction (Figure 6-7) converts a binary
representation of an integer to an equivalent Binary Coded Decimal (BCD)
value. That is, a 16-bit word representing an integer is converted into a
32-bit word in which each group of four bits represents a BCD digit. Values
up to 32,767 are converted to equivalent BCD values.

CBD #

A :
BB :

Input Output

I003300

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of integer to be
converted.

BB Any writeable
word

Specifies memory location of the BCD word
after conversion. BB contains the most
significant 16 bits, and BB + 1 contains the least
significant 16 bits.

Figure 6-7 CBD Format

When the input is on, the CBD box executes. If the input remains on, the
instruction executes on every scan. The operation of the CBD is described
below and illustrated in Figure 6-8.

• If A contains an integer 0–32767, the value is converted to BCD, stored
in BB and BB + 1 as shown below, and the box output is turned on.

BB (BB+1)

Ten
Thousands Hundreds Tens OnesThousands000

MSB LSB MSB LSB

• If A is not in the range 0–32767, there is no power flow at the box
output, and BB and BB + 1 do not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

CBD
Series 500
Series 505

CBD Description

CBD Operation

RLL Instruction Set 6-17SIMATIC TI505 Programming Reference

Input OutputCBD 1

A: V199
BB: V190

A: V199

0 0 0 0 0 0 01 1 1 0 1 0 0 01

BB: V190

0 0 0 0 0 0 00 0 0 0 0 0 0 00

(BB+1): V191

0 0 0 1 0 1 00 0 0 1 1 0 1 00

0 0 0 0 1 2 3 4

A: V200

0 0 1 1 0 0 00 0 0 1 1 1 0 10

BB: V201

0 0 0 0 0 0 00 0 0 0 0 0 0 10

(BB+1): V202

0 0 1 0 0 1 10 0 1 0 0 0 1 10

0 0 0 1 2 3 4 5

Input OutputCBD 3

A: V200
BB: V201

Binary coded
decimal

1234

Integer to be converted: 1,234

Binary coded
decimal
12345

integer to be converted: 12,345

I003301

Example 1
integer value less than 9999

Example 2
integer value greater than 9999

Figure 6-8 Examples of CBD Operation

This RLL instruction can also be used for BCD conversions.

CDB

Refer to Section E.12 for an application example of the CBD.

See Also

CBD
Series 500
Series 505

RLL Instruction Set6-18 SIMATIC TI505 Programming Reference

6.9 Convert BCD to Binary

The Convert BCD to Binary instruction (Figure 6-9) converts BCD inputs to
the binary representation of the equivalent integer.

CDB #

A :
B :
N :

Input Output

I003302

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of BCD word to be
converted.

B Any writeable
word

Specifies memory location of the integer after
conversion.

N 1–4 Number of digits to be converted.

Figure 6-9 CDB Format

When the input turns on the CDB box executes. If the input remains on, the
instruction executes on every scan. The operation of the CDB follows and
illustrated in Figure 6-10:

• The number of digits (N) of the BCD value located in A, is converted to
its equivalent binary integer value and stored in B.

• N may range from 1–4, and the BCD digit count is from right to left.
For example, if N = 2 and the BCD number in A = 4321, then 21 is
converted, and the value stored in B is 00010101.

• The output turns on after the instruction executes if the digits of the
input word are valid. Each digit of the BCD value in A must be less
than or equal to 9. The binary values 1010, 1011, 1100, 1101, 1110, and
1111 are invalid.

If the digits of the input word are not valid, the instruction does not
execute, and the output does not turn on.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

CDB
Series 500
Series 505

CDB Description

CDB Operation

RLL Instruction Set 6-19SIMATIC TI505 Programming Reference

Input OutputCDB 3

A: WX09
B: V111

0 1 0 0 0 1 10 0 0 1 0 0 0 10

0 0 0 0 0 0 00 0 0 0 1 0 1 10

4321 entered from
thumbwheel WX09

N: 2

A: WX09

4 3 2 1

BCD

B: V111 contains 21 integer

Input OutputCDB 2

A: WX11
B: V190

0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 00 0 1 1 0 0 10
N: 4

4 1 9 3

4193 entered from
thumbwheel WX11

A: WX11

BCD

B: V190 contains 4193 integer

1 0 1 0 1

010

Example 2

Example 1

Figure 6-10 Examples of CDB Operation

This RLL instruction can also be used for BCD conversions.

CBD

Refer to Section E.13 for an application example of the CDB.

See Also

CDB
Series 500
Series 505

RLL Instruction Set6-20 SIMATIC TI505 Programming Reference

6.10 Compare

The Compare instruction (Figure 6-11) compares a signed integer value in
memory location A with a signed integer value in memory location B.

CMP #

A :
B :
LT :
GT :

Input Output

I003304

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A
B

Any readable word Memory locations of the values being compared.

LT C, Y, B or blank
Coil or relay to be turned on if A < B. If you do
not want any contacts turned on, designate this
coil as C0 or leave it blank.

GT C, Y, B or blank
Coil or relay to be turned on if A > B. If you do
not want any contacts turned on, designate this
coil as C0 or leave it blank.

Figure 6-11 CMP Format

The input must be on for the box to function. If the input remains on, the
operation is executed on every scan.

• The value in A is compared to the value in B with the results listed
below. A and B do not change as a result of this instruction.

If A < B, LT is turned on, GT is turned off, and there is no power flow at
the box output.

If A > B, GT is turned on, LT is turned off, and there is no power flow at
the box output.

If A = B, GT and LT are turned off, and the output is turned on.

If the input is off, the instruction is not executed, and there is no power flow
at the box output. If the input is off, the GT and LT coils are turned off.

CMP
Series 500
Series 505

CMP Description

CMP Operation

RLL Instruction Set 6-21SIMATIC TI505 Programming Reference

NOTE: The Compare instruction computes power flow based on the equality
test. To compute power flow for two conditions (e.g., ≥), additional RLL is
required, or you can use the relational contacts.

These RLL instructions can also be used for math operations.

ABSV ADD DIV MULT SQR SUB

Relational Contact

See Also

CMP
Series 500
Series 505

RLL Instruction Set6-22 SIMATIC TI505 Programming Reference

6.11 Coils

The various types of RLL coils that are supported by the Series 505/500
controllers are shown in Figure 6-12. Refer to Section 5.1 for a detailed
description of their operation.

Y Coils

Normal NOT-ed

C Coils

Normal NOT-ed

Immediate Y Coils

Normal NOT-ed

Set/Reset Coils Y

Set Coil Reset Coil

Yn Yn

Cn Cn

Set/Reset Coil Bit-of-Word

Yn Yn

I003305

Yn Yn

Vn.b Vn.b

Bit-of-Word Coils

Normal NOT-ed

Set Reset

Vn.b Vn.b

Set/Reset Coil Immediate

Set Reset

Yn Yn

Set/Reset Coils C

Set Coil Reset Coil

Cn Cn

Coil Type Supported by these Controllers

Normal Y
NOT-ed Y

All Series 505/500 controllers

Normal C
NOT-ed C

All Series 505/500 controllers

Normal Immediate
NOT Immediate

TI575, TI545 ≥Rel. 2.0, TI555

Normal Bit-of-Word
NOT Bit-of-Word

TI575, TI545 ≥Rel. 2.0, TI555
TI560/TI565 ≥Rel.. 6.0

Set/Reset Coil TI575, TI545 ≥Rel. 2.0, TI555, TI560T ≥Rel.. 6.0

Set/Reset Coil Bit-of-Word TI575, TI545 ≥Rel. 2.0, TI555, TI560T ≥Rel.. 6.0

Set/Reset Coil Immediate TI575, TI545 ≥Rel. 2.0, TI555

Figure 6-12 Coil Format

These RLL instructions can also be used for electro-mechanical
replacement.

Contacts CTR DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Coils
Series 500
Series 505

See Also

RLL Instruction Set 6-23SIMATIC TI505 Programming Reference

6.12 Contacts

The various types of RLL contacts that are supported by the Series 505/500
controllers are shown in Figure 6-13. Refer to Section 5.1 for a detailed
description of their operation.

Xn Xn

Vn Vm

<

> =

<>

≤ ≥

Vn Vm Vn Vm

Vn Vm

Vn Vm Vn Vm

Yn Yn

Cn Cn

Vn.b Vn.b

X Contacts

Normal NOT-ed

Y Contacts

Normal NOT-ed

C Contacts

Normal NOT-ed

Bit-of-Word Contacts

Normal NOT-ed

Immediate X Contacts

Normal NOT-ed

Relational Contacts

I003306

Xn Xn

Contact Type Supported by these Controllers

Normal X
NOT X

All Series 505/500 controllers

Normal Y
NOT Y

All Series 505/500 controllers

Normal C
NOT C

All Series 505/500 controllers

Normal Immediate
NOT-ed Immediate

TI575, TI545 ≥Rel. 2.0, TI555

Normal Bit-of-Word
NOT Bit-of-Word

TI575, TI545 ≥Rel. 2.0, TI555, TI560T ≥Rel. 6.0

Relational TI575, TI545 ≥Rel. 2.0, TI555, TI560T ≥Rel. 6.0

Figure 6-13 Contact Format

These RLL instructions can also be used for electro-mechanical
replacement.

Coils CTR DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

Contacts
Series 500
Series 505

RLL Instruction Set6-24 SIMATIC TI505 Programming Reference

6.13 Counter (Up Counter)

The Counter instruction (Figure 6-14) counts recurring events. The counter
output turns on after the counter counts up to a preset number, making it
an “up counter.”

CTR #

P :
Input Output

Enable/
Reset

I003307

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to your
controller user manual for the number of
counters supported. The assigned instruction
number must conform to the requirements of the
timer/counter memory discussed on page 4-6 in
Section 4.2.

P 0–32767
Preset value of the maximum value (0–32,767) to
which the counter counts. The counter does not
count events beyond the preset value.

Figure 6-14 CTR Format

The counter counts up to the preset value specified in P, that is stored in
TCP-Memory. The current count is stored in TCC-Memory.

• The Enable/Reset must be on for the counter to operate.

When the Enable/Reset is on, the counter is incremented by one each
time the Count input transitions from off to on.

• Counting begins at zero and continues to the preset value specified
by P.

CTR
Series 500
Series 505

CTR Description

CTR Operation

RLL Instruction Set 6-25SIMATIC TI505 Programming Reference

• If the Enable/Reset is turned off, the count is reset to zero.

TCC is saved if the Enable/Reset input is on and a loss of power occurs,
provided the controller battery backup is enabled.

• The output is turned on when the current count equals the preset count
specified by P.

If the Enable/Reset does not receive power flow, the instruction does not
execute and the output does not turn on.

Other RLL instructions can be used to read or write to the counter
variables. You can also use an operator interface to read or write to the
counter variables. While you are programming the counter, you are given
the option of protecting the preset values from changes made with an
operator interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Using the Counter
Variables

See Also

CTR
Series 500
Series 505

RLL Instruction Set6-26 SIMATIC TI505 Programming Reference

6.14 Discrete Control Alarm Timer

The Discrete Control Alarm Timer (Figure 6-15) is designed for use with a
single input, double feedback device. The input to the DCAT box is derived
from the logic that determines the state of the device. The output of the
DCAT box controls the device.

You can use the DCAT to replace the several rungs of logic that are required
to time the field device’s operation and generate alarms in case of failure.

DCAT #

P :
OF :
CF :
OA :
CA :

Open/Close Input Output

I003308

Field Valid Values Function

Varies with
configured memory

Instruction reference number. Range depends
on memory configured for timers/counters. The
assigned instruction number must conform to
the requirements of the timer/counter memory
discussed on page 4-6 in Section 4.2.

P 0000.1–3276.7 sec. Time allowed for the device to open or close

OF X, Y, C, B
Open Feedback — input from a field device or a
control relay that senses when the device being
controlled has opened to specified position.

CF X, Y, C, B
Close Feedback — input from a field device or a
control relay that senses when the device being
controlled has closed to specified position.

OA Y, C, B

Open Alarm — control relay or output that
turns on if the input to the DCAT is on, and the
Open Feedback input does not turn on before
the DCAT timer times out.

CA Y, C, B

Close Alarm — control relay or output that
turns on if the input to the DCAT has turned off
and the Close Feedback input does not turn on
before the DCAT timer times out.

Figure 6-15 DCAT Format

DCAT
TI545, TI555
TI560, TI575

DCAT Description

RLL Instruction Set 6-27SIMATIC TI505 Programming Reference

The state changes for the DCAT are shown in Table 6-2. The DCAT output
always equals the state of the input.

Table 6-2 DCAT States

0 = open
1 = close
X = do not care

Input Condition IF THEN

ANDFeedback Timer Action Alarm Status

OA CAOF CF

Output

1 0 1 timing 0 0 1

1 0 0 timing 0 0 1

1 1 0 reset ** 0 0 1

1 0 0 timed out * 1 0 1

0 1 0 timing 0 0 0

0 0 0 timing 0 0 0

0 0 1 reset ** 0 0 0

0 0 0 timed out 0 1 0

X 1 1 X 1 1 ***

* Timed out: timer has timed a full preset value of time without a sensor
closing.

** Reset: timer is at preset value and is not timing.
*** Follows Input.

NOTE: The DCAT output and alarms are under the control of the JMP or
MCR. Unexpected alarm conditions may occur when the DCAT exists within
the zone of control of a JMP or MCR.

DCAT State
Changes

DCAT
TI545, TI555
TI560, TI575

RLL Instruction Set6-28 SIMATIC TI505 Programming Reference

Discrete Control Alarm Timer (continued)

The DCAT timer times down from the preset value specified in P, that is
stored in TCP-Memory. The timer current time is stored in TCC-Memory.

When the Open/Close input to the DCAT transitions from off to on, the
following operations occur.

• The time delay is set to the preset value defined by P, both alarm
outputs OA and CA turn off, and the DCAT output turns on.

• While the Open/Close input to the DCAT remains on, the timer begins
timing until the OF input turns on or the timer times out.

• If the OF input turns on before the timer times out, the time delay is
set to zero and the OA remains off.

• If OF does not turn on before the timer times down, OA turns on.

• If OF turns on before the timer times down, but then goes off again
while the Open/Close input is on, OA turns on. The OA turns off if OF
then turns on again.

When the Open/Close input to the DCAT transitions from on to off, these
operations occur.

• The DCAT output turns off, the time delay is set to the preset value
defined by P, and both alarm outputs OA and CA turns off.

• While the Open/Close input to the DCAT remains off, the timer begins
timing until the CF input turns on or the timer times out.

• If the CF input turns on before the timer times down, the time delay is
set to zero and the CA remains off.

• If CF does not turn on before the timer times down, CA turns on.

• If CF turns on before the timer times down, but then goes off again
while the DCAT input is off, CA turns on. The CA turns off if CF then
turns on again.

NOTE: When both OF and CF are on simultaneously, then both OA and CA
turns on.

DCAT
TI545, TI555
TI560, TI575

DCAT Operation

Open/Close Input
Turns On

Open/Close Input
Turns Off

RLL Instruction Set 6-29SIMATIC TI505 Programming Reference

Other RLL instructions can be used to read or write to the DCAT variables.
You can also use an operator interface to read or write to the DCAT
variables. While you are programming the DCAT, you are given the option
of protecting the preset values from changes made with an operator
interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

 Refer to Section E.15 for an application example of the DCAT.

Using the DCAT
Variables

See Also

DCAT
TI545, TI555
TI560, TI575

RLL Instruction Set6-30 SIMATIC TI505 Programming Reference

6.15 Date Compare

The Date Compare instruction (Figure 6-16) compares the current date of
the real-time clock with the values contained in the designated memory
locations.

DCMP #

DT :

Input Output

I003309

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

DT V, W, (G, VMS,
VMM, TI575)

Designates the memory locations containing
date to be compared to date in real-time clock.*

V(DT) = Year — BCD 0000–0099.

V(DT+1) = Month — BCD 0001–0012.

V(DT+2) = Day of month — BCD 0001–0031.

V(DT+3) = Day of week — BCD 0001–0007.

Enter the hexadecimal value of 00FF for any of
the fields (year, month, day, etc.) that you want
to exclude from the compare operation.

*In TISOFT, BCD values are entered using the HEX data format.

Figure 6-16 DCMP Format

DCMP
TI545, TI555
TI560, TI575

DCMP Description

RLL Instruction Set 6-31SIMATIC TI505 Programming Reference

When there is power flow to the input of the DCMP instruction, the current
date in the real-time clock is compared to that contained in the designated
memory locations. If a match occurs, the instruction’s output is turned on.

When the input is off, the comparison is not executed and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DSET TCMP TSET

DCMP Operation

See Also

DCMP
TI545, TI555
TI560, TI575

RLL Instruction Set6-32 SIMATIC TI505 Programming Reference

6.16 Divide

The Divide instruction (Figure 6-17) divides a 32-bit (long word) signed
integer stored in memory locations AA and AA + 1, by a 16-bit signed
integer in memory location B. The quotient is stored in memory location CC,
and the remainder is stored in CC + 1.

DIV #

AA :
B :
CC :

Input Output

I003310

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

AA Any readable word

Memory location for the dividend. This is a long
word. AA holds the 16 most significant bits, and
AA + 1 holds the 16 least significant bits. When
a variable is used, the dividend can range from
–2,147,483,648 to +2,147,483,647.

or constant
(–32768 to +32767)

Value of the dividend if a constant is used.

B Any readable word
Memory location for the divisor (one word).
When a variable is used, the divisor can range
from –32,768 to +32,767, but cannot be zero.

or constant
(–32768 to +32767)

Value of the divisor if a constant is used.

CC Any writeable
word

Memory location for the result. CC holds the
quotient (a word); CC+1 holds the remainder (a
word). Both quotient and remainder must range
from –32,768 to +32,767 to be valid.

Figure 6-17 DIV Format

When the input is on, the DIV box is executed. If the input remains on, the
operation executes on every scan. The operation of the DIV, that is
illustrated in Figure 6-18, follows:
[CC (quotient), CC + 1 (remainder)] = (AA, AA + 1) ÷ B

• If B is non-zero, the division is done and the output turns on.
Otherwise, the output turns off, and the contents of CC and CC + 1 do
not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

DIV
Series 500
Series 505

DIV Description

DIV Operation

RLL Instruction Set 6-33SIMATIC TI505 Programming Reference

0 0 0 0 1 0 0 0 0 0 0 1

integer =

integer = +545
0 0 1 0

V9 =

V10 =

V33 =

V40 =

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V41 =

integer =

integer =

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0

0 0

0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 0 1 1 0 0 0 0 1 1 1

0 0 1 1

0 0 +3,490,183

 +6404

+3

DIV 12

B:

CC:

V9

V33

V40

C10X037

AA:

Figure 6-18 Division Example

These RLL instructions can also be used for math operations.

ABSV ADD CMP MULT SQR SUB

Relational Contact

See Also

DIV
Series 500
Series 505

RLL Instruction Set6-34 SIMATIC TI505 Programming Reference

6.17 Time Driven Drum

The Drum (Figure 6-19) simulates an electro-mechanical stepper switch or
drum. It provides 15 output coils and 16 steps that are operated on
multiples of the time base set up for the drum. Each step controls all 15
output coils.

Start

Enable/

Output

Mask
0 or 1

Coils (C or Y)

1 17
2 50
 3 23
 4 25
 5 100
 6 10
 7 20
 8 10
 9 25
10 0
11 0
12 0
13 0
14 0
15 0
16 0

Y Y Y Y Y C C C C Y Y Y Y Y Y
6 7 8 9 2 2 1 1 1 2 2 2 2 2 3

1 7 4 5 0 5 6 7 8 9 0
5 1 2

4

Reset

PRESET = 1 to 16
SEC/CNT = 0 to 32.767
STP CNT/STP
(1-16) (0 to 32,767)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DRUM #

Field Valid Values Function

Varies with
controller model.

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-8 in Section 4.2.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 sec. Time base. Amount of time for one count.

Coils Y, C, B, or blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT/STP 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT/STP × SEC/CNT in seconds.

Mask 0–1 Mask controls coils turned on (1) or off (0).

Figure 6-19 DRUM Format

DRUM
Series 500
Series 505

DRUM Description

RLL Instruction Set 6-35SIMATIC TI505 Programming Reference

The drum functions as described below.

When the drum begins to run, it starts at the step specified by the Drum
Step Preset that is stored in DSP-Memory. The drum current step is stored
in DSC-Memory. The counts per step, set in the CNT/STP field, are stored in
L-Memory and cannot be changed without re-programming the drum. The
current count (counts remaining for a step) is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
remains at this step until DCC counts down to zero.

• When DCC for a step reaches zero, the drum advances to the next step,
and the coils are turned on/off according to the drum mask for the new
step. Each 1 in the mask designates that a coil is to be turned on, while
each 0 designates that a coil is to be turned off.

• The drum output comes on and remains on after the last programmed
step is executed. The last programmed step is the last step with a
non-zero CNT/STP value (step 9 in Figure 6-19). The drum remains at
the last step until you reset the drum.

In a TI530C, the drum jumps to step 16 after the last programmed step
and turns on the output. The drum remains at step 16 until reset. Place
the last programmed step in step 16.

NOTE: The last programmed step (or step 16 for TI520C, TI530C, TI530T,
TI525, and TI535 controllers) continues to control the drum’s coils after the
step has timed out.

DRUM Operation

DRUM
Series 500
Series 505

RLL Instruction Set6-36 SIMATIC TI505 Programming Reference

Time Driven Drum (continued)

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off but Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All coils maintain the condition specified by the drum mask for this
step.

• When the drum is at the Preset step, the output coils follow the states
specified by the drum mask for that step, even if the Enable/Reset
input is off. Take care to program the mask with a bit pattern that is a
safe (home) state for the Preset step.

Setting the Counts per Step (CNT/STP) field in the drum depends on the
controller that you are using.

• For all current controllers, which includes the TI545, TI555, TI575,
TI560/TI565 (Rel. 3.0 or greater), TI530T, TI525 (Rel. 2.2 or greater),
and TI535, set the Counts/Step for the time that the drum must remain
on a step according to one of the following equations.

CNT�STP �
step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT�STP �
step time
scan time

� If SEC/CNT is 0, ⇒

For example, if Step 2 is to remain on for 5 seconds and you have set
the SEC/CNT at 0.20 seconds, then CNT/STP = 25 as shown.

CNT�STP � 5.0
0.2

CNT�STP � 25

• For the TI520C/TI530C (Rel. 2.6 or earlier), the TI525 (Rel. 2.1 or
earlier), and the TI560/TI565 (Rel. 2.x or earlier), the time that the
drum remains on a step is determined by the following equation.

step time � �SEC�CNT
scan time

� � � CNT�STP � scan time

. . . where ↑ means round up to the next higher integer; e.g., 1.1 ⇒ 2

The drum advance to the next step can be delayed by up to one scan
per count when SEC/CNT is greater than the scan time.

DRUM
Series 500
Series 505

Calculating
Counts/Step

RLL Instruction Set 6-37SIMATIC TI505 Programming Reference

Other RLL instructions can be used to read or write to the DRUM variables.
Use care when programming instructions that can alter or read these
variables. You can also use an operator interface to read or write to the
DRUM variables.

During its operation, the DRUM uses the count preset value that was stored
in L-Memory when the DRUM was programmed. Therefore, a new value for
count preset that is written by RLL or by an operator interface has no effect
on DRUM operation.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. An APT program can
display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DCAT EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

 Refer to Section E.5 for an application example of the DRUM.

Using DRUM
Variables

See Also

DRUM
Series 500
Series 505

RLL Instruction Set6-38 SIMATIC TI505 Programming Reference

6.18 Date Set

The Date Set instruction (Figure 6-20) sets the date portion of the real-time
clock to the values contained in designated memory locations.

DSET #

DT :

Input Output

I003316

Field Valid Values Function

1 to number of one
shots.

Instruction reference number. The assigned
instruction number must conform to the
requirements of the one-shot memory discussed
on page 4-6 in Section 4.2.

DT V, W, (G, VMS,
VMM, TI575)

Designates the memory locations containing
date to be written into the real-time clock*.

V(DT) = Year — BCD 0000–0099.

V(DT+1) = Month — BCD 0001–0012.

V(DT+2) = Day of month — BCD 0001–0031.

V(DT+3) = Day of week — BCD 0001–0007.

*In TISOFT, BCD values are entered using the HEX data format.

Figure 6-20 DSET Format

DSET
TI545, TI555
TI560, TI575

DSET Description

RLL Instruction Set 6-39SIMATIC TI505 Programming Reference

When the input to the DSET instruction transitions from off to on, the date
portion of the real-time clock is set to the values contained within the three
consecutive memory locations designated by DT, and the output is turned
on.

When the input is off, the instruction does not execute and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP TCMP TSET

DSET Operation

See Also

DSET
TI545, TI555
TI560, TI575

RLL Instruction Set6-40 SIMATIC TI505 Programming Reference

6.19 Time/Event Driven Drum

The Time/Event Drum instruction (Figure 6-21) simulates an
electro-mechanical stepper switch or drum. The EDRUM can be indexed by
a timer only, an event contact only, or a time and event. A jog input enables
you to allow either time or an event to advance the drum a step. The
EDRUM provides 15 coils and 16 steps that are operated on multiples of the
drum time base. Each step controls all 15 output coils.

PRESET = 1–16

Event Drum #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask
0 or 1

Coils (C or Y)

Jog

Y Y Y Y Y C C C C C Y Y Y C Y
6 7 8 9 1 1 1 1 5 5 2 2 2 2 3

0 3 4 5 7 8 6 7 8 9 0

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

STP CNT EVENT
(1-16) (0-32,767) (X, Y or C)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Valid Values Function

Varies with
controller model.

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of drum memory discussed on
page 4-9 in Section 4.2.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 sec. Time base. Amount of time for one count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

Coils Y, C, B, or blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask controls coils turned on (1) or off (0).

Figure 6-21 EDRUM Format

EDRUM
Series 500
Series 505

EDRUM Description

RLL Instruction Set 6-41SIMATIC TI505 Programming Reference

When the drum begins to run, it starts at the step specified by the Drum
Step Preset, that is stored in DSP-Memory. The drum current step is stored
in DSC-Memory. The counts per step, set in the CNT/STP field, is stored in
DCP-Memory. The drum current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.
• When the Enable/Reset is on and the Start input turns on, the drum

begins to run. The drum begins at the step specified by DSP and
advances to the next step depending upon operation of the timer and/or
event.

• When the drum advances a step, coils turns on or off according to the
mask for the new step. Each 1 in the mask designates that a coil is to
turn on, while each 0 designates that a coil is to turn off.

• The drum output turns on, and remains on, after the last programmed
step is executed. The last programmed step is the last step having an
event programmed or having a non-zero CNT/STP preset value (step 13
in Figure 6-21). The event must be on (if one was programmed for this
step) and DCC must be zero. If the event turns off after DCC reaches
zero, the drum output remains on and the EDRUM remains at the last
programmed step until the drum is reset.
In a TI530C, the drum jumps to step 16 after the last programmed step
and turns on the output. The drum remains at step 16 until the drum
is reset. Place the last programmed step in step 16.

NOTE: The last programmed step (or step 16 for TI520C, TI530C, TI530T,
TI525, and TI535 controllers) continues to control the drum’s coils after the
step has timed out.

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count. All
coils maintain the condition specified by the drum mask.

• When the drum is at the Preset step, the output coils follow the states
specified by the drum mask for that step, even if the Enable/Reset input
is off. Take care to program the mask with a bit pattern that is a safe
(home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

EDRUM Operation

EDRUM
Series 500
Series 505

RLL Instruction Set6-42 SIMATIC TI505 Programming Reference

Time/Event Driven Drum (continued)

Setting the Counts per Step (CNT) field in the EDRUM depends on the
controller that you are using.

• For all current controllers, that includes the TI545, TI555, TI575,
TI560/TI565 (Rel. 3.0 or greater), TI530T, TI525 (Rel. 2.2 or greater),
and TI535, set the Counts for the time that the drum must remain on a
step according to one of the following equations.

CNT �
step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �
step time
scan time

� If SEC/CNT is 0, ⇒

For example, if Step 2 is to remain on for 5 seconds and you have set
the SEC/CNT at 0.20 seconds, then CNT/STP = 25 as shown.

CNT � 5.0
0.2

CNT � 25

• For the TI520C/TI530C (Rel. 2.6 or earlier), the TI525 (Rel. 2.1 or
earlier), and the TI560/TI565 (Rel. 2.x or earlier), the time that the
drum remains on a step is determined by the following equation.

step time � �SEC�CNT
scan time

� � � CNT � scan time

. . . where ↑ means round up to the next higher integer; e.g., 1.1 ⇒ 2

The drum advance to the next step can be delayed by up to one scan
per count when SEC/CNT is greater than the scan time.

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step to 0, and program a contact or coil in the event field for this step.
The drum remains at this step until the contact or coil specified by the event
turns on. The drum then advances to the next step.

EDRUM
Series 500
Series 505

Calculating
Counts/Step

Timer-triggered
Advance Only

Event-triggered
Advance Only

RLL Instruction Set 6-43SIMATIC TI505 Programming Reference

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program such that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

Other RLL instructions can be used to read or write to the EDRUM
variables. Use care when programming instructions that can alter or read
these variables. You can also use an operator interface to read or write to
the EDRUM variables.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. An APT program can
display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DCAT DRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Refer to Section E.6 for an application example of the EDRUM.

Timer and Event-
Triggered Advance

Timer or External
Event-triggered
Advance

Using EDRUM
Variables

See Also

EDRUM
Series 500
Series 505

RLL Instruction Set6-44 SIMATIC TI505 Programming Reference

6.20 Unconditional End

The END instruction (Figure 6-22) unconditionally terminates the scan.

END

I003318

Figure 6-22 END Format

Always terminate your program with the END instruction. When a
controller executes an END instruction, the program scan terminates. No
instructions occurring after an END executes.

• The controller program scan is always terminated by the unconditional
end.

• No other elements can be on the same rung with an END.

If you use an RLL subroutine (TI545, TI555, TI575, and TI560/TI565), place
an END instruction between the last rung of the main RLL program and
the first rung of the subroutine.

Do not use an END instruction to separate RLL tasks. The TASK
instruction indicates that a new RLL task is beginning.

This RLL instruction can also be used for terminating the scan.

ENDC

END
Series 500
Series 505

END Description

END Operation

See Also

RLL Instruction Set 6-45SIMATIC TI505 Programming Reference

6.21 Conditional End

The ENDC instruction (Figure 6-23) can terminate the program scan under
specific conditions. Since any instructions after an active ENDC instruction
are not executed, this instruction can be used to decrease scan time.

Input

C

END

I003319

Figure 6-23 ENDC Format

When the ENDC instruction executes, the current program scan
terminates. ENDC operates in conjunction with an input and is executed
only when there is power flow at the input. When the input is off, the ENDC
instruction is not executed, and the program scan is not terminated.

When the ENDC instruction is active, ladder logic following the ENDC is
not executed and outputs following the ENDC are frozen. An active ENDC
functions as an end statement for MCRs and JMPs that precede it, if it is in
their zones of control. Outputs between the MCR or JMP and the ENDC
remain under the control of the MCR or JMP.

For an ENDC contained within a SKP zone of control, the ENDC is
overridden if the SKP receives power flow.

This RLL instruction can also be used for terminating the scan.

END

ENDC Description

ENDC Operation

See Also

ENDC
Series 500
Series 505

RLL Instruction Set6-46 SIMATIC TI505 Programming Reference

6.22 Force Role Swap

The Force Role Swap (FRS) instruction (Figure 6-24) allows you to design
your program to switch the active controller with the standby controller in
hot back-up configurations.

The role swap can be the result of programmed diagnostic procedures that
detect a switch-over condition; e.g., over-temperature, low battery, etc., or
failures in the TI560/TI565 that have eluded run-time diagnostics or
operational software. You may also use the FRS instruction to allow routine
maintenance procedures to be done. The role swap can be initiated by
having a switch close in the I/O or by using a timer to trigger the swap.

FRS #

ST :

Input Output

I003320

Field Valid Values Function

1 to number of
one-shots.

Instruction reference number. The assigned
instruction number must conform to the
requirements of One Shot memory discussed on
page 4-7 in Section 4.2. Each FRS instruction
must have a different number.

ST V
Contains the V-Memory location where the
instruction reference number value is written
when the instruction is executed.

Figure 6-24 FRS Format

FRS
TI560/TI565

FRS Description

RLL Instruction Set 6-47SIMATIC TI505 Programming Reference

Operation of the FRS instruction depends upon present power flow, power
flow on the previous scan, and the current state of the controller. Only
online role swaps execute with this instruction. The stand-by controller
treats this instruction as a no-op. If no standby is available, the active
controller also treats this instruction as a no-op.

If an active controller with a standby detects an off-to-on transition on the
input, it queues a role swap to occur at the beginning of the next scan. Upon
completing the role swap, both controllers write the FRS instruction
reference number into the assigned memory location. This value can be used
to indicate why the role swap occurred.

On each scan, the FRS reference number is compared to the contents of the
the specified memory location. The output turns on independent of its input
whenever the memory location contents match the instruction reference
number.

This RLL instruction is also used with a Hot Backup Unit.

SSI

FRS Operation

See Also

FRS
TI560/TI565

RLL Instruction Set6-48 SIMATIC TI505 Programming Reference

6.23 Go To Subroutine

The GTS instruction (Figure 6-25) enables you to write RLL programs
preceded by a subroutine number and call them to be used where needed.
The subroutine number is entered after the GTS to designate the
subroutine to be executed.

GTS #

I003321

Field Valid Values Function

1–255 Subroutine reference number.

Figure 6-25 GTS Format

When there is power flow to the input of the GTS instruction, the RLL
program calls the subroutine indicated by the GTS number. For example,
when GTS44 has power flow to the input, execution of RLL jumps to SBR44.
If there is no power flow to the input, the GTS instruction does not execute,
and RLL program does not jump to the subroutine.

! CAUTION
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter all the instructions
required to define a subroutine (END, RTN, SBR, GTS or PGTS/PGTSZ) before
setting the controller to RUN mode.

Otherwise, the controller changes from RUN to PROGRAM mode and freezes
outputs in their current status. For the TI545 (≥Rel. 2.0), TI555, and TI575
controllers, use the TISOFT syntax check function to validate a program before
placing the controller in RUN mode.

When you do a run-time edit using an earlier release of TISOFT, you must enter
the instructions in this order: END, RTN, SBR, GTS or PGTS/PGTSZ. If you enter
these instructions out of order, the controller changes to PROGRAM mode and
freezes outputs in their current status.

GTS
TI545, TI555
TI560, TI575

GTS Description

GTS Operation

RLL Instruction Set 6-49SIMATIC TI505 Programming Reference

An example of a subroutine call is shown in Figure 6-26.

(Unconditional
return)

(Conditional
return)

GTS nnnX1

END

SBR nnn

RTN

RTN

SBR nnn

I003322

End
subroutine

Begin next
subroutine

Begin
subroutine

Figure 6-26 Example Call to Subroutine

These RLL instructions are also used for subroutine operations.

PGTS PGTSZ RTN SBR SFPGM XSUB

See Also

GTS
TI545, TI555
TI560, TI575

RLL Instruction Set6-50 SIMATIC TI505 Programming Reference

6.24 Indexed Matrix Compare

The Indexed Matrix Compare instruction, Figure 6-27, compares a
predefined 15-bit mask pattern to the status of up to 15 discrete points. The
mask to be compared is selected from a field of up to 16 masks by the step
number currently located in CUR PTR. If a match is found, the output turns
on.

IMC #

STP

CUR PTR:
Start Output

Mask
0 or 1

I/O Points

address in
V memory

Enable

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

X X X Y Y C C C C C C Y Y Y Y
6 7 8 9 1 1 2 3 4 5 5 2 2 2 3

0 8 9 7 8 9 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1 to 16)

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

CUR PTR
V, W, (G, VMS,
VMM, TI575)

Memory location of the step number of the mask
to be compared to the discrete points.

STP 1–16 Specifies step number of the mask.

I/O
Points

X, Y, C, B, or blank The discrete points to be compared to the mask.

Figure 6-27 IMC Format

IMC
Series 500
Series 505

IMC Description

RLL Instruction Set 6-51SIMATIC TI505 Programming Reference

The IMC operation is described below.

• The Enable input must be on for the instruction to execute.

• When Enable is on and the Start input turns on, the instruction
executes.

• The current status of up to 15 X, Y, or C points is checked against the
predefined bit pattern identified by the step number loaded into
CUR PTR.

• If a match is found, the box output turns on.

• If no match is found and the Start input remains on, the IMC checks
the step selected by the CUR PTR on every scan.

• If the CUR PTR value is out of range (greater than 16 or less than 1),
the controller automatically writes 16 to the CUR PTR address. This
means that mask 16 is used anytime the CUR PTR is out of range.

When the Enable input is off, the instruction does not execute, and there is
no power flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil

IMC Operation

See Also

IMC
Series 500
Series 505

RLL Instruction Set6-52 SIMATIC TI505 Programming Reference

6.25 Immediate I/O Read/Write

The IORW instruction (Figure 6-28) allows you to do an immediate read or
write to discrete or word I/O modules on the local base. For inputs, the data
transfer is directly from the I/O module(s) into the image register. For
outputs, the data transfer is directly from the image register to the I/O
modules. Refer to Section 3.3 for more information about using immediate
I/O in a program.

Output

IORW #

A:
N=

Input

I003324

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A X, Y, WX, WY
Designates I/O starting address. If a discrete
point (Xn or Yn) then n – 1 must be a multiple
of 8.

N
Up to number of
points supported
by module.

Designates number of points to move. If A is a
discrete point (Xn or Yn) then N must be a
multiple of 8. All points must reside within the
same I/O module.

Figure 6-28 IORW Format

When the input is on, the IORW box is executed. If the input remains on,
the instruction is executed on every scan.

• The data transfer takes place when the instruction is executed in RLL.

For inputs (Xs and WXs), the status of the specified number of points is
copied from the I/O module to the image register.

For outputs (Ys and WYs), the status of the specified number of points
is copied from the image register to the I/O module.

IORW
TI545, TI555
TI575

IORW Description

IORW Operation

RLL Instruction Set 6-53SIMATIC TI505 Programming Reference

• Output status follows input status, unless an error occurs.

For inputs: when the module is not present or does not match I/O
configuration, the specified input points in the image register are
cleared to zero and the output turns off.

For outputs: when the module is not present or does not match I/O
configuration, the status of the specified output points in the image
register is not copied to the I/O module and the output turns off.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

NOTE: When the IORW copies Y values from the image register to a
module, the current state of the Y points in the image register are written to
the module. If you want these Ys to be controlled by an MCR or a JMP, the
MCR or JMP must be used to control the coils that write to the Ys. The
IORW operation is not directly affected by MCRs and JMPs.

These RLL instructions are also used for immediate I/O applications.

Immediate Contact/Coil Immediate Set/Reset Coil TASK

See Also

IORW
TI545, TI555

TI575

RLL Instruction Set6-54 SIMATIC TI505 Programming Reference

6.26 Jump

The Jump instruction (Figure 6-29) is used to freeze the values of the
discrete image register points of the controlled outputs in the JMP’s zone of
control. This instruction is often used when duplication of outputs is
required and the outputs are controlled by different logic.

JMP #

JMP #

Start of JMP

Zone of control

End of JMPE

I003325

Field Valid Values Function

1–8 Instruction reference number. Numbers can be
repeated.

Figure 6-29 JMP Format

The JMP operates as an output update-enable instruction. The JMP must
have power flow, and not be nested within the zone of control of a JMP not
having power flow, for ladder logic in the JMP zone of control to change the
status of outputs.

• Discrete outputs between a JMP and its corresponding JMPE do not
change when the JMP loses power flow.

• JMPE marks the end of the zone of control for the JMP having the
same reference number. If you do not use the JMPE, the remainder of
the program is placed under the control of the JMP. You can make the
JMPE conditional by placing a contact on the same rung as the JMPE.

• When an MCR loses power flow, JMP instructions within the MCR’s
zone of control are overridden. That is, all outputs in the MCR’s zone of
control turn off when the MCR loses power flow, even when the outputs
are frozen in an ON state by a JMP. This includes rung outputs within
the rung, such as those specified within a drum.

Refer to Section 6.54 for information about the action of the JMP in
conjunction with the SKP instruction.

JMP
Series 500
Series 505

JMP Description

JMP/JMPE
Operation

RLL Instruction Set 6-55SIMATIC TI505 Programming Reference

In Figure 6-30, a JMP is located on rung A, and its zone of control is
terminated by JMPE (End Jump) on rung D.

• When JMP 5 has power flow, the ladder logic within its zone of control,
(rungs B and C), is executed normally.

• When JMP5 does not have power flow, all RLL instructions in the JMP
zone of control still execute normally, but outputs are not changed.

• Discrete outputs and control relays contained within an instruction,
such as a drum, for example, are also controlled by the JMP. In
Figure 6-30, Y6, Y7, Y8, C1, C2, and C3, as well as Y12 and Y451, are
frozen when the JMP loses power flow.

X037 Y012

JMP 5X001

X777

JMP 5

A

B

C

D

X010

X010

Y451

STP CNT/STP
SEC/CNT = .1
PRESET = 1

Drum 1
Y Y Y C C C
6 7 8 1 2 3

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

 1 17
 2 50
 3 23
 4 25
 5 100
 6 10

E

I003326

Zone

of

control

Figure 6-30 Example of JMP Zone of Control

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

JMP
Series 500
Series 505

RLL Instruction Set6-56 SIMATIC TI505 Programming Reference

6.27 Load Address

The Load Address instruction (Figure 6-31) copies the logical address of a
memory location into a specified memory location (a long word). Use the
LDA as a preparatory statement to the MOVE instruction, when the
indirect addressing option is needed.

LDA #

A :
AI :
BB :
BI :

Input Output

I003327

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Specifies the source address. See “ Specifying
Source” below.

AI
Blank, unsigned
constant (0 to 65535)
or any readable word

Specifies an index to be applied to the source
address. See “Specifying Index for Source”
below.

BB

For direct address:
any writeable word

For indirect address:
any readable word

Specifies destination. See “Specifying
Destination” below.

BI
Blank, unsigned
constant (0 to 65535)
or any readable word

Specifies index to be applied to destination
address. See “Specifying Index for Destination ”
below.

Figure 6-31 LDA Format

LDA
TI545, TI555
TI575

LDA Description

RLL Instruction Set 6-57SIMATIC TI505 Programming Reference

When the input is turned on the LDA box executes. If the input remains on,
the instruction executes on every scan. The operation of LDA follows and is
illustrated in Figure 6-33.

• The address of the memory location specified in A is copied to the
destination specified in BB.

! WARNING
The address that is copied to the destination is a logical address, not a physical
address.

Using this address as a pointer within as external subroutine can cause
unpredictable operation by the controller, which could result in death or serious
injury and/or damage to equipment.

Avoid using this address as a pointer within an external subroutine.

• The output is turned on and bit 11 of STW01 is turned off after the
instruction executes, unless an error occurs.

When the destination location is not valid, bits 6 and 11 in STW01 turn
on, and (if bit 6 of STW01 was off) STW200 is set to a value of 5. The
destination contents do not change.

When the input is off, the instruction is not executed and there is no power
flow at the box output. In this case bit 11 of STW01 is turned off.

You can specify one of the following elements in A.

• Direct address — Specify any readable word, e.g., V100. LDA copies the
logical address for this word into the destination.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character, e.g.,
@V929. The long word at this indirect address must contain another
address, and LDA copies this second logical address into the
destination.

LDA Operation

Specifying Source

LDA
TI545, TI555

TI575

RLL Instruction Set6-58 SIMATIC TI505 Programming Reference

Load Address (continued)

Use the optional field AI as an index into a table when you want to copy an
address that is in a table. AI designates the relative word, in the table
referenced by A, the address of which is to be copied. The element at A0 is
the first element in the table. You can specify one of the following in AI.

• Constant index (range 0 to 65535) — You can leave AI blank or enter
zero and no indexing is done.

• Variable index — Specify any readable word. The content of this word
is an unsigned integer (0 to 65535) that gives the value of the index.

If an indirect source address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-32.

K10 is an indirect address, as indicated by the @
character, that contains address WX1000.

The actual contents of K10 and K11 are:
K10 = 0900 (Hex)
K11 = 03E7 (Hex)

Word 0

Word 1

Word 2

A[0]: WX1000

A[1]: WX1001

A[2]: WX1002

LDA 2

A : @K10
AI : 2
BB : V37
BI :

Input Output

Because index AI = 2, the address that is loaded
is WX1002.

The controller resolves
the indirect address...

... and then loads the
address determined by
the index.

The address WX1002
is loaded into V37.

Figure 6-32 Address/Index Resolution

You can specify one of the following elements in BB.

• Direct address — Specify any writeable word, e.g., V631. LDA copies
the logical address specified by A into the long word at this address.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character, e.g.,
@V929. The long word at this indirect address must contain another
address, and LDA copies the address specified by A into the memory
location specified by this second address. You can enter a readable
word, e.g., a K-Memory address, into field BB, but the second address
referenced by the address in BB must be a writeable word.

LDA
TI545, TI555
TI575

Specifying Index
for Source

Specifying
Destination

RLL Instruction Set 6-59SIMATIC TI505 Programming Reference

Use the optional field BI as an index into a table when you want to copy an
address into a word in a table. BI designates the relative word in a table
referenced by BB, into which the source is copied. The element at BB0 is the
first element in the table.

 You can specify one of the following in BI.

• Constant index (range = 0 to 65535) — You can leave BI blank or enter
zero, and no indexing is done.

• Variable index — Specify any readable address. The content of this
address is an unsigned integer (0 to 65535) that gives the value of the
index.

If an indirect destination address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-32.

These RLL instructions are also used for word moves.

LDC MIRW MOVE MOVW MWFT MWI

MWIR MWTT SHRW

Refer to Figure 6-33 for examples of the LDA instruction.

Specifying Index
for Destination

See Also

LDA
TI545, TI555

TI575

RLL Instruction Set6-60 SIMATIC TI505 Programming Reference

Load Address (continued)

Input Output

A : TCP11
AI :
BB : V71
BI :

LDA 11

Input Output

A : STW201
AI :
BB : @V100
BI :

LDA 12

A: STW201

V100 is an indirect address, as
indicated by the @ character, that
contains the address GA12. LDA
copies address STW201 into GA12
and GA13.

1A 00

Example 3

Input Output
Copy the address GB77 into the relative word 4
(5th position) of a table, that begins at V14.

A : GB77
AI :
BB : V14
BI : WX55

LDA 13

A: GB77

WX55 contains 4; therefore LDA
loads address into V18 and V19.

NOTE: The source and destination are word-length tables.

B[0]:V14

B[1]:V15
B[2]:V16
B[3]:V17

ED 00
4C00

B[4]:V18
B[5]:V19

ED
00
4C00

B[4]:V18
B[5]:V19

GB
Memory Type

(Hex)

Example 2

Copy the address STW201 to GA12 and GA13.
The destination is contained in the indirect address V100.

B[0]:GA12
B[1]:GA1300 C8 1A

00
C800

STW
Memory Type

(Hex)

B[0]:GA12
B[1]:GA13

Example 1

A: TCP11

0E 00

Copy the address TCP11 to V71 and V72.

B[0]:V71
B[1]:V7200 0A 0E

00
0A00

TCP
Memory Type

(Hex)

00 00 0A
Word Offset
(Hex)

B[0]:V71
B[1]:V72

00 00 C8
Word Offset
(Hex)

00 00 4C
Word Offset
(Hex)

STW201 00C8 (Hex) 200 (Dec) 201st position

Address Offset (Hex) Offset (Dec) Position

TCP11 000A (Hex) 10 (Dec) 11th position

Address Offset (Hex) Offset (Dec) Position

LDA13 004C (Hex) 76 (Dec) 77th position

Address Offset (Hex) Offset (Dec) Position

Figure 6-33 Examples of the LDA Instruction

LDA
TI545, TI555
TI575

RLL Instruction Set 6-61SIMATIC TI505 Programming Reference

6.28 Load Data Constant

The Load Data Constant instruction (Figure 6-34) loads a (positive integer)
constant into the designated memory location.

LDC #

A :
N=

Input Output

I003330

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Memory location where constant is stored.

N 0–32767 Data constant (integer) to be loaded

Figure 6-34 LDC Format

When the input turns on, the LDC box executes. If the input remains on,
the instruction is executed on every scan.

• The data constant designated by N is loaded into the memory location
specified by A.

• When the function executes, the output turns on.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for word moves.

LDA MIRW MOVE MOVW MWFT MWI

MWIR MWTT SHRW

LDC Description

LDC Operation

See Also

LDC
Series 500
Series 505

RLL Instruction Set6-62 SIMATIC TI505 Programming Reference

6.29 Lock Memory

The LOCK instruction (Figure 6-35) works with the UNLCK instruction to
provide a means whereby multiple applications in the TI575 system
coordinate access to shared resources, generally G-Memory data blocks.

LOCK #

Mode

T:

Input Output

AA:

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Mode Exclusive or
Shared

An exclusive lock signals other application
programs that the resource is unavailable for
reading or writing. A shared lock signals other
application programs that the resource locations
are available for reading only.

T 0–3276.7 Time in milliseconds for an application program
to attempt to acquire control of the lock.

AA V, G, VMS, VMM
Memory location (two words) where lock
structure is stored*. Use the same address for
associated UNLCK instruction.

* This instruction also allows W, but the lock does not operate correctly if W is used.

Figure 6-35 LOCK Format

The process by which an application program acquires control of a lock is
described below.

• You must initialize the lock data structure prior to its first use.
Initialization consists of setting both AA and AA+1 to zero.

LOCK
TI575

LOCK Description

Acquiring Control
of the Lock

RLL Instruction Set 6-63SIMATIC TI505 Programming Reference

NOTE: It is recommended that an application program initialize all lock
data structures residing in its application space (G-Memory owned by the
application) on any scan in which the first scan status word (STW201)
indicates a transition from program to run, and on any scan in which the
first scan status word indicates a power-up restart or complete restart. If
you use this method, be sure to follow these programming practices for the
indicated first scan conditions:

Reset all lock-held states associated with the user program.

Do not attempt to acquire any lock in another application’s space.

For this method to operate correctly, all applications sharing a given
lock data structure must be mode-locked, and all restarts involving
these applications must specify the mode-locked option.

• When the input is on, the application attempts to acquire the lock. If
the lock is not available, the application continues to attempt
acquisition of the lock (the scan is suspended in the process) until the
lock is acquired or the specified timeout (T) has expired. A value of 0 for
T results in a single attempt to obtain the lock. A value of 3276.7
indicates that the application tries until it obtains the lock or the scan
watchdog fatal error occurs.

If the application obtains the lock before the timeout expires, the
output turns on and the scan continues.

If the timeout expires before the application obtains the lock, the
output turns off and the scan continues.

• When an application program attempts to acquire control of the lock,
the value in AA (AA+1) is examined. If this value indicates that the
lock is free, control of the lock passes to the inquiring application
program, the output turns on, and RLL execution continues at the next
rung.

• When an application program obtains control of the lock, the LOCK
instruction increments the value of a lock/unlock counter. The UNLCK
instruction decrements the lock/unlock counter when an application
program relinquishes control of a lock. If the counter is not equal to
zero at the end of the RLL scan, Bit 6 in STW01 is set to 1 and a value
of 3 is written to STW200.

• If the input is off, the instruction does not execute and there is no
power flow at the box output.

LOCK
TI575

RLL Instruction Set6-64 SIMATIC TI505 Programming Reference

Lock Memory (continued)

LOCK does not specify the G-Memory locations that are protected, nor does
LOCK actually prevent an application from reading or writing to these
G-Memory locations. You must determine which G-Memory locations
require lock protection and design your program code not to read from or
write to these locations when control of the lock cannot be acquired. Refer to
Figure 6-36 for an example of the LOCK instruction operation.

• When you program an exclusive lock, no other application program can
acquire control of the lock. Use this capability in programs that update
(write to) the shared resource protected by the lock.

• When you program a shared lock, more than one application program
can acquire control of the lock. Use this capability in programs that
read the shared resource protected by the lock.

C1 C3

C3

Lock data structure is stored in GA2 and GA3.
When C1 turns on, LOCK24 attempts to take
control of the lock at GA2, GA3. When LOCK24
acquires control of the lock, C3 turns on.

All other TI575 application programs are
designed not to write to GA102 and GA103
when LOCK 24 is active.

Exclusive

T: .1
AA GA2

LOCK 24

A: V100
B: GA102
C: GA102

ADD 33

ADD 33 is active only when C3 is
turned on by LOCK24.

C3

A: V101
B: GA103
C: GA103

SUB 63

SUB 63 is active only when C3 is
turned on by LOCK24.

C3 C512
UNLCK24 relinquishes control of the
lock stored in GA2, GA3.

AA GA2

UNLCK 24

C512

C512

Figure 6-36 Example of the LOCK Instruction

This RLL instruction is also used to coordinate access to shared resources.

UNLCK

LOCK
TI575

How the Lock
Protects Memory

See Also

RLL Instruction Set 6-65SIMATIC TI505 Programming Reference

6.30 Motor Control Alarm Timer

The MCAT instruction (Figure 6-37) is designed for use with a double input,
double feedback device. The MCAT operates similarly to the DCAT
instruction. However, the MCAT provides additional functions to operate
motor-driven devices that drive in opposite directions. You can use the
MCAT to replace several rungs of logic that are required to time the field
device’s operation and generate alarms in case of failure.

MCAT #

Output

Open

Close

Stop

P=
OF :
CF :
OA :
CA :
OO :
CO :

I003333

Field Valid Values Function

Varies with
configured memory

Instruction reference number. Range depends
on memory configured for timers/counters. The
assigned instruction number must conform to
the requirements of the timer/counter memory
discussed on page 4-6 in Section 4.2.

P 0000.1–3276.7 Time allowed for device being controlled to open
or close.

OF X, Y, C, B Open Feedback — Input from field device that
senses when device being controlled has opened.

CF X, Y, C, B Close Feedback — Input from field device that
senses when device being controlled has closed.

OA Y, C, B
Open Alarm — Turns on if Open input to the
MCAT is on and Open Feedback (OF) input does
not turn on before the MCAT timer times out.

CA Y, C, B
Close Alarm — Turns on if Close input to the
MCAT has turned on and Close Feedback (CF)
does not turn on before MCAT timer times out.

OO Y, C, B Open Output — Opens device being controlled.

CO Y, C, B Close Output — Closes device being controlled.

Figure 6-37 MCAT Format

MCAT Description

MCAT
TI545, TI555
TI560, TI575

RLL Instruction Set6-66 SIMATIC TI505 Programming Reference

Motor Control Alarm Timer (continued)

The following state changes for the MCAT are evaluated in the order listed.
If a condition is true, the specified actions are executed, and all remaining
conditions are not tested or executed.

1. If both OF and CF are on then
OO turns off, CO turns off,
OA turns on, CA turns on,
MCAT output turns off, and
TCC is set to zero.

2. If Stop input is on and/or both Open input and Close input are on
simultaneously, then
OO turns off, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is disabled.

3. If open was not been commanded, the timer did not time down, and the
Open input transitions from off to on while the Close input and the
Stop input are both off, then
OO turns on, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is reset.

4. If open was commanded, the Close and Stop inputs and OF are all off,
and the timer did not time down, then
OO turns on, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer times down by the amount of the previous scan.

5. If open was commanded, the Close and Stop inputs are off, and OF is
on, then
OO turns off, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is marked as timed down. This provides for immediate
alarming in case the OF input turns off prior to a subsequent close
command.

MCAT
TI545, TI555
TI560, TI575

MCAT State
Changes

RLL Instruction Set 6-67SIMATIC TI505 Programming Reference

6. If open was commanded, the Close and Stop inputs and OF are all off,
and if the timer has timed down, then
OO turns off, CO turns off,
OA turns on, CA turns off, and
MCAT output is turned off.

7. If close was commanded, the timer did not time down, and the Close
input transitions from off to on while the Open and Stop inputs are
both off, then
OO turns off, CO turns on,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is reset.

8. If close was commanded, the Open and Stop inputs and CF are all off,
and the timer has not timed down, then
OO turns off, CO turns on,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer times down by the amount of the previous scan.

9. If close was commanded, if the Open and Stop inputs are off, and CF is
on, then
OO turns off , CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is marked as timed down. This provides for immediate
alarming in case the CF input turns off prior to a subsequent open or
stop command.

10. If close has been commanded, if the Open and Stop inputs and CF are
all off, and the timer has timed down, then
OO turns off, CO turns off,
OA turns off , CA turns on, and
MCAT output turns off.

11. If none of the above conditions is true, then
OO turns off, CO turns off,
OA turns off , CA turns off, and
MCAT output turns on.

MCAT
TI545, TI555
TI560, TI575

RLL Instruction Set6-68 SIMATIC TI505 Programming Reference

Motor Control Alarm Timer (continued)

The MCAT timer times down from the preset value specified in P, that is
stored in TCP-Memory. The time current time is stored in TCC-Memory.

When the Open input transitions from off to on and the Close and Stop
inputs are both off, the OO turns on and the timer starts. Once triggered,
OO remains on independent of the Open input until one of the following
events occurs.

• The timer times to 0.
The OA turns on, and the OO turns off.

• The OF turns on while the CF remains off.
The OO turns off, and the timer resets to 0. If OF turns on and then
turns off, the OA comes on immediately (no time delay) the next time
the box is executed.

• The Stop input turns on.
The OO, CO, OA, and CA turn off, and the timer stays where it was
when Stop was received. If the Stop input turns off while the Open
input is on, then the timer starts at the preset value again—not at the
value when the Stop input turned on.

• The Close input turns on after the Open input turns off.
The CO turns on and the timer starts counting at the preset. The OO is
turned off.

When the Close input transitions from off to on, while the Open Command
and Stop Command Inputs are both off, the CO turns on and the timer
starts. CO turns on the motor that closes the valve. Once triggered, the CO
remains on, independent of the Close input, until one of the following events
occurs.

• The timer times to 0.
The CA turns on, and the CO turns off.

• The CF turns on while the OF remains off.
The CO turns off, and the timer resets. If CF turns on and then turns
off, the CA comes on immediately (no time delay) the next time the box
executes.

• The Stop input turns on.
The OO, CO, OA, and CA turn off.

• The Open input turns on after the Close input turns off.
The OO turns on. The CO turns off.

MCAT
TI545, TI555
TI560, TI575

MCAT Operation

Open Input
Turns On

Close Input
Turns On

RLL Instruction Set 6-69SIMATIC TI505 Programming Reference

The condition in which both the Close and Open inputs are on
simultaneously is treated as a Stop. The input remaining on when the other
turns off is seen as a transition from off to on, and the MCAT enters the
appropriate state.

When the Stop input overlaps an Open or Close input, the Stop overrides as
long as it is on. When the Stop turns off, the remaining input is seen as a
transition from off to on and drives the MCAT to the corresponding state.

The condition in which both Feedback signals are on simultaneously is an
error condition. Both Open and Close Alarms turn on, and both Open and
Closed Outputs turn off. Removing the conflicting feedback signals does not
clear the Open and Close Alarms. One of the MCAT inputs (Open, Close, or
Stop) must change state in order to clear the error state.

The box output is always on except during an alarm or error condition.

You can use other RLL instructions to read or write to the MCAT variables.
You can also use an operator interface to read or write to the MCAT
variables. While you are programming the MCAT, you are given the option
of protecting the preset values from changes made with an operator
interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Using the MCAT
Variables

See Also

MCAT
TI545, TI555
TI560, TI575

RLL Instruction Set6-70 SIMATIC TI505 Programming Reference

6.31 Master Control Relay

The Master Control Relay (Figure 6-38) is used to turn off blocks of outputs
controlled by segments of RLL programs. This is done by clearing the
discrete image register points of the controlled outputs to zero.

MCR #

MCR #

Start of MCR

Zone of control

End of MCR

I003334

E

Field Valid Values Function

1–8
Instruction reference number. Numbers can be
repeated; however, plan logic carefully when
nesting MCRs.

Figure 6-38 MCR Format

The MCR operates as an output-enable instruction.

• The MCR must have power flow, and not be nested within the zone of
control of an MCR not having power flow, for discrete outputs in the
MCR zone of control to turn on or stay on.

• The MCR controls the coils and discrete outputs of boxes, e.g., CMP,
DCAT, MCAT, drums, etc., in its zone of control.

• MCRE marks the end of the zone of control for the MCR having the
same reference number. If you do not use the MCRE, the remainder of
the program is placed under the control of the MCR.

You can make the MCRE conditional by placing a contact on the same
rung as the MCRE. If you do this, be sure that the contact that controls
the conditional MCRE is not controlled by the MCR.

! WARNING
Control devices can fail in an unsafe condition that could result in death or
serious injury, and/or damage to equipment.

Never use the MCR to replace a hardwired mechanical master control relay
used for an emergency stop function.

MCR
Series 500
Series 505

MCR Description

MCR/MCRE
Operation

RLL Instruction Set 6-71SIMATIC TI505 Programming Reference

Although the MCR controls the coils and discrete outputs of box instructions
within its zone of control, it does not control the power rail. Therefore, box
instructions continue to operate normally. In order to disable a box, use an
MCR-controlled coil output as a normal contact on the same rung that
contains the box. See Figure 6-39.

In Figure 6-39 the ADD is controlled by contact C2 when MCR2 is on. When
MCR2 is off, the ADD does not execute, regardless of the state of C2.

C1 Y12

MCR 2X1

MCR 2

E

I003335

ADD #

A :
B :
C :

C1 C1

C1

C2

Figure 6-39 Example of MCR Control of a Box

Refer to Section 6.26 and Section 6.54 for information about the action of
the MCR in conjunction with the JMP and SKP instructions.

MCR
Series 500
Series 505

RLL Instruction Set6-72 SIMATIC TI505 Programming Reference

Master Control Relay (continued)

In Figure 6-40 an MCR is located on rung A, and its zone of control is
terminated by the End Master Control Relay MCRE on rung D.

• When MCR2 has power flow, the ladder logic within its zone of control,
(rungs B and C), executes normally.

• When MCR2 does not have power flow, all RLL instructions still
execute normally, but outputs are turned off.

• Any Ys and Cs contained within an instruction, e.g., a drum, also turn
off. In Figure 6-40, when the MCR2 loses power flow, Y6, Y7, Y8, C1,
C2, and C3, as well as Y12 and Y451, turn off.

MCR
Series 500
Series 505

RLL Instruction Set 6-73SIMATIC TI505 Programming Reference

X37 Y12

MCR 2X1

X777

MCR 2

A

B

C

D

Zone

of

control

X10

X10

Y451

STP CNT/STP
SEC/CNT = .1
PRESET = 1

Drum 1
Y Y Y C C C
6 7 8 1 2 3

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 1

 1 17
 2 50
 3 23
 4 25
 5 100
 6 10
 7 20
 8 10
 9 25
10 10
11 9
12 5
13 15
14 61
15 10
16 15

E

I003336

Figure 6-40 Example of the MCR Zone of Control

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

MCR
Series 500
Series 505

RLL Instruction Set6-74 SIMATIC TI505 Programming Reference

6.32 Maskable Event Drum, Discrete

The MDRMD instruction (Figure 6-41) operates similarly to the event drum.
The MDRMD, however, is capable of specifying a configurable mask for each
step, that allows selection of the coils to be under the control of the fixed
mask in each MDRMD step.

PRESET = 1–16

MDRMD #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask

0 or 1

Coils (C or Y)

Jog

Y Y Y Y Y C C C C C Y Y Y C Y
6 7 8 9 1 1 1 1 5 5 2 2 2 2 3

0 3 4 5 7 8 6 7 8 9 0

Fixed

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

STP CNT EVENT
(1-16) (0-32,767) (X, Y, C, B)

MASK: V-, W-Memory

Field Valid Values Function

Varies with
controller model.

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-9 in Section 4.2.

MASK V, W, (G, VMS,
VMM, TI575)

First word of a 16-word table that contains the
configurable mask output patterns.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 sec. Time base. Amount of time for one count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

Coils Y, C, B, blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask turns coils on (1) or off (0) according to bit
pattern in configurable mask.

Figure 6-41 MDRMD Format

MDRMD
TI545, TI555
TI560, TI575

MDRMD
Description

RLL Instruction Set 6-75SIMATIC TI505 Programming Reference

When the drum begins to run, it starts at the step specified by the Drum
Step Preset, that is stored in DSP-Memory. The current step is stored in
DSC-Memory. The counts per step, set in the CNT field, is stored in
DCP-Memory. The current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
advances to the next step based on operation of the timer and/or event.

• When the drum advances a step, coils turn on/off according to the fixed
mask and the current bit pattern in the configurable mask.

• The drum output comes on, and remains on, after the last programmed
step is executed. The last programmed step is the last step having an
event programmed or having a non-zero CNT preset value (step 13 in
Figure 6-41). The event must be on (if one was programmed for this
step) and DCC must be zero. If the event goes off after DCC reaches
zero, the drum output remains on and the MDRMD remains at the last
programmed step until the drum is reset.

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All coils specified in the configurable mask maintain the condition
specified by the fixed mask.

• When the drum is at the Preset step, the coils specified in the
configurable mask follow the states specified by the fixed mask for that
step, even if the Enable/Reset input is off. Take care to program the
mask with a bit pattern that is a safe (home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

You can use the MDRMD in applications that require a configurable on/off
pattern for the drum coils. To do this, specify all 1s for the fixed mask of
every programmed step of the MDRMD and precede the MDRMD
instruction with the necessary instruction(s) to turn off unconditionally all
the MDRMD’s coils. The configurable mask table in memory must then
contain the on/off patterns that are to be written to the coils for each step.

MDRMD Operation

MDRMD
TI545, TI555
TI560, TI575

RLL Instruction Set6-76 SIMATIC TI505 Programming Reference

Maskable Event Drum, Discrete (continued)

The configurable mask is specified for each step by a memory location in the
mask field of the instruction. The configurable mask is located in 16
consecutive memory locations (allocated after entry of the first address). The
first location corresponds to step 1 of the drum; the second, to step 2, etc.
The mask is defined as being configurable because you can change the mask
by writing data to the memory locations.

The configurable mask allows selection of the coils to be controlled by the
fixed mask. When a bit of the configurable mask is on (set to 1), the fixed
mask controls the corresponding coil. When a bit of the configurable mask is
off (set to 0), the corresponding coil is left unchanged by the MDRMD.

The mapping between the configurable mask and the coils is shown below.
To match corresponding bits in the mask, coils are numbered from left to
right.

Configurable
mask word
bit position

Bit 1 of the configurable mask word is unused.

MDRMD coil #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Calculate CNT (DCP) for a step as follows.

For the TI560 (Rel. 3.0 or greater), TI545, TI555, and the TI575, set the
Counts/Step for the time that the drum must remain on a step according to
one of the following equations. (See also p. 6-42 for an example.)

CNT �
step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �
step time
scan time

� If SEC/CNT is 0, ⇒

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step equal to 0, and program a contact or coil in the event field for this
step. The drum remains at this step until the contact or coil specified by the
event turns on. Then the drum then advances to the next step.

MDRMD
TI545, TI555
TI560, TI575

Defining the Mask

Calculating
Counts/Step

Timer-triggered
Advance Only

Event-triggered
Advance Only

RLL Instruction Set 6-77SIMATIC TI505 Programming Reference

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program such that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

Other RLL instructions can be used to read or write to the MDRMD
variables. Use care when programming instructions that can alter or read
these variables. You can also use an operator interface to read or write to
the MDRMD variables.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. An APT program can
display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMW NOT SHRB

SKP/LBL TMR UDC

Timer and Event-
Triggered Advance

Timer or External
Event-triggered
Advance

Using MDRMD
Variables

See Also

MDRMD
TI545, TI555
TI560, TI575

RLL Instruction Set6-78 SIMATIC TI505 Programming Reference

6.33 Maskable Event Drum, Word

The MDRMW instruction (Figure 6-42) operates similarly to the event
drum, but the MDRMW writes data to a word instead of to individual coils.
The MDRMW also is capable of specifying a configurable mask for each
step. This allows the selection of the bits in the word to be changed by the
fixed mask in each MDRMW step.

MDRMW
TI545, TI555
TI560, TI575

MDRMW
Description

RLL Instruction Set 6-79SIMATIC TI505 Programming Reference

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

PRESET = 1–16

MDRMW #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask

0 or 1

Jog

+ – – – – – – – – – BIT NO. – – – – – – – – +
1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Fixed

OUTPUT: V, WY

STP CNT EVENT
(1-16) (0-32,767) (X, Y, C, B)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

word output

MASK: V-, W-Memory

Field Valid Values Function

Varies with
controller model.

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-9 in Section 4.2.

MASK V, W, (G, VMS,
VMM, TI575)

First word of a 16-word table that contains the
configurable mask output patterns.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 sec. Time base. Amount of time for one count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

OUTPUT

WY, V, TCP,
TCC,G,W,VMS,
VMM,DSP,DSC,
DCP,DCC

Word location to which the drum writes. Bit 1 is
always set to zero.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask gives the value of the bits of the output
word.

Figure 6-42 MDRMW Format

MDRMW
TI545, TI555
TI560, TI575

RLL Instruction Set6-80 SIMATIC TI505 Programming Reference

Maskable Event Drum, Word (continued)

When the drum begins to run, it starts at the step specified by the Drum
Step Preset, that is stored in DSP-Memory. The current step is stored in
DSC-Memory. The counts per step, set in the CNT field, is stored in
DCP-Memory. The current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
advances to the next step based on operation of the timer and/or event.

• When the drum advances a step, individual bits of the output word
turn on/off based on the fixed mask and the current bit pattern in the
configurable mask.

