
SIMATIC 575

Interboard Communications Specification

User Manual

Order Number: PPX:575–8103–2
Second Edition

! DANGER
DANGER indicates an imminently hazardous situation that, if not avoided, will
result in death or serious injury.

DANGER is limited to the most extreme situations.

! WARNING
WARNING indicates a potentially hazardous situation that, if not avoided, could
result in death or serious injury, and/or property damage.

! CAUTION
CAUTION indicates a potentially hazardous situation that, if not avoided, could
result in minor or moderate injury, and/or damage to property.

CAUTION is also used for property-damage-only accidents.

Copyright 1995 by Siemens Industrial Automation, Inc.
All Rights Reserved — Printed in USA

Reproduction, transmission, or use of this document or contents is not permitted without express consent of
Siemens Industrial Automation, Inc. All rights, including rights created by patent grant or registration of a utility model or design, are
reserved.

Since Siemens Industrial Automation, Inc., does not possess full access to data concerning all of the uses and applications of
customer’s products, we do not assume responsibility either for customer product design or for any infringements of patents or rights
of others which may result from our assistance.

MANUAL PUBLICATION HISTORY

SIMATIC 575 Interboard Communications Specification
Order Manual Number: PPX:575–8103–2

Refer to this history in all correspondence and/or discussion about this manual.

Event Date Description

Original Issue 03/93 Original Issue (2801373–0001)
Second Edition 06/95 Second Edition (2801373–0002)

LIST OF EFFECTIVE PAGES

Pages Description Pages Description

Cover/Copyright Second
History/Effective Pages Second
1 — 86 Second

Registration Second

Customer Response

We would like to know what you think about our user manuals so that we can serve you better.
How would you rate the quality of our manuals?

Excellent Good Fair Poor

Accuracy
Organization
Clarity
Completeness
Graphics
Examples
Overall design
Size
Index

Would you be interested in giving us more detailed comments about our manuals?

Yes! Please send me a questionnaire.

No. Thanks anyway.

Your Name:

Title:

Telephone Number: ()

Company Name:

Company Address:

Manual Name: SIMATIC 575 Interboard Communications Specification Edition: Second

Manual Assembly Number: 2589734–0004 Date: 6/95

Order Number: PPX:575–8103–2

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.3 JOHNSON CITY, TN

FOLD

FOLD

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ATTN: Technical Communications M/S 519
SIEMENS INDUSTRIAL AUTOMATION INC.
3000 BILL GARLAND RD
P O BOX 1255
JOHNSON CITY TN 37605–1255

Interboard Communications Specification TABLE OF CONTENTS

PPX:575-8103-2 1

1. INTRODUCTION.. 7

1.1 SCOPE .. 7
1.2 SYSTEM DATA STRUCTURES .. 7
1.3 APPLICATIONS .. 12

1.3.1 Application Assignment... 12
1.3.2 Application Dependencies... 13
1.3.3 G Memory... 13

1.4 SYSTEM MODE CHANGE.. 13

2. POWER-UP/RESET PROCESSING .. 14

2.1 INTRODUCTION. .. 14
2.2 POWER-FAIL RECOVERY.. 14
2.3 POWER-UP RESET PROCESSING.. 15

2.3.1 Phases of power-up/reset... 15
2.3.2 Power-up/reset -- Primary 575 Processing .. 18
2.3.3 Power-up/reset -- Secondary 575 Processing... 24
2.3.4 Power-up/reset -- Third-Party Masters using IRQ6. .. 27
2.3.5 Power-up/reset -- Slave Boards using IRQ6 IACK daisy-chain.. 28
2.3.6 Power-up/reset -- Boards with preassigned LARs. ... 29
2.3.7 Boards which cannot log in any other way. ... 30

3. RLL LOCKS.. 31

3.1 INTRODUCTION. .. 31
3.2 LOCK MANIPULATION PROCEDURES... 31

3.2.1 S$LOCKS - Obtain Shared Control Of An RLL Lock... 32
3.2.2 S$LOCKX - Obtain Exclusive Control Of An RLL Lock .. 34
3.2.3 S$UNLOCK - Release An RLL Lock.. 36

4. INTERBOARD COMMUNICATIONS.. 37

5. MODE CHANGE .. 40

5.1 INITIATING A MODE CHANGE .. 40
5.2 DETECTING A MODE CHANGE.. 40

6. MEMORY MANAGEMENT.. 41

6.1 BUILDING SYSTEM HEAP ... 41
6.2 USING SYSTEM HEAP .. 41
6.3 ALLOCATING SYSTEM HEAP .. 41
6.4 FINDING ALLOCATED SYSTEM HEAP .. 42
6.5 RELEASING SYSTEM HEAP ... 42

7. INTERBOARD MESSAGES .. 43

7.1 MESSAGE 000116 - CONFIGURE PORT ... 44
7.2 MESSAGE 000216 - READ PORT CONFIGURATION .. 45
7.3 MESSAGE 000316 - CONNECT TO PORT... 46
7.4 MESSAGE 000416 - DISCONNECT FROM PORT ... 47
7.5 MESSAGE 000516 - READ PORT CONNECTIONS.. 48
7.6 MESSAGE 001B16 - ALLOCATE MEMORY FROM SYSTEM HEAP .. 49
7.7 MESSAGE 001C16 - RELEASE MEMORY TO SYSTEM HEAP ... 50
7.8 MESSAGE 001D16 - REPORT AVAILABLE MEMORY.. 51
7.9 MESSAGE 001E16 - EXECUTE APPLICATION TASK ... 52

8. INTERBOARD COMMUNICATIONS UTILITIES.. 53

Interboard Communications Specification TABLE OF CONTENTS

PPX:575-8103-2 2

8.1 C$ENQMSG - ENQUE MESSAGE TO IBC AREA .. 53
8.2 C$REPLY - SEND REPLY TO AN IBC MESSAGE .. 54
8.3 C$SEND - SEND INTERBOARD MESSAGE .. 55
8.4 C$SENDAA - SEND APPLICATION-TO-APPLICATION MESSAGE ... 57
8.5 C$SENDAB - SEND APPLICATION-TO-BOARD MESSAGE... 58
8.6 C$SENDBA - SEND BOARD-TO-APPLICATION MESSAGE... 59
8.7 C$SENDBB - SEND BOARD-TO-BOARD MESSAGE .. 60
8.8 MU$GET - OBTAIN A MUTEX.. 61
8.9 MU$REL - RELEASE A MUTEX... 62

9. DATA DICTIONARY ... 63

9.1 TYPE APP_ID : APPLICATION ID. ... 63
9.2 TYPE APPOPMOD : APPLICATION OPERATIONAL MODE. .. 63
9.3 VARIABLE APPTBL : VME_PTR TO THE APPLICATION TABLE... 63
9.4 RECORD APPTBLEN : APPLICATION TABLE ENTRY. ... 64
9.5 TYPE APPTYPE : APPLICATION TYPE CODE. .. 65
9.6 VARIABLE BATGOOD : "BATTERY GOOD" FLAG.. 65
9.7 TYPE BOARD_TYPE : BOARD ID CODE. ... 65
9.8 TYPE BOOLEAN : BOOLEAN. .. 65
9.9 VARIABLE BRDTBL : VME_PTR TO THE BOARD TABLE. .. 65
9.10 RECORD BRDTBLEN : BOARD TABLE ENTRY... 66
9.11 VARIABLE BRDTBLMU : BOARD TABLE MUTEX. ... 67
9.12 TYPE CLOCK_TICKS : CLOCK TICKS. ... 67
9.13 RECORD GCSR : GLOBAL CONTROL AND STATUS REGISTER.. 68
9.14 RECORD GSDA : GLOBAL SYSTEM DATA AREA... 69
9.15 VARIABLE GSDAFMT : GLOBAL SYSTEM DATA AREA FORMAT VERSION NUMBER. ... 70
9.16 VARIABLE IAPPLMAP : INSTALLED APPLICATION MAP... 70
9.17 RECORD IBCAREA : INTERBOARD COMMUNICATIONS AREA. .. 70
9.18 RECORD IBCMSG : INTERBOARD MESSAGE. ... 71
9.19 TYPE IBCPROT : INTERBOARD COMMUNICATIONS PROTOCOL... 72
9.20 TYPE INTRCODE : INTERRUPT LOCATION ACCESS CODE.. 72
9.21 TYPE LAR : BOARD LOGICAL ADDRESS... 73
9.22 TYPE MUTEX : MUTUAL EXCLUSION SEMAPHORE. ... 73
9.23 VARIABLE MY_APP_ID : APPLICATION ID OF THE CURRENT APPLICATION. ... 73
9.24 VARIABLE MY_LAR : LAR OF THE CURRENT BOARD. ... 73
9.25 VARIABLE PFSAVAR : POWER FAIL SAVE AREA ... 74
9.26 RECORD PORT_ID : PORT ID. .. 74
9.27 TYPE PTR : POINTER. ... 74
9.28 VARIABLE PURCMD : PRIMARY 575 COMMAND. .. 75
9.29 VARIABLE PURDONE : "BOARD LOGIN COMPLETE" FLAG. ... 75
9.30 VARIABLE PURPHASE : POWER-UP/RESET PHASE. ... 75
9.31 TYPE RLL_LOCK : RLL LOCK... 76
9.32 VARIABLE SBRDNSBR : INDEX OF NEXT ENTRY IN SBRDTBL. ... 76
9.33 VARIABLE SBRDTBL : VME_PTR TO THE SLAVE BOARD TABLE... 76
9.34 RECORD SBRDTBLE : SLAVE BOARD TABLE ENTRY... 77
9.35 VARIABLE SBRDTMUX : SLAVE BOARD TABLE MUTEX.. 77
9.36 VARIABLE SDT : VME_PTR TO THE SYSTEM DESCRIPTOR TABLE.. 77
9.37 RECORD SDTENT : SYSTEM DESCRIPTOR TABLE ENTRY. .. 78
9.38 VARIABLE SDTNMLAR : NEXT VME MASTER LAR. ... 78
9.39 VARIABLE SDTNSDT : INDEX OF NEXT ENTRY IN THE SDT. .. 78
9.40 VARIABLE SDTNSLAR : NEXT VME SLAVE LAR. ... 78
9.41 RECORD SHEAPHDR : HEADER FOR A BLOCK OF MEMORY IN SYSTEM HEAP. ... 79
9.42 TYPE SHORT_VME_PTR : POINTER INTO SHORT VME SPACE (A16 SPACE). ... 79
9.43 TYPE SINT8 : 8-BIT SIGNED INTEGER. .. 79

Interboard Communications Specification TABLE OF CONTENTS

PPX:575-8103-2 3

9.44 TYPE SINT16 : 16-BIT SIGNED INTEGER.. 79
9.45 TYPE SINT32 : 32-BIT SIGNED INTEGER.. 79
9.46 VARIABLE SYSCONFG : PRIMARY 575 CONFIGURATION OPTIONS .. 80
9.47 RECORD SYSIOCEN : SYSTEM I/O CONFIGURATION TABLE ENTRY... 81
9.48 VARIABLE SYSIOCMU : SYSTEM I/O CONFIGURATION TABLE MUTEX. ... 81
9.49 VARIABLE SYSIOCNE : INDEX OF NEXT ENTRY IN SYSIOCTB.. 81
9.50 VARIABLE SYSIOCTB : VME_PTR TO THE SYSIOCEN... 81
9.51 VARIABLE SYSTOD : SYSTEM TIME-OF-DAY. .. 81
9.52 VARIABLE SYSTODMU : SYSTEM TIME-OF-DAY ACCESS MUTEX... 82
9.53 RECORD TIME_OF_DAY : TIME OF DAY... 82
9.54 TYPE UINT8 : 8-BIT UNSIGNED INTEGER... 82
9.55 TYPE UINT16 : 16-BIT UNSIGNED INTEGER... 82
9.56 TYPE UINT32 : 32-BIT UNSIGNED INTEGER... 82
9.57 TYPE VME_PTR : POINTER TO AN OBJECT IN GLOBALLY ACCESSIBLE MEMORY... 82

10. GSDA FORMAT CHANGES.. 83

10.1 GSDA FORMAT CHANGES FOR SIMATIC 575 RELEASE 1.0 .. 83
10.2 GSDA FORMAT CHANGES FOR SIMATIC 575 RELEASE 2.0 .. 84
10.3 GSDA FORMAT CHANGES FOR SIMATIC 575 RELEASE 3.1. ... 85

11. IBC ERROR CODES .. 86

Interboard Communications Specification TABLE OF FIGURES

PPX:575-8103-2 4

FIGURE 1-1 SYSTEM DATA STRUCTURES.. 9
FIGURE 1-2 GLOBAL SYSTEM DATA AREA (GSDA).. 10
FIGURE 1-3 SYSTEM TIME OF DAY FORMAT (SYSTOD) ... 10
FIGURE 1-4 BOARD TABLE ENTRY FORMAT (BRDTBL) ... 11
FIGURE 1-5 APPLICATION TABLE ENTRY FORMAT (APPTBL)... 11
FIGURE 1-6 SYSTEM DESCRIPTOR TABLE ENTRY FORMAT (SDT).. 11
FIGURE 1-7 SLAVE BOARD TABLE ENTRY FORMAT (SBRDTBL) .. 12
FIGURE 2-1 PURPHASE STATES - ASSERT SYSRESET*.. 16
FIGURE 2-2 PURPHASE STATES - DO NOT ASSERT SYSRESET* .. 17
FIGURE 4-1 INTERBOARD COMMUNICATION AREA HEADER FORMAT (IBCAREA)... 37
FIGURE 4-2 MESSAGE ENTRY FORMAT (IBCMSG)... 38

Interboard Communications Specification TABLE OF TABLES

PPX:575-8103-2 5

TABLE 4-1 INTERBOARD MESSAGE TYPE (IBMTYPE) SUMMARY... 39

Interboard Communications Specification PREFACE

PPX:575-8103-2 6

PREFACE
This document describes the methods and algorithms used for boards in the SIMATIC 575 system to
communicate with each other. The organization of this document is as follows:

Section 1, Introduction Describes the basic concepts of SIMATIC 575
interboard communications.

Section 2, Power-Up/Reset Processing Describes the power-up/reset sequence including
how boards are logged into the system and power-
fail recovery.

Section 3, RLL locks Describes RLL locks.

Section 4, Interboard Communications Describes how boards pass messages to one another.

Section 5, Mode Change Describes how to perform mode changes.

Section 6, Memory Management Describes how boards can obtain memory from the
System Heap.

Section 7, Interboard Messages Describes each of the IBC messages.

Section 8, Interboard Communications Utilities Describes a set of routines that implement
interboard communications in the SIMATIC 575
system.

Section 9, Data Dictionary Contains definitions of the data types, record
structures, and variables used in the SIMATIC 575
system.

Section 10, GSDA Format Changes Contains the changes made to the GSDA data
structure and in what release of software those
changes were made.

Section 11, IBC Error Codes Contains the error codes and error descriptions for
the messaging system.

Interboard Communications Specification Introduction

PPX:575-8103-2 7

1. INTRODUCTION
This section describes the basic concepts for interboard communication (IBC) within a SIMATIC 575
system. The SIMATIC 575 system is an open architecture Programmable Logic Controller(PLC) which is
built on the concept of multiple CPUs operating together in a VMEbus backplane. Each of the CPUs in the
SIMATIC 575 system have SIMATIC 545 functional capabilities with extensions for interlocking
applications (running on each CPU) and interboard communication. Provisions are made for third-party
boards to participate in system operation and communicate across the VMEbus backplane as necessary to
satisfy the requirements for the particular system application.

1.1 Scope
The scope of this specification applies to the messaging system within the SIMATIC 575 chassis only.

1.2 System Data Structures
When the SIMATIC 575 powers up and after all boards have completed power up diagnostics and de-
asserted SYSFAIL*, the primary CPU initializes the system data structures which are used for system
configuration (Board Log-in) and for interboard communication via the VMEbus backplane. The primary
CPU then sequences through a procedure (described in Section 2, Power-Up/Reset Processing) which allows
all boards to log into the various tables contained in the system data structures.

The relationship between the data structures is shown in Figure 1-1 System Data Structures. Each
structure's details are explained in Section 9 Data Dictionary, which contains definitions of the data types,
record structures, and variables used in the SIMATIC 575 system. For any changes to the GSDA format
see Section 10 GSDA Format Changes.

Interboard Communications Specification Introduction

PPX:575-8103-2 8

The first structure of interest is the Global System Data Area (GSDA). This data structure resides at VME
A24 address 0 (standard non-privileged data access) if the 575 CPU is in AUTO-CONFIGURED mode. If
the 575 CPU is in USER-CONFIGURED mode the GSDA data structure resides at the VME A24 BASE-
ADDRESS determined by the selection of SW3 and SW4 on the Primary 575’s 505-remote I/O annex card
(see the 575 System Manual PPX:575-8101-5). The GSDA contains variables that indicate the next
available entry into other data structures and pointers to these structures. These entry indexes and
pointers are used during board login at power-up/reset time. The format of GSDA is shown in Figure 1-2
Global System Data Area (GSDA). See Record GSDA in Section 9, Data Dictionary, for a description of the
elements. The four most important pointers contained within GSDA are listed here.

BRDTBL Points to the Board Table which contains an entry for each master board that logs into
the SIMATIC 575 system. The format of BRDTBL entry is shown in Figure 1-4 Board
Table Entry Format (BRDTBL). See Record BRDTBLEN in Section 9, Data Dictionary,
for a description of a table entry.

