SIEMENS

SIMATIC T1505
BASIC Module

User Manual

Order Number: PPX:505-8101-2
Manual Assembly Number: 2586546-0031
Second Edition

Copyright 1992 by Siemens Industrial Automation, Inc.
All Rights Reserved — Printed in USA

Reproduction, transmission or use of this document or
contents is not permitted without express consent of
Siemens Industrial Automation, inc. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.

Since Siemens Industrial Automation, inc. does not possess
full access to data conceming all of the uses and applications
of customer’s products, we do not assume responsibility either
for customer product design or for any infringements of patents
or nghts of others which may result from our assistance.

212

Technical data is subject to change.

Woe check the contents of every manual for accuracy at the
time it is approved for printing; however, there may be
undetactad ermors. Any emors found will be correctad in
subsaquent editions. Any suggestions for improvement are
weslcomed.

MANUAL PUBLICATION HISTORY

SIMATIC TI505 BASIC Moduie User Manual
Order Manual Number; PPX:505-8101-2

Refeor to this history in all correspondence and/or discussion about this manual,

Event Dctte Descriplion

Criginal lssue 12/89 Original Issue (2592497-0001)
Second Edition 01/93 Second Edition (2592497-0002)

LIST OF EFFECTIVE PAGES

Pages Description Pages Description
Cover/Copyright Second
History/Effective Pages Second
iii — wiii Second
1-1—1-4 Second
2-1—2-24 Second
3-1—3-77 Second
A-T— A6 Second
B-1—B-6 Second
C-1—C-2 Second
D-1—D-$ Second
Registration Second

Contents

Chapter 1 Introduction

1.1

INtroductionc.iciiiiirireiteneonononsacnsancananassannnaas 1-2

Chapter 2 Installation and Initialization

2.1
22

2.3

2.4
2.5
2.6

2.7

2.8

Introduction ..o i it riarrer et eaaaaa 2-2
Setting the Configuration Switches 2-3
2.2.1 Configuring 6-switchSets 2-5
2.2.2 Configuring the 4-switch Set 2-5
2.2.3 InstallingtheModule 2-7
Connecting CablesandWiringc.cciiivinenne.. 2-9
2.3.1 Communications Portso, 2-9
2.3.2 RS-232-C/432 Communications 2-10
Connecting aVPUccciiiniiiiiiiiiiitnrscrrrnertnrennnnnnss 2-11
Connecting OtherDevicesc.ccicivininiiiinenerrsrenrnnes 2-15
Starting-up the Programmable Basilc Modulecccvuvv... 2-16
2.6.1 Userdnitiated Test i, 2-16
2.6.2 Veritying PLC-module Communication 2-16
Starting-up the Systemiiiriiiirriinreracnnerereonns 2-18
271 Stating-upthe VPUooiniiiiiiiann. . 2-18
27.2 Checking Communications 2-20
273 Caps Lock ON ... e 2-20
274 Enabling VPU Auxiliary (Printer) Port 2-21
275 EmorDiagnosticscci it 2-21
2.7.6 Starting-up Other Programming Devices 2-22
Hardware Troubleshootingccoviiiiiiiiiiiiiiiinan. 2-23
2.81 Programming Device and/or Module Faiture 2-23
2.8.2 Battery Failure i 2-23
2.8.3 ChangingtheBattery 2-24