• The drum output comes on, and remains on, after the last programmed
step has been executed. The last programmed step is the last step
having an event programmed or having a non-zero CNT preset value
(step 13 in Figure 6-42). The event must be on (if one was programmed
for this step) and DCC must be zero. If the event goes off after DCC
reaches zero, the drum output remains on and the MDRMW remains at
the last programmed step until the drum is reset.

• When the Enable/Reset turns off, the drum output turn off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All bits specified in the configurable mask maintain the condition
specified by the fixed mask.

• When the drum is at the Preset step, the bits specified in the
configurable mask follow the states specified by the fixed mask for that
step, even if the Enable/Reset input is off. Take care to program the
mask with a bit pattern that is a safe (home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

MDRMW
TI545, TI555
TI560, TI575

MDRMW Operation

RLL Instruction Set 6-81SIMATIC TI505 Programming Reference

The configurable mask is specified for each step by a memory location in the
mask field of the instruction. The configurable mask is located in 16
consecutive memory locations (allocated after entry of the first address). The
first location corresponds to step 1 of the drum; the second, to step 2, etc.
The mask is defined as being configurable because you can change the mask
by writing data to the memory locations.

The configurable mask allows selection of the individual bits in the output
word that are set/cleared by the fixed mask. When a bit of the configurable
mask is on (set to 1), the fixed mask sets/clears the corresponding bit. When
a bit of the configurable mask is off (set to 0), the corresponding bit is left
unchanged by the MDRMW.

The mapping between the configurable mask and the individual bits in the
output word is shown below.

Configurable
mask word
bit position

Bit 1 of the configurable mask word is not used.
Bit 1 of the output word is not used and is always equal to zero.

Output word bit #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I003340

Calculate CNT (DCP) for a step as follows.

For the TI560 (Rel. 3.0 or greater), TI545, TI555, and the TI575, set the
Counts/Step for the time that the drum must remain on a step according to
one of the following equations. (See also p. 6-42 for an example.)

CNT �
step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �
step time
scan time

� If SEC/CNT is 0, ⇒

Defining the Mask

Calculating
Counts/Step

MDRMW
TI545, TI555
TI560, TI575

RLL Instruction Set6-82 SIMATIC TI505 Programming Reference

Maskable Event Drum, Word (continued)

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step equal to 0, and program a contact or coil in the event field for this
step. The drum remains at this step until the contact or coil specified by the
event turns on. The drum then advances to the next step.

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program so that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

MDRMW
TI545, TI555
TI560, TI575

Timer-triggered
Advance Only

Event-triggered
Advance Only

Timer and Event-
Triggered Advance

Timer or External
Event-triggered
Advance

RLL Instruction Set 6-83SIMATIC TI505 Programming Reference

Other RLL instructions can be used to read or write to the MDRMW
variables. Use care programming instructions that can alter or read these
variables. You can also use an operator interface to read from or write to the
MDRMW variables.

It is possible to read/write data from/to drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. An APT program can
display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD NOT SHRB

SKP/LBL TMR UDC

Using MDRMD
Variables

See Also

MDRMW
TI545, TI555
TI560, TI575

RLL Instruction Set6-84 SIMATIC TI505 Programming Reference

6.34 Move Image Register From Table

The Move Image Register From Table instruction (Figure 6-43) allows you
to copy information into the control relays or the discrete image register
from a table of consecutive word locations.

MIRFT #

TS :
IR :
N=

Input Output

I003341

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

TS Any readable word Starting address of source table.

IR X, Y, C, B
Starting address of the control relays or the
discrete image register. Must begin on an
8-point boundary (1, 9, 17, etc.)

N 1–256 Length of table in words.

Figure 6-43 MIRFT Format

When the input is on, the MIRFT box executes. If the input remains on, the
operation executes every scan. The operation of the MIRFT follows and is
illustrated in Figure 6-44.

• The values of up to 256 (N) words (16–4096 bits) are copied, starting at
the memory location specified by TS.

The copy is placed in the control relays or the discrete image register.
The LSB of the first word is copied into the point specified by IR.

The beginning point in the control relays or the discrete image register
must be on an eight-point boundary (1, 9, 17, etc.).

For TI560T/TI565P models, the destination of the words being copied
cannot cross the boundary between global and local control relays:
8192||8193.

MIRFT
TI545, TI555
TI560, TI575

MIRFT Description

MIRFT Operation

RLL Instruction Set 6-85SIMATIC TI505 Programming Reference

• All words are copied into the control relays or the image register on
each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Control relays

0 1 0 1 0 1 0V100
V101
V102
V103

Table

MSB LSB
0 10 10 111 0

MIRFT 2
OutputInput

0 1 0 1 0 1 0

C
14

C
15

C
13

C
11

C
12

C
10

C
9

C
21

C
22

C
20

C
18

C
19

C
17

C
16

C
23

C
24

1 0 1 0 1 0 101

0 0 0 1 1 1 1

C
30

C
31

C
29

C
27

C
28

C
26

C
25

C
37

C
38

C
36

C
34

C
35

C
33

C
32

C
39

C
40

0 0 1 1 1 1 000

0 0 0 1 1 1 11 01 10 100 0

TS : V100
IR : C9
N = 2

I003342

Figure 6-44 Example of MIRFT Operation

These RLL instructions are also used for table operations.

MIRTT STFE STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

MIRFT
TI545, TI555
TI560, TI575

RLL Instruction Set6-86 SIMATIC TI505 Programming Reference

6.35 Move Image Register To Table

The Move Image Register To Table instruction (Figure 6-45) allows you to
copy information from the control relays or the discrete image register to a
table of consecutive word locations.

MIRTT #

IR :
TD :
N=

Input Output

I003343

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

IR X, Y, C, B
Starting address of the control relays or the
discrete image register. Must begin on an
8-point boundary (1, 9, 17, etc.)

TD Any writeable
word

Starting address of the destination table.

N 1–256 Length of table in words.

Figure 6-45 MIRTT Format

When the input is on, the MIRTT box executes. If the input remains on, the
operation executes on every scan. The operation of the MIRTT follows and is
illustrated in Figure 6-46.

• The On/Off state of up to 4096 bits (256 words × 16 bits) is copied from
the control relays or the discrete image register, starting at the bit
address specified by IR.

The starting point must be on an 8-point boundary (1, 9, 17, etc.). Bits
are copied in groups of 16.

For TI560T/TI565P models, the group of bits being copied cannot cross
the boundary between global and local control relays: 8192||8193.

The copy begins with the lowest numbered bit address and is placed
into word locations, beginning with the LSB of the word specified by
TD.

MIRTT
TI545, TI555
TI560, TI575

MIRTT Description

MIRTT Operation

RLL Instruction Set 6-87SIMATIC TI505 Programming Reference

• All bits are copied into the word locations each scan. There must be a
sufficient number of discrete points to copy all bits into the table of N
words.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

Control relays

1 1 1 0 0 0 0V100
V101
V102
V103

Table

MSB LSB
0 10 01 011 1

IR : C9
TD : V100
N = 2

MIRTT 2

OutputInput

1 1 1 0 0 0 0

C
14

C
15

C
13

C
11

C
12

C
10

C
9

C
21

C
22

C
20

C
18

C
19

C
17

C
16

C
23

C
24

1 1 0 0 0 0 111

1 0 1 0 1 0 1

C
30

C
31

C
29

C
27

C
28

C
26

C
25

C
37

C
38

C
36

C
34

C
35

C
33

C
32

C
39

C
40

0 1 0 1 0 1 010

1 0 1 0 1 0 11 01 01 000 1

I003344

Figure 6-46 Example of MIRTT Operation

These RLL instructions are also used for table operations.

MIRFT STFE STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

MIRTT
TI545, TI555
TI560, TI575

RLL Instruction Set6-88 SIMATIC TI505 Programming Reference

6.36 Move Image Register To Word

The Move Image Register To Word instruction (Figure 6-47) copies a
specified number of bits from the discrete image register or the control relay
memory locations to a designated word memory location. Up to 16 bits are
copied in a single scan.

MIRW #

IR :
A :
N=

Input Output

I003345

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

IR X, Y, C, B Starting address of the control relays or the
discrete image register bits to be copied.

A Any writeable
word

Specifies word memory location to which bits
are copied.

N 1–16 Number of bits to be copied.

Figure 6-47 MIRW Format

When the input is on, the MIRW box executes. If the input remains on, the
operation executes on every scan. The operation of the MIRW box follows
and is illustrated in Figure 6-48.

• Up to 16 bits (N) are copied, beginning with the lowest numbered
address, that is specified by IR.

• The bits are moved into the word memory location specified by A,
beginning with the LSB of the word. If fewer than 16 bits are moved,
the remaining bits are set to 0. All bits are copied during a single scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MIRW
Series 500
Series 505

MIRW Description

MIRW Operation

RLL Instruction Set 6-89SIMATIC TI505 Programming Reference

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

16151413121110987654321

Specified wordMSB LSB

I003346

X, Y, C,
or B

Figure 6-48 Example of MIRW Operation

These RLL instructions are also used for word moves.

LDA LDC MOVE MOVW MWFT MWI

MWIR MWTT SHRW

Refer to Section E.7 for an application example of the MIRW.

See Also

MIRW
Series 500
Series 505

RLL Instruction Set6-90 SIMATIC TI505 Programming Reference

6.37 Move Element

The Move Element instruction (Figure 6-49) copies data elements (bytes,
words, or long words) from a source location to a destination location.

MOVE #

TS :
SI :
TD :
DI :
N=

Input OutputType

I003347

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Type Byte, Word, or
Long Word

Specifies type of the element(s) to be copied:
byte = 8 bits, word = 16 bits, long word = 32 bits.

TS

Signed constant
(range varies with
size of element) or
Any readable word

Specifies source element to be copied. Can be a
constant, a direct address, or an indirect
address (a memory location containing the
address of another memory location).

SI

Blank,
Unsigned constant
(0 to 65535) or
Any readable word

Optional index. Designates that the SIth

element in a table referenced by TS is to be
copied. The element at TS is zero (0).

TD

For direct address:
Any writeable
word

For indirect
address:
Any readable word

Specifies the destination of the copy. TD can be
a direct address or an indirect address (a long
word containing the address of another memory
location).

DI

Blank,
Unsigned constant
(0 to 65535) or
Any readable word

Optional index. Designates the relative element
in a table referenced by TD, into which the
element is copied. The element at TD is zero (0).

N
Unsigned constant
(1 to 32767) or
Any readable word

Specifies number of elements to be copied.

Figure 6-49 MOVE Format

MOVE
TI545, TI555
TI575

MOVE Description

RLL Instruction Set 6-91SIMATIC TI505 Programming Reference

When the input is on, the MOVE box executes. If the input remains on, the
instruction executes on every scan. The operation of MOVE is described
below and illustrated in Figure 6-52.

• The element(s) specified in A are copied to the destination specified
in B.

• The output turns on and STW01 bit 11 turns off after the instruction
executes, unless an error occurs. See notes below.

NOTE: If the count is invalid or any referenced data element is undefined,
the user program error bit (6) and the instruction failed bit (11) in STW01
are set to 1. If this is the first program error encountered on the current
RLL scan, the value 5 (Table overflow) is written to STW200. Finally, power
flow is turned off and the RLL scan continues with the next instruction of
the current network. The contents of the destination are not changed.

NOTE: For the TI575, if a MOVE instruction attempts to access a
non-existent VMEbus address, a VMEbus error occurs. If this is the first
VMEbus error, the offending address is written to STW227-STW228 and
STW229-STW230 is cleared. Next, the user program error bit (6) and the
instruction failed bit (11) in STW01 are set to 1 and, if this is the first
program error encountered on the current RLL scan, the value 7 (VMEbus
error) is written to STW200. The controller then continues execution with
the next RLL instruction of the current network after turning power flow
off. If the VMEbus error occurred in the middle of the MOVE operation, a
partial move occurred.

When the input is off, the instruction does not execute and there is no power
flow at the box output. Bit 11 of STW01 turns off.

Designate the type of the data elements to be moved.

• Byte — The element is 8 bits long.

• Word — The element is 16 bits long.

• Long word — The element is 32 bits long.

MOVE Operation

Specifying Type of
Elements

MOVE
TI545, TI555

TI575

RLL Instruction Set6-92 SIMATIC TI505 Programming Reference

Move Element (continued)

You can specify any of the following elements in TS.

• Constant value (range is determined by the data element type) —
Specify any signed integer. When the MOVE executes, the specified
value is copied to each element of the destination table.

• Direct address — Specify any readable word and designate it a direct
address. MOVE copies the contents of the memory location(s), starting
at this address, to the destination.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the “@” character, e.g.,
@V929. The long word at this indirect address must contain another
address, and MOVE copies the contents of the memory location(s),
starting at this second address, to the destination.

Use the LDA instruction to load an address into a memory location.

Use the first optional field SI as an index into a table when you want to copy
elements of a table to a destination. SI designates the relative element, in
the table referenced by TS, that is to be copied. The element at TS0 is the
first element in the table. You can specify one of the following in SI.

• Constant index (range = 0 to 65535) — You can leave IN blank or enter
0 and no indexing is done.

• Variable index — Specify any readable word. The content of this word
is an unsigned integer (0–65535) that gives the element number of the
first element to copy.

If an indirect source address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-50.

MOVE 3

TS : @K10
SI : 2
TD : V37
DI :
N = 1

Input OutputWord K10 is an indirect address, as indicated by the @ character,
that contains address WX1000.

The actual contents of K10 and K11 are:
K10 = 0900 (Hex)
K11 = 03E7 (Hex)

Word 0

Word 1

Word 2

TS[0]: WX1000

TS[1]: WX1001

TS[2]: WX1002

Because index SI = 2, the contents of WX1002 are moved.

The controller resolves the indirect
address . . .

. . . and then moves the contents at
the address determined by the index.

The contents of
WX1002 are
moved into V37.

Figure 6-50 Address/Source Index Resolution

MOVE
TI545, TI555
TI575

Specifying Source

Specifying Index
for Source

RLL Instruction Set 6-93SIMATIC TI505 Programming Reference

You can specify one of the following elements in TD.

• Direct address — Specify any writeable word and designate it a direct
address. MOVE copies the source element(s) into the memory
location(s) starting at this address.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character, e.g.,
@V929. The long word at this indirect address must contain another
address, and MOVE copies the source element(s) into the memory
location(s), starting at this second address. Use the LDA instruction to
load an address into a memory location. You can enter a readable word,
e.g., a K-Memory address into field TD, but the second address
referenced by the address in TD must be a writeable word.

Use the second optional field DI as an index into a table when you want to
copy an element(s) into a table. DI designates the relative element in a
table, referenced by TD, into which the source is copied. The element at TD0
is the first element in the table.

You can specify one of the following in DI.

• Constant index (range = 0 to 65535) — You can leave DI blank or enter
0 and no indexing is done.

• Variable index — Specify any readable word. The content of this
address is an unsigned integer (0 to 65535) that gives the element
number of the first element in the table to which the source element(s)
is copied.

If an indirect destination address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-51.

MOVE 3

TS : V37
SI :
TD : @K10
DI : 2
N = 1

Input OutputWord K10 is an indirect address, as indicated by the @ character,
that contains address WY1000.

The actual contents of K10 and K11 are:
K10 = 0A00 (Hex)
K11 = 03E7 (Hex)

Word 0

Word 1

Word 2

TD[0]: WY1000

TD[1]: WY1001

TD[2]: WY1002

Because index DI = 2,
the contents of V37 are
moved into WY1002.

The controller resolves the indirect
address . . .

. . . and then moves the value into
the address determined by the index.

Figure 6-51 Address/Destination Index Resolution

Specifying
Destination

Specifying Index
for Destination

MOVE
TI545, TI555

TI575

RLL Instruction Set6-94 SIMATIC TI505 Programming Reference

Move Element (continued)

Designate the number of elements to be copied in the count field N. You can
specify one of the following in N.

• Constant count: Specify an unsigned integer in the range 1–32767.

• Variable count: Enter any readable word. The value of the count is
determined by the contents of this word when the MOVE executes. The
count range is 0–32767, where 0 means that no elements move.

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVW MWFT MWI

MWIR MWTT SHRW

Refer to Figure 6-52 for examples of the MOVE instruction.

Input Output

1 1 1 1 1 1 11 1 1 1 1 1 1 01

Example 1

B: V71 Contains –2

MOVE 34

TS Contains: –2
Copy the value –2 to
location V71.

Example 2Input Output

TD[3]: V114

MOVE 35

TD[2]: V113

TD[1]: V112

TD[0]: V111

Copy the constant value
9137 into a table that
begins at V111. The copy
starts at relative word 3 of
the table. Values are
copied into the 4th, 5th,
6th, 7th and 8th positions
of the table.

Word 0

Word 1

Word 2

Word 3

TD[4]: V115Word 4

TS: Contains 9137

TD[5]: V116Word 5

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ

0 0 1 0 0 1 10 1 0 1 1 0 0 10

TD[6]: V117Word 6

TS : –2
SI :
TD : V71
DI :
N = 1

Word

TS : 9137
SI :
TD : V111
DI : 3
N = 5

Word

ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ

TD[7]: V118Word 7

I003350

Figure 6-52 Examples of the MOVE Instruction

MOVE
TI545, TI555
TI575

Specifying Number
of Elements to
Move

See Also

RLL Instruction Set 6-95SIMATIC TI505 Programming Reference

Example 4
Input OutputMOVE 37

TS[6], TS[7]: V114

TS[4], TS[5]: V113

TS[2], TS[3]: V112

TS[0], TS[1]: V111

1 byte

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

Table 1

Word 0

Word 1

Word 2

Word 3

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ TD[2], TD[3]: V700

TD[0], TD[1]: V699

TD[4], TD[5]: V701

Table 2

Word 0

Word 1

Word 2

1 byte

Byte 0 Byte 1

Byte 2 Byte 3

Byte 4 Byte 5

Byte 6

Byte 0 Byte 1

Byte 2 Byte 3

Byte 4

MSB LSB

Byte 5

TS[3]: V114

Example 3Input OutputMOVE 36

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ TS[2]: V113

TS[1]: V112

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ TS[0]: V111

TD[1]: V700

TD[0]: V699

TD[2]: V701

Table 1

Table 2

Word 0

Word 1

Word 2

Word 3

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

Word 0

Word 1

Word 2

TS[4]: V115Word 4

TD[3]: V702Word 3

TS : V111
SI : 3
TD : V699
DI : 2
N = 2

Word Copy the 4th and 5th

words (relative words 3
and 4) of a table that
begins at V111.

Place the copy in a
second table that starts at
V699, beginning at
relative word 2. Values
are copied into the 3rd

and 4th positions of the
table.

Copy the 6th and 7th bytes
(relative bytes 5 and 6) of
a table that begins at
V111.

Place the copy in a
second table that starts at
V699, beginning at
relative byte 4. Values are
copied into the 5th and 6th

positions of the table.

TS : V111
SI : 5
TD : V699
DI : 4
N = 2

Byte

I003351

Figure 6-52 Examples of the MOVE Instruction (continued)

MOVE
TI545, TI555

TI575

RLL Instruction Set6-96 SIMATIC TI505 Programming Reference

Move Element (continued)

Example 5Input OutputMOVE 38

TS[0]: V100
V101

Table 1

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V500 contains 2;
therefore the TS index
points to V104.

V501 contains 3;
therefore TD index
points to V26.

Table 2

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

Long Word 5

TS : V100
SI : V500
TD : V20
DI : V501
N = 3

Long Word Copy the 3rd, 4th and 5th

long words (relative words
2–4) of a table that begins
at V100.

Place the copy in a
second table that starts at
V20, beginning at relative
word 3. Values are copied
into the 4th, 5th, 6th

positions of the table.

TS[1]: V102
V103

TS[2]: V104
V105

TS[3]: V106
V107

TS[4]: V108
V109

TD[0]: V20
V21

TD[1]: V22
V23

TD[2]: V24
V25

TD[3]: V26
V27

TD[4]: V28
V29

TD[5]: V30
V31

I003352

Figure 6-52 Examples of the MOVE Instruction (continued)

MOVE
TI545, TI555
TI575

RLL Instruction Set 6-97SIMATIC TI505 Programming Reference

Example 6

Input OutputMOVE 39
Table 1

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V100 is an indirect address, as
indicated by the @ character,
that contains address WX1000.

K30 contains 5; therefore
5 long words are copied.

Table 2

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V102 contains 3; therefore
the TS index points to
WX1006.

V103 is an indirect address,
as indicated by the @
character, that contains
address WY100.

Long Word 5

Long Word 6

Long Word 7

TS : @V100
SI : V102
TD : @V103
DI :
N = K30

Long Word
Copy the 4th–8th long
words (relative words 3–7)
of a table that begins at
WX1000.

Place the copy in a second
table that starts at WY100,
beginning at relative long
word 0. Values are copied
into the 1st–5th positions of
the table.

TS[0]: WX1000
WX1001

TS[1]: WX1002
WX1003

TS[2]: WX1004
WX1005

TS[3]: WX1006
WX1007

TS[4]: WX1008
WX1009

TS[5]: WX1010
WX1011

TS[6]: WX1012
WX1013

TS[7]: WX1014
WX1015

TD[0]: WY100
WY101

TD[1]: WY102
WY103

TD[2]: WY104
WY105

TD[3]: WY106
WY107

TD[4]: WY108
WY109

I003353

The actual contents of
V100 and V101 are:
V100 = 0900 (Hex)
V101 = 03E7 (Hex)

The actual contents of
V103 and V104 are:
V103 = 0A00 (Hex)
V104 = 0064 (Hex)

Figure 6-52 Examples of the MOVE Instruction (continued)

MOVE
TI545, TI555

TI575

RLL Instruction Set6-98 SIMATIC TI505 Programming Reference

6.38 Move Word

The Move Word instruction (Figure 6-53) copies up to 256 contiguous words
from one location to another. The starting memory location for the words to
be moved is specified by A, and the starting memory location for their
destination is specified by B. All words are copied in a single scan.

MOVW #

A :
B :
N =

Input Output

I003354

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Starting memory location for the words to be
copied.

or constant
(–32768 to +32767)

Value to be copied if a constant is used.

B Any writeable
word

Starting memory location for the destination.

C 1–256 Number of words to be copied.

Figure 6-53 MOVW Format

MOVW
Series 500
Series 505

MOVW Description

RLL Instruction Set 6-99SIMATIC TI505 Programming Reference

When the input is on, the MOVW box executes. If the input remains on, the
operation executes on every scan. The operation of MOVW follows and is
illustrated in Figure 6-54.

• A table of up to 256 (N) words having a starting memory location
specified by A are copied.

If a constant value is specified in A, then the constant is copied to all
destination locations.

• The words are copied to a destination beginning at the memory location
designated by B.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Input OutputMOVW 1

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

A: TCP45

TCP46

TCP47

TCP48

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

V301

V302

V303

TCP45

B: V300

V300

A : TCP45
B : V300
N = 4

I003355

Figure 6-54 The MOVW Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MWFT MWI

MWIR MWTT SHRW

MOVW Operation

See Also

MOVW
Series 500
Series 505

RLL Instruction Set6-100 SIMATIC TI505 Programming Reference

6.39 Multiply

The Multiply instruction (Figure 6-55) multiplies a signed integer in
memory location A by a signed integer in memory location B. The product is
stored in one long word, CC and CC + 1.

MULT #

A :
B :

CC :

Input Output

I003356

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Memory location for the multiplicand (a word).

B Any readable word Memory location for the multiplier (a word).

or constant
(–32768 to +32767)

Value of the multiplier if a constant is used.

CC Any writeable
long word

Memory location for the product (a long word).
CC holds the 16 most significant bits, and
CC + 1 holds the 16 least significant bits.

Figure 6-55 MULT Format

When the input is on, the MULT box executes. If the input remains on, the
operation executes on every scan. The operation of the MULT, that is
illustrated in Figure 6-56, is (CC, CC + 1) = A × B.

• The values in A and B are not affected by the operation.

• When the multiplication executes, the output turns on.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MULT
Series 500
Series 505

MULT Description

MULT Operation

RLL Instruction Set 6-101SIMATIC TI505 Programming Reference

MULT 1

A:

B:

CC:

0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 1

integer =
 +6404

integer =
 +545

integer =
 +3,490,180

0 0

0 0 1 1

0 0

WX9 =

V307 =

V308 =

V309 =

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V308

V307

WX9

C10X37

I003357

Figure 6-56 Multiplication Example

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV SQRT SUB

Relational Contact

See Also

MULT
Series 500
Series 505

RLL Instruction Set6-102 SIMATIC TI505 Programming Reference

6.40 Move Word From Table

The Move Word From Table instruction (Figure 6-57) copies a word from a
table to a V-Memory location. A table pointer designates the address of the
next word in the table to be copied. One word is copied each scan.

MWFT #

A :
B :

S :
N=

Input Output

Enable/
Reset

I003358

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of table-move memory on
page 4-6 discussed in Section 4.2.

A V, W, (G, VMS,
VMM, TI575)

Specifies memory location of the table pointer.
The value contained in pointer A is the memory
location in the table of the next word to be
copied.

B V, W, (G, VMS,
VMM, TI575)

Memory location of the destination.

S V Starting address of the table.

N 1–256 Number of words to be copied.

Figure 6-57 MWFT Format

The operation of the MWFT is described below and illustrated in
Figure 6-58.

• When the Enable/Reset is off, the table starting address S loads into
pointer A.

• When the Enable/Reset turns on, the box is enabled. When the Input
also turns on, the following actions occur.

A word is copied from the table address specified by the value
contained in pointer A to the memory location specified by B.

MWFT
Series 500
Series 505

MWFT Description

MWFT Operation

RLL Instruction Set 6-103SIMATIC TI505 Programming Reference

After the word is copied, table pointer A, that holds the address of the
next word in the table to be copied, increments by 1.

If the Input and the Enable/Reset remain on, one word is copied every
scan. As each word is copied, the table pointer increments until N
words are copied.

• The output turns on when the last word is copied.

• When the instruction is reset, all table values remain unchanged, and
destination address B contains the last word copied from the table.

If the Enable/Reset is off, the instruction does not execute, and there is no
power flow at the box output.

V200

V229

Input OutputMWFT 2

A: V500

 N=30

B: V100
S: V200

1st word copied from table

30th word copied from table

V201

V202

V228

V227

Enable/
Reset

V100 Pointer A

= 200

= 201

= 202

= 227

= 228

= 229

V500

200

Table starting address
S = V200

Destination
address B

Word copied
from table

When the MWFT is reset, data in location S
is loaded into pointer A so that V500 equals
200. This “200” tells the MWFT to copy the
next word from V200.

When the Enable/Reset turns on and the
Input turns on, the word in V200 is placed in
V100. V500 (the pointer) is incremented by
one so that it points to V201 (V500 equals
201). As long as the Enable/Reset and the
Input are on, operation continues until 29
more words have been copied.

When a word has been copied from V229,
the MWFT output turns on. V500 remains at
229, and the box does not execute again
until it is reset.

Figure 6-58 The MWFT Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWI

MWIR MWTT SHRW

Refer to Section E.10 for an application example of the MWFT.

See Also

MWFT
Series 500
Series 505

RLL Instruction Set6-104 SIMATIC TI505 Programming Reference

6.41 Move Word with Index

The Move Word with Index instruction (Figure 6-59) allows you to copy up
to 256 words from one area of V-Memory to another area of V-Memory
during a single scan.

MWI #

A :
B :

N :

Input Output

I003360

Field Valid Values Function

0–32767 Instruction refererence number. Numbers for
documentation purposes only; can be repeated.

A

V, W, (G, VMS,
VMM, TI575)
or constant
(–32768 to +
32767)

Memory location of word which gives the
V Memory index for the base of the source table.
The addressed word can contain a value in the
range 1 to 32767, correspondong to V1 through
V32767, respectively.

B V, W, (G, VMS,
VMM, TI575)

Memory location of word which gives the
V Memory index for the base of the source table.
The addressed word can contain a value in the
range 1 to 32767, correspondong to V1 through
V32767, respectively.

N V, W, (G, VMS,
VMM, TI575)

Memory location of word which gives the
number of words to be moved. The addressed
word can contain a value in the range 0 (don’t
move) through 256.

Figure 6-59 MWI Format

When the input is on, the MWI box executes. If the input remains on, the
operation is executed on every scan. The operation of the MWI is described
below and illustrated in Figure 6-60.

• The V Memory table having a starting index specified in the word
addressed by A is copied to the V Memory table having a starting index
specified in the word addressed by B.

• Up to 256 words can be copied as determined by the content of the word
addressed by N.

• All words are copied into the destination table each scan.

MWI
TI545, TI555
TI560, TI575

MWI Description

MWI Operation

RLL Instruction Set 6-105SIMATIC TI505 Programming Reference

• If the sum of the number of words to move and either the source
(destination) table index exceeds the configured size (in words) of V
Memory, or if the number of words exceeds 256, the instruction does
not execute. The output turns on when the instruction is executed.

• If either the source or the destination pointer plus table length exceeds
V Memory size, the instruction does not execute. The output is turned
off, and bit 11 in Status Word 01 is set.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Input OutputMWI 31

A: V500
B: V100
N: V200

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

A: V500 = 190

V191

V192

V193

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

V1001

V1002

V1003

V190

B: V100 = 1000

V1000

N: V200 = 4

I003361

Figure 6-60 The MWI Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWIR MWTT SHRW

See Also

MWI
TI545, TI555
TI560, TI575

RLL Instruction Set6-106 SIMATIC TI505 Programming Reference

6.42 Move Word to Image Register

The Move Word To Image Register instruction (Figure 6-61) copies a
specified number of bits from a word memory location to the discrete image
register or into the control relay memory locations. All bits are copied in a
single scan.

MWIR #

A :
IR :
N=

Input Output

I003362

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location from which the bits
are copied.

IR Y, C, B Starting address of the control relays or the
discrete image register.

N 1–16 Number of bits to be copied.

Figure 6-61 MWIR Format

When the input is on, the MWIR box executes. If the input remains on, the
operation executes on every scan. The operation of the MWIR box is
described below and illustrated in Figure 6-62.

• Up to 16 bits (N) in the word memory location specified by A are copied,
beginning with the least significant bit of the word.

• Bits are copied into the discrete image register or into the control relay
memory locations, starting at the address designated by IR. The bits
are copied during a single scan.

• The output turns on when the instruction is executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MWIR
Series 500
Series 505

MWIR Description

MWIR Operation

RLL Instruction Set 6-107SIMATIC TI505 Programming Reference

Y16

Y15

Y14

Y13

Y12

Y11

Y10

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Specified wordMSB LSB

I003363

Y, C, or B

Figure 6-62 The MWIR Format

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWTT SHRW

Refer to Section E.8 for an application example of the MWIR.

See Also

MWIR
Series 500
Series 505

RLL Instruction Set6-108 SIMATIC TI505 Programming Reference

6.43 Move Word to Table

The Move Word To Table instruction (Figure 6-63) copies a word from a
source in memory to a destination within a table. A pointer designates the
memory location in the table into which the next word is copied. One word is
copied per scan.

MWTT #

A :
B :
S :
N=

OutputInput

Enable/
Reset

I003364

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of table-move memory
discussed on page 4-6 in Section 4.2.

A V, W, (G, VMS,
VMM, TI575)

Specifies memory location of the word to be
copied.

B V, W, (G, VMS,
VMM, TI575)

Specifies memory location of the table pointer.
The value contained in pointer B is the table
memory location into which the next word is
copied.

S V Starting address of the table.

N 1–256 Size of the table in words.

Figure 6-63 MWTT Format

The operation of the MWTT is described below and shown in Figure 6-64.

• When the Enable/Reset is off, the table starting address S is loaded into
pointer B.

• When the Enable/Reset turns on, the box is enabled. When the Input
also turns on, the following actions occur.

MWTT
Series 500
Series 505

MWTT Description

MWTT Operation

RLL Instruction Set 6-109SIMATIC TI505 Programming Reference

A word is copied from the memory location specified by A to the table
memory location specified by the value contained in pointer B.

Pointer B, which holds the destination memory location in the table for
the next word, increments by 1.

If the Input remains on, one word is copied every scan. As each word is
copied, the table pointer increments until N words are copied.

• The output turns on when the last word is copied.

• When the instruction is reset, all values in the table remain
unchanged.

If the Enable/Reset is off, the instruction does not execute, and there is no
power flow at the box output.

V200

V229

Input OutputMWTT 1

A: V100

N: 30

B: V500
S: V200

1st word copied into table

30th word copied into table

V201

V202

V228

V227

Enable/
Reset

V100 Pointer B

= 200

= 201

= 202

= 227

= 228

= 229

V500

200

Table starting address
S = V200

Source address A

Word to copy
into table

When the MWTT is reset, data in location S
is loaded into pointer B so that V500 equals
200. This “200” tells the MWTT to copy the
next word into V200.

When the Enable/Reset turns on and the
Input turns on, the word in V100 is placed in
V200. V500 (the pointer) is incremented by
one so that it points to V201 (V500 equals
201). As long as the Enable/Reset and the
Input are on, operation continues until 29
more words have been copied.

When a word has been copied into V229,
the MWTT output turns on. V500 remains at
229, and the box does not execute again
until it is reset.

Figure 6-64 The MWTT Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWIR SHRW

Refer to Section E.9 for an application example of the MWTT.

See Also

MWTT
Series 500
Series 505

RLL Instruction Set6-110 SIMATIC TI505 Programming Reference

6.44 NOT

The NOT instruction (Figure 6-65) inverts the power flow.

:NOT:
Input Output

I003366

Figure 6-65 NOT Format

The NOT changes the power flow to the state opposite its current state.
Refer to Figure 6-66 for an example of how the NOT can simplify
programming.

NOTE: Do not program a NOT in parallel with any rung that does not
connect to the power rail.

C10X38 X39X37

: NOT :

C10X37

X38

X97

The NOT enables you to replace this structure with this one.

Figure 6-66 NOT Example

These RLL instructions are also used for electromechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW SHRB

SKP/LBL TMR UDC

NOT
TI545, TI555
TI560T, TI575

NOT Description

NOT Operation

See Also

RLL Instruction Set 6-111SIMATIC TI505 Programming Reference

6.45 One Shot

The One Shot instruction (Figure 6-67) turns on an output for a single scan.

:O:Input Output
#

I003368

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of One Shot memory
discussed on page 4-7 in Section 4.2. Each One
Shot instruction must have a unique instruction
number.

Figure 6-67 One Shot Format

The operation of the One Shot is described below.

• When the input transitions from off to on, the output turns on for
exactly one scan.

• After the one shot executes, its input must be off for at least one scan
before the instruction executes again.

If the input is off, the instruction does not execute, and there is no power
flow at the output.

Refer to Section E.14 for an application example of the One Shot.

One Shot
Description

One Shot
Operation

One Shot
Series 500
Series 505

RLL Instruction Set6-112 SIMATIC TI505 Programming Reference

6.46 Parameterized Go To Subroutine

PGTS (Figure 6-68) operates similarly to the GTS instruction. Use PGTS to
call a section of the RLL program that is preceded by a subroutine number
and execute it. Unlike GTS, the PGTS allows you to pass parameters to a
subroutine. These parameters allow you to write a generic subroutine using
parameter identifiers (IN1–IN20) instead of specific memory locations.
Several PGTS instructions (using different memory locations as
parameters) can then call the same general subroutine.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

PGTS #
Input

Field Valid Values Function

1–32 Designates subroutine to call. You can pass
parameters only to subroutines numbered 1–32.

IN

IN followed by any
readable bit or
word,

IO followed by any
writeable bit or
word.

Designates address that contains data to be
read by the subroutine. Change the field to
show IO when you want the subroutine to write
data to the address after it completes execution.
When the field shows IN, the subroutine only
reads data at the address. B and W locations
valid only when PGTS is used in a subroutine.

Figure 6-68 PGTS Format

PGTS operation is described below and shown in Figure 6-70.

• When the input turns on, the contents of each parameter are set equal
to the contents of the memory location specified in the parameter field.
Then the subroutine indicated by the PGTS number is called.

PGTS
TI545, TI555
TI560T, TI575

PGTS Description

PGTS Operation

RLL Instruction Set 6-113SIMATIC TI505 Programming Reference

• When the subroutine returns control to the main RLL program, the
contents of the memory location specified in each read/write (IO)
parameter field is set equal to the contents of the parameter. The
contents of memory locations designated IN are not changed.

• Contents of parameters are stored in PGTS discrete and word
parameter areas (Section 4.2). When you use a parameter in the
subroutine, refer to discrete points as Bn and words as Wn, where
n = the number of the parameter.

• When you program a PGTS with TISOFT, the parameters must be
entered consecutively. That is, do not skip any parameters.

• If you do not need to specify parameters, use the GTS instead (GTS
uses less L-Memory).

• While you can still access any memory location from a subroutine, the
PGTS allows you to create a generic subroutine that is called by
multiple PGTS instructions, varying the parameters.

If the input is off, the instruction does not execute and the subroutine is not
called for execution.

NOTE: Avoid a direct reference in a subroutine to a memory location that is
also identified as a parameter in the PGTS instruction. Otherwise, you can
create a condition where the value of the parameter and the value in the
memory location do not agree. Refer to the example in Figure 6-69.

! WARNING
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter all the instructions
required to define a subroutine (END, RTN, SBR, GTS or PGTS/PGTSZ) before
setting the controller to RUN mode. Otherwise, the controller changes from
RUN to PROGRAM mode and freezes outputs in their current status. For the
TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function to
validate a program before placing the controller in RUN mode. When you do a
run-time edit using an earlier release of TISOFT, you must enter the instructions
in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

If you enter these instructions out of order, the controller changes to
PROGRAM mode and freezes outputs in their current status, which could cause
unpredictable operation of the controller that could result in death or serious
injury and/or equipment damage.

For the TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function
to validate a program before placing the controller in RUN mode.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

PGTS
TI545, TI555

TI560T, TI575

RLL Instruction Set6-114 SIMATIC TI505 Programming Reference

Parameterized Go To Subroutine (continued)

If you use an instruction that copies long words into or from the subroutine,
you need to allocate a parameter for each word of each long word that is
copied.

For example, the product of a multiplication is stored as a long word. Two
parameters are required to transfer the product from the subroutine to the
main program. If you multiply the contents of V22 by the contents of V23
and store the product in V50 and V51, then both V50 and V51 must be
listed as consecutive parameters.

These RLL instructions are also used for subroutine operations.

GTS PGTSZ RTN SBR SFPGM SFSUB XSUB

PGTS
TI545, TI555
TI560T, TI575

See Also

RLL Instruction Set 6-115SIMATIC TI505 Programming Reference

C1

END

SBR 24

RTN

IO: Y1

IN19:
IN20:

PGTS 24

C1 C1 Y1

C1

Y1 Y2

C1

C1

B1

Y1 is off.

Although Y1 is now on,
Y2 is off. If program
intent was to have Y2
on whenever Y1 turns
on, the program failed
because of referencing
both B1 and Y1 (the
memory location).

B1 is turned on.
(Y1 is not affected.)

Since Y1 is off,
Y2 is off.

B1 is moved to Y1.
(Y1 turns on)

Y1 is moved to B1.
(B1 is off.)
Control goes to
Subroutine 24.

1.

2.

3.

4.

5.

6.

If an IO parameter IO1, that specifies a non-parameter memory location Y1, is passed to a subroutine, and
the subroutine references Y1 directly, then the values for IO1 and Y1 may not agree when the subroutine
returns control back to the main program.

Control returns to
RLL program

I003370

Figure 6-69 PGTS Instruction Example 1

PGTS
TI545, TI555

TI560T, TI575

RLL Instruction Set6-116 SIMATIC TI505 Programming Reference

Parameterized Go to Subroutine (continued)

I003371

W5 : � W4 � W2
W3

W4
in
scale

C444

END

IN1: C444
IN2: K5
IN3: K6
IN4: WX1
IO5: V7

IN19:
IN20:

PGTS 24

Simple scaling with rounding

C444
IN1: C444
IN2: K7
IN3: K8
IN4: WX2
IO5: V8

IN19:
IN20:

PGTS 24

0–32000 0–1000 16 32

C444
IN1: C444
IN2: K9
IN3: K10
IN4: WX3
IO5: V9

IN19:
IN20:

PGTS 24

W5 = Output from scaler
W4 = Input to scaler
W3 = Scaling constant
W2 = Rounding constant

W5
out
scale

W2 loaded
from
K5

W3 loaded
from
K6

0–32000 0–100 160 320

W4
in
scale

W5
out
scale

W2 loaded
from
K7

W3 loaded
from
K8

0–32000 0–500 32 64

W4
in
scale

W5
out
scale

W2 loaded
from
K9

W3 loaded
from
K10

B1

W2–W5

B1

W2–W5

B1

W2–W5

Figure 6-70 PGTS Instruction Example 2

PGTS
TI545, TI555
TI560T, TI575

RLL Instruction Set 6-117SIMATIC TI505 Programming Reference

I003372

SBR 24

C770

DIV1

A: W6

B: W3

B1 C770

ADD1

A: W4

C: W7

B: W2

B1 C770

RTN

C: W6

MOVW2

A: W6

B: W5

B1

N= 1

Add the constant to provide for proper rounding after the
division.

Divide by the scaling constant.

Output the scaled value to W5.

C770
MOVW1

A: +0

B: W6

B1

N= 1

W6 is the most significant word in the dividend and must be
cleared to zero for division to be correct.

Figure 6-70 PGTS Instruction Example 2 (continued)

PGTS
TI545, TI555

TI560T, TI575

RLL Instruction Set6-118 SIMATIC TI505 Programming Reference

6.47 Parameterized Go To Subroutine (Zero)

The PGTSZ instruction (Figure 6-71) operates similarly to the PGTS
instruction. PGTSZ calls an RLL subroutine for execution and passes
parameters to it. Unlike PGTS, the PGTSZ clears all discrete I/O
parameters when the input to the PGTSZ is off.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

PGTSZ #

Input

Field Valid Values Function

1–32 Designates subroutine to call. You can pass
parameters only to subroutines numbered 1–32.

IN

IN followed by any
readable bit or
word,

IO followed by any
writeable bit or
word.

Designates address that contains data to be
read by the subroutine. Change the field to
show IO when you want the subroutine to write
data to the address after it completes execution.
When the field shows IN, the subroutine only
reads data at the address. B and W locations
valid only when PGTS is used in a subroutine.

Figure 6-71 PGTSZ Format

PGTSZ
TI545, TI555
TI560T, TI575

PGTSZ Description

RLL Instruction Set 6-119SIMATIC TI505 Programming Reference

When the input turns on, operation is identical to that of the PGTS,
described in Section 6.46.

If the input is off, all discrete I/O parameters turn off, and the subroutine is
not called for execution.

! WARNING
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter all the instructions
required to define a subroutine (END, RTN, SBR, GTS or PGTS/PGTSZ) before
setting the controller to RUN mode. Otherwise, the controller changes from
RUN to PROGRAM mode and freezes outputs in their current status. For the
TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function to
validate a program before placing the controller in RUN mode. When you do a
run-time edit using an earlier release of TISOFT, you must enter the instructions
in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

If you enter these instructions out of order, the controller changes to
PROGRAM mode and freezes outputs in their current status, which could cause
unpredictable operation of the controller that could result in death or serious
injury and/or equipment damage.

For the TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function
to validate a program before placing the controller in RUN mode.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

These RLL instructions are also used for subroutine operations.

GTS PGTS RTN SBR SFPGM SFSUB XSUB

PGTSZ Operation

See Also

PGTSZ
TI545, TI555

TI560T, TI575

RLL Instruction Set6-120 SIMATIC TI505 Programming Reference

6.48 Return from Subroutine

The RTN instruction (Figure 6-72) ends execution of an RLL subroutine,
and returns program execution to the rung following the GTS instruction.

RTN
Conditional
return

Unconditional
return

RTN

I003374

Figure 6-72 RTN Format

An RLL subroutine is executed until a RTN instruction is encountered.
When an active RTN is reached in the subroutine, execution is returned to
the first instruction following the GTS instruction in the RLL program. The
RTN instruction can be either unconditional or conditional. The conditional
RTN can be used within a subroutine to satisfy a condition that requires
termination of the subroutine. The unconditional RTN must be used as the
last instruction in a subroutine.

If the input is off to a conditional RTN instruction, program execution
remains with the subroutine.

! WARNING
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter all the instructions
required to define a subroutine (END, RTN, SBR, GTS or PGTS/PGTSZ) before
setting the controller to RUN mode. Otherwise, the controller changes from
RUN to PROGRAM mode and freezes outputs in their current status. For the
TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function to
validate a program before placing the controller in RUN mode. When you do a
run-time edit using an earlier release of TISOFT, you must enter the instructions
in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

If you enter these instructions out of order, the controller changes to
PROGRAM mode and freezes outputs in their current status, which could cause
unpredictable operation of the controller that could result in death or serious
injury and/or equipment damage.

For the TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function
to validate a program before placing the controller in RUN mode.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ SBR SFPGM SFSUB XSUB

RTN
TI545, TI555
TI560, TI575

RTN Description

RTN Operation

See Also

RLL Instruction Set 6-121SIMATIC TI505 Programming Reference

6.49 Subroutine

Use the SBR instruction (Figure 6-73) before a set of RLL instructions (the
RLL subroutine) to be executed only when they are called by the GTS,
PGTS, or PGTSZ instructions.

SBR #

I003375

Field Valid Values Function

#

1–255 if called by
GTS.
1–32 if called by a
PGTS or PGTSZ.

Instruction reference number. Numbers cannot
be repeated within a program.

Figure 6-73 SBR Format

When the subroutine is called, it executes until either a conditional RTN
with power flow or an unconditional RTN is encountered. When this occurs,
RLL execution returns to the instruction following the calling (GTS, PGTS,
PGTSZ) instruction.

Program subroutines according to the following guidelines.

• Place all subroutines at the end of the main RLL program.

• Separate the main RLL program from the subroutine(s) with an
unconditional END instruction.

• A subroutine must be terminated by an unconditional RTN instruction,
or a compile error is generated. An END within a subroutine also
generates an error.

The unconditional RTN instruction separates a subroutine from a
subsequent subroutine.

• You can nest subroutines to the 32nd level. A run-time non-fatal error
occurs when this level is exceeded. (Bit 7 in STW1 is set, indicating a
stack overflow.)

• When you pass parameters to the subroutine by calling the subroutine
from a PGTS instruction, refer to discrete parameters as Bn, and word
parameters as Wn, where n = the number of the parameter in the
PGTS. See the example in Figure 6-74.

SBR Description

SBR Operation

SBR
TI545, TI555
TI560, TI575

RLL Instruction Set6-122 SIMATIC TI505 Programming Reference

Subroutine (continued)

! WARNING
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter all the instructions
required to define a subroutine (END, RTN, SBR, GTS or PGTS/PGTSZ) before
setting the controller to RUN mode. Otherwise, the controller changes from
RUN to PROGRAM mode and freezes outputs in their current status. For the
TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function to
validate a program before placing the controller in RUN mode. When you do a
run-time edit using an earlier release of TISOFT, you must enter the instructions
in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

If you enter these instructions out of order, the controller changes to
PROGRAM mode and freezes outputs in their current status, which could cause
unpredictable operation of the controller that could result in death or serious
injury and/or equipment damage.

For the TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function
to validate a program before placing the controller in RUN mode.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

Note these effects of subroutines on execution of MCRs, JMPs, and SKPs.

• All MCRs and JMPs in a subroutine remain active after a RTN if the
instructions within the SBR do not turn them off before the RTN.

• MCRs and JMPs that are active at the time that the subroutine is
called, remain active while the SBR is executing.

• A SKP/LBL pair must be defined within the same SBR or a compile
error occurs.

SBR
TI545, TI555
TI560, TI575

RLL Instruction Set 6-123SIMATIC TI505 Programming Reference

C444
IO1: C444
IN2: K5
IN3: X6

IN19:
IN20:

PGTS 24

END

SBR 24

B1 C770

RTN

B3 C771

In the subroutine, reference parameter IO1 as B1,
parameter IN2 as W2, and parameter IN3 as B3.

When the PGTS calls SBR24

B1 = C444

W2 = K5

B3 = X6

Note that since K5 and X6 are both read-only, the
parameters must be specified IN, not IO, in the
PGTS instruction.

MOVW1

A: W2

N = 1

B: V2

Figure 6-74 SBR Example

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SFPGM SFSUB XSUB

See Also

SBR
TI545, TI555
TI560, TI575

RLL Instruction Set6-124 SIMATIC TI505 Programming Reference

6.50 Call an SF Program

Use the SFPGM instruction (Figure 6-75) to call an SF program for
execution.

OutputInput SFPGM #

I003377

Field Valid Values Function

1–1023 Number of the SF program to be called for
execution.

Figure 6-75 SFPGM Format

The RLL SFPGM instruction can be used anywhere within the RLL
program that a single-line input box instruction can be used. When a
priority/non-priority or cyclic SF program is called by the RLL SFPGM
instruction, the SF program is placed in a queue for execution. Up to 32
SF programs of each type (for a total of 96 in three queues) can be queued at
a given time. If a queue is full, the request for placement in the queue is
made again on the next scan. This continues as long as the input to the RLL
SFPGM instruction remains on.

Priority/Non-Priority SF Programs When power flow to the RLL SFPGM
instruction transitions from off to on, the output from the instruction is
examined. If the output is off and the SF program is not executing, the SF
program is placed in the queue for execution.

• After the SF program executes, the output turns on.

• The SF program does not execute again until the input to the SFPGM
instruction transitions from off to on.

If the controller changes from PROGRAM to RUN mode while the input
to the RLL SFPGM instruction is on, the SF program is queued for
execution.

NOTE: If a TI565 Special Function card is not present in a TI560 controller
system, the CPU treats the instruction as a NOP.

SFPGM
TI545, TI555
TI560, TI575

SFPGM Description

SFPGM Operation

RLL Instruction Set 6-125SIMATIC TI505 Programming Reference

Cyclic Programs When power flow to the RLL SFPGM instruction
transitions from off to on, the cyclic SF program is placed in the queue for
execution.

• After the cyclic SF program executes one time, the output turns on. The
SF program is automatically re-queued for execution, based on the
programmed cycle time. This process continues as long as the input to
the RLL SFPGM instruction is on.

• The output remains on until the input to the RLL SFPGM instruction
turns off.

• A cyclic SF program is removed from the queue when it completes a
scheduled cycle and the SFPGM instruction’s input is off.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFSUB XSUB

See Also

SFPGM
TI545, TI555
TI560, TI575

RLL Instruction Set6-126 SIMATIC TI505 Programming Reference

6.51 Call SF Subroutines from RLL

Use the SFSUB instruction, (shown in Figure 6-76) to call an SF subroutine
for execution.

OutputInput SFSUB #

P2:

ER:

P3:
P4:

P5:

P1:

STOP/CONTINUE ON ERROR

Field Valid Values Function

0 – 1023 If 1 – 1023, the number of the SF subroutine
to be called for execution.

If 0, then only the instruction parameters
will be evaluated.

STOP/CONTINUE
 ON ERROR

Select STOP ON ERROR if you want the SF
Subroutine to terminate if an error is
detected. Select CONTINUE ON ERROR if
you want the SF Subroutine to continue,
e.g., you want to handle errors within the
subroutine.

ER C, Y, WY, V Designates a single C or Y bit, or the first
word of a 3 word area in WY or V Memory,
where the error status will be written if an
error occurs during parameter evaluation or
during execution of the SF subroutine. Refer
to Section 7.7, Reporting SF Program or
SFSUB RLL Instruction Errors, for a
description of the ER parameter.

Pn Constant;
any readable
bit, word, or
expression

Designates parameters to be evaluated and
if # is 1 – 1023, it is passed to the SF
subroutine.
Up to five parameters may be specified; they
must be specified in order; i.e., P entries
must not be skipped.

Figure 6-76 SFSUB Format

When the # is 0, only the instruction parameters are evaluated (this variety
is called an SFSUB 0). You can use an SFSUB 0 to execute up to five
expressions without calling an actual SF subroutine or program. The
programming device may limit the length of the expression that can be
placed into the P fields.

SFSUB
TI545, TI555,
TI575

SFSUB Description

RLL Instruction Set 6-127SIMATIC TI505 Programming Reference

Multiple SFSUB instructions with the same value of # can be used in your
program, since your application may require multiple accesses to the same
SF subroutine but with different parameters for each access.

A variable in the P fields can be one of the following data types:

• Constant – Any integer or real number.

• Discrete or word element – An element is comprised of a data type and
a number. A period following the element designates the element as an
address of a real number. The absence of a period designates the
element as an address of an integer.

Examples are V100, V252., C101, etc.

• Expression – An expression is a logical group of tokens evaluating to an
address or a value, where a token is the smallest indivisible unit, e.g.,
an element address, operator, constant, parenthesis, etc. Refer to
Section 7.8 for details on expressions.

Examples are V101.:=V65. + 14.2 and LSP1.:= V14. +K19.

The RLL SFSUB instruction can be used anywhere within the RLL program
that a large box instruction, such as a drum, can be used. When power flow
to the RLL SFSUB instruction transitions from off to on, the output from
the RLL SFSUB instruction is examined to determine subsequent actions.

If the instruction is not currently executing, then the instruction is placed in
one of the SFSUB queues for execution. There are two SFSUB execution
queues, one to handle SFSUB 0 instructions and the other to handle all
other SFSUB instructions.

When an SFSUB 0 instruction is pulled from its execution queue, the
instruction parameters are evaluated and the instruction output turns on.
When SFSUB instructions are pulled from the other execution queue, the
instruction parameters are evaluated, statements in the corresponding SF
subroutine are executed, and the instruction output turns on.

Upon completion of the SFSUB instruction, the instruction output remains
on until the input turns off.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFPGM XSUB

SFSUB Operation

See Also

SFSUB
TI545, TI555

TI575

RLL Instruction Set6-128 SIMATIC TI505 Programming Reference

6.52 Bit Shift Register

The Bit Shift Register instruction (Figure 6-77) creates a bit shift register
using a specified number of control relays or points in the discrete image
register. The shift register may be up to 1023 bits long.

SHRB #

IR :

 N=

Clock
Output

Data

Enable/
Reset

I003378

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of memory discussed on
page 4-8 in Section 4.2.

IR Y, C, B
Lowest numbered control relay or location in
the discrete image register into which the data
is shifted.

N 1–1023 Size of the shift register (number of bits).

Figure 6-77 SHRB Format

! WARNING
When you do a run-time edit with TISOFT (≥Rel. 4.2), enter the LBL instruction
before setting the controller to RUN mode.

When you do a run-time edit using an earlier release of TISOFT, you must enter
the instructions in this order: LBL, then SKP.

If you do not enter the instructions in the correct order, the controller changes
from RUN to PROGRAM mode and freezes outputs in their current status, which
could cause unpredictable operation of the controller that could result in death
or serious injury and/or equipment damage.

For the TI575, TI555, and TI545 (≥Rel. 2.0), use the TISOFT syntax check function
to validate a program before placing the controller in RUN mode.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be.

SHRB
Series 500
Series 505

SHRB Description

RLL Instruction Set 6-129SIMATIC TI505 Programming Reference

The operation of the bit shift register follows.

• When the Enable/Reset turns on, the SHRB box is enabled.

• When the clock transitions from zero to one, the following actions occur.

The last (highest numbered) bit of the shift register moves to the
output.

The data in the shift register shifts one address.

The status of the Data input (0 or 1) moves into the lowest numbered
point, as specified in the IR field.

• When the clock does not transition from zero to one, the last bit of the
shift register moves to the output. The data does not shift.

• The Enable/Reset must be kept on as long as data are to be shifted into,
and kept in, the SHRB. When the Enable/Reset loses power flow, the
SHRB clears; i.e., all control relays or image register points comprising
the SHRB clear to 0.

• If the Enable/Reset does not receive power flow, the instruction does
not execute and the output does not turn on.

The example in Figure 6-78 shows the status of the shift register on two
consecutive scans.

Y1 Y2 Y3 Y4 Y5

0 1 0 0 1

Data Input Clock Output
Shift Register

1 or 0 1

1 0 1 0 01 1

Scan

N

N +1

1 0 1 0 01 or 0 0N +2 or

Figure 6-78 SHRB Example

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SKP/LBL TMR UDC

Refer to Section E.1 for an application example of the bit shift register.

SHRB Operation

See Also

SHRB
Series 500
Series 505

RLL Instruction Set6-130 SIMATIC TI505 Programming Reference

6.53 Word Shift Register

The Word Shift Register instruction (Figure 6-79) copies words from a
memory location into a shift register. The shift register is located in
V-Memory and can be up to 1023 words long.

SHRW #

A :
B :

N=

Clock
Output

Enable

Reset

I003379

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of memory discussed on
page 4-8 in Section 4.2.

A Any readable word Memory location of the word to be copied into
the shift register.

B V, W, (G, VMS,
VMM, TI575)

Starting address for the shift register.

N 1–1023 Size of the shift register (number of words).

Figure 6-79 SHRW Format

The operation of the SHRW is described below and shown in Figure 6-80.

• The Enable and Reset inputs must both be on for the SHRW box to
execute.

• When the Clock transitions from off to on, the word currently in
memory location A shifts into the shift register at the memory location
specified by B. The shift occurs as follows.

Word B+(N–1) is discarded.

Word B+(N–2) is then copied to word B+(N–1); word B+(N–3) is copied
to word B+(N–2), etc.

Word B is copied to word B+1; word A is copied to word B.

SHRW
Series 500
Series 505

SHRW Description

SHRW Operation

RLL Instruction Set 6-131SIMATIC TI505 Programming Reference

• After each shift is completed, the output turns on for one scan.

• If the Enable turns off, but the Reset remains on, all words currently in
the SHRW are retained, but no words are shifted.

• If the Reset turns off, all words in the shift register clear to zero. The
instruction does not execute, and there is no power flow at the box
output.

A: WX11 0 0 0 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

Clock
Output

SHRW 2

Enable

Reset

B: V190

V191

V192

V193

When the last word is shifted out
of the register, the word is lost

A : WX11
B : V190
N : 4

I003380

Figure 6-80 SHRW Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWIR MWTT

Refer to Section E.2 for an application example of the SHRW.

See Also

SHRW
Series 500
Series 505

RLL Instruction Set6-132 SIMATIC TI505 Programming Reference

6.54 Skip / Label

The SKP and LBL instructions (Figure 6-81) provide a means of enabling or
disabling segments of a program during a scan. These instructions are often
used when duplication of outputs is required, and those outputs are
controlled by different logic. These instructions can be used to decrease scan
time since the instructions between any active SKP and LBL instructions do
not execute.

SKP #

LBL #

Start of SKP

End of SKP

Rungs of ladder logic skipped
by SKP/LBL instructions.

Field Valid Values Function

1–255

Instruction reference number. Same number must
be used for a SKP and its associated LBL.
Numbers cannot be repeated, except for the TI545,
TI555, TI575, and TI560/TI565 Rel. 3.0 or greater,
that do allow numbers to be repeated.

Figure 6-81 SKP / LBL Format

SKP/LBL
Series 500
Series 505

SKP / LBL
Description

RLL Instruction Set 6-133SIMATIC TI505 Programming Reference

• SKP and LBL must be used together. The LBL must appear before the
instruction that terminates the current program segment (TASK, END,
or RTN).

• If you use an RLL subroutine (controllers TI545, TI555, TI575, and
TI560), you can use up to 255 SKP/LBL instructions within each
subroutine and up to 255 SKP/LBL instructions for each TASK
segment in the program.

• The reference numbers for the subroutine SKP/LBL instructions range
from 1–255, and numbers cannot be duplicated within a given
subroutine or TASK segment.

• The subroutine is distinct from the main RLL program, and reference
numbers used in the subroutine can also be used in the main program.
That is, a SKP23 in the main program does not interfere with a SKP23
in the subroutine.

SKP/LBL
Series 500
Series 505

RLL Instruction Set6-134 SIMATIC TI505 Programming Reference

 Skip / Label (continued)

The Operation for the skip and label instructions is described below.

• The SKP and the LBL instructions must be used together for the SKP
to be executed.

� For the TI545, TI555, TI560, and TI575, a SKP without a LBL
generates a compile error.

� For other controllers, either instruction appearing without the other
is ignored.

• When the SKP receives power flow, all ladder logic between the SKP
and its associated LBL is ignored by the controller. Outputs between
the SKP and the LBL are frozen, i.e., their current status in the image
register is unchanged.

• All ladder logic within the SKP zone of control executes normally when
the SKP does not have power flow.

• For a SKP to LBL function located within the zone of control of an
MCR or JMP, the SKP to LBL function overrides the MCR or JMP
when the SKP has power flow.

• The zone of control for a SKP is limited to the task segment or
subroutine in which the SKP is used. That is, the matching LBL must
be defined after the SKP and be located in the same task segment or
subroutine as the SKP.

• For a JMPE or MCRE contained within a SKP’s zone of control, the
program functions as if the JMPE or MCRE is located at the end of the
program whenever the SKP is active.

NOTE: When a SKP is active, timers between the SKP and its LBL do not
run. Use care in the placement of timer instructions (TMR, DCAT, and
MCAT) and drum instructions DRUM, EDRUM, MDRMD, and MDRMW) if
they are to continue operation while a SKP is active.

SKP/LBL
Series 500
Series 505

SKP / LBL Operation

RLL Instruction Set 6-135SIMATIC TI505 Programming Reference

The operation of the SKP and LBL instructions is illustrated in Figure 6-82.
In this example, SKP5 is located on rung A. When the SKP has power flow,
the ladder logic within its zone of control, (rungs B and C) does not execute.

X37 Y12

Y111

X1

X777

A

B

C

D

ADD 4

A: WX13

B: WX14

C: V4

X2
Zone

of

control

SKP5

LBL5

I003382

Figure 6-82 Example of SKP Zone of Control

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB TMR UDC

See Also

SKP/LBL
Series 500
Series 505

RLL Instruction Set6-136 SIMATIC TI505 Programming Reference

6.55 Scan Matrix Compare

The Scan Matrix Compare instruction (Figure 6-83) compares up to 16
predefined bit patterns to the current states of up to 15 discrete points. If a
match is found, the step number that contains the matching bit pattern is
entered into the memory location specified by the pointer, and the output is
turned on.

LAST STEP: 1 to 16

SMC #

CUR PTR:

Start Output

Mask
0 or 1

I/O Points

address in
memory

STP
1 to 16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

X X X Y Y C C C C C Y Y Y Y Y
6 7 8 2 3 1 1 1 1 1 8 8 8 8 9

9 0 3 4 5 6 7 6 7 8 9 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I003383

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

LAST
STEP 1–16 Specifies last instruction step to be scanned for

a match.

CUR
PTR

V, G, W, VMS,
VMM

Memory location that holds the step number
where a match is found, or zero if no match is
found.

I/O
Points

X, Y, C, B,or blank The discrete points to be compared to the step
mask.

Figure 6-83 SMC Format

SMC
Series 500
Series 505

SMC Description

RLL Instruction Set 6-137SIMATIC TI505 Programming Reference

The SMC operation is described below.

• The instruction executes when the Start input is on.

If the Start input remains on, the SMC instruction checks all
programmed steps on every scan.

• The status of up to 15 discrete points is checked against the predefined
bit patterns.

• If a match is found, the step number of the matching mask is entered
into the memory location specified by CUR PTR, and the output turns
on.

• If no match is found, CUR PTR is cleared to 0, and the output turns off.

If the Start input is off, the instruction does not execute, and there is no
power flow at the box output. The CUR PTR retains its last value.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil

SMC Operation

See Also

SMC
Series 500
Series 505

RLL Instruction Set6-138 SIMATIC TI505 Programming Reference

6.56 Square Root

The Square Root instruction (Figure 6-84) finds the integer square root of a
32-bit (long word) positive integer stored in memory locations AA and
AA + 1. The result is stored in memory location B.

SQRT #

AA :
B :

Input Output

I003384

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

AA Any readable word

Specifies integer of which square root is taken.
This is a long word. AA holds the 16 most
significant bits, and AA + 1 holds the 16 least
significant bits. Range: 0 ≤ AA ≤ (32,767)2

B Any writeable
word

Memory location for the result.

Figure 6-84 SQRT Format

NOTE: The answer to the square root function can have large margins of
error because this is integer math and the answer is truncated.

SQRT
Series 500
Series 505

SQRT Description

RLL Instruction Set 6-139SIMATIC TI505 Programming Reference

When the input is on, the SQRT box executes. If the input remains on, the
operation is executed on every scan. The operation of the SQRT follows:

�� �� ���

• If the result of the square root is not an integer, SQRT reports only the
integer portion of the root. For example, although the square root of 99
is 9.95, the SQRT function reports a square root of 9.

• The operation is valid if 0 ≤ AA ≤ (32,767)2.

• If the result is valid, the output turns on when the operation executes.
Otherwise it turns off, and the contents of B do not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV MULT SUB

Relational Contact

SQRT Operation

See Also

SQRT
Series 500
Series 505

RLL Instruction Set6-140 SIMATIC TI505 Programming Reference

6.57 Scan Synchronization Inhibit

The Scan Synchronization Inhibit instruction (Figure 6-85) is used in
TI560/TI565 models to control synchronization of the active unit with a
standby unit in a Hot Backup configuration. It is treated as an internal coil
that sets the most significant bit of Status Word 01 when power flow to the
coil is present.

SSIInput

I003385

Figure 6-85 SSI Format

SSI
TI560/TI565

SSI Description

RLL Instruction Set 6-141SIMATIC TI505 Programming Reference

When the input is on, the SSI remains active and sets bit 1 of Status
Word 01. When the input is off, bit 1 of status Word 01 remains clear.

While the SSI is active, the active controller inhibits a standby (TI560/TI565
Hot Backup Unit) from coming online. The inhibition remains active until:

• The power flow to the SSI is off, at which time a standby unit is
allowed to come online if it is requesting to do so, or

• The inhibit instruction is overridden by a command from an operator
interface.

This RLL instruction is also used with a Hot Backup Unit.

FRS

SSI Operation

See Also

SSI
TI560/TI565

RLL Instruction Set6-142 SIMATIC TI505 Programming Reference

6.58 Search Table for Equal

The Search Table For Equal instruction (Figure 6-86) locates the next
occurrence of a word in a table that is equal to a source word. The position
of the matching word is shown by an index.

STFE #

WS :
TS :
IN:
N=

OutputEnable

Reset

I003386

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies the next word in the
table to be compared with the source word.

N 1–256 Specifies length of the table.

Figure 6-86 STFE Format

The operation of the STFE is described below.

• You must turn off the Reset to initialize the index, setting it to –1.

• You must turn on the Reset before the STFE can operate.

• When the Enable turns on, the index increments by one and specifies
the next word in the table to be compared with the source word. The
value contained by the index ranges from 0 to N–1 while the STFE
executes. N is the length of the table.

• The source word WS and the word in the table TS specified by the
index are compared.

STFE
TI545, TI555
TI560, TI575

STFE Description

STFE Operation

RLL Instruction Set 6-143SIMATIC TI505 Programming Reference

• If the two words are equal, the STFE output turns on for one scan and
then turns off.

The index contains the position of the matching word in the table for
the duration of this scan. The contents of the index must be used or
saved during this scan since the STFE looks for the next match on the
next scan as long as the Enable and Reset remain on.

• If the two words are not equal, the index increments by one and the
next word in the table is compared to the source word.

• If no matches are found in the table, the output remains off. The index
contains the position of the last word in the table.

• The entire table is searched during one scan until one match or no
match is found.

• If the Enable turns off while the Reset is on, the index holds its current
value. If the Reset turns off, the index resets to –1.

• After the entire table has been searched, i.e., the output is off and the
index = N–1, the STFE must be reset (Reset turns off) in order to be
executed again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

STFE
TI545, TI555
TI560, TI575

RLL Instruction Set6-144 SIMATIC TI505 Programming Reference

6.59 Search Table for Not Equal

The Search Table For Not Equal instruction (Figure 6-87) locates the next
occurrence of a word in a table that is not equal to a source word. The
position of the non-matching word is shown by an index, and the value of
the non-matching word is copied into a specified memory location.

STFN #

WS :
TS :
IN :
WO:
N=

Enable Output

Reset

I003387

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies the next word in the
table to be compared with the source word.

WO Any writeable
word

Memory location to which the non-matching
word is written.

N 1–256 Specifies length of the table.

Figure 6-87 STFN Format

The operation of the STFN is described below.

• You must turn off the Reset to initialize the index, setting it to –1.

• You must turn on the Reset before the STFN can operate.

• When the Enable turns on, the index increments by one and specifies
the next word in the table to be compared with the source word. The
value contained by the index ranges from 0 to N–1 while the STFN
executes. N is the length of the table.

• The source word WS and the word in the table TS specified by the
index are compared.

STFN
TI545, TI555
TI560, TI575

STFN Description

STFN Operation

RLL Instruction Set 6-145SIMATIC TI505 Programming Reference

• If the two words are not equal, the STFN output turns on for one scan
and then turns off. The value of the non-matching word is copied into
another memory location specified by WO.

The index contains the position of the non-matching word in the table
for the duration of this scan. The contents of the index must be used or
saved during this scan since the STFN looks for the next match on the
next scan as long as the Enable and Reset remain on.

• If the two words are equal, the index increments by one and the next
word in the table is compared to the source word.

• If no mismatches are found in the table, the output remains off. The
index contains the position of the last word in the table.

• The entire table is searched during one scan until one mismatch or no
mismatch is found.

• If the Enable turns off while the Reset is on, the index holds its current
value. If the Reset does turn off, the index resets to –1.

• After the entire table has been searched, i.e., the output is off and the
index = N–1, the STFN must be reset (Reset turns off) in order to be
executed again.