The primary areas of interest in this entry are the protocol type indicator, the pointer to
the boards interrupt location if supported, interrupt location access method along with
associated masks, and the pointer to the board's interboard communication area
(IBCAREA). The board's IBCAREA contains head and tail pointers to a linked list of
messages intended for that board. These are the principal elements used for interboard
communication and are discussed further in Section 4. In addition, an 128 byte
buffer(BTEPWRKA) is provided as a private work area.

SDT Points to the System Descriptor Table which contains a list of the boards and the VME
Medium Address (A24) space assigned to the board. The format of an SDT entry is shown
in Figure 1-6 System Descriptor Table Entry Format (SDT). See Record SDTEN in
Section 9, Data Dictionary, for a description of a table entry.

APPTBL Points to the Application Table which contains a list of the Applications and the boards on
which they execute. Application dependencies on other Applications and a pointer to the
Application's G Memory are also contained in this table. The format of an APPTBL entry
is shown in Figure 1-5 Application Table Entry Format (APPTBL). See Record
APPTBLEN in Section 9, Data Dictionary, for a description of a table entry. Applications
and G Memory are discussed further in Paragraph 1.3, Applications.

SBRDTBL Points to the Slave Board Table which contains an entry for each slave board that logs
into the SIMATIC 575 system. The format of SBRDTBL entry is shown in Figure 1-7
Slave Board Table Entry Format (SBRDTBL). See Record SBRDTBLE in Section 9, Data
Dictionary, for a description of a table entry. The entry has a pointer to the Slave Board
Specific Table which may or may not exist depending upon the Slave board function.

Interboard Communications Specification Introduction

PPX:575-8103-2 9

Figure 1-1 System Data Structures

G Memory (a) G Memory (b)

MSG

MSG

MSG

MSG

.

.

.

BRDTBLEN[1]

BTEIBCAP

BRDTBLEN[0]

Board Table

SBRDTBL

SDT

APPTBL

BRDTBL

GSDA

.

.

.

SDTEN[1]

SDTEN[0]

SDT TABLE

Pointer to Slave
Board Specific

Table

VME A24
base

Address

APPTBLEN[2]

APPTBLEN[1]

Application
Table

SBRDTBLE[1]

STEBRDSP

SBRDTBLE[0]

Slave Board
Table

IBATAIL

IBAHEAD

Inter-Board
Comm Area

Interboard Communications Specification Introduction

PPX:575-8103-2 10

Offset 31 24 23 16 15 08 07 00
0000 GSDAFMT[0] GSDAFMT[1]
0004 BATGOOD filler PURDONE PURPHASE
0008 PURCMD
000C PURRESP
0010 SDTNMLAR SDTNSLAR SDTNSDT
0014 SDT
0018 filler BRDTBLMU
001C BRDTBL
0020 APPTBL
0024 filler SYSTODMU
0028
002C

SYSTOD
(see Figure 1-3)

0030 filler SBRDTMUX SBRDNSBR
0034 SBRDTBL
0038 filler SYSIOCMU SYSIOCNE
003C SYSIOCTB
0040 IAPPLMAP
0044 SYSCONFG filler
0048

.

.

.
0084

PFSAVAR[0]
.
.
.

PFSAVAR[15]
0088 filler (120 bytes)

Figure 1-2 Global System Data Area (GSDA)

Offset 31 28 27 24 23 20 19 16 15 12 11 08 07 04 03 00
0000 Y Y M M D D h h

0004 m m s s f f 0 d

Figure 1-3 System Time of Day Format (SYSTOD)

Interboard Communications Specification Introduction

PPX:575-8103-2 11

Offset 31 24 23 16 15 08 07 00
0000 BTELAR BTEBID BTMEMGOOD BTEPFRDN
0004 BTEIBCPR BTEPUTO
0008 BTESDT BTEDIAG
000C BTEIBCAP
0010 BTEINTRP
0014 BTEINTAC BTEINTAM BTEINTOM
0018 BTEFLAGS
001C

.

.
002C

BTESDESC (20 Bytes)
.
.
.

0030
.
.

0040

BTEHDESC (20 Bytes)
.
.
.

0044
.
.

00C0

BTEPWRKA (128 Bytes)
.
.
.

Figure 1-4 Board Table Entry Format (BRDTBL)

Offset 31 24 23 16 15 08 07 00
0000 ATEMUTEX ATEAPPID ATELAR filler
0004 ATETYPE ATEOPMOD
0008 ATEABRDS
000C ATEGMEMS
0010 ATEGMEME
0014 ATEREQ
0018 ATEOPT
001C ATEMDLOK
0020

.

.
0044

ATEDESC (40 Bytes)
.
.
.

Figure 1-5 Application Table Entry Format (APPTBL)

Offset 31 24 23 16 15 08 07 00
0000 filler SELAR SEBRDID
0004 ATEOPT
0008 ATEMDLOK

Figure 1-6 System Descriptor Table Entry Format (SDT)

Interboard Communications Specification Introduction

PPX:575-8103-2 12

Offset 31 24 23 16 15 08 07 00
0000 STELAR STEBID STESDT
0004 STEBRDSP
0008

.

.
002C

STEDESC (40 Bytes)
.
.
.

Figure 1-7 Slave Board Table Entry Format (SBRDTBL)

For a board to log into these data structures, it must follow one of the procedures detailed in either:

• Section 2.3.4 Power-up/reset -- Third-Party Masters using IRQ6.

• Section 2.3.6 Power-up/reset -- Boards with preassigned LARs.

• Section 2.3.7 Boards which cannot log in any other way.

A board must be able to access and interpret these data structures in order to participate in the interboard
communication facility of the SIMATIC 575 system. The board does not have to log into the structures to
send messages to and receive responses from another board or application within the system.

However, if a board is to be the recipient of a message, it must log into the board table and indicate support
for one of the protocols described in Section 4, Interboard Communications. (See type IBCPROT in Section
9, Data Dictionary, for the protocol definitions.) A board that logs into the board table must also make an
entry into the SDT and indicate where its shared memory resides.

1.3 Applications
An application is a set of related programs residing in a board. A board may contain multiple applications
although the SIMATIC 575 CPU contains only one application per board. A board may also have no
applications.

1.3.1 Application Assignment
A logical identifier (application ID - which is a letter from A through Z) is assigned to each application and
is used in the RLL instructions referencing G-Memory. The application is tied to a particular board by
variable ATELAR in the Application Table Entry.

Interboard Communications Specification Introduction

PPX:575-8103-2 13

1.3.2 Application Dependencies
Task Code 92 can be used to specify three types of application dependencies:

Required The set of Applications which must be present in order for this application to
transition to RUN.

Optional The set of Applications which this application may reference, even though they may
not be present in a given configuration.

Reference to G Memory on a non-installed SIMATIC 575 CPU is allowed in RLL
and is compiled to set bit 6 of STW1 and load reason code 0001 (Uninstalled
application referenced) into STW200.

This optional feature allows the same program to be used with different system
configurations with skips around the unused RLL.

Mode-Locked The set of Applications which must be in the same mode as this application. In
order for any of the mode-locked applications to change modes, all applications
must be able to make the change.

1.3.3 G Memory
Each application may present 0 to 32,768 words (SIMATIC 575 always presents 32K words) of contiguous
VME A24-space memory which may be used as non-interlocked shared memory (G Memory). Access to G
Memory is provided for most word-oriented RLL instructions. Other boards may access G Memory for any
installed application by using the G Memory start address (variable ATEGMEMS in the Application Table
Entry) as G1 and indexing to the desired offset.

1.4 System Mode Change
Each SIMATIC 575's operational mode (RUN/PROGRAM/SINGLE SCAN/RESTARTS) can be
independently locked or unlocked to follow/not follow the mode of any other SIMATIC 575 CPU. The locked
mode of a group of applications can be changed from any SIMATIC 575 whose application is locked to follow
the group mode. A coordinated mode change is required and all locked applications must be able to enter
the requested mode before the mode change can occur. If an application is not mode locked, it may change
modes independently of other applications.

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 14

2. POWER-UP/RESET PROCESSING
This section describes the procedures used to initialize the system following a power-up/reset.

2.1 Introduction.
During power-up/reset the system is initialized. System initialization consists of the following:

1. Logging boards into the system.

2. Performing power-fail recovery.

3. Initiating system execution.

2.2 Power-Fail Recovery.
One of the requirements of the 575 system is that it survive power outages without losing any programs or
data. To do this, the SIMATIC 575 CPU boards have battery-backup on all RAM areas. The system also
provides an "early-power-fail" interrupt (EPF) which occurs at least 4 milliseconds before power fails
completely.

Since the time between the EPF interrupt and power loss is short(4 milliseconds), the boards may not
have time to complete all critical operations which may have been in progress at the time of the EPF
interrupt. For this reason, the system implements something called power-fail recovery. For the 575, this
means that only the processor context is saved at the time of the EPF. The critical operations are finished
when power is restored, i.e., the next time the system powers up.

During power-up/reset processing, the Primary 575 indicates that power-fail recovery is to be done. Each
board restores the processor context that was saved by the EPF handler, finishes up any critical operations
that may have been in progress, and tells the Primary 575 that they are done. The Primary 575 waits for
all boards to finish their power-fail recovery processing and then initiates system execution.

In order for power-fail recovery to work, the following restrictions apply:

1. All G-memory areas must reside in battery backed-up RAM.

2. All IBC message buffers must reside in battery backed-up RAM.

3. The power-up/reset handler and any power-up diagnostics must not modify any memory used
by the operational software until after power-fail recovery completes.

The SIMATIC 575 provides a mechanism which boards which do not contain battery backed-up RAM can
use to allocate memory from battery backed-up RAM.

It should be noted that power-fail recovery cannot always be performed. The conditions under which power-
fail recovery is not performed are:

1. A board which was in the system when power failed is removed.

2. An application which was in the system when power failed is deleted.

3. A board which was in the system when power failed detects that its memory is scrambled. This
would occur if a board is removed from the chassis and then replaced.

4. The position of two boards are swapped with the battery on.

5. The battery is off or has been turned off while power was off.

6. The system was in a failed state when power failed.

For conditions 1 through 4 the system will enter fault mode. For condition 5 the system will perform a
battery bad power-up, clearing all memory, and for condition 6 the system will power up in the fault mode.

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 15

2.3 Power-Up Reset Processing.

2.3.1 Phases of power-up/reset.
Power-up/reset is broken into phases. The phase is indicated by variable PURPHASE which resides in the
Global System Data Area (GSDA). The different phases of power-up/reset are represented in Figure 2-1
and Figure 2-2. The phases are as follows:

PURPHASE 0016 This is the initial phase in which the boards perform their power-up diagnostics.
This phase lasts until SYSFAIL* has been deasserted by all boards for at least 50
milliseconds.

PURPHASE 0116 Standard board login phase. During this phase, the system logs in boards which
use the VME IRQ6 IACK daisy-chain method of logging in. This is the method
used by SIMATIC 575 CPUs and SIMATIC VME I/O modules.

Masters using this method assert VME IRQ6 and present vector $40 or $FE in
their STATUS/ID byte. When the master’s IRQ6 interrupt request is
acknowledged the master must log itself into the system tables and then set
PURDONE, indicating to the primary CPU that it can proceed with log-in of the
next board, if any.

SIMATIC compatible VME I/O modules assert VME IRQ6 and present vector
$41 in their STATUS/ID byte. The primary CPU logs these boards into the
system tables when it recognizes their interrupt request.

This process continues until all boards using the IRQ6 method have logged in.
Because of the way the IRQ6 IACK works, boards using this method are logged
into the system in relative slot order.

PURPHASE 0216 Preassigned LAR login phase. During this phase, boards which have
preassigned LARs are logged into the system. This phase is intended for boards
which cannot use the standard board login sequence. The system allows a board
to indicate a delay time to be used on a subsequent power up. This phase will
last at least 200 milliseconds longer than the longest requested delay time.

Boards using this method must acquire exclusive control of the Global System
Data Area (GSDA). This is done using the Board Table Mutex (BRDTBLMU)

PURPHASE 0316 Power-fail recovery. During this phase, all boards perform their power-fail
recovery processing.

PURPHASE 0416 Fault-Restart - The 575 system is performing a fault restart (i.e., entering fault
mode). Do not access any variable in the GSDA area except PURHASE while in
this phase.

PURPHASE FF16 Power-up/reset complete. The system begins operation. While the system is
operating, boards which did not log in during power-up/reset may log themselves
into the system. On subsequent power up, boards that previously logged in
during this phase must log in during PURPHASE = 0216. (See paragraph
Section 2.3.7, Boards which cannot log in any other way.)

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 16

Figure 2-1 PURPHASE STATES - Assert SYSRESET*

INIT
PURPHASE=0

IRQ6 Login
PURPHASE=1

Pre-Assigned LAR
Login

PURPHASE=2

Power-Fail
Recovery

PURPHASE=3

Login Complete
PURPHASE=$FF

Fault Restart
PURPHASE=4

All IRQ6 requests serviced

Battery Good
and

My Memory Good

Battery Bad
and/or

My Memory Bad

Power Fail Recovery Complete

Fault Recovery -- SYSRESET* Asserted

or

Power-Down

De-Assert SYSFAIL*
Wait 50ms for boards to drive
IRQ6.

FAULT mode
entered

Fault Detected - enter FAULT mode
Assert SYSFAIL*

Power
Up

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 17

Figure 2-2 PURPHASE STATES - Do Not Assert SYSRESET*

INIT
PURPHASE=0

IRQ6 Login
PURPHASE=1

Pre-Assigned LAR
Login

PURPHASE=2

Power-Fail
Recovery

PURPHASE=3

Login Complete
PURPHASE=$FF

Fault Restart
PURPHASE=4

All IRQ6 requests serviced

Battery Good
and

My Memory Good

Battery Bad
and/or

My Memory Bad

Power Fail Recovery Complete

Fault Recovery
or

Power-Down

De-Assert SYSFAIL*
Wait 50ms for boards to drive
IRQ6.

FAULT mode
entered

Fault Detected - enter FAULT mode
Assert SYSFAIL*

Power
Up

Fault Recovery Complete

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 18

2.3.2 Power-up/reset -- Primary 575 Processing
System initialization is controlled by the Primary 575 CPU. A 575 CPU is considered to be the Primary 575
CPU if it is set for AUTO-CONFIGURED mode and is installed in slot 1 (system controller slot) or if it is
set for USER-CONFIGURED mode and the PRIMARY-575 option has been selected for this 575 CPU.
The Primary 575 CPU's processing is shown in the following pseudo-code.
/--\
 I$RESET -- PRIMARY CPU

 begin

 /***/
 /* NOTE THAT SYSFAIL* IS ASSERTED DUE TO POWER-UP. */
 /***/

 /*
 ** Map into VME space.
 */
 Major_Version := 000116;
 Minor_Version := 000116;
 if AUTO_CONFIGURED then
 map my GCSR at address 000016 of VME A16-space;
 map GSDA at address 00000016 of VME A24-space;
 map my shared RAM at address 00000016 of VME A24-space;
 else
 Major_Version := Major_Version + 800016;
 map my GCSR at BASE_ADDRESS * 400016 of VME A16-space;
 map GSDA at address BASE_ADDRESS * 40000016 of VME A24-space;
 map my shared RAM at BASE_ADDRESS * 40000016 of VME_A24 space;
 endif;
 GSDA->GSDAFMT[0] := Major_Version;
 GSDA->GSDAFMT[1] := Minor_Version;
 GSDA->SDT := VME A24 address of SDT;
 GSDA->BRDTBL := VME A24 address of BRDTBL;
 GSDA->APPTBL := VME A24 address of APPTBL;
 GSDA->SBRDTBL := VME A24 address of SBRDTBL;
 GSDA->SYSIOCTB := VME A24 address of SYSIOCTB;
 GSDA->SYSCONFG := System_Configuration;

/*
 ** Set power-up recovery to initial phase, perform initial diagnostics, and
 ** determine the state of the battery.
 */
 GSDA->PURPHASE := 0016;
 if (this CPU in slot 1) then
 GSDA->BATGOOD := battery status (OK = FF16, bad = 0016);
 endif;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 19

 /*
 ** If the battery is good, my memory is OK, and the system is configured
 ** the same as when power failed then make copies of the
 ** system tables. The copies are used later to determine whether or
 ** not we can perform power-fail recovery.
 **
 ** If the battery is not good or my memory is has not been maintained then
 ** we just clear everything.
 */
 if (GSDA->BATGOOD and
 (my memory is good) and
 (SDT[MY_SDT].SESMEMS equals start address of my shared memory))
then
 if not OLD_TABLES_BUILT then
 copy SDT to OLD_SDT;
 copy BRDTBL to OLD_BRDTBL;
 copy APPTBL to OLD_APPTBL;
 OLD_TABLES_BUILT := true;
 MY_MEMORY_GOOD := true;
 endif;
 else
 OLD_TABLES_BUILT := false;
 clear all my memory;
 MY_MEMORY_GOOD := false;
 endif;

 /*
 ** Clear the system tables in preparation for board log-in.
 */
 GSDA->PURCMD := 0016; /* Clear power-up-reset command. */
 GSDA->BRDTBLMU := 0016; /* Unlock the board table mutex. */
 GSDA->SDTNMLAR := 0016; /* Next VME MASTER LAR. */
 GSDA->SDTNSLAR := 1016; /* Next VME SLAVE LAR. */
 GSDA->SDTNSDT := 0016; /* Index of next entry in the SDT. */
 clear SDT;
 clear BRDTBL;
 clear APPTBL;
 clear SBRDTBL;