Contents B

Chapter 3 Programming Language

31 Introductioncciiiiiiiiiiiiieiiirrctiaasasranaaneraans 3-3
32 OperationModes..........ccciviiiicrniiernennnctascnascaersens 3-4
3.2.1 RUNMOGEottt e e et e e 3-4
3.2.2 PROGRAM MOde ... ittt ittt aeaaannns 3-4
3.23 PowerupModes............ .o, 3-4
3.24 Source Statement i i 3-6
3.25 000 311 £- o - S 3-7
3.2.6 Varables i 3-8
3.3 BASICCOMMANASciocvrunecnonenccancerasasnanasassasnes 3-11
3.3.1 CONTINUECommandc.oviimimiiiieinninnnnn 3-11
3.3.2 ST Commandcooiivi it et ittt 3-12
3.3.3 LOAD Commandiiiitiiiiiiirennrannancens 3-12
3.34 NEW Command and Retentive Memory 3-13
3.35 RUNCommMAaNdoiiiitiiiiii it iinianinns 3-14
3.3.6 SAVE Commandccovt ittt it e it e 3-14
3.3.7 SIZECOomMmMAandcoiitiiir it et 3-15
34 BASICStatements...........c.cureiineraenecncaarsranarcnrcanas 3-16
3.4.1 DEFStatementol 3-16
3.4.2 DIMStatementcoiiiiiiiiiiiii ittt 3-17
3.43 ERRORStatementc. ittt iiianrenas 3-18
3.44 ESCAPE/NOESC Statementt innrannn.. 3-20
3.45 FIND Statementciviiriiiiirinircaenneaanens 3-21
346 FOR/NEXT Loop Statementt 3-22
3.4.7 INPUT Statementttt iineananannannn 3-25
3.48 LET Statementttt it e 3-27
349 PRINT Statementcoiiiiriir ettt eiiannaaannns 3-28
3410 BANDOMStatementc.covtiirrrimenrennennanan 3-35
3.4.11 REM Statement &t et s ansnsenrnenaaaaa i aaaaan 3-36
3412 STOP/END Statementscoiviirvrneivnenannnnn 3-36
3413 TABStatement it e e 3-37
3414 TIMEStatementccciriiiiiiiiniirannrannannnn 3-38
3415 UNITStatementcoo ittt ineaeaaaanann 3-39
3416 InternalDataStatements.............ccciiiiiiiiiiinnn. 3-40
3.417 Branch Statementsttt iiinraeneannans 3-41
3.4.18 CALL (PLC Interface Statement) 3-44
3.419 Subroutine Statements i e 3-52

v Contents

3.5

3.6

3.7

BASIC FUNCHIONSciviiitiriiiietierecncncacaaroncsarnsnanas 3-54

3.5.1 ABSFunction i 3-54
3.5.2 ASCFRuUNnction i i i 3-54
3.5.3 ATNFURCHON i i i it it i et 3-54
3.5.4 BITFunction i iiiiiennnnn 3-55
3.55 COSFUNCHiON i i et 3-58
3.5.6 EXPRUNCtion.........cooiiii i e 3-58
3.5.7 INP Function e e et 3-59
3.5.8 LENFuUnction i, 3-59
3.5.9 LOGFRuUnction i 3-60
3510 MCHFuUNCHON it i it i ciianeenns 3-60
3511 MEMFEUNRCHiON i it 3-61
3512 MWDFuUnction i e 3-61
3513 NKYFURCHioOn i it e 3-62
3514 RNDFRUNCHiON it iiianiaenannnn 3-63
3515 SINFuUnCtion i e 3-63
3516 SRHFunction i, 3-64
3517 SQRFunction it 3-64
3518 SYSFUNCHON......... it iiiiiiananannn 3-64
3519 TICFUNCHONottt iiirennaaaananans 3-66
3.5.20 StringManipulations i 3-66
BASICOperationsccciiieieiicncnnnncanasnnasrssnnns 3-72
3.6.1 ArithmeticOperatorscciiiiiiiiinananenan.. 3-72
3.6.2 Logical Operatorsttt 3-72
3.6.3 BooleanOperatorsttt 3-73
364 Relational Operators oo, 3-73
3.6.5 Order of Operator Evaluation 3-74
EditingaProgramccciiiiiiiiiaercnacnnnancssaeanacnn 3-75
3.7.1 General EditingProcedurescccoiinis. 3-75
3.7.2 EditingwithaVPU i 3-77

Contents v

Appendix A Summary of BASIC Language

Al Introductionccoiiiiiiiiiiiiiiirrciiiaiicnanaann, en A2

A2 Tableof BASICFunctionscccievimnenenciiinannnncnns A-3

A3 Tableof BASICStatementsccciiiiiiiiinnnnennnn-., A-4
Appendix B VPU Hex-ASCIl Codes