If the Reset is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

STFN
TI545, TI555
TI560, TI575

RLL Instruction Set6-146 SIMATIC TI505 Programming Reference

6.60 Subtract

The Subtract instruction (Figure 6-88) subtracts a signed integer in memory
location B from a signed integer in memory location A, and stores the result
in memory location C.

SUB #

A :
B :
C :

Input Output

I003388

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location for the minuend (a word), the
number from which a value is subtracted.

or constant
(–32768 to +32767)

Value of the minuend if a constant is used.
A and B cannot both be constants.

B Any readable word Memory location for the subtrahend (a word),
the number that is subtracted.

or constant
(–32768 to +32767)

Value of the subtrahend if a constant is used.
A and B cannot both be constants.

C Any writeable
word

Memory location for the result (a word).

Figure 6-88 SUB Format

When the input is on, the SUB box executes. If the input remains on, the
instruction executes on every scan. The operation executed is C = A – B.

• If –32768 ≤ result ≤ 32767, then the output turns on. Otherwise, the
output turns off, and the truncated (16 bit) result is stored in C.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV MULT SQRT

Relational Contact

SUB
Series 500
Series 505

SUB Description

SUB Operation

See Also

RLL Instruction Set 6-147SIMATIC TI505 Programming Reference

6.61 Table to Table AND

The Table To Table AND instruction (Figure 6-89) ANDs the corresponding
bits in two tables and places the results in a specified third table. If both
bits are 1s, then the resultant bit is set to 1. Otherwise, the resultant bit is
set to 0.

TAND #

T1 :
T2 :
TD :
N=

Input Output

I003389

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address for the first table.

T2 Any readable word Starting address for the second table.

TD Any writeable
word

Starting address for the destination table. TD
can be the same as T1 or T2, or be different.

N 1–256 Specifies table length. All tables are N words
long.

Figure 6-89 TAND Format

The operation of the TAND follows.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• Each pair of bits is ANDed, and the resultant bit is placed in the third
table (TD). If both bits are 1s, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

• The bits in all the words of the two tables are ANDed each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

TAND Description

TAND Operation

See Also

TAND
TI545, TI555
TI560. TI575

RLL Instruction Set6-148 SIMATIC TI505 Programming Reference

6.62 Start New RLL Task

Use the TASK instruction (Figure 6-90) to delimit the main (I/O
synchronous) RLL task and the cyclic RLL task.

TASK #

A:

I003390

Field Valid Values Function

1, 2, 8 Designates task. 1 = normal RLL task;
2 = cyclic RLL task; 8 = interrupt RLL task

A:

0–32767 or
any readable word
that contains
0–65535.

Specifies cycle time in milliseconds. All
segments for a TASK2 are executed within the
cycle time specified in the TASK instruction for
the first TASK2 segment. Values specified in A
for subsequent segments are ignored.
For TASK2, a value of 0 indicates that default
(10) is used.
A must set to 0 for TASK1 and TASK8. The data
file will not be displayed for TASK1 and TASK8
except during edit.

Figure 6-90 TASK Format

The operation of the TASK is described below.

• The TASKn instruction indicates that the RLL instructions that follow
it comprise an RLL task segment, where n = 1 designates segments of
the main RLL task, n = 2 designates segments of the cyclic RLL task,
and n = 8 designates segments of the interrupt task. Refer to
Figure 6-91a.

Task 1 is assumed when the first rung does not contain a TASK
instruction. A task can consist of multiple segments, each preceded by a
TASK instruction. The segments do not have to be contiguous
(Figure 6-91b). Terminate an RLL task with another TASK instruction
or with the END instruction.

• TASK2 is executed with a higher priority than TASK1. Therefore,
normal RLL execution is interrupted by a cyclic RLL task.

• TASK8 is executed with a higher priority than TASK1 or TASK2.
Therefore, both the normal RLL and the cyclic RLL are interrupted by
a configured I/O interrupt.

TASK
TI545, TI555
TI575

TASK Description

TASK Operation

RLL Instruction Set 6-149SIMATIC TI505 Programming Reference

• If you specify the cycle time A for a TASK2 task as a readable word,
you can change the cycle time on a cycle-by-cycle basis. When A = 0, the
default time of 10 ms is used.

! CAUTION
Use caution in determining the time requirements for a cyclic task.

As the ratio of execution time to cycle time approaches 1:1, the risk increases
that the main RLL task reports a scan watchdog Fatal Error, causing the
controller to enter the Fatal Error mode, freeze analog outputs and turn off
discrete outputs, which could lead to equipment failure.

You need to assess the time requirements for a cyclic task with care.

End

Task 1

Task 1
main RLL
program

Task 2

Task 2
cyclic RLL

task

RLL
subroutines

Figure 6-91a
Two Unsegmented Tasks and RLL Subroutines

End

Task 1
segment 1

Task 1

Task 1
segment 2

Figure 6-91b
Two Segmented Tasks

Task 2

Task 2
segment 1

Task 2

Task 2
segment 2

Figure 6-91 Examples of TASK Design

TASK
TI545, TI555

TI575

RLL Instruction Set6-150 SIMATIC TI505 Programming Reference

Start New RLL Task (continued)

• When the normal RLL task fails to complete execution within the
specified cycle time, Bit 1 is set in STW219, and Bit 14 is set in STW1
on the next TASK1 scan. When the cyclic RLL task fails to complete
execution within the specified cycle time, Bit 2 is set in STW219 on the
next TASK2 scan. When a cyclic task overruns, the cycle on which the
overrun is detected, is skipped. For example, a 3-ms task that overruns
then executes at a 6-ms cycle rate.

You can display the peak execution time for a task using an operator
interface and specifying TPET1 for TASK1 and TPET2 for TASK2.

• You can call any subroutine from a task and the normal subroutine
nesting rules apply. Call a given subroutine from only one task.
Subroutines are not re-entrant, and subroutine execution initiated by
one task interferes with subroutine execution initiated by a second
task.

These RLL instructions can also be used for immediate I/O applications.

Immediate Contact/Coil Immediate Set/Reset Coil IORW

 Refer to Section 3.3 for more information about using TASK in a program.

TASK
TI545, TI555
TI575

See Also

RLL Instruction Set 6-151SIMATIC TI505 Programming Reference

6.63 Time Compare

The Time Compare instruction (Figure 6-92) compares current time in the
real-time clock with values in the designated V-Memory locations.

TCMP #

TM :
LT :
GT :

Input Output

I003392

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

TM V, G, W, VMS,
VMM

Specifies the memory locations containing time
to be compared to time in real-time clock.

V(TM) = Hour — BCD* 0000–0023.

V(TM+1) = Minute — BCD* 0000–0059.

V(TM+2) = Second — BCD* 0000–0059.

Enter the hexadecimal value of 00FF for any of
the fields (hour, minute, second, etc.) that you
want to exclude from the compare operation.

LT Y, C, B, or blank Bit turned on when time represented in TM
locations < the real-time value in the clock.

GT Y, C, B, or blank Bit turned on when time represented in TM
locations > the real-time value in the clock.

*In TISOFT, BCD values are entered using the HEX data format.

Figure 6-92 TCMP Format

When there is power flow to the input of the TCMP instruction, the current
hours, minutes, and seconds in the real-time clock are compared to the
values in the designated memory locations.

• If a match occurs, the output of the instruction turns on. If the time
represented by the memory locations is less than the real-time value in
the clock, the bit designated by LT turns on. If the time represented by
the memory locations is greater than the real-time value in the clock,
the bit designated by GT turns on.

When the input is off, the comparison does not execute and there is no
power flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP DSET TSET

TCMP Description

TCMP Operation

See Also

TCMP
TI545, TI555
TI560, TI575

RLL Instruction Set6-152 SIMATIC TI505 Programming Reference

6.64 Table Complement

The Table Complement (Figure 6-93) inverts the status of each bit in a table
and places the results in another specified table.

TCPL #

TS :
TD :
N=

Input Output

I003393

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

TS Any readable word Starting address of the table containing the bits
to be inverted.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or be different.

N 1–256 Specifies length for both tables.

Figure 6-93 TCPL Format

The operation of the TCPL is described below.

• When the input turns on, each bit in the source table specified by TS
inverts and stores in the destination table specified by TD.

A 0 inverted is 1; a 1 inverted is 0.

• The bits in all the words of the table are inverted each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

TCPL
TI545, TI555
TI560, TI575

TCPL Description

TCPL Operation

See Also

RLL Instruction Set 6-153SIMATIC TI505 Programming Reference

6.65 Text

The Text box allows you to place textual information, such as copyright,
software version, or other text into your RLL program. The instruction
forms a single network and takes no action. The Text Box’s sole purpose is
for documentation.

The text box (Figure 6-94) can hold up to five lines of 40 characters each.
Characters allowed in the text box are: A through Z, 0 through 9, space, and
special characters.

TEXT #

PROGRAM: UNIT 6 CONTROL

VERSION: 1.3

COPYRIGHT: 1994 ABC, INC.

DESCRIPTION: CONTROL

UNIT 6 OF THE WIDGET

Figure 6-94 Text Box Format

Text Box
Description

TEXT
TI545–1102
TI555 TI575

RLL Instruction Set6-154 SIMATIC TI505 Programming Reference

6.66 Timer

The Timer instruction (Figure 6-95) is used to time events. The timer output
turns on after the timer times down, making this an “on delay” timer. A fast
timer is denoted by the mnemonic TMRF; a slow timer is denoted by TMR.

TMR #

P :

Start/Stop
Output

Enable/Reset

I003394

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of timer/counter memory
discussed on page 4-6 in Section 4.2.

P 0–32767

Preset value from which the timer times down.
P ranges from 00.000 to 32.767 seconds for a
fast (1 ms) timer, and from 0000.0 to 3276.7
seconds for a slow (.1 second) timer.

Figure 6-95 TMR/TMRF Format

The timer times down from the preset value specified in P. P is stored in
TCP-Memory. The timer’s current time is stored in TCC-Memory.

• The Enable/Reset must be on for the timer to operate.

• When the Start/Stop input is on and the Enable/Reset is on, the timer
begins to time down.

• Timing begins at the preset value P and continues down to zero.

• If the Start/Stop input turns off and the Enable/Reset input remains
on, the timer stops but it saves the current value, TCC. If the
Start/Stop input turns on again, the timer resumes timing.

TCC is also saved if the Enable/Reset input is on and a loss of power
occurs, provided the controller battery backup is enabled.

TMR/TMRF
Series 500
Series 505

TMR/TMRF
Description

TMR/TMRF
Operation

RLL Instruction Set 6-155SIMATIC TI505 Programming Reference

• If the Enable/Reset input turns off, the timer resets to the preset time
specified in P.

• The output turns on when the timer reaches zero, and it stays on until
the timer resets; i.e., the Enable/Reset input turns off.

If the Enable/Reset does not receive power flow, the instruction does not
execute and the output does not turn on.

You can use other RLL instructions to read from or write to the timer
variables. You can also use an operator interface to read or write to the
timer variables. While you are programming the timer, you are given the
option of protecting the preset values from changes made with an operator
interface.

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB SKP/LBL UDC

 Refer to Section E.3 for an application example of the timer.

Using the Timer
Variables

See Also

TMR/TMRF
Series 500
Series 505

RLL Instruction Set6-156 SIMATIC TI505 Programming Reference

6.67 Table to Table OR

The Table To Table OR instruction (Figure 6-96) ORs the corresponding bits
in two tables and places the results in a specified third table. If either bit
is 1, then the resultant bit is set to 1. Otherwise, the resultant bit is set to 0.

TOR #

T1 :
T2 :
TD :
N=

Input Output

I003395

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address for the first table.

T2 Any readable word Starting address for the second table.

TD Any writeable
word

Starting address for the destination table. TD
can be the same as T1 or T2, or be different.

N 1–256 Specifies table length. All tables are N words
long.

Figure 6-96 TOR Format

The operation of the TOR is described below.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• Each pair of bits is ORed, and the resultant bit is placed in the third
table (TD). If either bit is 1, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

• The bits in all the words of the two tables are ORed each scan.

• The output is turned on when the instruction is executed.

If the input is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TTOW TXOR WTOT WTTA WTTO WTTXO

TOR
TI545, TI555
TI560, TI575

TOR Description

TOR Operation

See Also

RLL Instruction Set 6-157SIMATIC TI505 Programming Reference

6.68 Time Set

The Time Set instruction (Figure 6-97) sets the time portion of the real-time
clock to the values contained in designated memory locations.

TSET #

TM :

Input Output

I003396

Field Valid Values Function

1 to number of one
shots.

Instruction reference number. The TSET uses
one shot memory. The assigned instruction
number must conform to the requirements of
one-shot memory discussed on page 4-6 in
Section 4.2. Each TSET instruction must have a
unique number.

TM V, G, W, VMS,
VMM

Designates the memory locations containing
time to be written into the real-time clock.*

V(TM) = Hours — BCD value 0000–0023.

V(TM+1) = Minutes — BCD value 0000–0059.

V(TM+2) = Seconds — BCD value 0000–0059.

*In TISOFT, BCD values are entered using the HEX data format.

Figure 6-97 TSET Format

When the input to the TSET instruction transitions from off to on, the time
portion of the real-time clock is set to the values contained within the three
consecutive V-Memory locations designated by TM, and the output turns on
for one scan.

When the input is off, the operation does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP DSET TCMP

TSET Description

TSET Operation

See Also

TSET
TI545, TI555
TI560, TI575

RLL Instruction Set6-158 SIMATIC TI505 Programming Reference

6.69 Table to Word

The Table To Word instruction (Figure 6-98) copies a word in a table and
places it in another memory location.

TTOW #

WD:
TS :
IN :
N=

Enable
Output

Reset

I003397

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WD Any writeable
word

Memory location for destination of the word.

TS Any readable word Starting address of source table.

IN V, G, W, VMS,
VMM

Specifies memory location where index is stored.
The index indicates which word in the table is
copied.

N 1–256 Length of table in words.

Figure 6-98 TTOW Format

TTOW
TI545, TI555
TI560, TI575

TTOW Description

RLL Instruction Set 6-159SIMATIC TI505 Programming Reference

The operation of the TTOW is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, a copy is made of the specified word in the
table TS.

The index (IN) indicates which word in the table is copied. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is copied. If N ≤ IN or N < 0, the word
is not copied.

• The word is placed in the memory location specified by WD. After the
word is placed there, the value contained by the index increments by
one.

• If both Enable and Reset remain on, one word is duplicated each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the word is not moved.

If the Reset turns off, the index resets to 0.

• The TTOW output remains on until the last word in the table is copied.
It then turns off.

• The TTOW must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TXOR WTOT WTTA WTTO WTTXO

TTOW Operation

See Also

TTOW
TI545, TI555
TI560, TI575

RLL Instruction Set6-160 SIMATIC TI505 Programming Reference

6.70 Table to Table Exclusive OR

The TXOR instruction (Figure 6-99) executes an Exclusive OR on the
corresponding bits in two tables and places the results in a specified third
table. If the bits compared are the same, the resultant bit is set to a 0. If the
bits compared are different, the resultant bit is set to 1.

TXOR #

T1 :
T2 :
TD :
N=

Input Output

I003398

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address of the first table.

T2 Any readable word Starting address of the second table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as T1 or T2, or can be different.

N 1–256 Table length. All tables are N words long.

Figure 6-99 TXOR Format

TXOR
TI545, TI555
TI560, TI575

TXOR Description

RLL Instruction Set 6-161SIMATIC TI505 Programming Reference

The operation of the TXOR is described below.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• An Exclusive OR is executed on each pair of bits, and the resultant bit
is placed in the third table (TD). If the bits compared are either both 1s
or both 0s, the resultant bit is set to a 0. If the bits compared are unlike
(1 and 0), the resultant bit is set to 1.

• An Exclusive OR is executed on the bits in all the words of the two
tables each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW WTOT WTTA WTTO WTTXO

TXOR Operation

See Also

TXOR
TI545, TI555
TI560, TI575

RLL Instruction Set6-162 SIMATIC TI505 Programming Reference

6.71 Up/Down Counter

The Up-Down Counter instruction (Figure 6-100) counts the number of
events (up or down) from 0 to 32,767.

UDC #

P=

Z:

Up
Output

Enable/Reset

Down

I003399

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of timer/counter memory
discussed on page 4-6 in Section 4.2.

P 0–32767
Preset maximum value to which the UDC
counts. The UDC does not count events beyond
P.

Z Y, C, B, or blank Address of the coil to be turned on when the
current count is equal to zero.

Figure 6-100 UDC Format

UDC
Series 500
Series 505

UDC Description

RLL Instruction Set 6-163SIMATIC TI505 Programming Reference

When the counter counts up, it counts to the preset value specified in P, that
is stored in TCP-Memory. The current count is stored in TCC-Memory.

• The Enable/Reset must be on for the counter to operate.

• When the Enable/Reset is on, the counter increments by one when the
Up input transitions from off to on.

• When the Enable/Reset is on, the counter decrements by one when the
Down input transitions from off to on. The UDC does not decrement to
a number less than zero.

• TCC does not change if the Up and Down inputs both change from off
to on during the same scan.

• If the Enable/Reset turns off, TCC resets to zero.

• The output specified in Z turns on whenever TCC equals zero. This
output turns off when TCC does not equal zero.

• The box output turns on whenever TCC equals zero or TCP.

• After having counted to the preset value (TCP), the box does not
require resetting in order to resume counting in the opposite direction.
TCC does not ever exceed TCP.

If the Enable/Reset does not receive power flow, the instruction does not
execute and the output does not turn on.

Other RLL instructions can be used to read from or write to the UDC
variables. You can also use an operator interface to read from or write to the
UDC variables. While you are programming the UDC, you are given the
option of protecting the preset values from changes made with an operator
interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions are also used for electromechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB SKP/LBL TMR

UDC Operation

Using the UDC
Variables

See Also

UDC
Series 500
Series 505

RLL Instruction Set6-164 SIMATIC TI505 Programming Reference

6.72 Unlock Memory

The UNLCK instruction (Figure 6-101), works with the LOCK instruction to
provide a means whereby multiple applications in the TI575 system
coordinate access to shared resources, generally G-Memory data blocks.

UNLCK #

AA :
Input Output

I003400

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

AA V, G, VMS, VMM
Memory location (2 words) where lock structure
is stored*. Use same address for associated
LOCK instruction.

* This instruction allows W. The lock does not operate correctly, however, if you use W.

Figure 6-101 UNLCK Format

UNLCK
TI575

UNLCK Description

RLL Instruction Set 6-165SIMATIC TI505 Programming Reference

Refer to Section 6.29 for a description of how UNLCK works with the LOCK
instruction.

This RLL instruction is also used to coordinate access to shared resources.

LOCK

UNLCK Operation

See Also

UNLCK
TI575

RLL Instruction Set6-166 SIMATIC TI505 Programming Reference

6.73 Word AND

The Word AND instruction (Figure 6-102) logically ANDs a word in memory
location A with a word in memory location B, bit for bit. The result is stored
in memory location C.

WAND #

A :
B :
C :

Input Output

I003401

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the AND
operation.

B Any readable word Memory location of the second word in the AND
operation.

or constant
(–32768 to +32767)

Value of the second word when a constant is
used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-102 WAND Format

When the input turns on, the instruction executes. If the input remains on,
the instruction is executed on every scan.

• The word stored in the memory location specified by A is ANDed with
the word stored in the memory location specified by B. The operation is
done bit by bit, as illustrated in Figure 6-103.

The words in A and B are not affected by the WAND instruction and
retain their original values.

A B C

0 0 0

0 1 0

1 0 0

1 1 1

For each bit location A and B,
the result of an AND operation is given in C.

I003402

Figure 6-103 Result of ANDing Bits

WAND
Series 500
Series 505

WAND Description

WAND Operation

RLL Instruction Set 6-167SIMATIC TI505 Programming Reference

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-104.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

The word in A is ANDed with
the word in B. The result is
stored in C.

A

B

C

Figure 6-104 Result of ANDing Two Words

• If C is not zero, the output turns on when the instruction executes.

If C is zero, the output turns off.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WOR

WROT WXOR Bit-of-Word Contact/Coil

See Also

WAND
Series 500
Series 505

RLL Instruction Set6-168 SIMATIC TI505 Programming Reference

6.74 Word OR

The Word OR instruction (Figure 6-105) logically ORs a word in memory
location A with a word in memory location B. The result is stored in memory
location C.

WOR #

A :
B :
C :

Input Output

I003404

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the OR
operation.

B Any readable word Memory location of the second word in the OR
operation.

or constant
(–32768 to +32767)

Value of the second word when a constant is
used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-105 WOR Format

When the input is on, the WOR box executes. If the input remains on, the
instruction executes on every scan.

• The word stored in the memory location specified by A is ORed with the
word stored in the memory location specified by B. The operation is
done bit by bit, as illustrated in Figure 6-106.

The words in A and B are not affected by the OR instruction and retain
their original values.

A B C

0 0 0

0 1 1

1 0 1

1 1 1

For each bit location A and B,
the result of an OR operation is given in C.

I003405

Figure 6-106 Result of ORing Bits

WOR
Series 500
Series 505

WOR Description

WOR Operation

RLL Instruction Set 6-169SIMATIC TI505 Programming Reference

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-107.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

A

B

C

The word in A is ORed
with the word in B, and
the result is stored in C.

Figure 6-107 Result of ORing Two Words

• If C is not zero, the output turns on when the instruction executes.

If C is zero, the output turns off.

If the input is off, the instruction does not executes, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WROT WXOR Bit-of-Word Contact/Coil

See Also

WOR
Series 500
Series 505

RLL Instruction Set6-170 SIMATIC TI505 Programming Reference

6.75 Word Rotate

The Word Rotate instruction (Figure 6-108) operates on the 4-bit segments
of a word, rotating them to the right.

WROT #

A :
N=

Input Output

I003407

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any writeable
word

Memory location of the word to be rotated.

N 1–3 Number of times that the 4-bit segments are
rotated.

Figure 6-108 WROT Format

When the input is turned on, the WROT box executes. If the input remains
on, the instruction executes on every scan.

• Each 4-bit segment of the word specified in memory location A shift to
the right as shown in Figure 6-109.

4-bit
segment

4-bit
segment

4-bit
segment

4-bit
segment

I003408

Figure 6-109 WROT Operation

WROT
Series 500
Series 505

WROT Description

WROT Operation

RLL Instruction Set 6-171SIMATIC TI505 Programming Reference

• A segment can shift up to 3 positions as specified by N. See
Figure 6-110.

• If A is not zero, the output turns on when the instruction executes.

If A is zero, the output turns off.

If the input is off, the instruction does not executes, and there is no power
flow at the box output.

0010 1000 0110 0111

0111 0010 1000 0110

N = 1

The following word is rotated as shown:

0010 1000 0110 0111

1000 0110 0111 0010

N = 3

I003409

Figure 6-110 Result of a WROT Operation

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WOR WXOR Bit-of-Word Contact/Coil

See Also

WROT
Series 500
Series 505

RLL Instruction Set6-172 SIMATIC TI505 Programming Reference

6.76 Word to Table

The Word To Table instruction (Figure 6-111) places a copy of a word at a
specified address within a table.

WTOT #

WS :
TD :
IN :
N=

Enable Output

Reset

I003410

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TD Any writeable
word

Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies where the word is
placed in the table.

N 1–256 Specifies length of the table.

Figure 6-111 WTOT Format

WTOT
TI545, TI555
TI560, TI575

WTOT Description

RLL Instruction Set 6-173SIMATIC TI505 Programming Reference

The operation of the WTOT is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, a copy of the source word WS is placed in
the destination table TD.

The index (IN) indicates where the word is placed in the table. The
value contained by the index ranges from 0 to N–1, where N is the
length of the table. If 0 ≤ IN < N, the word is moved. If N ≤ IN or
N < 0, the word is not moved.

• After the word is placed into the table, the value contained by the index
increments by one.

• If both Enable and Reset remain on, one word is moved each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the word is not moved.

If the Reset turns off, the index resets to 0.

• The WTOT output remains on until a word is placed in the last position
in the table. It then turns off.

• The WTOT must be reset (Reset turns off) after the output turns off, in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTTA WTTO WTTXO

WTOT Operation

See Also

WTOT
TI545, TI555
TI560, TI575

RLL Instruction Set6-174 SIMATIC TI505 Programming Reference

6.77 Word to Table AND

The Word To Table AND instruction (Figure 6-112) ANDs each bit in a
source word with the corresponding bit of a designated word in a table. The
results are placed in a destination table. If both bits are 1s, a 1 is stored in
the destination table. Otherwise, the resultant bit is set to 0.

WTTA #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

I003411

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies that word in the
table is ANDed.

N 1–256 Specifies length of the table.

Figure 6-112 WTTA Format

WTTA
TI545, TI555
TI560, TI575

WTTA Description

RLL Instruction Set 6-175SIMATIC TI505 Programming Reference

The operation of the WTTA is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates which word in the table is ANDed. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is ANDed. If N ≤ IN or
N < 0, the word is not ANDed.

• Each pair of bits is ANDed, and the resultant bit is placed in the
destination table TD. If both bits are 1s, the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the source word and a word in the
table are ANDed each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the AND does not occur.

If the Reset turns off, the index resets to 0.

• The WTTA output remains on until the last word in the table has been
ANDed with the source word. It then turns off.

• The WTTA must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTO WTTXO

WTTA Operation

See Also

WTTA
TI545, TI555
TI560, TI575

RLL Instruction Set6-176 SIMATIC TI505 Programming Reference

6.78 Word to Table OR

The Word To Table OR instruction (Figure 6-113) ORs each bit in a source
word with the corresponding bit of a designated word in a table. The results
are placed in a destination table. If either bit is 1, a 1 is stored in the
destination table. Otherwise, the resultant bit is set to 0.

WTTO #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

I003412

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies which word in the
table is ORed.

N 1–256 Specifies length of the table.

Figure 6-113 WTTO Format

WTTO
TI545, TI555
TI560, TI575

WTTO Description

RLL Instruction Set 6-177SIMATIC TI505 Programming Reference

The operation of the WTTO is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates which word in the table is ORed. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is ORed. If N ≤ IN or
N < 0, the word is not ORed.

• Each pair of bits is ORed, and the resultant bit is placed in the
destination table TD. If either bit is 1, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the source word and a word in the
table are ORed each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the OR does not occur.

If the Reset turns off, the index resets to 0.

• The WTTO output remains on until the last word in the table has been
ORed with the source word. It then turns off.

• The WTTO must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTA WTTXO

WTTO Operation

See Also

WTTO
TI545, TI555
TI560, TI575

RLL Instruction Set6-178 SIMATIC TI505 Programming Reference

6.79 Word to Table Exclusive OR

The Word To Table Exclusive OR (Figure 6-114) executes an Exclusive OR
on each bit in a source word with the corresponding bit of a designated word
in a table. The results are placed in a destination table. If the bits compared
are the same, the resultant bit is set to a 0. Otherwise, the resultant bit is
set to 1.

WTTXO #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

I003413

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies on which word in the
table that the Exclusive OR is executed.

N 1–256 Specifies length of the table.

Figure 6-114 WTTXO Format

WTTXO
TI545, TI555
TI560, TI575

WTTXO Description

RLL Instruction Set 6-179SIMATIC TI505 Programming Reference

The operation of the WTTXO is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates the word in the table on which the
Exclusive OR occurs. The value contained by the index ranges from 0 to
N–1, where N is the length of the table. If 0 ≤ IN < N, the Exclusive OR
takes place. If N ≤ IN or N < 0, the Exclusive OR does not take place.

• An Exclusive OR is executed on each pair of bits, and the resultant bit
is placed in the destination table TD. If the bits compared are the same,
the resultant bit is set to a 0. If the bits compared are different, the
resultant bit is set to 1.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the Exclusive OR executes on the
source word and a word in the table each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the Exclusive OR does not take place.

If the Reset turns off, the index resets to 0.

• The WTTXO output remains on until the last word in the table has
been compared with the source word. It then turns off.

• The WTTXO must be reset (Reset turns off) after the output turns off
in order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTA WTTO

WTTXO Operation

See Also

WTTXO
TI545, TI555
TI560, TI575

RLL Instruction Set6-180 SIMATIC TI505 Programming Reference

6.80 Word Exclusive OR

The Word Exclusive OR instruction (Figure 6-115) executes a logical
Exclusive OR on a word in memory location A with a word in memory
location B. The result is stored in memory location C.

WXOR #

A :
B :
C :

Input Output

I003414

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the
Exclusive OR operation.

B Any readable word Memory location of the second word in the
Exclusive OR operation.

or constant
(–32768 to +32767)

Value of second word when a constant is used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-115 WXOR Format

When the input is turned on, the WXOR box execute. If the input remains
on, the instruction executes on every scan.

• An Exclusive OR operation executes on the word stored in the memory
location specified by A with the word stored in the memory location
specified by B. The operation is done bit by bit, as illustrated in
Figure 6-116.

The words in A and B are not affected by the WXOR instruction and
retain their original values.

WXOR
Series 500
Series 505

WXOR Description

WXOR Operation

RLL Instruction Set 6-181SIMATIC TI505 Programming Reference

A B C

0 0 0

0 1 1

1 0 1

1 1 0

For each bit location A and B, the
result of an Exclusive OR operation
is given in C.

I003415

Figure 6-116 Result of an Exclusive OR of Bits

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-117.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

A

B

C

An Exclusive OR operation
is executed on the words in
A and B and the result is
stored in C.

I003416

Figure 6-117 Result of an Exclusive OR of Two Words

• If C is not zero, the output turns on when the instruction executes.

If C is zero, the output turns off.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WOR WROT Bit-of-Word Contact/Coil

 Refer to Section E.11 for an application example of the WXOR.

See Also

WXOR
Series 500
Series 505

RLL Instruction Set6-182 SIMATIC TI505 Programming Reference

6.81 External Subroutine Call

The XSUB (Figure 6-118) allows you to pass parameters to a subroutine
that is developed offline in a non-RLL programming language, such as C or
Pascal, and then call the subroutine for execution. Refer to Appendix H for
more information about designing and writing external subroutines.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

XSUB #

Input

I003417

Field Valid Values Function

1–32767 Designates subroutine to call.

IN/IO

IN followed by any
readable bit or
word.

IO followed by any
readable bit or
word.

IN: Designates address that contains data to be
read by the subroutine.

IO: Designates an address to be passed to the
subroutine.

B and W locations are valid only when XSUB is
used in a subroutine.

Figure 6-118 XSUB Format

NOTE: The parameter fields (IN1–IN20) allow read-only addresses, e.g., K
or WX, to be specified as I/O parameters. This allows you to pass the base
address of a read-only array to the subroutine. It is recommended that you
not design the subroutine to alter the contents of the read-only variable(s)
since other instructions assume that they do not change.

XSUB
TI545, TI555
TI575

XSUB Description

RLL Instruction Set 6-183SIMATIC TI505 Programming Reference

! WARNING
When you call an external subroutine, the built-in protection features of the
controller are by-passed. Take care in testing the external subroutine before
introducing it to a control environment.

Failure of the external subroutine may cause undetected corruption of
controller memory and unpredictable operation by the controller, which could
result in death or serious injury and/or damage to equipment.

You must be careful in testing the external subroutine before introducing it to a
control environment.

The operation of the XSUB instruction is described below. See Figure 6-119.

• Parameters must be numbered consecutively, i.e., you cannot skip
parameter numbers.

• When the input is turned on:

The parameters are pushed on the user stack, in order, from the last
parameter to the first parameter, and then the subroutine is called.
This corresponds to the C language calling convention.

When a discrete data element (X, Y, C, B) is specified as an IN
parameter, the discrete value is passed in the least significant bit of a
long word. All other bits of the long word are unspecified (may be 0 or
1).

When a discrete data element is specified as an IO parameter, the
address of the data element is passed. The actual value of the data
element is contained in the least significant bit of the byte at this
address. Other bits of this byte are unspecified.

When a word data element (V, K, etc.) is specified as an IN parameter,
the value of the long word at this specified data element and the
specified data element + 1 (e.g., V100 and V101) is passed. The
addressed word is in the most significant half, and the next consecutive
word is in the least significant half. Any readable data element is
allowed.

When a word data element is specified as an IO parameter, the address
of the data element is passed. The value of the parameter is contained
at this address.

XSUB Operation

XSUB
TI545, TI555

TI575

RLL Instruction Set6-184 SIMATIC TI505 Programming Reference

External Subroutine Call (continued)

After all parameters have been pushed onto the stack, the subroutine is
called. If the subroutine successfully executes (see Notes below)
STW01 bit 11 turns off, and the controller continues the scan with the
next network.

NOTE: An XSUB in RLL with no defined external subroutine causes the
user program error bit (6) and the instruction failed bit (11) to be set in
STW01, with the reason set to 6 in STW200 (if this is the first error logged).
The controller remains in RUN mode.

NOTE: For the TI575, if an XSUB instruction attempts to access a
non-existent VMEbus address a VMEbus error occurs. If this is the first
VMEbus error, the offending VMEbus address is written to
STW227-STW228 and the U Memory offset of the offending instruction is
written to STW229-STW230.

If you set the U Memory header’s E bit to 1 when you create your external
subroutine(s), a VMEbus error will terminate the XSUB and continue RLL
execution with the network following the XSUB instruction. In this case the
user program error bit (6) and instruction failed bit (11) in STW01 are set to
1 and, if this is the first user program error encountered on the current RLL
scan, the value 7 (VMEbus error) is written to STW200.

! CAUTION
If you set the U Memory header’s E bit to 0 and a VMEbus error occurs during
execution of an XSUB, the TI575 controller will transition to the Fatal Error
mode.

The transition to Fatal Error mode freezes word outputs and clears discrete
outputs, which could cause damage to equipment.

Avoid setting the U Memory header’s E bit to 0 when you create external
subroutines.

• When the input is off, the instruction does not execute and the
subroutine is not called. Bit 11 of STW01 turns off.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFPGM SFSUB

XSUB
TI545, TI555
TI575

See Also

RLL Instruction Set 6-185SIMATIC TI505 Programming Reference

IO1 C11
IO2 V110
IO3 K99
IN4 8871

IN19
IN20

END

XSUB 179

C100

L-memory

U-Memory

Before the XSUB is executed,
assume the following values
for these memory locations:

C11 = 1
V110,V111 = 0, 27706
K99,K100 = 1948

When C100 = 1,

IO1 = C11 = 1
IO2 = V110,V111 = 27706
IO3 = K99,K100 = 1948
IN = 8871

User-defined
subroutine # 179

Subroutine reads

IO1 = 1
IO2 = address of V110
IO3 = 1948
IN4 = 8871

After execution that changes
V110, V111 to 98250,

Subroutine returns control to
the RLL program.

When control returns to RLL,

C11 = unchanged
V110,V111 = 98250
K99,K100 = unchanged

Control passes to
subroutine.

Control passes
to RLL.

I003418

Figure 6-119 Example of the XSUB Instruction

XSUB
TI545, TI555

TI575

Special Function Programs 7-1SIMATIC TI505 Programming Reference

Chapter 7

Special Function Programs

7.1 Defining Special Function Programs 7-2.

7.2 SF Program Statements 7-4.

7.3 Executing Special Function Programs 7-5.

7.4 Executing Special Function Subroutines 7-8.

7.5 Memory Usage by SF Programs 7-10.

7.6 Entering SF Program Header with TISOFT 7-12.

7.7 Reporting SF Program or SFSUB RLL Instruction Errors 7-14.

7.8 Entering Special Function Programming Statements 7-16.

7.9 Convert BCD to Binary 7-18.

7.10 Convert Binary Inputs to BCD 7-19.

7.11 Call Subroutine 7-20.

7.12 Correlated Data Table 7-22.

7.13 Exit on Error 7-24.

7.14 Fall Through Shift Register—Input 7-25.

7.15 Fall through Shift Register—Output 7-29.

7.16 Go To/Label Function 7-33.

7.17 IF/THEN/ELSE Functions 7-34.

7.18 Integer Math Operations 7-36.

7.19 Lead/Lag Operation 7-38.

7.20 Real/Integer Math Operations 7-40.

7.21 Pack Data 7-45.

7.22 Pack Analog Alarm Data 7-51.

7.23 Pack Loop Data 7-54.

7.24 Pack Ramp/Soak Data 7-56.

7.25 Printing 7-62.

7.26 Return from SF Program/Subroutine 7-65.

7.27 Scaling Values 7-66.

7.28 Sequential Data Table 7-68.

7.29 Synchronous Shift Register 7-70.

7.30 Unscaling Values 7-72.

7.31 Comment 7-74.

Special Function Programs7-2 SIMATIC TI505 Programming Reference

7.1 Defining Special Function Programs

A special function program (SF program) consists of a set of instructions
that can be called from loops, analog alarms, or from the RLL program,
much like a GOSUB subroutine in a BASIC program or a procedure in a
C language program.

The higher-level, statement-driven programming language used in an
SF program makes your programming task easier. You can derive solutions
for complex programs that would require extensive RLL programming and
consume large blocks of ladder memory. Operations such as mathematical
calculations, if then statements, unit and number format conversions, table
transfers, data consolidation, etc., can be done with an SF program.
Typically, these types of operations either cannot be done with the RLL
instruction set, or they involve complex RLL programming. The statements
used in SF programs are listed by function in Table 7-1.

An SF program can call a subroutine (SF subroutine) for execution. After
completion, the SF subroutine returns control to the SF program that called
it. The same programming statements used to write SF programs are used
to write SF subroutines. An SF program cannot call other SF programs for
execution, but SF subroutines can call other SF subroutines. The TI545,
TI555, TI565, and TI575 controllers support up to 1023 SF programs and
1023 SF subroutines.

You must allocate a block of memory called Special Memory (S-Memory)
before you can create SF programs. You do this with your programming unit
when you configure controller memory. SF programs and SF subroutines are
stored in S-Memory.

SF programs are categorized functionally by how they are called for
execution. You designate the program type when you enter the program.
The various SF program types are Priority, Non-priority, Cyclic, and
Restricted.

Introduction

Special Function
Program Types

Special Function Programs 7-3SIMATIC TI505 Programming Reference

Priority, non-priority, and cyclic SF programs are called from the RLL
program by the RLL SFPGM instruction.

• A priority/non-priority SF program executes once after the input to the
RLL SFPGM instruction transitions from off to on. The SF program
does not execute again until the input to the RLL SFPGM instruction
transitions from off to on again.

If the controller changes from PROGRAM to RUN mode while the input
to the RLL SFPGM instruction is on, the SF program is queued for
execution.

The difference between priority and non-priority SF programs is based
on the amount of processor time allocated to executing the SF program.
For the TI545, TI555, and the TI575, you can adjust the processor time
yourself. If necessary, you can allocate equal processor time to the two
types of SF programs. For the TI565, the processor allocates
approximately twice as much program execution time to priority
SF programs as to non-priority SF programs.

• A cyclic SF program executes when the input to the RLL SFPGM
instruction transitions from off to on. When the cyclic SF program has
terminated, it is automatically re-queued for execution based on the
programmed cycle time (0.5 second increments). This process continues
as long as the input to the RLL SFPGM instruction is on. When the
input turns off, the cyclic SF program is not re-queued for execution.

For the TI545, TI555, and TI575, you can adjust the cyclic SF processor
time to your own specifications. For the TI565, the processor allocates
approximately 8% of the program execution time to cyclic SF programs.

Restricted SF programs are called by loops and analog alarms only. The
processor program execution time dedicated to restricted SF programs is
determined by the time allocated to loop and analog alarm processing. For
the TI545, TI555, and TI575, this processor time is user-configurable. For
the TI565, approximately 60% of the processor’s program execution time is
allocated for loops, approximately 15% for analog alarms.

SF Programs Called
from RLL

SF Programs Called
from Loops/Analog
Alarms

Special Function Programs7-4 SIMATIC TI505 Programming Reference

7.2 SF Program Statements

Table 7-1 lists programming statements and their functions that are used in
SF programs and SF subroutines.

Table 7-1 SF Program Statements

Operation Type Statement Function Page

Data conversion BCDBIN Convert BCD To Binary 7-18

BINBCD Convert Binary Inputs To BCD 7-19

SCALE Scaling Values 7-66

UNSCALE Unscaling Values 7-72

Documentation * Comment 7-74

Math IMATH Integer Math Operations 7-36

LEAD/LAG Lead/Lag Operation 7-38

MATH Real/Integer Math Operations 7-40

Program flow CALL Call Subroutine 7-20

EXIT Exit On Error 7-24

GOTO/LABEL Go To/Label Function 7-33

IF/THEN/
ELSE/ENDIF

If/Then/Else Functions 7-34

RETURN Return from SF program/
SF subroutine

7-65

Printing PRINT Print Functions 7-62

Table handling CDT Correlated Data Table 7-22

FTSR–IN Fall Through Shift Register–In 7-25

FTSR–OUT Fall Through Shift Register–Out 7-29

PACK Pack Data 7-45

PACKAA Pack Analog Alarm Data 7-51

PACKLOOP Pack Loop Data 7-54

PACKRS Pack Ramp/Soak Table 7-56

SDT Sequential Data Table 7-68

SSR Synchronous Shift Register 7-70

Special Function Programs 7-5SIMATIC TI505 Programming Reference

7.3 Executing Special Function Programs

When a priority/non-priority or cyclic SF program is called by the RLL
SFPGM instruction, the SF program is placed in a queue for execution. Up
to 32 SF programs of each type (for a total of 96 in three queues) can be
queued at a given time. If a queue is full, the request for placement on the
queue is made again on the next scan. This continues as long as the input to
the RLL SFPGM instruction remains on.

The SFPGM instruction can be used anywhere within the RLL program
that a single-line input box instruction can be used. Figure 7-1 shows the
format of the RLL SFPGM instruction. The # is the number of the
SF program to be called for execution.

OutputInput
SFPGM #

= 1 –1023

I003419

Figure 7-1 SFPGM Instruction Format

When power flow to the RLL SFPGM instruction transitions from off to on,
the output from the instruction is examined. If the output is off and the
SF program is not executing, the SF program is placed in the queue for
execution.

• After the SF program executes, the output turns on.

• The SF program does not execute again until the input to the SFPGM
instruction transitions from off to on.

! CAUTION
Following a transition from PROGRAM to RUN, and with the input on during the
first execution of the RLL SFPGM instruction, the SF program is queued for
execution.

The SF program will execute as long as the input is on.

Turn off the instruction to the SFPGM after the SF instruction completes a
scheduled cycle.

When power flow to the RLL SFPGM instruction transitions from off to on,
the cyclic SF program is placed in the queue for execution.

Priority/non-priority
SF Programs

Cyclic Programs

Special Function Programs7-6 SIMATIC TI505 Programming Reference

Executing Special Function Programs (continued)

• After the cyclic SF program executes one time, the output turns on. The
SF program automatically re-queues for execution, based on the
programmed cycle time. This process continues as long as the input to
the RLL SFPGM instruction is on.

• The output remains on until the input to the RLL SFPGM instruction is
turned off.

• A cyclic SF program is removed from the queue when it completes a
scheduled cycle and the SFPGM instruction’s input is off.

You can program a loop to call an SF program to do a calculation on any
constant, variable, or I/O point. When you program a loop, you can schedule
the SF program call to be made when the process variable, setpoint, or
output is accessed.

Calculation Scheduled on Setpoint When the loop is in auto or cascade
mode, the SF program is called at the sample rate and T2 always equals 2.
When the loop is in manual mode, the SF program is not called for
execution. T2 is one of the T-Memory locations, defined in Section 7.5.

Calculation Scheduled on Process Variable When the loop is in auto,
cascade, or manual mode, the SF program executes every 2.0 seconds or at
the sample rate, whichever is less. The SF program is called at least every 2
seconds to monitor/activate the PV alarms associated with the loop, even
though loop calculations are not being performed.

In the case of a loop sample time greater than 2.0 seconds, the SF program
is called at a 2.0 second-interval, with T2 = 3 indicating that the SF was
called on PV. This allows for PV manipulation before PV alarming occurs in
the loop. When it is time to perform the loop calculation, T2 equals 2 to
indicate that the loop calculation is about to be performed. This allows for
manipulation of PV and setpoint before the loop calculation executes. If the
loop sample time is less than 2.0 seconds, T2 always equals 2.

NOTE: SF programs called on PV or SP execute after PV and SP are
determined by the loop, but before any processing is performed, based on
the values obtained. This allows SF programs to manipulate the PV or SP
before the loop uses them for output adjustments.

Restricted
Programs Called
by Loops

Special Function Programs 7-7SIMATIC TI505 Programming Reference

Calculation Scheduled on Output When a loop with a sample time of less
than 2.0 seconds calls an SF program, the SF program is actually called
twice for every loop calculation.

• After PV and SP are determined, the SF program is called on SP
(T2 = 2). This call allows for PV and SP manipulation before PV
alarming and loop calculations are run. The loop calculation is then
performed and the resultant output value is placed into the loop-output
variable (LMN). T2 is one of the T-Memory locations, defined in
Section 7.5.

• Next, the SF program is then called on output (T2 = 5) to allow for
manipulation of the loop output value in LMN before this value is written
to the loop-output address.

If the sample time of the loop is greater than 2.0 seconds, the same applies
except that the SF program is called at least every 2.0 seconds and T2 = 3 if
it is not time to perform a loop calculation. (Refer to Section 7.5 for a
description of T-Memory.)

You can program an Analog Alarm to call an SF program to do a calculation
on any constant, variable, or I/O point. The Analog Alarm is called at the
SF program sample rate.

Restricted
Programs Called
by Analog Alarms

Special Function Programs7-8 SIMATIC TI505 Programming Reference

7.4 Executing Special Function Subroutines

An SF subroutine can be called for execution by an SF program or another
SF subroutine through the CALL statement. See Section 7.11 for
information about how the CALL statement operates.

Additionally, an SF subroutine can be called from RLL using the SFSUB
RLL instruction. Refer to section 6.51 for information about how the SFSUB
RLL instruction operates.

SF subroutines allow you to design modular programs. A calculation
required in several places in the program may be placed in a subroutine and
called by the routine number whenever it is needed. For example, consider a
calculation such as:

y � 0.929783 * x � 2 * �ez � ln(x)
x0.25

�
0.5

where y is the output and x and z are inputs. This calculation could be
placed in an SF subroutine as follows:

SF Subroutine 0113

MATH P1: = 0.929783 * P2 + 2 * ((exp(P3) + ln(P2))/(P2 ** 0.25))** .5

where P1 corresponds to the y output, and P2 and P3 correspond to the x
and z inputs respectively. The SF subroutine 0113 would be called by a
CALL statement as shown in the following example.

CALL SFSUB : 113 P1 : V100..
P2 : T15 P3 : V202..
P4 : P5 :.

where V100. corresponds to the y output, T15 corresponds to the x input,
and V202. corresponds to the z input.

Calling
SF Subroutines

Designing
SF Subroutines

Special Function Programs 7-9SIMATIC TI505 Programming Reference

When you reference a parameter (P1,P2,etc.) in a SF subroutine you should
not include the “.” suffix. A reference without this suffix, e.g., “P1”, instructs
the controller to use the parameter according to the data type (integer or
real) that was specified when the subroutine was called. For example, if
parameter P1 is coded as “V100.” in the CALL statement, then a reference
to P1 in the called subroutine would access the value at V100-V101 as a real
number. If, on the other hand, P1 is coded as “V100” (without the “.” suffix)
in the CALL statement, then the same reference to P1 in the called
subroutine would access the value at V100 as an integer. In both cases the
expected operation occurs.

If you reference a SF subroutine parameter using the “.” suffix, e.g. “P1”,
you are instructing the controller to ignore the parameter’s data type, as
specified in the CALL statement, and to use the parameter as a real
number. If in fact the CALL statement had coded P1 as V100 (a 16-bit
integer) and the subroutine referenced parameter one as “P1.”, the
subroutine would access the value at V100-V101 as a real number. (It would
not convert V100 from integer to real and use the converted result.) In
almost all cases this is not the expected operation.

Table 7-2 summarizes the effect of the “.” suffix when used on a parameter
reference.

Table 7-2 Specifying Real or Integer Parameters

Data Type Specified
in CALL statement

Parameter reference
in SF Subroutine

Data Type
Used in calculation

real (V100.) Pn real

integer (V100) Pn integer

real Pn. real

integer Pn. real, no conversion

Special Function Programs7-10 SIMATIC TI505 Programming Reference

7.5 Memory Usage by SF Programs

When an SF program is called, the operating system automatically allocates
a block of temporary memory, T-Memory, to the program for the duration of
that program. When the program terminates, the T-Memory allotted for
that program clears.

T-Memory is 16 words long. Each word contains the following information.

• T1 — SF program Program Number.

• T2 — Code indicating how a program is called:

1 = RLL program

2 = SF program scheduled on a loop setpoint

3 = SF program scheduled on a loop process variable

4 = SF program on an analog alarm

5 = SF program scheduled on a loop output

• T3 — If the SF program is called from a loop, then T3 contains the
number of that loop from which the program was called. If the
SF program is called from an analog alarm, T3 contains the number of
that analog alarm. Otherwise, T3 contains 0.

• T4 and T5 — If the SF program is called from a loop, analog alarm, or is
a cyclic SF program, T4 and T5 contain the cycle period in seconds
stored as a real (32-bit) value. Otherwise, T4 and T5 contain 0.

Special Function Programs 7-11SIMATIC TI505 Programming Reference

• T6 — If the SF program is called from a loop, analog alarm, or is a cyclic
SF program, T6 contains 1 when the loop, analog alarm, or SF program
has overrun. Otherwise, T6 contains 0.

• T7 — If the SF program is called from a loop, analog alarm, or is a cyclic
SF program, T7 is set to 1 if this is the first time the SF program is
called. T7 is also set to 1 if this is the first time the loop executes after a
commanded restart, or following a program-to-run transition, or
following a mode change (i.e., manual to auto, auto to manual).
Otherwise, T7 contains 0.

• T8–T16 — No data is written to these words. You can use them any time
during the program to store intermediate calculations.

You can use all 16 words in your SF program. You can read the information
stored in T1–T7 by the controller; or if you prefer, store data into these
locations as you can with T8–T16, writing over the information written by
the controller.

Special Function Programs7-12 SIMATIC TI505 Programming Reference

7.6 Entering SF Program Header with TISOFT

The general steps for entering an SF program are listed below. Refer to your
TISOFT user manual for detailed instructions.

• Select the SF program option from the menu on your programming
device.

• Select the SF program that you want to enter (Program 1,
Program 2, etc.). The screen displays the program format. The program
format consists of a header section and a program section, as illustrated
in Figure 7-2.

TITLE: TANK 50
SF PROGRAM: 1022

CONTINUE ON ERROR (Y, N): N
ERROR STATUS ADDR: (Y, C, WY, V): V500

PROGRAM TYPE (N, P, C, R) = C
CYCLE TIME (SEC) = 1.0

00001 * THE COMMENT STATEMENTS (*) EXPLAIN THE
PURPOSE OF THE PROGRAM.

00002 SCALE BINARY INPUT: WX10, RESULT: V1,
20% OFFSET = Y, LOW LIMIT = 0,
HIGH LIMIT = 20

00003 IF V1 = 5
00004 PRINT PORT = 1, MESSAGE:

“TANK LEVEL IS LOW. PRESENT LEVEL IS”
V1 “FT.”

00005 MATH LKC1.: = 3.00
00006 ELSE
00007 MATH LKC1.: = 1.00
00008 ENDIF

END

Header

Program

I003420

Figure 7-2 Special Function Program Format

Special Function Programs 7-13SIMATIC TI505 Programming Reference

• Enter a title for the program. The title is optional and can be left blank.

The CONTINUE ON ERROR field specifies if the program is to
continue to run when an error occurs. Enter Y in this field to have the
program continue when an error occurs. Enter N in this field to have
program stop when an error occurs. See Section 7.7 for a discussion of
error reports.

The ERROR STATUS ADDRESS field specifies how error conditions
are handled. In order to have an error code written when a program
error occurs, you must specify a V-Memory location or a word output
(WY) in this field. If you enter a control relay or discrete output point in
this field, then this point is set when an error occurs. Refer to Section
7.7 for a discussion of error reports.

The Program Type field specifies the program type. Enter N for a
non-priority program, P for a priority program, C for a cyclic program, or
R for a restricted program. Refer to Section 7.1 for a discussion of
SF program types.

The Cycle Time field sets the periodicity of the program execution. For
a cyclic program, enter the cycle time in seconds (0.5–6553.5). For
example, a program with a cycle time of 5 seconds is executed every five
seconds. Note that the controller rounds the value that you enter up to
the next 0.5 second interval.

• Save the header information, and then proceed to the program section.

Special Function Programs7-14 SIMATIC TI505 Programming Reference

7.7 Reporting SF Program or SFSUB RLL Instruction Errors

When you enter an SF program or an SFSUB RLL instruction, you have the
option of specifying how to report errors. You assign an address in the
ERROR STATUS ADDRESS field of the SF program header, (described in
Section 7.6) or in the ER field of the SFSUB RLL instruction (described in
Section 6.50). In this field, you can specify a control relay (C), a discrete
output (Y), a V-Memory location, or a word output (WY).

The Special Function Error Code (SFEC) variable may be used to read from
or write to the error code for an SF program or for an SFSUB RLL
instruction. Each SF program or SFSUB RLL instruction contains one
SFEC variable. All references to SFEC within an SF program or an SFSUB
RLL instruction’s parameters, or within any SF subroutine called by the SF
program or SFSUB RLL instruction, refers to this single SFEC variable.
(The programming system may require that you specify a number when you
enter the SFEC variable name, e.g., SFEC1. The programmable controller
ignores this number.)

When an SF program or an SFSUB RLL instruction is queued for execution,
the SFEC for that SF program or SFSUB RLL instruction is cleared to zero.
If an error occurs during execution, the error code associated with the error
(refer to Appendix F) is written to SFEC. Errors can be detected by the
operating system or they can be detected by the user program. If an error is
detected by the user program, you indicate it to the system by an
assignment to SFEC in a MATH or IMATH statement.

If you select NO in the CONTINUE ON ERROR field when you enter an SF
Program, or, if you select STOP ON ERROR when you enter an SFSUB RLL
instruction, assigning a non-zero value to the SFEC variable causes the SF
program or SFSUB RLL instruction to terminate. (You can force
termination of the SF program or SFSUB instruction by having your
program or subroutine assign a non-zero value to SFEC.)

If you select YES in the CONTINUE ON ERROR field when you enter an
SF Program, or CONTINUE ON ERROR when you enter an SFSUB RLL
instruction, writing to the SFEC variable does not cause the SF program or
SFSUB RLL instruction to terminate. In this case, your SF program or SF
subroutine can examine the SFEC variable and take corrective active, as
applicable. However, you are not able to force termination by writing to
SFEC.

If you specify a control relay (C) or discrete output (Y) in the ERROR
STATUS ADDRESS field when you enter an SF program, or in the ER field
when you enter an SFSUB RLL instruction, this discrete point is set to one
if an error occurs. No other report of the error is made; no error code is
written.

Reporting Errors
with the SFEC
Variable

Reporting Errors
with Discrete Points

Special Function Programs 7-15SIMATIC TI505 Programming Reference

If you specify a V-Memory location (Vn) or word output (WYn) in the
ERROR STATUS ADDRESS field when you enter an SF program, or in the
ER field when you enter an SFSUB RLL instruction, then three words of
memory are reserved, as shown in Figure 7-3.

V or WY
n

n+1

n+2

Bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Error Code

Control Block ID

Statement Number

I003421

Figure 7-3 Word Specification for SF Program Errors

The error code is contained in the low-order 8 bits of the first word (word n)
in the group. Appendix F lists the error codes and their definitions.

The second word in the group (word n+1) is the control block ID. The
controller assigns a control block for each loop, analog alarm, SF program
and SF subroutine. The header in each control block stores information in
the following format.

• Bits 1 and 2 (in word n+1) always contain zero.

• The next four bits (bits 3–6 in word n+1) indicate the control block type
as follows.

0000: Loop Control Block

0001: Analog Alarm Control Block

0010: SF program Control Block

0011: SF subroutine Control Block or SFSUB RLL Instruction

0100 through 1111 are not used

• The next 10 bits (bits 7–16 in word n+1) are allocated for the Control
Block Number or SFSUB RLL Instruction number.

The third word in the group (word n+2) contains the statement number of
either the last SF statement to be executed correctly, or the statement
number of the statement executing when the error occurred. (The Control
Block ID indicates the SF program or SF subroutine that contains the
statement.)

Reporting Errors
with V or WY
Memory

Special Function Programs7-16 SIMATIC TI505 Programming Reference

7.8 Entering Special Function Programming Statements

Each SF statement has one or more fields in which you enter data when you
use the statement in an SF program. For each field, you enter a field type
and a field descriptor, that are defined in Table 7-3.

Table 7-3 SF Statement Field Entry Definitions

Field Type

Address Element

Elements are comprised of a data type and a number. A period following the
element designates the element as an address of a real number. No period
designates the element as an address of an integer. Examples of elements
are: V100 or V100. or LPVH1. or C102, etc.

Address
Expression

An address expression is a logical group of tokens evaluating to an address,
where a token is the smallest indivisible unit, e.g., an element, operator,
constant, parenthesis, etc. Examples of address expressions are

V100(3) evaluates to the address V102

V100.(2) evaluates to the address V101.

V102.(:T16 + 10:) if T16 = 2, evaluates to the address V124.

Value Literal
Constant

A literal constant is a real or integer number, such as 78, 3.468, 32980, etc.

Value
Expression

A value expression is a logical group of tokens evaluating to a value, where a
token is the smallest indivisible unit, e.g., an element, operator, constant,
parenthesis, etc. Examples of value expressions are

V100:= LKD2.**3

(V100 + K774)

(V102(3))

Field Descriptor

Integer only This field only accepts an integer value (e.g., 3761 or (V11 + 7)) or an address containing an
integer value (e.g., V100 or WX88 or V100(2)).

Real only This field only accepts a real value (e.g., 33.421 or WY55.) or an address containing a real
value, (e.g., V121. or V888. (13)).

Integer/Real This field accepts a real or integer value or an address containing a real or integer value.

Writeable This field only accepts a writeable address, (e.g., WY1000 or V23. or C55). Read-only
addresses, (e.g., K551 or WX511 or X69) are not allowed.

Optional An entry in this field is optional and the field can be left blank.

Bit This field only accepts an address that contains a bit value (e.g., X17 or C200 or Y91).

Special Function Programs 7-17SIMATIC TI505 Programming Reference

Figure 7-4 shows an example of the entries that are valid for the fields in
the FTSR-IN statement.

I003422

Field type Field descriptors

Field A

Field type Enter either an element or an address expression.

Field descriptors The entry in field A must contain the address of an integer.

Field B

Field type Enter either an element or an address expression.

Field descriptors The entry in field B must contain the address of an integer,
and that address must be writeable.

A = Address Integer
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR–IN Input : A Register start : B.
Register length : C Status bit : D.

Field C

Field type Enter an element, address expression, literal constant, or
a value expression.

Field descriptors The entry in field C must contain an integer (literal constant
or value expression) or an address to an integer (element or
address expression).

Field D

Field type Enter only an element.

Field descriptors The entry in field D must contain the address of a bit and
that address must be writeable.

Figure 7-4 Example of Valid Entries for the FTSR-IN Statement

Special Function Programs7-18 SIMATIC TI505 Programming Reference

7.9 Convert BCD to Binary

The Convert BCD To Binary statement converts binary coded decimal
(BCD) inputs to a binary representation of the equivalent integer. The
BCDBIN format is shown in Figure 7-5.

BCDBIN BCD input : A Binary result : B.

A = Address Integer
B = Address Integer, writeable

Figure 7-5 BCDBIN Format

• A is the memory location of the BCD word to be converted.

• B is the memory location of the integer value after conversion.

The operation of BCDBIN is described below and illustrated in Figure 7-6.

• Each time the BCDBIN statement executes, the four digits of the BCD
value located in the address specified by A are converted to the binary
representation of the equivalent integer value.

• The result is stored in the address specified by B.

BCDBIN BCD Input: WX01 Binary result: WY11

0 1 0 0 0 0 10 1 0 0 1 0 0 11

0 0 0 1 0 0 00 0 1 1 0 0 0 10

4 1 9 3

WX01 contains BCD value 4193
entered from a thumbwheel

WY11 contains binary
representation of integer 4193

A: WX01 B: WY11

I003424

Figure 7-6 Example of BCDBIN Operation

BCDBIN
TI545, TI555
TI565, TI575

BCDBIN Description

BCDBIN Operation

Special Function Programs 7-19SIMATIC TI505 Programming Reference

7.10 Convert Binary Inputs to BCD

The Convert Binary Inputs To BCD statement (Figure 7-7) converts the
binary representation of an integer to the equivalent Binary Coded Decimal
(BCD) value. Values up to 9999 are converted to equivalent BCD values.

BINBCD Binary input : A BCD result : B.

A = Address Integer
B = Address Integer, writeable

Figure 7-7 BINBCD Format

• A is the memory location of the integer to be converted.

• B is the memory location of the BCD word after conversion.

The operation of BINBCD is described below and illustrated in Figure 7-8.

• Each time the BINBCD statement executes, the integer located in the
address specified by A is converted to BCD.

• An error occurs if the input value contained in A is less than zero or
greater than 9999.

• The BCD value is stored in the address specified by B.

A: V77

0 0 0 0 0 0 01 1 1 0 1 0 0 01

B: WY11

0 0 0 1 0 1 00 0 0 1 1 0 1 00

1 2 3 4

BINBCD Binary input: V77 BCD result: WY11

V77 contains binary
representation of integer 1234

WY11 contains BCD 1234

I003426

Figure 7-8 Example of BINBCD Operation

BINBCD Description

BINBCD Operation

BINBCD
TI545, TI555
TI565, TI575

Special Function Programs7-20 SIMATIC TI505 Programming Reference

7.11 Call Subroutine

The CALL statement calls an SF subroutine for execution. Up to five
parameters may be passed to the subroutine by the CALL statement. The
CALL format is shown in Figure 7-9.

CALL SFSUB A P1 : B. .
P2 : C P3 : D.
P4 : E P5 : F.

A = Literal constant Integer
B–F = Address or value Integer/real, optional

Figure 7-9 CALL Format

• A is the number of the SF subroutine to be called and ranges from 1 to
1023.

• B–F are the fields in which constant values or variables are specified to
be passed between the SF subroutine that is called, and the SF program
or the SF subroutine that contains the CALL statement.

The operation of the CALL statement is described below.

• Up to five parameters may be specified in the P (B–F) fields to be passed
to the SF subroutine.

The P fields are optional and can be left blank. If you have fewer than
five entries for the P fields, enter them in order. That is, do not skip any
of the P fields.

To specify a real value rather than an integer in a P field, place a period
after the variable. For example, P1...: V100. passes a real number to P1;
P2...: V102 passes an integer. Table 7-4 shows how data types are
passed to an SF subroutine.

• When the CALL statement executes, the following actions occur.

Control is transferred to the specified SF subroutine. Any parameters
specified in the P fields are read by the SF subroutine.

Statements within the SF subroutine execute, and parameters in the P
fields that are modified by the SF subroutine are updated. Then control
transfers back to the SF program that called the SF subroutine.

CALL
TI545, TI555
TI565, TI575

CALL Description

CALL Operation

Special Function Programs 7-21SIMATIC TI505 Programming Reference

Table 7-4 Specifying Real or Integer Parameters

Data Type Specified
in CALL Statement

Data Type Specified
in SF Subroutine*

P Data Type
Used in SF subroutine*

real (real (real (

real (Integer real (

Integer real (real (

Integer Integer Integer

* See Section 7.4 for more information about specifying data types in
SF subroutines.

! CAUTION
Subroutines may be nested to four levels. If the limit of four levels is exceeded,
an error results.

This causes termination of the SF program and all subroutines prior to the one
that exceeded the level.

CONTINUE ON ERROR does not override this condition. Ensure that you do not
nest subroutines for more than four levels.

CALL
TI545, TI555
TI565, TI575

Special Function Programs7-22 SIMATIC TI505 Programming Reference

7.12 Correlated Data Table

The Correlated Data Table statement compares an input value (the input)
to a table of values (the input table), and locates a value in the input table
that is greater than or equal to the input. The CDT then writes the value
located in a second table (the output table), that is correlated with the value
located in the input table, to an output address (the output). The CDT
format is shown in Figure 7-10.

CDT Input : A Output : B.
Input table : C Output table : D.
Table length : E.

A = Address Integer/real
B = Address Integer/real, writeable
C = Address Integer/real
D = Address Integer/real
E = Address or value Integer

Figure 7-10 CDT Format

• A is the input address.

• B is the address to which the output value is written.

• C is the starting address for the input table.

• D is the starting address for the output table.

• E is the length of each table and must be a value greater than zero.

CDT
TI545, TI555
TI565, TI575

CDT Description

Special Function Programs 7-23SIMATIC TI505 Programming Reference

CDT statement operation is described here and illustrated in Figure 7-11.

• When the CDT is executed, the CDT compares the value of an input
element specified in A to a pre-existing table of values having a starting
address specified in C. The first value in the input table that is greater
than or equal to the input is located.

• A value in a second pre-existing table (starting address specified in D)
that correlates with the selected value in the input table is written to an
output address specified in B.

• The input table must be in ascending order. That is, the lowest value is
located in the lowest memory location and the highest value is located in
the highest memory location.

• Table length E depends upon the memory location that you choose, and
how much memory you allocated if the memory is user-configurable.

• Both tables must have the same number of entries.

Input table Output table
K64 = 20 K84 = 48
K65 = 28 K85 = 23
K66 = 34 K86 = 62
K67 = 39 K87 = 98

(Input value) V1=37 K68 = 43 K88 = 72 (Output value) V2=72
K69 = 47 K89 = 65
K70 = 50 K90 = 41

CDT Input : V1 Output : V2.
Input table : K64 Output table : K84. . .
Table length : 7.

Figure 7-11 CDT Statement Example

The input address V1 contains the value 37. The value in the input table
that is greater than or equal to 37 is 40, contained in K68. The correlated
value in the output table is in K88. The value written to the output address
V2 is 72.

CDT Operation

CDT
TI545, TI555
TI565, TI575

Special Function Programs7-24 SIMATIC TI505 Programming Reference

7.13 Exit on Error

The EXIT statement allows you to terminate a SF program or
SF subroutine and have an error code logged. The EXIT format is shown in
Figure 7-12.

EXIT Errcode : A. .

A = Literal constant Integer, optional

Figure 7-12 EXIT Format

• A contains the value of the error code and can range from 0 to 255.

The operation of the EXIT statement is described below.

• When the SF program encounters the EXIT statement, program
execution terminates. If an SF subroutine encounters the EXIT
statement, control returns to the statement in the SF program following
the SF subroutine call.

• If you use the EXIT statement in conjunction with an IF statement, you
can terminate the program under specific conditions.

You can leave A blank and the current error code is written to the
ERROR STATUS ADDRESS that you specify in the SF program header.
If this address is a discrete point, it turns on.

You can define an error condition and assign it an error code 200 – 255
(codes 0–199 are reserved). When the EXIT statement executes, the
program terminates and this error code is written to the ERROR
STATUS ADDRESS. If this address is a discrete point, it turns on.

EXIT
TI545, TI555
TI565, TI575

EXIT Description

EXIT Operation

Special Function Programs 7-25SIMATIC TI505 Programming Reference

7.14 Fall Through Shift Register—Input

The Fall Through Shift Register Input statement operates an asynchronous
shift register. The shift register is essentially a table of 16-bit words. The
FTSR-IN moves a word into the shift register each time the statement
executes. The FTSR-IN is used in conjunction with the Fall Through Shift
Register Output statement (FTSR-OUT) that moves words out of the shift
register. The FTSR-IN format is shown in Figure 7-13.

A = Address Integer
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR-IN Input : A Register start : B.
Register length : C Status bit : D.

Figure 7-13 FTSR-IN Format

• A is the input address from which the words are moved.

• B is the starting address for the shift register. Four words (B through
B + 3) are automatically reserved for the operation of the statement and
make up the header of the shift register. The first word of your data is
shifts into address B + 4.

NOTE: Do not write data to the header fields. The shift register does not
operate correctly if any of these fields is modified by an external action.
These fields may be redefined in future software releases.

• C is the length of the table. If a constant is used, it must be greater than
zero. The total length of the shift register is C + header.

• D is the status bit and can be C or Y. The bit specified by D turns on
when the register is full. The bit (D + 1) is automatically reserved as a
second status bit. The bit specified by (D + 1) turns on when the register
is empty.

FTSR-IN Description

FTSR-IN
TI545, TI555
TI565, TI575

Special Function Programs7-26 SIMATIC TI505 Programming Reference

Fall Through Shift Register—Input (continued)

The operation of the FTSR-IN statement is described below.

• FTSR-IN is used in conjunction with an FTSR-OUT; you must use the
same corresponding values for register start, register length, and status
bit in the two FTSR statements.

• A is the input address from which the words are moved into the shift
register.

• The starting address B determines the memory area in which the shift
register is located. The first word of your data shifts into address B + 4.

• The four words (B through B + 3) are automatically reserved for the
operation of the shift register.

(B) contains the Count, that equals the current number of entries in the
shift register.

(B + 1) contains the Index, that acts like a pointer to indicate the next
available location of the shift register into which a word can be shifted.
When the Index equals zero, the next available location is (B + 4); when
the Index equals one, the next available location is (B + 5), and so on.

(B + 2) contains the Length, that equals the maximum size of the shift
register in words.

(B + 3) contains the Checkword. The checkword is used internally to
indicate whether the FTSR is initialized.

• The register length C determines the size of the shift register. The
register length depends upon the memory location that you choose and
how much memory you have allocated (if the memory is
user-configurable).

• The status bit specified by D is turned on to indicate that the register is
full. The bit (D + 1) is automatically reserved as a second status bit and
turns on whenever the shift register is empty.