 /*
 ** Set my LAR and log myself into the System Data Table (SDT).
 */
 MY_LAR := GSDA->SDTNMLAR;
 MY_SDT := GSDA->SDTNSDT;
 GSDA->SDTNMLAR := GSDA->SDTNMLAR + 1;
 GSDA->SDTNSDT := GSDA->SDTNSDT + 1;
 GSDA->SDT[MY_SDT].SELAR := MY_LAR;
 GSDA->SDT[MY_SDT].SEBRDID := my board ID;
 GSDA->SDT[MY_SDT].SESMEMS := start address of my shared memory;
 GSDA->SDT[MY_SDT].SESMEME := end address of my shared memory;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 20

 /*
 ** Log myself into the Board Table (BRDTBL).
 */
 GSDA->BRDTBL[MY_LAR].BTELAR := MY_LAR;
 GSDA->BRDTBL[MY_LAR].BTEBID := my board ID;
 GSDA->BRDTBL[MY_LAR].BTEMGOOD := MY_MEMORY_GOOD;
 GSDA->BRDTBL[MY_LAR].BTEIBCPR := standard IBC message protocol;
 GSDA->BRDTBL[MY_LAR].BTESDT := MY_SDT;
 GSDA->BRDTBL[MY_LAR].BTEDIAG := diagnostic result status word
 GSDA->BRDTBL[MY_LAR].BTEIBCAP := loc(My_IBC_Area);
 GSDA->BRDTBL[MY_LAR].BTEINTRP := interrupter address;
 GSDA->BRDTBL[MY_LAR].BTEINTAC := Interrupt access code;
 GSDA->BRDTBL[MY_LAR].BTEINTAM := Interrupt_AND_Mask;
 GSDA->BRDTBL[MY_LAR].BTEINTOM := Interrupt_OR_Mask;
 GSDA->BRDTBL[MY_LAR].BTESDESC := Software Description;
 GSDA->BRDTBL[MY_LAR].BTEHDESC := Hardware Description;
 GSDA->BRDTBL[MY_LAR].BTEFLAGS := 0;
 if (I can not perform power fail recovery) then
 GSDA->BRDTBL[MY_LAR].BTEFLAGS.BTEF_PFRE := 1;
 endif;
 GSDA->BRDTBL[MY_LAR].BTEIBCAP->IBAMUTEX := 0; /* Unlock My_IBC_Area */

 /*
 ** Log myself into the Application Table (APPTBL).
 */
 if (any applications defined on my board) then
 initialize the APPTBL entries for my applications;
 endif;

 /*
 ** Phase 1 -- Log in boards using the IRQ6 IACK daisy-chain method.
 */
 GSDA->PURPHASE := 0116;
 de-assert my SYFAIL* output;
 wait for SYSFAIL* to be de-asserted from VMEbus ;
 wait for the 50 ms; /* Allow time for boards using PURPHASE 1 to assert IRQ6 */

 while IRQ6 is asserted
 GSDA->PURDONE := 0;
 vector := acknowledge IRQ6 interrupt and read vector from requester;
 if (vector = 4016 or vector = FE16)
 then
 /*
 ** Allow master board to log itself in.
 */
 wait for PURDONE = FF16;

 else /* vector 4116 - SIMATIC VME I/O board. */
 /*
 ** Log in a SIMATIC VME I/O slave board.
 */
 MODULE_LOGIN_ADDR := VME A16 address 012016;
 module_id := *((byte *)MODULE_LOGIN_ADDR) & 0F16;
 if module_id <> 3 then
 /* Invalid module ID for SIMATIC VME I/O module */
 enter FAULT mode
 else
 /*
 ** Configure SIMATIC VME I/O module.
 */
 MOD_LAR := SDTNSLAR & 0F16;
 PAR := MOD_LAR | F016;
 PAR_LAR := (PAR << 8) | MOD_LAR;
 *((word *) MODULE_LOGIN_ADDR) := PAR_LAR;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 21

 /*
 ** Log SIMATIC VME I/O module into System Descriptor Table.
 */
 GSDA->SDT[GSDA->SDTNSDT].SELAR := GSDA->SDTNSLAR;
 GSDA->SDT[GSDA->SDTNSDT].SEBRDID := slave_ioboard_id;
 GSDA->SDT[GSDA->SDTNSDT].SESMEMS := PAR<<16 + 000016;
 GSDA->SDT[GSDA->SDTNSDT].SESMEME := PAR<<16 + FFFF16;

 /*
 ** Log SIMATIC VME I/O module into Slave Board Table.
 */
 GSDA->SBRDTBL[GSDA->SBRDNSBR].STELAR := GSDA->SDTNSLAR;
 GSDA->SBRDTBL[GSDA->SBRDNSBR].STEBID := module_id;
 GSDA->SBRDTBL[GSDA->SBRDNSBR].STESDT := GSDA->SDTNSDT;
 GSDA->SBRDTBL[GSDA->SBRDNSBR].STEBRDSP := loc(GSDA->SYSIOTB[GSDA->SYSIOCNE]);
 GSDA->SBRDTBL[GSDA->SBRDNSBR].STEDESC := Module Description;

 /*
 ** Log SIMATIC VME I/O module into System I/O Configuration Table.
 */
 GSDA->SYSIOCTB[GSDA->SYSIOCNE].SIOC_OWN := no_owner;
 GSDA->SYSIOCTB[GSDA->SYSIOCNE].SIOC_SDT := GSDA->SDTNSDT;

 /*
 ** Increment Table Indexes
 */
 GSDA->SDTNSDT := GSDA->SDTNSDT + 1;
 GSDA->SDTNSLAR := GSDA->SDTNSLAR + 1;
 GSDA->SBRDNSBR := GSDA->SBRDNSBR + 1;
 GSDA->SYSIOCNE := GSDA->SYSIOCNE + 1;
 endif;
 endif;
 endwhile;

 /*
 ** Phase 2 -- Let boards with pre-assigned LARs log themselves in.
 **
 ** To determine the time to allow this phase to execute, we search
 ** OLD_BRDTBL for defined entries and set PHASE_2_DELAY to the
 ** maximum value specified in field BTEPUTO(seconds)+200 milliseconds.
 */
 GSDA->PURPHASE := 0216;

 PHASE_2_DELAY := 0 milliseconds;
 for LAR := 0 to maxval(LAR)
 if OLD_BRDTBL[LAR].BTELAR = LAR then
 PHASE_2_DELAY := max(PHASE_2_DELAY, 1000 * OLD_BRDTBL[LAR].BTEPUTO)
 endif
 endfor;
 delay for PHASE_2_DELAY + 200 milliseconds;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 22

 /*
 ** Phase 3 -- Power-fail recovery.
 **
 ** The first thing we do is determine if we can even do power-fail
 ** recovery. This is done in several parts:
 **
 ** 1. Compare the entries in the OLD_BRDTBL/OLD_SDT to BRDTBL/SDT.
 ** 2. Compare the entries in the OLD_APPTBL to APPTBL.
 **
 ** If anything doesn't match then we won't perform power-fail
 ** recovery.
 */
 get GSDA->BRDTBLMU exclusive;
 if (OLD_TABLES_BUILT)
 DO_POWER_FAIL_RECOVERY := true;
 LAR := 0;
 while (LAR <= maxval(LAR) and DO_POWER_FAIL_RECOVERY)
 if (OLD_BRDTBL[LAR].BTELAR <> FF16) and /* Slot was not Empty */
 (OLD_BRDTBL[LAR].BTEFLAGS[BTEF_PFR] = 0) then
 IF (GSDA->BRDTBL[LAR].BTELAR <> LAR) or
 (not GSDA->BRDTBL[LAR].BTEMGOOD) or
 (OLD_GSDA->BRDTBL[LAR].BTEBID <> GSDA->BRDTBL[LAR].BTEBID) or
 (OLD_BRDTBL[LAR].BTEIBCAP <> GSDA->BRDTBL[LAR].BTEIBCAP) or
 (OLD_SDT[OLD_BRDTBL[LAR].BTESDT].SESMEMS <>
 GSDA->SDT[GSDA->BRDTBL[LAR].BTESDT].SESMEMS) or
 (OLD_SDT[OLD_BRDTBL[LAR].BTESDT].SESMEME <>
 GSDA->SDT[GSDA->BRDTBL[LAR].BTESDT].SESMEME) then
 DO_POWER_FAIL_RECOVERY := false;
 Reinitialize VME heap;
 Release GSDA->BRDTBLMU;
 Fail system with an ABNORMAL_POWER_FAIL error;
 endif;
 endif;
 LAR := LAR + 1;
 endwhile;

 APP := 1;
 while (APP <= maxval(APP_ID) and DO_POWER_FAIL_RECOVERY)
 if (OLD_APPTBL[APP].ATEAPPID <> 0) and /* was present */
 (OLD_BRDTBL[OLD_APTBL[APP].LAR].BTEFLAGS[BTEF_PFR] = 0) then
 if (OLD_APPTBL[APP].ATEAPPID <> GSDA->APPTBL[APP].ATEAPPID) or
 (OLD_APPTBL[APP].ATETYPE <> GSDA->APPTBL[APP].ATETYPE) or
 (OLD_APPTBL[APP].ATEGMEMS <> GSDA->APPTBL[APP].ATEGMEMS) or
 (OLD_APPTBL[APP].ATEGMEME <> GSDA->APPTBL[APP].ATEGMEME) or
 (OLD_APPTBL[APP].ATEABRDS <> GSDA->APPTBL[APP].ATEABRDS) or
 (OLD_APPTBL[APP].ATEREQ <> GSDA->APPTBL[APP].ATEREQ) or
 (OLD_APPTBL[APP].ATEOPT <> GSDA->APPTBL[APP].ATEOPT) or
 (OLD_APPTBL[APP].ATEMDLOK <> GSDA->APPTBL[APP].ATEMDLOK) then
 DO_POWER_FAIL_RECOVERY := false;
 Reinitialize VME heap;
 Release BRDTBLMU;
 Fail system with an ABNORMAL_POWER_FAIL error;
 endif;
 endif;
 APP := APP + 1;
 endwhile;

 else /* old tables were not built */
 DO_POWER_FAIL_RECOVERY := false;
 endif;
 Release GSDA->BRDTBLMU;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 23

 /*
 ** If everything matched then initiate power-fail recovery and wait for
 ** everyone to finish.
 */
 if DO_POWER_FAIL_RECOVERY then
 GSDA->PURPHASE := 0316;
 perform my board’s power-fail recovery procedure;
 for LAR := 1 to max(LAR)
 if GSDA->BRDTBL[LAR].BTELAR <> EMPTY and GSDA->BRDTBL[LAR].BTEMGOOD = GOOD then
 wait for flag GSDA->BRDTBL[LAR].BTEPFRDN to be set;
 endif;
 endfor;
 endif;
 OLD_TABLES_BUILT := false; /* Copy new tables to old tables on next power-up */

 /*
 ** Power-up/reset complete.
 */
 GSDA->PURPHASE := FF16;
 begin normal system operation;
 end.
 \--/

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 24

2.3.3 Power-up/reset -- Secondary 575 Processing
A secondary 575 CPU is any 575 CPU other than the Primary 575 CPU. The secondary 575 CPUs, log into
the system during Phase 1 of power-up/reset. A 575 CPU determines that it must login as a Secondary 575
CPU by detecting that it is AUTO-CONFIGURED and is not installed in slot 1 or by detecting that it is
USER-CONFIGURED and that the SECONDARY-575 option is true. Secondary 575 processing in
shown in the following pseudo-code.
 /--\
 I$RESET -- Secondary 575 CPU

 begin
 /***/
 /* NOTE THAT SYSFAIL* IS ASSERTED DUE TO POWER-UP. */
 /***/

 /*
 ** Determine VMEbus base address for GSDA and GCSRs.
 */
 Major_Version = 000116;
 Minor_Version = 000116;
 if AUTO_CONFIGURED then
 GCSR address is 000016 in A16 address space;
 GSDA address is 00000016 in A24 address space;
 else
 Major_Version := Major_Version + 800016;
 GCSR address is configured BASE_ADDRESS * 400016 in A16 address space;
 GSDA address is configured BASE_ADDRESS * 40000016 in A24 address space;
 endif;

 /*
 ** If my role has changed since I was last powered-up, indicate that I don’t
 ** have a good memory.
 */
 if (I was a Primary 575 or the system controller last time I powered up) then
 MY_MEMORY_GOOD := false;
 endif

 /*
 ** De-assert SYSFAIL* output and then wait for SYSFAIL* input to de-assert.
 */
 de-assert my SYSFAIL* output;
 wait for SYSFAIL* to be de-asserted from VMEbus;

 /*
 ** Request login rights.
 ** NOTE: GSDA->PURPHASE equals 0116 at this point.
 */
 assert IRQ6 interrupt request with STATUS/ID equal to 4016 (or FE16);
 wait for IRQ6 interrupt acknowledge;

 /*
 ** Fail the system if the Primary 575 CPU’s configuration does not
 ** agree with my configuration.
 */
 if (GSDA->GSDAFMT[0] <> Major_Version) then
 Fail the system due to configuration error;
 endif;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 25

 /* Allocate my shared memory. Start address must be greater than the base address
 ** of the GSDA and address range must not overlay memory allocated by any
 ** other board in the system.
 */
 My_Mem_Start := allocate start address of my shared memory;
 My_Mem_End := My_Mem_Start + shared memory size;

 /*
 ** Allocate my GCSR starting address.
 */
 My_GCSR := allocate start address of my GCSR; /* A16 base address + 16 * SDTNMLAR;

 /*
 ** If the battery is good, my memory is OK, and the system is configured
 ** the same as I am then prepare for a battery good restart. Otherwise,
 ** prepare for a bad battery restart.
 */
 if (GSDA->BATGOOD and my memory is good) and
 (GSDA->SDTNMLAR == MY_LAR) and
 (GSDA->SDT[0].SESMEMS == GSDA) then
 MY_MEMORY_GOOD := true;
 else
 MY_MEMORY_GOOD := false;
 Clear all my shared memory;
 endif; /*

 /*
 ** Set my LAR to SDTNMLAR and log myself into the system data table.
 */
 MY_LAR := GSDA->SDTNMLAR;
 GSDA->SDT[GSDA->SDTNSDT].SELAR := MY_LAR;
 GSDA->SDT[GSDA->SDTNSDT].SEBRDID := my board ID;
 GSDA->SDT[GSDA->SDTNSDT].SESMEMS := My_Mem_Start;
 GSDA->SDT[GSDA->SDTNSDT].SESMEME := My_Mem_End;

 /*
 ** Log myself into the board table.
 */
 GSDA->BRDTBL[MY_LAR].BTELAR := MY_LAR;
 GSDA->BRDTBL[MY_LAR].BTEBID := my board ID;
 GSDA->BRDTBL[MY_LAR].BTEMGOOD := MY_MEMORY_GOOD;
 GSDA->BRDTBL[MY_LAR].BTEIBCPR := standard IBC message protocol;
 GSDA->BRDTBL[MY_LAR].BTESDT := 0;
 GSDA->BRDTBL[MY_LAR].BTEDIAG := diagnostic result status word
 GSDA->BRDTBL[MY_LAR].BTEIBCAP := loc(my IBCAREA);
 GSDA->BRDTBL[MY_LAR].BTEINTRP := interrupter address;
 GSDA->BRDTBL[MY_LAR].BTEINTAC := Interrupt access code;
 GSDA->BRDTBL[MY_LAR].BTEINTAM := Interrupt_AND_Mask;
 GSDA->BRDTBL[MY_LAR].BTEINTOM := Interrupt_OR_Mask;
 GSDA->BRDTBL[MY_LAR].BTESDESC := Software Description;
 GSDA->BRDTBL[MY_LAR].BTEHDESC := Hardware Description;
 GSDA->BRDTBL[MY_LAR].BTEFLAGS := 0;
 if (I can not perform power fail recovery) then
 GSDA->BRDTBL[MY_LAR].BTEFLAGS.BTEF_PFRE := 1;
 endif;
 GSDA->BRDTBL[MY_LAR].BTEIBCAP->IBAMUTEX := 0; /* Unlock My_IBC_Area */

 /*
 ** Log myself into the Application table.
 */
 if (any applications defined on my board) then
 initialize the APPTBL entries for my applications;
 endif;

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 26

 /*
 ** Tell the Primary 575 that I'm done.
 */
 GSDA->SDTNMLAR := GSDA->SDTNMLAR + 1; /* Next VME MASTER LAR. */
 GSDA->SDTNSDT := GSDA->SDTNSDT + 1; /* Index of next entry in the SDT. */
 GSDA->PURDONE := FF16; /* Tell the master that I have completed login. */

 /*
 ** Complete my initialization.
 */
 if (not MY_MEMORY_GOOD) then
 clear all my memory;
 endif;
 /*
 ** Wait for Power-up/reset Phase 3 or FF16.
 */
 wait until GSDA->PURPHASE >= 0316;

 /*
 ** If this is Phase 3 do power fail recovery.
 */
 if GSDA->PURPHASE = 0316 then
 do power-fail recovery;
 GSDA->BRDTBL[MY_LAR].BTEPFRDN := FF16;
 endif;

 /*
 ** Wait for Power-up/reset to complete.
 */
 wait until GSDA->PURPHASE = FF16;
 begin normal system operation;
 end.
 \--/

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 27

2.3.4 Power-up/reset -- Third-Party Masters using IRQ6.
These boards log themselves into the system during Phase 1 of power-up/reset. These boards must do the
following:

1. De-assert SYSFAIL* output from my board.

2. Wait for SYSFAIL* to be de-asserted from the VMEbus.

3. Assert IRQ6 within 50ms with vector 4016 or FE16 in the STATUS/ID byte.

4. Wait for the IRQ6 interrupt acknowledge.

5. Check GSDAFMT[0] to ensure that it matches the GSDA data structure version that my board
was programmed from (See Section 10 GSDA Format Changes). If it does not match fail the
system.