B-1 VPUCharacterCodescccoiiiviiinrenncncnrennnnn. B-2
Appendix C Reserved Words

C.1 ReservedWords LIStc.coiiiiiiiiaiiiiiiiiicianasnannnns C-2
Appendix D Error Format

DA Introductionccciiiiinniennennresnsnscrstssasasansnnans D-2

D2 ErrorMesSsagescccceurricciinrransnssacncesnnsancnnas D-3

vi Contents

List of Figures

1-1
2-1
2-2
2-3
24
2-5
2-6

Programmable BASIC Module indicatorsc..o 0o ... 1-3
Switch Configuration Setsoooo oo 2-3
Inserting the Programmable BASICModule 2-8
Ports AvailableontheModule 0o i, 29
VPUPOMS ... e e 2-12
PinDiagram 2-13
VPUKeycap Placementooo i, 2-14

Contents vii

List of Tables

1-1 Programmable BASIC Module Specifications 1-4
2-1 Configuration Switch Settings 2-5
2-2 Configuring the 4-switchSet e e e 2.7
23 PinDefinition e 2-13
3-1 Formatting String Charactersc. .. 0 i . 3-35
3-2 VPUEditingSymbolsco o 3-76
33 VPUEdItingKeyso 3-77
Al BASICCOMMANdSouiuvineenee e A-2
A2 BASICFUNCHONS ... A3
A3 BASICStatementsoo i A4
B-1 VPUCharacter Codesoouuueomrnin i, B-2
D-1 ErrorMessagesouuuininnn D-3

viii Contents

Chapter 1

Introduction
1.1 Introduction ittt ttee st nanaaanan 1-2
1.2 Module INdicatorscovvriineiienrinerecnsescoscsnesosnsaannne 1-3

Series 505 BASIC Module User Manual Introduction 1-1

1.1 introduction

This manual is designed to help you install the Programmable
BASIC Module, prepare it for operation, and learn the BASIC
language needed for programming. Chapter 2 shows how to install
and prepare the module for operation. Chapter 3 describes the
commands, statements, and functions of the BASIC language.

The Programmable BASIC Module is an intelligent I/O module with
28k-bytes of memory. This module is compatible with all Series
500™/505™ Programmable Logic Controllers (PLCs), but operates
asynchronously for minimal effect on PLC scan time. The
Programmable BASIC Module may be programmed with a VPU,
IBM® AT™ computers and compatibles running terminal emulation
software, or other compatible non-intelligent terminals. It is used in
applications where:

e Complex mathematical evaluations are needed (as in PID,
statistical analysis, and gas flow calculations).

e Machine diagnostics are required.
e Parallel processing is needed to shorten the PLC scan time.

e Operation with specialized devices such as bar code readers and
CRTs is desired.

e Applications using serial (RS-232-C) communications are
required.

The module also features retentive memory and dual serial ports for
communication with operators and machines. The module increases
the control and memory capabilities of the PLC. The 3-volt lithium
battery in the module backs-up the retentive memory areas and the
internal clock.

1-2 Introduction Series 505 BASIC Module User Manual

1.2 Modulie Indicators

Figure 1-1 Programmable BASIC Module indicators

As shown in Figure 1-1, there are six indicators on the face of the
module:

MOD GOOD (module good)

BATT GOOD (battery good)

RUN MODE (program is being executed)
TEST MODE (diagnostic check)

STAT 1 (status)

STAT 2 (status)

Series 505 BASIC Module User Manual introduction 1-3

Module Indicators (continued)

The MOD GOOD indicator is on when no fatal errors are detected
during diagnostics. The BATT GOOD indicator is on when the
battery is in place and can back up the memory and internal clock.
When a program is being executed by the Programmable BASIC
Module, the RUN MODE indicator is on. The TEST MODE
indicator is on while the module performs diagnostics. STAT 1 and
STAT 2 are for future enhancements.