Use the same status bits for the FTSR-IN that you use for the
FTSR-OUT. FTSR-IN sets D when the register fills. FTSR-OUT clears
this bit as the function executes. FTSR-OUT sets (D + 1) when the
register is empty. FTSR-IN clears this bit.

FTSR-IN
TI545, TI555
TI565, TI575

FTSR-IN Operation

Special Function Programs 7-27SIMATIC TI505 Programming Reference

• If the shift register is empty, status bit D is off and (D + 1) is on.

• When the FTSR-IN executes, the following actions occur.

The word currently in memory location A is shifted into the location
specified by the Index.

The Count and the Index are each incremented by one.

Status bit (D + 1) turns off.

• Each time the FTSR-IN executes, another word moves into the next
available location; the Index and the Count increment by one. When the
Index equals the length, it resets to zero after the next execution by the
FTSR-IN.

• When the shift register is full, another word cannot be shifted in until
one is shifted out by the FTSR-OUT statement.

• When the shift register is full, status bit D turns on. If you attempt to
shift in another word, an error generates. (Appendix F, error 87).

• You can use FTSR-OUT to remove words from the shift register before
all locations are full. You can use FTSR-IN to shift more words into the
shift register before all words are removed.

Figure 7-14 illustrates the operation of the FTSR-IN statement.

FTSR-IN
TI545, TI555
TI565, TI575

Special Function Programs7-28 SIMATIC TI505 Programming Reference

Fall Through Shift Register—Input (continued)

Input word in V100

Index points
to location 0

V196

V197

V198

V199

V200

V201

V202

Count = 0
Index = 0
Length = 3

Checkword

• The Count (V196) contains 0 because the shift register is empty.
• The Index (V197) contains 0 because the next available location is

number 0 (V200).
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is on.

 1 This status is set automatically by the controller the first time that
the FTSR is executed.

9137

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 1
Index = 1
Length = 3

Checkword

• The input address V100 contains the value 9137.
• The Count (V196) contains 1 because one location is filled.
• The Index (V197) contains 1 because the next available location is

number 1 (V201).
• The shift register location V200 contains the value 9137.
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is off.

3391

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 2
Index = 2
Length = 3

Checkword

9137

3391
9137

• The input address V100 contains the value 3391.
• The Count (V196) contains 2 because two locations are filled.
• The Index (V197) contains 2 because the next available location

is number 2 (V202).
• The shift register location V201 contains the value 3391.
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is off.

7992

3391
9137

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 3
Index = 0
Length = 3

Checkword

• The input address V100 contains the value 7992.
• The Count (V196) contains 3 because three locations are filled.
• The Index (V197) contains 0 because the next available location

is number 0 (V200) after the word currently in V200 is
removed.

• The shift register location V202 contains the value 7992.
• The Register Full Status Bit (C99) is on. The Register Empty

Status Bit (C100) is off. 7992

Shift register status before first word is moved in1

Shift register status after first word is moved in

Shift register status after second word is moved in

Shift register status after third word is moved in

FTSR-IN Input :V100 Register start :V196.
Register length :3 Status bit : C99.

Index points
to location 1

Index points
to location 2

Index points
to location 3

Figure 7-14 Example of FTSR-IN Operation

FTSR-IN
TI545, TI555
TI565, TI575

Special Function Programs 7-29SIMATIC TI505 Programming Reference

7.15 Fall through Shift Register—Output

The Fall Through Shift Register Output statement operates an
asynchronous shift register. The shift register is essentially a table of 16-bit
words. The FTSR-OUT moves data out of the shift register each time the
statement executes. The FTSR-OUT is used in conjunction with the Fall
Through Shift Register Input statement (FTSR-IN) that moves words into
the shift register. Figure 7-15 shows the FTSR-OUT format.

A = Address Integer, writeable
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR-OUT Register start : A Output : B.
Register length : C Status bit : D. . .

Figure 7-15 FTSR-OUT Format

• A is the starting address for the shift register. The four words
(A through A + 3) are automatically reserved for the operation of the
statement and make up the header of the shift register.

NOTE: Do not write data to the header fields. The shift register does not
operate correctly if any of these fields is modified by an external action.
These fields may be redefined in future software releases.

• B is the output address to which the words are moved.

• C is the length of the table. If a constant is used, it must be >0.

• D is the status bit and can be C or Y. The bit specified by D is turned on
when the register is full. The bit (D + 1) is automatically reserved as a
second status bit. The bit specified by (D + 1) is turned on when the
register is empty.

FTSR-OUT
Description

FTSR-OUT
TI545, TI555
TI565, TI575

Special Function Programs7-30 SIMATIC TI505 Programming Reference

Fall Through Shift Register—Output (continued)

The operation of the FTSR-OUT statement is described below.

• FTSR-OUT is used in conjunction with a FTSR-IN; you must use the
same corresponding values for register start, register length, and status
bit in the two FTSR statements.

• Starting address A determines the memory area in which the shift
register is located. The first word of user data is located in address
A + 4.

• The four words (A through A + 3) are automatically reserved for the
operation of the shift register.

(A) contains the Count, that equals the current number of entries in the
shift register.

(A + 1) contains the Index, that acts like a pointer to indicate the next
available location of the shift register into which a word can be shifted.
When the Index equals zero, the next available location is (A + 4); when
the Index equals one, the next available location is (A + 5), and so on.

(A + 2) contains the Length, that equals the maximum size of the shift
register in words.

(A + 3) contains the Checkword. The checkword is used internally to
indicate whether the FTSR has been initialized.

• B is the output address into which the words are moved.

• The register length C determines the size of the shift register. The
register length depends upon the memory location that you choose and
how much memory you allocated (if the memory is user-configurable).

• D is the status bit and can be C or Y. The bit specified by D turns on to
indicate that the register is full. The bit (D + 1) is automatically
reserved as a second status bit and turns on whenever the shift register
is empty.

Use the same status bits for the FTSR-OUT that you use for the
FTSR-IN. FTSR-IN sets D when the register is full. FTSR-OUT clears
this bit as the function executes. FTSR-OUT sets (D + 1) when the
register is empty. FTSR-IN clears this bit.

FTSR-OUT
TI545, TI555
TI565, TI575

FTSR-OUT
Operation

Special Function Programs 7-31SIMATIC TI505 Programming Reference

• If the shift register contains one or more words, the Count equals the
number of current entries. The Index points to the next available
location of the shift register into which a word can be moved. Status bit
(D + 1) is off. Status bit D is on if the shift register is full.

• When the FTSR-OUT executes, the following actions occur.

The oldest word in the shift register shifts into memory location B.

The Count decrements by one.

The Index is unchanged and continues to point to the next available
location into which a word can be moved.

• Each time the FTSR-OUT executes, another word moves out of the shift
register and the Count is decremented by one. The Index remains
unchanged.

• After the shift register is empty, the Index and Count contain zero.
Status bit D turns off and status bit (D + 1) turns on. If you attempt to
shift a word out of an empty shift register, an error is generated
(Appendix F, error 86).

• You can use FTSR-OUT to remove words from the shift register before
all locations are full. You can use FTSR-IN to shift more words into the
shift register before all words are removed.

Figure 7-16 illustrates the operation of the FTSR-OUT statement.

FTSR-OUT
TI545, TI555
TI565, TI575

Special Function Programs7-32 SIMATIC TI505 Programming Reference

Fall Through Shift Register—Output (continued)

• The Count (V196) contains 3 because three locations
are filled.

• The Index (V197) contains 0 because the next available
location for a word to be moved in is number 0 (V200).

• The Register Full Status Bit (C99) is on.
The Register Empty Status Bit (C100) is off.

 1 This status is set automatically by the controller the first time that
the FTSR is executed.

• The output address V300 contains the value 9137.
• The Count (V196) contains 2 because two locations

are filled.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is off.

• The output address V300 contains the value 3391.
• The Count (V196) contains 1 because one location

is filled.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is off.

• The output address V300 contains the value 7992.
• The Count (V196) contains 0 because the shift

register is empty.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is on.

Shift register status before first word Is moved out1

Shift register status after first word is moved out

Shift register status after second word is moved out

Shift register status after third word is moved out

Index points
to location 0

V196

V197

V198

V199

V200

V201

V202

Count = 3
Index = 0

Checkword
Length = 3

Output word in V300

3391
9137

7992

3391
9137

7992

V196

V197

V198

V199

V200

V201

V202

Count = 2
Index = 0
Length = 3

Checkword

9137

3391
9137

7992

3391

V196

V197

V198

V199

V200

V201

V202

Count = 1
Index = 0
Length = 3

Checkword

A location in the shift register is not cleared when a word is moved out. The Count determines how many words remain in the
shift register.

3391
9137

7992

7992

V196

V197

V198

V199

V200

V201

V202

Count = 0
Index = 0
Length = 3

Checkword

FTSR-OUT Register start :V196 Output :V300.
Register length :3 Status bit :C99. . .

Index points
to location 0

Output word in V300

Index points
to location 0

Output word in V300

Index points
to location 0

Output word in V300

Figure 7-16 Example Of FTSR-OUT Operation

FTSR-OUT
TI545, TI555
TI565, TI575

Special Function Programs 7-33SIMATIC TI505 Programming Reference

7.16 Go To/Label Function

The GOTO statement continues program execution at a specified LABEL
statement. The GOTO and the LABEL statements are always used together.
The format of the two statements is shown in Figure 7-17.

A = Literal constant Integer

GOTO LABEL : A.

<SF Statement>
<SF Statement>
<SF Statement>

LABEL LABEL : A.

Figure 7-17 GOTO/LABEL Format

• The <SF statement> may be any of the SF program statements.

• A is the label and can range from 0 to 65535.

When the SF program encounters the GOTO, program execution continues
at the LABEL specified by A.

Figure 7-18 illustrates the use of the GOTO/LABEL statement.

00005 MATH V100 := V500

00006 IF V100 < 1000

00007 GOTO LABEL 37415

00008 ELSE

00009 GOTO LABEL 38000

00010 ENDIF

00011 LABEL LABEL 37415

00012 MATH V100 := V465/K99

Figure 7-18 Example of GOTO/LABEL Statements

! CAUTION
Do not repeat label definitions or leave a label undefined.

To do so may cause the controller to enter the FATAL ERROR mode, freeze
analog outputs and turn off discrete outputs.

Ensure that all labels have a unique definition.

GOTO
TI545, TI555
TI565, TI575

Special Function Programs7-34 SIMATIC TI505 Programming Reference

7.17 IF/THEN/ELSE Functions

The IF statement is used for the conditional execution of statements and
operates in conjunction with the ELSE and the ENDIF statements. When
an IF statement is used, a THEN result is understood. The IF format is
shown in Figure 7-19.

IF Free format based on the following structure.

IF <valid MATH expression> <THEN understood>. . .
<SF statement>
<SF statement>
...
<SF statement>

ELSE
<SF statement>
<SF statement>
...
<SF statement>

ENDIF

Figure 7-19 IF Format

• The <SF statement> may be any of the SF program statements.

! CAUTION
Do not use an IF without an ENDIF.

To do so may cause the controller to enter the FATAL ERROR mode, freeze
analog outputs and turn off discrete outputs.

Ensure that all IF statements are completed with an ENDIF statement.

IF
TI545, TI555
TI565, TI575

IF/THEN/ELSE
Description

Special Function Programs 7-35SIMATIC TI505 Programming Reference

Figure 7-20 illustrates the operation of the IF statement is described below.

• Each time the IF executes, the condition defined within the statement is
tested.

• If the <expression> is true (non-zero), statements in the THEN section
execute; any statements in the ELSE section are skipped.

• If the <expression> is false (zero), statements in the THEN section are
skipped; any statements in the ELSE section execute.

• The <expression> can be any MATH expression. See Table 7-7 for a list
of the MATH functions. The use of the assignment operator (:=) in an
expression is optional.

• The IF statement operates in conjunction with the ENDIF statement
and an optional ELSE statement.

• The ENDIF indicates the end of an IF-THEN-ELSE structure.

• If there is no ELSE statement, the statements between the IF and the
ENDIF are treated as THEN statements.

• If an ELSE statement is used, then any statements between IF and
ELSE constitute by default a THEN section. An ELSE statement
indicates the end of the THEN section and the beginning of the ELSE
section in an IF-THEN-ELSE structure.

• Statements between ELSE and ENDIF constitute the ELSE section in
the IF statement.

• IF, ELSE and ENDIF statements may be nested to any level.

0003 IF V1 = 5

0004 PRINT PORT.....:1 MESSAGE.....:
“TANK LEVEL IS LOW. PRESENT LEVEL IS”

 V1 “FT.”

0005 MATH LKC1. := 3.00

0006 ELSE

0007 MATH LKC1. := 1.00

0008 ENDIF

Figure 7-20 Example of IF/THEN/ELSE Statements

IF Operation

IF
TI545, TI555
TI565, TI575

Special Function Programs7-36 SIMATIC TI505 Programming Reference

7.18 Integer Math Operations

The Integer Math statement executes integer arithmetic computations. The
IMATH format, based on the functions in Table 7-5, is shown in Figure 7-21.

IMATH A : = B

A = Address Integer, writeable
B = Address or value Integer

Figure 7-21 IMATH Format

• The following operators are not supported: ** = < > < <= > >=
AND/OR and the MATH/IF intrinsic functions.

Table 7-5 IMATH Operators

NOT Unary Not—The expression “NOT X” returns the one’s complement of X.

> > Shift right (arithmetic)1

< < Shift left (arithmetic)1

* Multiplication

/ Integer division— Any remainder left over after the division is truncated.

MOD Modulo arithmetic—The expression “X mod Y” returns the remainder of X
after division by Y.

+ Addition

– Subtraction/unary minus (negation)

WAND Bit-by-bit AND of two words

WOR Bit-by-bit OR of two words

WXOR Bit-by-bit exclusive OR of two words

:= Assignment

1See page 7-44 for an application example.

Figure 7-22 illustrates the operation of the IMATH statement described
below.

• Each time the IMATH statement executes, the calculations within the
statement are made.

IMATH
TI545, TI555
TI565, TI575

IMATH Description

IMATH Operation

Special Function Programs 7-37SIMATIC TI505 Programming Reference

• The IMATH computations are executed using the rules of precedence for
arithmetic operations listed in Table 7-6.

Functions within a group are equivalent in precedence. Execution takes
place from left to right. For example, in the operation (X * Y / Z), X is
multiplied by Y, and the result is divided by Z.

A subexpression enclosed in parentheses is evaluated before
surrounding operators are applied, e.g., in (X+Y) * Z, the sum of X+Y is
multiplied by Z.

Table 7-6 Order of Precedence for IMATH Operators

Highest Precedence Unary operations (NOT, Negation) NOT –

Multiplication, Division, MOD * / MOD

Addition, Subtraction + –

Shift left, Shift right << >>

WAND WAND

WOR, WXOR WOR WXOR

Lowest Precedence Assignment (:=) :=

• Parentheses, constants, and subscripted variables are allowed in the
expressions.

• You can use only integers in an IMATH statement. Mixed mode
operation (integer and real numbers) is not supported.

• Denote a binary number by the prefix 0B (e.g.0B10111), a hexadecimal
number by the prefix 0H (e.g. 0H7FFF).

• The programming device checks to see if a statement is valid as you
enter the statement and reports an error by placing the cursor in the
field where the error occurs.

IMATH V100(V5 + 2 * V7):= NOT(WX7 WAND(V99 WXOR
 WX5))

Figure 7-22 IMATH Statement Example

IMATH
TI545, TI555
TI565, TI575

Special Function Programs7-38 SIMATIC TI505 Programming Reference

7.19 Lead/Lag Operation

The LEAD/LAG statement (Figure 7-23) allows filtering to be done on an
analog variable. This procedure calculates an output based on an input and
the specified gain, lead, and lag values. The LEAD/LAG statement can only
be used with cyclic processes, such as loops, analog alarms, and cyclic
SF programs.

LEAD/LAG Input : A Output : B.
Lead time (Min) : C Lag time (Min) : D.
Gain (% %) : E Old input : F.

I003441

A = Address Integer/real
B = Address Integer/real, writeable
C = Address or value Real
D = Address or value Real
E = Address or value Real
F = Address Integer/real, writeable

Figure 7-23 LEAD/LAG Format

• A specifies the location of the input value of the current sample period
that is to be processed.

• B specifies the location of the output variable, the result of the
LEAD/LAG operation.

• C specifies the lead time in minutes.

• D specifies the lag time in minutes.

• E (Gain) specifies the ratio of the change in output to the change in
input at a steady state, as shown in the following equation. The
constant must be greater than zero.

����� �
���	��	��

�����	��

• F specifies the memory location of the input value from the previous
sample period.

• For sample time, LEAD/LAG algorithm uses the sample time of the
loop, analog alarm, or cyclic SF program from which it is called

• The first time it executes, LEAD/LAG is initialized and output equals
input.

LEAD/LAG
TI545, TI555
TI565, TI575

LEAD/LAG
Description

Special Function Programs 7-39SIMATIC TI505 Programming Reference

The LEAD/LAG algorithm uses the following equation.

�� � � ����

���� � ��

������ � ������������ � ��

���� � ��

���� � ������ �����

���� � ��

������

!������� � �������������������� � ��� �������������

�� � ������������������� � ��� ����������

�� � �����������������������

The output depends on the ratio of lead to lag as explained below. Assume
the following values in each example: ������������������# �# ���

If TLead / TLag is greater than 1.0, then the initial response overshoots the
steady-state output value.

�������������� � ������� � ������������

����

� � ��������������
���
� � ���

2.0

n = 1 2 3

��

0

�����"���������������
����

4

If TLead / TLag is less than 1.0, then the initial response undershoots the
steady-state output value.

�������������� � ������� � ������������

����

� � ���� � ���������
���
� � ��	

0.5

n = 1 2 3

��

0

�����"���������������
����

4

If TLead / TLag is equal to 1.0, then the initial response instantaneously
reaches the steady-state output value.

�������������� � ������� � ������������

����

� � ���� � ���������
���
� � ���

n = 1 2 3

��

0

�����"���������������
����

4

LEAD/LAG
Operation

LEAD/LAG
TI545, TI555
TI565, TI575

Special Function Programs7-40 SIMATIC TI505 Programming Reference

7.20 Real/Integer Math Operations

The MATH statement executes arithmetic computations involving both
integers and real numbers. The MATH format, based on the operators in
Table 7-7, is shown in Figure 7-24.

MATH A : = B

I003442

A = Address Integer/real, writeable
B = Address or value Integer/real

Figure 7-24 MATH Format

• Parentheses, constants, subscripted variables, and a set of intrinsic
functions (listed in Table 7-8) are allowed in the expressions.

• Assignment operator (:=) is required.

Table 7-7 MATH Operators

MATH Operators

** Exponentiation

* Multiplication

/ Division

+ Addition

– Subtraction/Unary Minus (negation)

:= Assignment

>> Shift right (arithmetic). The sign bit is shifted into the vacated bits.

<< Shift left (arithmetic). Zeros are shifted into the vacated bits.

= Equal. The expression X = Y returns 1 if X equals Y, and zero if not.

< > Not equal. The expression X <> Y returns 1 if X is not equal to Y, and zero if so.

< Less Than. The expression X < Y returns 1 if X is less than Y, and zero otherwise.

<= Less Than or Equal. The expression X <= Y returns 1 if X is less than or equal to Y,
and zero otherwise.

> Greater Than. The expression X > Y returns 1 if X is greater than Y, and zero
otherwise.

>= Greater Than or Equal. The expression X >= Y returns 1 if X is greater than or
equal to Y, and zero otherwise.

AND The expression X AND Y returns 1 if both X and Y are non-zero, and zero
otherwise.

MOD Modulo arithmetic. The expression X mod Y returns the remainder of X after
division by Y.

NOT The expression NOT X returns 1 if X is equal to zero, and zero otherwise.

OR The expression X OR Y returns 1 if either X or Y is non-zero, and zero otherwise.

WAND Bit-by-bit AND of two words.

WOR Bit-by-bit OR of two words.

WXOR Bit-by-bit exclusive OR of two words.

MATH
TI545, TI555
TI565, TI575

MATH Description

Special Function Programs 7-41SIMATIC TI505 Programming Reference

Table 7-8 MATH Intrinsic Functions

Intrinsic Functions

ABS Absolute value

ARCCOS Inverse Cosine in radians.

ARCSIN Inverse Sine in radians.

ARCTAN Inverse Tangent in radians.

CEIL CEIL(X) returns the smallest integer that is greater than or equal to X.

COS Cosine in radians.

EXP Exponential.

FLOOR FLOOR(X) returns the largest integer that is less than or equal to X.

FRAC FRAC(X) returns the fractional portion of X.

LN Natural (base e) Logarithm.

LOG Common (base 10) Logarithm.

SIN Sine in radians.

TAN Tangent in radians.

ROUND ROUND(X) returns the integer closest to X.

SQRT Square Root.

TRUNC TRUNC(X) returns the integer portion of X.

The operation of MATH is described below and illustrated in Figure 7-25.

• Each time the MATH statement is executed, the calculations within the
statement are made.

• The MATH computations are executed using the rules of precedence for
arithmetic operations listed in Table 7-9. Functions within a group are
equivalent in precedence. Execution takes place from left to right for all
operators except exponentiation. For example, in the operation
(X * Y / Z), X is multiplied by Y, and the result is divided by Z.

A subexpression enclosed in parentheses is evaluated before
surrounding operators are applied, e.g., in (X+Y) * Z, the sum of X+Y is
multiplied by Z.

MATH Operation

MATH
TI545, TI555
TI565, TI575

Special Function Programs7-42 SIMATIC TI505 Programming Reference

Real/Integer Math Operations (continued)

Table 7-9 Order of Precedence for MATH Operators

Highest Precedence Intrinsic Functions, NOT, Negation NOT –

Exponentiation1 * *

Multiplication, Division, MOD * / MOD

Addition, Subtraction + –

Shift left, Shift right << >>

Relational Operators (= < < = > = < >)

WAND, AND

WOR, WXOR, OR

Lowest Precedence Assignment (:=)
1 Execution of exponentiation takes place from right to left. For example, in
the

operation (X ** Y ** Z), Y is raised to the power of Z; and then X is raised
to

the power determined by the result.

• When you read a discrete point in an SF program expression, a zero is
returned if the discrete bit is off; a one is returned if the discrete bit is
on. When you write to a discrete point in an SF program expression, the
discrete bit turns off if the value is zero; the discrete bit turns on if the
value is non-zero.

• You can use both integers and real numbers in a MATH statement. The
controller executes this mixed-mode operation by converting all integers
to real on input and rounding the resulting real to integer if the
destination is an integer.

• Real variables are designated by a period following the memory address
or variable name (V300. or LPV35.).

MATH
TI545, TI555
TI565, TI575

Special Function Programs 7-43SIMATIC TI505 Programming Reference

• Denote a binary number by the prefix 0B (e.g.: 0B10111), a hexadecimal
number by the prefix 0H (e.g.: 0H7FFF).

• The programming software checks a statement as you enter it, and, if
necessary, reports an error by placing the cursor in the field containing
the error.

MATH V75.:= 0.929783 * V77. + 2* SQRT ((EXP(V300.)
+LN(V302.))/(V304.**0.25))

MATH V100:= V901/(V45. + V46.)

Figure 7-25 MATH Statement Example

Your can use two kinds of subscripted variables. Denote offset indexing by
the expression Z(n). Use offset indexing to access the nth word from variable
Z Examples of offset indexing follow.

V100(1) ≡ V100 V100.(1) ≡ V100.
V100(2) ≡ V101 V100.(2) ≡ V101.
V100(3) ≡ V102 V100.(3) ≡ V102.

Denote element indexing by the expression Z(:n:). Use element indexing to
access the nth element of an array Z; the actual variable accessed depends
upon the type of array. Examples of element indexing follow.

V100(:1:) ≡ V100 V100.(:1:) ≡ V100.
V100(:2:) ≡ V101 V100.(:2:) ≡ V102.
V100(:3:) ≡ V102 V100.(:3:) ≡ V104.

For the loop and analog alarm variables, the two kinds of indexing are
equivalent, as shown below.

LPV1(1) ≡ LPV1(:1:) ≡ LPV1 LPV1.(1) ≡ LPV1.(:1:) ≡ LPV1.
LPV1(2) ≡ LPV1(:2:) ≡ LPV2 LPV1.(2) ≡ LPV1.(:2:) ≡ LPV2.
LPV1(3) ≡ LPV1(:3:) ≡ LPV3 LPV1.(3) ≡ LPV1.(:3:) ≡ LPV3.

Using Offset
Indexing

Using Element
Indexing

Indexing Loop and
Analog Alarm
Variables

MATH
TI545, TI555
TI565, TI575

Special Function Programs7-44 SIMATIC TI505 Programming Reference

Real/Integer Math Operations (continued)

Since TISOFT does not use multiple subscripts, these expressions are not
allowed: Z(n)(m), Z(:n:)(:m:), Z(n)(:m:). Re-code the first two expressions as:

Z(n)(m) ≡ Z(n + m –1)
Z(:n:)(:m:) ≡ Z(:n + m –1:)

Re-code the third expression as:

Z(n)(:m:) ≡ Z(n + m –1)
when Z is an integer, or a loop or analog alarm variable.

Z(n)(:m:) ≡ Z(n + 2*m –2)
when Z is a real number but not a loop or analog alarm variable.

A subscript may itself be an expression [as V100.(V5+2*V7)] and may
include real terms. All calculations are done according to the rules of real
arithmetic. For example, V100.(12/6) ≡ V100.(2.0) ≡ V101.

The following examples use some of the MATH functions.

• If X = 5.5, then CEIL (X) = 6. If X = –5.9, then CEIL (X) = –5.

• If X = 5.9, then FLOOR (X) = 5. If X = –5.9, then FLOOR (X) = –6.

• The shift right/left functions operate as follows. Assume that V300
contains 0000 0000 0000 1000, that equals 8.

V200 := V300 >> 1 places the following value into V200:
0000 0000 0000 0100, that equals 4.

V200 := 8 >> 1 places the following value into V200:
0000 0000 0000 0100, that equals 4.

V200 := V300 << 1 places the following value into V200:
0000 0000 0001 0000, that equals 16.

V200 := 8 << 1 places the following value into V200:
0000 0000 0001 0000, that equals 16.

If V400 contains 0000 0000 0000 0011, that equals 3, then
V200 := V300 << V400 places the following value into V200:
0000 0000 0100 0000, that equals 64.

For the shift right function, the sign bit is shifted into the vacated bits.
If V677 contains 1000 1000 0000 0000, then V677 >> 3 places the
following value into V677: 1111 0001 0000 0000.

For the shift left function, zeros are shifted into the vacated bits. If V677
contains 0000 0001 0000 0000, then V677 << 3 places the following
value into V677: 0000 1000 0000 0000.

MATH
TI545, TI555
TI565, TI575

Using Multiple
Subscripts

MATH Examples

Special Function Programs 7-45SIMATIC TI505 Programming Reference

7.21 Pack Data

The Pack Data statement moves discrete and/or word data to or from a
table. You can access the image register directly by using the PACK
statement. PACK is primarily intended for use in consolidating data so that
it can be efficiently transmitted to a host computer. The PACK format is
shown in Figure 7-26.

PACK To/from table = A Table address : B.
Number of points = C Data start addr : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Address or value Integer/real, writeable if from table

Figure 7-26 PACK Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are written or
read.

• C is an integer number that specifies how many points or words are to
be moved.

• For a TO table, D specifies the starting address of the points or words
that are to be written to the table.
For a FROM table, D specifies the starting address in memory into
which data is to be read from the table.
D + (C–1) must be within configured memory range.

• Fields C and D can be repeated for up to 20 writes/reads to and from the
table (Figure 7-28).

PACK Description

PACK
TI545, TI555
TI565, TI575

Special Function Programs7-46 SIMATIC TI505 Programming Reference

Pack Data (continued)

The operation of the PACK TO statement is described below.

• For a TO Table, data are written into a table. This write operation
begins with the data starting at the first Data Start Address and writes
the specified number of points or words into the table, beginning with
the first word of the table.

Bits are written sequentially as illustrated in Figure 7-27 below.

0 0 1 0 1 0 1

0 0 1 0 1 0 1

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.

C
6

C
5

C
7

C
9

C
8

C
10

C
11

V100
V101
V102
V103

TableMSB LSB

I003445

Figure 7-27 Example of PACKing Bits Into Table

You can specify multiple blocks of data to be written into the table, as
illustrated in Figure 7-28. When the first word of the table is full,
PACK begins to fill the second word.

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

MSB LSB

I003446

Figure 7-28 Example of PACKing Multiple Blocks of Bits Into Table

PACK
TI545, TI555
TI565, TI575

PACK TO Operation

Special Function Programs 7-47SIMATIC TI505 Programming Reference

Words are written sequentially into the table, as illustrated in
Figure 7-29. You can also PACK multiple blocks of words.

Word image register

PACK To/from table = T Table address : V100.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

WX77
WX78
WX79

V992

0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 11 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V-Memory

MSB LSB

I003447

Figure 7-29 Example of PACKing Words Into Table

• You can PACK blocks of words and blocks of bits into a table with one
PACK statement. See Figure 7-30. The data are PACKed according to
these rules.

Discrete points are PACKed into the next available bit in the table.

Words are PACKed into the next available word in the table. Unused
bits in the previous word fill with zeros when a word is written to the
table.

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

WX77
WX78
WX79

V992

0 0 0 0 0 0 0 0 0 0 0

Word image register

V993

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ

V104
V105
V106

V-Memory

MSB LSB

I003448

Figure 7-30 Example of PACKing Bits and Words Into Table

PACK
TI545, TI555
TI565, TI575

Special Function Programs7-48 SIMATIC TI505 Programming Reference

Pack Data (continued)

The operation of the PACK FROM statement is described below.

• For a FROM Table, data are read from a table. This read operation
begins with the table starting address and reads the specified number of
points or words from the table. PACK then writes this data, starting
with the address designated in the Data Start Address.

Bits are written sequentially as illustrated in Figure 7-31.

0 0 1 0 1 0 1

0 0 1 0 1 0 1

PACK To/from table = F Table address : V100.
Number of points = 7 Data start addr : C5.

C
6

C
5

C
7

C
9

C
8

C
10

C
11

V100
V101
V102
V103

TableMSB LSB

I003449

Figure 7-31 Example of PACKing Bits From a Table

You can specify multiple blocks of data to be PACKed from the table, as
illustrated in Figure 7-32. You cannot skip sections of the table to PACK
data located within the table. For example, refer to Figure 7-32. If the
data that you want to read are located in the least significant nine bits
of V100 and the most significant five bits of V101, you must still PACK
out the first seven bits of V100 and discard them.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

V100

PACK To/from table = F Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.

V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

MSB LSB

I003450

Figure 7-32 Example of PACKing Multiple Blocks of Bits From a Table

PACK
TI545, TI555
TI565, TI575

PACK FROM
Operation

Special Function Programs 7-49SIMATIC TI505 Programming Reference

Words are read sequentially from the table, as illustrated in Figure 7-33.
You can also PACK multiple blocks of words.

Word image register
V100

PACK To/from table = F Table address : V100.
Number of point = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V101
V102
V103

WX77
WX78
WX79

V992

0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 11 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V-Memory

MSB LSB

I003451

Figure 7-33 Example of PACKing Words From a Table

• You can PACK blocks of words and blocks of bits from a table with one
PACK statement. See Figure 7-34. The data are packed according to
these rules.

All discrete points designated in the Number of Points field are packed
from the table.

Words are packed from the first available word in the table. That is,
unused bits in the previous word of the table are not included as part of
a word that is PACKed from the table.

PACK
TI545, TI555
TI565, TI575

Special Function Programs7-50 SIMATIC TI505 Programming Reference

Pack Data (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Bit
Image
Register

PACK To/from table = F Table addr : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WX77
WX78
WX79

V992

Word image register

V993

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁV104
V105
V106

V-Memory

MSB LSB

I003452

Figure 7-34 Example of PACKing Bits and Words From a Table

PACK
TI545, TI555
TI565, TI575

Special Function Programs 7-51SIMATIC TI505 Programming Reference

7.22 Pack Analog Alarm Data

The Pack Analog Alarm Data statement moves analog alarm data to or from
a table. PACKAA is primarily intended for use in consolidating analog
alarm data to be accessed from an operator interface. The PACKAA format
is shown in Figure 7-35.

PACKAA To/from table : A Table address : B.
Alarm number : C. . . .
Parameters : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Element Integer/real, writeable if from table, only

analog alarm data types

Figure 7-35 PACKAA Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the number of the analog alarm to be accessed. C may range
from 1 to the maximum number of alarms.

• D specifies the analog alarm variables. Up to eight variables can be
designated. See Table 7-10 for a list of the analog alarm variables.

PACKAA
Description

PACKAA
TI545, TI555
TI565, TI575

Special Function Programs7-52 SIMATIC TI505 Programming Reference

Pack Analog Alarm Data (continued)

The operation of the PACKAA statement is described below and illustrated
in Figure 7-36 and Figure 7-37. When the PACKAA statement executes, the
following actions occur.

• For a TO Table, the value of the analog alarm variable specified in D is
written into the table at the address designated by B.

If additional variables are specified, the second variable is written to
(B + 1), the third to (B + 2), and so on up to eight variables.

S-Memory
TableMSB LSB

APN.

AACK

ASP.

AODA

V100
V101
V102
V103

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V105

PACKAA To/from table : T Table address. : V100
Alarm number : 10.
Parameters : AACK APN. ASP. AODA.

I003454

Figure 7-36 Example of PACKAA TO Table Operation

PACKAA
TI545, TI555
TI565, TI575

PACKAA Operation

Special Function Programs 7-53SIMATIC TI505 Programming Reference

• For a FROM Table, PACKAA writes the word in the table starting
address B into the specified analog alarm variable.

If additional variables are specified, the second word in the table is
written to the second variable, and so on up to eight variables.

TableMSB LSB
V100
V101
V102
V103

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0V105

PACKAA To/from table : F Table address. : V100
Alarm number : 10.
Parameters : AACK APV. ASP. AODA.

S-Memory
AACK

APV.

ASP.

AODA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I003455

Figure 7-37 Example of PACKAA FROM Table Operation

Table 7-10 Analog Alarm Variables

Mnemonic Variable Name Mnemonic Variable Name

AACK Acknowledge APV* Process Variable

AADB* Deadband APVH. Process Variable High Limit

ACF C-Flags (32 bits) APVL. Process Variable Low Limit

ACFH Most Significant Word of C-Flags ARCA. Rate of Change Alarm Limit

ACFL Least Significant Word of C-Flags ASP* Set Point

AERR* Error ASPH* Set Point High Limit

AHA* High Alarm Limit ASPL* Set Point Low Limit

AHHA* High-High Alarm Limit ATS. Sample Rate

ALA* Low Alarm Limit AVF V Flags

ALLA* Low-Low Alarm Limit AYDA* Yellow Deviation Alarm Limit

AODA* Orange Deviation Alarm Limit

*Variables with an asterisk can be either a real number or an integer. Variables followed by a period are real
numbers. Variables not followed by a period are integers. When you execute PACKAA using real numbers,
two memory locations are allocated for each real number.

PACKAA
TI545, TI555
TI565, TI575

Special Function Programs7-54 SIMATIC TI505 Programming Reference

7.23 Pack Loop Data

The PACKLOOP statement (Figure 7-38) moves loop data to or from a table.
PACKLOOP is primarily intended for use in consolidating loop data to be
accessed from an operator interface.

PACKLOOP To/from table : A Table address : B.
Loop number : C. . . .
Parameters : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Element Integer/real, writeable if from table, only

loop data types

Figure 7-38 PACKLOOP Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the number of the loop to be accessed. The range for C is
from 1 to the maximum number of loops.

• D specifies the loop variables. Up to eight variables can be designated.
See Table 7-11 for a list of the loop variables.

The operation of the PACKLOOP statement is described below. PACKLOOP
operates similarly to the PACKAA statement. See Figure 7-36 and
Figure 7-37 for an example of how the PACKLOOP statement executes.

When the PACKLOOP statement executes the following actions occur.

• For a TO Table, the value of the loop variable specified in D is written
into the table at the address designated by B.

If additional variables are specified, the second variable is written to
(B + 1), the third to (B + 2), and so on up to eight variables.

• For a FROM Table, PACKLOOP writes the word in the table starting
address B into the specified loop variable.

If additional variables are specified, the second word in the table is
written to the second variable, and so on up to eight variables.

PACKLOOP
TI545, TI555
TI565, TI575

PACKLOOP
Description

PACKLOOP
Operation

Special Function Programs 7-55SIMATIC TI505 Programming Reference

Table 7-11 Loop Variables

Mnemonic Variable Name

LACK Alarm Acknowledge

LADB* Alarm Deadband

LCF C-Flags (32 bits)

LCFH Most Significant Word of C-Flags

LCFL Least Significant Word of C-Flags

LERR* Error

LHA* High Alarm Limit

LHHA* High-high Alarm Limit

LKC. Gain

LKD. Derivative Gain Limiting Coefficient

LLA* Low Alarm Limit

LLLA* Low-low Alarm Limit

LMN* Output

LMX* Bias

LODA* Orange Deviation Alarm Limit

LPV* Process Variable

LPVH. Process Variable High Limit

LPVL. Process Variable Low Limit

LRCA. Rate of Change Alarm Limit

LRSF Ramp/Soak Flags

LRSN Ramp/Soak Step Number

LSP* Set Point

LSPH* Set Point High Limit

LSPL* Set Point Low Limit

LTD. Rate

LTI. Reset

LTS. Sample Rate

LVF V-Flags

LYDA* Yellow Deviation Limit

*Variables with an asterisk can be either a real number or an integer. Variables
followed by a period are real numbers. Variables not followed by a period are
integers. When you execute PACKLOOP using real numbers, two memory
locations are allocated for each real number.

PACKLOOP
TI545, TI555
TI565, TI575

Special Function Programs7-56 SIMATIC TI505 Programming Reference

7.24 Pack Ramp/Soak Data

The Pack Ramp/Soak Data statement moves one or more elements (steps) of
the ramp/soak profile for a given loop to or from a table. PACKRS is
primarily intended to make the ramp/soak profiles accessible to an operator
interface and to provide a method for dynamic ramp/soak profiling. The
PACKRS format is shown in Figure 7-39.

PACKRS TO/FROM TABLE : A. .
LOOP NUMBER : C. . .
NO. OF STEPS : D. . . .

TABLE ADDRESS : B. .

STARTING STEP : E. .

A = T(o) or F(rom)
B = Address Integer, writeable if to table.
C = Address or value Integer.
D = Address or value Integer.
E = Address or value Integer.

Figure 7-39 PACKRS Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the loop number whose ramp/soak profile is involved in the
pack operation.

• D specifies the number of ramp/soak steps to pack.

• E specifies the starting step in the ramp/soak profile at which the pack
operation will begin.

The number of steps in a ramp/soak profile is established when it is
programmed using TISOFT or your programming package. The PACKRS
instruction cannot expand or shorten the ramp/soak profile for a given loop.
This instruction can only read or modify existing steps in a preexisting
profile.

PACKRS instructions that specify operations on non-existent profile steps
are invalid, and the execution of this instruction terminates.

PACKRS
TI545, TI555,
TI575

PACKRS Description

PACKRS Operation

Special Function Programs 7-57SIMATIC TI505 Programming Reference

If TO Table is specified, this instruction copies the specified number of steps
from the ramp/soak profile of a given loop, starting at the specified step
number, to a table in memory whose starting address is indicated in the
instruction.

If FROM Table is specified, this instruction copies the specified number of
profile steps from a memory table into the ramp/soak profile for the
indicated loop starting at the specified step number. The new step values
overwrite the affected step values in the profile.

NOTE: Care should be taken when using the PACKRS instruction with a
FROM Table specified. If the ramp/soak profile being modified is in progress
when the PACKRS instruction executes, then your process could react
erratically due to the sudden replacement of values in the profile steps. You
can use one of the following methods to ensure that the profile update is
done when the current profile is not in progress.

• In your program, check the state of the profile finished bit (bit 4) in
LRSF for the corresponding loop. Do not execute the PACKRS
statement unless the finished bit is set.

• In your program, place the loop in the manual mode, execute the
PACKRS to update the ramp/soak profile, then return the loop to
automatic mode. (Remember, this causes the ramp/soak profile to be
restarted at the initial step.)

PACKRS
TI545, TI555

TI575

Special Function Programs7-58 SIMATIC TI505 Programming Reference

Pack Ramp/Soak Data (continued)

When stored in a memory table, ramp/soak profile steps are six words long
and have the following format:

• Word 1 (bit 1): Step type — 0 = ramp step, 1 = soak step (bit)

• Word 1 (bits 2–16) + Word 2: Address of status bit (special address
format)

• Words 3/4: Setpoint, if ramp step, or Soak time, if soak step (REAL
number)

• Words 5/6: Ramp rate, if ramp step, or Deadband, if soak step (REAL
number)

The status bit address points to either an output point (Y) or a control relay
(C). This address takes a short form for point numbers C1 – C512 and
Y1 – Y1024. Higher point numbers use a long form of address. If all bits of
the status bit address field are 0, then no status bit is selected for the step.

The short address form is shown in Figure 7-40.

MSB LSB
16151413121110987654321

Word 1

0000000000000000

Point Type Offset

Word 2

S

S = Step type: 0 = ramp step, 1 = soak step
Point Type = 0 0 0 ⇒ control relay (C)

1 1 0 ⇒ output (Y)
Offset = same as point number

Figure 7-40 Address Format — Short Form

For example, the encoded address for Y23 using the short form is shown in
Figure 7-41.

Word 1

Word 2

Ramp step with status bit Y23

0000000000000000

1110100000000110

S = 0 (Ramp step)
Point Type = 110 (Y output)
Offset = 017 Hex (23)

MSB LSB
16151413121110987654321

Figure 7-41 Short Form Address Example

PACKRS
TI545, TI555,
TI575

Special Function Programs 7-59SIMATIC TI505 Programming Reference

The long address form is shown in Figure 7-42.

MSB LSB
16151413121110987654321

Word 1

Point Type

Page Number

Word 2

0000111

S = Step type: 0 = ramp step, 1 = soak step
Point Type = 0 0 0 ⇒ control relay (C)

1 1 0 ⇒ output (Y)
Page Number = (Point number – 1) / Page size
Offset = offset within current page

Offset = ((Point number – 1) modulo Page size) + 1
NOTE: Page size = 512 for control relays (C), 1024 for output points (Y)

Offset0

S

Figure 7-42 Address Format — Long Form

For example, the encoded address for C514 using the long form is shown in
Figure 7-43.

MSB LSB
16151413121110987654321

Word 1

Word 2

1000000000001111

0100000000000000

Soak step with status bit C514

S = 1 (Soak step)
Point Type = 000 (C control relay)
Page Number: (514 – 1) / 512 = 1
Offset: ((514–1) modulo 512) + 1 = 2

Figure 7-43 Long Form Address Example

PACKRS
TI545, TI555

TI575

Special Function Programs7-60 SIMATIC TI505 Programming Reference

Pack Ramp/Soak Data (continued)

Figure 7-44 shows an example of the PACKRS instruction moving values
from a ramp/soak profile to a V-memory table.

Table in V-Memory

8 0 2 1

0 0 0 0

4 0 C 0

0 0 0 0

3 F C 0

0 0 0 0

0 2 0 0

0 0 0 0

4 2 8 2

0 0 0 0

4 0 C 0

0 0 0 0

F 0 0 1

0 0 0 1

4 1 2 0

0 0 0 0

4 0 6 0

0 0 0 0

Table after execution of PACKRS
instruction To Table, from Loop 2,
packing 3 steps, starting at step 2.

Loop 2 RAMP/SOAK Profile

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

Step 2 Values

Step 3 Values

Step 4 Values

V100
V101
V102
V103
V104
V105
V106
V107
V108
V109
V110
V111
V112
V113
V114
V115
V116
V117

PACKRS To/from Table : TO. .
Loop Number : 2. .
No. of Steps : 3. . .

Table Address : V100.

Starting Step : 2. . .

1

2

3

4

5

Ramp C32 56.2 3.6

Soak C33 6.0 1.5

Ramp C512 65.0 6.0

Soak C513 10.0 3.5

Ramp C1025 45.0 5.0

Soak step; status bit address C33

IEEE floating-point representation of 6.0

IEEE floating-point representation of 1.5

IEEE floating-point representation of 65.0

IEEE floating-point representation of 6.0

Ramp step; status bit address C512

Soak step; status bit address C513

IEEE floating-point representation of 10.0

IEEE floating-point representation of 3.5

Figure 7-44 Example of PACKRS to a Table in V-Memory

PACKRS
TI545, TI555,
TI575

Special Function Programs 7-61SIMATIC TI505 Programming Reference

Figure 7-45 shows an example of the PACKRS instruction moving values
from a V-memory table to a Loop Ramp/Soak profile, changing two of the
values in the profile, and leaving the remaining values unchanged.

Table in V-Memory

6 4 0 0

0 0 0 0

4 2 2 0

0 0 0 0

4 0 A 0

0 0 0 0

F 0 0 1

6 0 0 1

4 1 2 0

0 0 0 0

4 0 A 0

0 0 0 0

Loop 1 RAMP/SOAK Profile before PACKRS is executed

Ramp step; status bit address Y1024V1000
V1001
V1002
V1003
V1004
V1005
V1006
V1007
V1008
V1009
V1010
V1011

IEEE floating-point representation of 40.0

IEEE floating-point representation of 5.0

IEEE floating-point representation of 10.0

IEEE floating-point representation of 5.0

Soak step; status bit address Y1025

Loop 1 RAMP/SOAK Profile after PACKRS is executed

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

In this example, the Ramp/Soak profile for Loop 1 is changed after executing the PACKRS instruction.
The Setpoint value in Step 1 is modified from 30.0 to 40.0 and the Soak Time value in Step 2 is changed
from 3.0 to 10.0. All other values in the profile have been left unchanged.

PACKRS To/from Table : FROM. .
Loop Number : 1. .
No. of Steps : 2. . .

Table Address : V1000.

Starting Step : 1. . .

1

2

3

4

Ramp Y1024 30.0 5.0

Soak Y1025 3.0 5.0

Ramp Y1026 20.0 4.0

Soak Y1027 5.0 6.5

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

Ramp Y1024 40.0 5.0

Soak Y1025 10.0 5.0

Ramp Y1026 20.0 4.0

Soak Y1027 5.0 6.5

1

2

3

4

Step 1 Values

Step 2 Values

Figure 7-45 Example of PACKRS From a Table in V-Memory

PACKRS
TI545, TI555

TI575

Special Function Programs7-62 SIMATIC TI505 Programming Reference

7.25 Printing

The Print statement sends a message to the ASCII communication ports.
This statement can be used to print both text and the contents of integer
and real variables. The PRINT format is shown in Figure 7-46.

A = 1, 2, or 3
B = Address Text enclosed in double quotes

PRINT Port : A Message :.
B:

Figure 7-46 PRINT Format

• A is the port entry. Use 1 for Port 1, 2 for Port 2, or 3 to have the
message sent to both ports. (On the TI545 TI555. and the TI575, that
have only one printer port, A = 1).

• B contains a free format message. The message begins on the line
following the port and message designator fields. Element addresses
and Expressions are separated by a space. No embedded space or the
assignment operator (:=) in an expression is accepted.

The operation of the PRINT statement is described below.

• When the PRINT statement executes, the message is sent to the port(s)
specified.

• The maximum message length is 1019 characters, with characters
counted in entries as follows:
Each text character = 1 character
Each variable entry = 6 characters
Each variable text entry = 6 characters
Carriage Return & Linefeed = 2 characters

• Text Entries contain ASCII text to be printed. Text entries are enclosed
in quotation marks.

Example: PRINT PORT=1 MESSAGE:
“END OF SHIFT REPORT”

• Variable Entries print the contents of variables in either integer or real
format. Variables must be separated by spaces. Real numbers are
indicated by following the address with a period (.). Integers are printed
right-justified in a six character field with a floating minus sign. Real
numbers are printed right-justified in a twelve character field using a
FORTRAN G12.5 format.

Example: PRINT PORT=1 MESSAGE:
“THE VALUES ARE” WX5 V104.

PRINT
TI545, TI555
TI565, TI575

PRINT Description

PRINT Operation

Special Function Programs 7-63SIMATIC TI505 Programming Reference

• Time Entries are used to print out a variable in time format. The
variable is printed out as hh:mm:ss. Time entries are indicated by
following the address of the variable (EL or EXP) with :TIME.

Example: PRINT PORT=1 MESSAGE:
“THE TIME IS NOW” STW141:TIME

• Date Entries are used to print out a variable in date format. The
variable is printed out as yy/mm/dd. Date entries are indicated by
following the address of the variable (EL or EXP) with :DATE.

Example: PRINT PORT=1 MESSAGE:
“THE DATE IS NOW” STW141:DATE

• Variable Text Entries are used to print out text stored in either V or K
memory. Variable Text Entries are indicated by following the address of
the text (EL or EXP) to be printed with a percent sign (%) and the
number of characters to be printed. If the number is coded as zero,
PRINT assumes that the first word of the indicated variable contains
the number of characters to print.

Example: PRINT PORT=2 MESSAGE:
“BOILER” V250%16
“DESCRIPTION” V102%0

“Boiler” V250%16 causes the 16 characters in V-Memory locations
V250–V257 to be printed. Each word contains two 8-bit characters.

“Description” V102%0 causes the number of characters specified in V102
to be printed. If V102 contains 5, then the characters in V103–V105 are
printed.

Variable Text Entries are a valuable tool for embedding control characters to
be used by the device receiving the ASCII characters. The next page gives
instructions about how to embed a control character in variable text.

PRINT
TI545, TI555
TI565, TI575

Special Function Programs7-64 SIMATIC TI505 Programming Reference

Printing (continued)

The form-feed indicator <FF> is entered as: “<FF>”.

Follow these steps.

1. Enter the double quote character “

2. Enter the less than character <

3. Enter the F character F

4. Enter the F character F

5. Enter the greater than character >

6. Enter the double quote character ”

Example: PRINT PORT=2 MESSAGE:
“THERE IS A FORMFEED
AFTER THIS <FF>”

To enter a <CR><LF> (Carriage return/Linefeed), follow these steps.

1. Enter the double quote character “

2. Press the carriage return key Enter or Return

3. Enter the double quote character ”

Example: PRINT PORT=2 MESSAGE:
“THERE IS A CARRIAGE RETURN
LINEFEED AFTER THIS
 ”

To print the double quotes ““, precede it with another double quote “ as
shown in the example below.

Example: PRINT PORT=2 MESSAGE:
“ ““THIS QUOTED TEXT IS PRINTED INSIDE

DOUBLE QUOTE CHARACTERS”” ”

PRINT
TI545, TI555
TI565, TI575

Special Function Programs 7-65SIMATIC TI505 Programming Reference

7.26 Return from SF Program/Subroutine

The Return statement is used to terminate an SF program or an
SF subroutine. If invoked from an SF program, the program terminates. If
invoked from an SF subroutine, control returns to the statement in the
SF program following the SF subroutine call. The RETURN format has no
subfields. If there is no RETURN statement, the program terminates after
the last statement. The format of the RETURN statement is shown in
Figure 7-47.

<SF Statement>
<SF Statement>
<SF Statement>
RETURN

Figure 7-47 Example of the RETURN Statement

RETURN
TI545, TI555
TI565, TI575

Special Function Programs7-66 SIMATIC TI505 Programming Reference

7.27 Scaling Values

The Scale statement uses as input an integer input and converts it to
engineering units scaled between high and low limits. The SCALE format is
shown in Figure 7-48.

SCALE Binary input : A Scaled result : B.
Low limit : C High limit : D.
20% offset : E Bipolar : F.

A = Address Integer
B = Address Integer/real, writeable
C = Literal constant Real (C ≤ D)
D = Literal constant Real (C ≤ D)
E = Y(es) or N(o)
F = Y(es) or N(o)

Figure 7-48 SCALE Format

• A is the memory location of the input.

• B is the memory location of the result after conversion.

• C is the lower limit to which the input can be scaled.

• D is the upper limit to which the input can be scaled.

• E indicates if the input is 20% offset (Yes) or 0% offset (No).

• F indicates if the input is bipolar (Yes) or not (No).

NOTE: You cannot choose both bipolar and 20% offset for an input
(Fields E–F).

SCALE
TI545, TI555
TI565, TI575

SCALE Description

Special Function Programs 7-67SIMATIC TI505 Programming Reference

The operation of the Scale statement is described below and illustrated in
Figure 7-49.

• Each time the SCALE statement executes, an integer located in A
converts to an integer or real number in engineering units, scaled
between high and low limits.

If the input is a variable that could range from –32000 to +32000, the
variable is bipolar. Set option F to Y(es). If the input is a variable that
could range from 0 to 32000, the variable is unipolar. Set option F to
N(o).

If the input is a variable that has a 20% offset (ranges from 6400 to
32000), set option E to Y(es). If the input is a variable that has a 0%
offset, set option E to N(o).

• The result is stored in the address specified by B.

The low and high limits specified in C and D determine the range of the
converted number. Values of C and D may fall within the following
limits.

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018 � 2.71050535 * 10�20to
Range =

• An error is logged if the input value is outside the low-limit to high-limit
range; and the output is clamped to the nearer of either the low limit or
the high limit.

You can use the SCALE statement to convert an input signal from an analog
input module to a value in engineering units. For example, consider these
conditions.

• The input is a 4–20 mA signal that is converted by the analog input
module to a value between 6400 and 32000 (unipolar, 20% offset) and
sent to WX33.

• You want the result of the SCALE statement to be a real number
ranging between 0 and 100 and be placed in V100., as shown below.

The SCALE fields would contain these values.

SCALE Binary input : WX33 Scaled result : V100..
Low limit : 0 High limit : 100.
20% offset : Y Bipolar : N.

Figure 7-49 SCALE Example

SCALE Operation

SCALE
TI545, TI555
TI565, TI575

Special Function Programs7-68 SIMATIC TI505 Programming Reference

7.28 Sequential Data Table

The Sequential Data Table statement moves words one at a time from an
existing table to a destination address. A pointer designates the address of
the next word in the table to be moved. Each time the statement is
executed, one word moves and replaces the word at the destination address.
The SDT format is shown in Figure 7-50.

SDT Input table : A Output : B.
Table PTR : C Table length : D.
Restart bit : E.

A = Address Integer/real
B = Address Integer/real, writeable
C = Address Integer, writeable
D = Address or value Integer
E = Element Bit, writeable

Figure 7-50 SDT Format

• A is the starting address for the table.

• B is the output address to which the words are moved.

• C is the address of the pointer.

• D is the length of the table and must be a value greater than zero.

• E is the address of the restart (status) bit and can be a C or Y.

The operation of the SDT statement is described below and illustrated in
Figure 7-51.

• The SDT moves words from a pre-existing table.

The size of the table depends upon the memory location that you choose
and, if the memory is user-configurable, how much memory you
allocated.

• Before the SDT is executed, pointer C contains zero. You must design
your program to set the pointer to zero.

• Each time the SDT is executed, the following actions occur.

The table pointer is incremented by 1. Then the word in the table
location specified by the pointer is moved to the destination address
specified by B.

The process is repeated until the number of words specified in D has
been moved.

SDT
TI545, TI555
TI565, TI575

SDT Description

SDT Operation

Special Function Programs 7-69SIMATIC TI505 Programming Reference

• When the last word has been moved, the pointer is reset to zero.

• The restart bit E is on, except for the following conditions.

When the SDT resets the pointer, the restart bit turns off.

Prior to the first execution of the SDT, the bit could be either off or on
depending upon prior usage.

The value of the pointer does not change when the SDT is not executing. All
values in the table remain the same, and destination address B contains the
value of the last word moved from the table.

You can use other logic to reset the pointer to zero, but the restart bit does
not turn off.

SDT Input table :V200 Output :V100.
Table PTR :V500 Table length :30.
Restart bit :C77.

V200

V229

Table Starting Address A = V200

~~
~~

1st word moved from table

30th word moved from table

V201

V202

V228

V227

Pointer CDestination Address B = V100
Word moved from table

V500 = 1

V500 = 2

V500 = 3

V500 = 28

V500 = 29

V500 = 0

V100

C77 = ON

C77 = ON

C77 = ON

C77 = ON

C77 = ON

C77 = OFF

Restart Bit E
is C77V500

Value of restart bit
after word moved

from table

1

2

3

4

29

27

28

30

Value of pointer
after word moved

from table.

Figure 7-51 SDT Statement Example

Before the SDT executes, the pointer V500 contains 0 (zero). When the
statement executes, the pointer increments by 1, and the value in V200 is
moved to V100. This process repeats each time the statement executes.
After the last word is moved, the pointer resets to 0.

SDT
TI545, TI555
TI565, TI575

Special Function Programs7-70 SIMATIC TI505 Programming Reference

7.29 Synchronous Shift Register

The Synchronous Shift Register statement builds a table that functions as
synchronous shift register. The SSR format is shown in Figure 7-52.

SSR Register start. : A Status bit : B. . . .
Register length : C. .

A = Address Integer/real, writeable
B = Element Bit, writeable
C = Address or value Integer

Figure 7-52 SSR Format

• A is the starting address for the shift register.

• B is the status bit (C or Y) and is turned on when the register is empty.

• C is the length of the shift register. The maximum number of elements
stored in the register is C. If a constant value is entered, it must be
greater than zero.

The operation of the SSR statement is described below and illustrated in
Figure 7-53.

• The starting address A designates the memory area in which the shift
register is located.

• The register length C determines the size of the shift register. Size
depends upon the memory location that you choose and how much
memory you allocated (if the memory is user-configurable). The
maximum number of elements stored in the register is C.

• The first position of the register, Register Start A, is empty until an
element moves into A from another source.

• Each time the SSR executes, the element currently in memory location
A shifts to A + 1. The element in A + 1 shifts to A + 2. Elements move
down the shift register to A + 3, A + 4, etc., and A resets to zero.

• After the register is full, shifting in a new word causes the loss of the
last word in the register at location [A + (C – 1)].

• The register is considered empty when it contains all zeros. The status
bit B turns on when the register is empty.

NOTE: If the register contains the value –0.0, the register is not recognized
as empty, and the status bit does not turn off.

SSR
TI545, TI555
TI565, TI575

SSR Description

SSR Operation

Special Function Programs 7-71SIMATIC TI505 Programming Reference

V100

V101

V102

V103

V104

• The application program moves a word into the SSR from WY37.

• The application program moves a word into V100.
• The register start address V100 now contains the value 7988.

• The word 7988 shifts to V101.
• Register start address V100 is reset to 0 (V100 = 0).
• The Status Bit (C17) is turned off.

• Register start address V100 contains the value 6655.
• Shift register location V101 contains the value 7988.
• The Status Bit (C17) is off.

Shift register status before first word is moved in.

SSR executes one time.

Shift register status after application program moves first
word in; SSR has not executed yet.

Shift register status after application program moves
second word in. Another word source (WY200) is used.

V100

V101

V102

V103

V104

V100

V101

V102

V103

V104

V100

V101

V102

V103

V104

C17 IS OFF

C17 IS OFF

C17 IS OFF

WY377988

WY377988

0
0
0
0

0

7988
0
0
0
0

Word source

Word source

Word source

Word source

7988
0
0
0

0

WY2006655

0

0
0

7988
6655

WY377988

• The word 7988 shifts to V102.
• The word 6655 shifts to V101.
• Register start address V100 is reset to 0 (V100 = 0).
• The Status Bit (C17) is off.

SSR executes one time.

V100

V101

V102

V103

V104

C17 IS OFF

Word source
WY2006655

7988

0
0

6655
0

SSR Register start. : V100 Status bit : C17. . . .
Register length : 5. .

C17 IS ON

Figure 7-53 Example of SSR Operation

SSR
TI545, TI555
TI565, TI575

Special Function Programs7-72 SIMATIC TI505 Programming Reference

7.30 Unscaling Values

The Unscale statement takes as input a value in engineering units, scaled
between high and low limits, and converts it to an integer. The UNSCALE
format is shown in Figure 7-54.

UNSCALE Scaled input : A Binary result : B.
Low limit : C High limit : D.
20% offset : E Bipolar : F.

A = Address Integer/real
B = Address Integer, writeable
C = Literal constant Real (C ≤ D)
D = Literal constant Real (C ≤ D)
E = Y(es) or N(o)
F = Y(es) or N(o)

Figure 7-54 UNSCALE Format

• A is the memory location of the input.

• B is the memory location of the result after conversion.

• C is the lower limit of scaled input A.

• D is the upper limit of scaled input A.

• E indicates if the output is 20% offset (Yes) or 0% offset (No).

• F indicates if the output is bipolar (Yes) or not (No).

NOTE: You cannot choose both bipolar and 20% offset for an output
(Fields E–F).

The operation of the UNSCALE statement is described below and
illustrated in Figure 7-55.

• Each time the UNSCALE statement executes, an integer or real number
located in A is converted to a scaled integer.

The high and low limits of the value in A are specified in C and D. These
limits can fall within the following range.

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018 � 2.71050535 * 10�20to
Range =

UNSCALE
TI545, TI555
TI565, TI575

UNSCALE
Description

UNSCALE
Operation

Special Function Programs 7-73SIMATIC TI505 Programming Reference

• The result is stored as an integer in the address specified by B.

If the output is a variable that has a 20% offset (ranges from 6400 to
32000), set option E to Y(es). If the output is a variable that has a 0%
offset, set option E to N(o).

If the output is a variable that could range from –32000 to +32000, the
variable is bipolar. Set option F to Y(es). If the output is a variable that
could range from 0 to 32000, the variable is unipolar. Set option F to
N(o).

• An error is logged if the scaled value of the input is outside the ranges
given above, and the input is clamped to the nearer of either the low
limit or the high limit.

You can use the UNSCALE statement to convert a value in engineering
units to an output signal to an analog output module. For example, consider
these conditions.

The value to be converted is at memory location V100. The value at
V100 ranges between 0.0 and 100.0. You want the result of the
UNSCALE statement to be an integer between 6400 and 32000
(unipolar, 20% offset) and to be sent to WY66.

The analog output module converts the UNSCALEed value at WY66 to
a signal between 4 and 20 mA signal and sends the result to the field
equipment.

The UNSCALE fields would contain these values.

UNSCALE Scaled input : V100 Binary output : WY66.
Low limit : 0.0 High limit : 100.0.
20% offset : Y Bipolar : N.

I003465

Figure 7-55 UNSCALE Example

UNSCALE
TI545, TI555
TI565, TI575

Special Function Programs7-74 SIMATIC TI505 Programming Reference

7.31 Comment

The Comment statement inserts a comment in a program for documentation
purposes. The Comment statement is ignored during program execution.
The COMMENT format is shown in Figure 7-56.

This is an example of the free-form Comment statement.

Figure 7-56 Comment Format

• A comment statement can contain a maximum of 1021 characters.

TI545, TI555
TI565, TI575

Programming Analog Alarms 8-1SIMATIC TI505 Programming Reference

Chapter 8

Programming Analog Alarms

8.1 Overview 8-2.

8.2 Analog Alarm Programming and Structure 8-4.
Analog Alarm Numbers and Variable Names 8-4.
Programming Tables 8-4.
Analog Alarm C-Flags 8-5.

8.3 Specifying Analog Alarm V-Flag Address 8-6.
Alarm V-Flag Address 8-6.

8.4 Specifying Analog Alarm Sample Rate 8-7.
Sample Rate 8-7.

8.5 Specifying Analog Alarm Process Variable Parameters 8-8.
Process Variable Address 8-8.
PV Range Low/High 8-8.
PV is Bipolar 20% Offset 8-8.
Square Root of PV 8-8.

8.6 Specifying Analog Alarm Deadband 8-9.
Alarm Deadband 8-9.

8.7 Specifying Analog Alarm Process Variable Alarm Limits 8-10.
PV Alarms: Low-low, Low, High, High-high 8-10.

8.8 Specifying Analog Alarm Setpoint Parameters 8-11.
Remote Setpoint 8-11.
Clamp SP Limits 8-11.

8.9 Specifying Analog Alarm Special Function Call 8-12.
Special Function 8-12.

8.10 Specifying Analog Alarm Setpoint Deviation Limits 8-13.
Deviation Alarms: Yellow, Orange 8-13.

8.11 Specifying Other Analog Alarm Process Variable Alarms 8-14.
Rate of Change Alarm 8-14.
Broken Transmitter Alarm 8-14.

Programming Analog Alarms8-2 SIMATIC TI505 Programming Reference

8.1 Overview

The analog alarm function in the TI545, TI555, TI565, and TI575
controllers allows you to monitor an analog input signal by setting standard
alarms on a process variable (PV) and a target setpoint (SP). Eight alarms
are available, as illustrated in Figure 8-1.

• High-high alarm point on the PV

• High alarm point on the PV

• Low alarm point on the PV

• Low-low alarm point on the PV

• Yellow deviation alarm point referenced to the SP

• Orange deviation alarm point referenced to the SP

• Rate of change alarm, for a PV changing too fast

• Broken transmitter, for a PV outside the designated valid range.

The high-high, high, low, and low-low alarms are fixed absolute alarms and
can correspond to warnings and shutdown limits for the process equipment
itself. The yellow and orange deviation alarms move up and down with the
target setpoint and can refer to specification tolerances around the target.

A PV alarm deadband is provided to minimize cycles in and out of alarm
(chattering) that generate large numbers of messages when the PV hovers
near one of the alarm limits.

An option is also available to call an SF program, discussed in Chapter 7, to
initiate a special function calculation. This allows you to use the timing and
scaling capabilities of the analog alarm algorithm in conjunction with
SF program programming to provide a standard set of alarm checking
capabilities on advanced custom-control algorithms written in SF programs.

Programming Analog Alarms 8-3SIMATIC TI505 Programming Reference

Setpoint

• Yellow

• Orange

Green

• Orange

• Yellow

Deviation alarms

• High-High

• High

• Low

• Low-Low

Absolute alarms

Hot water Input

Miscellaneous alarms

Product input

Product output

TIC
402

• Broken transmitter
• Rate of change

Figure 8-1 Example of Analog Alarm Application

Programming Analog Alarms8-4 SIMATIC TI505 Programming Reference

8.2 Analog Alarm Programming and Structure

Analog alarms are referenced by a user-assigned number from 1 to 128. The
variables within each analog alarm are accessed by variable names assigned
to each variable type. For example, the analog alarm setpoint is designated
by ASP; to read the value of the setpoint for Analog Alarm 10, you would
read ASP10. To read the value of the setpoint low limit for Analog Alarm
117, you would read ASPL117. Appendix A lists the analog alarm variable
names.

When you program an analog alarm, you display the analog alarm
programming table on your programming unit and enter the data in the
appropriate fields. The general steps for entering analog alarm data follow.
Refer to the TISOFT user manual for detailed instructions about
programming analog alarms.

1. Select the ALARM option from the prompt line on your programming
device.

2. Display the analog alarm that you want to program (# 1, # 2, etc.).

3. Enter the data for each field in the table.

The analog alarm programming table is shown in Figure 8-2. The page on
which a field is described is also listed. All analog alarm parameters are
stored in Special Memory (S-Memory) when you program the analog alarm.
The size of S-Memory is user-configurable. Refer to the TISOFT user
manual for detailed instructions about configuring S-Memory.

ANALOG ALARM 128

SAMPLE RATE (SECS):

PROCESS VARIABLE ADDRESS:

SQUARE ROOT OF PV:

TITLE: XXXXXXXX

ALARM VFLAG ADDRESS:

PV IS BIPOLAR:

20% OFFSET ON PV:

REMOTE SETPOINT:

ALARM DEADBAND:

PV ALARMS:

MONITOR LOW–LOW/HI–HI:
MONITOR LOW/HIGH:

PV RANGE: LOW =
HIGH =

LOW–LOW =
LOW =
HIGH =

HIGH–HIGH =

CLAMP SP LIMITS: LOW =
HIGH =

SPECIAL FUNCTION:

MONITOR DEVIATION:
DEVIATION ALARM: YELLOW =

ORANGE =

MONITOR RATE OF CHANGE:
RATE OF CHANGE ALARM:

MONITOR BROKEN TRANSMITTER:

Page 8-6

Page 8-8

Page 8-8
Page 8-8
Page 8-8

Page 8-8

Page 8-7

Page 8-11

Page 8-12

Page 8-13

Page 8-14

Page 8-14

Page 8-9

Page 8-10

MONITOR REMOTE SETPOINT:

I003468

Figure 8-2 Analog Alarm Programming Table

Analog Alarm
Numbers and
Variable Names

Programming
Tables

Programming Analog Alarms 8-5SIMATIC TI505 Programming Reference

A set of flags (C-Flags) store the programming data that you enter into the
Programming Tables for the analog alarms. The C-Flags correspond to
individual bits making up the two words ACFH, that contains the most
significant 16 bits, and ACFL, that contains the least significant 16 bits.
Table 8-1 shows the designation for each bit in the C-Flag.

Table 8-1 Analog Alarm C-Flags (ACFH and ACFL)

Variable Word
Bit

Flag
Bit Analog Alarm Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset

2 2 1 = Take square root of PV

3 3 1 = Monitor HIGH/LOW alarms

4 4 1 = Monitor HIGH-HIGH/LOW-LOW alarms

ACFH 5 5 1 = Monitor Deviation alarm

6 6 1 = Monitor Rate-of-change alarm

7 7 1 = Monitor Broken Transmitter Alarm

8 8 0 = Local Setpoint
1 = Remote Setpoint

9–16 9–16 Unused

AC

1–4 17–20 Unused

AC

5 21 0 = Process Variable is unipolar
1 = Process Variable is bipolar

ACFL
6 22 Unused

7–16 23–32 Contains SF program number
(if an SF program is scheduled to be called)

Analog Alarm
C-Flags

Programming Analog Alarms8-6 SIMATIC TI505 Programming Reference

8.3 Specifying Analog Alarm V-Flag Address

Enter an address: C, Y, V, or WY in the ALARM VFLAG ADDRESS field. If
you select NONE, no data is written from the V-Flags in the analog alarm.