6. Search through the SDT for a place to map my shared memory (if I can). Boards which can
control where in A24-space their shared memory is to be mapped under software control should
map their memory as low as possible. Users with boards which control where in A24-space
their shared memory is to be mapped with dip-switches or jumpers should map their memory as
high as possible. You are responsible for ensuring that no two boards' memory areas overlap.
A24-space from F0000016 to FFFFFF16 is reserved for SIMATIC VME I/O modules. Masters and
other slave boards should not map into this area.

Boards which cannot directly control where their memory gets mapped should at least verify
that they aren't overlaying someone else.

7. Log into entry SDT[SDTNSDT] of the SDT.

8. Increment SDTNSDT.

9. Log into entry BRDTBL[SDTNMLAR] of the BRDTBL.

10. Increment SDTNMLAR.

11. Log any applications into the APPTBL.

12. Set flag BTEMGOOD in my BRDTBL entry to indicate whether power-fail recovery is to be
done.

13. If this master has slave boards to log in then for each slave board:
- Enter the slave board into SBRDTBL[SBRDNSBR] and SDT[SDTNSDT].
- Increment SBRDNSBR and SDTNSDT
(Use steps 1 through 9 defined for the Primary 575 in Section 2.3.5 as a guide for the logging in
slave boards.)

14. Initialize flag BTEFLAGS.BTEF_PFR in my BRDTBL entry to indicate whether or not this
board on subsequent power up will participate in power-fail recovery.

15. Set flag PURDONE to FF16.

16. Wait for PURPHASE >= 0316.

17. If PURPHASE = 0316 then do the following:

a. Do power-fail recovery processing.

b. Set flag BTEPFRDN in my BRDTBL entry to FF16.

18. Wait for PURPHASE = FF16.

19. Start up.

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 28

2.3.5 Power-up/reset -- Slave Boards using IRQ6 IACK daisy-chain.
The Primary 575 will log these boards into the system during Phase 1 of power-up/reset. The Primary 575
expects slave boards that assert IRQ6 to be SIMATIC VME I/O or compatible modules. If not, the system
will enter fatal error. Non SIMATIC compatible VME slave modules must wait to be logged in by an
assigned master instead of driving IRQ6.

Note: Some third-party VMEbus slaves require configuration by a VMEbus master prior to their de-
assertion of SYSFAIL*. The 575 CPU can not perform this configuration operation since the
user program is not executed until after SYSFAIL* has been de-asserted by all boards. If you
plan to use such a slave you must also include a non-575 master in your system configuration.

A24-space from F0000016 to FFFFFF16 is reserved for SIMATIC VME I/O modules. Masters and other slave
boards should not map into this area.

To be logged in by the Primary 575, the slave board must do the following:

1. Wait for SYSFAIL* to be de-asserted.

2. Assert IRQ6 within 50ms with vector 4116 in the STATUS/ID byte.

3. Wait for the System Controller to acknowledge the interrupt.

The Primary 575 must do the following:

1. Set Slave Board LAR to SDTNSLAR.

2. Generate next PAR_LAR using LAR. (This step determines the VME A24 address space of the
slave module.)

3. Write PAR_LAR to address 012016 in A16 space. (This step tells the slave module what address
space to respond to.)

4. Increment SDTNSLAR.

5. Log into entry SDT[SDTNSDT] of the SDT.

6. Increment SDTNSDT.

7. Log into entry SBRDTBL[SBRDTNSBR] of the SBRDTBL.

8. Increment SBRDTNSBR.

9. Log into entry SYSIOCTB[SYSIOCEN] of SYSIOCTB.

10. Increment SYSIOCEN.

11. Set flag PURDONE.

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 29

2.3.6 Power-up/reset -- Boards with preassigned LARs.
These boards log themselves into the system during Phase 2 of power-up/reset. These boards must do the
following:

1. Wait for SYSFAIL* to be de-asserted.

2. Check GSDAFMT[0] to ensure that it matches the GSDA data structure version that the board
logging in was programmed from (See Section 10 GSDA Format Changes). If it does not match -
fail the system.

3. Wait for PURPHASE = 0216.

4. Gain exclusive control of the Board Table Mutex (BRDTBLMU).

5. Verify that the BRDTBL entry that I think I have is not being used. If it is being used then
about all you can do is find an unused entry in the BRDTBL and use it. (Be sure to clear
BTEMGOOD so that the System Controller will not try to initiate power-fail recovery.)

6. Search through the SDT for a place to map my shared memory (if I can). Boards which can
control where in A24-space their shared memory is to be mapped under software control should
map their memory as low as possible. Users with boards which control where in A24-space
their shared memory is to be mapped with dip-switches or jumpers should map their memory as
high as possible. They are also responsible for ensuring that no two boards' memory areas
overlap.
Boards which can't directly control where their memory gets mapped should at least verify that
they aren't overlaying anyone else.

7. Log into entry SDT[SDTNSDT] of the SDT.

8. Increment SDTNSDT.

9. Log into entry BRDTBL[MY_LAR] of the BRDTBL.

10. Log any applications into the APPTBL.

11. Set flag BTEMGOOD in my BRDTBL entry to indicate power-fail recovery is to be done
otherwise clear it.

12. If this master has slave boards to log in then for each slave board:

a. Enter the slave board into SBRDTBL[SBRDNSBR] and SDT[SDTNSDT]. (Use steps 1
through 9 defined for the Primary 575 in Section 2.3.5, Power-up/reset -- Slave Boards using
IRQ6 IACK daisy-chain., as a guide for the logging in slave boards.)

13. Initialize variable BTEPUTO in my BRDTBL entry to indicate the number of seconds that the
System Controller will wait for the board to log itself in during power-up/reset.

14. Initialize flag BTEFLAGS.BTEF_PFR in my BRDTBL entry to indicate whether or not this
board on subsequent power up will participate in power-fail recovery.

15. Release BRDTBLMU.

16. Wait for PURPHASE = 0316 or PURPHASE = FF16.

17. If PURPHASE = 0316 then do the following:

a. Do power-fail recovery processing.

b. Set flag BTEPFRDN in my BRDTBL entry.

18. Wait for PURPHASE = FF16.

19. Start up.

Interboard Communications Specification Power-Up/Reset Processing

PPX:575-8103-2 30

2.3.7 Boards which cannot log in any other way.
The SIMATIC 575 also provides a mechanism for boards which cannot log into the system any other way to
log themselves in. They basically wait until the rest of the system starts up and then log themselves in.
Processing for these boards is as follows:

1. Wait for SYSFAIL* to be de-asserted.

2. Check GSDAFMT[0] to ensure that it matches the GSDA data structure version that the board
logging in was programmed from (See Section 10 GSDA Format Changes). If it does not match -
don't login.

3. Wait for PURPHASE = FF16.

4. Gain exclusive control of the Board Table Mutex (BRDTBLMU).

5. Find an unused entry in the Board Table. (Boards using this method should begin their search
at the end of the Board Table). Set MY_LAR to the index of this entry.

6. Search through the SDT for a place to map my shared memory (if I can). Boards which can
control where in A24-space their shared memory is to be mapped under software control should
map their memory as low as possible. Users with boards which control where in A24-space
their shared memory is to be mapped with dip-switches or jumpers should map their memory as
high as possible. They are also responsible for ensuring that no two boards' memory areas
overlap.
Boards which can't directly control where their memory gets mapped should at least verify that
they aren't overlaying anyone else.

7. Log into entry SDT[SDTNSDT] of the SDT.

8. Increment SDTNSDT.

9. Log into entry BRDTBL[MY_LAR] of the BRDTBL.

10. If this master has slave boards to log in then for each slave board:

a. Enter the slave board into SBRDTBL[SBRDNSBR] and SDT[SDTNSDT]. (Use steps 1
through 9 defined for the Primary 575 in Paragraph Power-up/reset -- Slave Boards using
IRQ6 IACK daisy-chain. as a guide for the logging in slave boards.)

11. Initialize variable BTEPUTO in my BRDTBL entry to indicate the number of seconds that the
System Controller will wait for the board to log itself in during power-up/reset.

12. Initialize flag BTEFLAGS.BTEF_PFR in my BRDTBL entry to indicate whether or not this
board will participate in power-fail recovery on subsequent power up.

13. Release BRDTBLMU.

14. Start up.

Boards which log themselves into the system after power-up/reset and DO NOT wish to participate in
Power-Fail-Recovery on the subsequent power-up must set the BRDTBLE[MY_LAR].BTEFLAG.BTEF_PFR
bit to 1, i.e., DO NOT participate in power-fail-recovery. On a subsequent power-up this board must wait
until PURPHASE is equal to FF16 to login.

Boards which log themselves into the system after power-up/reset and wish to participate in Power-Fail-
Recovery on the subsequent power-up must clear the BRDTBLE[MY_LAR].BTEFLAG.BTEF_PFR bit and
write the number of seconds for the Primary 575 to wait for it to login in entry
BRDTBLE[MY_LAR].BTEPUTO. On a subsequent power up this board must now login during
PURPHASE equal to 0216.

Interboard Communications Specification RLL locks

PPX:575-8103-2 31

3. RLL LOCKS
This section describes RLL locks.

3.1 Introduction.
An RLL lock is a longword that normally resides in G-memory and is used by applications to control access
to shared resources. Refer to type RLL_Lock in Section 9, Data Dictionary, for the format of an RLL lock.
RLL locks are manipulated with the LOCK and UNLOCK RLL box instructions.

An RLL lock may be in one of three states as follows:

FREE In this state, anyone may obtain the lock.

HELD SHARED In this state, applications requesting the lock EXCLUSIVE are blocked.
Applications requesting the lock SHARED are allowed to proceed (up to a
maximum of 255).

HELD EXCLUSIVE In this state, all other requests for the lock are blocked.

An RLL lock is defined in such a way as to prevent applications requesting the lock SHARED from starving
an application requesting the lock EXCLUSIVE.

3.2 Lock Manipulation Procedures.
This paragraph describes the procedures that applications should use to manipulate RLL locks. The
procedures are given as pseudo-code for performing operations on the locks. There are three procedures
described as follows:

S$LOCKS Obtain a lock SHARED.
S$LOCKX Obtain a lock EXCLUSIVE.
S$UNLOCK Release a lock.

In the following pseudo-code descriptions, two of the Interboard Communication Utilities, MU$GET and
MU$REL, described in Section 8, Interboard Communications Utilities, are used. These utilities assume the
existence of the following functions:

get_time() Function that returns the current system time in clock ticks.
test_and_set(mutex) Function that will set the most-significant bit of its parameter using an

indivisible "read-modify-write" bus cycle. No other bits in the parameter may
be modified. Function test_and_set returns the value of the bit before the
instruction executed (i.e., "true" if the bit was set and "false" if the bit was
clear).

Interboard Communications Specification RLL locks

PPX:575-8103-2 32

3.2.1 S$LOCKS - Obtain Shared Control Of An RLL Lock
Procedure S$LOCKS obtains SHARED control of an RLL lock. The parameters of this procedure are as
follows.

L input /
output

The RLL lock to be obtained.

TIMEOUT input only Time-out in clock ticks. 0 indicates that S$LOCKS is to try to obtain
the lock one time. Maxval(clock_ticks) indicates that S$LOCKS is to
try to obtain the lock forever.

OBTAINED output Flag indicating whether or not the lock was successfully obtained.

Procedure S$LOCKS will attempt to obtain SHARED control of an RLL lock. S$LOCKS will attempt to
obtain the lock for up to TIMEOUT clock ticks before reporting failure.

If the lock is obtained, S$LOCKS will check flag RLREQEX to determine if another application is trying to
obtain the lock EXCLUSIVE. If the flag is set, S$LOCKS will release the lock and try again to obtain the
lock until either it obtains the lock with flag RLREQEX clear or the time-out expires. The purpose of the
RLREQEX flag is to prevent applications that are requesting the lock SHARED from starving an
application requesting the lock EXCLUSIVE.

Interboard Communications Specification RLL locks

PPX:575-8103-2 33

Function S$LOCKS - Obtain Shared Control Of An RLL Lock
/*---*\
S$LOCKS(inout L : RLL_Lock,
 in TIMEOUT : clock_ticks,
 output OBTAINED : boolean);

var
 ELAPSED_TIME : clock_ticks;
 START_TIME : clock_ticks;
 GOT_MUTEX : boolean;

begin
 ELAPSED_TIME := 0;
 START_TIME := get_time();
 repeat
 MU$GET(L.RLMUTEX, TIMEOUT - ELAPSED_TIME, GOT_MUTEX)
 if GOT_MUTEX then
 if L.RLREQEX or (L.RLHELDCN = maxval(RLL_Lock.RLHELDCN)) then
 /*
 ** Someone is trying to obtain the lock exclusive or the
 ** lock is held by the maximum number of holders. Release
 ** the mutex and try again.
 */
 MU$REL(L.RLMUTEX)
 else
 /*
 ** We can get the lock. Increment the held count, release
 ** the lock, and return success.
 */
 L.RLHELDCN := L.RLHELDCN + 1;
 MU$REL(L.RLMUTEX);
 OBTAINED :=true;
 return
 endif
 endif;
 if TIMEOUT <> maxval(clock_ticks) then
 ELAPSED_TIME := get_time() - START_TIME
 endif
 until ELAPSED_TIME >= TIMEOUT;
 /*
 ** We did not obtain the lock, return failure.
 */
 OBTAINED := false;
 return
end.
---/

Interboard Communications Specification RLL locks

PPX:575-8103-2 34

3.2.2 S$LOCKX - Obtain Exclusive Control Of An RLL Lock
Procedure S$LOCKX is used to obtain EXCLUSIVE control of an RLL Lock. The parameters of this
procedure are as follows:

L input /
output

The RLL lock to be obtained.

TIMEOUT input only Time-out in clock ticks. Zero (0) indicates that S$LOCKX is to try to
obtain the lock one time. Maxval(clock_ticks) indicates that
S$LOCKX is to try to obtain the lock forever.

OBTAINED output Flag indicating whether or not the lock was successfully obtained.

Procedure S$LOCKX will attempt to obtain EXCLUSIVE control of an RLL lock. S$LOCKX will try to
obtain the lock for up to TIMEOUT clock ticks before reporting failure.

While trying to obtain the lock, S$LOCKX will set the "requesting EXCLUSIVE" flag (RLREQEX) of the
lock. This is done to prevent applications requesting SHARED control of the lock from obtaining it and thus
starving applications requesting EXCLUSIVE control of the lock.

Function S$LOCKX - Obtain Exclusive Control Of An RLL Lock
/*---*\
S$LOCKX(inout L : RLL_Lock,
 in TIMEOUT : clock_ticks,
 output OBTAINED : boolean);

import
 MY_APP_ID : APP_ID;

var
 ELAPSED_TIME : clock_ticks;
 REQUESTED_EXCLUSIVE : boolean;
 START_TIME : clock_ticks;
 GOT_MUTEX : boolean;

begin
 REQUESTED_EXCLUSIVE := false;
 ELAPSED_TIME := 0;
 START_TIME := get_time();

Interboard Communications Specification RLL locks

PPX:575-8103-2 35

repeat
 MU$GET(L.RLMUTEX, TIMEOUT - ELAPSED_TIME, GOT_MUTEX)
 if GOT_MUTEX then
 if L.RLREQEX and (not REQUESTED_EXCLUSIVE) then
 /*
 ** Someone else has requested the lock exclusive, release
 ** the mutex and try again.
 */
 MU$REL(L.RLMUTEX);
 else
 if L.RLHELDCN <> 0 then
 /*
 ** One or more applications already hold the lock
 ** shared. Indicate that we are requesting the lock
 ** exclusive and release the mutex.
 */
 L.RLREQEX := true;
 MU$REL(L.RLMUTEX);
 REQUESTED_EXCLUSIVE := true
 else
 /*
 ** We obtained the lock. Return success.
 */
 L.RLHOLDER := MY_APP_ID;
 L.RLHELDCN := 1;
 L.RLREQEX := false;
 OBTAINED := true;
 return
 endif
 endif
 endif;
 if TIMEOUT <> maxval(clock_ticks) then
 ELAPSED_TIME := get_time() - START_TIME
 endif
 until ELAPSED_TIME >= TIMEOUT;
 /*
 ** We did not obtain the lock. If we indicated that we requested
 ** it exclusive then we must clear the "requested exclusive" flag
 ** (RLREQEX).
 */
 if REQUESTED_EXCLUSIVE then
 L.RLREQEX := false
 endif;
 /*
 ** Return failure.
 */
 OBTAINED := false;
 return
end.
---/

Interboard Communications Specification RLL locks

PPX:575-8103-2 36

3.2.3 S$UNLOCK - Release An RLL Lock
Procedure S$UNLOCK is used to release an RLL Lock that was obtained using S$LOCKS or S$LOCKX.
The parameters for S$UNLOCK are as follows.

L input /
output

The RLL lock to be released.

Procedure S$UNLOCK will release an RLL lock that was previously obtained with either S$LOCKS or
S$LOCKX. It is an error for an application to release a lock that it does not hold.