Table 1-1 Programmable BASIC Module Specifications

Introduction

Operating Temperature: 0° to 60°C
Storage Temperature: —40° to 85°C
Operating Humidity {0 to 95% noncondensing
Vibration: NAVMAT P9492
Module width: Single wide I/O module
Power Consumption 6 watts
(From Base)
Battery Type: Lithium coin type, 3.0 VDC, BR2325
Battery Shelf Life: 5 years
Enabled Life: 6 months
User Memory: 28k bytes
Number of Ports: 2RS-232.C/423
Memory Buffers: Input: 128 ASCII characters
Output: 128 ASCII characters (Port 1)
1024 ASCII characters (Port 2)
Baud Rate: 110 to 19,200 bps
Comm. Distance: 220 m (721 ft.) maximum
Parity: Even, odd, or no parity
Bit Size: 7 or 8 bit characters
Start Bits: 1
Stop Bits: 2, 110 baud, 1 at other rates
Operation mode: DTE
Agency Approvals: ULS® Listed
CSA Certified
FM Approved Class 1, Div. 2
Technical Assistance: Siemens Industrial Automation, Inc. distributor

Series 505 BASIC Module User Manual!

Chapter 2
Installation and Initialization

21 INrodUCHION ...ttt i a ettt 2-2
2.2 Setting the Configuration Switchesc.cvvviiiiiinrnnnanen 2-3
2.2.1 Configuring 6-switch Sets 2-5
2.2.2 Configuringthe 4-switchSet 25
2.2.3 InstalingtheModule 2.7
23 ConnectingCablesand WIINgccciiiveriiveerncnennn. 2-9
2.3.1 Communications Ports 2-9
232 RS-232-C/432 Communications 2-10
24 ConnectingaVPUcciiiininiiiieirennneasrnrsencnnnens 2-11
25 ConnectingOtherDevicescovviiirrrrrenecaannnnnn. 2-15
2.6 Starting-up the Programmable Basic Moduiec..c..... 2-16
2.6.1 Usernitiated Test i, 2-16
2.6.2 Verifying PC-module Communication 2-16
27 Starting-uptheSystemccccoiiiiiirrrrrenncncncenns 2-18
2.71 Starting-upthe VPU i, 2-18
272 Checking Communications 2-20
273 CapsLlock ONn e 2-20
274 Enabling VPU Auxiliary (Printer) Port 2-21
275 ErmorDiagnostics i 2-21
2.7.6 Starting-up Other Programming Devices 2-22
28 HardwareTroubleshootingc.cciiriiiiiiiencnnnnnnns 2-23
2.8.1 Programming Device and/or Module Failure 2-23
282 Battery Failure 2-23
2.8.3 ChangingtheBattery 2-24

Series 505 BASIC Module User Manual Installation and Start-up 21

2.1 introduction

This chapter describes how to install the Programmable BASIC
Module in a Series 505 1/O base, connect the communication cabies
to the programming device (and any other peripheral devices), and
prepare the system for operation.

2-2 installation and Start-up Series 505 BASIC Module User Manual

2.2 Setting the Configuration Switches

2.2.1
Configuring
6-switch Sets

There are three sets of configuration switches as shown in

Figure 2-1. The two 6-position switch sets (81 & S2) are for port 1
and port 2 (as labeled). The 4-position switch (S3) is for the battery
and power-up mode. Each of these is discussed in the following
sections.

The first three switches (numbers 1—3) control the port baud rates
The baud rates range from 110 to 19.2k bps. The setting for each
baud rate is given in Table 2-1.

Configuration
Set for Port 2
N -a—- 6-switch
Configuration
Set for Port 1

3V Lithium Battery

Factory Test Connection
4-Switch Configuration Set

Figure 2-1 Switch Conflguration Sets

Series 505 BASIC Module User Manual Installation and Start-up 2-3

Setting the Configuration Switches (continued)

Switches 4 and 5 control parity operation. Switch 4 either enables
parity (if set to open) or disables parity (if set to closed). Switch 5 is
used to choose odd or even parity: if the switch is set to open, odd
parity is chosen; if it is set to closed, even parity is chosen.