The V-Flags contain the operational data for an analog alarm. The V-Flags
comprise the individual bits making up the 16-bit word AVF. The bits are
defined in Table 8-2.

An entry in the ALARM VFLAG ADDRESS field causes analog alarm data
to be written from the V-Flags to another address. The address can be either
a bit (Y or C) that allocates 11 contiguous bits, or a word (WY or V) that
allocates one word for V-Flag data.

Bits 1–2 are designated as control flags. If you create a V-Flag table in
V-Memory, for example, the controller reads these two bits in the V-Memory
address and writes over the corresponding bits in the AVF word. You can
enable or disable the analog alarm by setting/clearing these control flags.
You can read bits 3–12, but any changes that you make to them are
overwritten by the controller.

Table 8-2 Analog Alarm V-Flags (AVF)

Bit Analog Alarm Function

1 1 = Enable alarm

2 1 = Disable alarm

3 1 = PV is in high-high alarm

4 1 = PV is in high alarm

5 1 = PV is in low alarm

6 1 = PV is in low-low alarm

7 1 = PV is in yellow deviation alarm

8 1 = PV is in orange deviation alarm

9 1 = PV is in rate of change alarm

10 1 = Broken transmitter alarm

11 1 = Analog alarm is overrunning

12 1 = Alarm is enabled *

13–16 Unused

*If a word is selected for the analog alarm V-Flags, bit 12 is written. If a C or Y is selected,
bit 12 is not used.

NOTE: If you program an analog alarm and do not disable it, the controller
begins to monitor the programmed variables as soon as you place the
controller in RUN mode.

Alarm V-Flag
Address

Programming Analog Alarms 8-7SIMATIC TI505 Programming Reference

8.4 Specifying Analog Alarm Sample Rate

Enter a time in seconds in the SAMPLE RATE field.

The sample rate determines how often deviation alarm bits and associated
math are evaluated. Sample rates are programmable in 0.1 second
increments, with alarms checked at least once every two seconds. The
sample rate can be any floating point number between 0.1 and 1.6772 × 106

seconds.

Sample Rate

Programming Analog Alarms8-8 SIMATIC TI505 Programming Reference

8.5 Specifying Analog Alarm Process Variable Parameters

Enter an address: V, WX or WY in the PROCESS VARIABLE ADDRESS
field.

A process variable must be specified for each analog alarm. The process
variable can be taken from the following.

• A word input or output module – The programming table uses a WX or
WY address.

• A location in V-Memory – The programming table uses an address in
V-Memory.

If you select NONE, the analog alarm does not read an address to obtain the
process variable. In this case, you can use an SF program, to, for example,
calculate a process variable. The result can be written to APV for processing
by the analog alarm.

Enter the low and high values of the process variable in the following fields:
PV RANGE LOW and PV RANGE HIGH.

You must specify the engineering values that correspond to the upper and
lower ranges of the input span. If the span is 0 to 100%, the lower range is
the engineering value corresponding to 0 volts. If the span is 20% to 100%,
then the lower range is the engineering value corresponding to 1 volt. If the
span is bipolar, the lower range is the engineering value corresponding to
–5 or –10 volts.

Select YES or NO to specify analog inputs as no offset, 20% offset, or bipolar
in the following fields: PV IS BIPOLAR, and 20% OFFSET ON PV.

The span of the analog inputs can be 0 to 5.0 volts, 0 to 10 volts, –10 to 10
volts, or –5 to 5 volts. The analog alarm processing feature provides a linear
conversion over any of these process variable input spans. When you
program the analog alarm, specify whether the process variable is to be no
offset, 20% offset, or bipolar.

A span of 0 to 5.0 volts (0 to 20.0 milliamps) is referred to as a span of 0 to
100%. A span of 1.0 to 5.0 volts (4.0 to 20.0 milliamps) is referred to as a
span of 20% to 100% (20% offset on the process variable). Use bipolar with a
span of –10 to 10 volts or –5 to 5 volts.

Select YES or NO for the square root option in the SQUARE ROOT OF PV
field.

Select YES if the input for the process variable is from a device (such as an
orifice meter) that requires a square root calculation to determine the
correct value to use.

Process Variable
Address

PV Range
Low/High

PV is Bipolar
20% Offset

Square Root of PV

Programming Analog Alarms 8-9SIMATIC TI505 Programming Reference

8.6 Specifying Analog Alarm Deadband

Enter a value in engineering units for the alarm deadband in the ALARM
DEADBAND field.

When you specify an alarm deadband, the controller can provide hysteresis
on all alarms except the rate of change alarm to prevent them from
chattering when the process variable is near one of the alarm limits. The
analog alarm does not exit the alarm condition until the process variable
has come inside the alarm limit minus the deadband. This is shown
graphically in Figure 8-3.

The range for the deadband (AADB) is 0.0 ≤ AADB ≤ (APVH – APVL),
where APVH and APVL are the process variable high and low limits,
respectively. Typically, the deadband ranges from 0.2% to 5% of the span.

∆

100% PV

SCALE

ALARM

DEADBAND

SP

Y

∆Y

∆ 0

∆ 0

0% PV

SCALE

(LOW) (LOW) (LOW) (HIGH) (HIGH) (HIGH)

ALARM

DEADBAND

YELLOW ORANGE YELLOW YELLOW ORANGE YELLOW

I003469

Figure 8-3 Example of Alarm Deadband For Analog Alarms

Alarm Deadband

Programming Analog Alarms8-10 SIMATIC TI505 Programming Reference

8.7 Specifying Analog Alarm Process Variable Alarm Limits

Enter values in engineering units for the process variable alarm limits in
the following fields: LOW, LOW-LOW, HIGH, And HIGH-HIGH. To have the
controller monitor the alarm limits, select YES in the following fields:
MONITOR LOW-LOW/HIGH-HIGH and MONITOR LOW/HIGH.
Otherwise, select NO.

The high-high and low-low alarms can be entered as values requiring
critical actions, while the high and low can be set at values requiring
remedial measures. The range of possible values that can be used is given
below.

• Low-low alarm — real number in engineering units; must be less than
or equal to low alarm value and greater than or equal to low range of
PV.

• Low alarm — real number in engineering units; must be less than or
equal to high alarm value of PV.

• High alarm — real number in engineering units; must be less than or
equal to high high alarm value of PV.

• High-high alarm — real number in engineering units; must be greater
than or equal to high alarm value and less than or equal to high range
of PV.

PV Alarms:
Low-low, Low,
High, High-high

Programming Analog Alarms 8-11SIMATIC TI505 Programming Reference

8.8 Specifying Analog Alarm Setpoint Parameters

Enter an address: V, K, W
X, or WY, or a value, in the REMOTE SETPOINT field. Select NONE if there
is no remote setpoint. To have the controller monitor the remote setpoint,
select YES in the MONITOR REMOTE SETPOINT field. If you select NO,
the analog alarm uses the current value in the analog alarm variable ASP.

If you want to use a value external to the analog alarm for the setpoint, you
specify the address for this value in the REMOTE SETPOINT field. For
example, you can use data from a field transmitter for the setpoint by using
a WX address for the transmitter input. Then specify this WX address in
the REMOTE SETPOINT field.

Enter values for the setpoint limits in the CLAMP SP LIMITS field. Select
NONE if there are no limits, and zeroes are placed in the high and low fields.

Remote Setpoint

Clamp SP Limits

Programming Analog Alarms8-12 SIMATIC TI505 Programming Reference

8.9 Specifying Analog Alarm Special Function Call

Enter an SF program number in the SPECIAL FUNCTION field. Select
NONE if no SF program is to be called for execution.

You can program the analog alarm to call an SF program to do a calculation
on any constant, variable, or I/O point. This calculation occurs each time
that the analog alarm processing is done, as required by the sample rate.
The order of events follows.

When the analog alarm is processed, the process variable and the
setpoint are read.

Before the analog alarm makes any comparisons between the process
variable and the setpoint, the SF program is called for execution.

The SF program executes and writes results to the appropriate memory
locations.

After the SF program terminates, the analog alarm continues
processing.

Special Function

Programming Analog Alarms 8-13SIMATIC TI505 Programming Reference

8.10 Specifying Analog Alarm Setpoint Deviation Limits

Enter values in engineering units for the setpoint deviation limits in the
following fields: YELLOW and ORANGE. To have the controller monitor the
deviation alarm limits, select YES in the MONITOR DEVIATION field.
Otherwise, select NO.

The deviation alarm bands are always centered around the target or
setpoint; i.e., the deviation alarm test is actually on the control error.

There are two levels of deviation alarms.

• Yellow Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the yellow deviation alarm. The yellow deviation
limit must be within the span of the process variable, and it must be
less than or equal to the orange deviation alarm.

• Orange Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the orange deviation alarm. The orange deviation
limit must be within the span of the process variable, and it must be
greater than or equal to the yellow deviation alarm.

Deviation Alarms:
Yellow, Orange

Programming Analog Alarms8-14 SIMATIC TI505 Programming Reference

8.11 Specifying Other Analog Alarm Process Variable Alarms

Enter a value in engineering units for the rate of change alarm in the RATE
OF CHANGE ALARM field. To have the controller monitor the rate of
change, select YES in the MONITOR RATE OF CHANGE field. Otherwise,
select NO.

If you program the controller to monitor the rate of change, an alarm occurs
when the rate of change of the process variable exceeds the limit specified.
This is a real number in engineering units/minute that is used to set the
rate-of-change alarm flag.

To have the controller monitor for the broken transmitter condition, select
YES in the MONITOR BROKEN TRANSMITTER field. Otherwise,
select NO.

If you program the controller to monitor for the broken transmitter
condition, an alarm occurs if the raw process variable is outside the valid
range designated for the PV. The valid ranges follow.

• Bipolar: –32000 to 32000

• 0% Offset: 0 to 32000

• 20% Offset: 6400 to 32000

Figure 8-4 shows the process variable in broken transmitter alarm.

Rate of Change
Alarm

Broken Transmitter
Alarm

Programming Analog Alarms 8-15SIMATIC TI505 Programming Reference

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVHI

PVHI + Deadband

HI/HI

HI

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVLO – Deadband
PVLO

LO/LO

LO

BROKEN TRANSMITTER

ORANGE
YELLOW

YELLOW
ORANGE

SP

PV

BROKEN TRANSMITTER

I003470

Figure 8-4 Example of Broken Transmitter Alarm

Programming Loops 9-1SIMATIC TI505 Programming Reference

Chapter 9

Programming Loops

9.1 Overview 9-2.

9.2 Using the PID Loop Function 9-4.

9.3 Loop Algorithms 9-6.

9.4 Programming Loops 9-8.

9.5 Specifying Loop PID Algorithm 9-10.

9.6 Specifying LOOP VFLAG ADDRESS 9-11.

9.7 Specifying Loop Sample Rate 9-12.

9.8 Specifying Loop Process Variable Parameters 9-13.

9.9 Specifying Loop Ramp/Soak Profile 9-14.

9.10 Specifying Loop Output Parameters 9-18.

9.11 Specifying Loop Alarm Deadband 9-19.

9.12 Specifying Loop Process Variable Alarm Limits 9-20.

9.13 Specifying Loop Setpoint Parameters 9-21.

9.14 Specifying Loop Tuning Parameters 9-22.

9.15 Specifying Loop Derivative Gain Limiting 9-25.

9.16 Specifying Loop Special Function Call 9-26.

9.17 Specifying Loop Locked Changes 9-28.

9.18 Specifying Loop Error Operation 9-29.

9.19 Specifying Reverse Acting Loops 9-30.

9.20 Specifying Loop Setpoint Deviation Limits 9-31.

9.21 Specifying Other Loop Process Variable Alarms 9-32.

Programming Loops9-2 SIMATIC TI505 Programming Reference

9.1 Overview

The TI545, TI555, TI565, and TI575 controllers provide process and batch
control capability, illustrated in Figure 9-1. These controller models can
execute up to 64 proportional-integral-derivative (PID) loops on a
time-share basis. When you program the loop, you can set the same eight
alarm types used by analog alarms and described in Chapter 8.

• High-high alarm point on the process variable (PV)

• High alarm point on the PV

• Low alarm point on the PV

• Low-low alarm point on the PV

• Yellow deviation alarm point referenced to the setpoint (SP)

• Orange deviation alarm point referenced to the SP

• Rate of change alarm, for a PV changing too rapidly

• Broken transmitter, for a PV outside the designated valid range.

The high-high, high, low, and low-low alarms are fixed absolute alarms and
may correspond to warnings and shutdown limits for the process equipment
itself. The yellow and orange deviation alarms move up and down with the
setpoint and may refer to specification tolerances around the setpoint.

A PV alarm deadband is provided to minimize cycles in and out of alarm
(chattering) that generate large numbers of messages when the PV hovers
near one of the alarm limits.

An option is also available to call a Special Function Program (SF program,
discussed in Chapter 7) to initiate a special function calculation. The
SF program call can be scheduled on the PV, the SP, or the output.

Programming Loops 9-3SIMATIC TI505 Programming Reference

Setpoint

• Yellow

• Orange

Green

• Orange

• Yellow

Deviation alarms

• High-High

• High

• Low

• Low-Low

Absolute alarms

Hot water
input

Product input

Product output

TIC
601

• Broken transmitter
• Rate of change

Miscellaneous alarms

I003471

Figure 9-1 Example of Loop Control

Programming Loops9-4 SIMATIC TI505 Programming Reference

9.2 Using the PID Loop Function

Loops operate in one of three states: Manual, Automatic, and Cascade. A
fourth state — Loop Is Not Operating — is in effect when the controller is in
Program mode.

In Manual Mode, the loop output is not calculated by the controller but,
instead, comes from the operator. While a loop is in Manual, the controller
still monitors the Broken Transmitter, High-High, High, Low, Low-Low, and
Rate-of-Change alarms. The Yellow and Orange deviation alarms are not
monitored.

In Auto Mode, the controller computes the loop output. The SP for the loop
comes from either an operator interface, SF program, or from a Ramp/Soak
Table. All alarms are monitored.

In Cascade Mode, the controller computes the loop output. The setpoint for
the loop comes from a user-specified location called the remote setpoint. For
truly cascaded loops, the remote setpoint is the output of another loop. The
controller also allows the remote setpoint to be some other variable in the
controller. Such loops are not truly cascaded, but the same term is used. All
alarms are monitored.

For cascaded loops, the loop for which the output is used as the setpoint for
another loop is called the outer loop. The loop that uses the output of
another loop for its setpoint is called the inner loop. It is possible to cascade
loops more than two levels deep.

If an inner loop of a cascade is placed in Auto or Manual, then all its outer
loops must be placed in Manual to prevent reset windup. Similarly, an outer
loop cannot be placed in Auto until all inner loops are in Cascade. The logic
to handle opening and closing of cascades is built into the controller. Briefly,
this is done as follows.

• If an inner loop is switched out of Cascade, then all of its outer loops
are switched to Manual.

• A request to place an outer loop in Auto or Cascade is denied unless the
inner loop is in Cascade.

If a loop is not truly cascaded, but is simply using a remote setpoint,
changes to and from Cascade mode are allowed.

Manual Mode

Auto Mode

Cascade Mode

Programming Loops 9-5SIMATIC TI505 Programming Reference

The controller allows the loop mode to be changed by an SF program, ladder
logic, or an operator interface device. While the loop can be requested to
enter any mode from any other mode, the controller actually only performs
the following mode transitions.

MANUAL

AUTO

CASCADE

AUTO

AUTO

CASCADE

AUTO

MANUAL

The other requests (Manual Cascade and Cascade Manual) are
handled as transitions to Auto and then to the final mode as follows.

MANUAL CASCADE is done as MANUAL AUTO CASCADE

CASCADE MANUAL is done as CASCADE AUTO MANUAL

Changing Loop
Mode

Programming Loops9-6 SIMATIC TI505 Programming Reference

9.3 Loop Algorithms

The TI545, TI555, TI565, and TI575 controllers implement both the position
and the velocity forms of the PID algorithm. For the position algorithm, the
position of the device being controlled is computed based on the error. The
velocity form of the PID algorithm computes the change in the device
position based on the error.

For the position form of the PID equation, the controller output Mn is
computed as follows.

Mn � Kc � en � Ki
n
�

j � 1
ej � Kr (PVn � PVn�1) � M0

Variable Definition Loop Variable Mnemonic

Ts Sample rate LTS

Kc Proportional gain LKC

Ki Coefficient of the integral term:
Kc × (Ts / Ti)

Kr Coefficient of the derivative term:
Kc × (Td / Ts)

Ti Reset or integral time LTI

Td Derivative time or rate LTD

SP Setpoint LSP

PVn Process Variable at nth sample LPV

en Error at nth sample:
SP – PVn

M0 Output at sample time 0

Mn Output at sample time n LMN

The controller combines the integral sum and the initial output into a single
term called the bias (Mx). This results in the following equations that define
bias and output at sample time.

Mn � Kc � en � Kr (PVn � PVn�1) � Mxn

Mxn � Ki
n
�

j � 1
ej � M0

Bias at sample time n

Output at sample time n

PID Position
Algorithm

Programming Loops 9-7SIMATIC TI505 Programming Reference

The following is an example of the computation done by the controller
during a single sample period for a loop. The rate portion of the algorithm is
usually used for special cases and is set to 0 in this example.

Variable Definition Value

Ts Sample rate 1 second

Kc Proportional gain .01

Ti Reset or integral time 1 minute

Td Derivative time or rate 0

SP Setpoint .5

PVn Process Variable for this sample .75

PVn–1 Process Variable for previous sample .77

en Error for this sample: SP – PV .5 – .75 = –.25

Mxn–1 Bias .5

Ki Coefficient of integral term: Kc × (Ts / Ti) .01 × (1s / 60s) = .00017

Kr Coefficient of derivative term: Kc × (Td / Ts) .01 × (0s / 1s) = 0

� Mn � Kc � en � Kr � (PVn � PVn�1) � Mxn
New Output

New Bias � Mxn � Ki � en � Mxn�1

� Mxn � (.00017 � � (.25)) � .5
� Mxn � .4999

� Mn � .49746
� Mn � .01 �� (.25) � 0� (.75� .77) � .4999

The new bias is .4999 and the new output is 49.746%.

The velocity form of the PID equation is obtained by subtracting the
equation at time (n–1) from the equation at time (n).

� Kc �(en � en�1) � Ts
Ti

� en � Td
Ts

(PVn � 2PVn�1 � PVn�2)�
�Mn � Mn � Mn�1

Variable Definition

Mn Loop output at the nth sample

Ti Reset time

Kc Proportional gain

Td Rate Time

en Error (SP–PV) at the nth sample

Ts Sample time

PVn Process Variable at the nth sample

PID Velocity
Algorithm

Programming Loops9-8 SIMATIC TI505 Programming Reference

9.4 Programming Loops

Loops are referenced by a user-assigned number from 1 to 64. The variables
within each loop are accessed by variable names assigned to each variable
type. For example, the loop setpoint is designated by LSP; to read the value
of the setpoint for Loop 10, you read LSP10. To read the value of the
setpoint low limit for Loop 64, you read LSPL64. Appendix A lists the loop
variable names.

When you program a loop, you display the loop programming table on your
programming unit and enter the data in the appropriate fields. The general
procedure for entering loop data are listed below. Refer to the TISOFT user
manual for detailed instructions.

• Select the Loop option from the prompt line on your programming
device.

• Display the loop that you want to program (# 1, # 2, etc.).

• Enter the data for each field in the table.

The loop programming table is shown in Figure 9-2. The page on which a
field is described is also listed. All loop parameters are stored in Special
Memory (S-Memory) when you program the loop. The size of S-Memory is
user-configurable. Refer to the TISOFT user manual for detailed
instructions about configuring S-Memory.

PID LOOP 12

LOOP VFLAG ADDRESS:
SAMPLE RATE (SECS):

SQUARE ROOT OF PV:

TITLE: XXXXXXXX

POS/VEL PID ALGORITHM:

PV IS BIPOLAR:

20% OFFSET ON PV:

LOOP OUTPUT ADDRESS:

PV ALARMS:

MONITOR LOW–LOW/HI–HI:
MONITOR LOW/HIGH:

PROCESS VARIABLE ADDRESS:
PV RANGE:

LOW–LOW =
LOW =
HIGH =

HIGH–HIGH =

LOW =
HIGH =

OUTPUT IS BIPOLAR:
20% OFFSET ON OUTPUT:

RAMP/SOAK PROGRAMMED:
RAMP/SOAK FOR SP:

ALARM DEADBAND:

REMOTE SETPOINT:
CLAMP SP LIMITS: LOW =

HIGH =

LOOP GAIN:
RESET (INTEGRAL TIME):
RATE (DERIVATIVE TIME):

FREEZE BIAS:

DERIVATIVE GAIN LIMITING:
LIMITING COEFFICIENT:

SPECIAL CALCULATION ON:
SPECIAL FUNCTION:

LOCK SETPOINT:
LOCK AUTO/MANUAL:

LOCK CASCADE:

ERROR OPERATION:
REVERSE ACTING

MONITOR DEVIATION:
DEVIATION ALARM: YELLOW =

ORANGE =

MONITOR RATE OF CHANGE:
RATE OF CHANGE ALARM:

MONITOR BROKEN TRANSMITTER:

Page 9-28

Page 9-10

Page 9-18

Page 9-13

Page 9-12

Page 9-13

Page 9-13
Page 9-13

Page 9-11

Page 9-18

Page 9-14

Page 9-13

Page 9-19

Page 9-23

Page 9-21

Page 9-21

Page 9-22

Page 9-25

Page 9-26

Page 9-29
Page 9-30

Page 9-31

Page 9-32

Page 9-32
Page 9-20

I003472

Figure 9-2 Loop Programming Table

Loop Numbers and
Variable Names

Programming
Tables

Programming Loops 9-9SIMATIC TI505 Programming Reference

A set of flags (C-Flags) stores the programming data that you enter into the
Programming Tables for the loops. The C-Flags correspond to individual bits
making up the two words LCFH and LCFL. LCFH containS the most
significant 16 bits, and LCFL contains the least significant 16 bits.
Table 9-1 shows the designation for each bit in the C-Flag.

Table 9-1 Loop C-Flags (LCFH and LCFL)

Variable Word
Bit

Flag
Bit Loop Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset—only valid if PV is unipolar. See bit 21.

2 2 1 = Take square root of PV

3 3 1 = Monitor HIGH/LOW alarms

4 4 1 = Monitor HIGH-HIGH/LOW-LOW alarms

5 5 1 = Monitor yellow/orange deviation alarm

6 6 1 = Monitor rate-of-change alarm

7 7 1 = Monitor broken transmitter alarm

LCFH

8 8 PID algorithm type
0 = Position algorithm
1 = Velocity algorithm

9 9 0 = Direct acting
1 = Reverse acting

10 10 1 = Control based on error squared

11 11 1 = Control based on error deadband

12 12 1 = Auto-mode lock

13 13 1 = Cascade-mode lock

14 14 1 = Setpoint lock

15 15 0 = Output scale 0% offset
1 = Output scale 20% offset—only valid if output is unipolar. See

bit 20.

16 16 16 17
0 1 No special function

i i h ss i
1

and

17

1 0 Special function on the process variable
0 1 Special function on the setpoint
1 1 Special function on the output

2 18 1 = Freeze bias when output is out-of-range

3 19 1 = RAMP/SOAK on the setpoint

LCFL 4 20 0 = Output is unipolar
1 = Output is bipolar

5 21 0 = PV is unipolar
1 = PV is bipolar

6 22 1 = Perform derivative gain limiting

7–16 23–32 Contains SF program number (if an SF program is scheduled to be called)

Loop C-Flags

Programming Loops9-10 SIMATIC TI505 Programming Reference

9.5 Specifying Loop PID Algorithm

Select POS for the position algorithm or VEL for the velocity algorithm in the
POS/VEL PID ALGORITHM field. See Section 9.3 for a discussion of the
PID algorithm.

For the position algorithm, the position of the device being controlled is
computed based on the error. The velocity form of the PID algorithm
computes the change in the device position based on the error.

! CAUTION
Control devices can operate unpredictably causing damage to equipment.

Unpredictable operation can cause damage to equipment

Do not change the equation form (velocity to position, or vice versa) while the
algorithm is executing.

Pos/Vel PID
Algorithm

Programming Loops 9-11SIMATIC TI505 Programming Reference

9.6 Specifying LOOP VFLAG ADDRESS

Enter an address: C, Y, V, or WY in the LOOP VFLAG ADDRESS field. If you
select NONE, no data is written from the V-Flags in the loop.

The V-Flags contain the operational data for a loop. The V-Flags correspond
to individual bits making up the 16-bit word LVF. Bits are defined in
Table 9-2.

An entry in the LOOP VFLAG ADDRESS field causes loop data to be
written from the V-Flags to another address. The address can be either a bit
(Y or C) that allocates 15 contiguous bits, or a word (WY or V) that allocates
one word for V-Flag data.

The first three V-Flags are designated as control flags. If you create a V-Flag
table in V-Memory, for example, the controller reads these three bits in the
V-Memory address and writes over the corresponding bits in the LVF word.
You can change the loop mode by setting/clearing these control flags. You
can read bits 4–15, but any changes that you make to them are overwritten
by the controller.

If you select NONE in the LOOP VFLAG ADDRESS field, no data is written
from the loop V-Flags. You can still control the loop mode by using an
SF program to change the control flag bits in LVF, or manually using
TISOFT to write to LVF.

Table 9-2 Loop V-Flags (LVF)

Bit Loop Function

1 1 = Go to manual mode

2 1 = Go to auto mode

3 1 = Go to cascade mode

4 & 5 4 5
0 0 Loop is in manual mode
1 0 Loop is in auto mode
0 1 Loop is in cascade mode

6 0 = Error is positive
1 = Error is negative

7 1 = PV is in high-high alarm

8 1 = PV is in high alarm

9 1 = PV is in low alarm

10 1 = PV is in low-low alarm

11 1 = PV is in yellow deviation alarm

12 1 = PV is in orange deviation alarm

13 1 = PV is in rate-of-change alarm

14 1 = Broken transmitter alarm

15 1 = Loop is overrunning

16 unused

Loop V-Flag
Address

Programming Loops9-12 SIMATIC TI505 Programming Reference

9.7 Specifying Loop Sample Rate

Enter a time in seconds in the Sample Rate field.

The sample rate determines how often deviation alarm bits and associated
math are evaluated. Sample rates are programmable in 0.1 second
increments, with alarms checked at least once every two seconds. The
sample rate can be any floating point number between 0.1 and 1.6772 × 106

seconds.

Sample Rate

Programming Loops 9-13SIMATIC TI505 Programming Reference

9.8 Specifying Loop Process Variable Parameters

Enter an address: V, WX or WY, or select NONE in the PROCESS VARIABLE
ADDRESS field.

A process variable must be specified for each loop. The variable may be
taken from the following.

• A word input or output module — Use WX or WY address in the
programming table.

• A location in V-Memory — Use an address in V-Memory in the
programming table. When a special calculation is performed on a
process variable, the result (called the computed variable) is stored in
V-Memory where it is accessed by the loop.

If you select NONE, the loop does not read an address to obtain the process
variable. In this case, you can use an SF program, for example, to calculate
a process variable. The result can be written to LPV for processing by the
loop.

Enter the low and high values of the process variable in the following fields:
PV RANGE LOW and PV RANGE HIGH.

You must specify the engineering values that correspond to the upper and
lower ranges of the input span. If the span is 0 to 100%, the lower range is
the engineering value corresponding to 0 volts. If the span is 20% to 100%,
then the lower range is the engineering value corresponding to 1 volt. If the
span is bipolar, the lower range is the engineering value corresponding to –5
or –10 volts.

Select YES or NO to specify analog inputs as no offset, 20% offset, or bipolar
in the following fields: PV IS BIPOLAR, and 20% OFFSET ON PV.

The span of the analog inputs may be either 0 to 5.0 volts, 0 to 10 volts,
–10 to 10 volts, or –5 to 5 volts. The loop processing feature provides for a
linear conversion over any of these process variable input spans.

A span of 0 to 5.0 volts (0 to 20.0 milliamps) is referred to as a span of 0 to
100%. A span of 1.0 to 5.0 volts (4.0 to 20.0 milliamps) is referred to as a
span of 20% to 100% (20% offset on the process variable). Use the bipolar
option with a span of –10 to 10 volts or –5 to 5 volts.

Select YES or NO for the square root option in the SQUARE ROOT OF PV
field.

Select YES if the input for the process variable is from a device (such as an
orifice meter) that requires a square root calculation to determine the
correct value to use.

Process Variable
Address

PV Range Low/high

PV is Bipolar
20% Offset

Square Root of PV

Programming Loops9-14 SIMATIC TI505 Programming Reference

9.9 Specifying Loop Ramp/Soak Profile

The ramp/soak feature allows you to define a variation for the process
variable by specifying the time characteristics of the loop setpoint
(Figure 9-3). The capability of varying the loop setpoint can be useful in a
number of processes, such as heat treating and batch cooking.

Time

I003473

S
et

po
in

t

Figure 9-3 Example Ramp/Soak Cycle

You can use simple ramp operations to improve some process startup
procedures. For example, the TI545, TI555, TI565, and TI575 controllers do
a bumpless transfer from manual to automatic mode. This transfer holds
the process at the initial state when the mode change occurs. A two-step
ramp/soak profile can then move the setpoint to a predefined value
following the mode change, with minimal disturbance to the process.

Ramp/Soak is programmed as a set of time periods, or steps. A step can be
one of three types: a ramp, a soak, or an end.

• The ramp step changes the loop setpoint linearly from its current value
to a new value, at a specified rate of change.

• The soak step holds the setpoint constant for a specified period of time.
You can guarantee a soak period by entering a deadband value. This
form of soaking ensures that the process variable is within a specified
deadband around the setpoint for a specified period of time.

• The end step terminates a ramp/soak profile. When the program
reaches an end step, the loop remains in automatic mode and holds the
setpoint constant.

You can program a status bit for each step of the ramp/soak. This bit is set
to 1 when the loop is executing this step. It is reset when the loop leaves the
step. This allows for easy tracking in the RLL program.

Ramp/Soak operation can be controlled by two methods: allowing the profile
to be executed automatically, or by writing values to the variables that
control ramp/soak.

Defining
Ramp/Soak
Operation

Defining
Ramp/Soak Steps

Controlling the
Ramp/Soak
Operation

Programming Loops 9-15SIMATIC TI505 Programming Reference

Automatic Whenever the loop changes from manual to automatic mode,
the loop begins to execute the ramp/soak profile at the initial step (Step 1).
The loop continues to execute the profile until an end step is encountered in
the profile. At this point, the loop remains in automatic mode, and the
setpoint is held at the last value in the profile.

Using Ramp/Soak Number Each loop ramp/soak profile has a
corresponding 16-bit variable, LRSN, that contains the current step. You
can monitor LRSN with an SF program and also write a step number to it
with an SF program. The ramp/soak profile changes to the step that is
currently contained in LRSN. Note that the step number is zero-based.
LRSN contains 0 when the profile is on step #1, 1 when the profile is on
step #2, etc.

Using the Ramp/Soak Flags Each loop ramp/soak profile has a
corresponding 16-bit variable, LRSF, that contains operational and status
information for the profile. The LRSF format is shown in Table 9-3.

When you program a ramp/soak profile, you may optionally specify a
RAMP/SOAK FLAG ADDRESS. When you enter an address into this field,
the controller writes the ramp/soak data from LRSF to this address. You can
use TISOFT or APT or design your RLL program to write to the first three
bits at the specified address. The controller reads these bits and then writes
their status over the corresponding bits in LRSF. This enables you to change
the ramp/soak operation by setting/clearing the three bits as needed. The
controller ignores changes that you make in bits 4–16.

You can also monitor LRSF with an SF program and write changes to bits
1–3 with an SF program.

Table 9-3 Loop Ramp/Soak Flags (LRSF)

Bit Loop Function

1 1 = Restart at the first step. To restart, toggle bit off, on, then off again. The restart occurs on the
trailing edge of a square wave.

2 1 = Hold at the current step. To hold, set bit on.

3 1 = Jog to next step. To jog, set bit on. Jog occurs on the rising edge of a square wave.

4 1 = Finish. Indicates ramp/soak is completed.

5 1 = Wait. This bit is set during a soak period when the PV is not within a specified deviation from
the SP. The loop holds the soak timer when bit 5 is set.

6 1 = Hold in progress at current step.

7–8 Unused (always returned as 0).

9–16 1 = Contains step number loop is currently executing. Step number is zero-based. Step number
contains 0 when the Ramp/Soak is on step #1, 1 when the Ramp/Soak is on step #2, etc.

Programming Loops9-16 SIMATIC TI505 Programming Reference

Specifying Loop Ramp/Soak Programming (continued)

Select YES or NO in the RAMP/SOAK FOR SP field to indicate whether a
ramp/soak program for the loop is to be executed. The RAMP/SOAK
PROGRAMMED field is a read-only field and contains YES or NO to indicate
the creation of a ramp/soak program for the loop.

To create a ramp/soak profile for a loop, exit the Loop Programming Table
and select the Ramp/Soak Programming Table, shown in Figure 9-4.

The first field in the table contains the ramp/soak flag address. An entry in
this field causes ramp/soak data to be written from the ramp/soak variable
(LRSF) to another address, as described on Page 9-15. The address can be
either a bit (Y or C) that allocates 5 contiguous bits, or a word (WY or V)
that allocates one word for ramp/soak data. The format of the bits in a
ramp/soak flag address correspond to the individual bits making up the
16-bit word LRSF. Bits are defined in Table 9-3.

Enter an address: C, Y, V, or WY in the Ramp/Soak Flag Address field. If you
select NONE, no data is written from LRSF.

The rest of the ramp/soak program consists of entering data for each step:
setpoint and ramp rate for ramp steps, and soak time and deadband for
soak steps.

You can program a status bit (C or Y) for each step of the ramp/soak. This
bit is set to 1 when the loop is executing this step. It is reset when the loop
leaves the step.

Examples of ramp/soak profiles are shown in Figure 9-5.

PID LOOP XX
RAMP/SOAK FLAG ADDRESS: XXXXXX

STEP R/S BIT (UNITS) (UNITS/MIN) (MIN) (UNITS)
STATUS SETPOINT RAMP RATE SOAK TIME DEADBAND

1
2
3
4

S
R
S
R

XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXX
XXXXXX
XXXXXX

EXIT–F1 UP–F2 DOWN–F3 EDIT–F4

I003474

Figure 9-4 Ramp/Soak Programming Table

Ramp/Soak for SP

Programming
Ramp/Soak

Programming Loops 9-17SIMATIC TI505 Programming Reference

I003475

STEP R/S
1
2
3
4

R
S
R
S

In this example, when the loop
goes from manual to auto, it starts
at step #1. At the start of ramp #1
the initial setpoint is the value of
PV at mode change (bumpless).

Manual Auto
Time

Setpoint goes to PV

STEP R/S
1
2
3
4

END
R
S
R

In this example, at manual/auto
transition, the loop stays in auto.
JOG then starts ramp/soak. You
also can initiate the ramp/soak
profile with an SF program that sets
LRSNn to the starting step number,
where n is the loop number.

5 S

Time

Setpoint goes to PV

Manual Auto

Jog

5 END

6 END

Manual Auto
Time

Setpoint goes to PV

Time

Setpoint goes to PV

Manual Auto

STEP R/S
1
2
3
4

END
R
S
R

5 S
6
7
8
9

END
R
S
R
S

END
10
11

Profile #1

Profile #2

P
ro

fil
e

#1
P

ro
fil

e
#2

In this example, initiation of either
profile is done by setting LRSNn
to the start of the profile. The n is
the loop number.

LRSN set to 1

LRSN set to 6

Figure 9-5 Ramp/Soak Table Examples

Programming Loops9-18 SIMATIC TI505 Programming Reference

9.10 Specifying Loop Output Parameters

Enter an address: WY, or V in the LOOP OUTPUT ADDRESS field. Select
NONE when you do not want the loop to write the output to an address.

Use the LOOP OUTPUT ADDRESS field to specify the address into which
the loop writes the value of the output. You can select NONE in situations,
such as for cascaded loops, in which the outer loop does not require an
output address.

Select YES or NO in the OUTPUT IS BIPOLAR field. If you select YES, the
output range is –32000 to +32000.

Select YES or NO in the 20% OFFSET ON OUTPUT field. If you select YES,
the output range is +6400 to +32000.

If you select NO for both fields (no 20% offset and output is not bipolar) then
the output range is 0–32000.

Loop Output
Address

Output is Bipolar

20% Offset on
Output

Programming Loops 9-19SIMATIC TI505 Programming Reference

9.11 Specifying Loop Alarm Deadband

Enter a value in engineering units for the alarm deadband in the ALARM
DEADBAND field.

When you specify an alarm deadband, the controller can provide hysteresis
on all alarms (except the rate of change alarm) to prevent them from
chattering when the process variable is near one of the alarm limits. The
loop does not exit the alarm condition until the process variable has come
inside the alarm limit minus the deadband. This is shown graphically in
Figure 9-6.

The range for the deadband (LADB) is 0.0 ≤ LADB ≤ (LPVH – LPVL), where
LPVH and LPVL are the process variable high and low limits, respectively.
Typically, the deadband ranges from 0.2% to 5% of the span.

100% PV

SCALE

ALARM

DEADBAND

SP

∆

∆

∆

∆

0% PV

SCALE

ALARM

DEADBAND

Y

Y

0

0

(LOW) (LOW) (LOW) (HIGH) (HIGH) (HIGH)
YELLOW ORANGE YELLOW YELLOW ORANGE YELLOW

I003469

Figure 9-6 Example of Alarm Deadband For Loops

Alarm Deadband

Programming Loops9-20 SIMATIC TI505 Programming Reference

9.12 Specifying Loop Process Variable Alarm Limits

Enter values in engineering units for the process variable alarm limits in
the following fields: LOW-LOW, LOW, HIGH, and HIGH-HIGH. To have the
controller monitor the alarm limits, select YES in the following fields:
MONITOR LOW-LOW/HIGH-HIGH and MONITOR LOW/HIGH.
Otherwise, select NO.

The high-high and low-low alarms can be entered as values requiring
critical actions, while the high and low can be set at values requiring
remedial measures. The range of possible values that can be used is given
below.

• Low-low alarm — real number in engineering units; must be less than
or equal to low alarm value and greater than or equal to low range of
PV.

• Low alarm — real number in engineering units; must be less than or
equal to high alarm value of PV.

• High alarm — real number in engineering units; must be less than or
equal to high high alarm value of PV.

• High-high alarm — real number in engineering units; must be greater
than or equal to high alarm value and less than or equal to high range
of PV.

PV Alarms
Low-low, Low-high,
High-high

Programming Loops 9-21SIMATIC TI505 Programming Reference

9.13 Specifying Loop Setpoint Parameters

Enter an address: V, K, WX, WY, or LMN in the REMOTE SETPOINT field.
Select NONE if there is no remote setpoint.

If you want to use a value external to the loop for the setpoint, you specify
the address for this value in the REMOTE SETPOINT field. For example,
you can use data from a field transmitter for the setpoint by using a WX
address for the transmitter input. Then, specify this WX address in the
REMOTE SETPOINT field.

If you want to use a remote setpoint for either cascading loops or performing
a special function on the setpoint outside of a loop, you must specify the
cascade mode.

If the controller is to control the mode of the inner loop in a cascade
configuration, the remote setpoint for the inner loop must be specified as
LMNn (the output of the outer loop n).

Enter values for the setpoint limits in the CLAMP SP LIMITS field. Select
NONE if there are no limits, and if zeroes are placed in the high and low
fields.

Remote Setpoint

Clamp SP Limits

Programming Loops9-22 SIMATIC TI505 Programming Reference

9.14 Specifying Loop Tuning Parameters

Enter values for the loop tuning constants in the following fields: LOOP
GAIN, RESET (INTEGRAL TIME), and RATE (DERIVATIVE TIME).

It is not always necessary (or even desirable) to have full three-mode PID
control of a loop. Parts of the PID equation can be eliminated by choosing
appropriate values for the gain (Kc), reset (Ti), and rate (Td) thus, yielding a
P, PI, PD, I, and even an ID or a D loop.

The contribution to the output due to integral action can be eliminated by
setting Ti = infinity. When this is done, you can manually control the bias
term (Mx) to eliminate any steady-state offset.

The contribution to the output due to derivative action can be eliminated by
setting Td = 0.

The contribution to the output due to the proportional term can be
eliminated by setting Kc = 0. Since Kc is also normally a multiplier of the
integral coefficient (Ki) and the derivative coefficient (Kr), the controller
makes the computation of these values conditional on the value of Kc as
follows.

� Kc � (Ts�Ti)
� Ts�Ti

if Kc � 0.

if Kc � 0.

if Kc � 0.

if Kc � 0.
� Kc � (Td�Ts)
� Td�Ts

Ki

Kr

(for I or ID control)

(for ID or D control)

The units and range of each of the tuning constants follow:

Coefficient Unit Range

Proportional Gain, Kc %/% 0.01–100.00

Reset (Integral Time)Time, Ti minutes 0 < Ti ≤ Infinity

Derivative Time, Td minutes 0 ≤ Td < Infinity

Loop Gain, Reset,
Rate

Removing Integral
Action

Removing
Derivative Action

Removing
Proportional Action

Programming Loops 9-23SIMATIC TI505 Programming Reference

Select YES in the FREEZE BIAS field to have the bias frozen when output
goes out of range. Select NO to have the bias adjusted when output goes out
of range.

If you select YES for the FREEZE BIAS option, the controller stops changing
the bias Mx whenever the computed output M goes outside the interval
[0.0, 1.0]. When this option is selected, the computation of the new output
Mn and bias Mx is done as follows.

Calculated Bias

Calculated Output

New Output

New Bias

Mx

M

Mn

Mxn

� Ki � en � Mxn�1

� Kc � en � Kr �PVn � PV(n�1)
	 � Mx

� 0.0

� M

� 1.0

if M � 0.0

if 0.0 � M � 1.0

if M � 1.0

if 0.0 � M � 1.0� Mx

� Mxn�1 otherwise

In this example, it is unlikely that the bias goes all the way to zero. When
the PV does begin to come down, the loop begins to open the valve sooner
than it would have if the bias had been allowed to go all the way to zero.
This action has the effect of lessening the amount of overshoot.

Figure 9-7 illustrates the results of freezing the bias after a disturbance.

100%

Disturbance

Bias — Frozen

Actual output (100%)

Calculated output

Time

Span

Calculated output
begins to return
to required level.

Actual output
begins to return
to required level.

Figure 9-7 Loop Response to the Freeze Bias Option

Freeze Bias

Programming Loops9-24 SIMATIC TI505 Programming Reference

Specifying Loop Tuning Parameters (continued)

If you select NO for the FREEZE BIAS option, the controller makes the
computation of the bias term conditional on the computation of the output
as follows.

Calculated Bias

Calculated Output

New Output

New Bias

Mx

M

Mn

Mxn

� Ki � en � Mxn�1

� Kc � en � Kr �PVn � PV(n�1)
	 � Mx

� 0.0

� M

� 1.0

if M � 0.0

if 0.0 � M � 1.0

if M � 1.0

if 0.0 � M � 1.0� Mx

� Mn � �Kc � en � Kr �PVn � PVn�1
		 otherwise

With this method, the valve begins to close as soon as the process variable
begins moving back toward the setpoint. If the loop is properly tuned,
overshoot can be eliminated entirely, assuming that the setpoint is not
changing. If the output goes out of range due to a setpoint change, then the
loop probably oscillates because the bias term must stabilize again.

The choice of whether to use the default loop action or to freeze the bias
depends on the application.

Figure 9-8 illustrates the results of adjusting the bias after a disturbance.

100%

Disturbance

Time

Span

Calculated output, before bias adjustment

Actual output (100%)

Bias - adjusted

Actual output begins to
return to required level.

Figure 9-8 Loop Response to the Adjust Bias Option

Adjust Bias

Programming Loops 9-25SIMATIC TI505 Programming Reference

9.15 Specifying Loop Derivative Gain Limiting

Enter a value for the derivative gain limiting coefficient in the LIMITING
COEFFICIENT field. Select YES or NO in the DERIVATIVE GAIN
LIMITING field to have derivative gain limiting done. If you specify NO
then derivative gain limiting is not done, even if a value is entered in the
field. Typically, Kd should be in the range of 10 to 20.

In the standard PID algorithm, the algorithm responds excessively to
process noise if the coefficient of the derivative term (Td/Ts) is significantly
above the 10 to 20 range. This causes disturbances that lead to erratic
behavior of the process.

To solve this problem, the controller allows you the option of selecting a
derivative gain limiting coefficient (Kd). Using this coefficient enables the
Process Variable to be filtered with a time constant that is proportional to
the derivative time (Td). The PID equations with the derivative gain
limiting coefficient follow.

• Position Algorithm.

Yn

Mx

M

� Yn�1 � Ts
Ts � (Td�Kd)

� �PVn � Yn�1
�

� Ki � en � Mxn�1

� Kc � en � Kr (Yn � Yn�1) � Mx

• Velocity Algorithm.

Yn

�Mn

� Yn�1 � Ts
Ts � (Td�Kd)

� �PVn � Yn�1
�

� Kc � (en � en�1) � Ki � en � Kr � (Yn � 2 � Yn�1 � Yn�2)

Variable Definition Variable Definition

Mn Loop output Mx Bias (Mx is the initial valve
position

Kc Proportional gain Td Rate time

en Error (SP – PV) Ki Integral gain

Ts Sample time Kd Derivative gain-limiting
coefficient

PVn Process variable

Limiting Coefficient

Programming Loops9-26 SIMATIC TI505 Programming Reference

9.16 Specifying Loop Special Function Call

Enter an SF program number in the SPECIAL FUNCTION field and select
a variable (PROCESS VARIABLE, SETPOINT, or OUTPUT) in the SPECIAL
CALCULATION ON field.

If you enter an SF program number in the SPECIAL FUNCTION field but
select NONE for the SPECIAL CALCULATION ON field, the SF program is
not called for execution.

You can program the loop to call an SF program to do a calculation on any
constant, variable, or I/O point. You can schedule the SF program call to be
made when the process variable, setpoint, or output is read.

When the loop is in AUTO or CASCADE mode, the SF program calls at the
sample rate and T2 always equals 2. When the loop is in MANUAL mode,
the SF program does not call for execution.

When the loop is in AUTO, CASCADE, or MANUAL mode, the SF program
either executes every 2.0 sec or at the sample rate, whichever is less. The SF
program is called at least every 2 seconds to monitor/activate the PV alarms
associated with the loop, even though loop calculations are not being done.

In the case of a loop sample time greater than 2.0 seconds, the SF program
is called at a 2.0 second interval, and T2 equals 3, indicating that the SF
was called on PV. This allows for PV manipulation before PV alarming
occurs in the loop. When it is time to do the loop calculation, T2 equals 2 to
indicate that the loop calculation is about to begin. This allows for
manipulation of both PV and setpoint before the loop calculation is done. If
the loop sample time is less than 2.0 seconds, T2 always equal 2.

NOTE: SF programs called on PV or SP are executed after PV and SP have
been determined by the loop, but before any processing is done based on the
values obtained. This allows SF programs to manipulate the PV or SP
before the the loop uses them for output adjustments.

Special
Calculation/
Special Function

Calculation
Scheduled on
Setpoint

Calculation
Scheduled on
Process Variable

Programming Loops 9-27SIMATIC TI505 Programming Reference

When a loop with a sample time of less than than 2.0 seconds calls an SF
program, the SF program is actually called twice for every loop calculation.

• After PV and SP are determined, the SF program is called on SP
(T2 = 2). This call allows for PV and SP manipulation before PV
alarming and loop calculations are run. The loop calculation is then
performed and the resultant output value is placed in LMN.

• The SF program is then called on output (T2 = 5) to allow for
manipulation of the loop output value in LMN before this value is
written to the loop output address.

If the sample time of the loop is greater than 2.0 seconds, the same applies,
except that the SF program is called at least every 2.0 seconds, and T2 = 3 if
it is not time to do a loop calculation. (Refer to Section 7.5 for a description
of T-Memory.)

Calculation
Scheduled on
Output

Programming Loops9-28 SIMATIC TI505 Programming Reference

9.17 Specifying Loop Locked Changes

Select YES or NO for the lock option in the following fields: LOCK
SETPOINT, LOCK AUTO/MANUAL, LOCK CASCADE.

The loop programming table provides the option of locking setpoint,
auto/manual, or cascade by answering YES in the fields for the option
desired. Operator interface devices use the lock bits: these bits are not used
by the controller.

Lock Setpoint,
Auto/Manual,
Cascade

Programming Loops 9-29SIMATIC TI505 Programming Reference

9.18 Specifying Loop Error Operation

Select SQUARED, or DEADBAND in the ERROR OPERATION field. The Error
Squared and the Error Deadband options are mutually exclusive. Select
NONE if there is to be no calculation on the error value.

In calculating the control equation, the controller uses an error value equal
to, or less, than 1.0 (% of PV span over 100). Therefore, selecting error
squared gives a lower gain for a higher error. The control equation with
error squared is based on signed error squared, instead of the error alone.

For example, an error of 0.5 squared sets the error term in the control
equation to 0.25. Since this means the control equation is less responsive to
the process variable, error squared is best used with PH control types of
applications. When error squared control is selected, the error is calculated
as follows.

e

en

� SP � PVn

� e � abs (e)

Since en � e, a loop using the error squared is less responsive than a loop
using just the error. In fact, the smaller the error, the less responsive the
loop.

To implement a high gain for large errors, and no gain for small errors,
incorporate an error deadband. When error deadband is selected, the
controller does not take any action on the output if the process variable is
within the yellow deviation limits.

When error deadband control is selected, the error is calculated as:

e

en

� SP � PVn

� 0

� e � YDEV

� e � YDEV

if e � YDEV

if e � � YDEV

if abs (e) � YDEV

YDEV is the yellow deviation alarm limit.

If you select the NONE option, no calculation is done on the error value. The
error is determined by the following equation.

en � SP � PVn

Error Operation

Error Deadband

No Error
Calculation

Programming Loops9-30 SIMATIC TI505 Programming Reference

9.19 Specifying Reverse Acting Loops

Select YES for a reverse-acting loop in the REVERSE ACTING field. Select
NO for a direct-acting loop.

The controller can give the gain output as positive or negative and the loop
is defined as direct- or reverse-acting (Figure 9-9).

In the TI545, TI555, TI565, and TI575 controllers a direct-acting loop is
defined to have a positive gain; i.e., a positive change in error (SP–PV)
results in a positive change in the output from the controller. The value of
the output signal increases as the value of the error increases. Note that
different manufacturers define forward- and reverse-acting controller
responses in different ways.

In the TI545, TI555, TI565, and TI575 controllers a reverse-acting loop is
defined to have a negative gain; i.e., a positive change in error (SP–PV)
results in a negative change in the output from the controller. The value of
the output signal decreases as the value of the error increases.

Steam

Trap

Temperature controller

Return

Process requiring reverse acting control.

Process requiring direct acting control.

Temperature controller

I002022

Air-to-open valve

Air-to-open valve

Cooling water

Figure 9-9 Examples of Direct- and Reverse-Acting Control

Reverse Acting

Direct-Acting Loop

Reverse-Acting
Loop

Programming Loops 9-31SIMATIC TI505 Programming Reference

9.20 Specifying Loop Setpoint Deviation Limits

Enter values in engineering units for the setpoint deviation limits in the
fields: YELLOW and ORANGE. To have the controller monitor the deviation
alarm limits, select YES in the MONITOR DEVIATION field. Otherwise,
select NO.

The deviation alarm bands are always centered around the setpoint; i.e., the
deviation alarm test is actually on the control error. Therefore, they are only
processed while the loop is in the auto or cascade mode.

There are two levels of deviation alarms.

• Yellow Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the yellow deviation alarm. The yellow deviation
limit must be within the span of the process variable, and it must be
less than or equal to the orange deviation alarm.

• Orange Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the orange deviation alarm. The orange deviation
limit must be within the span of the process variable, and it must be
greater than or equal to the yellow deviation alarm.

Deviation Alarms
Yellow, Orange

Programming Loops9-32 SIMATIC TI505 Programming Reference

9.21 Specifying Other Loop Process Variable Alarms

Enter a value in engineering units for the rate of change alarm in the RATE
OF CHANGE ALARM field. To have the controller monitor the rate of
change, select YES in the MONITOR RATE OF CHANGE field. Otherwise,
select NO.

If you program the controller to monitor the rate of change, an alarm occurs
when the rate of change of the process variable exceeds the limit specified.
This is a real number in engineering units/minute that is used to set the
rate-of-change alarm flag.

To have the controller monitor for the broken transmitter condition, select
YES in the MONITOR BROKEN TRANSMITTER field. Otherwise,
select NO.

If you program the controller to monitor for the broken transmitter
condition, an alarm occurs if the raw process variable is outside the valid
range designated for the PV. The valid ranges follow.

• Bipolar : –32000 to 32000

• 0% Offset : 0 to 32000

• 20% Offset : 6400 to 32000

Rate of Change
Alarm

Broken Transmitter
Alarm

Programming Loops 9-33SIMATIC TI505 Programming Reference

Figure 9-10 shows the process variable in broken transmitter alarm.

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉPVHI

PVHI + Deadband

HI/HI

HI

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVLO – Deadband
PVLO

LO/LO

LO

BROKEN TRANSMITTER

ORANGE
YELLOW

YELLOW
ORANGE

SP

PV

BROKEN TRANSMITTER

I003470

Figure 9-10 Example of Broken Transmitter Alarm

Memory and Variable Types A-1SIMATIC TI505 Programming Reference

Appendix A

Memory and Variable Types

A.1 RLL Variable Access (TI545, TI555, TI560, TI575) A-2.

A.2 SF Program Variable Access (TI545, TI555, TI565, TI575) A-3.

A.3 RLL Variable Access — Early Model Controllers A-9.

Memory and Variable TypesA-2 SIMATIC TI505 Programming Reference

A.1 RLL Variable Access (TI545, TI555, TI560, TI575)

Table A-1 lists variable types used in the high-end controllers (TI545, TI555,
TI560, TI575) and which can be accessed by RLL instructions.

Table A-1 Controller Variable Types

Variable Type RLL Access Controller Notes

Constant (K) Read Only All

Control Relay (C) Read/Write All

Drum (DSP, DCP, DSC, DCC) Read/Write All

The time-driven drum (DRUM) uses the
count preset stored in L-Memory when
the DRUM is programmed. A new value
for count preset written by RLL has no
effect on DRUM operation.

It is possible to read/write data to/from
drum memory areas for an
unprogrammed drum, using these
memory locations like V-Memory. If you
use TISOFT to display values in DSP or
DSC memory, any value not in the range
of 1–16 is displayed as 16. An APT
program can display values that are
greater than 16 for these variables.

Global (G) Read/Write TI575 only

Image Register
(X, WX)
(Y, WY)

Read Only
Read/Write

All

PGTS Discrete Parameter Area (B) Read/Write All

PGTS Word Parameter Area (W) Read/Write All

Status Word (STW) Read Only All

For controllers that support the TASK
instruction, STW1 cannot be accessed by
a multi-word move instruction, e.g.,
MOVE, MOVW. STW1 is a local variable
that is only valid within a given RLL
task. Do not do multiple-word move
operations that begin with STW1.

Timer/Counter (TCP, TCC) Read/Write All

Variable (V) Read/Write All

VME (VMM, VMS) Read/Write TI575 only

Memory and Variable Types A-3SIMATIC TI505 Programming Reference

A.2 SF Program Variable Access (TI545, TI555, TI565, TI575)

Table A-2 lists the variables used in the high-end controllers (TI545, TI555,
TI565, TI575) that can be used in SF programs.

Table A-2 Variable Names and Types Used in SF Programs

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Analog Alarm/Alarm Acknowledge Flags AACK � 16

Analog Alarm Deadband AADB eu 1, 2, 8

Most Significant Word of Analog Alarm C-flags ACFH � 1

Least Significant Word of Analog Alarm C-flags ACFL � 1

Analog Alarm Error AERR eu � 3

Analog Alarm High Alarm Limit AHA eu 1, 2, 8

Analog Alarm High-High Alarm Limit AHHA eu 1, 2, 8

Analog Alarm Low Alarm Limit ALA eu 1, 2, 8

Analog Alarm Low-Low Alarm Limit ALLA eu 1, 2, 8

Analog Alarm Orange Deviation Alarm Limit AODA eu 1, 2, 8

Analog Alarm Process Variable APV eu 2

Analog Alarm Process Variable High Limit APVH eu � 1, 7

Analog Alarm Process Variable Low Limit APVL eu � 1, 7

Analog Alarm Rate of Change Alarm Limit ARCA eu/
min

� 1, 7

Analog Alarm Setpoint ASP eu 2, 8

Analog Alarm SP High Limit ASPH eu 1, 2, 8

Analog Alarm SP Low Limit ASPL eu 1, 2, 8

Analog Alarm Sample Rate ATS sec � 1

Analog Alarm Flags AVF � 9

Analog Alarm Yellow Deviation Alarm Limit AYDA eu 1, 2, 8

Alarm Peak Elapsed Time APET ms � � 17

Loop Alarm/Alarm Acknowledge Flags LACK � 16

Loop Alarm Deadband LADB eu 1, 2, 8

Most Significant Word of Loop C-flags LCFH � 1

Least Significant Word of Loop C-flags LCFL � 1

Loop Error LERR eu � 3

Loop Alarm High Limit LHA eu 1, 2, 8

Loop Alarm High-High Limit LHHA eu 1, 2, 8

Loop Gain LKC %/% �

Memory and Variable TypesA-4 SIMATIC TI505 Programming Reference

SF Program Variable Access (TI545, TI555, TI565, TI575) (continued)

Table A-2 Variable Names and Types Used in SF Programs (continued)

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Loop Derivative Gain Limiting Coefficient LKD �

Loop Low Alarm Limit LLA eu 1, 2, 8

Loop Low-Low Alarm Limit LLLA eu 1, 2, 8

Loop Output LMN % 10

Loop bias LMX % 11

Loop Orange Deviation Limit LODA eu 1, 2, 8

Loop Process Variable LPV eu 2

Loop PV High Limit LPVH eu � 1, 7

Loop PV Low Limit LPVL eu � 1, 7

Loop Rate of Change Alarm Limit LRCA eu/
min

� 1, 8

Loop Ramp/Soak Flags LRSF � 9

Loop Ramp/Soak Step Number LRSN � 14

Loop Setpoint LSP eu 2, 8

Loop Setpoint High Point LSPH eu 1, 2, 8

Loop Setpoint Low Limit LSPL eu 1, 2, 8

Loop Rate LTD min �

Loop Reset LTI min �

Loop Sample Rate LTS sec � 1

Loop V-flags LVF � 9

Loop Yellow Deviation Alarm Limit LYDA eu 1, 2, 8

Loop Peak Elapsed Time LPET ms � � 17

SF Subroutine Parameters P 5, 6

SF Error Code SFEC � 4, 13

SF Program Peak Elapsed Time PPET ms � � 17

SF Subroutine Peak Elapsed Time SPET ms � � 17

Constant Memory K �

Temporary memory T 4

RLL Tasks Peak Elapsed Time TPET ms � � 17

Memory and Variable Types A-5SIMATIC TI505 Programming Reference

Table A-2 Variable Names and Types Used in SF Programs (continued)

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Discrete Input accessed From an SF Program X � � 15

Discrete Output accessed From an SF Program Y � 15

Control Relay accessed From an SF Program C � 15

Status Word STW � � 12

Drum Counter Preset DCP �

Drum Step Preset DSP �

Drum Count Current DCC �

Drum Step Current DSC �

Timer/Counter Preset TCP �

Timer/Counter Current TCC �

Variable Memory V

Discrete Input accessed as bit X �

Discrete Output accessed as a bit Y

Control Relay Accessed as a bit C

Word Input WX �

Word Output WY

Global Memory G*

VME Memory (A16 Addresses) VMS*

VME Memory (A24 Addresses) VMM*

*These variables are supported only by the TI575 controller when using APT as the programming interface.

Unit Abbreviations Meaning

eu
ms
min
sec

%/%
%

engineering units
milliseconds
minutes
seconds
gain
percent

Memory and Variable TypesA-6 SIMATIC TI505 Programming Reference

SF Program Variable Access (TI545, TI555, TI565, TI575) (continued)

NOTES to Table A–1:

1. Variable is read-only if S-memory is in ROM.

2. When accessed as an integer, the value returns as a scaled-integer
number between 0 and 32000. When accessed as a real, the variable
returns as a value in engineering units between the low-limit and the
high-limit.

3. When accessed as an integer, the value returns as a scaled-integer
number between -32000 and 32000. When accessed as a real, the
variable returns as a value in engineering units between – span and +
span.

4. This variable type may only be accessed in an SF program or SF
subroutine.

5. This variable type may only be accessed in an SF subroutine.

6. The access restrictions are dependent on the type of variable passed to
the subroutine.

7. If xPVL is changed to a value larger than xPVH, then xPVH is set to
the new xPVL. Similarly, if xPVH is changed to a value smaller than
xPVL, then xPVL is set to the new xPVH.

8. If xPVL or xPVH is modified and the current value of any of these
variables is outside the new PV range, the value clamps to the nearest
endpoint of the new PV range.

9. When written, only the control bits are actually modified. When read,
only the status bits are returned, the control bits are always returned
as zeros.

10. The value is dependent upon the PID algorithm in use as follows:

Position: The value is a percent between 0.0 and 1.0 (if accessed as a
real) , or 0 and 32000 (if accessed as an integer).

Velocity: The value is a percent-of-change between -1.0 and 1.0 (if
accessed as a real), or -32000 and 32000 (if accessed as an integer).

11. These variables are meaningless if the Velocity PID algorithm is being
used.

Memory and Variable Types A-7SIMATIC TI505 Programming Reference

12. When the TI565 board is installed in a TI560/TI565 system, STW161 is
used to report fatal loop errors, while STW162 is used to report
non-fatal errors.

13. The value written to SFEC must range from 0–255. Unless “Error
Continuation” is specified in the SF program, writing a non-zero value
to SFEC terminates the program with the specified error code.

14. LRSN is only effective if the loop is in Auto and ramp/soak for that loop
is enabled. Error #49 is logged if the step is not programmed. If the
step is programmed, the loop exits the current step and enters the
specified step. Writing a value larger than the number of the last
programmed ramp/soak step to LRSN completes the ramp/soak and
sets the ramp/soak finish bit flag word.

LRSN is zero-based. LRSN contains 0 when the ramp/soak is on
step #1, 1 when the ramp/soak is on step #2, etc.

15. When you read a discrete point in an SF program expression, a zero is
returned if the discrete bit is off; a one is returned if the discrete bit is
on. When you write to a discrete point in an SF program expression,
the discrete bit is turned off if the value is zero; the discrete bit is
turned on if the value is non-zero.

16. The bit format is shown below for the words AACK and LACK.

Bits 1–4 indicate which alarm is active.

Bits 9–12 indicate which alarms have not been acknowledged. You can
acknowledge an alarm by using an operator interface to write a 1 to one
of these bits.

Table A-3 Bit Format for Words AACK and LACK

Bit Number Alarm

1 1 = PV is in broken transmitter alarm.

2 1 = PV is in rate-of-change alarm.

3 1 = PV is in high-high/low-low alarm.

4 1 = PV is in orange deviation alarm.

5–8 Bits 5–8 are not used.

9 1 = Broken transmitter alarm is unacknowledged.

10 1 = Rate-of-change alarm is unacknowledged.

11 1 = High-high/low-low alarm is unacknowledged.

12 1 = Orange deviation alarm is unacknowledged.

13–16 Bits 13–16 are not used.

Memory and Variable TypesA-8 SIMATIC TI505 Programming Reference

SF Program Variable Access (TI545, TI555, TI565, TI575) (continued)

17. PET variables apply only to the TI545, TI555, and TI575 controllers.

APETn contains the peak elapsed time for each analog alarm, which is
the time from which the alarm is scheduled, until the process completes
execution (n = 1–128).

LPETn contains the peak elapsed time for each loop, which is the time
from which the loop is scheduled, until the process completes execution
(n = 1–64).

PPETn contains the peak elapsed time for each SF program, which is
the time from which the SF program is scheduled, until the process
completes execution (n = 1–1023). PPET is only valid for SF programs
that are queued from RLL.

SPETn contains the peak elapsed time for each SF subroutine, which is
the time from which the SF subroutine is scheduled, until the process
completes execution (n = 1–1023). SPET is only valid for
SF subroutines that are queued from RLL.

TPETn contains the peak elapsed time for the execution of an RLL
task, TPET1 for TASK1 and TPET2 for TASK2.

Memory and Variable Types A-9SIMATIC TI505 Programming Reference

A.3 RLL Variable Access — Early Model Controllers

The early model controllers listed in Table A-4 have certain restrictions on
the memory locations to which they can read and write.

Table A-4 Early Model Controllers

TI520C/TI530C/TI530T TI525/TI535

PPX:520C–1102 PPX:525–1102

PPX:530C–1104 PPX:525–1104

PPX:530C–1108 PPX:525–1208

PPX:530C–1112 PPX:525–1212

PPX:530T–1112 PPX:535–1204

PPX:535–1212

TI545 TI560/TI565

All releases prior to Rel. 2.0 All releases prior to Rel. 6.0

When you design an RLL program for these controllers, refer to Table A-5
for the memory locations that are valid in each field of an instruction.

Memory and Variable TypesA-10 SIMATIC TI505 Programming Reference

RLL Variable Access — Early Model Controllers (continued)

Table A-5 Valid RLL Box Entries for Early Model Controllers

Instruction Field Valid Entries Instruction Field Valid Entries

ADD A V, K, WX, WY DRUM Preset 1–16

B V, K, WX, WY Sec/Cnt 0–32.767

C V, WY STP 1–16

BITC A V, WY Cnt/Stp 0–32767

N 1–16 Coils C, Y

BITP A V, K, WX, WY STW DSET DT V

N 1–16 EDRUM Preset 1–16

BITS A V, WY Sec/Cnt 0–32.767

N 1–16 STP 1–16

CBD A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1 Cnt/Stp 0–32767

BB V, WY Event X, Y, C

CDB A V, K, WX, WY Coils C, Y

B V, WY, TCP, DSP, DCP1 FRS ST V

N 1–4 IMC Cur
Pntr V

CMP A V, WX, WY, TCC, TCP, DSC,
DSP, DCP1 STP 1–16

B V, WX, WY, TCC, TCP, DSC,
DSP, DCP1 I/O Pts X, Y, C

LT Y, C LDC A V, WY, TCP, DSP, DCP1

GT Y, C N 0–32767

CTR P 0–32767 MCAT P 0.1–3276.7

DCAT P 0.1–3276.7 OF X, Y, C

OF X, Y, C CF X, Y, C

CF X, Y, C OA Y, C

OA Y, C CA Y, C

CA Y, C OO Y, C

DCMP DT V CO Y, C

DIV AA V, K, WX, WY

B V, K, WX, WY

CC V, WY
1Cannot be used for time-driven drums Table continued on next page.

Memory and Variable Types A-11SIMATIC TI505 Programming Reference

Table A-5 Valid RLL Box Entries for Early Model Controllers (continued)

Instruction Field Valid Entries Instruction Field Valid Entries

MDRMD Mask V MULT A V, WX, WY

Preset 1–16 B V, WX, WY

Sec/Cnt 0–32.767 CC V, WY

STP 1–16 MWFT A V

Cnt/Stp 0–32767 B V

Event X, Y, C S V

Coils C, Y N 1–256

MDRMW Mask V MWI A V

Preset 1–16 B V

Sec/Cnt 0–32.767 N V

STP 1–16 MWIR A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

Cnt/Stp 0–32767 IR Y, C

Event X, Y, C N 1–16

Output V, WY MWTT A V

MIRFT TS WY, TCP, DSP, DCP1 B V

IR X, Y, C S V

N 1–256 N 1–256

MIRTT IR X, Y, C SHRB IR C, Y

TD V, WY, TCP, DSP, DCP1 N 1–1023

N 1–256 SHRW A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

MIRW IR X, Y, C B V

A V, WY, TCP, DSP, DCP1 N 1–1023

N 1–16 SMC Cur
Pntr

V

MOVW
A

V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1 DCC2,
STW

STP 1–16

B V, WY, TCP, DSP, DCP1 I/O
Points

X, C, Y

N 1–256
1Cannot be used for time-driven drums.
2Valid for the TI545 only. Table continued on next page.

Memory and Variable TypesA-12 SIMATIC TI505 Programming Reference

RLL Variable Access — Early Model Controllers (continued)

Table A-5 Valid RLL Box Entries for Early Model Controllers (continued)

Instruction Field Valid Entries Instruction Field Valid Entries

SQRT AA V, K, WX, WY TCPL TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

B V, WY TD V, WY, TCP, DSP, DCP1

STFE WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW N 1–256

TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

TMR P 0–32767

IN V TOR T1 V, K, WX, WY, TCP, TCC,
DSC, DSP, DCP1, STW

N 1–256 T2 V, K, WX, WY, TCP, TCC,
DSC, DSP, DCP1, STW

STFN WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW TD V, WY, TCP, DSP, DCP1

TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW N 1–256

IN V TSET TM V

WO V, WY TTOW WD V, WY, TCP, DSP, DCP1

N 1–256 TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

SUB A V, K, WX, WY IN V

B V, K, WX, WY N 1–256

C V, WY TXOR T1 V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

TAND T1 V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW T2 V, K, WX, WY, TCC, TCP,

DSC, DSP, DCP1, STW

T2 V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW TD V, WY, TCP, DSP, DCP1

TD V, WY, TCP, DSP, DCP1 N 1–256

N 1–256 UDC P 0–32767

TCMP TM V Z C, Y

LT C, Y WAND A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

GT C, Y B V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

C V, WY, TCP, DSP, DCP1

1Cannot be used for time-driven drums. Table continued on next page.