/*---*\
S$UNLOCK(inout L : RLL_Lock);

import
 MY_APP_ID : APP_ID;

var
 GOT_LOCK : boolean;

begin
 if L.RLMUTEX and (L.RLHOLDER = MY_APP_ID) then
 /*
 ** We hold the lock exclusive.
 */
 L.RLHELDCN := 0;
 L.RLHOLDER := 0
 else
 /*
 ** We hold the lock shared.
 */
 MU$GET(L.RLMUTEX, maxval(clock_ticks), GOT_LOCK);
 L.RLHELDCN := L.RLHELDCN - 1
 endif;
 MU$REL(L.RLMUTEX)
end.
---/

Interboard Communications Specification Interboard Communications

PPX:575-8103-2 37

4. INTERBOARD COMMUNICATIONS
This section describes the data structures and algorithms used for interboard communications.

A board must be able to access and interpret the data structures discussed in Section 1, Introduction, in
order to participate in the interboard communication facility of the SIMATIC 575 system.

Each entry in the Board Table contains variable BTEIBCAP, which is a pointer to that board's interboard
communication area (IBCAREA), and variable BTEIBCPR, which is a protocol type indicator.

The board's IBCAREA contains head and tail pointers to a linked list of messages intended for that board.
See Record IBCAREA in Section 9, Data Dictionary, for a description of each field. Figure 4-1 shows the
format for an IBCAREA record.

For a board to send a message to another board and receive a response, it must be able to read the various
tables.

For a board to receive messages from other boards in the chassis, it must log into the various tables and
indicate the protocol supported in its BTEIBCPR field.

To support the standard interrupt communications protocol, a board must provide an interrupt location
that is accessed as a byte using one of the methods indicated by variable BTEINTAC in the board table.

If the other protocols are sufficient, it is not necessary to provide this location.

Offset 31 24 23 16 15 08 07 00
0000 IBAMUTEX filler
0004 IBAHEAD
0008 IBATAIL

Figure 4-1 Interboard Communication Area Header Format (IBCAREA)

Variable BTEIBCPR specifies one of three types of protocol to send messages to a board. See type
IBCPROT in Section 9, Data Dictionary, for the allowed values. The three types are:

• Standard interrupt communications protocol. Indicates that messages and responses are
queued in the board's IBCAREA and an interrupt is generated.

• Standard polled communications protocol. Indicates that messages and responses are queued in
the board's IBCAREA. The board must poll field IBAHEAD to determine if anything is queued.

• No messages, polled responses. Indicates that the board cannot accept messages. For any
messages that it sends, it must poll the "is response" field (IBMISRES) of the message to
determine when the response is ready.

 To send messages to and receive responses from another board or application within the system the board
must be able to perform the functions detailed in the following utility routines described in Section 8,
Interboard Communications Utilities:

 C$ENQMSG Enque Message To IBC Area.
 C$REPLY Send Reply To An IBC Message.
 C$SEND Send Interboard Message.
 C$SENDAA Send Application-To-Application Message.
 C$SENDAB Send Application-To-Board Message.
 C$SENDBA Send Board-To-Application Message.
 C$SENDBB Send Board-To-Board Message.

Interboard Communications Specification Interboard Communications

PPX:575-8103-2 38

 In summary, a board must be able to:

• Format a message as shown in Figure 4-2 and defined by Record IBCMSG in Section 9, Data
Dictionary. If the sending board is not logged into the system, then the Sending LAR is set to FF16 and
the sending Application ID is set to 0.

• Locate the IBCAREA which is pointed to by variable BTEIBCAP in the board table entry for the
destination board. Use the destination board's LAR to index into the board table. If the destination is
an Application, the board LAR is in variable ATELAR of the application’s Application Table entry.

• Obtain the IBCAREA Mutex and enqueue the message on the destination boards linked list by entering
a pointer to the source message into both the IBCAREA's tail pointer and into the next message field of
the message that was at the tail of the link. (See C$ENQMSG in Section 8, Interboard Communications
Utilities)

• Determine the protocol type from variable BTEIBCPR in the board table entry for the destination
board.

◊ If the destination board supports standard interrupt communications protocol, locate the
interrupt register for the destination board, perform the appropriate access to generate the
interrupt, and then release the IBCAREA Mutex.

◊ If the destination board supports standard polled communications protocol, release the
IBCAREA Mutex.

• Wait for response by one of the following:

◊ If the sending board supports standard interrupt communications protocol, wait for interrupt.

◊ If the sending board supports standard polled communications protocol, poll field IBAHEAD for
response on message queue.

◊ If the sending board does not log in or supports "no messages, polled responses", poll for
Variable IBMISRSP in the message structure to change from 0 to 1.

Table 4-1 summarizes the SIMATIC 575 interboard messages and Section 7, Interboard Messages, describes
each of the messages. Section 11, IBC Error Codes, contains a list of error codes and their description.

Offset 31 24 23 16 15 08 07 00
0000 IBMNEXT
0004

.

.
0010

IBMRWRKA (16 Bytes)
.
.
.

0014
.
.

0020

IBMSWRKA (16 Bytes)
.
.
.

0024 IBMSLAR IBMSAPP IBMRLAR IBMRAPP
0028 IBMISRSP filler IBMTYPE
002C IBMRESP IBMDSIZE
0030 IBMDLNT filler
0034 IBMREQDP
0038 IBMRSPDP

Figure 4-2 Message Entry Format (IBCMSG)

Interboard Communications Specification Interboard Communications

PPX:575-8103-2 39

Message Code Message
0001 Configure port.
0002 Read port configuration.
0003 Connect to port.
0004 Disconnect from port.
0005 Read port connections.
001B Allocate memory from system heap.
001C Release memory to system heap.
001D Report available memory.
001E Execute application task.

Table 4-1 Interboard Message Type (IBMTYPE) Summary

Interboard Communications Specification Mode Change

PPX:575-8103-2 40

5. MODE CHANGE

5.1 Initiating a Mode Change
To initiate a mode change, send the appropriate taskcode (see below) using message 001E16 (Execute
Application Task) to the proper SIMATIC 575 CPU application. This application will coordinate the mode
change between all participating applications. When the mode change is complete the acknowledgment is
sent via message 001E16 to the initiator. A complete description of the following mode change task codes
can be found in the SIMATIC 575 Task Code Specification (PPX:575-8104).

32 go to run,
33 go to program,
34 Execute Power Up Restart,
35 Execute Complete Restart,
36 Execute Partial Restart.

5.2 Detecting a Mode Change
The mode of any SIMATIC 575 application can be determined by polling the application's mode in the
Application Table (see Record APPTBLEN in Section 9, Data Dictionary, for a description of the Application
Table entry) or by periodically sending task code 30 to that application.

Interboard Communications Specification Memory Management

PPX:575-8103-2 41

6. MEMORY MANAGEMENT
This section describes the management of System Heap by the Primary 575. It also recommends methods
to obtain and release battery backed System Heap for each board that needs it.

6.1 Building System Heap
On a bad battery power up, the Primary 575 initializes a System Heap which consists of a memory pool
residing on the Primary 575.

All System Heap allocations are taken from this pool. This pool is retained in its pre power-fail state for all
subsequent battery good power cycles.

If the system fails on power-up due to an abnormal power failure (e.g., the system tables did not match,
etc.) system heap is reclaimed by the Primary 575. Otherwise the system heap is left in its pre power-fail
state.

6.2 Using System Heap
System Heap is intended to be used by boards that have no battery backed memory of their own for
maintaining the following items necessary for power-fail recovery processing:

1. Inter-board message buffers. Since a given message may result in a critical operation being
performed by the destination board, and since power could fail during message processing,
message buffers must remain intact until power-fail recovery processing has completed.

2. Information necessary to re-log into the board into the same place of the following tables on
subsequent power-up/resets.

a. The Application Table.

b. The Board Table.

c. The System Descriptor Table.

3. Any other information necessary to be maintained through a power cycle.

6.3 Allocating System Heap
A board which needs battery backed memory may request allocation from the Primary 575 at anytime after
power-fail recovery processing completes (PURPHASE set to FF16). This request is accomplished by
sending the inter-board message 001B16, Allocate Memory from System Heap, to the Primary 575.

This message must be in non-volatile memory, so for boards that have none, a block of 128 bytes is provided
in each entry of the board table (BTEPWKRA). This memory is battery backed and can be used as a
message buffer to request more memory from the heap if necessary. To use this buffer, a board must be
logged into the board table.

Allocation of System Heap should be viewed as a high overhead function and only used the first time a
board appears in the system. Dynamic allocation of memory from this pool should be minimized with the
board requesting one block of memory for all it's needs and then performing dynamic buffer management
within that block locally.

Interboard Communications Specification Memory Management

PPX:575-8103-2 42

6.4 Finding Allocated System Heap
Boards may find their allocated battery backed heap following a battery good power up by using the report
memory allocation command of the PURCMD facility while they have control of the Board Table during
login. The appropriate information can then be copied from the allocated memory to the various tables
before indicating "power-up done" during the login procedure.

If a board does not participate in log in and/or power-fail recovery processing but still needs battery backed
memory from System Heap, it can still find it's previously allocated memory. This is accomplished after
power fail recovery processing completes by sending the inter-board message 001D16, Report Available
Memory, to the Primary 575.

6.5 Releasing System Heap
If a board no longer requires an allocated block of System Heap, it may release it by sending inter-board
message 001C16, Release Memory to System Heap, to the Primary 575. This can be sent after power fail
recovery completes. No provisions are made to release memory using the PURCMD facility.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 43

7. INTERBOARD MESSAGES
This section describes each of the SIMATIC 575 interboard messages. The message descriptions are in
numerical order by message type. Each description contains the following components:

Sent by Specifies ‘who’ can send the message. In general, a message can be sent from a board
or from an application on a board. Some messages restrict the possible senders.

Sent to Specifies ‘who’ can process the message. In general, a given message can be sent to a
board or to an application on a board. Some messages can only be processed by the
Primary 575 CPU (board).

Type Specifies the value for the message type (IBMTYPE) field.
Request Specifies the request format as a sequence of letters and spaces. Each letter

corresponds to 4 data bits (e.g., cc represents an 8-bit byte - 2 consecutive 4-bit units
composing a single field, pppp represents a 16-bit word). A sequence one or more of the
same letter represents a single field, e.g., qqqq represents a Port_ID field. Spaces are
used to improve readability of the specification. They do not occur in the actual
message. Optional fields are shown enclosed in brackets, i.e., [cc]. The braket is not
included when the field is present.

Response Specifies the format of the message’s response data. Specification convention is as for
the Request component.

Errors Lists the errors that the message may return. A description of error codes that can be
returned is contained in Section 11, IBC Error Codes.

Parameters Describes the parameters of the Request and/or Response components.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 44

7.1 Message 000116 - Configure Port
This message is used to set up a port for operation.

Sent by Anyone.
Sent to Board containing the port to be configured.
Type 000116

Request qqqq pppp bbbbbbbb cc pp ss ff
Response none.
Errors No such port.

Specified protocol not supported or invalid.
Specified BAUD rate not supported or invalid.
Specified data-bits/parity not supported or invalid.
Specified flow control not supported or invalid.

Parameters qqqq Port ID (LAR / Port number) (see PORT_ID in Section 9, Data Dictionary).

pppp Protocol as follows

000016 None
000116 TTY
000216 NITP/TBP Secondary (Task Codes)
000316 NITP/TBP Host (Future)
000416 -
FFFF16

undefined

Refer to document SIMATIC 575 Task Code Specification (PPX:575-8104) for a
description of NITP and TBP protocols. TBP and NITP are request/response
protocols used in task code communications. TTY indicates that the port is used
for unstructured communications (e.g., the port is a printer port).

bbbbbbbb BAUD rate in bits/second as a binary integer, i.e., 19200 for 19.2K baud

cc Character size not including any parity or stop bits. Typically 7 or 8.

pp Parity as follows:

00 No parity
01 EVEN parity.
02 ODD parity.
03 MARK (1) parity.
04 SPACE (0) parity.

ss Number of stop bits as follows:

00 Bit synchronous.
01 1 stop bit.
02 1.5 stop bits.
03 2 stop bits.

ff Flow control options (bit mask) as follows:

bit 27 DSR/DTR If not selected then if DSR is deasserted, the operation is
aborted.

bit 26 XON/XOFF Cannot be selected if TBP is selected.

Zero, one or both bits can be set.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 45

7.2 Message 000216 - Read Port Configuration
Sent by Anyone.
Sent to Board containing the port.
Type 000216

Request qqqq
Response qqqq pppp bbbbbbbb cc pp ss ff
Errors No such port.

Parameters qqqq Port ID.

pppp Protocol as follows

000016 = None
000116 = TTY.
000216 = NITP/TBP Secondary (Task Codes)
000316 = NITP/TBP Host (Future)
000416 - FFFF16 undefined

Refer to document SIMATIC 575 Task Code Specification (PPX:575-8104) for a
description of NITP and TBP protocols. TBP and NITP are request/response
protocols used in task code communications. TTY indicates that the port is used
for unstructured communications (e.g., the port is a printer port).

bbbbbbbb BAUD rate in bits/second, as a binary integer..

cc Character size not including any parity and stop bits. Typically 7 or 8.

pp Parity ss follows

00 - No parity.
01 - EVEN parity.
02 - ODD parity.
03 - MARK parity (MSB = 1)
04 - SPACE parity (MSB = 0)

 ss Number of stop bits as follows

00 - Bit synchronous.
01 - 1 stop bit.
02 - 1.5 stop bits.
03 - 2 stop bits.

ff Flow control options (bit mask) as follows:

bit 27 DSR/DTR If not selected then if DSR is deasserted, the operation is
aborted.

bit 26 XON/XOFF Cannot be selected if TBP is selected.

Zero, one or both bits can be set.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 46

7.3 Message 000316 - Connect To Port
This message is used to connect an application to a port.

Sent by Anyone.
Sent to Board containing the port.
Type 000316

Request qqqq aa [cc]
Response none
Errors No such port.

No such application.
Connection failed.
Timeout not supported.

Parameters qqqq Port ID.

aa App ID of the application to be connected to the port. If not coded or 0016 then
the requestor is connected to the port. (The purpose of this parameter is to allow
the user to statically configure his port connections).

cc Connection type as follows

0016 EXCLUSIVE connection. Only a single application may have an exclusive
connection to a port.

0116 SHARED connection. Multiple applications may have shared connections
to a port.

If not coded, then EXCLUSIVE is assummed. Currently, the only protocol that
supports shared connections is TTY. For protocols not supporting shared
connections, a request for a shared connection is treated like a request for an
exclusive connection.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 47

7.4 Message 000416 - Disconnect From Port
This message is used to cancel a port connection.

Sent by Application wishing to disconnect from the port.
Sent to Board containing the port.
Type 000416

Request qqqq [aa]
Response none.
Errors No such port.

Application was not connected to the port.

Parameters qqqq Port ID.

aa App ID of the application whose connection is to be canceled. If not coded or if
0016 then the requesting application is disconnected.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 48

7.5 Message 000516 - Read Port Connections
This message is used to read a port connection.

Sent by Anyone.
Sent to Board containing the port.
Type 000516

Request qqqq
Response [aa cc [aa cc] ...]
Errors No such port.

Parameters qqqq Port ID.

aa App ID of the application currently connected to the port.

cc Connection type as follows

0016 - EXCLUSIVE connection.
0116 - SHARED connection.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 49

7.6 Message 001B16 - Allocate Memory From System Heap
This message is used for a board or application to obtain memory from System Heap.

Sent by Anyone.
Sent to Board containing Primary 575 function.
Type 001B16

Request nnnnnnnn
Response pppppppp
Errors Memory not available.

Parameters nnnnnnnn Number of bytes of memory to be allocated.

pppppppp VME pointer to the first usable byte for the block of memory that was allocated.
This is the first byte after the header. (See record SHEAPHDR in Section 9,
Data Dictionary).

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 50

7.7 Message 001C16 - Release Memory To System Heap
This message allows a board or application to release memory that was previously allocated by message
$001B, "Allocate Memory From System Heap".

Sent by Anyone
Sent to Board containing Primary 575 function.
Type 001C16

Request [pppppppp]
Response none
Errors Specified memory was not allocated by message 001B16, "Allocate Memory From System

Heap".

Parameters pppppppp VME pointer to the first usable byte of the block of memory to be released. If not
coded then all System Heap allocated to the board or application is released.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 51

7.8 Message 001D16 - Report Available Memory
This message is used to determine the amount of memory available to be allocated from System Heap.

Sent by Anyone.
Sent to Board containing Primary 575 function.
Type 001D16

Request none
Response nnnnnnnn llllllll aaaaaaaa ffffffff
Errors none

Parameters nnnnnnnn Total number of usable bytes of System Heap available.

llllllll Size of the largest block of usable bytes of System Heap available to be
allocated.

aaaaaaaa Total number of usable bytes of System Heap that is allocated to the board or
application.

ffffffff VME pointer to the first block of System Heap that is allocated to the board or
application. Points to the first usable byte. If multiple blocks are allocated, the
sender is responsible for finding other blocks using SHEAPHDR.

Interboard Communications Specification Interboard Messages

PPX:575-8103-2 52

7.9 Message 001E16 - Execute Application Task
This message is used to request execution of an application-defined task by another board or application.
For 575 CPUs or 575 applications, this is a Series 500 task code.

Note When a port is configured for NITP or TBP protocol, all messages received on the port are
passed to the connected application as "Execute Application Task" messages.

Sent by Anyone.
Sent to Anyone.
Type 001E16

Request qqqq 00 dd...dd
Response qqqq 00 dd...dd
Errors Message not supported.

Parameters qqqq Port id of the sending board.

dd...dd Request/response data. The format of the data is dependent on the receiver. For
a SIMATIC 575 CPU, the data is defined by document SIMATIC 575 Task Code
Specification (PPX:575-8104).