Switch 6 allows either 7- or 8-bit characters. If the switch is set to

open, 8-bit characters are selected. If it is set to closed, 7-bit
characters are selected.

244 Installation and Start-up Series 505 BASIC Module User Manual

222
Configuring
the 4-switch Set

Table 2-1 summarizes the configuration settings for switches 1
through 6. Select OFF by setting the switch to open; select ON by
setting the switch to closed.

Table 2-1 Configuration Switch Settings

Switch Switch Position
6 " OFF = 8-Bit Character
ON = 7-Bit Character
5 OFF = Odd Parity
ON = Even Parity
4 OFF = Parity Enabied

ON = Parity Disabled
Baud Rate 110 300 600 1200 2400 4800 9600 19.2k

3 ON ON ON ON OFF OFF OFF OFF
2 ON ON OFF OFF ON ON OFF OFF
1 ON OFF ON OFF ON OFF ON OFF

The 4-switch configuration set is used for the battery and for
power-up mode.

Switch 1 determines whether the module will return to PROGRAM
or RUN mode after a power interruption. If it is set to open, the
module will be in RUN mode when power is restored. Execution will
restart at the beginning of the program without prompting from the
keyboard. If the switch is set to closed, the moduie will be in
PROGRAM mode when the power is restored, and no action will
occur until restart is executed from the keyboard.

Series 505 BASIC Module User Manual Instaliation and Start-up 2-5

Setting the Configuration Switches (continued)

/\ WARNING

When the module is set to RUN for power-up mode, field devices
under the control of the module application program may begin
operating when power is restored. To minimize the risk of personal
injury and equipment damage, check the following prior to restoring
power to the module: 1) Ensure that all personnel are clear of
machinery areas controlled by the module application program;

2) Ensure that all equipment is prepared for start-up.

Switches 2 and 3 are not currently in use.

Switch 4 turns the battery on (closed) or off (open). When on, the
battery will be enabled and will be the back-up for the internal
time-of-day clock, program memory, and retentive variable memory.
Circuit design provides for 30 minutes data retention while changing
the battery.

NOTE: A good battery must be present at power-up to avoid loss of
program.

NOTE: Before initial program load, you should perform the
following steps: '

1. Disable the battery (refer to Table 2-2).

2. Install the module in the base (refer to Section 2.2.3.

3. Power up the base for 20 seconds or more
This will clear any existing ‘battery backed’ user RAM data. If a
programming device (VPU, Remote Terminal) is connected, a
“MEMORY CLEARED” message will be displayed on the
PpOWer up screen.

4. Power down the base.

5. Remove the module and set the appropriate switches for the
desired operation as defined in Table 2-2.

2-6 Installation and Start-up Series 505 BASIC Module User Manua!

Table 2-2 summarizes the 4-switch set. Select OFF by setting the
switch to open; select ON by setting the switch to closed.

Table 2-2 Configuring the 4-Switch Set

Switch Switch Position Function
4 OFF Battery Disabled
ON Battery Enabled
2-3 _ _ Not Used Not Used
1 OFF _ RUN MODE
ON PROGRAM MODE
223
Installing The BASIC Module may be instalied in any available 1/O slot.
the Module Do not touch the printed circuit board (PCB) while handling the
module. This could cause electrostatic damage to the components on
the PCB. Seec the SIMATIC® TI545™ System Manual for more
information on installing the module.
/\ WARNING To avoid the risk of personal injury, disable all power to the system

before installing or removing I/O modules.

Series 505 BASIC Module User Manual Instaliation and Start-up 2-7

Setting the Configuration Switches (continued)

To install the module:

1. Position the module so that the front bezel is facing you as
shown in Figure 2-2.

Figure 2-2 Inserting the Programmable BASIC Module

2. Hold the top and bottom of the bezel and slide the module
carcfully into the slot, pushing it all the way into the base. If you
have inserted the module correctly, you will feel a slight increase
in resistance as the module mates with the base plane connector.