Memory and Variable Types A-13SIMATIC TI505 Programming Reference

Table A-5 Valid RLL Box Entries for Early Model Controllers (continued)

Instruction Field Valid Entries Instruction Field Valid Entries

WOR A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

WTTO WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

B V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1 TS V, K, WX, WY, TCC, TCP,

DSC, DSP, DCP1, STW

C V, WY, TCP, DSP, DCP1 TD V, WY, TCP, DSP, DCP1

WROT A V, WY, IN V

N 1–3 N 1–256

WTOT WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

WTTXO WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

TD V, WY, TCP, DSP, DCP1 TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

IN V TD V, WY, TCP, DSP, DCP1

N 1–256 IN V

WTTA WS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW N 1–256

TS V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1, STW

WXOR A V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

TD V, WY, TCP, DSP, DCP1 B V, K, WX, WY, TCC, TCP,
DSC, DSP, DCP1

IN V C V, WY, TCP, DSP, DCP1

N 1–256
1Cannot be used for time-driven drums

RLL Memory Requirements B-1SIMATIC TI505 Programming Reference

Appendix B

RLL Memory Requirements

B.1 Memory Requirements B-2.

RLL Memory RequirementsB-2 SIMATIC TI505 Programming Reference

B.1 Memory Requirements

This appendix gives the complete set of Relay Ladder Logic instructions
used by the Series 505 and Series 500 controllers. Table B-1 lists each
instruction, its mnemonic code, the range of reference numbers it may be
assigned, and the minimum amount of L-memory it uses.

When calculating the actual amount of memory used by an instruction, add
one word for each of the following cases:

• A box instruction reference number greater than 255.

• A variable (V-memory) word number greater than 2048.

• A control relay point number greater than 512.

• A TCP or TCC reference number greater than 128.

Table B-1 RLL Memory Requirements

Instru t on Mne on Words
Reference Number Range

Instruction Mnemonic Words
L-Mem

TI520C/TI530C/
TI530T/

TI525/TI535

TI545/TI555
TI575 TI560/TI565

Absolute Value ABSV 3 – 1–32767* 1–32767*

Add ADD 4 1–32767* 1–32767* 1–32767*

Bit Clear BITC 3 1–32767* 1–32767* 1–32767*

Bit Pick BITP 3 1–32767* 1–32767* 1–32767*

Bit Set BITS 3 1–32767* 1–32767* 1–32767*

Convert Binary To BCD CBD 3 1–32767* 1–32767* 1–32767*

Convert BCD To Binary CDB 4 1–32767* 1–32767* 1–32767*

Compare CMP 5 1–32767* 1–32767* 1–32767*

Coil: Normal, NOT-ed Y, C 1 1–1023
TI545: 1–2048
TI555/TI575:

1–8192
1–8192

Bit-of-Word Vn.b 3 – n: Configurable
b: 1–16

n: Configurable
b: 1–16

Immediate
Yn 3 –

TI545: 1–2048
TI555/TI575:

1–8192
–

Set/Reset
Y
n

Yn 3 –
TI545: 1–2048
TI555/TI575:

1–8192
1–8192

Set/Reset Immediate
YnYn 3 –

TI545: 1–2048
TI555/TI575:

1–8192
–

Set/Reset Bit-of-Word
Vn.b Vn.b 3 – n: Configurable

b: 1–16
n: Configurable
b: 1–16

*Numbers are for reference only.

RLL Memory Requirements B-3SIMATIC TI505 Programming Reference

Table B-1 RLL Memory Requirements (continued)

Instru t on Mne on Words

Reference Number Range

Instruction Mnemonic Words
L-Mem

TI520C/
TI530C/
TI530T/

TI525/TI535

TI545/TI555
TI575 TI560/TI565

Contact Normal, NOT-ed X 1 1–1023
TI545: 1–2048
TI555/TI575:

1–8192
1–8192

Bit-of-Word Vn.b 3 – n: Configurable
b: 1–16

n: Configurable
b: 1–16

Immediate
Xn 3 –

TI545: 1–2048
TI555/TI575:

1–8192
–

Relational
<>

Vn Vm 4 – n: Configurable
m: Configurable

n: Configurable
m: Configurable

Control Relay C 1 1–1023
See Table 3-4

1–32768
See Table 3-4

1–56320
See Table 3-4

Counter CTR 2 ** 1–4096
Configurable

1–20480
Configurable

Discrete Control Alarm
Timer DCAT 6 – 1–4096

Configurable
1–20480

Configurable

Date Compare DCMP 3 – 1–32767* 1–32767*

Divide DIV 4 1–32767* 1–32767* 1–32767*

Drum DRUM 50 1–30 1–512
Configurable

1–2304
Configurable

Date Set DSET 3 – 1–32767* 1–32767*

Event Drum EDRUM 66 1–30 1–512
Configurable

1–2304
Configurable

End Unconditional END 1 None None None

End Conditional END(C) 1 None None None

Force Role Swap FRS 3 – – 1–32767
Configurable

Go To Subroutine GTS 2 – 1–255 1–255

Indexed Matrix Compare IMC 33 1–32767* 1–32767* 1–32767*

Immediate I/O Read/Write IORW 4 – 1–32767* –

Jump JMP 1 1–8 1–8 1–8

End Jump JMP(E) 1 1–8 1–8 1–8

End Jump Conditional JMP(E) 2 1–8 1–8 1–8

Label LBL 1 1–255 1–255 1–255

Load Address LDA 5*** – 1–32767* –

*Numbers are for reference only.
**Varies with controller model. See documentation for specific controller for number supported.

***Add 1 word for each index parameter.

RLL Memory RequirementsB-4 SIMATIC TI505 Programming Reference

Memory Requirements (continued)

Table B-1 RLL Memory Requirements (continued)

Instru t on Mne on Words

Reference Number Range

Instruction Mnemonic Words
L-Mem

TI520C/
TI530C/
TI530T/

TI525/TI535

TI545/TI555
TI575 TI560/TI565

Load Data Constant LDC 3 1–32767* 1–32767* 1–32767*

Lock Memory LOCK 4 – TI575 Only
1–32767* –

Motor Control Alarm Timer MCAT 9 – 1–4096
Configurable

1–20480
Configurable

Master Control Relay (MCR) MCR 1 1–8 1–8 1–8

End MCR MCR(E) 1 1–8 1–8 1–8

End MCR Conditional MCR(E) 2 1–8 1–8 1–8

Maskable Event Drum
Discrete MDRMD 68 – 1–512

Configurable
2304

Configurable

Maskable Event Drum Word MDRMW 54 – 1–512
Configurable

2304
Configurable

Move Image Register From
Table

MIRFT 4 – 1–32767* 1–32767*

Move Image Register To
Table

MIRTT 4 – 1–32767* 1–32767*

Move Discrete Image
Register To Word MIRW 4 1–32767* 1–32767* 1–32767*

Move Element MOVE 5*** – 1–32767* –

Move Word MOVW 4 1–32767* 1–32767* 1–32767*

Multiply MULT 4 1–32767* 1–32767* 1–32767*

Move Word From Table MWFT 5 ** 1–3072
Configurable

1–14336
Configurable

Move Word With Indirect
Addressing MWI 5 – 1–32767* 1–32767*

Move Word To Discrete
Image Register MWIR 4 1–32767* 1–32767* 1–32767*

Move Word To Table MWTT 5 ** 1–3072
Configurable

1–14336
Configurable

NOT :NOT: 2 – None None

One Shot :O: 1 1–400 1–7168
Configurable

1–32768
Configurable

Parameterized Go To
Subroutine PGTS 8 +

1/para. – 1–32 1–32

*Numbers are for reference only.
**Varies with controller model. See documentation for specific controller for number supported.

***Add 1 word for each index parameter.

RLL Memory Requirements B-5SIMATIC TI505 Programming Reference

Table B-1 RLL Memory Requirements (continued)

Instru t on Mne on Words

Reference Number Range

Instruction Mnemonic Words
L-Mem

TI520C/
TI530C/
TI530T/

TI525/TI535

TI545/TI555
TI575 TI560/TI565

Parameterized Go To
Subroutine Zero PGTSZ 8 +

1/para. – 1–32 1–32

Return (Conditional or
Unconditional) RTN 2 – None None

Subroutine SBR 2 – 1–255 1–255

Queue SF Program SFPGM 1 – 1–1023 1–1023

Queue SF Subroutine SFSUB 5*** – 0–1023 –

Bit Shift Register SHRB 3 ** 1–3072
Configurable

1–16384
Configurable

Word Shift Register SHRW 4 ** 1–3072
Configurable

1–16384
Configurable

Skip SKP 1 1–255 1–255 1–255

Scan Matrix Compare SMC 34 1–32767* 1–32767* 1–32767*

Square Root SQRT 3 1–32767* 1–32767* 1–32767*

Scan Sync Inhibit SSI 1 – – None

Table Search For Equal STFE 6 – 1–32767* 1–32767*

Table Search For Not Equal STFN 7 – 1–32767* 1–32767*

Subtract SUB 4 1–32767* 1–32767* 1–32767*

Table To Table AND TAND 6 – 1–32767* 1–32767*

Start New RLL Task TASK 4 – 1–32767* –

Text

TEXT 2 +
(NC+
NL)/2

– A–32767* –

Time Compare TCMP 5 – 1–32767* 1–32767*

Table Complement TCPL 5 – 1–32767* 1–32767*

Timer TMR/TMRF 2 ** 1–4096
Configurable

1–20480
Configurable

Table To Table OR TOR 6 – 1–32767* 1–32767*

Time Set TSET 3 – 1–32767* 1–32767*

Table To Word TTOW 6 – 1–32767* 1–32767*

Table To Table Exclusive OR TXOR 6 – 1–32767* 1–32767*

Up/Down Counter UDC 3 ** 1–4096
Configurable

1–20480
Configurable

 *Numbers are for reference only.
 **Varies with controller model. See documentation for specific controller for number supported.
 ***With no parameters; words of L-memory varies according to expressions used in each parameter.
****NC=number of characters of text; NL=number of lines of text.

RLL Memory RequirementsB-6 SIMATIC TI505 Programming Reference

Memory Requirements (continued)

Table B-1 RLL Memory Requirements (continued)

Instru t on Mne on Words

Reference Number Range

Instruction Mnemonic Words
L-Mem

TI520C/
TI530C/
TI530T/

TI525/TI535

TI545/TI555
TI575 TI560/TI565

Unlock Memory UNLCK 3 – TI575 Only
1–32767* –

Word AND WAND 4 1–32767* 1–32767* 1–32767*

Word OR WOR 4 1–32767* 1–32767* 1–32767*

Word Rotate WROT 3 1–32767* 1–32767* 1–32767*

Word To Table WTOT 6 – 1–32767* 1–32767*

Word To Table AND WTTA 7 – 1–32767* 1–32767*

Word To Table OR WTTO 7 – 1–32767* 1–32767*

Word To Table Exclusive OR WTTXO 7 – 1–32767* 1–32767*

Word Exclusive OR WXOR 4 1–32767* 1–32767* 1–32767*

External Subroutine Call XSUB 8 +
1/par. – 1–32767* –

*Numbers are for reference only.

Controller Performance C-1SIMATIC TI505 Programming Reference

Appendix C

Controller Performance

NOTE: This section is to be used only as a reference guide for calculating
controller performance characteristics. Figures given in tables of execution
times may not apply to your controller release. For the TI555 or current
models of the listed controllers, consult the Release Notes included with
your controller for up-to-date specifications for your firmware release.

Controller PerformanceC-2 SIMATIC TI505 Programming Reference

C.1 Calculating Performance for the TI545, TI555, and TI575

Use the information in this section to estimate a worst-case scan time for
your application program. If a feature is not present, no time is added to the
scan.

To calculate scan time for the normal scan, follow steps 1–7. Remember, the
normal scan does not include any programmed cyclic RLL.

Add the I/O update times for the local base and for the remote
bases.

• Local Base TI545/TI555 TI575
For discrete inputs add 2.0 µs/point *.
For discrete outputs add 2.5 µs/point *.
If any word modules are
configured, add overhead 50 µs N/A.
For word inputs/outputs
add 3.6 µs/word *.

• Remote Bases TI545/TI555 TI575
For the first remote base,
add 5 ms 5 ms.
For each additional remote
base, add 1 ms 1 ms.
For word inputs/outputs,
add 16 µs/word 16 µs/word.
If more than 128 word
inputs/outputs on a base —
On each base that this
is true, for every 128 words add 2 ms 2 ms.

Add the execution times for the non-cyclic RLL instructions.

• For RLL instructions TI545/TI555 TI575
(see the execution times
in Table C-3), add _____ms _____ms.

* Not available at time of publication.

Calculating
Normal Scan Time

Total

RLL Instructions ms

2

Normal I/O Update

Non-Cyclic RLL Execution

2 ms

Local base ms
Remote bases ms

Total

1

1 ms

Note: 1000 µs = 1 ms

Controller Performance C-3SIMATIC TI505 Programming Reference

Add the values you choose for each portion of the time-slice.

• Loops: See loop execution times (Figure C-1) _____ms.

• Analog Alarms: See analog alarm execution
times (Figure C-1) _____ms.

• Cyclic SF Programs: See statement execution
times (Table C-4) _____ms.

• Priority SF Programs: See statement execution
times (Table C-4) _____ms.

• Non-Priority SF Programs: See statement
execution times (Table C-4) _____ms.

• Normal Communication (processing service
requests on the non-priority queue) _____ms.

• Priority Communication (processing service
requests on the priority queue) _____ms.

Add the SF module access times for each module in the local
base and for each module in the remote bases.

• Local Base TI545/TI555 TI575
SF modules require 0.1–4 ms
for update.
For each low-activity module,
e.g., ASCII, BASIC, DCP,
add (typical) 1.0 ms N/A.

For each high-activity module,
e.g., NIM, PEERLINK,
add (typical) 2.5 ms N/A.

• Remote Bases TI545/TI555 TI575
SF modules require 2–40 ms
for update.
If any SF modules are
installed, add overhead 2 ms 2 ms.

For each low-activity module,
e.g., ASCII, BASIC, DCP,
add (typical) 12 ms 12 ms.

For each high-activity module,
e.g., NIM, PEERLINK,
add (typical) 25 ms 25 ms.

Total

Loops ms
Analog alarms ms
Cyclic SF Pgm ms
Priority SF Pgm ms
No-Prty SF Pgm ms
Normal Comm

Port ms
Priority Comm

Port ms

3
Analog Timeslice

3 ms

Local base ms
Remote bases ms

SF Module Access
4

Total 4 ms

I003479

Controller PerformanceC-4 SIMATIC TI505 Programming Reference

Calculating Performance for the TI545, TI555, and TI575 (continued)

Add the overhead times for the local communication ports and
for the remote communication ports.

• Local Ports For each TI545/TI555/TI575 communication
port used during normal operation add 1 ms.

• Remote Ports For each RBC communication port used
during normal operation add 2 ms.

Add the CPU overhead.

• For these controller models TI545/TI555 TI575
add 2 ms 2 ms.

Add the values 1–6 for the normal scan time. _____ ms.

This step completes the calculation for the
normal controller scan. If you have programmed
cyclic RLL, continue with steps 8–10.

To determine the execution time for the cyclic RLL portion of an application
program, do the calculations in step 8.

Add the overhead and execution times for the cyclic RLL
boolean and box instructions.

• For these controller models TI545/TI555 TI575
add overhead of 0.16 ms 0.16 ms.

For RLL instructions
(see the execution times
in Table C-3), add _____ms _____ms.

Overhead 2 ms

Local ports ms
Remote ports ms

Normal scan time

5

Communications Port
Overhead

CPU Overhead
6

Normal Scan Time

Total 5

Total 6

1 2+ 3+

4+ 5+ 6+

ms

ms

ms

7

Total

Overhead 0.16 ms

RLL Instructions ms

8
Cyclic RLL Execution

8 ms

Cyclic RLL execution

2

Calculating the
Cyclic RLL
Execution Time

Controller Performance C-5SIMATIC TI505 Programming Reference

To determine the total scan time for an application program that has cyclic
RLL, do the calculations in steps 9–10.

Calculate a preliminary number of times (frequency) that the
cyclic RLL executes during the normal scan.

The determination of the total scan time is an iterative process.
After you obtain a value (Value 10) for the total scan time,
substitute it for Value 7 in the cyclic RLL execution frequency
calculation in Step 9, and then do step 10 again. Repeat this
until the execution frequency for the cyclic RLL (Value 9) no
longer changes.

The calculation in step 10 is based on these values.

• Cyclic RLL frequency of execution Value 9.

• Cyclic RLL execution time Value 8.

An example of the iterative process is shown in a sample
calculation on page C-6.

Total Scan Time
Including Cyclic
RLL

9

Cyclic RLL Execution
Frequency

Total Scan Time
10

Value 9 Times

Frequency =

[×] +8

Scan time total =

ms

 ÷ T

T = Cyclic RLL cycle time

Value

Repeat steps 9–10, substituting

until no longer changes.

10 for

9

9

7

7

7

in step 9

10

I003481

Controller PerformanceC-6 SIMATIC TI505 Programming Reference

Calculating Performance for the TI545, TI555, and TI575 (continued)

Consider this example, that has the following assumptions.

• Cyclic RLL cycle time is 10 ms • Normal scan = 100 ms

• Cyclic RLL execution = 2.16 ms

Freq � 100 ms � 10 ms
� 10 times

Frequency of cyclic RLL execution per
scan (1st calculation) = 10

9

Scan � (10 � 2.16) � 100 Preliminary total scan
time = 121.6 ms� 121.6 ms

Freq � 121.6 ms � 10 ms
� 12 times

Scan � (12 � 2.16) � 100
� 125.92 ms

Frequency of cyclic RLL execution per
scan (2nd calculation) = 12 rounded
down to previous integer

Preliminary total scan
time = 125.92 ms

10

9

10

Freq � 125.92 ms � 10 ms
� 12 times

Frequency of cyclic RLL execution per
scan (3rd calculation) = 12 rounded
down to previous integer

9

I003482

The third iteration shows that the total scan time is approximately 126 ms,
and the cyclic RLL executes 12 times per scan.

Controller Performance C-7SIMATIC TI505 Programming Reference

No alarms enabled 1.470 ms.

All Alarms monitored 1.640 ms.

All Alarms monitored 2.110 ms.
One ramp/soak step added

All Alarms monitored 2.110 ms.
One ramp/soak step added
20% Offset added

All Alarms monitored 2.200 ms.
One ramp/soak step added
20% Offset added
Square root of PV added

All Alarms monitored 2.690 ms.
One ramp/soak step added
20% Offset added,
Square root of PV
Minimal Special Function Program added

High, High-High, Low, Low-Low Alarms enabled 0.724 ms.
All other options disabled

High, High-High, Low, Low-Low Alarms enabled 0.740 ms.
Deviation Alarms enabled
No V-Flag address enabled
No PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.858 ms.
Deviation Alarms enabled
No V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.842 ms.
No Deviation Alarms enabled
No V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.922 ms.
No Deviation Alarms enabled
V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 1.250 ms.
Deviation Alarms enabled
V-Flag address enabled
PV address enabled
Remote SP enabled

Loop Execution

Analog Alarm Execution

Figure C-1 Loop/Analog Alarm Execution Time for the TI545/TI575*

* Times for the TI555 are one-half of the times specified in Figure C-1.

Controller PerformanceC-8 SIMATIC TI505 Programming Reference

C.2 Tuning the TI545/TI555/TI575 Timeline

For most applications, you do not need to adjust the default timeslices for
the timeline for the TI545, TI555, and TI575 controllers. After you have
made your best predictions for analog process execution times (loops, analog
alarms, SF programs, etc.), you may still want to make adjustments in the
timeline, based on empirical data. You have the option of fine-tuning the
sub-slices of the analog timeslice to ensure that these analog processes are
executed as quickly as possible and do not overrun. The sections that follow
describe some suggestions about how to approach the fine-tuning.

When you set the timeslices, you are also affecting the length of the overall
controller scan. Shorter analog timeslices reduce the overall scan, and
results in a faster I/O update. Typically, you want to reduce the analog
portion of the scan as much as possible to reduce the overall scan time.
However, do not allow too little time for the analog portion. Loops and
analog alarms can begin to overrun, and the time for SF programs to
execute after scheduling can be longer.

The TI545/TI555/TI575 controllers store the peak elapsed time for a process
to execute. The peak elapsed time is the time from when a process is
scheduled (placed in the queue) until the process completes execution. The
controller updates these words each time the process is scheduled and
executed.

• LPETn for loops
(n = 1–64)

• PPETn for SF Programs
(n = 1–1023)

• APETn for analog alarms
(n = 1–128)

• SPETn for SF Subroutines
(n = 1–1023)

You can determine if the loops, analog alarms, or cyclic SF programs are
coming close to overrunning. If the value in the APET, the LPET, or the
PPET approaches the sample time, you can increase the timeslice for the
analog alarms or for the loops. Alternatively, you can decrease the other
timeslices. This reduces the overall scan, allowing the analog alarms or
loops to run more often in a given time. The time needed for the discrete
portion of the scan limits how much you can reduce the overall scan.

If the PPET indicates that an SF program is taking significantly more time
for execution than your calculation based on times in Table C-4, you can
increase the timeslice appropriately. If the SF program is critical, move that
SF program to the Priority queue.

PPET is only valid for an SF program queued from RLL (priority,
non-priority, or cyclic SF programs). The time for executing an SF program
called from a loop or analog alarm is included in LPET or APET,
respectively.

Basic Strategy

Using Peak Elapsed
Time Words

Controller Performance C-9SIMATIC TI505 Programming Reference

SPET is only valid for an SF subroutine queued from RLL. The time for
executing an SF subroutine called from an SF program is included in the
PPET for the SF program. The time for executing an SF subroutine called
from an SF program called from a loop or analog alarm is included in the
appropriate LPET or APET.

Check the status of the following bits in Status Word 162 (STW162) to see if
these analog processes are overrunning.

• Bit 3 Loops are overrunning.

• Bit 4 Analog Alarms are overrunning.

• Bit 5 Cyclic SF programs are overrunning.

• Bit 6 Non-priority SF program queue is full.

• Bit 7 Priority SF program queue is full. All priority and non-priority
SF programs will be executed in turn.

• Bit 8 Cyclic SF program queue is full.

Check bit 14 in Status Word 1 (STW01) to see if the overall scan is
overrunning. When the bit is true (= 1), the scan time required to execute
the entire program is greater than the designated scan time.

The instantaneous discrete execution time (the time to execute the discrete
portion of the scan) is reported in Status Word 192 (STW192). The
instantaneous total scan time is reported in Status Word 10 (STW10).

Table C-1 summarizes the performance and overrun indicators.

Table C-1 Performance and Overrun Indicators

Performance Overrun Indication Status Word/AUX Function

Discrete scan overrun indicator STW01 and AUX 29

Previous discrete scan time STW192 and AUX 19

Previous total scan time STW10 and AUX 19

Peak discrete and total scan time AUX 19

Cyclic process overrun indicators STW162

Individual cyclic process overrun indicators V-Flags and T6

SF queue full STW162

Process peak elapsed time LPET, APET, PPET, SPET

Scan watchdog AUX14

Using the
Status Words

Controller PerformanceC-10 SIMATIC TI505 Programming Reference

Tuning the TI545/TI555/TI575 Timeline (continued)

SF modules: When you determine the base location for SF modules, consider
the impact on the controller scan. Update time for an SF module is an order
of magnitude faster when you install the module in the local base, versus a
remote base, resulting in less extension of the controller scan.

If all SF modules cannot be installed in the local base, consider placing
low-activity SF modules, such as the ASCII, BASIC, or DCP modules, in a
remote base. Locate high-activity modules, such as the NIM or PEERLINK,
in the local base.

NOTE: SF modules cannot be placed in the TI575 local base.

SF program execution time: Your calculation of an SF program execution
time based on the statement times (Table C-4) is the actual execution time
required for the controller to run the SF program. The time from when the
SF program program is placed in the queue until the point at which
execution begins can vary. This wait depends upon the number of SF
programs scheduled, how long they take for execution, how long the
timeslice is, and the priority of other analog tasks scheduled for processing.

Priority/non-priority SF program queues: The two SF program queues
provide a means of separating critical SF programs, (needing to run quickly)
from less important SF programs. Keep the number of priority SF programs
as small as possible, and if it is not essential that an SF program be
executed very rapidly, assign it to the other queue.

You can increase the timeslice for the Priority SF programs to ensure that
queued programs are executed as quickly as necessary.

Cyclic SF program queue: The TI545, TI555, and TI575 controllers allow
you to queue up to 32 cyclic SF programs at once. If you create more than
32, only the first 32 that are queued are executed.

Do not overload the controller: Remember that the controller has a finite
set of resources. The TI545, TI555, and TI575 support 64 loops, but you
cannot run them all at 0.1 second intervals without adversely affecting the
execution of the other analog processes. You cannot run all 128 analog
alarms at 0.1 second intervals for the same reason.

Concepts to
Remember When
Calculating
Timeline

Controller Performance C-11SIMATIC TI505 Programming Reference

RLL versus SF math: The controller processes RLL math much faster than SF
program math. When possible, use RLL for integer mathematical
calculations for faster response time.

Timeslice resolution: Timeslices have a resolution of 1 ms. When you
program a 4 ms timeslice, that timeslice is executed for four 1 ms clock
pulses. The time from the beginning of the timeslice to the first pulse can
vary from zero time to a full 1 ms pulse. Therefore, the actual time in a 4 ms
timeslice is greater than 3 but less than or equal to 4 ms.

Each transition between timeslices takes approximately 200 µs of overhead.
This overhead is included in the time allotted to each timeslice and does not
have an additional impact on the overall scan.

Controller PerformanceC-12 SIMATIC TI505 Programming Reference

C.3 Calculating Performance for the TI560

Use the information in this section to calculate a worst-case scan time for
your application program. If a feature is not present, no time is added to the
scan.

Calculate the I/O update time. This calculation is based on
update time for the channel with the most bases.

• For the first base on the channel add 3 ms overhead.
For each additional base add 1.5 ms overhead.
For word inputs/outputs add 16 µs/word I/O point.

Calculate the RLL program execution time.

• For RLL instructions (see the execution times
in Table C-3), add _____ ms.

Special Function module access time varies from 8 – 12 ms per
module (4 to 25 ms for Peerlink, dependent on amount of data).

• For SF modules add _____ ms.

The time required for communication ports is 5 ms maximum if
both local and two remote ports are active.

• For communications ports add _____ ms.

Calculating Scan
Time

Total

Channel with most
bases ms

RLL Instr. ms

Total

1

2

I/O Update

RLL Execution

1

2

3

SF Module Update

Total

3

SF module
update ms

Communications Port
Overhead

4

4

Total

For 2 local and for
2 remote ports 5 ms

ms

ms

ms

ms

Note: 1000 µs = 1 ms

I003484

Controller Performance C-13SIMATIC TI505 Programming Reference

Communication with the TI565 requires 1 ms for Release 1.0.
For Release 2.0 and greater, exact time varies from 1 – 4 ms,
depending on the number of loops, analog alarms, and
SF programs.

• For Release 1.0 add 1.0 ms.
For Release 2.0 and greater add 1.0–4.0 ms.

Hot Backup Communications uses 9 ms maximum (Online
mode only).

• For HBU communications add 9 ms.

CPU overhead time for Release 1.0 is 8 ms. Overhead time for
Release 2.0 and greater is 11 ms.

• For Release 1.0 add 8 ms.
For Release 2.0 and greater add 11 ms.

Add the values 1–7 for the total scan time _____ ms.

Fixing scan time to a value longer than needed only allows more processing
time for the main CPU communication ports. Other functions consume only
the amount of time required to execute. If the scan time is fixed at less than
is required to execute all tasks, the controller uses the amount of time
required to perform all tasks in the timeline and sets the “scan overrun”
flag. Nothing is left out of a scan due to a fixed scan time.

Overhead ms

Comm. with
the TI565 ms

Total scan time

5
TI565 Communications

CPU Overhead
7

Total Scan Time

Total 5

Total 7

1 2+ 3+

4+ 5+ 6+

Hot Backup

6Total

Comm. with
the HBU 9 ms

6
Communications

7+

I003485

Controller PerformanceC-14 SIMATIC TI505 Programming Reference

Calculating Performance for the TI560 (continued)

You can decrease the I/O update time by adding RCC cards or by arranging
the analog to discrete I/O mix to reflect a minimum amount of analog I/O
per channel of each RCC. Since all the RCCs are updated in parallel, the I/O
update time is most dependent on the RCC channel with the largest number
of bases or the heaviest percentage of analog I/O per channel.

For example, if one RCC is installed with all the analog I/O on one channel
and all the discrete I/O is on the other channel, the I/O update time is 28
milliseconds (maximum time for updating one channel with all analog I/O).

Better performance can be achieved by placing analog modules on the
lowest-numbered bases. With one broadcast message at the beginning of the
I/O cycle, the RCC instructs all Remote Base Controllers to prepare inputs.
It then polls each base, one at a time, for these inputs. Since the highest-
numbered bases (base 14 or 15) are polled for information and updated first,
the lower-numbered bases (base 0 or 1) have more time to prepare
information for transmission. Because the Remote Base Controller takes
longer to prepare and transmit analog information, placing analog modules
in the lower numbered bases, which are updated last, allows the RBC more
time to prepare the data for transmission.

The TI565 can do 32 loop calculations, update 16 analog alarms, and
execute up to 1200 additional floating point calculations as called from SF
programs in 1 second. This assumes the scan time is equal to, or greater
than, 50 milliseconds to allow the TI565 to complete tasks without having to
process interrupts from the TI560.

NOTE: The PPX:565–2820 can execute loops, analog alarms, and special
function programs approximately three times faster than the rates given
above. Actual execution times are not available at time of publication.

Refer to Table C-2. Assuming a maximum of 32 loop calculations each
second, you can take the 0.1 rate and determine that a maximum of three
0.1 loops would be executed in one second. A mix of processing rates, such as
six 0.2 loops and one 0.5 loop, would be completed in one second.

RCC Performance

TI565 Performance

Controller Performance C-15SIMATIC TI505 Programming Reference

Table C-2 Loop Execution Rates

Processing Rate (Seconds) Loop Calculations/Sec Required

0.1 10.0

0.2 5.0

0.3 3.33

0.4 2.5

0.5 2.0

0.6 1.67

0.7 1.43

0.8 1.25

0.9 1.11

1.0 1.0

System overhead is affected by the addition of Hot Backup capability. This
is the first area affected, and grows by 3 ms when the hot backup option is
added. This brings the total system overhead up to around 11 ms.

As long as the standby unit is in the offline mode, there is no further effect
on performance of the active unit. When the standby unit is in the online
mode, however, the scan time is approximately 9 ms longer. With the TI565,
further scan variation results from interaction between the Main CPU and
the Special Function CPU. A write operation to LPVH or LPVL must
complete before the end of the TI565 scan. When many Ramp/Soak steps
are programmed, the scan can be extended considerably.

Switch-over times vary depending on the type of fatal error encountered and
the time lapse before the fatal error is logged and system shutdown occurs
(some errors take longer to be recognized than others). Typical switch-over
times after a system fatal error has been detected can range from 130 ms to
200 ms. The best case is 130 ms required for the standby to verify that the
active unit is no longer communicating over the I/O channel. This is possible
if the active unit is good but the HBU fiber optic link is lost). A watchdog
timer fatal error would take the most time for the system to detect. The
watchdog timer times out after 500 ms have elapsed. Worst-case switch-over
time for this type error would be 500 ms for error detection and 130 ms for
switchover, or 630 ms total.

Hot Backup
Performance

Controller PerformanceC-16 SIMATIC TI505 Programming Reference

C.4 RLL Execution Times for High-End Controllers

Execution times for RLL instructions for the high-end controllers are listed
in Table C-3.

NOTE: For the TI555 controller, or later releases of listed models, consult
the Release Notes included with your controller for execution times.

To calculate RLL program execution time, multiply the instruction
execution time by the instruction frequency of occurrence for all instructions
in your ladder logic program. Then sum these products. For example, if your
program contains four ADD instructions, four contacts, and four coils, all
enabled, then for a TI545 Release 2.0 controller, the program execution time
is calculated as follows. (All times are in microseconds.)

4 ADDS x 9.2 = 36.8
4 Contacts x .8 3.2
4 Coils x .8

=
= 3.2

RLL execution time = 43.2

µs

µs
µs

µs

µs
µs

µs

Table C-3 Ladder Logic Execution Times for High-End Controllers

Instru t on

Time in Microseconds

Instruction TI545 (Rel 2.0) TI575 (Rel 2.0)* TI560 (Rel 3.2) TI560T (Rel 6.0)

Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled

ABSV 7.0 5.0 6.7 5.0 – – 15.1 11.2

ADD 10.3 4.5 8.9 5.0 30.0 16.2 20.4 10.2

BITC 8.7 4.5 10.4 6.2 26.2 14.9 20.9 12.0

BITP 8.4 4.5 10.0 5.8 24.3 14.9 19.6 12.0

BITS 8.9 4.6 10.7 6.3 26.0 14.9 20.7 12.0

CBD 17.3 4.9 20.2 5.4 54.0 14.9 46.3 12.0

CDB 17.3
(4.9)1 4.6 21.4

(4.7)1 6.5 49.6
(12.7)1 16.1 41.0

(11.4)1 12.9

CMP 17.2 14.3 20.3 16.2 40.4 39.2 36.0 30.7

Coil—
Normal
Immediate Y
Set/Reset coil
Bit-of-Word

0.8
27.7
0.6
8.4

0.8
27.7
0.6
8.7

0.5
81.2
5.6
8.9

0.4
81.3
3.2
9.2

2.5
–
–
–

2.5
–
–
–

2.2
–
2.9

13.9

2.2
–
2.9

14.1

Contact—
Normal
Immediate X
Relational
Bit-of-word

0.7
16.2
2.0
1.6

0.7
16.2
1.9
1.6

0.5
57.0
2.0
1.6

0.7
57.0
2.0
1.6

2.5
–
–
–

2.5
–
–
–

1.4
–
3.8
2.9

1.4
–
3.8
2.9

*For the TI575, add 1 µs for each VMEbus access.
1Figures in parentheses are execution times for each additional bit, word, or parameter after the first.

Controller Performance C-17SIMATIC TI505 Programming Reference

Table C-3 Ladder Logic Execution Times for High-End Controllers (continued)

Instru t on

Time in Microseconds

Instruction TI545 (Rel 2.0) TI575 (Rel 2.0) TI560 TI560T

Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled

CTR 11.7 11.4 18.9 16.4 36.9 37.9 27.8 28.6

DCAT 31.1 31.0 36.7 35.2 80.6 80.1 67.7 66.8

DCMP 13.7 6.0 20.8 7.3 90.3 18.2 75.3 14.6

DIV 11.4 4.5 8.3 4.7 27.7 16.2 23.2 10.2

DRUM 71.1 59.4 88.2 74.2 192.3 197.5 136.4 166.7

DSET 10.2 9.3 361.0 16.9 29.2 26.8 23.0 21.1

EDRUM 78.5 70.4 93.0 86.4 238.2 218.9 201.1 186.6

END 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ENDC 0.0 2.8 0.0 3.5 0.0 9.1 0.0 7.0

FRS – – – – 55.2 50.6 44.9 41.2

GTS/SBR/RTN 10.63 1.7 18.73 0.5 30.23 4.8 20.53 3.0

IMC 47.7 3.4 57.9 9.9 157.5 15.7 134.5 11.7

IORW (Discretes)
(each 16-bit block)

28.6 4.0 66.4
(1.4)1

5.5 – – – –

IORW (Words) 28.7 4.0 N/A N/A – – – –

JMP/JMPE
JMP/JMPE

(conditional)
8.4 42.43 11.03 45.73 24.2 51.33 18.8 84.53

LDA
Source Direct
Dest. Direct

3.3 2.1 2.2 1.2 – – – –

Source Indirect
Dest. Direct 36.2 5.1 44.5 5.7 – – – –

Source Indexed
Dest. Direct 57.0 4.8 66.9 5.7 – – – –

Source Indexed/Indirect
Dest. Direct 37.2 4.9 45.7 5.7 – – – –

Source Direct
Dest. Indirect 56.6 5.2 67.8 5.7 – – – –

Source Direct
Dest. Indexed 57.3 4.8 67.0 5.7 – – – –

Source Direct
Dest. Indexed/Indirect 57.4 4.9 68.9 5.7 – – – –

Source Indexed/Indirect
Dest. Indexed/Indirect 37.3 4.9 45.7 5.7 – – – –

1Figures in parentheses are execution times for each additional bit, word, or parameter after the first.
3Time is for a set of these instructions to execute.

Controller PerformanceC-18 SIMATIC TI505 Programming Reference

RLL Execution Times for High-End Controllers (continued)

Table C-3 Ladder Logic Execution Times for High-End Controllers (continued)

Instru t on

Time in Microseconds

Instruction TI545 (Rel 2.0) TI575 (Rel 2.0) TI560 TI560T

Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled

LDC 6.2 4.6 7.4 5.8 19.7 14.9 15.8 12.0

LOCK – – 62.3 7.2 – – – –

MCAT 45.1 44.6 54.7 54.2 100.6 76.2 89.7 85.3

MCR/MCRE
MCR/MCRE

(conditional)
7.3 37.03 10.73 44.2 24.2 47.93 18.8 81.93

MDRMD 91.4 79.1 100.9 94.5 230.4 211.0 189.2 173.8

MDRMW 41.4 31.1 52.5 46.0 105.5 86.0 82.0 70.4

MIRFT 39.4
(24.0)1 4.6 43.0

(22.2)1 6.3 51.3
(13.7)1 16.1 41.0

(11.3)1 12.9

MIRTT 39.1
(29.0)1 4.6 45.0

(29.3)1 6.5 37.9
(12.9)1 16.1 27.8

(7.9)1 12.9

MIRW 12.2
(1.9)1 4.6 15.2

(1.7)1 6.3 39.1
(5.3)1 16.1 29.7

(3.9)1 12.9

MOVE
Source Direct (1 word)
Dest. Direct

3.0 2.1 2.0 1.3 – – – –

Source Direct (>2 words)
Dest. Direct N/A N/A 12.4

(0.6)1 5.0 – – – –

Source Indirect
Dest. Direct

46.9
(0.1)1 5.1 63.0

(0.7)1 5.5 – – – –

Source Indexed/Direct
Dest. Direct

53.8
(1.1)1 4.9 63.9

(0.7)1 5.5 – – – –

Source Indexed/Indirect
Dest. Direct

48.0
(1.1)1 4.8 64.2

(0.7)1 5.5 – – – –

Source Direct
Dest. Indirect

42.8
(0.1)1 5.1 N/A N/A – – – –

Source Direct
Dest. Indexed/direct

54.3
(1.1)1 4.9 N/A N/A – – – –

Source Direct
Dest. Indexed/Indirect

44.1
(1.1)1 4.9 N/A N/A – – – –

Source Indexed/Indirect
Dest. Indexed/Indirect

44.2
(0.1)1 4.9 86.9

(0.7)1 5.5 – – – –

MOVW
One Word 3.0 2.1 2.0 1.3 26.1 16.1 7.6 4.8

MOVW
> Two Words

10.0
(0.6)1 4.5 12.2

(1.0)1 5.3 29.8
(3.5)1 16.1 23.0

(1.8)1 10.2

1Figures in parentheses are execution times for each additional bit, word, or parameter after the first.
3Time is for a set of these instructions to execute.

Controller Performance C-19SIMATIC TI505 Programming Reference

Table C-3 Ladder Logic Execution Times for High-End Controllers (continued)

Instru t on

Time in Microseconds

Instruction TI545 (Rel 2.0) TI575 (Rel 2.0) TI560 TI560T

Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled

MULT 11.7 4.6 9.8 4.7 32.2 16.2 24.1 10.3

MWFT 14.7 10.0 23.9 20.7 51.4 39.6 37.0 26.6

MWI 23.4
(0.6)1 4.9 26.7

(1.1)1 4.7 69.8
(2.6)1 14.7 55.6

(1.8)1 11.7

MWIR 15.1
(1.6)1 4.5 17.9

(1.5)1 6.5 39.5
(5.3)1 16.1 31.7

(5.0)1 12.9

MWTT 14.8 10.4 23.9 20.7 57.3 45.4 36.2 26.5

NOT 0.2 0.2 0.2 0.2 – – 0.4 0.4

OS (one shot) 7.4 7.4 7.8 8.2 22.7 23.0 17.3 17.6

PGTS/SBR/RTN 45.5
(11.9)1,3 4.0 54.5

(10.8)1,3 6.0 – – 230.0
(8.9)1,3 10.4

PGTSZ/SBR/RTN 46.3
(11.9)1,3 15.8 55.8

(10.8)1,3 19.7 – – 231.0
(8.9)1,3 105.8

SFPGM 13.7 13.4 69.7 17.8 4.3 4.3 3.0 3.0

SHRB 15.8 14.9 19.2 19.2 41.3 40.9 32.6 37.6

SHRW 12.9 11.9 14.9
(1.6)1

14.9 41.9 39.2 32.1 29.7

SKP/LBL 2.02 1.7 0.8 0.5 6.32 4.8 4.1 3.0

SMC 55.4 3.7 62.4 8.9 169.5 15.7 145.9 11.8

SQRT 12.4 4.9 14.9 5.4 37.1 14.9 29.9 12.0

SSI – – – – 12.1 12.5 9.5 9.7

STFE 9.8
(0.1)1 8.0 13.7

(0.4)1 11.5 32.0
(0.1)1 26.7 24.8

(0.1)1 20.3

STFN 12.3
(0.1)1 10.0 17.0

(0.5)1 14.9 38.0
(0.1)1 32.8 30.2

(0.1)1 25.7

SUB 11.4 4.5 8.9 5.0 29.9 16.2 23.2 10.3

TAND 12.9
(1.8)1 4.0 10.9

(1.6)1 5.4 39.2
(5.4)1 14.1 31.7

(3.8)1 11.5

TCMP 22.2 17.9 33.7 22.2 121.6 43.3 103.0 41.4

TCPL 12.3
(1.4)1 4.5 10.3

(1.3)1 5.4 36.7
(4.6)1 14.1 30.1

(3.4)1 11.5

TMR 10.3 8.9 11.5 10.5 33.7 28.3 21.4 17.1
1Figures in parentheses are execution times for each additional bit, word, or parameter after the first.
2Not available at time of publication.
3Time is for a set of these instructions to execute.

Controller PerformanceC-20 SIMATIC TI505 Programming Reference

RLL Execution Times for High-End Controllers (continued)

Table C-3 Ladder Logic Execution Times for High-End Controllers (continued)

Instru t on

Time in Microseconds

Instruction TI545 (Rel 2.0) TI575 (Rel 2.0) TI560 TI560T

Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled

TOR 13.0
(1.8)1 4.0 10.9

(1.6)1 5.4 39.2
(5.4)1 14.0 31.6

(3.8)1 11.5

TSET 10.0 9.3 358.4 17.0 28.5 26.8 23.0 21.1

TTOW 10.0 8.9 16.8 12.0 30.8 28.8 24.2 21.8

TXOR 12.7
(2.0)1 4.0 14.0

(1.8)1 5.0 37.6
(5.9)1 14.1 30.2

(4.3)1 11.4

UDC 24.6 18.8 32.5 30.9 73.8 57.1 52.2 39.1

UNLCK – – 61.7 5.2 – – – –

WAND 9.8 4.5 8.2 4.8 29.7 16.2 19.6 10.3

WOR 9.8 4.6 8.2 4.8 29.6 16.2 19.6 10.3

WROT 9.3 4.5 10.9 6.4 29.3 14.9 24.1 12.0

WTOT 10.0 8.9 16.8 12.0 30.8 28.8 24.2 21.7

WTTA 11.8 10.5 20.2 14.2 35.8 33.7 28.3 25.9

WTTO 11.8 10.4 20.2 14.2 35.7 33.7 28.3 25.8

WTTXO 11.8 10.7 20.7 14.3 35.8 33.7 28.3 25.8

WXOR 9.9 4.6 8.5 4.8 30.2 16.2 20.9 10.2

XSUB 6.1
(0.0)1 3.1 10.4

(0.007) 4.5 – – – –

1Figures in parentheses are execution times for each additional bit, word, or parameter after the first.

Controller Performance C-21SIMATIC TI505 Programming Reference

C.5 SF Program Statement Execution Times for the TI545/TI555/TI575

Execution times for the SF statements are listed in Table C-4 for the TI545
(Rel. 2.0) and TI575 (Rel. 2.0) controllers. All times are in microseconds.

NOTE: For the TI555, execution times are 1/2 of the stated times.

To calculate SF program execution time, multiply the statement execution
time by the statement frequency of occurrence for all statements in your
SF program. Then sum these products.

For example, if your program contains 1 SSR (table length = 3), 2 BINBCDs,
3 COMMENTS, then the program execution time for a TI545 or TI575
controller is calculated as follows.

1 SSR x = 670.0
2 BINBCDs x 365 730.0
3 COMMENTS x 20.6

=
= 61.8

SFPGM Execution Time = 1461.8

250 + 140x 3)(µs
µs
µs

µs

µs
µs

µs

NOTE: The calculation based on these statement execution times is the
actual execution time required for the controller to run the SF program. The
time from when the SF program is placed in the queue until the point at
which execution begins can vary. This wait depends upon the number of
SF programs scheduled, how long they take for execution, and the priority
of other analog tasks scheduled for processing.

Table C-4 SF Statement Execution Times for the TI545/TI575

SF Statement Notes/Assumptions Execution Time

Arrays
Accessing V102 using V100(3)

Accessing V102 using V100(V1) where V1 = 3

add 50 µsec to variable access

add 150 µsec to variable access

BCDBIN input=V4, output=V5 297 µsec

BINBCD input=V5, output=V4 365 µsec

CALL ≈ 81 µsec + (60 µsec × # of parameters)

CDT
input=V1, output=V2
in_table=V10, out_table=V20
length=x

best case: ≈ 689 µsec
worst case: ≈ 689 µsec + (120 µsec × (length – 1))

COMMENT 20.6 µsec

Controller PerformanceC-22 SIMATIC TI505 Programming Reference

SF Program Statement Execution Times for the TI545/TI555/TI575 (continued)

Table C-4 SF Statement Execution Times for the TI545/TI575 (continued)

SF Statement Notes/Assumptions Execution Time

Expressions relational operators, e.g., >, >=, =, etc. ≈ 70 µsec

EXIT 41.0 µsec

FTSR–IN input=V1, length=4,
register start=V100 status=C50 625 µsec

FTSR–OUT output=V3, length=4,
register start=V100, status=C50 653 µsec

GOTO GOTO Label 1 38.4 µsec + (5.3 µsec × # of intervening statements
between GOTO and LABEL)

IF-THEN-ELSE

IF (expression) and the expression is true

IF (expression) and the expression is false

95 µsec + time to evaluate expression

95 µsec + time to evaluate expression +
≈ 7 µsec × # of statements prior to ENDIF
or ELSE

ELSE or ENDIF ≈ 20.5 µsec

IMATH Assume integer variables, when used

175 µsec (assignment, e.g. V200 := 10) +
20 µsec (per each operator, e.g. +, –,) +
5 µsec (per each constant operand +
100 µsec (per each variable operand, e.g.. V100)

LABEL Label 1 ≈ 22 µsec

LEAD/LAG ≈ 1440 µsec

MATH Assume real variables

182 µsec (assignment, e.g. V200 := 10.0) +
[60 µsec (for most operators, such as +,–.

exp(**) ≈500 µsec)] +
7 µsec (per each constant operand) +
100 µsec (per each variable operand, e.g., V100)

Notes:

1) Intrinsic functions, such as ABS, FRAC, etc.,
average 315 µsec of time for execution (max.
≈ 470 µsec for LOG.

2) Integers are converted to reals before
computation is done. Add 25 µsec for each
integer → real, real→ integer conversion that
must occur.

Controller Performance C-23SIMATIC TI505 Programming Reference

Table C-4 SF Statement Execution Times for the TI545/TI575 (continued)

SF Statement Notes/Assumptions Execution Time

PACK ≈ 110 µsec +
Σ block time

Discrete block time
≈ 179 µsec +

((#points–1) × 87 µsec) +
(((#points–1) / 16) × 220 µsec)

Integer block time
≈ 276 µsec +

((#points–1) × 170 µsec)

Real block time
≈ 413 µsec +

((#points–1) × 259 µsec)

PACK AA
≈ 225 µsec +

(# of integer parameters × 152 µsec) +
(# of real parameters × 300 µsec)

PACKLOOP

≈ 228 µsec +
(# of integer parameters × 374 µsec) +
(# of real parameters × 325 µsec) for PACK_TO

 or
(# of real parameters × 500 µsec) for PACK_FROM

PRINT
Time to start print operation; the actual print time
varies with the length of the print job, port baud
rate, etc.

≈ 165 µsec

RETURN ≈ 60 µsec

SCALE
input=V1, output=V2
low=0, high=100,
20%=no, bipolar=no

≈ 579 µsec

SDT input table=V10, output=V1,
pointer=V2, restart=C50, length=x ≈ 604 µsec

SSR using tablestart=V10,
status bit=C10 ≈ 250 µsec + (140 µsec × table length)

UNSCALE
input=V2, output=V1,
low=0, high=100
20%=no, bipolar=no

≈ 582 µsec

Controller PerformanceC-24 SIMATIC TI505 Programming Reference

C.6 Calculating Performance for the TI520C, TI530C, TI530T, TI525, and TI535

Use the information in this section to calculate a worst-case scan time for
your application program. If a feature is not present, no time is added to the
scan. If your controller is in PROGRAM mode, the scan time is fixed at
50 ms.

NOTE: The column head “Others” refers to the TI520C, TI530C, and TI525
controllers.

Sum the I/O update times for the local base and for the
distributed bases.

• Local Base TI530T/TI535 Others
For local base overhead add 148 µs 276 µs.
For discrete inputs add 5 µs/point 10 µs/point.
For discrete outputs add 4 µs/point 6 µs/point.
For word/analog inputs add 26 µs/word 105 µs/word.
For word/analog outputs add 27 µs/word 35 µs/word.

• Distributed Bases TI530T/TI535 Others
For distributed base
overhead add 363 µs/base 531 µs/base.
For discrete inputs add 10 µs/point 10 µs/point.
For discrete outputs add 6 µs/point 6 µs/point.
For word/analog inputs add 89 µs/word 105 µs/word.
For word/analog outputs add 32 µs/word 35 µs/word.

Calculate the RLL program execution time.

• TI530T/TI535 Others
For Boolean
instructions add 900 µs/k words 4000 µs/k words.

For box instructions
see the execution
times in (Table C-5) _____ µs _____ µs.

Calculate the special function module update time. Special
function module update time is the same for TI520C, TI530C,
TI530T, TI525, and TI535 controllers.

• For each SF module add 5000 µs.

Calculating Scan
Time

Total

Total

Local base ms

Distributed bases ms

Boolean Instr. ms

Box Instr. ms

Total

1

2

I/O Update

RLL Execution

1

2

3

SF module update ms

SF Module Update
3

ms

ms

ms

Note: 1000 µs = 1 ms

I003486

Controller Performance C-25SIMATIC TI505 Programming Reference

NOTE: The column head “Others” refers to the TI520C, TI530C, and TI525
controllers.

Calculate the task execution time.

• TI530T/TI535 Others
For each controller
communication port used
during normal operation add 2 ms 4 ms.

Add the CPU overhead.

• TI530T/TI535 Others
For overhead add 1 ms 4 ms.

Add the values 1–5 for the total scan time _____ ms.

Overhead ms

Total scan time

4

Communications Port
Overhead

CPU Overhead
5

Total Scan Time

Total 4

Total 5

1 2+ 3+

4+ 5+

Comm. port
overhead ms

ms

ms

ms

I003487

Controller PerformanceC-26 SIMATIC TI505 Programming Reference

Calculating Performance for the TI520C, TI530C/TI530T, TI525, TI535 (continued)

Table C-5 Ladder Logic Execution Times for Early Model Controllers

Instruction
Execution Time in Microseconds

for Enabled InstructionsInstru t on
TI520C/TI530C/TI525 TI530T/TI535

ADD 61 19

BITC 55 18

BITP 62 21

BITS 55 17

CBD 81 9

CDB 80 (24.3) 1 25 (9.3) 1

CMP 74 23

Coil — Normal 4 1

Contact — Normal 4 1

CTR 99 34

CTR (Protected) 99 34

DIV 62 20

DRUM 368 135

EDRUM 427 153

END 10 3

ENDC 20 9

IMC 494 175

JMP 35 11

JMPE 25 15

LDC 43 14

MCR 35 11

MCRE 30 12

MIRW 80 (3.3) 1 29.5 (2.3) 1

MOVW 70 (10.8) 1 18 (3.6) 1

MULT 70 25

MWFT 96 27

MWIR 82 (.67) 1 28 (.46) 1

MWTT 100 29
1Figures in parentheses are execution times for each additional word after the first.

Controller Performance C-27SIMATIC TI505 Programming Reference

Table C-5 Ladder Logic Execution Times for Early Model Controllers
(continued)

Instruction
Execution Time in Microseconds

for Enabled InstructionsInstru t on
TI520C/TI530C/TI525 TI530T/TI535

OS (one shot) 45 16

SHRB 99 (9.8) 1 33 (3.5) 1

SHRW 94 (9.0) 1 32 (3.0) 1

SMC 499 (17.6) 1 172 (5.8) 1

SQRT 354 162

SUB 58 19

TMR (Fast) 78 27

TMR (Fast, protected) 78 27

TMR (Slow) 84 29

TMR (Slow, protected) 84 29

UDC 30 48

UDC (Protected) 130 48

WAND 68 21

WOR 65 20

WROT 45 15

WXOR 65 20
1Figures in parentheses are execution times for each additional word after the first.

Loop and Analog Alarm Flag Formats D-1SIMATIC TI505 Programming Reference

Appendix D

Loop and Analog Alarm Flag Formats

D.1 Loop Flags D-2.

D.2 Analog Alarm Flags D-4.

Loop and Analog Alarm Flag FormatsD-2 SIMATIC TI505 Programming Reference

D.1 Loop Flags

Appendix D gives the formats for the C-Flags and V-Flags used by the
TI545, TI555, TI565, and the TI575 controllers.

Table D-1 Loop V-Flags (LVF)

Bit Loop Function

1 1 = Go to manual mode

2 1 = Go to auto mode

3 1 = Go to cascade mode

4 and 5 4 5
0 0 Loop is in manual mode
1 0 Loop is in auto mode
0 1 Loop is in cascade mode

6 0 = Error is positive
1 = Error is negative

7 1 = PV is in high-high alarm

8 1 = PV is in high alarm

9 1 = PV is in low alarm

10 1 = PV is in low-low alarm

11 1 = PV is in yellow deviation alarm

12 1 = PV is in orange deviation alarm

13 1 = PV is in rate-of-change alarm

14 1 = Broken transmitter alarm

16 unused

Loop and Analog Alarm Flag Formats D-3SIMATIC TI505 Programming Reference

Table D-2 Loop C-Flags (LCFH and LCFL)

Variable Word
Bit

Flag
Bit Loop Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset—only valid if PV is unipolar. See bit 21.

2 2 1 = Take square root of PV

3 3 1 = Monitor high/low alarms

4 4 1 = Monitor high-high/low-low alarms

5 5 1 = Monitor yellow/orange deviation alarm

6 6 1 = Monitor rate-of-change alarm

7 7 1 = Monitor broken transmitter alarm

LCFH

8 8 PID algorithm type
0 = Position algorithm
1 = Velocity algorithm

9 9 0 = Direct acting
1 = Reverse acting

10 10 1 = Control based on error squared

11 11 1 = Control based on error deadband

12 12 1 = Auto-mode lock

13 13 1 = Cascade-mode lock

14 14 1 = Setpoint lock

15 15 0 = Output scale 0% offset
1 = Output scale 20% offset—only valid if output is unipolar. See

bit 20.

16 16 16 17
0 1 No special function

i i h ss i
1

and

17

1 0 Special function on the process variable
0 1 Special function on the setpoint
1 1 Special function on the output

2 18 1 = Freeze bias when output is out-of-range

3 19 1 = Ramp/Soak on the setpoint

LCFL 4 20 0 = Output is unipolar
1 = Output is bipolar

5 21 0 = PV is unipolar
1 = PV is bipolar

6 22 1 = Perform derivative gain limiting

7–16 23–32 Contains SF program number (if an SF program is scheduled to be called)

Loop and Analog Alarm Flag FormatsD-4 SIMATIC TI505 Programming Reference

D.2 Analog Alarm Flags

Table D-3 Analog Alarm V-Flags (AVF)

Bit Analog Alarm Function

1 1 = Enable alarm

2 1 = Disable alarm

3 1 = PV is in high-high alarm

4 1 = PV is in high alarm

5 1 = PV is in low alarm

6 1 = PV is in low-low alarm

7 1 = PV is in yellow deviation alarm

8 1 = PV is in orange deviation alarm

9 1 = PV is in rate of change alarm

10 1 = Broken transmitter alarm

11 1 = Analog alarm is overrunning

12 1 = Alarm is enabled *

13–16 Unused

*If a word is selected for the analog alarm V-Flags, bit 12 is written. If a C or Y is selected,
bit 12 is not used.

Table D-4 Analog Alarm C-Flags (ACFH and ACFL)

Variable Word
Bit

Flag
Bit Analog Alarm Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset

2 2 1 = Take square root of PV

3 3 1 = Monitor high/low alarms

4 4 1 = Monitor high-high/low-low alarms

ACFH 5 5 1 = Monitor Deviation alarm

6 6 1 = Monitor Rate-of-change alarm

7 7 1 = Monitor Broken Transmitter Alarm

8 8 0 = Local Setpoint
1 = Remote Setpoint

9–16 9–16 Unused

AC

1–4 17–20 Unused

AC

5 21 0 = Process Variable is unipolar
1 = Process Variable is bipolar

ACFL
6 22 Unused

7–16 23–32 Contains SF program number
(if an SF program is scheduled to be called)

Selected Application Examples E-1SIMATIC TI505 Programming Reference

Appendix E

Selected Application Examples

E.1 Using the SHRB E-2.

E.2 Using the SHRW E-4.

E.3 Using the TMR E-6.

E.4 Using the BITP E-10.

E.5 Using the DRUM E-12.

E.6 Using the EDRUM E-14.

E.7 Using the MIRW E-18.

E.8 Using the MWIR E-22.

E.9 Using the MWTT E-26.

E.10 Using the MWFT E-28.

E.11 Using the WXOR E-30.

E.12 Using the CBD E-34.

E.13 Using the CDB E-36.

E.14 Using the One Shot E-37.

E.15 Using the DCAT E-38.

E.16 Using Status Words E-42.

Selected Application ExamplesE-2 SIMATIC TI505 Programming Reference

E.1 Using the SHRB

An inspector tests a partially assembled piece and pushes a reject button
when a defective piece is found. As the piece moves through the last 20
stations of final assembly, a reject lamp must light in each assembly station
with the defective piece. Figure E-1 illustrates this application.

Inspector
pushes for
reject

X1

Reset

X3
Pushbutton

Test
station

X2

Y18
Reject lamps

Y19 Y20

NO. 2 NO. 3

ASSY
STA
NO. 1

Y36 Y37

NO. 19 NO. 20

Figure E-1 SHRB Application Example

The following solution was devised.

• Pushbutton X1 is the reject button.

• Pushbutton X3 is the reset button.

• Outputs Y18 through Y37 control the status of assembly station reject
lamps.

• Limit switch X2 cycles each time a piece is indexed.

• SHRB 1 shifts the status of the piece (lights the reject lamp) as indexed
through the last 20 stations of final assembly.

The RLL solution is shown in Figure E-2.

• When the reject pushbutton X1 is pressed, coil C1 is latched on through
contact C1.

• Coil C2 shows the status of Y37.

• When the piece is indexed through limit switch X2, the status of coil C1
is shifted into Y18.

• In Figure E-2, a shift register provides a 20-bit register for controlling
the SHRB application. The 20-bit shift register, SHRB1 (shown in
Figure E-3), controls the REJECT lamps at the 20 assembly stations.

• The reset pushbutton resets the 20-bit shift register to zero.

SHRB Application
Example

Explanation

Selected Application Examples E-3SIMATIC TI505 Programming Reference

• In this application, the part must be inspected and, if found defective,
the reject button must be pressed before limit switch X2 is cycled
off-to-on by the passing box. This application assumes that X2 is off
until a box strikes it.

C2X2

SHRB1

IR: Y18

N= 20

C1

X3

C1X1

C1

X2

I003489

Figure E-2 RLL for SHRB Application Example

Discrete
IR

1 2 3 1023

Bits are shifted in this direction.

20 BIT
shift register

I003490

18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37

Figure E-3 20-Bit Shift Register in Discrete Image Register

Selected Application ExamplesE-4 SIMATIC TI505 Programming Reference

E.2 Using the SHRW

A paint line is to carry multiple parts (identified by part numbers), each of
which must be painted a different color based on its part number. The part
number is read by a photocell reader, and a limit switch sets up a load robot
to load the part onto a carrier conveyer. The carrier conveyer is indexed
through 12 stations, and the part number must accompany the part through
each work station to actuate the desired functions. The part is removed from
the carrier conveyer by an unload robot in station 12, and the main
conveyer moves the part to the packing area. Figure E-4 illustrates this
application.

Photocell
reader

9 8 7 6

11

10

Overhead chain
conveyor

Parts carrier

Main conveyer

to WX89

Limit switch
to X18

Load robot

32112

5

4

Unload robot

I003491

Figure E-4 SHRW Application Example

The following solution was devised.

• The photocell reader is connected to input #1 of a Word Input Module
located in Slot 4 of Base 1 (WX89).

• A limit switch is connected to input #2 of a Discrete Input Module
located in Slot 3 of Base 0 (X18).

• An SHRW shifts the number with the part as it is indexed through
work stations.

• A CMP checks the part number in each station against a mask

• X11 is connected to a reset pushbutton.

SHRW Application
Example

Selected Application Examples E-5SIMATIC TI505 Programming Reference

The RLL solution is shown in Figure E-5.

Operate station #2 spray guns
to paint parts blue

C66X18

SHRW 5
A: WX89
B: V300
N= 12

C25

X11

C67C66

CMP 1
A: V301
B: V400
LT=
GT=

C67

C67

Station
#2

C153

I003492

Figure E-5 RLL for SHRW Application Example

• The photocell reader (WX89) reads the number of a part moving along
the main conveyer.

• Limit switch X18 turns on, allowing SHRW 5 to shift the part number
(WX89) to V300, setting up the load robot to load the part onto the
carrier conveyer at station 1. (The network to control the load robot is
not shown.) C66 is energized for one scan.

• When the second part moves to limit switch X18, the sequence
described above is repeated, the part number that was in memory
location V300 is shifted to V301, and the part is indexed to station 2.
CMP1 compares the station 2 mask (V400) with the part number in
V301; coil C67 turns on if there is a compare (latched through contact
C67) and initiates the network to paint the part blue.

• C153 resets the station 2 compare network when the work cycle is
complete.

• A similar compare network is used to initiate the work cycle in the
remaining stations, if required for that particular part number.

Explanation

Selected Application ExamplesE-6 SIMATIC TI505 Programming Reference

E.3 Using the TMR

A piece is to be indexed automatically into a drilling station. The piece is
clamped and drilled in the station before being indexed out on a conveyer. If
the automatic index and drilling cycle stops, a fault detection circuit must
be actuated. Figure E-6 illustrates this application.

X6 X7
5LS 6LS

1LS X2

2LS X3

3LS X4

4LS X5

Clamp

Conveyer

I003493

Figure E-6 TMR Application Example

The following solution was devised.

• Input X1 (1SSW) = Auto-Manual selector switch

• Input X2 (1LS) = drill in home position

• Input X3 (2LS) = drill advanced to piece

• Input X4 (3LS) = maximum drill depth reached

• Input X5 (4LS) = piece in position

• Input X6 (5LS) = piece clamped

• Input X7 (6LS) = piece unclamped

The RLL solution is shown in Figure E-7. Timers are used for dwell and
cycle fault.

• When the Auto-Manual switch is in the auto mode (contact X1 is
closed), the piece is unclamped (X7 closed) and the drill is in the home
position (X2 closed). Coil Y9 turns on, allowing the conveyer to index a
new piece into the drilling station.

TMR Application
Example #1

Explanation #1

Selected Application Examples E-7SIMATIC TI505 Programming Reference

• When the piece is in position (X5 closed), output Y10 operates a
solenoid to clamp the piece.

• When the piece is clamped (X6 closed, X7 open), the index conveyer
turns off (Y9 turns off), TMR2 starts timing, and output Y11 energizes
a motor or solenoid to move the drill to the piece.

• When the drill reaches the piece (X3 closed, X2 open), drilling is started
by output Y12.

• When the maximum drilling depth is reached (X4 on), the drill stops
moving and the dwell timer TMR 1 starts timing.

• When TMR 1 times out, C1 turns on and output Y13 energizes a motor
or solenoid to move the drill back to home position.

• TMR 2 times out if the drill machine fails to complete the index drill
cycle.

Y9X1

Index
conveyor

C2Y9

TMR 2

P = 34.2

C1X4

TMR 1

P = 1.9

X7

Y12

X2

Y10C1 X2 X5

C1

Y11Y10 X6 C1

Y12X6 X3

X2

X2

X2

C1

X1 X4

Clamp

Drill down

Y13

Start drill

Drill up

Drill timer

Cycle fault
timer

I003494

Figure E-7 RLL for TMR Application Example #1

Selected Application ExamplesE-8 SIMATIC TI505 Programming Reference

Using the TMR (continued)

Figure E-9 is a timing diagram for the timer logic shown in Figure E-8.

• X24 is the enable and the reset switch.

• Y9 is the On Delay output.

• Y11 is a timed pulse that operates when Y9 is closed and X24 is open.

Y9X24

TMR 5

P = 6.0X24

Y11X24

On Delay

Timed Pulse
Y9

I003495

Figure E-8 RLL for TMR Application Example #2

Off

ON

On

OffOff

Off

OffX24

Y9

Y11

6 Seconds

Off

Off

On

On

On

I003496

Figure E-9 Timing Diagram for TMR Application Example #2

TMR Application
Example #2

Selected Application Examples E-9SIMATIC TI505 Programming Reference

Figure E-11 is a timing diagram for the timer logic shown in Figure E-10.

• X24 is the enable and the reset switch.

• Y10 is the Off Delay output.

• Y11 is a timed pulse that operates when Y10 is closed and X24 is open.

X24

TMR 5

P = 6.0
X24

Y10

Y11X24 Y10

Off Delay

I003497

Figure E-10 RLL for TMR Application Example #3

Off

On

On

Off

OffX24

Y11

6 Seconds

Off

On

On

Y10 On On On

Off

I003498

Figure E-11 Timing Diagram for TMR Application Example #3

Application #3

Selected Application ExamplesE-10 SIMATIC TI505 Programming Reference

E.4 Using the BITP

A panel indicator lamp is to warn of a low battery in the controller.

The following procedure was devised.

• X1 has power flow when the system is started.

• BITP1 checks bit 15 of STW1 for a 1 or a 0.

• X2 is a reset pushbutton.

• Output Y10 turns on a lamp.

Figure E-12 shows the RLL solution.

• When the system is started, contact X1 has power flow, enabling the
BITP 1 instruction. Each scan, the BITP 1 checks the status of bit 15 in
STW1.

• If bit 15 of STW1 is 1, coil Y10 energizes, lighting an indicator lamp.

• The lamp remains on until the controller battery is replaced and the
reset button (X2) is pressed.

BITP Application
Example

Explanation

Selected Application Examples E-11SIMATIC TI505 Programming Reference

STW01

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Battery low

Y10X1

BITP 1
A: STW1
N= 15

Y10

X2
Battery
low

I003499

Figure E-12 RLL for BITP Application Example

Selected Application ExamplesE-12 SIMATIC TI505 Programming Reference

E.5 Using the DRUM

A time-based drum with two programmed modes controls the operation of a
machine. Mode 1: the drum indexes through the programmed steps in the
normal sequence. Mode 2: the starting drum step is increased for one drum
cycle, as controlled by discrete inputs. The solution is listed below, and the
RLL is shown in Figure E-13.

• Input contact X9 starts the drum.

• The drum controls output coils Y2 through Y8.

• Input contact X11 transfers a step value from inputs X12 through X16,
to force the drum to a specified step.

When the controller is in RUN mode, DRUM 1 is in PRESET step 2; and Y2,
Y3, Y7, and Y8 remain on until X9 is energized.

Mode 1 When X9 is energized, and X11 is off, the drum remains in its
current state (step 2) for 5 seconds.

• After 5 seconds, DRUM 1 indexes to step 3 and remains there for
6 seconds. Output coil Y4 energizes, and Y2, Y3, Y7, and Y8 remain on
for the duration of this step

• DRUM 1 continues to index through successive steps and remains in
each step for the duration of the programmed CNT/STP times
SEC/CNT. The output coils take on the states of the active step Mask

• When step 16 is reached output coils Y2 through Y8 turn off. The drum
remains in this step for 10 seconds, then Y1 turns on, resetting DRUM
1 to step 2; then the sequence continues.