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 53

8. INTERBOARD COMMUNICATIONS UTILITIES
This section describes utility routines referenced by the pseudo-code descriptions of the interboard
messages.

8.1 C$ENQMSG - Enque Message To IBC Area
Procedure C$ENQMSG is called by function C$SEND to enqueue a message on a destination board's IBC
Message Queue. This procedure has two parameters:

input DEST_BRD Pointer to destination board’s Board Table Entry.
input MSG Pointer to the message to be sent.

The pseudo-code for procedure C$ENQMSG follows:
/---\
C$ENQMSG(in DEST_BRD : VME_ptr to BRDTBLEN,
 in MSG : VME_ptr to IBCMSG);

var
 DEST_QUE : VME_ptr to IBCAREA;
 LAST_MSG : VME_ptr to IBCMSG;
 OBTAINED : boolean;

begin
 MSG->IBMNEXT := nil;
 DEST_QUE := DEST_BRD->BTEIBCAP;
 MU$GET(DEST_QUE->IBAMUTEX, no_timeout, OBTAINED);
 LAST_MSG := DEST_QUE->IBATAIL;
 if LAST_MSG = nil then
 DEST_QUE->IBAHEAD := MSG
 else
 LAST_MSG->IBMNEXT := MSG
 endif;
 DEST_QUE->IBATAIL := MSG
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 54

8.2 C$REPLY - Send Reply To An IBC Message
Procedure C$REPLY will send a reply to an IBC message. This is done by setting the "is response" flag
(field IBMISRSP) of the IBC message and, if the board supports it, enqueing the message on the board's
IBC Message Queue. C$REPLY has a single parameter:

input MSG Pointer to the message to which the reply is to be sent.

The pseudo-code for C$REPLY follows:
/---\
C$REPLY(in MSG : VME_ptr to IBCMSG);

begin
 MSG->IBMISRSP := true;
 if MSG->IBMSLAR <> FF16 then
 C$SEND(MSG->IBMSLAR, MSG)
 endif;
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 55

8.3 C$SEND - Send Interboard Message
Procedure C$SEND is called by procedures C$SENDAA, C$SENDAB, C$SENDBA, C$SENDBB, and
C$REPLY to send an IBC message. The method used to send the message is dependent on the IBC message
protocol specified in the destination board's Board Table entry (field IBCPROT). C$SEND has three
parameters, as follows:

input LAR LAR of the board to which the IBC message is to be sent.
input MSG Pointer to the IBC message to be sent.
output RESULT Result of the send operation. (See 11, IBC Error Codes.)

The pseudo-code for C$SEND follows:
/---\
C$SEND(in DEST_LAR : LAR
 in MSG : VME_ptr to IBCMSG)
 out RESULT : uint16);

var
 DEST_BRD : VME_ptr to BRDTBLEN;
 DEST_QUE : VME_ptr to IBCAREA;
 DEST_INTR_16 : Short_VME_ptr to byte;
 DEST_INTR_24 : VME_ptr to byte;

begin
 DEST_BRD := loc(GSDA->BRDTBL[DEST_LAR]);
 if DEST_BRD->BTELAR <> DEST_LAR then
 RESULT := DESTINATION_BOARD_NOT_LOGGED_IN;
 return
 endif;
 DEST_QUE := DEST_BRD->BTEIBCAP;
 case DEST_BRD->BTEIBCPR of
 IBCPSTD : /* Standard interboard messages with interrupt */
 C$ENQMSG(DEST_BRD, MSG);
 /* Determine method of interrupt */
 case DEST_BRD->BTEINTAC of
 A16RMW : /* A16 space Read-modify-write cycle access */
 DEST_INTR := A16_Address(DEST_BRD->BTEINTRP);
 begin ATOMIC operation;
 *DEST_INTR := (*DEST_INTR & DEST_BRD->BTEINTRAM) | DEST_BRD->BTEINTROM;
 end ATOMIC operation;

 A16W : /* A16 space write cycle access */
 DEST_INTR := A16_Address(DEST_BRD->BTEINTRP);
 *DEST_INTR := DEST_BRD->BTEINTROM;

 A24RMW : /* A24 space Read-modify-write cycle access */
 DEST_INTR := A24_Address(DEST_BRD->BTEINTRP);
 begin ATOMIC operation;
 *DEST_INTR := (*DEST_INTR & DEST_BRD->BTEINTRAM) | DEST_BRD->BTEINTROM;
 end ATOMIC operation;

 A24W : /* A24 space write cycle access */
 DEST_INTR := A24_Address(DEST_BRD->BTEINTRP);
 *DEST_INTR := DEST_BRD->BTEINTROM;

 Otherwise : /* No interrupt supported */
 MU$REL(DEST_QUE->IBAMUTEX);
 RESULT := UNKNOWN_INTERRUPT_ACCESS_CODE_SPECIFIED_IN_BRD_TBL;
 return;
 endcase;
 MU$REL(DEST_QUE->IBAMUTEX);

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 56

 IBCPSTDP : /* Standard interboard messages w/o interrupt */
 C$ENQMSG(DEST_BRD, MSG);
 MU$REL(DEST_QUE->IBAMUTEX);

 otherwise : /* Board cannot accept messages */
 RESULT := UNKNOWN_PROTOCOL_SPECIFIED_IN_BRDTBL_ENTRY;
 return;
 endcase;
 RESULT := NO_ERROR;
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 57

8.4 C$SENDAA - Send Application-To-Application Message
Procedure C$SENDAA is used to send an IBC message from one application to another application.
C$SENDAA will fill in the message header and enqueue the message on the receiver's IBC Message Queue.
C$SENDAA has three parameters:

input DEST_APP APP_ID of application to which the IBC message is to be sent.
input MSG Pointer to the IBC message to be sent.
output RESULT Result of the send operation. (See 11, IBC Error Codes.)

The pseudo-code for C$SENDAA follows:
/---\
C$SENDAA(in DEST_APP : APP_ID,
 in MSG : VME_ptr to IBCMSG)
 out RESULT : uint16);

import
 MY_APP_ID : APP_ID;
 MY_LAR : LAR;

begin
 if APPTBL[DEST_APP].ATEAPPID <> DEST_APP then
 RESULT := APPLICATION_IS_NOT_DEFINED");
 return
 endif;

 MSG->IBMISRSP := false;
 MSG->IBMSLAR := MY_LAR;
 MSG->IBMSAPP := MY_APP_ID;
 MSG->IBMRLAR := APPTBL[DEST_APP].ATELAR;
 MSG->IBMRAPP := DEST_APP;
 C$SEND(MSG->IBMRLAR, MSG, RESULT);
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 58

8.5 C$SENDAB - Send Application-To-Board Message
Procedure C$SENDAB is used to send an IBC message from an application to a board. C$SENDAB will fill
in the message header and enqueue the message on the receiver's IBC Message Queue. C$SENDAB has
three parameters:

input DEST_LAR LAR of the board to which the IBC message is to be sent.
input MSG Pointer to the IBC message to be sent.
output RESULT Result of the send operation. (See 11, IBC Error Codes.)

The pseudo-code for C$SENDAB follows:
/---\
C$SENDAB(in DEST_LAR : LAR,
 in MSG : VME_ptr to IBCMSG)
 out RESULT : uint16);

import
 MY_APP_ID : APP_ID;
 MY_LAR : LAR;

begin
 MSG->IBMISRSP := false;
 MSG->IBMSLAR := MY_LAR;
 MSG->IBMSAPP := MY_APP_ID;
 MSG->IBMRLAR := DEST_LAR;
 MSG->IBMRAPP := 0;
 C$SEND(MSG->IBMRLAR, MSG, RESULT);
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 59

8.6 C$SENDBA - Send Board-To-Application Message
Procedure C$SENDBA is used to send an IBC message from a board to an application. C$SENDBA will fill
in the message header and enqueue the message on the receiver's IBC Message Queue. This procedure has
three parameters:

input DEST_APP APP_ID of application to which the IBC message is to be sent.
input MSG Pointer to the IBC message to be sent.
output RESULT Result of the send operation. (See 11, IBC Error Codes.)

The pseudo-code for C$SENDBA follows:
/---\
C$SENDBA(in DEST_APP : APP_ID,
 in MSG : VME_ptr to IBCMSG,
 out RESULT : uint16);

import
 MY_LAR : LAR;

begin
 if GSDA->APPTBL[DEST_APP].ATEAPPID <> DEST_APP then
 RESULT := APPLICATION_IS_NOT_DEFINED;
 return
 endif;

 MSG->IBMISRSP := false;
 MSG->IBMSLAR := MY_LAR;
 MSG->IBMSAPP := 0;
 MSG->IBMRLAR := GSDA->APPTBL[DEST_APP].ATELAR;
 MSG->IBMRAPP := DEST_APP;
 C$SEND(MSG->IBMRLAR, MSG, RESULT);
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 60

8.7 C$SENDBB - Send Board-To-Board Message
Procedure C$SENDBB is used to send an IBC message from one board to another board. C$SENDBB will
fill in the message header and enqueue the message on the receiver's IBC message queue. This procedure
has three parameters:

input DEST_LAR LAR of the board to which the IBC message is to be sent.
input MSG Pointer to the IBC message to be sent.
output RESULT Result of the send operation. (See 11, IBC Error Codes.)

The pseudo-code follows:
/---\
C$SENDBB(in DEST_LAR : LAR,
 in MSG : VME_ptr to IBCMSG,
 out RESULT : uint16);

import
 MY_LAR : LAR;

begin
 MSG->IBMISRSP := false;
 MSG->IBMSLAR := MY_LAR;
 MSG->IBMSAPP := 0;
 MSG->IBMRLAR := DEST_LAR;
 MSG->IBMRAPP := 0;
 C$SEND(MSG->IBMRLAR, MSG, RESULT);
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 61

8.8 MU$GET - Obtain A Mutex
Function MU$GET is used to obtain a mutex. This is done by performing a "test_and_set" on the mutex
until either we obtain the mutex or we time out.

Note: To prevent excessive VMEbus traffic, a short (16 microsecond) delay is done between each
attempt to obtain the mutex.

Procedure MU$GET has three parameters:

inout MUTEX Mutex to be obtained
input TIMEOUT Maximum amount of time that we are to wait for the mutex to become

available. A value of maxval(clock_ticks) indicates "wait forever".
output OBTAINED Flag indicating whether or not we obtained the mutex.

The pseudo-code follows:
/---\
MU$GET(inout MUTEX : mutex,
 in TIMEOUT : clock_ticks,
 output OBTAINED : boolean);

var
 START_TIME : clock_ticks;
 ELAPSED_TIME : clock_ticks;

begin
 OBTAINED := false;
 ELAPSED_TIME := 0;
 START_TIME := get_time();
 repeat
 if not test_and_set(MUTEX) then
 OBTAINED := true
 else
 delay for 16 microseconds
 endif;
 if TIMEOUT <> maxval(clock_ticks) then
 ELAPSED_TIME := get_time() - START_TIME
 endif;
 until OBTAINED or (ELAPSED_TIME > TIMEOUT);
 return
end.
\---/

Interboard Communications Specification Interboard Communications Utilities

PPX:575-8103-2 62

8.9 MU$REL - Release A Mutex
Procedure MU$REL is used to release a mutex. MU$REL has a single parameter:

inout MUTEX Mutex to be released.

The pseudo-code follows:
/---\
MU$REL(inout MUTEX : mutex);

begin
 MUTEX := 0016;
 return
end.
\---/

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 63

9. DATA DICTIONARY
This section contains the type definitions, record definitions, and variables that were defined in this
document. The entries are in alphabetical order.

Note: Offsets are given as hexadecimal values.

9.1 Type APP_ID : Application ID.
An application ID is an 8-bit value in the range [0 ... 26] used to identify an application. The value
0 indicates either "current application" or "no application" depending on the context in which it
occurs. It is used to index the Application Table Entry (see APPTBL).

type APP_ID : uint8 range [0 ... 26];

Externally, applications are referenced by a letter with 'A' corresponding to APP_ID = 1, 'B'
corresponding to APP_ID = 2, etc.

9.2 Type APPOPMOD : Application Operational Mode.
Indicates the operational mode of an application.

type APPOPMOD : sint16 values

{ AOMFAULT = -1,
 AOMPGM = 0,
 AOMRUN = 1 };

where

AOMFAULT Failed. A hardware or software fault has been detected.

AOMPGM Program. This state indicates that the application is not executing.

AOMRUN Run. This state indicates that the application is executing.

9.3 Variable APPTBL : VME_ptr To The Application Table.
Points to the Application Table. Variable APPTBL resides in the Global System Data Area (GSDA).

APPTBL : VME_ptr to APPTBLEN[1..26];

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 64

9.4 Record APPTBLEN : Application Table Entry.
Describes an entry in the Application Table (see APPTBL). Refer to Figure 1-5 for a graphical
representation of the APPTBLEN record type.

record APPTBLEN
0000 ATEMUTEX : mutex;
0001 ATEAPPID : APP_ID;
0002 ATELAR : LAR;
0003 filler : uint8; // must be zero.
0004 ATETYPE : APPTYPE;
0006 ATEOPMOD : APPOPMOD;
0008 ATEABRDS : packed boolean[0..31];
000C ATEGMEMS : VME_ptr;
0010 ATEGMEME : VME_ptr;
0014 ATEREQ : packed boolean[0..31];/* bit 0 reserved */
0018 ATEOPT : packed boolean[0..31];/* bit 0 reserved */
001C ATEMDLOK : packed boolean[0..31];/* bit 0 reserved */
0020 ATEDESC : char[1..40]
0048 endrecord

where

ATEMUTEX Mutex used to control access to the entry. This mutex must be obtained
beforecreating, deleting, or modifying the application table entry.

ATEAPPID Application ID. 0 indicates that this application is not present.

ATELAR LAR of the board to which all applications-directed messages are to be sent.

ATETYPE Type of application.

ATEOPMOD Application's operational mode.

ATEABRDS Attached boards map. Bit-map indicating which boards in addition to ATELAR
are attached to this application with LAR = 0 corresponding to the msbit. (This
field is provided for future expansion and will always be 0 for now).

ATEGMEMS Address of the start of the application's G-memory area. 0 indicates that the
application does not have any G-memory.

ATEGMEME Address of the end of the application's G-memory area. 0 indicates that the
application does not have any G-memory.

ATEREQ Required applications map. Bit-map indicating which other applications are
required to be present for this application to run. Indexed by APP_ID.

ATEOPT Optional applications map. Bit-map indicating which other applications this
application may reference but are not required to be present for this application
to run. Indexed by APP_ID.

ATEMDLOK Locked modes list. Bit-map indicating which applications' operational modes are
locked to this application's operational mode. A request to change the
operational mode of any of the locked applications will result in the operational
mode of all locked applications being changed. Indexed by APP_ID.

ATEDESC ASCII string(zero terminated) describing the application.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 65

9.5 Type APPTYPE : Application Type Code.
Specifies the type of an application.

type APPTYPE : uint16 values { APPRLLSF = 000116, ... };

where

APPRLLSF : Series 500 RLL / SF/Loop program.

Currently, the only defined APPTYPE is 000116. Siemens Industrial Automation, Inc. reserves type
codes 000116 through 7FFF16 for registered application types. 800016 through FFFF16 are reserved
for customer use.

9.6 Variable BATGOOD : "Battery Good" Flag.
Indicates the status of the battery. Variable BATGOOD resides in the Global System Data Area
(GSDA).

BATGOOD : boolean;

9.7 Type BOARD_TYPE : Board ID Code.
Specifies the type of board installed.

type BOARD_TYPE: uint8 values

{ 0016 - 0216 reserved
0316 : SIMATIC VME I/O
0416 : SIMATIC 575 CPU
0516 - 0616 reserved
0716 : General Purpose CPU
0816 - 7F16 Reserved for Siemens definition
8016 - FF16 User defined }

9.8 Type BOOLEAN : Boolean.
Specifies a boolean variable that can take on one of two values, true or false.

false = 0
true = non-zero

9.9 Variable BRDTBL : VME_ptr To The Board Table.
Points to the Board Table. Variable BRDTBL resides in the Global System Data Area (GSDA).

BRDTBL : VME_ptr to BRDTBLEN[0..15];

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 66

9.10 Record BRDTBLEN : Board Table Entry.
Describes an entry in the Board Table (see BRDTBL). Figure 1-4 provides a graphical
representation of this data structure.

record BRDTBLEN
0000 BTELAR : LAR;
0001 BTEBID : BOARD_TYPE;
0002 BTEMGOOD : BOOLEAN;
0003 BTEPFRDN : BOOLEAN;
0004 BTEIBCPR : IBCPROT;
0006 BTEPUTO : uint16;
0008 BTESDT : uint16;
000A BTEDIAG : uint16;
000C BTEIBCAP : VME_ptr to IBCAREA;
0010 BTEINTRP : uint32;
0014 BTEINTAC : INTRCODE;
0016 BTEINTAM : uint8;
0017 BTEINTOM : uint8;
0018 BTEFLAGS : packed boolean[0..31]
001C BTESDESC : char[1..20]
0030 BTEHDESC : char[1..20]
0044 BTEPWRKA : char[1..128]
00C4 endrecord

where

BTELAR Board's LAR. FF16 indicates that the board is not present.

BTEBID Board's type (see BOARD_TYPE for definitions).

BTEMGOOD Flag used during power-up/reset to indicate whether or not the board's memory
is still good.

BTEPFRDN Flag used during power-up/reset to indicate when the board has completed
power-fail recovery processing.

BTEIBCPR Interboard communications protocol to be used (see Type IBCPROT).