3. Use a flat-head screwdriver to tighten the screws at the top and
bottom of the bezel. This grounds the module to the base. Do
not overtighten.

2-8 Installation and Start-up Series 505 BASIC Module User Manual

2.3 Connecting Cables and Wiring

/\ WARNING

2.3.1
Communications
Ports

For programming, the cable must be connected to port 1 on the
module. The interface at port 1 is RS-232C/423. (Once programming
is completed, you may connect a different device to port 1). Port 2
may be connected to any input or output device as desired. The
following sections describe cabling procedures for a VPU and for
any other programming (or non-programming) device.

To avoid the risk of personal injury and equipment damage, all field
devices should be powered down before attempting to connect
cables.

Communications port 1 is at the bottom of the module, with port 2
located directly above port 1 as shown in Figure 2-3. Both port 1 and
port 2 are RS-232-C/423 interfaces.

For outputs, port 1 will buffer up to 128 ASCII characters, and port 2
will buffer up to 1024 ASCII characters. For inputs, both ports will
buffer up to 128 ASCII characters.

TR

Comm Port 2 — gl

CommPort1 ——

Kk— -4

L g\

Figure 2-3 Ports Avallable on the Module

Series 505 BASIC Module User Manual Installation and Start-up 2-8

Connecting Cables and Wiring (continued)

2.3.2
RS-232-C/432
Communlications

NOTE: If the output memory buffer becomes full, character
transmissions will stop until there is room in the buffer for more
characters.

Programming is allowed only through port 1.

Communication for the RS-232-C/423 interfaces is bit serial
asynchronous with 2 stop bits at 110 baud and 1 stop bit at other
baud rates. “RS-232-C/423” refers to the standard interface in which
an RS-232-C signal definition is used with RS-423 receive and
transmit levels. The interface functions normally with RS-232-C
input and output levels.

The output voltage for the RS-232-C/423 interface is +/— 4 volts for
data and control signals.

2-10 Installation and Start-up Series 505 BASIC Module User Manua/

2.4

Connecting a VPU

The VPU emulates a non-intelligent terminal after the BASIC
Operating System Disk is inserted and initialized. The VPU will only
transmit keystrokes and wait for messages from the module. To load
or save a program with the VPU, the Operating System Disk must
be replaced by a formatted disk. Each disk can store one program.
All data transmissions are first buffered in the VPU memory and
then transferred to the Programmable BASIC Module or the
formatted disk.

The PC port on the VPU is used for programming, This port is DTE
with full duplex capability and odd parity generation. The auxiliary
port on the VPU may be used to connect a printer to the
VPU/BASIC system (a printer could also be connected directly to
the module). The auxiliary port has only half-duplex capability with
no diagnostic or handshaking abilities. The VPU ports are shown in
Figure 2-4.

If a printer is used with the VPU, the auxiliary port may be turned
on or off as needed. The port is turned on by pressing the key
and the [R] key at the same time. The port is disabled by pressing
the key and the (1] key at the same time. The sequence of
turning the port on or off could also be accomplished by pressing the
kcy on the small keypad to the right of the main keys. The
key will “toggle” between enabling and disabling the auxiliary port.
When the printer is enabled, all communication echoed to the VPU
will be sent to the printer.

The VPU screen will show all communication to and from the
BASIC module in a 24-rows-by-80-columns display. The bottom line
of the screen is reserved for messages describing the status of the
system. All VPU error codes and messages will appear in this
position. The messages will remain on the screen until a new
message is generated or the key is pressed.

Series 505 BASIC Module User Manual Installation and Start-up 2-11

Connecting a VPU (continued)

]
L]

=
J o Qo oo -3 OOTIO)
CRU Port

5TI™ Port
Auxiliary Port
PC Port

Figure 2-4 VPU Ports

You must use an RS-232-C/423 interface to program the module
with a VPU. The interface connects the PC port on the VPU with
port 1 of the module. An RS-232-C/423 cable (PPX:2462553—0003)
is recommended for superior shielding and noise immunity.