Mode 2 Each time X11 is energized, the drum is forced to a step number,
that is determined by the states of inputs X12–X16. For example, if X16=0,
X15=0, X14=1, X13=0, and X12=1, (00101) the drum is forced to step 5.

• When X11 is energized, O/S 1 turns on for one scan. This moves the
drum step preset (DSP1) to memory location V1, the states of inputs
X12–X16 to memory location V2, and turns on C1.

• With C1 energized, CMP 1 compares the step preset (in V1) to the step
specified by the inputs (in V2). If the new step number in V2 is less
than the value in V1, C5 turns on.

• With C5 energized, MOVW 2 loads the step number V1 to V2, thus
defaulting to the step previously defined by DSP1. This limits the
range of possible steps to a value between DSP1 and 16.

• MOVW 3 moves the step in location V2 to DSP1 and turns on C2. If the
value loaded into DSP1 is not between 1 and 15, DSP1 defaults to 16.

• With C2 energized, the drum resets and then indexes to the value
specified by DSP1.

• MOVW 4 loads the step preset from V1 back to DSP1.

DRUM Application
Example

Explanation

Selected Application Examples E-13SIMATIC TI505 Programming Reference

DRUM 1
PRESET = 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SEC/CNT = 1.000
STP CNT/STP

0
5
6

10
3
4
8
5

10
2
9
5
7
3
6

10

0
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0

0
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0

0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
1
0
1
1
1
0
0

0
1
1
0
0
0
1
0
1
0
0
1
0
1
1
0

0
1
1
0
1
1
1
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2 3 4 5 6 7 8
Y Y Y Y Y Y Y

C4C2

MOVW 4

A: V1
B: DSP1
N= 1

C1X11

C3C1

CMP 1

A: V2
B: V1
LT=C5
GT=

C6C5

MOVW 2

A: V1
B: V2
N= 1

C2C1

MOVW 3

A: V2
B: DSP1
N= 1

Y1X9

Y1 C2

MOVW 1

A: DSP1
B: V1
N= 1

MIRW 1

IR: X12
A: V2
N= 5

:O:
1

I003500

Figure E-13 RLL for DRUM Application Example

Selected Application ExamplesE-14 SIMATIC TI505 Programming Reference

E.6 Using the EDRUM

A cam limit-switch on a rotating grinder is to be replaced by an event drum.
The following solution was devised.

• An absolute encoder with a 10-bit Gray code output provides shaft
position location from 0 (0 degrees) to 1024 (360 degrees) for the
grinder table.

• An EDRUM is used to alter discrete outputs to control functions such
as speed, pressure, and coolant at 15 pre-programmed shaft angles..

• The 15 angles are loaded in V-Memory locations V90 through V104.

Figure E-14, beginning on page E-16, illustrates the RLL solution.

NOTE: Gray code is binary code where only 1 bit changes as the counting
number increases. For example: in Gray code, the integer 2 is represented
as 0011, the integer 3 is represented as 0010, and the integer 4 is
represented as 0110. Each number is different from the next by one digit.

• A 10-bit Gray-to-binary circuit converts the absolute shaft encoder
input and stores the result in V603.

• Input X10 controls the operation of the grinder. When X10 is off,
MWFT 1 is reset to the start of the angle table, SHRB 1 is cleared and
EDRUM 1 is held at the preset step where all outputs are off.

• When X10 turns on, the scaling constants required to convert the 10-bit
binary shaft position into degrees are loaded by LDC 1 and LDC 2.
MULT 1 and DIV 1 perform the scaling and cause the current shaft
position (in degrees) to be loaded into V606.

EDRUM Application
Example

Explanation

Selected Application Examples E-15SIMATIC TI505 Programming Reference

• One Shot 1 causes C1 to turn on for one scan. This allows MWFT 1 to
load the first angle (V90) into V200

• Power flow through C1 also causes the C2 latch to be set. This allows a
1 to be the first data clocked into SHRB 1 when the correct starting
angle (V90) is reached.

• CMP 1 compares the current shaft position loaded into V606 with the
next angle in the table. When the values match C3 is turned on. This
causes MWFT 1 to load the next value in the angle table in V200

• Each time C3 is turned on, SHRB 1 shifts one bit. The first time C3
turns on, the C2 latch is still set and a 1 is loaded. After that, only 0s
are clocked until the SHRB is full.

As the 1 moves through the bit shift register, each move causes the
next event in Event Drum 1 to occur. This causes the EDRUM to move
to the next step and adjust to the states of outputs Y17 through Y31.
These outputs control the speed, pressure, and coolant.

• The process repeats as long as X10 remains on. This indicates that a
new part was loaded and that the grinder has returned to the correct
start position at the end of each cycle.

• To set the grinder for a new part, alter the values in V90 – V104. The
grinder can run multiple parts by using controller logic to change the
locations to match the part indexed in the grinder.

Selected Application ExamplesE-16 SIMATIC TI505 Programming Reference

Using the EDRUM (continued)

X10

C3

C1

C102

MULT 1

X10 C101

DIV 1

LDC 1
X10 C100

MWFT 1

A: V89

B: V200

S: V90

N = 15

GRAY CODE TO BINARY CONVERSION ON A 10-BIT
ABSOLUTE ENCODER INPUT WITH RESULT STORED IN V603.

POSSIBLE RANGE OF V603 IS FROM 0 (0 DEGREES) TO
1024 (360 DEGREES).

A: V50

N: 360

LDC 2

A: V51

N: 1024

A: V603

B: V50

CC: V604
 (V605)

AA: V604

B: V51

CC: V606
 (V607)

 (V605)

X10

C1 C2C3

C4

C2

:O:
1

I003501

Figure E-14 RLL for EDRUM Application Example

Selected Application Examples E-17SIMATIC TI505 Programming Reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

EVENT DRUM 1
PRESET = 1
SEC/CNT = 0.000
STP CNT/STP EVENT

0 Y769
0 Y770
0 Y771
0 Y772
0 Y773
0 Y774
0 Y775
0 Y776
0 Y777
0 Y778
0 Y779
0 Y780
0 Y781
0 Y782
0 Y783
0 Y784

0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
1
1
1
1
1
0
1
1
1
1
0
0
0
0
0

0
1
1
1
0
0
0
1
1
0
1
1
1
1
0
1

0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0

0
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1

0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1

0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1

0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0

0
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0

0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1

0
1
0
1
0
1
0
1
1
1
0
0
0
0
1
0

1 1 1 2 2 2 2
Y Y Y Y Y Y Y

2 2 2 2 2 2 3
Y Y Y Y Y Y Y

3
Y

2 3 4 5 6 7 8 9 0 17 8 9 0 1

C3X10

CMP 1

A: V606
B: V200

C4C3

SHRB 1

IR: Y769

N = 16

C2

X10 C4

C5X10

X11

X10 C5

I003502

Figure E-14 RLL for EDRUM Application Example (continued)

Selected Application ExamplesE-18 SIMATIC TI505 Programming Reference

E.7 Using the MIRW

A ribbon-width measuring device tracks the edge of a product sheet moving
along a conveyer. Two shaft encoders with a Gray code output provide
sensors with position data. When both encoders are zero at the center of
conveyer, the distance between the edge sensors is 16 inches (8 inches from
the conveyer centerline). Three width calculations are required: 1) the width
from the conveyer centerline to one edge; 2) the width from the centerline to
the other edge, (these are for sheet-to-conveyer tracking information); and
3) the total width for product output calculations. Figure E-15 illustrates
this application.

NOTE: Gray code is a binary code in which only 1 bit changes as the
counting number increases. For example: in Gray code, the integer 2 is
represented as 0011, the integer 3 is represented as 0010, and the integer 4
is represented as 0110. Each number is different from the next by one digit.

The following procedure provides a solution.

• The edge sensors track the sheet edge by providing a feedback signal to
the appropriate drive motor (1M or 2M).

• Limit switches 1LS, 2LS, 3LS, and 4LS are over-travel limit detectors.

• The following values are loaded in V–Memory.

V900 = integer 24 (bit scaling)
V901 = integer 800 (distance from centerline is 8.00 inches)
V902 = integer 100 (scale encoder input to correct format prior

to adding)

Application

Selected Application Examples E-19SIMATIC TI505 Programming Reference

Edge
sensor

1 Encoder BIT represents .0024 inch
Distance from 1LS to 2LS and 3LS to 4LS = 75 inches

1M

1LS 2LS 3LS 4LS

Word input module

Input #1 (WX57)

Word input module

Input #2 (WX58)

2M

Edge
sensor

I003503

Figure E-15 MIRW Application Example

Selected Application ExamplesE-20 SIMATIC TI505 Programming Reference

Using the MIRW (continued)

Figure E-16 illustrates the RLL solution.

• When C27 has power flow, MWIR 3 loads the shaft encoder input into
IR locations C124 through C138.

• The encoder Gray code is converted to binary logic, that is stored in IR
locations Y140 through Y154.

• When C14 has power flow, MIRW 3 moves the status of Y540–Y554
into memory location V975.

• With C27 still on, MWIR 4 loads the second shaft encoder input into IR
locations C156–C170.

• Gray code is converted to binary and stored in Y172–Y186.

• When C16 turns on, MIRW 4 moves the status of Y172–Y186 into
memory location V976.

• When C15 and C17 turn on, MULT 10 multiplies the contents of V975
(encoder binary equivalent) by the scaling constant in V900 (integer
24), and stores the result in memory locations V977 and V978. MULT
11 multiples V976 by V900, and stores the result in V979 and V980.

• When C18 turns on, DIV 8 and DIV 9 divide the scaled encoder values
by 100.

• When C19 turns on, ADD 21 adds the scaled value (V981) for one side
of the sheet to the fixed distance (V901) from the conveyer center line
and stores the result in V985. V985 now contains the width of half the
sheet, from the conveyer center line to one outside edge.

• ADD 22 adds V983 to V901 and stores the width of the other side of the
sheet into memory location V986. The operator examines V985 and
V986 to see whether the sheet is tracking to the left or right.

• ADD 23 adds the values in V985 and V986 and stores sheet width in
V987. If WX57 = 31,68010 and WX58 = 29,99010

���	���� ��
���

��� 	��� �� 	���� ��� 	����� �����

�

	���� ��
���

��� 	��� �� �

�� ��� �
�
�� �����

Sheet Width = 8403 + 7996 = 16,399 or 163.99 inches

Explanation

Selected Application Examples E-21SIMATIC TI505 Programming Reference

CONVERT GRAY CODE TO BINARY LOGIC

MWIR 3

MIRW 3

IR: Y140
A: V975
N = 15

A: WX57
IR: C124
N = 15

MWIR 4

A: WX58
IR: C156
N = 15

CONVERT GRAY CODE TO BINARY LOGIC

MIRW 4

IR: Y172
A: V976
N = 15

MULT 10

A: V975
B: V900
CC: V977

MULT 11

 (V978)

A: V976
B: V900
CC: V979
 (V980)

DIV 8

AA: V977
 (V978)

B: V902

DIV 9

CC: V981
 (V982)

AA: V979
 (V980)

B: V902
CC: V983

 (V984)

ADD 21

A: V981

B: V901

ADD 22

C: V985

A: V983

B: V901
C: V986

ADD 23

A: V985

B: V986
C: V987

C14C27

C15C14

C16C27

C17C16

C18C15

C19C18

C20C19

C17

I003504

Figure E-16 RLL for MIRW Application Example

Selected Application ExamplesE-22 SIMATIC TI505 Programming Reference

E.8 Using the MWIR

A 15-bit Gray code encoder is used to input shaft position into the controller.
The Gray code is to be converted to integer format for scaling and
mathematical operations.

The following solution was devised.

• The MWIR converts from word format to bit format.

• Use Ladder logic to convert the bits from Gray code to integer.

• An MIRW converts the altered bits back to word format.

The RLL solution shown in Figure E-17 solves the application.

• If contact C27 has power flow, MWIR 3 moves the encoder input data
from word IR WX57 to discrete IR locations C124–C138. (C124 is the
LSB.)

• Bit 1 (MSB) of the Gray code is the same as the first bit of a binary
number; therefore, Y154 and C138 are the same state (1 or 0).

• If bit 2 of the Gray code is 0, the second binary bit is the same as the
first; if bit 2 of the Gray code is 1, the second binary bit is the inverse of
the first binary bit. If C137 is open, Y153 follows the state of Y154.
When C137 has power flow, Y153 is energized if Y154 is off; and Y153
is de-energized if Y154 is on

• The above step is repeated for each bit.

• MIRW 4 moves the converted word located in discrete IR Y140–Y154 to
memory location V975. Y140 is the LSB. V975 now contains the binary
equivalent of the Gray code encoder input.

Application

Explanation

Selected Application Examples E-23SIMATIC TI505 Programming Reference

Y154

C14C27

MWIR 3

A: WX57
IR: C124
N= 15

C137

C137

C138

Y153Y154

Y154

C136

C136

Y152Y153

Y153

C135

C135

Y151Y152

Y152

I003505

Figure E-17 RLL for MWIR Application Example
(continued on next 2 pages)

Selected Application ExamplesE-24 SIMATIC TI505 Programming Reference

Using the MWIR (continued)

C134

C134

Y150Y151

Y151

C133

C133

Y149Y150

Y150

C132

C132

Y148Y149

Y149

C131

C131

Y147Y148

Y148

C130

C130

Y146Y147

Y147

C129

C129

Y145Y146

Y146

I003506

Figure E-17 RLL for MWIR Application Example (continued)

Selected Application Examples E-25SIMATIC TI505 Programming Reference

C128

C128

Y144Y145

Y145

C127

C127

Y143Y144

Y144

C126

C126

Y142Y143

Y143

C125

C125

Y141Y142

Y142

C124

C124

Y140Y141

Y141

C27 C15

MIRW 3

IR: Y140
A: V975
N= 15

LSB

I003507

Figure E-17 RLL for MWIR Application Example (continued)

Selected Application ExamplesE-26 SIMATIC TI505 Programming Reference

E.9 Using the MWTT

A thermocouple temperature reading is to be logged every five minutes. The
thermocouple input is linearized through a transmitter (shown in
Figure E-18) and input to the controller through the first input of an Analog
Input Module in Slot 3 of Base 10 (WX657). The temperature table is to be
used for work shift history of trend recording.

TX

Thermocouple

To analog input module
located in slot 3; WX657

I003508

Figure E-18 MWTT Application Example

The following solution was devised.

• A one shot is turned on every five minutes by a timer.

• The one shot activates the logic to scale the thermocouple input, adds a
low end offset temperature, and loads the result into a table with 150
locations.

The RLL solution shown in Figure E-19 solves the application.

• Every five minutes, C36 is turned on by a timing circuit (not shown)
and C36 turns on one shot 5. One shot 5 activates MULT 38 for the
first scan in which C36 is on, to multiply the analog input value
(WX657) times a scaling constant loaded in memory location V117. The
result is stored in locations V118 and V119.

• DIV 38 divides the scaled value in V118 and V119 by a constant loaded
in V100. The quotient is stored in V120 and the remainder in V121.

• C37 turns on after DIV 38 executes, allowing ADD 38 to add the scaled
temperature input (V120) to an offset temperature value that has been
loaded into V101.

• C38 is energized after ADD 38 executes, allowing MWTT 7 to load the
temperature value (located in V122) into the table at the pointer
address in V123.

• When MWTT 7 is reset (contact X10 is off for one scan), the pointer
address in V123 is reset to 700.

• When the pointer address in V123 reaches 849, C39 turns on, and no
additional values are loaded into the table until MWTT 7 is reset.

Application

Explanation

Selected Application Examples E-27SIMATIC TI505 Programming Reference

C36 C37

MULT 38

A: V117
B: WX657
CC: V118

(V119)

DIV 38

AA: V118
(V119)

B: V100
CC: V120

(V121)

C37 C38

ADD 38

A: V120
B: V101
C: V122

C38 C39

MWTT 7

A: V122
B: V123
S: V700
N= 150

X10

:O:
5

I003509

Figure E-19 RLL for MWTT Application Example

Selected Application ExamplesE-28 SIMATIC TI505 Programming Reference

E.10 Using the MWFT

The following example recovers the data (in locations V700–V849) stored in
the MWTT application example program. The data points are plotted for a
report. The plotter is connected to output word WY57. The data should
change every second. Therefore, one second on the plot represents five
minutes of the process.

The RLL solution shown in Figure E-20 solves the application.

• When X1 is turned on, plotting begins. Once every second, TMR1
causes C1 to turn on for one scan.

• Each time C1 turns on, MWFT1 transfers a new word from the memory
table to V101, beginning at V700. This continues once per second until
all 150 words have been moved to V101, i.e., until V849 has been
transferred.

• MOVW1 transfers the data in V101 to WY57, that is the plotter output
word.

• Once started, X1 must be cycled off and then on to restart the plotting
process.

Application

Explanation

Selected Application Examples E-29SIMATIC TI505 Programming Reference

X1 C1

TMR 1

P= 1.0

X1 C1

C1 C2

MWFT 1

A: V100
B: V101
S: V700
N= 150

X1

C2

C1 C3

MOVW 1

A: V101
B: WY57

I003510

Figure E-20 RLL for MWFT Application Example

Selected Application ExamplesE-30 SIMATIC TI505 Programming Reference

E.11 Using the WXOR

At a critical point in a process, the status of 16 discrete inputs must be in a
specific state to execute an operation. If any of the 16 inputs is not in the
correct state, an alarm is sounded. There are 16 indicators that display
which inputs are in the wrong state.

This application could be solved with contacts and coils without box
functions. To save ladder logic and execution speed, use the RLL shown in
Figure E-21.

• Before C1 has power flow, V1 is initialized to zero and V2 is loaded to
contain the 16 critical states.

• When the critical process is ready to begin, C1 has power flow causing
X1–X16 to be loaded into V3. An Exclusive OR is then executed on V3
and V2. V1 contains the result and contains a one in any bit location
where V2 and V3 differ. If V2 and V3 are identical, then V1 contains all
zeros and the WXOR 1 output C3 does not turn on.

• A difference between V3 and V2 causes C3 to come on. V1 is moved out
to indicators Y41–Y56 to show which inputs are incorrect and alarm
Y33 is latched on.

• Reset switch X17 can be turned on to reset alarm Y33 and to clear
indicator panel Y41–Y56.

Application

Explanation

Selected Application Examples E-31SIMATIC TI505 Programming Reference

C1 C2

LDC 1

A: V1
N: 0X17

LDC 2

A: V2
N: 30006

C1 C3

MIRW 1

IR: X1
A: V3
N: 16

WXOR 1

A: V3
B: V2
C: V1

C1 Y33

MWIR 1

A: V1
IR: Y41
N: 16

C3 X17

Y33

I003511

Figure E-21 RLL for WXOR Application Example

Selected Application ExamplesE-32 SIMATIC TI505 Programming Reference

Using the WXOR (continued)

Before C1 has power flow, the desired values for X1–X16 are loaded into V2,
as shown below

BIT

V2: = 30,006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

• When C1 is on, the actual values of X1–X16 are loaded into V3:

30,006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

Desired Values In V2 30,0060 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0From The WXOR V1 =

X1 = OFF X5 = ON X9 = ON X13 = ON
X2 = ON X6 = ON X10 = OFF X14 = ON

X3 = ON X7 = OFF X11 = ON X15 = ON

X4 = OFF X8 = OFF X12 = OFF X16 = OFF

Actual Values In V3

• Since the WXOR 1 result is zero, C3 is not turned on, and MWIR 1 in
the next rung is not executed. Alarm Y33 is not sounded.

Inputs are Correct

Selected Application Examples E-33SIMATIC TI505 Programming Reference

The inputs from the example above are used, except that inputs #5 and #12
are incorrect.

32,038

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

30,0060 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

2,0640 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Y56 Y55 Y54 Y53 Y52 Y51 Y50 Y49 Y48 Y47 Y46 Y45 Y44 Y43 Y42 Y41

Desired Values In V2

From The WXOR V1 =

Actual Values In V3

• Since the WXOR result is not all zeros, C3 is turned on and the MWIR
is executed. Y45 indicates that X5 is in the wrong state, and Y52
indicates that X12 is in the wrong state. Alarm Y33 stays on until reset
by X17.

Inputs are
Incorrect

Selected Application ExamplesE-34 SIMATIC TI505 Programming Reference

E.12 Using the CBD

A 0-volt to +5-volt signal is monitored, and the voltage is read on a panel
meter located at the controller. The 0–volt to +5–volt signal is the third
input of an analog module located in slot 8 of Base 9. The following
procedure provides a solution.

• MULT 36 and DIV 36 scale the analog input.

• CBD 16 converts the scaled integer value to a BCD value.

• MOVW 81 moves the BCD value to a word IR for output to a panel
meter through a Word Output Module.

X19 C73
MULT 36

A: WX635
B: V123
CC: V124

(V125)

C73 C74
CBD 16

A: V126
BB: V128

(V129)

DIV 36

AA: V124
(V125)

B: V100
CC: V126

(V127)

MOVW 81

A: V129
B: WY65
N= 1

I003512

Figure E-22 RLL for CBD Application Example

The RLL in Figure E-22 does the function that follows.

When X19 has power flow, the analog equivalent value located in the word
IR WX635. . .

�� ��
�������������

�������
��� ��� ���

BIT

WX635 = =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0
Binary
integer 28,896

. . . is multiplied by a scaling factor that previously has been loaded into
memory location V123,

V123 = =0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0
Binary
integer 1562

�����

�����
��� ���� ��
� �� ��	�

Application

Explanation

Selected Application Examples E-35SIMATIC TI505 Programming Reference

. . . and the result is stored in memory locations V124 and V125.

V124 =

=

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0
Binary
integer 45,135,552

V125 = 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0

The output of MULT 36 is energized, starting the DIV 36 operation. The
value stored in memory locations V124 and V125 is divided by a scaling
factor that previously has been loaded into memory location V100,

V100 = =0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0
Binary
integer 10,000

. . . and the result is stored in memory locations V126 and V127.

V126 = =0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1
Binary
integer 4513

V127 = =0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0
Binary
integer 5552

The output of DIV 36 energizes C73, starting the CBD 16 operation. The
value stored in memory location V126 is converted to its BCD equivalent,
and the result is stored in memory locations V128 and V129.

V128 = = 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V129 = = BCD 45130 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1

4 5 1 3

The output of CBD 16 energizes, starting the MOVW 81 operation. The
value stored in memory location V129 is moved to the output IR WY65. IR
WY65 outputs the BCD number to a Word Output Module located in Slot 1
of Base 1. WY65 is the first output of this module. A reading of 4.513 volts is
displayed on a digital panel meter where the decimal point is fixed
internally to the panel meter.

From analog input or WX, V input = (Binary integer x 5 volts) ÷ 32,000

Selected Application ExamplesE-36 SIMATIC TI505 Programming Reference

E.13 Using the CDB

BCD thumbwheels are input 2 of a Word Input Module located in Slot 3 of
Base 6 (WX402). The thumbwheel input is to be converted to a binary
integer equivalent for use in mathematics instructions.

The following solution was devised.

• CDB 1 converts the word input from BCD to an integer.

• DIV 3 is a mathematics instruction in which the divisor is modified by
a thumbwheel switch.

C67 C1

CDB 1

A: WX402
B: V238
N= 4

DIV 3

AA: V635
(V636)

B: V238
CC: V79

(V80)

I003513

Figure E-23 RLL for CDB Application Example

Figure E-23 shows the RLL for this operation.

• When contact C67 has power flow, CDB 1 converts the BCD value
located in IR WX402 to an integer value, that is put in memory location
V238.

10WX402 64040

1

0 1 0

9

0 1 0 0

0

0 0 0 1

4

0 0

0 19040 0 0 0 1 1 1 0 1 1 1 0 0 0 0 10

10

V238

1 9 0 4

• DIV 3 divides V635 and V636 by V238, and puts the quotient in V79.

• Coil C1 is energized when the instructions execute.

Application

Explanation

Selected Application Examples E-37SIMATIC TI505 Programming Reference

E.14 Using the One Shot

Each time a momentary pushbutton is pressed, an ADD executes once. The
pushbutton address is X1.

The following solution was devised.

• A one shot preceding an ADD instruction solves this example.

X1 C1

A: WX100
B: WX101
C: V74

ADD 41:O:
20

I003514

Figure E-24 RLL for One Shot Application Example

Figure E-24 shows the RLL for this operation.

• When X1 is pressed, the output of one shot 20 is energized for one
controller scan, and ADD 41 executes only during this controller scan.

• X1 must be turned off for at least one controller scan, and then turned
on again, for the ADD 41 to execute again.

Values prior to network execution:
WX100= 7010

 WX101= 5110
 V74= 010

Values after network execution:
WX100= 7010
WX101= 5110
V74= 121

If all the one shots have been used, you can build one from RLL, as shown
in Figure E-25.

X1 Y9C10

X1 C10

I003515

Figure E-25 Constructing a One Shot From RLL

Application

Explanation

Selected Application ExamplesE-38 SIMATIC TI505 Programming Reference

E.15 Using the DCAT

A remotely located pipeline valve is opened and closed by control logic.
Because of the diameter of the pipeline, the valve requires 30 seconds to
open or close. Feedback for the valve status informs maintenance personnel
whether the valve is open, closed, traveling, failed to open, failed to close, or
the sensor has failed. See Figure E-26.

Electro-solenoid

Normally open
open feedback switch

normally open
closed feedback switch

X17

X18

Failed to open
alarm

Failed to close
alarm

Controller logic
 controls Y7

Y7=1=open valve

Y7=0=close valve

Y1

Y2

Y3

Y4

Sensor alarm

Traveling indicator

I003516

Figure E-26 DCAT Application Example

Application

Selected Application Examples E-39SIMATIC TI505 Programming Reference

The following solution was devised.

• Control logic opens or closes the valve by sending power flow to
electro-solenoid Y7.

• Limit Switch X17 is the normally open feedback switch that closes to
indicate that the valve is open.

• Limit Switch X18 is the normally open feedback switch that closes to
indicate that the valve is closed.

• While the valve transitions, the Y4 indicator (traveling) is on.

• If the valves fails to open, alarm Y1 turns on.

• If the valves fails to close, alarm Y2 turns on.

• If both feedback sensors are closed (for example, a sensor sticks), sensor
failure alarm Y3 is turned on.

Selected Application ExamplesE-40 SIMATIC TI505 Programming Reference

Using the DCAT (continued)

Y7C40

C5 C6

C5 C6

C5 C6

X17 X18 C5 C6

Y1

Y2

Y3

Y4

failed to open

failed to close

failed sensor

traveling

P= 30
OF: X17
CF: X18
OA: C5
CA: C6

DCAT 4

I003517

Figure E-27 RLL for DCAT Application Example

The RLL solution is shown in Figure E-27. Valve control is accomplished by
the events described below. Other program steps control the status of valve
Y7 by turning Control Relay C40 off or on. Y7 follows the status of C40,
unaffected by the DCAT instruction.

Under normal conditions, the following events occur.

• If C40 goes to 1 (on), X17, X18, C5, and C6 are 0 (off) as long as it takes
the valve to open.

• Subsequent program steps check the status of X17, X18, C5, and C6. If
they are all off, the valve status is reported through indicator Y4 as
traveling.

• Open feedback sensor X17 then closes and disables Open Alarm C5.

• If C40 goes to 0 (off) and commands the valve to close, closed feedback
sensor X18 closes and disables the Close Alarm C6.

Explanation

Normal Operation

Selected Application Examples E-41SIMATIC TI505 Programming Reference

If the valve fails to open, the following events occur.

• If C40 goes to 1 (on), commanding the valve to open, and open feedback
does not turn on, the timer times out and energizes Open Alarm C5.

• Subsequent RLL steps check the status of C5 and C6. If C5=1 and
C6=0; the failed to open indicator Y1 turns on.

If the valve fails to close, the following events occur.

• If C40 goes to 0 (off), commanding the valve to close, and closed
feedback does not turn on, the timer times out and energizes Closed
Alarm C6.

• Subsequent RLL steps check the status of C5 and C6. If C5=0 and
C6=1, the failed to close indicator Y2 turns on.

If the sensor fails, the following events occur.

• At any time that X17 and X18 are both on, the DCAT turns on C5 and
C6. Y4 reports a failure of the valve sensor system.

Valve Fails to Open

Valve Fails to Close

Sensor Fails

Selected Application ExamplesE-42 SIMATIC TI505 Programming Reference

E.16 Using Status Words

A procedure is required that logs off a failed I/O module and logs on a
backup-module in the same base. Note: Only self diagnose modules can
indicate their own failure.

Y24 = Module Failure Alarm. Example module assignments:

• Module 1 in slot 1, Base 0 = WX1 to WX8 — STW11, Bit 16

• Module 2 in slot 2, Base 1 = WX9 to WX16 — STW12, Bit 15

• Module 3 in slot 3, Base 0 = Y17 to Y24

The RLL solution is shown in Figure E-28. The status of Input Module #1 is
checked with the BITP instruction. If the BITP indicates a failure (bit 8 in
STW11 = 1), the alarm Y24 turns on. The execution of the program then
begins at the second I/O module, that replaces the failed input module.

For this method to function in an application, both input modules must be
hardwired to the same field devices. WX1 and WX9 to the same device; WX2
and WX10, etc.

C20 Y24

A: STW11
N= 8

BITP 1

Y24 C22

A: WX1
B: V200
N= 8

MOVW 1

Y24 C23

MOVW 2
A: WX9
B: V200
N= 8

Alarm

I003518

Figure E-28 RLL for Status Word Application Example

Application

Explanation

Selected Application Examples E-43SIMATIC TI505 Programming Reference

See Section E.4 for an example in which a BITP instruction checks STW1
for a low battery in the controller. A panel indicator lamp is turned on when
the battery is low.

Application

Special Function Program Error Codes F-1SIMATIC TI505 Programming Reference

Appendix F

Special Function Program Error Codes

Table F-1 Special Function Error Codes

Code
Mean n

Hex Decimal
Meaning

02 02 Address out of range.

03 03 Requested data not found.

09 09 Incorrect amount of data sent with request.

11 17 Invalid data.

40 64 Operating system error detected.

42 66 Control block number out of range.

43 67 Control block does not exist.

46 70 Offset out of range.

47 71 Arithmetic error detected while writing loop or analog alarm parameters.

48 72 Invalid SF program type.

49 73 Instruction number or ramp/soak step number out of range.

4A 74 Attempt to access an integer-only variable as a real.

4B 75 Attempt to access a real-only variable as an integer.

4E 78 Attempt to write a read-only variable (for example: X, WX, or STW).

4F 79 Invalid variable data type for this operation.

52 82 Invalid return value.

53 83 Attempt to execute a Cyclic Statement in a non-cyclic SF program.

54 84 Control block is disabled.

56 86 Attempt to perform an FTSR-OUT Statement on an empty FIFO.

57 87 Attempt to perform an FTSR-IN Statement on a full FIFO.

58 88 Stack overflow while evaluating a MATH, IF, or IMATH expression.

59 89 Maximum SFSUB nesting level exceeded. Subroutines may only be nested to a
depth of 4.

5A 90 Arithmetic Overflow.

5B 91 Invalid operator in an IF, MATH, or IMATH expression.

5D 93 Attempt to divide by zero (IMATH statement).

5E 94 FIFO is incompatible with FTSR-IN/FTSR-OUT statement.

5F 95 FIFO is invalid.

60 96 Invalid Data Type code. This error is generally caused by an ill-formed MATH,
IMATH, or IF expression.

Status Words G-1SIMATIC TI505 Programming Reference

Appendix G

Status Words

G.1 Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers G-2.

STW01: Non-fatal Errors and Hot Backup Data G-3.
STW02 – STW09: Base Controller Status G-4.
STW10: Dynamic Scan Time G-5.
STW11 – STW138: I/O Module Status G-6.
STW139: Reserved G-9.
STW140: Reserved G-9.
STW141 – STW144: Date, Time, and Day of Week G-9.
STW145 – STW160: Receive and Timeout Errors G-12.
STW161: Special Function Processor Fatal Errors G-13.
STW162: Special Function Processor Non-fatal Errors G-14.
STW163: RLL Subroutine Stack Overflow G-15.
STW164 – STW165: L-Memory Checksum C0 G-15.
STW166 – STW167: L-Memory Checksum C1 G-15.
STW168 – STW175: Dual RBC Status G-16.
STW176 – STW183: Dual Power Supply Status G-17.
STW184: Module Mismatch Indicator G-18.
STW185 – STW191: Reserved G-18.
STW192: Discrete Scan Execution Time G-18.
STW193 – STW199: Reserved G-18.
STW200: User Error Cause G-19.
STW201: First Scan Flags G-19.
STW202: Application Mode Flags (A – P) G-20.
STW203: Application Mode Flags (Q – Z) G-21.
STW204: Application Installed Flags (A – P) G-22.
STW205: Application Installed Flags (Q – Z) G-23.
STW206 – STW207: U-Memory Checksum C0 G-24.
STW208 – STW209: U-Memory Checksum C1 G-24.
STW210: Base Poll Enable Flags G-25.
STW211 – STW217: Reserved G-26.
STW218: My_Application ID G-26.
STW219: Cyclic RLL Task Overrun G-26.
STW220: Interrupting Slots in Local Base G-26.
STW221: Module Interrupt Request Count G-27.
STW222: Spurious Interrupt Count G-27.
STW223 – STW225: Binary Time of Day G-28.
STW226: Time of Day Status G-28.
STW227 – STW228: Bus Error Access Address G-30.
STW229 – STW230: Bus Error Program Offset G-30.

G.2 Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers G-31.

STW01: Controller Status G-31.
STW02: I/O Base Status G-32.
STW03 – STW05: Reserved G-33.
STW06:EPROM/EEPROM Programming G-33.
STW07: EPROM/EEPROM Programming Errors G-33.
STW08: EPROM/EEPROM Checksum — RLL Only G-34.
STW09: EPROM/EEPROM Checksum — All Program Data G-34.
STW10: Dynamic Scan Time G-34.
STW11 – STW18: I/O Module Status G-35.

Status WordsG-2 SIMATIC TI505 Programming Reference

G.1 Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers

Each status word description explains the function or purpose of each bit
within the word. If a bit is not used, it is not described; all unused bits are
set to zero. If several bits perform a single function, they are described by a
single definition. If a status word is reserved, it is noted accordingly.

Status Words G-3SIMATIC TI505 Programming Reference

MSB LSB

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

16151413121110987654321

1 = Inhibit synchronization of HBU (TI560/TI565 only)

1 = HBU preference switch (TI560/TI565 only)

1 = Online standby (TI560/TI565 only)

1 = Subroutine stack overflow

1 = User program error; see STW200

1 = Time of day clock failure

1 = Previous RLL instruction failed

1 = Communication port failure

1 = I/O module failure or I/O configuration mismatch

1 = Battery low

1 = Scan overrun

1 = Over temperature (TI560/TI565 only)

1 = Special function module communication error

1 = A Password has been entered and is disabled

1 = Password has been entered

NOTE: For the controllers that support the TASK instruction, STW1 cannot be accessed by a
multi-word move instruction, e.g., MOVE, MOVW. STW1 is a local variable that is only
valid within a given RLL task. Do not do multiple-word move operations that begin with
STW1.

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW01:
Non-fatal Errors
and Hot Backup
Data

Status WordsG-4 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003520

16151413121110987654321

Base 15: 0 = Status good; 1 = Base not present or has problem

Base 13: 0 = Status good; 1 = Base not present or has problem

Base 14: 0 = Status good; 1 = Base not present or has problem

Base 11: 0 = Status good; 1 = Base not present or has problem

Base 12: 0 = Status good; 1 = Base not present or has problem

Base 9: 0 = Status good; 1 = Base not present or has problem

Base 10: 0 = Status good; 1 = Base not present or has problem

Base 8: 0 = Status good; 1 = Base not present or has problem

MSB LSB

Base 7: 0 = Status good; 1 = Base not present or has problem

Base 5: 0 = Status good; 1 = Base not present or has problem

Base 6: 0 = Status good; 1 = Base not present or has problem

Base 3: 0 = Status good; 1 = Base not present or has problem

Base 4: 0 = Status good; 1 = Base not present or has problem

Base 1: 0 = Status good; 1 = Base not present or has problem

Base 2: 0 = Status good; 1 = Base not present or has problem

Base 0: 0 = Status good; 1 = Base not present or has problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW02 – STW09:
Base Controller
Status

Status
Indicates

2 Bases on Channel 1

3 Bases on Channel 2

4 Bases on Channel 3

5 Bases on Channel 4

6 Bases on Channel 5

7 Bases on Channel 6

8 Bases on Channel 7

9 Bases on Channel 8

Word*

* Status words 3 – 9 apply
to the 560/565 controllers
only.

Status Words G-5SIMATIC TI505 Programming Reference

I003521

16151413121110987654321

Binary value of previous scan time

MSB LSB

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

Figure G-1 illustrates an example of STW10 containing a scan time of
145 ms.

I003522

MSB LSB

1000100100000000STW10

Figure G-1 Example of Status Word Reporting Scan Time

STW10:
Dynamic Scan
Time

Status WordsG-6 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Status words 11 through 138 indicate the status of the modules present in
each base for the available eight channels. Table G-1 lists the status words
that correspond to the bases in each channel. Status words 11 – 26 apply to
the TI545/TI555/TI560/TI565/TI575 controllers, and words 27 – 138 apply
only to the TI560/TI565 controllers. The illustration on page G-7 shows the
content of these status words.

Table G-1 Status Words 11 Through 138

Channel 1 I/O modules Channel 2 I/O modules Channel 3 I/O modules Channel 4 I/O modules

Status
word Indicates

Status
word Indicates

Status
word Indicates

Status
word Indicates

11 Modules on Base 0 27 Modules on Base 0 43 Modules on Base 0 59 Modules on Base 0

12 Modules on Base 1 28 Modules on Base 1 44 Modules on Base 1 60 Modules on Base 1

13 Modules on Base 2 29 Modules on Base 2 45 Modules on Base 2 61 Modules on Base 2

14 Modules on Base 3 30 Modules on Base 3 46 Modules on Base 3 62 Modules on Base 3

15 Modules on Base 4 31 Modules on Base 4 47 Modules on Base 4 63 Modules on Base 4

16 Modules on Base 5 32 Modules on Base 5 48 Modules on Base 5 64 Modules on Base 5

17 Modules on Base 6 33 Modules on Base 6 49 Modules on Base 6 65 Modules on Base 6

18 Modules on Base 7 34 Modules on Base 7 50 Modules on Base 7 66 Modules on Base 7

19 Modules on Base 8 35 Modules on Base 8 51 Modules on Base 8 67 Modules on Base 8

20 Modules on Base 9 36 Modules on Base 9 52 Modules on Base 9 68 Modules on Base 9

21 Modules on Base 10 37 Modules on Base 10 53 Modules on Base 10 69 Modules on Base 10

22 Modules on Base 11 38 Modules on Base 11 54 Modules on Base 11 70 Modules on Base 11

23 Modules on Base 12 39 Modules on Base 12 55 Modules on Base 12 71 Modules on Base 12

24 Modules on Base 13 40 Modules on Base 13 56 Modules on Base 13 72 Modules on Base 13

25 Modules on Base 14 41 Modules on Base 14 57 Modules on Base 14 73 Modules on Base 14

26 Modules on Base 15 42 Modules on Base 15 58 Modules on Base 15 74 Modules on Base 15

Channel 5 I/O modules Channel 6 I/O modules Channel 7 I/O modules Channel 8 I/O modules

Status
word Indicates

Status
word Indicates

Status
word Indicates

Status
word Indicates

75 Modules on Base 0 91 Modules on Base 0 107 Modules on Base 0 123 Modules on Base 0

76 Modules on Base 1 92 Modules on Base 1 108 Modules on Base 1 124 Modules on Base 1

77 Modules on Base 2 93 Modules on Base 2 109 Modules on Base 2 125 Modules on Base 2

78 Modules on Base 3 94 Modules on Base 3 110 Modules on Base 3 126 Modules on Base 3

79 Modules on Base 4 95 Modules on Base 4 111 Modules on Base 4 127 Modules on Base 4

80 Modules on Base 5 96 Modules on Base 5 112 Modules on Base 5 128 Modules on Base 5

81 Modules on Base 6 97 Modules on Base 6 113 Modules on Base 6 129 Modules on Base 6

82 Modules on Base 7 98 Modules on Base 7 114 Modules on Base 7 130 Modules on Base 7

83 Modules on Base 8 99 Modules on Base 8 115 Modules on Base 8 131 Modules on Base 8

84 Modules on Base 9 100 Modules on Base 9 116 Modules on Base 9 132 Modules on Base 9

85 Modules on Base 10 101 Modules on Base 10 117 Modules on Base 10 133 Modules on Base 10

86 Modules on Base 11 102 Modules on Base 11 118 Modules on Base 11 134 Modules on Base 11

87 Modules on Base 12 103 Modules on Base 12 119 Modules on Base 12 135 Modules on Base 12

88 Modules on Base 13 104 Modules on Base 13 120 Modules on Base 13 136 Modules on Base 13

89 Modules on Base 14 105 Modules on Base 14 121 Modules on Base 14 137 Modules on Base 14

90 Modules on Base 15 106 Modules on Base 15 122 Modules on Base 15 138 Modules on Base 15

STW11 – STW138:
I/O Module Status

Status Words G-7SIMATIC TI505 Programming Reference

I003523

16151413121110987654321

Module 16: 0 = Status good; 1 = Module not present or has problem

Module 14: 0 = Status good; 1 = Module not present or has problem

Module 15: 0 = Status good; 1 = Module not present or has problem

Module 12: 0 = Status good; 1 = Module not present or has problem

Module 13: 0 = Status good; 1 = Module not present or has problem

Module 10: 0 = Status good; 1 = Module not present or has problem

Module 11: 0 = Status good; 1 = Module not present or has problem

Module 9: 0 = Status good; 1 = Module not present or has problem

MSB LSB

Module 8: 0 = Status good; 1 = Module not present or has problem

Module 6: 0 = Status good; 1 = Module not present or has problem

Module 7: 0 = Status good; 1 = Module not present or has problem

Module 4: 0 = Status good; 1 = Module not present or has problem

Module 5: 0 = Status good; 1 = Module not present or has problem

Module 2: 0 = Status good; 1 = Module not present or has problem

Module 3: 0 = Status good; 1 = Module not present or has problem

Module 1: 0 = Status good; 1 = Module not present or has problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

Status WordsG-8 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

The TI545, TI555, and TI575 controllers report an I/O mismatch (an
installed module that does not agree with the I/O configuration) as a failed
I/O module. Although the module has not actually failed, you must enter
correct I/O configuration data or install the proper module to correct the
failure report.

NOTE: The TI560/TI565 controller does not report an I/O mismatch in
STW11–STW138. An I/O mismatch is reported only on the LED display of
the RBC (code 2).

In Figure G-2, the 1 in Bit 10 indicates that slot seven in Base 4 contains a
defective or incorrectly configured module (I/O mismatch). All other slots
either contain correctly configured, working modules or are correctly
configured as empty.

I003524

MSB LSB

0000001000000000STW15

Module 7: 1 = Module not present or has problem

10

Figure G-2 Example of Status Word Reporting a Module Failure

NOTE: When a remote base loses communication with the controller, the
appropriate bit in STW02 shows a 1. The bits in the status word
(STW11–STW138) corresponding to the modules in that base show zeroes,
even if modules on that base have failed or been incorrectly configured. That
is, base modules are not shown as failures in a base that is not
communicating.

When you disable a base from the TISOFT I/O Configuration Screen, all bits
in the status word (STW11–STW138) that corresponds to that base are set
to zero.

STW11 – STW138:
(continued)

Status Words G-9SIMATIC TI505 Programming Reference

Reserved.

Reserved.

I003525

16151413121110987654321STW141

Year – tens digit

Month – tens digit

Year – units digit

Month – units digit

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

16151413121110987654321STW142

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Day – tens digit

Hour – tens digit

Day – units digit

Hour – units digit

See also the description of Time of Day Status for STW226 on G–33.

NOTE: For the TI545–1102, TI555, and TI575 controllers starting with
release 3.0, the time of day is initialized to 1-Jan-1984 at 12:00 AM. Prior
releases of these controllers and the TI560/TI565 (all releases) initiate the
time of day to 1-Jan-1900 at 12:00 AM. (See also, STW223-STW226.)

STW139: Reserved

STW140: Reserved

STW141 – STW144:
Date, Time, and
Day of Week

Status WordsG-10 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003526

16151413121110987654321STW143

Minute – tens digit

Second – tens digit

Minute – units digit

Second – units digit

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

STW144 16151413121110987654321

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Second – tenths digit *

Second – thounsandths digit *

Second – hundredths digit *

Day of the week

* The resolution of these units of time is controller specific. A controller fills a field with
zeros for time units that it does not support.

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

Status Words G-11SIMATIC TI505 Programming Reference

Figure G-3 illustrates how the clock information is displayed, using BCD,
for a TI545 controller on the date: Monday, 5 October, 1992 at 6:39:51.767
P.M. Note that the 24-hour (military) format is used, and Sunday is
assumed to be day 1.

I003527

MSB LSB

0000100001001001STW141

MSB LSB

0001100010100000STW142

MSB LSB

1000101010011100STW143

MSB LSB

0100111001101110STW144

Figure G-3 Example of Status Words Reporting Time

Status WordsG-12 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Status words STW145 through STW160 contain communication error
counts for the Remote I/O channels. Each channel records the number of
receive errors and the number of timeout errors which have occurred since
the most recent restart as shown in Table G-2. The counts are in binary.

Receive Errors Timeout Errors
A l a le

Channel Status Word Channel Status Word
Applicable
Controllers

1 STW145 1 STW146 TI545, TI555,
TI560, TI565, TI575

2 STW147 2 STW148 TI560, TI565

3 STW149 3 STW150 TI560, TI565

4 STW151 4 STW152 TI560, TI565

5 STW153 5 STW154 TI560, TI565

6 STW155 6 STW156 TI560, TI565

7 STW157 7 STW158 TI560, TI565

8 STW159 8 STW160 TI560, TI565

Table G-2 Receive Errors and Timeout Errors for STW145 through STW160

NOTE: A typical TI545, TI555, or TI575 controller system should have no
more than one detected and corrected error over the I/O link per 20,000
scans. If this error rate is exceeded, it may indicate a possible wiring or
noise problem. Three consecutive errors to an RBC causes the base to be
logged off and the corresponding bit in STW2 to be set.

STW145 – STW160:
Receive and
Timeout Errors

Status Words G-13SIMATIC TI505 Programming Reference

I003544

1 = ROM error

1 = Operating system error

1 = RAM error

1 = Diagnostic failure

1 = Invalid control block encountered

1 = S-Memory is inconsistent

1 = Memory parity error (TI560/TI565 only)

1 = Special function program received from RLL is invalid

MSB LSB

1

2

3

4

5

6

7

8

16151413121110987654321

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW161:
Special Function
Processor Fatal
Errors

Status WordsG-14 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003545

1 =Printer Port 1 communications error*

1 = Loop overrun error

1 = Printer Port 2 communications error ** (TI565 only)

1 = Cyclic special function programs overrun error

1 = Analog alarm overrun error

1 = Priority special function program queue is full

1 = Normal special function program queue is full

1 = Cyclic special function program queue is full

MSB LSB

1 = Loop calculation error

1 = Control block disabled

1 = Analog alarm calculation error

1 = Attempt to invoke restricted SF program or SF subroutine

1 = Attempt to execute undefined SF program or SF subroutine

1 = Memory inconsistency between HBU systems (TI560/TI565 only)

1

2

3

4

5

6

7

8

9

10

11

12

13

15

* A Printer Port 1 communications error is logged if the TI545, TI555, TI565,
or TI575 CPU card has a character queued for printing to Printer Port 1 for
more than 30 seconds.

**A Printer Port 2 communications error is logged if the TI565 CPU card has
a character queued for printing to Printer Port 2 for more than 30 seconds.

16151413121110987654321

Applicable controllers: TI545, TI555,TI565, and TI575

STW162:
Special Function
Processor
Non-fatal Errors

Status Words G-15SIMATIC TI505 Programming Reference

I003546

Number of the subroutine that caused the stack overflow*

MSB LSB

* Does not apply to XSUB routines.

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

I003547

L-Memory checksum C0 MSW

MSB LSB

16151413121110987654321

STW164

L-Memory checksum C0 LSWSTW165

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

I003548

L-Memory checksum C1 MSW

MSB LSB

16151413121110987654321

STW166

L-Memory checksum C1 LSWSTW167

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW163:
RLL Subroutine
Stack Overflow

STW164 – STW165:
L-Memory
Checksum C0

STW166 – STW167:
L-Memory
Checksum C1

Status WordsG-16 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003549

Base 15: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 13: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 14: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 11: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 12: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 9: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 10: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 8: 0 = Dual RBCs present and good; 1 = Error or single RBC

MSB LSB

Base 7: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 5: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 6: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 3: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 4: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 1: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 2: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 0: 0 = Dual RBCs present and good; 1 = Error or single RBC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW168 – STW175:
Dual RBC Status

Status
Indicates

168 Bases on Channel 1

169 Bases on Channel 2

170 Bases on Channel 3

171 Bases on Channel 4

172 Bases on Channel 5

173 Bases on Channel 6

174 Bases on Channel 7

175 Bases on Channel 8

Word*

* Status words 169 – 175
apply to the TI560/TI565
controllers only.

Status Words G-17SIMATIC TI505 Programming Reference

I003550

Base 15: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 13: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 14: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 11: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 12: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 9: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 10: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 8: 0 = Dual P/S present and good; 1 = Error or single P/S

MSB LSB

Base 7: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 5: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 6: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 3: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 4: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 1: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 2: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 0: 0 = Dual P/S present and good; 1 = Error or single P/S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI545, TI555, TI560, TI565, and TI575

STW176 – STW183:
Dual Power Supply
Status

Status
Indicates

176 Bases on Channel 1

177 Bases on Channel 2

178 Bases on Channel 3

179 Bases on Channel 4

180 Bases on Channel 5

181 Bases on Channel 6

182 Bases on Channel 7

183 Bases on Channel 8

Word*

* Status words 177 – 183
apply to the TI560/TI565
controllers only.

Status WordsG-18 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Base having module failure

1 = Module failure

Number of the base with the module mismatch error

1 = Module mismatch error

MSB LSB

1

5 6 7 8

0000 = base 0
1111 = base 15

16151413121110987654321

9

13 14 15 16

Applicable controllers: TI545, TI555, and TI575

Reserved.

I003552

Discrete scan execution time in milliseconds

MSB LSB

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

Reserved.

STW184:
Module Mismatch
Indicator

STW185 – STW191:
Reserved

STW192:
Discrete Scan
Execution Time

STW193 – STW199:
Reserved

Status Words G-19SIMATIC TI505 Programming Reference

I003553

Error reason code associated with bit 6 of STW01

MSB LSB

Currently defined integer values:

0 No error
1 Reference to an application that is not installed (TI575 only)
2 Attempted to unlock a flag that is not held by an application (TI575 only)
3 Mismatched LOCK/UNLOCK instructions (TI575 only)
4 Exceeded subroutine nesting level
5 Table overflow
6 Attempted to call a non-existent subroutine
7 VMEbus access failed due to a bus error (TI575 only)

STW200 reports the first error that occurs in a given scan of the RLL program. After you
correct the problem that causes the first error, recompile and run the program again. If
there is a second problem, the error code for this problem is recorded in STW200.
Subsequent errors are recorded accordingly.

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

I003554

1 = First RUN mode scan or single scan after compile

1 = First RUN mode scan after transition from EDIT mode

1 = First RUN mode scan or single scan after PROGRAM mode

1 = First scan after battery good power-up restart

1 = First scan after battery bad power-up restart

1 = First scan after partial restart

1 = First scan after complete restart

MSB LSB

1

2

3

9

10

11

12

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

STW200:
User Error Cause

STW201:
First Scan Flags

Status WordsG-20 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003555

1 = Application A is in RUN or EDIT mode

1 = Application C is in RUN or EDIT mode

1 = Application B is in RUN or EDIT mode

1 = Application E is in RUN or EDIT mode

1 = Application D is in RUN or EDIT mode

1 = Application G is in RUN or EDIT mode

1 = Application F is in RUN or EDIT mode

1 = Application H is in RUN or EDIT mode

MSB LSB

1 = Application I is in RUN or EDIT mode

1 = Application K is in RUN or EDIT mode

1 = Application J is in RUN or EDIT mode

1 = Application M is in RUN or EDIT mode

1 = Application L is in RUN or EDIT mode

1 = Application O is in RUN or EDIT mode

1 = Application N is in RUN or EDIT mode

1 = Application P is in RUN or EDIT mode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI575

STW202:
Application Mode
Flags (A – P)

Status Words G-21SIMATIC TI505 Programming Reference

I003556

1 = Application Q is in RUN or EDIT mode

1 = Application S is in RUN or EDIT mode

1 = Application R is in RUN or EDIT mode

1 = Application U is in RUN or EDIT mode

1 = Application T is in RUN or EDIT mode

1 = Application W is in RUN or EDIT mode

1 = Application V is in RUN or EDIT mode

1 = Application X is in RUN or EDIT mode

MSB LSB

1 = Application Y is in RUN or EDIT mode

1 = Application Z is in RUN or EDIT mode

1

2

3

4

5

6

7

8

9

10

16151413121110987654321

Applicable controllers: TI575

STW203:
Application Mode
Flags (Q – Z)

Status WordsG-22 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003557

1 = Application A is installed

1 = Application C is installed

1 = Application B is installed

1 = Application E is installed

1 = Application D is installed

1 = Application G is installed

1 = Application F is installed

1 = Application H is installed

MSB LSB

1 = Application I is installed

1 = Application K is installed

1 = Application J is installed

1 = Application M is installed

1 = Application L is installed

1 = Application O is installed

1 = Application N is installed

1 = Application P is installed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI575

STW204:
Application
Installed Flags
(A – P)

Status Words G-23SIMATIC TI505 Programming Reference

I003558

1 = Application Q is installed

1 = Application S is installed

1 = Application R is installed

1 = Application U is installed

1 = Application T is installed

1 = Application W is installed

1 = Application V is installed

1 = Application X is installed

MSB LSB

1 = Application Y is installed

1 = Application Z is installed

1

2

3

4

5

6

7

8

9

10

16151413121110987654321

Applicable controllers: TI575

STW205:
Application
Installed Flags
(Q – Z)

Status WordsG-24 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

I003559

U-Memory checksum C0 MSW

MSB LSB

16151413121110987654321

STW206

U-Memory checksum C0 LSWSTW207

Applicable controllers: TI545, TI555, and TI575

I003560

U-Memory checksum C1 MSW

MSB LSB

16151413121110987654321

STW208

U-Memory checksum C1 LSWSTW209

Applicable controllers: TI545, TI555, and TI575

STW206 – STW207:
U-Memory
Checksum C0

STW208 – STW209:
U-Memory
Checksum C1

Status Words G-25SIMATIC TI505 Programming Reference

I003561

Base 15: 0 = Base cannot be polled; 1 = Base can be polled

Base 13: 0 = Base cannot be polled; 1 = Base can be polled

Base 14: 0 = Base cannot be polled; 1 = Base can be polled

Base 11: 0 = Base cannot be polled; 1 = Base can be polled

Base 12: 0 = Base cannot be polled; 1 = Base can be polled

Base 9: 0 = Base cannot be polled; 1 = Base can be polled

Base 10: 0 = Base cannot be polled; 1 = Base can be polled

Base 8: 0 = Base cannot be polled; 1 = Base can be polled

MSB LSB

Base 7: 0 = Base cannot be polled; 1 = Base can be polled

Base 5: 0 = Base cannot be polled; 1 = Base can be polled

Base 6: 0 = Base cannot be polled; 1 = Base can be polled

Base 3: 0 = Base cannot be polled; 1 = Base can be polled

Base 4: 0 = Base cannot be polled; 1 = Base can be polled

Base 1: 0 = Base cannot be polled; 1 = Base can be polled

Base 2: 0 = Base cannot be polled; 1 = Base can be polled

Base 0: 0 = Base cannot be polled; 1 = Base can be polled

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

STW210:
Base Poll Enable
Flags

Status WordsG-26 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Reserved.

Binary number represents an integer 1 – 26 = Application A – Z.

MSB LSB

Appllication ID (TI575 only):

1 Application A
 .
 .
26 Application Z

16151413121110987654321

Applicable controllers: TI575

I003562

Task 1: 0 = Status good; 1 = Task scan cycle overrun

Task 2: 0 = Status good; 1 = Task scan cycle overrun

MSB LSB

1

2

16151413121110987654321

Applicable controllers: TI545, TI555, and TI575

S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16

MSB LSB

16151413121110987654321

Sx = local base slot number

1 = interrupt request active at module located in this slot

Applicable controllers: TI545 (≥Rel. 2.1), TI555 (≥Rel. 1.1)

STW211 – STW217:
Reserved

STW218:
My_Application ID

STW219:
Cyclic RLL Task
Overrun

STW220:
Interrupting Slots in
Local Base

Status Words G-27SIMATIC TI505 Programming Reference

Binary integer: 0 – 65,535, counts number of interrupt requests

MSB LSB

16151413121110987654321

STW221 is a 16-bit integer (0 – 65,535) that is incremented each time an
interrupt request is received from any interrupting module installed in the
local base.

Applicable controllers: TI545 (≥Rel. 2.1), TI555 (≥Rel. 1.1)

Binary integer: 0 – 65,535, counts number of spurious interrupts

MSB LSB

16151413121110987654321

STW222 is a 16-bit integer (0 – 65,535) that is incremented each time a
spurious interrupt occurs. A spurious interrupt is a VMEbus interrupt that
is removed before the TI575 can acknowledge it.

Applicable controllers: TI575 (� Rel. 2.0)

STW221: Module
Interrupt Request
Count

STW222: Spurious
Interrupt Count

Status WordsG-28 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Time of Day represented in binary milliseconds MSW

MSB LSB

16151413121110987654321

STW223

Time of Day represented in binary milliseconds LSWSTW224

Day relative to 1-January-1984 represented in binarySTW225

Applicable controllers: TI545-1102, TI555, and TI575

STW223 and STW224 contain a 32-bit binary representation of the relative
millisecond of the current day. STW225 contains a 16-bit binary
representation of the current day relative to 1-January-1984, (day 0). See
also the following description of Time-of-Day Status for STW226.

1 = Current time is prior to time reported on last Task 1 RLL scan

1 = Time synchronization is over a network

1 = Time is valid (has been set)

1 = Time resolution

1 = No time synchronization input from the time transmitter

1 = Time Synchronization Error. Time synchronization did not
occur by the scheduled time

MSB LSB

1

10

11

12 13

14

15

16151413121110987654321

00 = .001 sec, 01 = .01 sec, 10 = .1 sec, 11 = 1 sec

Applicable controllers: TI545-1102, TI555, and TI575

STW223 – STW225:
Binary Time of Day

STW226:
Time of Day Status

Status Words G-29SIMATIC TI505 Programming Reference

STW226 contains a 16-bit representation of the status of Time of Day.

If you use the time update feature of the SINEC H1 Communications
Processor (PPX–505–CP1434TF), you should consider the following in
specifying the communications processor’s update time interval.

• Time updates from the communications processor result in the
controller’s time of day clock being written with the new time value.
This results in a minor (<1 ms) scan time extension on the scan in
which the update occurs.

• Between time updates, the time of day is reported based on the
controller’s time of day clock. This clock may drift (loose or gain time)
relative to the SINEC H1 time source. Because of this time drift, the
time reported on the controller scan following a time update from the
communications processor may be before the time reported on
the previous controller scan. Time status (STW226) bit 1 will indicate
this occurrence.

NOTE: The programmable controller hides negative (to the past) clock
changes due to time synchronization if the change is less than 50 ms. For
such a change, the controller freezes the time of day until the updated time
catches up to the controller’s time when the update was received.

NOTE: STW223 through STW226 were not defined before Release 3.0 of
TI545–1102, TI555, and TI575. The TI560/TI565 and the TI545-1101 do not
support these status words.

Status WordsG-30 SIMATIC TI505 Programming Reference

Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers (continued)

Bus error access address MSW

MSB LSB

16151413121110987654321

STW227

Bus error access address LSWSTW228

Applicable controllers: TI575

STW227 and STW228 contain a 32-bit binary representation of the VMEbus
address of the first data access that was aborted due to a bus time out. Use
them with STW1, STW200, and STW229-230 to diagnose user programming
errors on a TI575 system.

NOTE: For the TI575, the most significant 8 bits of the VMEbus address are
0116 for a normal (VMM) address space access, or F016 for a short (VMS)
address space access. The remaining 24 bits of the address contain the
address space offset.

Bus error program offset MSW

MSB LSB

16151413121110987654321

STW229

Bus error program offset LSWSTW230

Applicable controllers: TI575

STW229 and STW230 contain a 32-bit binary representation the program
offset. If a VMEbus access was aborted while executing an XSUB routine,
these status words contain the U-Memory offset of the instruction that
caused the aborted VMEbus access. Use them with STW1, STW200, and
STW227-228 to diagnose user programming errors on a TI575 system.

STW227 – STW228:
Bus Error Access
Address

STW229 – STW230:
Bus Error Program
Offset

Status Words G-31SIMATIC TI505 Programming Reference

G.2 Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers

Each status word description explains the function or purpose of each bit
within the word. If a bit is not used, it is not described; unused bits are set
to zero. If several bits perform a single function, they are described by a
single definition. If a status word is reserved, it is noted accordingly.

I003563

1 = Special function module communication failure

1 = I/O module failure *

1 = Indirect table move overflow

1 = Scan overrun; fixed scan time too short to run RLL program

1 = Communication port failure

1 = Battery low or off

MSB LSB

10

11

12

13

14

15

* Applies to any I/O module that sets the fail bit. This bit also is set if there
is an I/O mismatch, i.e., the I/O configuration does not agree with the
installed module for any I/O slot in the system.

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

STW01:
Controller Status

Status WordsG-32 SIMATIC TI505 Programming Reference

Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers (continued)

I003564

Base 15: 0 = Status good; 1 = Base not present or has problem

Base 13: 0 = Status good; 1 = Base not present or has problem

Base 14: 0 = Status good; 1 = Base not present or has problem

Base 11: 0 = Status good; 1 = Base not present or has problem

Base 12: 0 = Status good; 1 = Base not present or has problem

Base 9: 0 = Status good; 1 = Base not present or has problem

Base 10: 0 = Status good; 1 = Base not present or has problem

Base 8: 0 = Status good; 1 = Base not present or has problem

MSB LSB

Base 7: 0 = Status good; 1 = Base not present or has problem

Base 5: 0 = Status good; 1 = Base not present or has problem

Base 6: 0 = Status good; 1 = Base not present or has problem

Base 3: 0 = Status good; 1 = Base not present or has problem

Base 4: 0 = Status good; 1 = Base not present or has problem

Base 1: Always = 0

Base 2: 0 = Status good; 1 = Base not present or has problem

Base 0: Always = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

STW02:
I/O Base Status

Status Words G-33SIMATIC TI505 Programming Reference

Reserved.

I003565

1 = Programming error

1 = Programming complete; an error occurred

1 = EPROM/EEPROM was not initially clear

1 = Programming in progress (TI520C/TI530C/TI530T only)

1 = Programming completed successfully

1 = Programmer not ready (TI520C/TI530C/TI530T only)

MSB LSB

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

I003566

Address of first error encountered during EPROM/EEPROM programming

MSB LSB

STW07 contains the absolute address of the first error encountered while
attempting to program the EPROM/EEPROM. The value given is the memory
address of the EPROM/EEPROM memory.

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

STW03 – STW05:
Reserved

STW06:
EPROM/EEPROM
Programming

STW07:
EPROM/EEPROM
Programming Errors

Status WordsG-34 SIMATIC TI505 Programming Reference

Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers (continued)

I003567

Checksum calculated from RLL program.

MSB LSB

STW08 contains the checksum calculated from the RLL program stored
in the EPROM/EEPROM. The checksum is a numerical calculation based
on the RLL program only. When you copy a program to several
EPROM/EEPROMs, you can check STW08 for every EPROM/EEPROM to
verify that the information contained in each is identical.

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

I003568

Checksum calculated from all data stored in the EPROM/EEPROM.

MSB LSB

STW09 contains the checksum calculated from the EPROM/EEPROM.
The checksum is a numerical calculation based on all data stored in the
EPROM/EEPROM, including the RLL program and information contained
in the I/O configuration memory. When you copy a program to several
EPROM/EEPROMs, you can check STW09 for every EPROM/EEPROM to
verify that the information contained in each is identical.

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

I003569

Binary value of previous scan time

MSB LSB

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

STW08:
EPROM/EEPROM
Checksum — RLL
Only

STW09:
EPROM/EEPROM
Checksum — All
Program Data

STW10:
Dynamic Scan
Time

Status Words G-35SIMATIC TI505 Programming Reference

Status words 11 through 18 indicate the status of the modules present in
each logical base. Each status word contains status information for two
logical bases. The illustration on page G-36 shows the content of these
status words. Table G-3 lists the bases for which each status word reports.
The most significant byte (Bits 1–8) in a word contains the status
information for the odd-numbered logical bases (Base B in the figure). The
least significant byte (Bits 9–16) in a word contains the status information
for the even-numbered logical bases (Base A in the figure).

Table G-3 Status Words 11 Through 18

Status word Odd-Numbered Bases (B) Even-Numbered Bases (A)

11 Modules on Base 1 Modules on Base 0

12 Modules on Base 3 Modules on Base 2

13 Modules on Base 5 Modules on Base 4

14 Modules on Base 7 Modules on Base 6

15 Modules on Base 9 Modules on Base 8

16 Modules on Base 11 Modules on Base 10

17 Modules on Base 13 Modules on Base 12

18 Modules on Base 15 Modules on Base 14

STW11 – STW18:
I/O Module Status

Status WordsG-36 SIMATIC TI505 Programming Reference

Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers (continued)

I003570

Module 8 Base B: 0 = Status good; 1 = Module not present or failed.

Module 6 Base B: 0 = Status good; 1 = Module not present or failed.

Module 7 Base B: 0 = Status good; 1 = Module not present or failed.

Module 4 Base B: 0 = Status good; 1 = Module not present or failed.

Module 5 Base B: 0 = Status good; 1 = Module not present or failed.

Module 2 Base B: 0 = Status good; 1 = Module not present or failed.

Module 3 Base B: 0 = Status good; 1 = Module not present or failed.

Module 1 Base B: 0 = Status good; 1 = Module not present or failed.

MSB LSB

Module 8 Base A: 0 = Status good; 1 = Module not present or failed.

Module 6 Base A: 0 = Status good; 1 = Module not present or failed.

Module 7 Base A: 0 = Status good; 1 = Module not present or failed.

Module 4 Base A: 0 = Status good; 1 = Module not present or failed.

Module 5 Base A: 0 = Status good; 1 = Module not present or failed.

Module 2 Base A: 0 = Status good; 1 = Module not present or failed.

Module 3 Base A: 0 = Status good; 1 = Module not present or failed.

Module 1 Base A: 0 = Status good; 1 = Module not present or failed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable controllers: TI520C, TI530C, TI530T, TI525, and TI535

External Subroutine Development H-1SIMATIC TI505 Programming Reference

Appendix H

External Subroutine Development

H.1 Designing the External Subroutine H-2.
Program Code Requirements H-2.
Loading the Subroutine H-3.

H.2 U-Memory Format H-4.
Header H-4.
Code and Constant Data H-5.
Modifiable Data H-5.
User Stack H-5.

H.3 Guidelines for Creating C Language Subroutines H-6.
Debugging the External Subroutine H-6.
Static Data Initialization H-7.
Accessing Discrete/Word Variables H-10.
Floating Point Operations H-11.
Unsupported C Language Features H-11.

H.4 Developing an External Subroutine — Example H-12.
Example Header File H-12.
Example Subroutine Source H-14.
Preparing the Load Module H-14.
Loading U-Memory H-16.
Using the External Subroutines in RLL H-16.

External Subroutine DevelopmentH-2 SIMATIC TI505 Programming Reference

H.1 Designing the External Subroutine

! WARNING
When you call an external subroutine, the built-in protection features of the
controller are by-passed. Use care when you test the external subroutine before
introducing it to a control environment.

Failure to do so may cause undetected corruption of controller memory and
unpredictable operation by the controller, which could result in death or serious
injury and/or damage to equipment.

You must take care in testing the external subroutine before introducing it to a
control environment.

Follow these rules when you develop an external subroutine.

• Use a compiler, such as Microtec� MCC68K, that allows generation of
position independent code targeted as follows:

For the TI545/ TI555: Motorola� 68020.
For the TI575: Motorola 68020 and optionally, the 68881 or the 68882
floating-point processor, if installed.

The object code must be position-independent, i.e., it must use
PC-relative addresses for all references to programs and data contained
in U-Memory.

• Link all subroutines into one downloadable load module in Motorola
S-Record format. The resulting file must conform to the format
specified in Section H.2.

• To help ensure that the subroutine interacts correctly and safely with
the controller program, follow the guidelines in Section H.3 as you
develop an external subroutine for your application.

Program Code
Requirements

External Subroutine Development H-3SIMATIC TI505 Programming Reference

Follow these steps to prepare the external subroutine for use in the
controller.

1. Compile/assemble the subroutines and header to create object modules.

2. Link the object modules for the header and subroutines to create the
load module. The file name must have the extension .rec. The output
must have the header at zero followed by the code and data constants,
then the variables, and finally the stack.