BTEPUTO Number of seconds that the System Controller will wait for the board to log itself
in during power-up/reset.

BTESDT Index of the board's entry in the System Descriptor Table (see variable SDT).

BTEDIAG Diagnostic word that indicates reason for failure. Value of 1 indicates no failure.

BTEIBCAP Pointer to the board's Interboard Communications Area (see record IBCAREA),
if any. If BTEIBCAP is 0 then this board cannot receive messages.

BTEINTRP Byte offset into either VME A-16 or A-24 address space. Points to a location on
the board that causes an interrupt if accessed using the method indicated by
variable BTEINTAC.

BTEINTAC Interrupt Location Access Code that indicates how to initiate a board interrupt
to signal that a message has been enqueued on the boards message queue. (see
Type INTRCODE)

BTEINTAM Mask to be "ANDed" with the value read from the interrupt location if the access
code indicates read-modify-write.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 67

BTEINTOM Mask to be "ORed" with the value read from the interrupt location if the access
code indicates read-modify-write or the value to be written if access code
indicates write.

BTEFLAGS Board attribute flags as follows

bit 231 BTEF_PFR. Participant in Power-Fail- Recovery. If cleared and
board was present at power-down then on battery good power up,
board will participate in power fail recovery. Otherwise, board
does not participate.

bit 230 BTEF_PFRE. Power-Fail-Recovery-Error. A power fail recovery
error was detected during login.

bits 229 - 20 Reserved -- set to 0.

BTESDESC ASCII string (zero terminated) describing the software on the board. SIMATIC
575 CPU's record the Software Configuration Number in this field.

BTEHDESC ASCII string (zero terminated) describing the hardware of the board. SIMATIC
575 CPU's record "575" in this field.

BTEPWRKA Private work area. This area is provided for the board's private use. Intended
purpose is as a guaranteed battery backed IBC message header/text area and/or
Power-up Recovery save area.

9.11 Variable BRDTBLMU : Board Table Mutex.
Used to control access to the Board Table (BRDTBL). Variable BRDTBLMU resides in the Global
System Data Area (GSDA).

BRDTBLMU : mutex;

Before a board attempts to log itself into the system, it should obtain BRDTBLMU.

9.12 Type CLOCK_TICKS : Clock Ticks.
Indicates a number of clock ticks. This is the data type returned by function "get_time".

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 68

9.13 Record GCSR : Global Control And Status Register.
Describes the GCSR area for SIMATIC 575 CPU’s. GCSR is an 8 byte status region that provides
facilities that allow other boards to interrupt the destination board.

record GCSR
0000 filler1 : uint8; // even addresses not defined.
0001 GCSR_R0 : uint8;
0002 filler2 : uint8; // even addresses not defined.
0003 GCSR_R1 : uint8;
0004 filler3 : uint8; // even addresses not defined.
0005 GCSR_BID : uint8;
0006 filler4 : uint8; // even addresses not defined.
0007 GCSR_GR0 : uint8;
0008 filler5 : uint8; // even addresses not defined.
0009 GCSR_GR1 : uint8;
000A filler6 : uint8; // even addresses not defined.
000A GCSR_GR2 : uint8;
000C filler7 : uint8; // even addresses not defined.
000B GCSR_GR3 : uint8;
000E filler8 : uint8; // even addresses not defined.
000F GCSR_GR4 : uint8;
0010 endrecord

where

GCSR_R0 Location monitor masks, chip ID as follows

bits 27 - 24 GCR0_LM Location monitor masks. Not used.
bits 23 - 20 GCR0_CID Chip ID. Not used.

GCSR_R1 Interrupt / control flags as follows

bit 27 GCR1_RH Reset and hold. Allows other VME masters to reset
the board. (read/write).

bit 26 GCR1_SCN System Controller flag. Set if the board is the System
Controller. (read only).

bit 25 GCR1_ISF Inhibit SYSFAIL. Allows other VME masters to cause
the board to release its input to the SYSFAIL* line.
(read/write).

bit 24 GCR1_FL Board Fail. Shows the status of the BRDFAIL*
signal. (read only).

bits 23 - 22 Undefined

bit 21 GCR1_SHP High-priority signal interrupt. Not used.

bit 20 GCR1_SLP Low-priority signal interrupt. When set causes a low-
priority signal interrupt on the board. This interrupt
is used to indicate that an IBC message is present on
the board's IBC Message Queue

GCSR_BID Board ID.
GCSR_GRn General purpose control and status registers. Not used.

GCSR is located in short VME address space (A16).

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 69

9.14 Record GSDA : Global System Data Area.
Defines the global system data area. This is the primary data area used in interboard
communications since it contains pointers to all the other interboard communications data
structures. See Figure 1-2 for a graphical representation of this data structure.

When the Primary 575 CPU is configured as AUTO-CONFIGURED the GSDA data structure
resides on the Primary 575 CPU at VME A24 address 00000016.

If the Primary 575 CPU is configured as USER-CONFIGURED then the GSDA resides at a VME
A24 base address determined by the selection of SW3 and SW4 on the 505 Remote I/O CPU Annex
Card. See the 575 System Manual (PPX:575-8101-5) for more information.

record GSDA
0000 GSDAFMT : uint16[0 .. 1];
0004 BATGOOD : BOOLEAN;
0005 filler1 : uint8;
0006 PURDONE : BOOLEAN;
0007 PURPHASE : uint8;
0008 PURCMD : uint32;
000C PURRESP : uint32;
0010 SDTNMLAR : uint8;
0011 SDTNSLAR : uint8;
0012 SDTNSDT : uint16;
0014 SDT : VME_ptr to SDTENT[0 .. 31];
0018 filler2 : uint8[0 .. 2]; // always 0.
001B BRDTBLMU : mutex;
001C BRDTBL : VME_ptr to BRDTBLEN[0 .. 15];
0020 APPTBL : VME_ptr to APPTBLEN[1 .. 26];
0024 filler3 : uint8[0 .. 2]; // always 0.
0027 SYSTODMU : mutex;
0028 SYSTOD : Time_of_Day
0030 filler4 : uint8;
0031 SBRDTMUX : mutex;
0032 SBRDNSBR : uint16;
0034 SBRDTBL : VME_ptr to SBRDTBLE[0..15];
0038 filler5 : uint8; // always 0.
0039 SYSIOCMU : mutex;
003A SYSIOCNE : uint16;
003C SYSIOCTB : VME_ptr to SYSIOCEN[0..15];
0040 IAPPLMAP : packed BOOLEAN [0..31];
0044 SYSCONFG : uint8;
0045 filler6 : uint8[0 .. 2];
0048 PFSAVAR : uint32[0 .. 15];
0088 filler7 : uint32[0 .. 46] /* reserved for future expansion */
0144 endrecord

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 70

9.15 Variable GSDAFMT : Global System Data Area Format Version Number.
Indicates the format version of the GSDA. Variable GSDAFMT resides in the Global System Data
Area.

GSDAFMT : uint16[0..1];

GSDAFMT indicates the format of the Global System Data Area and related data structures such as
the Board Table and the Application Table. GSDAFMT[0] is the major version number and is
incremented whenever a major change has been made that makes prior version of the GSDA area
incompatible with each other. All boards in the system should check GSDAFMT[0] to ensure that it
matches what they expect. See Section 10, GSDA Format Changes, for the correct value for
GSDAFMT[0].

GSDAFMT[1] is the minor version number. It is incremented whenever a minor change has been
made which should not affect the operation of boards running with older software having the same
value for GSDAFMT[0].

9.16 Variable IAPPLMAP : Installed Application Map
Indicates which applications logged in on the last powerup. Variable IAPPLMAP resides in the
Global System Data Area.

IAPPLMAP : packed BOOLEAN [0..31] /* bit 0 reserved */

IAPPLMAP is indexed by application id. APP_ID = 1 corresponds to bit 1. This map is built at the
end of power-up / reset phase 2. This map is used to help determine which applications have been
installed in a battery good system.

9.17 Record IBCAREA : Interboard Communications Area.
Describes the Interboard Communications Area located on each board. A board's IBCAREA is
pointed to by field BTEIBCAP in the board's Board Table entry (see record BRDTBLEN).

record IBCAREA

 +0000 IBAMUTEX : mutex;

 +0001 filler : uint8[3]; // reserved, must be zero.

 +0004 IBAHEAD : VME_ptr to IBCMSG;

 +0008 IBATAIL : VME_ptr to IBCMSG;

 +000C endrecord

where

IBAMUTEX IBC message mutual exclusion semaphore.

IBAHEAD Pointer to first (oldest) entry on the board's IBC Message Queue.

IBATAIL Pointer to last (youngest) entry on the board's IBC Message Queue.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 71

9.18 Record IBCMSG : Interboard Message.
Describes the buffer used to send interboard messages.

record IBCMSG
0000 IBMNEXT : VME_ptr to IBCMSG;
0004 IBMRWRKA : uint8[16];
0014 IBMSWRKA : uint8[16];
0024 IBMSLAR : LAR;
0025 IBMSAPP : APP_ID;
0026 IBMRLAR : LAR;
0027 IBMRAPP : APP_ID;
0028 IBMISRSP : BOOLEAN;
0029 filler : uint8;
002A IBMTYPE : uint16;
002C IBMRESP : uint16;
002E IBMDSIZE : uint16;
0030 IBMDLNT : uint16;
0032 filler : uint16;
0034 IBMREQDP : VME_ptr to Request Data Area
0038 IBMRSPDP : VME_ptr to Response Data Area
003C endrecord;

where

IBMNEXT Ptr to next entry on the board's IBC Message Queue.

IBMSWRKA 16-byte sender workarea.

IBMRWRKA 16-byte receiver workarea.

IBMSLAR LAR of the sending board.

IBMSAPP Sender's Application ID if message was initiated by an application. 0 if message
was not initiated by an application.

IBMRLAR LAR of the destination board

IBMRAPP Destination Application ID if the message is directed to an application. 0 if
message is directed to the board.

IBMISRSP "Is response" flag. If non-zero then this is a message response. If 0 then this is a
message.

IBMTYPE Message type.

IBMRESP Response code.

IBMDSIZE Size of the response data area (pointed to by IBMRSPDP) in bytes. This is the
maximum size of any response that may be returned.

IBMDLNT Actual length of the request/response data in bytes.

IBMREQDP Pointer to the request data area.

IBMRSPDP Pointer to the response data area. This pointer may be the same as IBMREQDP.
This would be the case if the response data is to be returned in the request data
buffer.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 72

9.19 Type IBCPROT : Interboard Communications Protocol.
Specifies the protocol to send messages to a board.

type IBCPROT : uint16 values {
IBCPSTD = 0,
IBCPSTDP = 1,
IBCRPOLL = 2 }

where

IBCPSTD Standard communications protocol. Indicates that messages and responses are
queued in the board's IBCAREA and an interrupt is generated by accessing the
location pointed to by field BTEINTRP using the access method indicated by field
BTEINTAC.

IBCPSTDP Standard polled communications protocol. Indicates that messages and responses
are queued in the board's IBCAREA. The board must poll field IBAHEAD to
determine if anything is queued.

IBCRPOLL No messages, polled responses. Indicates that the board cannot accept messages.
For any messages that it sends, it must poll the "is response" field (IBMISRES) of
the message to determine when the response is ready.

9.20 Type INTRCODE : Interrupt Location Access Code.
Specifies the access method to initiate an interrupt to a board indicating an IBC message has been
sent to the board. The location to be accessed is pointed to by variable BTEINTRP (see record
BRDTBLEN).

type INTRCODE : uint16 values {
A16RMW = 0,
A16W = 1,
A24RMW = 2,
A24W = 3 }

where

A16RMW Location is accessed with a supervisor-mode read-modify-write cycle to the VME
A16 address space. The value read shall be modified by anding it with field
BTEINTAM and oring this result with field BTEINTOM of the destination board's
board table entry.

A16W Location is accessed with a supervisor-mode write cycle to the VME A16 address
space. The value to be written is contained in field BTEINTOM.

A24RMW Location is accessed with a supervisor-mode read-modify-write cycle to the VME
A24 address space. The value read shall be modified by anding it with field
BTEINTAM and oring this result with field BTEINTOM of the destination board's
board table entry.

A24W Location is accessed with a supervisor-mode write cycle to the VME A24 address
space. The value to be written is contained in field BTEINTOM.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 73

9.21 Type LAR : Board Logical Address.
A LAR is an 8-bit value specifying the logical address of a board. The Primary 575 has LAR = 0016.
The next VME master has LAR = 0116, etc. The first VME slave card has LAR = 1016, the next VME
slave has LAR = 1116, etc. The LAR is used to index the entries in the Board Table (see BRDTBL).
LAR = FF16 indicates that the board is not present.

type LAR : uint8 range [0016 ... 1F16, FF16];

9.22 Type MUTEX : Mutual Exclusion Semaphore.
Byte used to control access to shared data structures.

type mutex : byte;

Bit 27 of a mutex indicates its status as follows:

0 : Mutex is not held.

1 : Mutex is held.

Two operations are defined on a mutex. They are

MU$GET : Acquire a mutex using an indivisible read-modify-write operation.

MU$REL : Release a mutex.

9.23 Variable MY_APP_ID : Application ID Of The Current Application.
Used to reference the current application's Application ID.

MY_APP_ID : APP_ID;

9.24 Variable MY_LAR : LAR Of The Current Board.
Used to reference the current board's LAR.

MY_LAR : LAR;

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 74

9.25 Variable PFSAVAR : Power Fail Save Area
This area is maintained through a power failure. Each master is allocated 1 longword to use as it
see fit. The index into this area is given by PFSAVAR[LAR]. Variable PFSAVAR resides in the
Global System Data Area (GSDA).

 PFSAVAR : uint32[0 .. 15];

9.26 Record PORT_ID : Port ID.
Identifies a port in the SIMATIC 575 system. PORT_ID is referred to as the "qqqq" field in the
SIMATIC 575 Task Code Specification (PPX:575-8104). Its primary usage in this system is to
identify the source of task codes for port-lockout, generic-upload/download, etc.

type PORT_ID : uint16;

The encoding of PORT_ID is as follows:

215 ... 28 27 ... 20

0xxxxxxx 0xxxxxxx Reserved values that are not used by 575.

00LLLLLL 10PPPPPP PORT_ID references a local communication port on the PLC, where:

LLLLLL Board's LAR [0016 ... 0F16].
PPPPPP Port number (0 = first port).

00000000 11AAAAAA PORT_ID references an application, where:

AAAAAA APP_ID [0116 ... 1A16].

01LLLLLL 1CCCBBBB PORT_ID references a remote port on an RBC, where:

LLLLLL LAR of the board to which the RBC is attached.
CCC Remote channel number.
BBBB Base number.

1CCCCCCC BBBBSSSS PORT_ID refers to a module position on a Remote I/O channel, where:

CCCCCCC Channel number -- always 0016 for 575.
BBBB Base number.
SSSS Slot number.

11111110 LLLLLLLL PORT_ID refers to a board, where:

LLLLLLLL Board's LAR -- 0016 - 0F16.

9.27 Type PTR : Pointer.
Specifies a pointer to an object. Zero (0) is recognized as the nil pointer, i.e., a pointer that doesn't
point to anything.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 75

9.28 Variable PURCMD : Primary 575 Command.
Used during power-up/reset to pass a command to the Primary 575. Variable PURCMD resides in
the Global System Data Area (GSDA).

PURCMD : sint32;

A board must hold the Board Table mutex (BRDTBLMU) before it can pass commands to the
Primary 575. All commands have the most-significant bit of the command longword set. The
Primary 575 polls this bit to determine when a command is present, so the sending board should
first load the command into PURCMD and then set the msbit. When the Primary 575 has finished
processing a command, it places the response in variable PURRESP and then clears PURCMD.

The following Primary 575 commands are supported.

81LLAA0016 Report memory allocation. "LL" and "AA" are the LAR and APP_ID for which
memory allocation is to be reported. If "AA" is "00" then memory allocation is
reported for the board, only. When PURCMD becomes 0 the VME_ptr to the first
block of allocated memory for LLAA is returned in PURRESP. If no memory is
allocated to LLAA then PURRESP will contain 0. (Memory is allocated using IBC
message 001B16.)

NOTE: If more than one non-logged in board asks for heap then "AA" must be unique.

9.29 Variable PURDONE : "Board Login Complete" Flag.
Indicates that a board using the IRQ6 IACK daisy-chain method of logging in has completed logging
itself in. Variable PURDONE resides in the Global System Data Area (GSDA).

PURDONE : boolean;

9.30 Variable PURPHASE : Power-up/Reset Phase.
Indicates the phase of power-up/reset. Variable PURPHASE resides in the Global System Data Area
(GSDA).

PURPHASE : sint8;

The values taken on by PURPHASE during power-up/reset are as follows:

0016 - Initial phase.
0116 - Logging in boards using IRQ6 IACK daisy-chain.
0216 - Logging in boards with previously assigned LARs.
0316 - Doing power-fail recovery.
0416 - Doing a fault restart.
FF16 - Power-up/reset complete.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 76

9.31 Type RLL_LOCK : RLL Lock.
A data structure in shared memory used to control access to a shared data-structure. RLL_Locks
are manipulated with the LOCK and UNLOCK RLL box instructions.

type RLL_Lock : sint32;

The format of an RLL_Lock is as follows:
231 224 223 216 215 28 27 20

xxxxxxxx RLMUTEX Mutex used to indicate that the lock is
held or is being manipulated. (8016 = held
or being manipulated). The mutex must be
acquired using an indivisible read-modify-
write instruction.