2-12 Installation and Start-up Series 505 BASIC Moduie User Manual

Figure 2-5 shows a pin diagram for the RS-232-C/423 cable, should
you decide to make your own. Table 2-3 defines the signals for each

pin.
25-Pin Male 25-Pin Male
2 2
3 >< 3
4 4
5] s
6 6
7 —l l-_ 7
H 3
20 20

Figure 2-5 Pin Dlagram

_ To connect the RS-23-2C/423 cable:

1. Carefully insert one end of the RS-232-C/423 cable into port 1
of the module and the other into the PLC port on the VPU.

2. Secure the cable by tightening the screws on both sides of the

connector.
Table 2-3 Pin Definition
Pin # Assignment DTE
2 Transmit Data QOutput
3 Received Data Input
4 Request to Send Output—turned on during transmission
5 Clear to Send Input
6 Data Set Ready Input
7 Signal Ground Input
8 Received Line Signal Input
Detector
20 Data Terminal Ready Qutput-driven Active

Series 505 BASIC Module User Manual Installation and Start-up 213

Connecting a VPU (continued)

NOTE: The receivers are always enabled. In DTE mode, pins 5 and
6 must be active to enable the transmitter. The status of pin 5 may

be checked with SYS(9) or SYS(10). Refer to SYS functions, Section
3.5.18.

At this point, it is a good idea to put the keycaps on the keyboard of
the VPU. The keycaps come with the Programming BASIC
Operating System Disk. The keycaps are placed on keys 1 through 0,
the comma key, and the period key as shown in Figure 2-6.

F1 {F2 | F3 | F4 FS |Fé {F7 | F8

| @ $ % - ? {] CAPLK N ouT

1 2 3 4 -3 & 7 B8 9 0 ESC | MENU | MENU -l I--I/I--()- -0)-
el QW] E[R|T|Y|U] 1] O] P |cow|rw]| e O e | e fuon
el Als{D|F|Gg|H|u]|K]|L P - | 4|, [ue=
et | Z I xlefv B |N[M]| S| =] s O R o P

Figure 2-6 VPU Keycap Placement

2-14 Installation and Start-up Series 505 BASIC Module User Manual

2.5 Connecting Other Devices

If you use a programming device other than a VPU, connect it to
port 1 of the module. Once programming is completed, a different
input or output device may be connected to port 1. The device
manual should tell how to connect the programming device to the
Programmable BASIC Module.

Series 505 BASIC Module User Manual Installation and Start-up 2-15

2.6 Starting-Up the Programmable Basic Module

2.6.1
User-Initiated Test

2.6.2

Verlfying
PLC-module
Communilcation

After the module has been configured, installed, and connected to
external devices, power may be applied to the I/O BASE. Upon
power-up, the module indicators should be observed to ensure that
the module passes the self-test diagnostics. This is indicated by the
MOD GOOD indicator remaining ON (after approximately 5
seconds). The BATT GOOD indicator will be ON if the battery has
been enabled.

The self-test diagnostics performed at power-up may be initiated at
other times if the module is in the PROGRAM mode. To do this,
press the TEST switch located on the face of the module. All
indicators (with the exception of STAT1 and STAT?2) should
illuminate temporarily, blink four times in unison, and remain on as
appropriate. This test should be completed within 13 seconds.

After the module has been installed and powered-up, make sure
that the PLC registers the presence of the module. This is important
because the module will appear to be operating even if it is not
communicating with the PLC.

The VPU must be connected to the PLC toﬁ verify PLC-module
communications. Initialize the VPU with the PLC operating system
disk.

Refer to your software manual for information on how to perform
the Configure I/O Base function.

The PLC will then respond with a chart listing all slots on the base
and the inputs or outputs associated with each slot. If no I/O module
is inserted in a slot, that row on the chart will be left blank.