3. Use TISOFT to configure U-Memory, if you have not already done so.

4. Use the TISOFT Convert S-Records option (AUX 40) to import the
linked program into the TISOFT environment.

5. Use the TISOFT Load U-Memory option (AUX 43) to load the file
created in step 4 into U-Memory.

An example application illustrating this process is given in Section H.4.

Loading the
Subroutine

External Subroutine DevelopmentH-4 SIMATIC TI505 Programming Reference

H.2 U-Memory Format

External subroutines are stored in U-Memory. U-Memory consists of four
logical segments, described below, and illustrated in Figure H-1.

The header contains the following data elements, that must be defined in
the order specified.

E/Version This 16-bit word contains two data elements:

• Bit 1 (the MSB) specifies the error action taken in the event of a bus
error while accessing the VMEbus in an XSUB routine on a TI575. If
bit 1 is a 0 and a VMEbus error occurs while processing an XSUB, the
controller enters the Fatal Error mode. If bit 1 is a 1, and a VMEbus
error occurs while processing an XSUB, the XSUB’s execution
terminates, bits 6 and 11 of STW1 are set, and STW200 is set to 7 (if
this is the first error encountered on this RLL scan). The controller
stays in RUN mode. This bit is ignored by PPX:545-1102 and TI555. It
must be set to 0 for the 545-1101.

• Bits 2 through 16 specify the header version number. It must have a
binary value of 1 or the U-Memory load operation (TISOFT AUX
function 43) fails.

Num_XSUBs Specifies the number of external subroutines defined in the
load module. This element is a 16-bit word.

Data_Start Specifies the U-Memory offset for the beginning of the
modifiable data area. This element is a 32-bit long word.

Stack_Start Specifies the U-Memory offset to the lowest U-Memory
location available for use as a run-time stack. The block of memory from
this location to the end of U-Memory is available to the main RLL task
(TASK1) during XSUB calls. This element is a 32-bit long word.

NOTE: For an XSUB called by the cyclic or interrupt RLL tasks (TASK2 or
TASK8), the user is allocated by the operating system and is relatively
small (approximately 500 bytes).

Stack_Size Specifies the minimum number of bytes that must be available
for use as the run-time stack area when an external subroutine is called by
the main RLL task. This element is a 32-bit long word.

Entry_Points This is a table containing n 32-bit elements, where n equals
the number of subroutines, as specified in Num_XSUBs. Each element in this
table specifies the U-Memory offset for the entry point of each of the
subroutines 1 through n, respectively. A value of 0 indicates that the
specified subroutine is not present.

Header

External Subroutine Development H-5SIMATIC TI505 Programming Reference

The code and constant data area immediately follow the header area. This
area consists of position-independent, invariant machine code, and data
constants.

The modifiable data area follows the code and constant data area and
contains the static variables used by the subroutines.

The user stack follows the modifiable data area in U-Memory. The size of
the user stack depends upon the configured size of U-Memory and how
much memory is used by the header, the code and constant data, and the
modifiable data areas. The user stack starts at the last location of
U-Memory and grows downwards, toward the address specified by
Stack_Start. Stack_Size specifies the minimum size of this area.

Data_Start: U-Memory offset to modifiable data

Stack_Start: U-Memory offset to user stack

Stack_Size: Size of user stack

Entry_Points(1): U-Memory offset to subroutine 1

Entry_Points(2): U-Memory offset to subroutine 2

Header Version

Entry_Points(n): U-Memory offset to subroutine n

Code and constant data: Contains fully resolved, position-independent
subroutine executables and constant data.

Modifiable data: Static variables used by the subroutines.

User Stack: The user stack starts at the last location of U-Memory and grows
toward the location referenced by Stack_Start.

Num_XSUBs: Number of Subroutines

H
ea

de
r

Bit *
1 16 17 32

Long Word

* The bit numbering shown is consistent with the long word format described in Chapter 2.
The processor numbering is 31–0, corresponding to 1–32, respectively.

I003571

E

1

2

Figure H-1 Externally Developed Subroutine Code Format

NOTE: When U-Memory is loaded, the system verifies that sufficient
U-Memory is configured to hold the header, code, data, and stack. The load
is rejected unless there is enough memory. A subsequent attempt to
reconfigure loaded U-Memory to a size less than the sum of header, code,
data, and stack is also rejected.

Code and
Constant Data

Modifiable Data

User Stack

External Subroutine DevelopmentH-6 SIMATIC TI505 Programming Reference

H.3 Guidelines for Creating C Language Subroutines

The guidelines in this section can answer some questions that may arise as
you develop your code. These guidelines assume that you are using the
Microtec MCC68K tool set. Version 4.2A of this compiler has been tested in
a limited number of TI545 and TI575 applications and has been verified to
generate code that reliably runs on these machines. MCC68K runs on IBM
compatible personal computers, as well as a number of minicomputers and
work stations. The MCC68K tool set is available from:

Microtec Research, Inc.
2350 Mission College Blvd.
Santa Clara, CA 95054
Toll Free 800.950.5554

If you are using a different compiler, you need to make changes in these
guidelines to fit that compiler’s requirements.

Facilities for debugging external subroutines on the controller are very
limited. It is strongly recommended that you develop and test your external
subroutines using a native compiler on your development computer. A
number of C compilers are available commercially for this purpose,
including Quick C� and Turbo C� for the MS-DOS� environment.

Before coding the external subroutine, be aware that compiler differences
may exist between the native compiler on the development computer and
the MCC68K compiler. A native compiler, designed for use on a general
purpose system, e.g., the IBM PC/AT, usually has a larger set of runtime
facilities than does a compiler like MCC68K, that is designed for embedded
systems. If you use these facilities, they will not exist when you port your
external subroutines to the controller.

After you have written and debugged your subroutines on the development
computer, you must port the debugged subroutines to the controller. If you
avoid architectural features of the development machine, and if you have
not used runtime elements from the native compiler that are not present in
MCC68K, then this is a straight-forward procedure.

Before attempting to control an actual process, always check the subroutine
in a test environment (on a controller that is not connected to a factory-floor
process) to verify that the subroutine and controller program operate as
expected.

Debugging the
External Subroutine

External Subroutine Development H-7SIMATIC TI505 Programming Reference

In C, variables declared outside of functions or declared with the static
attribute are initialized when the program starts, just before entering the
main procedure. When you write external subroutines you do not have a
main procedure and the normal initialization does not occur. Therefore, you
need to assign one of your subroutines to perform the C initialization
function. This subroutine must be called from the main RLL task whenever
your application is (re)started, e.g., at power-up or a transition from
PROGRAM to RUN mode.

Assembly subroutine vinit.src * (Figure H-2) contains the necessary
initialization routine for version 4.2A of MCC68K. Include the initialization
subroutine as XSUB1 in all U-Memory load modules. You should call
XSUB1 whenever your RLL performs its startup initialization. Subroutine
_vinit (XSUB1) must be called before any static variables are referenced by
your external subroutines.

* The VINIT routine is based in part on INITCOPY.C, Copyright (C) 1990, Microtec
Research, Inc.

Static Data
Initialization

External Subroutine DevelopmentH-8 SIMATIC TI505 Programming Reference

Guidelines for Creating C Language Subroutines (continued)

I003572

 TTL _VINIT –– Initialize Static Variables
 OPT CASE

*===
* function _vinit –– Initialize Static Variables.
*
* * SYNOPSIS:
*
* void _vinit (long int * code);
*
* where code is:
*
* 0 if initialization was successful.
* 1 if initialization failed due to invalid start code in ??INITDATA.
* 2 if initialization failed due to unknown flag byte in a copy
* specification.
*
* * DESCRIPTION:
*
* This function may be called as an external subroutine in order to
* initialize all static variables declared by the U Memory load module.
*
* Subroutine _vinit zeroes all ”zerovars” variables and sets all ”vars”
* variables to their specified initial values. A ”zerovars” variable
* is a variable declared using statements of the form:
*
* [static] int var;
*
* A ”vars” variable is a variable declared using statements of the form:
*
* [static] int var = 5;
*
* External subroutine _vinit must be called before any other external
* subroutine. It should be called once whenever the RLL process is
* started or restarted.
*
* * ASSUMPTIONS:
*
* This subroutine assumes the Microtec C compiler has been used to create
* the objects comprising the load module and that the Microtec linker
* has been used with (at least) the ”INITDATA vars” command. It also
* assumes that the U Memory header is the first element of section ”const”
* and is located at U Memory offset 0.
*
* The structure of section ??INITDATA (created by the Microtec linker) is
* as follows. Byte 0 contains an ’S’ indicating start of ??INITDATA.
* This byte is followed by zero or more copy specifications (see below).
* The last copy specification is followed by an ’E’ indicating the end
* of the ??INITDATA section.
*
* A copy specification has four fields:
*
* flag One byte containing a ’C’, indicating start of copy specification;
* length Four bytes containing the length (in bytes) of the <data> field;
* dest Four bytes containing the starting U–Memory offset to which the
* <data> field is to be copied;
* data The values to be copied to <dest>. The length of this field is
* specified by the <length> field.
*
*===

Figure H-2 Initialization Routine Required for Microtec C

External Subroutine Development H-9SIMATIC TI505 Programming Reference

I003573

**** Initialize the ’zerovars’ section to all 0.
*
 SECTION code,,C int __vinit ()
 XDEF __vinit {
__vinit LEA .startof.(zerovars)(PC),A0 ptr1 = address of zerovars;
 MOVE.L #.sizeof.(zerovars),D0 length = size of zerovars;
 BRA.S LOOP00S while (––length >= 0) {
LOOP00 CLR.B (A0)+ *ptr1 = 0;
LOOP00S SUBQ.L #1,D0 }
 BHS LOOP00 .

**** Copy initial values from the ??INITDATA section (constructed by the
* linker due to the INITDATA command) to the appropriate destination
* address.
*
 MOVE.L #.sizeof.(??INITDATA),D0 if (??INITDATA not empty)
 SUBQ.L #2,D0 .
 BLO.S ENDIF10 {
 LEA .startof.(??INITDATA)(PC),A0 ptr1 = address of ??INITDATA
 CMPI.B #’S’,(A0)+ error if (*ptr1++ != ’S’)
 BNE.S ERROR1 .
LOOP20 MOVE.B (A0)+,D0 while ((t = *ptr1++) != ’E’)
 CMPI.B #’E’,D0 .
 BEQ.S ELOOP20 {
 CMPI.B #’C’,D0 error if (t != ’C’)
 BNE.S ERROR2 .
 MOVE.L (A0)+,D0 length = *((long *) ptr1);
 LEA .startof.(const)(PC),A1 ptr2 = address_of (header)
 ADDA.L (A0)+,A1 . + *((long *) ptr1);
 BRA.S LOOP30S while (––length >= 0) {
LOOP30 MOVE.B (A0)+,(A1)+ *dest++ = *source++;
LOOP30S SUBQ.L #1,D0 }
 BHS LOOP30 .
 BRA LOOP20 }
ELOOP20 EQU * .
ENDIF10 EQU * }
 MOVEQ #0,D0 code = no error;

**** Return the value of <code> to the user.
*
GOBAK MOVEA.L 4(SP),A0 return (code);
 MOVE.L D0,(A0) .
 RTS .

**** Error handlers:
*
ERROR1 EQU * error1:
 MOVEQ #1,D0 code = no starting point;
 BRA GOBAK return (code);

ERROR2 EQU * error2:
 MOVEQ #2,D0 code = unknown flag byte;
 BRA GOBAK return (code);
 END ! };

Figure H-2 Initialization Routine Required for Microtec C (continued)

External Subroutine DevelopmentH-10 SIMATIC TI505 Programming Reference

Guidelines for Creating C Language Subroutines (continued)

As specified in Section 6.81, the calling conventions used by the XSUB
instruction always pass 32-bit values or pointers to the external subroutine.

When passing a discrete value, e.g., IN X5, the on/off state of the parameter
is in the least significant bit of the 32-bit value. Other bits are unspecified.
The example in Figure H-3 shows one way to isolate the actual value of the
discrete parameter.

void sub1 (long int D, ...)
{

unsigned char D_value;
D_value = D & 0x1;
...

}

I003574

Figure H-3 Example of Passing a Discrete Value

When passing a pointer to a discrete variable, e.g., IO X5, you must declare
the data type of the parameter as an unsigned char pointer. The discrete
value is in the least significant bit of the 8-bit value addressed by the
pointer. Refer to the example in Figure H-4.

void sub2 (unsigned char *D, ...)
{

if (*D & 0x1)
... handle case where parameter is on (true) ...
else
... handle case where parameter is off (false)

}

I003575

Figure H-4 Example of Passing a Pointer

When passing a normal value, e.g., IN V103, the value is assumed to occupy a
long word (V103 and V104). If only a word is required, you must include
code to isolate this word from the most significant 16 bits of the value. See
the example in Figure H-5.

void sub3 (long int V, ...)
{

short int V_value;
V_value = V >>16;
...
}

I003576

Figure H-5 Example of Passing Normal Values

Accessing
Discrete/Word
Variables

External Subroutine Development H-11SIMATIC TI505 Programming Reference

When passing a pointer to a normal variable, e.g., IO V15, you control the
data element type since you completely declare the data type in your
C Language function.

! CAUTION
For the TI575 controller, word image register values can only be accessed as
words or long words.

If you access a word image register location as a byte (8 bits), the result is
unspecified, and could cause damage to equipment,

Ensure that you always use words or long wordswith the TI575 controller.

NOTE: The TI545, TI555, and TI575 allow pointers to read-only variables
(STW, K, X) to be passed to external subroutines. It is recommended that
you not design the subroutine to alter the content of these variables since
other instructions assume that the content does not change.

The TI545, TI555, and TI575 use single precision floating-point math. The
default type for floating-point constants and operations in the MCC68K
compiler is double precision. On the TI545, TI555, and TI575 without a
math coprocessor, you may want to avoid the overhead associated with
double precision math. If so, declare floating-point constants with the
f attribute, e.g., 3.0f instead of 3.0.

Do not use operating system-dependent language elements in external
subroutines. This includes the C Language runtime routines listed below.

clearerr feof fopen fsacnf lseek puts ungetc

close ferror fprintf fwrite open read

create fflush fputc getc printf setbuf

_exit fgetc fputs getchar putc scanf

fclose fgets fread gets putchar sprintf

These functions are not supported in the current implementation of the
TI545/TI555/TI575 XSUB. In most cases, these functions perform no
operation. Refer to your Microtec user documentation.

Floating Point
Operations

Unsupported
C Language
Features

External Subroutine DevelopmentH-12 SIMATIC TI505 Programming Reference

H.4 Developing an External Subroutine — Example

This section illustrates the creation of a U-Memory load module that defines
two external subroutines: long_add (XSUB2) and long_subtract (XSUB3).
The example was developed with the MS-DOS� version of MCC68K.

The header.src file (Figure H-6) defines the U-Memory header for the
example application. When the header is linked with the initialization
routine and the application-specific subroutine file, the header must be
placed at location 0 of the load module. Additionally, all code and data
constants must be loaded before any variables (zerovars and vars), which
must be loaded before the stack section. See the sample link command file in
Figure H-9.

I003577

 TTL HEADER –– U–Memory header for sample application.

*===
* HEADER.SRC –– U–Memory header for sample application.
*
* * DESCRIPTION:
*
* File HEADER.SRC contains the definition for the U Memory header required
* for the sample XSUB application. This file is written in the Microtec
* ASM68K assembly language. The object from this file must be loaded at
* relative address 0 of the U Memory load image.
*
*===
 OPT CASE Labels are case sensitive
 SECTION const,,R Header must be first in <const> section
 DC.W 1 Header version is 1 for rel 2.x
 DC.W NUM_SUB Number of subroutine entry points
 DC.L .startof.(zerovars) Start of modifiable variables
 DC.L .startof.(stack) Lowest address for valid stack pointer
 XREF STACKSIZE Size of stack (defined at link time)
 DC.L STACKSIZE
EP_TBL EQU * Entry point table
 XREF __vinit XSUB1 initializes static variables
 DC.L __vinit .
 XREF _long_add XSUB2 performs a long integer ADD
 DC.L _long_add .
 XREF _long_subtract XSUB3 performs a long integer SUB
 DC.L _long_subtract
NUM_SUB EQU (*–EP_TBL)/4 Computes number of entry points
 END

Figure H-6 Example Assembly Language Header File

Example Header
File

External Subroutine Development H-13SIMATIC TI505 Programming Reference

The header.src file contains pointers to the base of the zerovars and stack
sections, and to external entry points __vinit, _long_add, and _long_subtract.
Note that the subroutine entry point names are preceded with an
underscore. This is a C Language requirement. During execution, these
pointers are used by the controller’s operating system as offsets relative to
the start of U-Memory.

! WARNING
Other than the header, external subroutines should not define or use static
pointers.

Use of invalid pointers is likely to cause unpredictable operation that could
result in death or serious injury, and/or damage to equipment.

Pointers passed as parameters on a given subroutine call may be invalidated if
you reconfigure user memory.

! WARNING
Do not change any portion of the U-Memory content loaded in front of the base
address of zerovars after the U-Memory load. Otherwise, the controller enters
the FATAL ERROR mode due to a U-Memory checksum violation, turns off
discrete outputs and freezes analog outputs.

This could cause unpredictable operation of the controller that could result in
death or serious injury, and/or damage to equipment.

Only properly trained personnel should work on programmable
controller-based equipment.

External Subroutine DevelopmentH-14 SIMATIC TI505 Programming Reference

Developing an External Subroutine — Example (continued)

Depending on the complexity of your application, the subroutine source may
be a single file or several files. Figure H-7 shows file xsubs.c, which defines
the application-specific subroutines comprising the example. The
initialization routine is contained in file vinit.src (Figure H-2).

/*Procedure long_add: Compute the sum of two long words */
/* and store the result in a third */
/* long word. */

void long_add (long addend_1, long addend_2, long *sum)
{

*sum = addend_1 + addend_2;
return;

}
/*Procedure long_subtract: Subtract one long word from a */
/* second long word and store the */
/* result in a third long word. */

void long_subtract
(long minuend, long subtrahend, long *difference)
{

*difference = minuend – subtrahend;
return;

}

I003578

Figure H-7 Example Subroutine Source File

Figure H-8 shows the MS-DOS commands required to create a Motorola

S-record load module for the example.

• The first two commands assemble header.src and vinit.src, producing
object files header.obj and vinit.obj, respectively.

• The third command compiles xsubs.c, producing object file xsubs.obj.
Compiler options force the compiler to generate PC-relative code (–Mcp)
and data (–Mdp) references. These options are mandatory. They ensure
that the resulting load module is position-independent. The –c option
instructs MCC68K to create an object module without invoking the
linker.

• The fourth command invokes the linker with command file xsubs.cmd
and output file xsubs.rec. The .rec extension is required by TISOFT.

> asm68k header.src
> asm68k vinit.src
> mcc68k –Mcp –Mdp –c xsubs.c
> lnk68k –c xsubs.cmd –o xsubs.rec

I003579

Figure H-8 Example Commands for Preparing the Load Module

Example
Subroutine Source

Preparing the Load
Module

External Subroutine Development H-15SIMATIC TI505 Programming Reference

The content of the link command file depends on the complexity of your
application. File xsubs.cmd shown in Figure H-9 is sufficient for the
example application. Table H-1 lists the functions of the linker commands
contained in this file.

CASE
FORMAT S
LISTABS NOPUBLICS,NOINTERNALS
ORDER const,code,strings,literals,??INITDATA
ORDER zerovars,vars,tags,stack
INITDATA vars
PUBLIC STACKSIZE=1024
BASE 0
LOAD header.obj
LOAD vinit.obj
LOAD xsubs.obj
LOAD c:\mcc68k\mcc68kpc.lib
END

I003580

Figure H-9 Example Link Command File

Table H-1 Linker Command Functions

Command Description

CASE Indicates that symbols are case sensitive.

FORMAT Indicates that the linker output is to be in Motorola S-record format.

LISTABS Tells the linker to omit symbol table information from the load module.

ORDER Specifies the order in which sections are to be placed in the load image generated by the linker.

The first ORDER statement lists all sections whose content do not change after U Memory is
loaded. Section const must be named first so that the U Memory header is at 0. This is followed by
the names of other invariant sections produced by the compiler and linker.

The second ORDER statement lists all sections whose content may change after U-Memory is
loaded. These sections must be linked after all invariant sections. The zerovars section must be
named first and the stack section must be named last.

INITDATA Tells the linker to create a read only copy of initialized variables (section vars) in section
??INITDATA. Subroutine _vinit uses this copy to initialize the actual variables in section vars.

PUBLIC Tells the linker to define variable STACKSIZE. The value on the right of the equal sign in placed
in the U-Memory header’s stack size data element.

BASE Tells the linker to link relative to address 0.

LOAD Tells the linker which modules are to be included in the load module. Name the header file
(header.obj) first. You can load other modules in any order.

File C:\mcc68k\68020\mcc68kpc.lib is the position independent run-time library for
MCC68K.

External Subroutine DevelopmentH-16 SIMATIC TI505 Programming Reference

Developing an External Subroutine — Example (continued)

Use the TISOFT Convert S-Records option (AUX 40) to import xsubs.rec into
the TISOFT file system; then use the TISOFT Load U-Memory option
(AUX 43) to download to U-Memory.

NOTE: If you have not configured U-Memory, you must do so before TISOFT
allows these functions.

When you initialize the RLL program, you must also initialize the external
subroutine variables. Figure H-10 illustrates a call to _vinit (XSUB1), which
occurs once, whenever control relay C1 is off. Note that the _vinit call must
specify a single IO parameter. This parameter is written with the return
code from _vinit.

C1

IO1: V1

I003581

C1

SET

C1

XSUB1

Figure H-10 Example Subroutine Call for Static Variable Initialization

Figure H-11 illustrates an RLL network that calls the long_add subroutine.
There are three parameters in the XSUB2 box. These correspond to the
three parameters in the long_add subroutine. The first parameter (IN1)
corresponds to parameter addend_1 in the definition of long_add. The
second parameter (IN2) corresponds to addend_2, and the third parameter
(IO3) corresponds to sum.

Y24

IN1: V1

IN2:

IO3:

V33

V75

I002984

XSUB2

Figure H-11 Example Call to a Subroutine

Loading U-Memory

Using the External
Subroutines in RLL

External Subroutine Development H-17SIMATIC TI505 Programming Reference

There must be a one-to-one correspondence between parameters in the
XSUB call (from top to bottom) and parameters in the subroutine definition
(from left to right for C).

• Parameters one and two are IN parameters in the XSUB call. This is
required since long_add expects addend_1 and addend_2 to be long
integer values.

• Parameter three is an IO parameter in the XSUB call. This agrees with
long_add’s definition of sum as a pointer, or address, parameter.

! WARNING
You must ensure agreement between the XSUB call and the XSUB’s definition in
the number and use of parameters.

If, for example, you were to specify IN for parameter three in the example
XSUB2 call, the long_add subroutine would use the value of V75–76 as an
address. The result, although unspecified, is likely to be a fatal error due to
access to an undefined address or due to corruption of the controller execution
environment.

This could cause unpredictable operation of the controller that could result in
death or serious injury, and/or damage to equipment

Only properly trained personnel should work on programmable
controller-based equipment.

Index-1

Index

�

���" �'31487) %&63087) 9%08)�� �>��

��� �%((-7-32�� �>��

�0%51 ()%(&%2(
%2%03+ %0%51� �>�
0334� �>��

�0+35-7,1� 0334� �>�� �>��

�2%03+ %0%51
%0%51 ()%(&%2(� �>�
()9-%7-32 %0%516� �>�	
453')66 9%5-%&0) %0%516� �>��
6%140) 5%7)� �>
�� 453+5%1 '%00� �>��
">*0%+6� �>�

�2%03+ 7%6/6
���� �>
 ��
�� ���� '3275300)56� �>�?�>

�440-'%7-32);%140)
�� � �&-7 4-'/�� �>��
��� �'329)57 &-2%5< 73 ����� �>	

��� �'329)57 ��� 73 &-2%5<�� �>	�
��� �(-6'5)7) '327530 %0%51 7-1)5�� �>	�
��!� �7-1)>(5-9)2 (581�� �>��
���!� �7-1)�)9)27 (581�� �>�

���# �139) -1%+) 5)+-67)5 73 :35(�� �>��
�#� �139) :35(*531 7%&0)�� �>��
�#�� �139) :35(73 -1%+) 5)+-67)5�� �>��
�# �139) :35(73 7%&0)�� �>��
�2) 6,37� �>	
���� �&-7 6,-*7 5)+-67)5�� �>�
���# �:35(6,-*7 5)+-67)5�� �>

� # �67%786 :35(�� �>
�
 �� �7-1)5�� �>�
#$�� �:35();'086-9) ���� �>	�

�440-'%7-32 *0%+6� 67%786 :35(� �>��� �>��

�440-'%7-32 ��� 67%786 :35(� �>��

�440-'%7-32 -267%00)(*0%+6� 67%786 :35(� �>��� �>�	

�� � 453+5%11-2+ 63*7:%5)� �>	

�

�%6) 4300)2%&0) *0%+6� 67%786 :35(� �>��

���� *351%7� �>�

��� '329)56-326
��� �'329)57 &-2%5< 73 ����� �>��
��� �'329)57 ��� 73 &-2%5<�� �>��

��� ()*-2)(� �>�

������ ��� 453+5%1 ��� '329)56-32 1%7,�� >��

�-%6� 0334
%(.867-2+� �>�

*5))=-2+� �>�	

������ ��� 453+5%1 ��� '329)56-32 1%7,�� >��

�-7 1%2-480%7-326
�� � �&-7 '0)%5�� �>�	
�� � �&-7 4-'/�� �>�

�� � �&-7 6)7�� �>��
��� �-2();)(1%75-; '314%5)�� �>��
��� �6'%2 1%75-; '314%5)�� �>�	�
#��� �:35(%2(�� �>���
#�� �:35(35�� �>���
#�� �:35(537%7)�� �>��
#$�� �:35();'086-9) 35�� �>���

�-7>3*>:35('3-0� �>��� �>��

�-7>3*>:35('327%'7� �>�� �>�	

�� � �&-7 '0)%5�� �>�	

�� � �&-7 4-'/�� �>�

%440-'%7-32);%140)� �>��

�� � �&-7 6)7�� �>��

�<7) ()*-2)(� �>�

�

� '327530 5)0%<� �>�� �>��� �>��� �>�	

���� ��� 453+5%1 *03:�� >��

��� �'329)57 &-2%5< 73 ����� �>��
%440-'%7-32);%140)� �>	

��� �'329)57 ��� 73 &-2%5<�� �>��
%440-'%7-32);%140)� �>	�

Index-2

��! � � 342+4%0 6%&/) ,%1(/-1+�� <��

�/2'. (%6%� �<	�

�/2'. -15647'6-215
���� �(%6) '203%4)�� �<	�
� �! �(%6) 5)6�� �<	�
!��� �6-0) '203%4)�� �<���
! �! �6-0) 5)6�� �<��

��� �'203%4)�� �<��

�2-/ �1240%/�� �<��

�2-/ �126<)(�� �<��

������! � � 342+4%0 (2'70)16%6-21�� <

�2156%16 ��� 0)024;�
<�

�216%'6 �1240%/�� �<

�216%'6 �126<)(�� �<�

�21642/ 4)/%;
*24'-1+� 	<�

0)024;� 	<�
�
<

121<4)6)16-8)� 	<�
� 	<��
4)6)16-8)� 	<�
� 	<��

�21642//)4 5;56)05
!������!��	���!��	�!
28)48-)9� �<��=�<�
5'%1 23)4%6-21� �<�

!�����!��	�
28)48-)9� �<��=�<��
5'%1 23)4%6-21� �<��

!��
�� !����� 28)48-)9� �<�=�<�
!����� 5'%1 23)4%6-21� �<��
!�����!����� 28)48-)9� �<��=�<��
!����� 5'%1 23)4%6-21� �<�

!���
28)48-)9� �<��=�<�
5'%1 23)4%6-21� �<��

�!� �'2716)4�� �<�

�;'/-' ���
()*-1)(� �<
� �<��
���$ �-00)(-%6) ��� 4)%(�94-6)�� �<��
!� � �56%46 1)9 ��� 6%5.�� �<�
�

�;'/-' ��� 6%5. 28)4471� 56%675 924(� �<��

�;'/-' � 342+4%0� �<��
� <	� <�

�

�%6% 4)34)5)16%6-21
���� �<�

&;6)� �<�
��� 32-16� �<�
-16)+)4� �<	� �<

/21+ 924(� �<�
4)%/ 170&)4� �<�
924(� �<�

�%; 2* ;)%4� '744)16 56%675 924(� �<	�� �<		� �<���
�<��

���! �(-5'4)6) '21642/ %/%40 6-0)4�� �<��
%33/-'%6-21):%03/)� �<	�

���� �(%6) '203%4)�� �<	�

�)4-8%6-8) +%-1 /-0-6-1+� /223� �<��

�)8-%6-21 %/%405
%1%/2+ %/%40� �<�	
/223� �<	�

�-4)'6<%'6-1+� /223� �<	�

�-5'4)6) -0%+) 4)+-56)4� 	<��
<

�-5'4)6) 5'%1� !��
��!���� '21642//)45� �<

�-5'4)6) 5'%1):)'76-21 6-0)� 56%675 924(� �<��

��# �(-8-5-21�� �<	�

��"� �6-0)<(4-8)1 (470�� �<	

%33/-'%6-21):%03/)� �<��

�4700)024;
����
<�
����
<�
� ��
<�
� ��
<�

� �! �(%6) 5)6�� �<	�

�7%/ 329)4 5733/; 56%675� 56%675 924(� �<�

�7%/ ��� 56%675� 56%675 924(� �<��

�

� &-6� " 0)024; ,)%()4� �<��

��#)45-21 924(� �<

�(-6-1+ (74-1+ 471<6-0)� �<	�=�<
	

���"� �)8)16<(4-8)1 (470�� %33/-'%6-21):%03/)�
�<�

���"� �6-0)�)8)16 (470�� �<
�

Index-3

��� �� 685-8'33/4-� 9:':;9 =58*� �A		� �A	

�2+):853+).'4/)'2 8+62')+3+4:
(/:A5,A=58*)5/2� �A��� �A��
(/:A5,A=58*)54:'):� �A�� �A�	
�)54:852 8+2'?� �A�� �A��� �A��� �A�	
�" �)5;4:+8�� �A�

���" �*/9)8+:+)54:852 '2'83 :/3+8�� �A��
� #� �:/3+A*8/<+4 *8;3�� �A	

�� #� �:/3+�+<+4: *8;3�� �A
�
/33+*/':+ %)54:'):� �A�� �A�	
/33+*/':+ &)5/2� �A��� �A��
��� �0;36�� �A�

��� �2'(+2�� �A�	�
���" �35:58)54:852 '2'83 :/3+8�� �A��
�� �3'9:+8)54:852 8+2'?�� �A�
�� �� �3'91'(2+ +<+4: *8;3� */9)8+:+�� �A

�� �$ �3'91'(2+ +<+4: *8;3� =58*�� �A�
8+2':/54'2)54:'):� �A�� �A�	
8+9+:)5/2� �A�	� �A��
8+9+:)5/2 (/:A5,A=58*� �A�	� �A��
8+9+:)5/2 /33+*/':+� �A�	� �A��
9+:)5/2� �A�	� �A��
9+:)5/2 (/:A5,A=58*� �A�	� �A��
9+:)5/2 /33+*/':+� �A�	� �A��
!� � �(/: 9./,: 8+-/9:+8�� �A���
!�� �91/6�� �A�	�
"� �:/3+8�� �A��

%)54:'):� �A�� �A�	
&)5/2� �A��� �A��
&)54:'):� �A�� �A�	

��� �;4)54*/:/54'2 +4*�� �A

���� �)54*/:/54'2 +4*�� �A
�

�8858 56+8':/54� 2556� �A��

�88589� !� 685-8'3� A�
� �A�

�%�" �!� 685-8'3 ,25=�� A�

�>:+84'2 9;(85;:/4+
)5*+ 8+7;/8+3+4:9� �A�
-;/*+2/4+9� �A�
'))+99/4- =58*�*/9)8+:+ <'8/'(2+9� �A��
*+(;--/4-� �A�
,25':/4- 65/4: 56+8':/549� �A��
9:':/) *':' /4/:/'2/@':/54� �A
;49;6658:+* � 2'4-;'-+ ,+':;8+9� �A��

.+'*+8 +2+3+4:9� �A

.+'*+8 ,/2+ +>'362+� �A��
2/41)533'4* ,/2+ +>'362+� �A��
25'*/4- 685)+*;8+� �A	
 �� %!#�)'22 +>'362+� �A��

95;8)+ ,/2+ +>'362+� �A�

�

�/89: 9)'4 ,2'-9� 9:':;9 =58*� �A��

�58)/4- ,;4):/54� 	A�� 	A�� 	A�

�583':
���� �A�
/4:+-+8� �A	� �A

8+'2 4;3(+8� �A�

� ! �,58)+ 852+ 9='6�� �A
�

�"! A�� �!� 685-8'3 :'(2+ .'4*2/4-�� A��

�"! A�#" �!� 685-8'3 :'(2+ .'4*2/4-�� A��

�

�A3+358?�
A��

�'/4� 2556� �A��

�25('2 ��� 3+358?�
A��

��"� �!� 685-8'3 ,25=�� A		

�"! �-5 :5 9;(85;:/4+�� �A
�

�

�+'*+8� #A�+358?� �A

�

���
/9:8/(;:+� �A��� �A��
,58)/4-� 	A�� 	A�
/33+*/':+� 	A�
25)'2� �A�� �A��� �A��� �A��
35*;2+9 9;6658:/4- /33+*/':+ ���� 	A��
65/4: 4;3(+89
*+,';2:� �A��
"������"��	���"��	�"� �A�

"�����"��	�� �A��
"��
�� "����� �A�
"�����"����� �A��

8+35:+� �A�� �A��� �A��

��� ('9+ 9:':;9� 9:':;9 =58*� �A
� �A	�

��� 35*;2+ 9:':;9� 9:':;9 =58*� �A� �A	�

Index-4

��� 8716< ,-.16-,� 	B	

�� �"� 8:7/:)5 .47?�� �B
�

�5)/- :-/1;<-:
,1;+:-<-�
B	� �B�
155-,1)<- =8,)<-�
B�
67:5)4 =8,)<-�
B

?7:,�
B�� �B�

���#� �"� 8:7/:)5 16<-/-: 5)<0�� �B

��� �16,-@-, 5)<:1@ +758):-�� B��

�55-,1)<- ����
B�

�55-,1)<- ��� 16;<:=+<176;
��!& �155-,1)<- ��� :-),�?:1<-�� B�	
#�"� �;<):< 6-? !�� <);3�� B���

�55-,1)<- ' +76<)+<� �B�� B	

�55-,1)<- (+714� �B�	� B		

�6<-/-:� .7:5)<� 	B
� 	B�

�6<-/-: ,-.16-,� 	B
� 	B�

�6<-::=8< ��� 78-:)<176�
B�	C
B�

+76.1/=:16/ 16<-::=8< 57,=4-�
B�	C
B�

,-.16-,� �B��
B�	
8-:.7:5)6+- +0):)+<-:1;<1+;� �B	�
!�� 8:7/:)5� �B	�C�B	
<:7=*4-;077<16/� �B	�
=;16/ ��!& 16;<:=+<176� �B	�C�B	
=;16/ ;<)<=; ?7:, 		�� �B	�C�B
�
=;16/ ;<)<=; ?7:, 		�� �B	�
=;16/ #);3 �� �B	�C�B	

�6<-::=8< :-9=-;< +7=6<� ;<)<=; ?7:,� �B	�

�6<-::=8<16/ ;47<; 16 47+)4 *);-� ;<)<=; ?7:,� �B	

��!& �155-,1)<- ��� :-),�?:1<-��
B�� B�	

�

�� �2=58� 16;<:=+<176� B��

�

�B�-57:A� �B�

�

�B�-57:A� �B�

�B�-57:A +0-+3;=5� ;<)<=; ?7:,� �B��

����� �"� 8:7/:)5 .47?�� �B

�),,-: ��� 5-57:A� �B�

��� �4)*-4� !�� 16;<:=+<176� B�
	

��� �47),),,:-;;� 16;<:=+<176� B�

��� �47), ,)<) +76;<)6<�� B�

�������� �"� 8:7/:)5 ;1/6)4 8:7+-;;16/ 5)<0��
�B
�

���� :-57<- ;-<8716<� �B	�

���� �47+3 5-57:A� 16;<:=+<176� B	

�7/1+)4 *);-� �B��� �B	

�76/ ?7:, ,-.16-,� 	B	

�778
)4):5 ,-),*)6,� �B��
)4/7:1<05� �B� �B��
*:73-6 <:)6;51<<-:)4):5� �B�
,-:1>)<1>- /)16 4151<16/� �B	�
,->1)<176)4):5;� �B
�
,1:-+<B)+<16/� �B
�
-::7: 78-:)<176� �B	�
47+316/ 57,-� �B	�
47+316/ ;-<8716<� �B	�
57,-� 47+316/� �B	�
78-:)<176)4 ;<)<-;� �B	�
7=<8=<
	�� 7..;-<� �B��
),,:-;;� �B��
*1874):� �B��

7>-:>1-?� �B	
8:7+-;; >):1)*4-)4):5;� �B	�
:)58�;7)3� �B��
:->-:;-B)+<16/� �B
�
;)584- :)<-� �B�	
;-<8716<� 47+316/� �B	�
"� 8:7/:)5 +)44� �B	
%B.4)/;� �B��

�

��#� �"� 8:7/:)5 :-)4�16<-/-: 5)<0�� �B��

�)<0 78-:)<176;
��"% �+758=<-)*;74=<- >)4=-�� B��
��� �),,1<176�� B�	
�� �+758):-�� B	�
��% �,1>1;176�� B
	
�$�# �5=4<1841+)<176�� B���

Index-5

!� " �86:'7+ 7449�� @�
�
!#� �8:(97')9/43�� @��

���" �24947)439741 '1'72 9/2+7�� @�

�� �2'89+7)439741 7+1'>� /3897:)9/43� @��

�� �� �2'80'(1+ +;+39 *7:2� */8)7+9+�� @��

�� �% �2'80'(1+ +;+39 *7:2� <47*�� @��

�+247> 9>5+8
)4389'39 ���� �@�
)439741 7+1'>� �@�
*7:2� �@�
-14('1 ���� �@��
/2'-+ 7+-/89+7� �@�
1'**+7 ���� �@�
43+ 8.49� �@�
7+'*�<7/9+ �+'71> 24*+1)4397411+78�� �@�
7+'*'(1+ 2+247> �*+,/3+*�� �@

8./,9 7+-/89+7� �@�
85+)/'1 �!�� �@�
89'9:8 <47*� �@�
9'(1+ 24;+� �@
9+2547'7> �"�� �@�� �@��
9/2+7�)4:39+7� �@�
:8+7 8:(74:9/3+ �#�� �@��
;'7/'(1+ �$�� �@�
$��� �@��
<7/9+'(1+ 2+247> �*+,/3+*�� �@

�� �" �24;+ /2'-+ 7+-/89+7 ,742 9'(1+�� @��

�� "" �24;+ /2'-+ 7+-/89+7 94 9'(1+�� @�

�� % �24;+ /2'-+ 7+-/89+7 94 <47*�� @��
'551/)'9/43 +='251+� �@��

�4*+� 1445� 14)0/3-� �@	�

�4*:1+ ������ 24*:1+8 8:55479/3- /22+*/'9+ ����

@��

�4*:1+ 2/82'9). /3*/)'947� 89'9:8 <47*� �@��

��$� �24;+ +1+2+39�� @��

��$% �24;+ <47*�� @��

�#�" �2:19/51/)'9/43�� @���

�%�" �24;+ <47* ,742 9'(1+�� @��	
'551/)'9/43 +='251+� �@	�

�%� �24;+ <47* </9. /3*/7+)9 '**7+88/3-�� @���

�%� �24;+ <47* 94 /2'-+ 7+-/89+7�� @��
'551/)'9/43 +='251+� �@		

�%"" �24;+ <47* 94 9'(1+�� @���
'551/)'9/43 +='251+� �@	

�

�43@57/47/9> !� 574-7'2� @�	�� �@
� �@�
"�����"���� 9/2+81/)+� �@�

��" /3897:)9/43� @���

�

�3+ 8.49� @���
'551/)'9/43 +='251+� �@
�

�3+ 8.49 2+247>� �@�

�:95:9� 1445
	�� 4,,8+9� �@��
'**7+88� �@��
(/541'7� �@��

�

���� �!� 574-7'2 9'(1+ .'3*1/3-�� �@��

������ �!� 574-7'2 9'(1+ .'3*1/3-�� �@��� �@�	

�������� �!� 574-7'2 9'(1+ .'3*1/3-�� �@��

���� ! �!� 574-7'2 9'(1+ .'3*1/3-�� �@�A�@��

�'7'2+9+7 '7+'
��"! */8)7+9+� �@��
��"! <47*� �@��

�'88<47* 5749+)9/43� �@�	

��"! �5'7'2+9+7/?+* -4 94 8:(74:9/3+�� @��	

��"! */8)7+9+ 5'7'2+9+7 '7+'� �@��

��"! <47* 5'7'2+9+7 '7+'� �@��

��"!& �5'7'2+9+7/?+* -4 94 8:(74:9/3+ ?+74��
@���

�48/9/43 '1-47/9.2� 1445� �@� �@��

�4<+7 ,14<� �@

� ��" �!� 574-7'2 57/39/3-�� �@	

�7/47/9> !� 574-7'2� @�	�� �@
� �@�
"�����"���� 9/2+81/)+� �@�

Index-6

�86*,99 <(80()3, (3(849
(5(36. (3(84� �A��
3667� �A��

�86.8(44()3, *65:8633,8 9:(:;9� 9:(:;9 =68+� �A	�
�A	�

�86.8(4405. 96-:=(8,
��!� �A	

!� ��!� �A	

�

�(47�96(2� �A�

�(:,� 3667� �A��

���� �A
,<,5: +,:,*:065� �A�

�,(+()3, 4,468?�
A	

�,(3 5;4),8� -684(:� �A�

�,(3 5;4),8 +,-05,+� �A�

�,3(:065(3 *65:(*:� �A�� �A�	

�,9,:� 3667� �A��

�,9,: *603� �A�	� �A��

�,9,: *603)0:A6-A=68+� �A�	� �A��

�,9,: *603 044,+0(:,� �A�	� �A��

�,9:80*:,+ � 786.8(4� A	� A�

��!"�� � � 786.8(4 -36=�� A��

�,<,89,A(*:05.� 3667� �A	�

���)6> 059:8;*:065� �A�

��� *603� �A��

��� *65:(*:� �A

��� �59:8;*:0659� !�%!� �A��	

��� 059:8;*:0659
�� # �*647;:, ()963;:, <(3;,�� �A��
��� �(++0:065�� �A��
)0:A6-A=68+ *603� �A��� �A��
)0:A6-A=68+ *65:(*:� �A�� �A�	
��!� �)0: *3,(8�� �A�	
��!� �)0: 70*2�� �A�

��! �)0: 9,:�� �A��
� *65:863 8,3(?� �A�� �A��� �A��� �A�	
��� �*65<,8:)05(8? :6 ����� �A��
��� �*65<,8: ��� :6)05(8?�� �A��
��� �*647(8,�� �A��

�!� �*6;5:,8�� �A�

���! �+09*8,:, *65:863 (3(84 :04,8�� �A��
���� �+(:, *647(8,�� �A	�
��# �+0<09065�� �A	�
��"� �:04,A+80<,5 +8;4�� �A	

� �! �+(:, 9,:�� �A	�
���"� �:04,�,<,5: +8;4�� �A
�
��� �;5*65+0:065(3 ,5+�� �A

���� �*65+0:065(3 ,5+�� �A
�
�� �-68*, 863, 9=(7�� �A
�
�! �.6 :6 9;)86;:05,�� �A
�
��� �05+,>,+ 4(:80> *647(8,�� �A��
044,+0(:, % *65:(*:� �A�� �A�	
044,+0(:, & *603� �A��� �A��
���$ �044,+0(:, ��� 8,(+�=80:,�� �A��
��� �1;47�� �A�

��� �3(),3�� �A�	�
��� �36(+ (++8,99�� �A��
��� �36(+ +(:(*659:(5:�� �A��
���� �36*2 4,468?�� �A��
���! �46:68 *65:863 (3(84 :04,8�� �A��
��� �4(9:,8 *65:863 8,3(?�� �A�
����� �4(92()3, ,<,5: +8;4� +09*8,:,�� �A

����$ �4(92()3, ,<,5: +8;4� =68+�� �A�
����! �46<, 04(., 8,.09:,8 -864 :()3,�� �A�

���!! �46<, 04(., 8,.09:,8 :6 :()3,�� �A��
���$ �46<, 04(., 8,.09:,8 :6 =68+�� �A��
��#� �46<, ,3,4,5:�� �A��
��#$ �46<, =68+�� �A��
�"�! �4;3:0730*(:065�� �A���
�$�! �46<, =68+ -864 :()3,�� �A���
�$� �46<, =68+ =0:/ 05+08,*: (++8,9905.�� �A��

�$�� �46<, =68+ :6 04(., 8,.09:,8�� �A���
�$!! �46<, =68+ :6 :()3,�� �A���
��!� �A���
�5, 9/6:� �A���
��! �7(8(4,:,80@,+ .6 :6 9;)86;:05,�� �A���
��! ' �7(8(4,:,80@,+ .6 :6 9;)86;:05, @,86��

�A���
8,3(:065(3 *65:(*:� �A�� �A�	
8,9,: *603� �A�	� �A��
8,9,: *603)0:A6-A=68+� �A�	� �A��
8,9,: *603 044,+0(:,� �A�	� �A��
�!� �8,:;85 -864 9;)86;:05,�� �A���
 �� �9;)86;:05,�� �A���
9,: *603� �A�	� �A��
9,: *603)0:A6-A=68+� �A�	� �A��
9,: *603 044,+0(:,� �A�	� �A��
 � 786.8(4 *(33,+ -864 ���� A�
 � 9;)86;:05, �*(33 � 9;)86;:05, -864 ����� A�
 ���� � � 786.8(4 *(33�� �A��

 � "� � � 9;)86;:05, *(33�� �A���

Index-7

!� � �(/9 8./,9 7+-/89+7�� �@���
!� $ �<47* 8./,9 7+-/89+7�� �@�	�
!�� �80/5�� �@�	�
!�� �8)'3 2'97/=)425'7+�� �@�	�
!� " �86:'7+ 7449�� �@�	�
!!� �8)'3 8>3).743/?'9/43 /3./(/9�� �@�
�
!"�� �8+'7). 9'(1+ ,47 +6:'1�� �@�
�
!"�� �8+'7). 9'(1+ ,47 349 +6:'1�� �@�

!#� �8:(97')9/43�� �@�
�
"��� �9'(1+ 94 9'(1+ '3*�� �@�

"�!� �89'79 3+< �� 9'80�� �@�
�
"��� �9/2+)425'7+�� �@���
"��� �9'(1+)4251+2+39�� �@���
"� �9/2+7�� �@��

"� �9'(1+ 94 9'(1+ 47�� �@���
"!�" �9/2+ 8+9�� �@��
""�$ �9'(1+ 94 <47*�� �@���
"%� �9'(1+ 94 9'(1+ +=)1:8/;+ 47�� �@���
#��� �:314)0 2+247>�� �@��

$��� �<47* '3*�� �@���
$� �<47* 47�� �@���
$ �" �<47* 749'9+�� �@��
$"�" �<47* 94 9'(1+�� �@��
$""� �<47* 94 9'(1+ '3*�� �@�

$""� �<47* 94 9'(1+ 47�� �@��
$""%� �<47* 94 9'(1+ +=)1:8/;+ 47�� �@��
$%� �<47* +=)1:8/;+ 47�� �@���
%)439')9� �@�� �@�	
%!#� �+=9+73'1 8:(74:9/3+)'11�� �@���
&)4/1� �@��� �@��
&)439')9� �@�� �@�	

 �� 7:3- 897:)9:7+� �@�

 �� 8)'3 57/3)/51+8� �@��

 �� 8:(74:9/3+ 89')0 4;+7,14<� 89'9:8 <47*� �@��

 �� 9.+47>
(4= /3897:)9/43� �@�

)4/1� �@��
3472'1� �@��
349@+*� �@��

)43)+59� �@	
)439')9� �@

3472'1� �@

349@+*� �@�

)>)1/) ��� �@��
/22+*/'9+ ���� 	@�
54<+7 ,14<� �@	
7:3- 897:)9:7+� �@�

8)'3 57/3)/51+8� �@��
8:(74:9/3+8� �@��

 "� �7+9:73 ,742 8:(74:9/3+�� �@���

 :3@9/2+ +*/9/3-� �@	�A�@
	

�

!@�+247>�
@

!'251+ 7'9+
'3'14- '1'72� �@
1445� �@��

!� �8:(74:9/3+�� �@���

!���� �!� 574-7'2 *'9')43;+78/43 2'9.�� @��

!)'3 45+7'9/438
"������"��	���"��	�" 8>89+28� �@�
"�����"��	� 8>89+28� �@��
"��
��"���� 8>89+28� �@

8+99/3-� �@�

"���� 8>89+2� �@��
"���� 8>89+2� �@�

"���� �@��
"��� 8>89+2� 8+99/3-� �@��

!)'3 9/2+� 89'9:8 <47*� �@�� �@	

!�" �!� 574-7'2 9'(1+ .'3*1/3-�� @��

!+9)4/1� �@�	� �@��

!+9)4/1 (/9@4,@<47*� �@�	� �@��

!+9)4/1 /22+*/'9+� �@�	� �@��

!� 574)+8847 343@,'9'1 +77478� 89'9:8 <47*� �@�

!� 574-7'2
)'11+* ,742 '3'14- '1'72� �@��
)'11+* ,742 1445� �@��
)'11+* ,742 ��� �@��
� @�
+,/3+� �@��� @�

!� 574-7'2 +1+2+39 �*+,/3+*�� @��

!� 574-7'2 +77478� @�
� �@�

!� 574-7'2 +=57+88/43 �*+,/3+*�� @��

!� 574-7'2 89'9+2+398
������ ����)43;+78/43 2'9.�� @��
������ ����)43;+78/43 2'9.�� @��
���� �574-7'2 ,14<�� @��
��" �9'(1+ .'3*1/3-�� @��
������" �*4):2+39'9/43�� @

�%�" �574-7'2 ,14<�� @�

�"! @�� �9'(1+ .'3*1/3-�� @��
�"! @�#" �9'(1+ .'3*1/3-�� @��
��"� �574-7'2 ,14<�� @		

Index-8

�� �574-7'2 ,14<�� @	

���"� �/39+-+7 2'9.�� @	�
����� �574-7'2 ,14<�� @		
�������� �8/-3'1 574)+88/3- 2'9.�� @	�
��"� �7+'1�/39+-+7 2'9.�� @
�
���� �9'(1+ .'3*1/3-�� @
�
������ �9'(1+ .'3*1/3-�� @��� @��
�������� �9'(1+ .'3*1/3-�� @�

���� ! �9'(1+ .'3*1/3-�� @��A@

� ��" �57/39/3-�� @��
 �"# � �574-7'2 ,14<�� @��
!���� �*'9')43;+78/43 2'9.�� @��
!�" �9'(1+ .'3*1/3-�� @��
!! �9'(1+ .'3*1/3-�� @�
#�!���� �*'9')43;+78/43 2'9.�� @�

!� 574-7'2 9>5+8
)>)1/)� �@��
� @	� @�
343@57/47/9>� �@��
� @	� @�
57/47/9>� �@��
� @	� @�
7+897/)9+*� @	� @�

!� 8:(74:9/3+� "��
��"���� 9/2+81/)+� �@

!� 8:(74:9/3+ �)'11 !� 8:(74:9/3+ ,742 ���� @�

!���� �!� 574-7'2)'11 ,742 ���� �@��

!�!#� �!� 8:(74:9/3+)'11 ,742 ���� �@���

!./,9 7+-/89+7 2+247>�
@�

!� � �(/9 8./,9 7+-/89+7�� �@���
'551/)'9/43 +='251+� �@�

!� $ �<47* 8./,9 7+-/89+7�� �@�	�
'551/)'9/43 +='251+� �@

!�� �80/5� /3897:)9/43� �@�	�

!�� �8)'3 2'97/=)425'7+�� �@�	�

!5+)/'1 �!� 2+247>�
@

!5:7/4:8 /39+77:59)4:39� 89'9:8 <47*� �@�

!� " �86:'7+ 7449�� �@�	�

!!� �8)'3 8>3).743/?'9/43 /3./(/9�� �@�
�

!! �!� 574-7'2 9'(1+ .'3*1/3-�� @�

!9'9:8 <47*
'551/)'9/43 +='251+� �@
�
'551/)'9/43 ,1'-8� �@��� �@��
'551/)'9/43 ��� �@��
'551/)'9/43 /389'11+* ,1'-8� �@��� �@�	
('8+ 5411 +3'(1+ ,1'-8� �@��
)>)1/) �� 9'80 4;+77:3� �@��
*/8)7+9+ 8)'3 +=+):9/43 9/2+� �@��

*:'1 54<+7 8:551> 89'9:8� �@�
*:'1 �� 89'9:8� �@��
��� �� 574-7'22/3-� �@		� �@	

,/789 8)'3 ,1'-8� �@��
��� ('8+ 89'9:8� �@
� �@	�
��� 24*:1+ 89'9:8� �@� �@	�
/39+77:59 7+6:+89)4:39� �@�
/39+77:59/3- 81498 /3 14)'1 ('8+� �@��
�@�+247>).+)08:2� �@��
24*:1+ 2/82'9). /3*/)'947� �@��
574-7'22'(1+)4397411+7 89'9:8� �@	� �@	�
7+)+/;+ +77478� 9/2+4:9 +77478� �@��
 �� 8:(74:9/3+ 89')0 4;+7,14<� �@��
8)'3 9/2+� �@�� �@	

!� 574)+8847 343@,'9'1 +77478� �@�

85:7/4:8 /39+77:59)4:39� �@�
9/2+ *'9'� �@	�� �@��
#@�+247>).+)08:2� �@�

:8+7 +7747)':8+� �@��

!9'9:8 <47* 2+247>�
@�

!"�� �8+'7). 9'(1+ ,47 +6:'1�� �@�
�

!"�� �8+'7). 9'(1+ ,47 349 +6:'1�� �@�

!#� �8:(97')9/43�� �@�
�

!:(74:9/3+� +=9+73'1
'))+88/3- <47*�*/8)7+9+ ;'7/'(1+8� �@��
)4*/3- 7+6:/7+2+398� �@�
*+(:--/3-� �@�
,14'9/3- 54/39 45+7'9/438� �@��
-:/*+1/3+8� �@�
.+'*+7 +1+2+398� �@

.+'*+7 ,/1+ +='251+� �@��
1/30)422'3* ,/1+ +='251+� �@��
14'*/3- 574)+*:7+� �@	
 �� %!#�)'11 +='251+� �@��
84:7)+ ,/1+ +='251+� �@�

89'9/) *'9' /3/9/'1/?'9/43� �@
:38:55479+* � 1'3-:'-+ ,+'9:7+8� �@��

!:(74:9/3+ /3897:)9/438
�"! �-4 94 8:(74:9/3+�� �@
�
��"! �5'7'2+9+7/?+* -4 94 8:(74:9/3+�� �@���
��"!& �5'7'2+9+7/?+* -4 94 8:(74:9/3+ ?+74��

�@���
 "� �7+9:73 ,742 8:(74:9/3+�� �@���
!� �8:(74:9/3+�� �@���
%!#� �+=9+73'1 8:(74:9/3+)'11�� �@���

!:(74:9/3+8� �@��

!:(8)7/59/3- ;'7/'(1+8� !� 574-7'2 2'9.� @

Index-9

�

!>�*136=�
>
� >��

!&'0* 13:* 1*136=�
>�

!&'0* 34*6&8.327
����! �13:* .1&,* 6*,.78*6 +631 8&'0*�� �>�

���!! �13:* .1&,* 6*,.78*6 83 8&'0*�� �>��
 !�� �7*&6(- 8&'0* +36 *59&0�� �>�
�
 !�� �7*&6(- 8&'0* +36 238 *59&0�� �>�

!��� �8&'0* 83 8&'0* &2)�� �>�

!��� �8&'0* (3140*1*28�� �>���
!�� �8&'0* 83 8&'0* 36�� �>���
!!�$ �8&'0* 83 ;36)�� �>���
!%�� �8&'0* 83 8&'0* *<(097.:* 36�� �>���
$!�! �;36) 83 8&'0*�� �>��
$!!� �;36) 83 8&'0* &2)�� �>�

$!!� �;36) 83 8&'0* 36�� �>��
$!!%� �;36) 83 8&'0* *<(097.:* 36�� �>��

!��� �8&'0* 83 8&'0* &2)�� �>�

!&7/� ��� 463,6&1 7*,1*287� �>��

!� � �78&68 2*; ��� 8&7/�� �>��� �>�
�

!��� �8.1* (314&6*�� �>���

!��� �8&'0* (3140*1*28�� �>���

!*1436&6= �!� 1*136=�
>
� >��

!�%!� !*<8 �3<)3(91*28&8.32� �>��	

!*<8 '3<� �>��	

!������!��	���!��	�! 7=78*17
3:*6:.*;� �>��?�>�
7(&2 34*6&8.32� �>�

!�����!��	� 7=78*17
3:*6:.*;� �>��?�>��
7(&2 34*6&8.32� �>��

!��
��!���� 7=78*17
3:*6:.*;� �>�?�>�
7(&2 34*6&8.32� �>

!����� 7(&2 34*6&8.32� �>��

!�����!���� 7=78*1� 3:*6:.*;� �>��?�>��

!����� 7(&2 34*6&8.32� �>�

!��� 7=78*1
3:*6:.*;� �>��?�>�
7(&2 34*6&8.32� �>��

!.1*)&8&� �>	�
78&897 ;36)� �>��

!.1* 3+)&=� '.2&6= 78&897 ;36) +36� �>	�� �>		�
�>��� �>��

!.1* 70.(*� &2&03, 8&7/ 463(*77.2,� �>�?�>

!.1*6�(3928*6 1*136=�
>�

!� ��!� 463,6&11.2, 73+8;&6*� �>	

!�� �8.1*6�� �>��

&440.(&8.32 *<&140*� �>�

!�� �8&'0* 83 8&'0* 36�� �>���

!6&271.88*6 &0&61� '63/*2� 0334� �>�

! �! �8.1* 7*8�� �>��

!!�$ �8&'0* 83 ;36)�� �>���

!92.2, 03347� �>��

!%�� �8&'0* 83 8&'0* *<(097.:* 36�� �>���

�

">�*136=�
>��
*<8*62&0 79'6398.2* &2)� �>

-*&)*6� �>

">�*136= (-*(/791� 78&897 ;36)� �>�

"�� �94>)3;2 (3928*6�� �>���

"��� �9203(/ 1*136=� .27869(8.32� �>��

"� ���� � � 463,6&1)&8& (32:*67.32 1&8-��
>�

"7*6 *6636 (&97*� 78&897 ;36)� �>��

"7*6 79'6398.2* �"� 1*136=�
>��

�

#>+0&,7
&2&03, &0&61� �>�
0334� �>��

#>�*136=�
>

#&6.&'0* �#� 1*136=�
>

#&6.&'0* 79'7(6.48.2,� � 463,6&1 1&8-� >

#*03(.8= &0,36.8-1� 0334� �>� �>��

#��'97� &))6*77� &((*77.2, 232>*<.78*28� �>���
�>��

#��'97 *6636�
>��� �>��� �>��

Index-10

�

 ��� �6/1& #.&�� �9���

 �� �6/1& /1�� �9��

 /1& &'(+.'&� �9�

 /1& +-#)' 1')+23'1� �9
� 	9	

 /1& -/5'2
��� �,/#& #&&1'22�� �9
�
��� �,/#& # %/.23#.3�� �9��
��� �-/5' +-#)' 1')+23'1 3/ 6/1&�� �9
���� �-/5' ','-'.3�� �9��
��� �-/5' 6/1&�� �9�
� �� �-/5' 6/1& (1/- 3#$,'�� �9���
� � �-/5' 6/1& 6+3* +.&+1'%3 #&&1'22+.)�� �9��	
� �� �-/5' 6/1& 3/ +-#)' 1')+23'1�� �9���
� �� �-/5' 6/1& 3/ 3#$,'�� �9��
��� �6/1& 2*+(3 1')+23'1�� �9���

 1+3'#$,' -'-/18� 	9�

 ��� �6/1& 1/3#3'�� �9���

 ��� �6/1& 3/ 3#$,'�� �9���

 ��� �6/1& 3/ 3#$,' #.&�� �9��	

 ��� �6/1& 3/ 3#$,' /1�� �9���

 ��!� �6/1& 3/ 3#$,' '7%,42+5' /1�� �9��

 !�� �6/1& '7%,42+5' ���� #00,+%#3+/. '7#-0,'�
�9��

 !�� �6/1& '7%,42+5' /1�� �9��

�

! %/.3#%3�
9� �9��

!��� �'73'1.#, 24$1/43+.' %#,,�� �9��

�

" %/+,�
9��� �9��

" %/.3#%3�
9� �9��

	Cover
	Contents
	List of Figures
	Preface
	1 Series 505/500 System Overview
	1.1 The TI545 and TI555 Systems
	1.2 The TI560/TI565 System
	1.3 The TI575 System
	1.4 The TI525/TI535 Systems
	1.5 The TI520C/TI530C/TI530T Systems

	2 Data Representation
	2.1 Definitions
	2.2 Integers
	2.3 Real Numbers and Binary-Coded Decimal
	2.4 Format for an Address Stored in a Memory Location

	3 I/O Concepts
	3.1 Reading and Updating the I/O
	3.2 Normal I/O Updates
	3.3 High Speed I/O Updates
	3.4 Interrupt I/O Operation
	3.5 Control Relays

	4 Controller Memory
	4.1 Introduction to Controller Memory
	4.2 Controller Memory Types

	5 Programming Concepts
	5.1 RLL Components
	5.2 Program Compile Sequence
	5.3 Using Subroutines (TI545, TI555, TI560/TI565, and TI575)
	5.4 Cyclic RLL
	5.5 Interrupt RLL
	5.6 Using Real-Time Clock Data (TI545, TI555, TI560/TI565, TI575)
	5.7 Entering Relay Ladder Logic
	5.8 Doing Run-Time Program Edits
	5.9 Password Protection

	6 RLL Instruction Set
	6.1 Safety Considerations
	6.2 Introduction
	6.3 Absolute Value
	6.4 Add
	6.5 Bit Clear
	6.6 Bit Pick
	6.7 Bit Set
	6.8 Convert Binary to BCD
	6.9 Convert BCD to Binary
	6.10 Compare
	6.11 Coils
	6.12 Contacts
	6.13 Counter (Up Counter)
	6.14 Discrete Control Alarm Timer
	6.15 Date Compare
	6.16 Divide
	6.17 Time Driven Drum
	6.18 Date Set
	6.19 Time/Event Driven Drum
	6.20 Unconditional End
	6.21 Conditional End
	6.22 Force Role Swap
	6.23 Go To Subroutine
	6.24 Indexed Matrix Compare
	6.25 Immediate I/O Read/Write
	6.26 Jump
	6.27 Load Address
	6.28 Load Data Constant
	6.29 Lock Memory
	6.30 Motor Control Alarm Timer
	6.31 Master Control Relay
	6.32 Maskable Event Drum, Discrete
	6.33 Maskable Event Drum, Word
	6.34 Move Image Register From Table
	6.35 Move Image Register To Table
	6.36 Move Image Register To Word
	6.37 Move Element
	6.38 Move Word
	6.39 Multiply
	6.40 Move Word From Table
	6.41 Move Word with Index
	6.42 Move Word to Image Register
	6.43 Move Word to Table
	6.44 NOT
	6.45 One Shot
	6.46 Parameterized Go To Subroutine
	6.47 Parameterized Go To Subroutine (Zero)
	6.48 Return from Subroutine
	6.49 Subroutine
	6.50 Call an SF Program
	6.51 Call SF Subroutines from RLL
	6.52 Bit Shift Register
	6.53 Word Shift Register
	6.54 Skip / Label
	6.55 Scan Matrix Compare
	6.56 Square Root
	6.57 Scan Synchronization Inhibit
	6.58 Search Table for Equal
	6.59 Search Table for Not Equal
	6.60 Subtract
	6.61 Table to Table AND
	6.62 Start New RLL Task
	6.63 Time Compare
	6.64 Table Complement
	6.65 Text
	6.66 Timer
	6.67 Table to Table OR
	6.68 Time Set
	6.69 Table to Word
	6.70 Table to Table Exclusive OR
	6.71 Up/Down Counter
	6.72 Unlock Memory
	6.73 Word AND
	6.74 Word OR
	6.75 Word Rotate
	6.76 Word to Table
	6.77 Word to Table AND
	6.78 Word to Table OR
	6.79 Word to Table Exclusive OR
	6.80 Word Exclusive OR
	6.81 External Subroutine Call

	7 Special Function Programs
	7.1 Defining Special Function Programs
	7.2 SF Program Statements
	7.3 Executing Special Function Programs
	7.4 Executing Special Function Subroutines
	7.5 Memory Usage by SF Programs
	7.6 Entering SF Program Header with TISOFT
	7.7 Reporting SF Program or SFSUB RLL Instruction Errors
	7.8 Entering Special Function Programming Statements
	7.9 Convert BCD to Binary
	7.10 Convert Binary Inputs to BCD
	7.11 Call Subroutine
	7.12 Correlated Data Table
	7.13 Exit on Error
	7.14 Fall Through Shift Register—Input
	7.15 Fall through Shift Register—Output
	7.16 Go To/Label Function
	7.17 IF/THEN/ELSE Functions
	7.18 Integer Math Operations
	7.19 Lead/Lag Operation
	7.20 Real/Integer Math Operations
	7.21 Pack Data
	7.22 Pack Analog Alarm Data
	7.23 Pack Loop Data
	7.24 Pack Ramp/Soak Data
	7.25 Printing
	7.26 Return from SF Program/Subroutine
	7.27 Scaling Values
	7.28 Sequential Data Table
	7.29 Synchronous Shift Register
	7.30 Unscaling Values
	7.31 Comment

	8 Programming Analog Alarms
	8.1 Overview
	8.2 Analog Alarm Programming and Structure
	8.3 Specifying Analog Alarm V-Flag Address
	8.4 Specifying Analog Alarm Sample Rate
	8.5 Specifying Analog Alarm Process Variable Parameters
	8.6 Specifying Analog Alarm Deadband
	8.7 Specifying Analog Alarm Process Variable Alarm Limits
	8.8 Specifying Analog Alarm Setpoint Parameters
	8.9 Specifying Analog Alarm Special Function Call
	8.10 Specifying Analog Alarm Setpoint Deviation Limits
	8.11 Specifying Other Analog Alarm Process Variable Alarms

	9 Programming Loops
	9.1 Overview
	9.2 Using the PID Loop Function
	9.3 Loop Algorithms
	9.4 Programming Loops
	9.5 Specifying Loop PID Algorithm
	9.6 Specifying LOOP VFLAG ADDRESS
	9.7 Specifying Loop Sample Rate
	9.8 Specifying Loop Process Variable Parameters
	9.9 Specifying Loop Ramp/Soak Profile
	9.10 Specifying Loop Output Parameters
	9.11 Specifying Loop Alarm Deadband
	9.12 Specifying Loop Process Variable Alarm Limits
	9.13 Specifying Loop Setpoint Parameters
	9.14 Specifying Loop Tuning Parameters
	9.15 Specifying Loop Derivative Gain Limiting
	9.16 Specifying Loop Special Function Call
	9.17 Specifying Loop Locked Changes
	9.18 Specifying Loop Error Operation
	9.19 Specifying Reverse Acting Loops
	9.20 Specifying Loop Setpoint Deviation Limits
	9.21 Specifying Other Loop Process Variable Alarms

	Appendix
	A Memory and Variable Types
	A.1 RLL Variable Access (TI545, TI555, TI560, TI575)
	A.2 SF Program Variable Access (TI545, TI555, TI565, TI575)
	A.3 RLL Variable Access — Early Model Controllers

	B Appendix
	B.1 Memory Requirements

	C Appendix
	C.1 Calculating Performance for the TI545, TI555, and TI575
	C.2 Tuning the TI545/TI555/TI575 Timeline
	C.3 Calculating Performance for the TI560
	C.4 RLL Execution Times for High-End Controllers
	C.5 SF Program Statement Execution Times for the TI545/TI555/TI575
	C.6 Calculating Performance for the TI520C, TI530C, TI530T, TI525, and TI535

	D Appendix
	D.1 Loop Flags
	D.2 Analog Alarm Flags

	E Appendix
	E.1 Using the SHRB
	E.2 Using the SHRW
	E.3 Using the TMR
	E.4 Using the BITP
	E.5 Using the DRUM
	E.6 Using the EDRUM
	E.7 Using the MIRW
	E.8 Using the MWIR
	E.9 Using the MWTT
	E.10 Using the MWFT
	E.11 Using the WXOR
	E.12 Using the CBD
	E.13 Using the CDB
	E.14 Using the One Shot
	E.15 Using the DCAT
	E.16 Using Status Words

	F Appendix
	G Appendix
	G.1 Status Words for the TI545/TI555/TI560/TI565/TI575 Controllers
	G.2 Status Words for the TI520C/TI530C/TI530T/TI525/TI535 Controllers

	H Appendix
	H.1 Designing the External Subroutine
	H.2 U-Memory Format
	H.3 Guidelines for Creating C Language Subroutines
	H.4 Developing an External Subroutine — Example

	Index