........ x0000000 RLREQEX Flag indicating that someone is requesting
EXCLUSIVE control of the lock. (1 =
requesting EXCLUSIVE). This bit is used
to prevent applications requesting the lock
SHARED from starving applications
requesting the lock EXCLUSIVE.

........ xxxxxxxx RLHELDCN Number of lock holders.

........ xxxxxxxx RLHOLDER App ID of the application holding the lock
EXCLUSIVE.

An RLL Lock may be in one of three states as follows:

FREE In this state, the lock may be obtained by anyone. All fields contain 0.

HELD SHARED In this state, applications requesting the lock EXCLUSIVE will be blocked
but other applications requesting the lock SHARED (up to a maximum of
255) will be allowed to proceed (if RLREQEX is not set). In this state, field
RLHOLDER = 0016 and field RLHELDCN contains a value in the range [1
... 255] indicating the number of holders.

HELD EXCLUSIVE In this state, any requests for the lock are blocked. Field RLMUTEX is set,
field RLHOLDER contains the application ID of the application holding the
lock, and field RLHELDCN = 1.

9.32 Variable SBRDNSBR : INDEX Of Next Entry In SBRDTBL.
Indicates the index of the next entry in the Slave Board Table. Variable SBRDNSBR resides in the
Global System Data Area (GSDA).

SBRDNSBR : uint16;

Variable SBRDNSBR should be incremented by the master board after it has completed logging it's
slave board into the system.

9.33 Variable SBRDTBL : VME_ptr To The Slave Board Table
Points to the Slave Board Table. Variable SBRDTBL resides in the Global System Data Area
(GSDA).

SBRDTBL : VME_ptr to SBRDTBLE[0..15];

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 77

9.34 Record SBRDTBLE : Slave Board Table Entry.
Describes an entry in the Slave Board Table (see SBRDTBL).

record SBRDTBLE
0000 STELAR : LAR;
0001 STEBID : BOARD_TYPE;
0002 STESDT : uint16;
0004 STEBRDSP : VME_ptr to entry in BRDSPTBL;
0008 STESDESC : char[1..40]
003016 endrecord;

where

STELAR Board's LAR. FF16 indicates that the board is not present.

STEBID Board's type(see BOARD_TYPE for possible values).

STESDT Index of the board's entry in the System Descriptor Table (see variable SDT).

STEBRDSP VME pointer to an entry in the Board Specific Table (BRDSPTBL). For SIMATIC
575 this table is called the System I/O configuration table (SYSIOCTB) and resides
in the Global System Data Area.

STESDESC ASCII string (zero terminated) describing the Slave board. SIMATIC VME Slave
board example "IO 16Xs 16Ys".

9.35 Variable SBRDTMUX : Slave Board Table Mutex.
Used to control access to the Slave Board Table (SBRDTBL). Variable SBRDTMUX resides in the
Global System Data Area (GSDA).

SBRDTMUX : mutex;

A master board must obtain SBRDTMUX before it can log its slave boards into the Slave board
table.

9.36 Variable SDT : VME_ptr To The System Descriptor Table.
Points to the System Descriptor Table. The SDT contains a list of the boards and the range of VME
addresses assigned to the board. Variable SDT resides in the Global System Data Area (GSDA).

SDT : VME_ptr to SDTENT[0..31];

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 78

9.37 Record SDTENT : System Descriptor Table Entry.
Describes an entry in the System Descriptor Table (SDT).

record SDTENT
0000 filler : uint16; // reserved, must be zero.
0002 SELAR : LAR;
0003 SEBRDID : BOARD_TYPE;
0004 SESMEMS : VME_ptr;
0008 SESMEME : VME_ptr;
000C endrecord.

where

SELAR Board LAR.

SEBRDID Board ID. Used to identify the type of board(see BOARD_TYPE).

SESMEMS Address of start of shared memory.

SESMEME Address of end of shared memory.

9.38 Variable SDTNMLAR : Next VME Master LAR.
Indicates the LAR of the next available VME master. SDTNMLAR is used in the board login process
during power-up/reset for boards using the IRQ6 IACK daisy-chain method of logging in. Variable
SDTNMLAR resides in the Global System Data Area (GSDA).

SDTNMLAR : LAR;

9.39 Variable SDTNSDT : Index Of Next Entry In The SDT.
Indicates the index of the next entry in the System Descriptor Table. Variable SDTNSDT resides in
the Global System Data Area (GSDA).

SDTNSDT : uint16;

Variable SDTNSDT should be incremented by each board after it has completed logging itself into
the system.

9.40 Variable SDTNSLAR : Next VME Slave LAR.
Indicates the LAR of the next available VME slave. SDTNSLAR is used in the board login process
during power-up/reset for boards using the IRQ6 IACK daisy-chain method of logging in. Variable
SDTNSLAR resides in the Global System Data Area (GSDA).

SDTNSLAR : LAR;

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 79

9.41 Record SHEAPHDR : Header For a Block Of Memory In System Heap.
Defines the header prepended to blocks of memory allocated from System Heap by message 001B16,
Allocate Memory From System Heap.

record SHEAPHDR
0000 SHHLAR : LAR;
0001 SHHAPP : APP_ID;
0002 filler : uint16;
0004 SHHNEXT : VME_ptr to SHEAPHDR;
0008 SHHSIZE : uint32
000C endrecord.

where

SHHLAR LAR of the board to which the block of memory is allocated.

SHHAPP App ID of the application to which the block of memory is allocated. 0016 indicates
that the block is allocated to the board rather than to an application.

SHHNEXT VME_ptr to the next block of allocated memory.

SHHSIZE Size of the block of memory, including the System Heap Header.

9.42 Type SHORT_VME_ptr : Pointer Into Short VME Space (A16 space).
Specifies a 32-bit pointer into short VME address space (A16). A Short_VME_ptr is an unsigned 32-
bit integer (uint32), of which only the least-significant 16-bits are meaningful. It contains the byte
offset of an object in VME A16 (short) address space.

9.43 Type sint8 : 8-bit Signed Integer.
Specifies an 8-bit two's-complement signed integer in the range [-128 ... 127]. The bit significance
(for a positive number) is as follows:

S 26 25 24 23 22 21 20

9.44 Type sint16 : 16-bit Signed Integer.
Specifies a 16-bit two's-complement signed integer in the range [-32768 ... 32767]. The order of
bytes and bit significance (for a positive number) is as follows:

0000 S 214 213 212 211 210 29 28

0001 27 26 25 24 23 22 21 20

9.45 Type sint32 : 32-bit Signed Integer.
Specifies a 32-bit two's-complement signed integer in the range [-2147483648 ... 2147483647]. The
order of bytes and bit significance (for a positive number) is as follows:

0000 S 230 229 228 227 226 225 224

0001 223 222 221 220 219 218 217 216

0002 215 214 213 212 211 210 29 28

0003 27 26 25 24 23 22 21 20

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 80

9.46 Variable SYSCONFG : Primary 575 Configuration Options
Variable SYSCONFG contains the configuration options selected for the Primary 575. This variable
should be treated as a READ ONLY variable by all other masters. Primary 575 configuration
options are contained in an 8-bit byte. The bits of this byte are defined as follows

bits 27 - 25 Reserved, always 0002.

bits 24 - 23 Base Address1

24 23 A24 Base Address (GSDA) A16 Base Address (GCSR0)
0 0 00000016 000016

0 1 40000016 400016

1 0 80000016 800016

1 1 C0000016 C00016

bit 22 0 : Primary 575 will assert SYSRESET* during FAULT recovery.2
1 : Primary 575 will not assert SYSRESET* during FAULT recovery.

bit 21 0 : Auto-Configured.
1 : User-Configured.

bit 20 Reserved, always 0.
Note 1 - Default value is 002 when Auto-Configured is selected.
Note 2 - Default value when Auto-Configured is selected.

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 81

9.47 Record SYSIOCEN : System I/O Configuration Table Entry
Describes an entry in the System I/O Configuration Table (SYSIOCTB). Variable SYSIOCTB
resides in the Global System Data Area.

record SYSIOCEN
0000 SIOC_OWN : uint8;
0001 SIOC_CC : uint8;
0002 SIOC_SDT : uint16;
0004 endrecord.

where

SIOC_OWN Owner of the board. SIOC_OWN shall reference the first application that
configures an output point for the entry, whether or not the board referenced by
the entry contains outputs. When SIOC_OWN is non-zero an attempt to configure
an output for the entry is invalid.

0 No owner.
1 .. 26 Application ID of owner.

27 .. 255 Invalid.

SIOC_CC Indicates the number of applications that have configurations for this board.

SIOC_SDT Index to SDT entry corresponding to this entry. Zero indicates no board installed.

9.48 Variable SYSIOCMU : System I/O Configuration Table Mutex.
Used to control access to the System I/O Configuration Table (SYSIOCTB). Variable SBRDTMUX
resides in the Global System Data Area (GSDA).

SBRDTMUX : mutex;

This Mutex must be held in order to update the System I/O Configuration Table.

9.49 Variable SYSIOCNE : Index Of Next Entry In SYSIOCTB.
Indicates the index of the next entry in the System I/O Configuration Table. Variable SYSIOCNE
resides in the Global System Data Area (GSDA).

SYSIOCNE : uint16;

Variable SYSIOCNE should be incremented by the master board after each I/O configuration
command.

9.50 Variable SYSIOCTB : VME_ptr To The SYSIOCEN.
Points to the System I/O Configuration Table. Variable SYSIOCTB resides in the Global System
Data Area (GSDA).

SYSIOCTB : VME_ptr to SYSIOCEN[0..31];

9.51 Variable SYSTOD : System Time-Of-Day.
Contains the system time-of-day. SYSTOD is located in the GSDA. It is maintained by the System
Controller.

SYSTOD : Time_of_Day;

Interboard Communications Specification Data Dictionary

PPX:575-8103-2 82

9.52 Variable SYSTODMU : System Time-Of-Day Access Mutex.
Used to control access to the system time-of-day (SYSTOD). SYSTODMU must be obtained by a
board before reading the time-of-day.

SYSTODMU : mutex;

9.53 Record TIME_OF_DAY : Time Of Day.
Describes the time-of-day.

record Time_of_Day
0000 Year : BCD[2] range [00 .. 99];
0001 Month : BCD[2] values { 01 = Jan, ... 12 = Dec };
0002 Day : BCD[2] range [01 ... 31];
0003 Hours : BCD[2] range [01 ... 23];
0004 Minute : BCD[2] range [00 ... 59];
0005 Second : BCD[2] range [00 ... 59];
0006 .01 seconds : BCD[2] range [00 ... 99]; // resolution is .10 second on 575
0007 Day_of_Week : BCD[2] values { 01 = Sun, ..., 07 = Sat }
0008 endrecord;

9.54 Type uint8 : 8-bit Unsigned Integer.
Specifies an 8-bit unsigned integer in the range [0 ... 255].

27 26 25 24 23 22 21 20

9.55 Type uint16 : 16-bit Unsigned Integer.
Specifies a 16-bit unsigned integer in the range [0 ... 65535].

0000 215 214 213 212 211 210 29 28

0001 27 26 25 24 23 22 21 20

9.56 Type uint32 : 32-bit Unsigned Integer.
Specifies a 32-bit unsigned integer in the range [0 ... 4294967295].

0000 231 230 229 228 227 226 225 224

0001 223 222 221 220 219 218 217 216

0002 215 214 213 212 211 210 29 28

0003 27 26 25 24 23 22 21 20

9.57 Type VME_ptr : Pointer To An Object In Globally Accessible Memory.
Specifies a pointer to an object in standard VME address space (A24). A VME pointer is an
unsigned 32-bit integer (uint32), of which only the least-significant 24-bits are meaningful. The
VME_ptr contains the byte offset of an object in A24 (standard) VME address space. A value of 0 is
the nil pointer and indicates that the pointer doesn't point to anything.

Interboard Communications Specification GSDA Format Changes

PPX:575-8103-2 83

10. GSDA FORMAT CHANGES
This section describes each change that has been made to the GSDA data structure.

575
Software
Release

GSDAFMT[0]
Major Version

GSDAFMT[1]
Minor Version

1.0.0 000016 000016

2.0.0 000116 000016

3.1.01 000116 000116

3.1.02 800116 000116
Note 1: Configuration mode is Auto-Configured.
Note 2: Configuration mode is User-Configured.

10.1 GSDA Format Changes For SIMATIC 575 Release 1.0
This was the original release.

Interboard Communications Specification GSDA Format Changes

PPX:575-8103-2 84

10.2 GSDA Format Changes For SIMATIC 575 Release 2.0
Offsets into GSDA area for user code are the same for both version 0 and version 1 of GSDAFMT. However;
there have been changes that make version 1 of the GSDA data structure incompatible with the previous
version. These changes are explained in this section.

Variable IAPPLMAP was added to the end of the GSDA area.

A filler of 256 bytes was added to the end of the GSDA area to reduce the risk of another major change to
the GSDA area.

The Time_of_Day data structure was changed to conform to that of the SIMATIC 545. This change affects
only the format of variable SYSTOD.

The Time_of_Day data structure format for GSDA version 0 was as follows:

record Time_of_Day
0000 Year : BCD[4]; // e.g., 1994
0002 Month : BCD[2] values { 01 = Jan, ... 12 = Dec };
0003 Day : BCD[2] range [01 ... 31];
0004 Hours : BCD[2] range [01 ... 23];
0005 Minute : BCD[2] range [00 ... 59]
0006 Second : BCD[2] range [00 ... 59];
0007 Day_of_Week : BCD[2] values { 01 = Sun, ..., 07 = Sat }
0008 endrecord;

The Time_of_Day data structure format for GSDA version 1 follows:

record Time_of_Day
0000 Year : BCD[2]; // e.g., 94
0001 Month : BCD[2] values { 01 = Jan, ... 12 = Dec };
0002 Day : BCD[2] range [01 ... 31];
0003 Hours : BCD[2] range [01 ... 23];
0004 Minute : BCD[2] range [00 ... 59]
0005 Second : BCD[2] range [00 ... 59];
0006 .01 seconds : BCD[2] range [00 ... 99]; // resolution is .10 seconds
0007 Day_of_Week : BCD[2] values { 01 = Sun, ..., 07 = Sat }
0008 endrecord;

Interboard Communications Specification GSDA Format Changes

PPX:575-8103-2 85

10.3 GSDA Format Changes For SIMATIC 575 Release 3.1.
If the 575 system is operating in AUTO-CONFIGURED mode, the GSDA data structure is compatible
with version 1 of the GSDA. In this configuration GSDAFMT[0] still equals 1 and the minor version
number is incremented to 1 (i.e., GSDAFMT[1] = 1).

In USER-CONFIGURED mode the GSDA data structure can reside on any 4 megabyte boundary. To
prevent a CPU using version 1 of the GSDA (i.e., assumming the GSDA base address was at 0) from
comming up, the most significant bit of the major version number was set (i.e., GSDAFMT[0] = 800116)
indicating that the two data structures are no longer compatible.

The length of the GSDA area did not change in this release. However, two new variables were added to the
reserved area. The first new variable is SYSCONFG. This variable is a READ ONLY byte indicating the
configuration of the Primary 575 CPU. The second new variable is PFSAVAR which is an array of sixteen
32-bit longwords. This battery backed-up array is maintained over a power cycle and may be used by
masters (LAR 0016 to 0F16, respectively) to save up to 32 bits of power-fail context in the global system table.
A 575 CPU uses its entry in this table to save the power-fail value of the system time tick for verification
during power-up. A second copy of this value is also saved in the 575’s local RAM. By comparing these two
values on a subsequent power-up, the 575 CPU can reliably detect a board swap-out while power was off.

Interboard Communications Specification IBC Error Codes

PPX:575-8103-2 86

11. IBC ERROR CODES
This section describes the error codes received in the messaging system. All values are given as
hexidecimal numbers.

Error
Number Error Code Description

00 No error.
70 Invalid message type (IBMTYPE)
71 Unimplemented message type (IBMTYPE)
72 Unknown protocol specified in Brd Tbl entry.
73 Destination brd not logged in
74 Attempt to send IBC msg to MY_LAR
75 Attempt to get mutex failed
76 Attempt to release mutex failed (was released).
77 Attempt to allocate from free VME sys heap failed
78 Attempt to free unallocated VME sys heap memory
79 TC operation failed.
7A Invalid port number.
7B Attempt to assign port rejected.
7C Insufficient request size. (Msg 1E)
7D Insufficient dst/rsp buffer size for result.
7E Unknown Interrupt Access Code specified in Brd Tbl
7F IBC msg rcvd is valid for only the system cntrlr.
80 No such application.
81 Task Code Request Block Not Available
82 Task Code Buffer Not Available
83 Message sent to wrong board

Customer Response

We would like to know what you think about our user manuals so that we can serve you better.
How would you rate the quality of our manuals?

Excellent Good Fair Poor

Accuracy
Organization
Clarity
Completeness
Graphics
Examples
Overall design
Size
Index

Would you be interested in giving us more detailed comments about our manuals?

Yes! Please send me a questionnaire.

No. Thanks anyway.

Your Name:

Title:

Telephone Number: ()

Company Name:

Company Address:

Manual Name: SIMATIC 575 Interboard Communications Specification Edition: Second

Manual Assembly Number: 2589734–0004 Date: 6/95

Order Number: PPX:575–8103–2

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.3 JOHNSON CITY, TN

FOLD

FOLD

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ATTN: Technical Communications M/S 519
SIEMENS INDUSTRIAL AUTOMATION INC.
3000 BILL GARLAND RD
P O BOX 1255
JOHNSON CITY TN 37605–1255