2-16 Instaliation and Start-up Series 505 BASIC Module User Manual

Look at the chart for the number corresponding to the slot occupied
by the Programmable BASIC Module for your particular module. If
the “SF” (special function) field indicates “yes,” and word memory
locations appear on this line, the module is registered in the PLC
memory and you may proceed with the installation. If the line is
blank or erroneous, check the module to be sure it is firmly seated in
the slots and enter the Read Basic Function once more. If the line is
still wrong, you should contact your local distributor for further
assistance.

NOTE: Only 16 special function modules (BASIC, PEERLINK™, or
Network Interface) are allowed in any one Series 500 PLC I/O
channel. The Series 505 PLCs have one I/O channel (up to 16
special function modules allowed). The SIMATIC® TI560™/TI1565™
PLCs have eight I/O channels (up to 128 special function modules
allowed).

Series 505 BASIC Module User Manual installation and Start-up 2-17

2.7 Starting-up the System

271
Starting-up
the VPU

This section describes how to start-up the programming device for
operation with the Programmable BASIC Module. The first section
shows how to start-up the VPU for programming, and the second
section describes the procedure for other programming devices.

To start-up the system for programming, first turn on the VPU.
Then remove the cardboard insert from the disk drive of the VPU
and replace it with the Operating System Disk (If you do not have a
BASIC Operating System Disk, please see your dealer to obtain a
Programmable BASIC Software Package, which includes the
Operating Systems Disk).

NOTE: The VPU210 will accept both low and high density diskettes,
but the basic operating system will only operate on a high density
diskette. When making archive copies of the operating system, be
sure 1o use a high density diskette.

When you power up the VPU, and press the space bar, the following
sCreen appears: '

()

POWER-UP MENU

FUNCTIONS AVAILABLE: LOAD OPERATING SYSTEM FROM DISK
COPY DISK
FORMAT DISK
RUN DIAGNOSTICS

FUNCTION REQUESTED:

LOAD - F1 COPY - F2 FORMAT - F3 DIAGNOSTICS - F2

\. J/

2-18 Installation and Start-up ' Series 505 BASIC Module User Manual

To continue, press [_F1_] (the choice for loading the Operating
System Disk) and [Retum]. Press[—#5_]. The VPU will now load the
Operating System Disk. As the VPU loads the data, a series of dots
will move across the screen. When the dots stop appearing on the
screen, the disk will have been loaded without any errors.

When the Operating System Disk is loaded, the following appears:

r)

VIDEO PROGRAMMING UNIT 200

VPU200/SERIES 500 BASIC SOFTWARE
RELEASE 1.0
CONFIGURATION #2702369

COPYRIGHT (C) 1983
ALL RIGHTS RESERVED

PRESS A FUNCTION KEY TO SELECT BAUD RATE AND BEGIN

L- N BN B 300 1200 2400 9600

To continue, select one of the baud rates displayed at the bottom of
the screen. (There is no default value for the baud rate). Each baud
rate is written above the function key used to select that baud rate.

Series 505 BASIC Module User Manual Installation and Start-up 2-19

Starting-up the System (continued)

2.7.2
Checking
Communications

2.7.3
Caps Lock On

NOTE: Be sure that the rate selected agrees with the rate set for
port 1 on the module and the rate needed for any printer connected
to the VPU210.

If you need to change the baud rate after starting-up the system (for
example, connecting a new printer to the VPU210), you wil! have to
re-start the VPU210.

To clear the screen, press a function key for a baud rate. The VPU
will then be in non-intelligent terminal mode and will display a blank
screen with a blinking cursor in the lower left corner. The VPU is
now ready for communicating with the Programmable BASIC
Module. Begin programming from the keyboard or remove the
Operating System Disk from the VPU and insert a disk to load a
program into the module. If a program is already in the module,
enter RUN to begin the execution of the program.

Press the key to ensure that the module is communicating
with the programming unit. If *READY appears, communication is
occurring. If not, recheck cabling and switch settings.

Stop any operation (except LOAD) by pressing the key. The
operation will halt, and *READY will appear on the VPU screen.

All program statements and variables must be in uppercase.
Program documentation may be in lowercase. When the VPU is
started-up, all letters will be in uppercase. To obtain mixed case,
press the key and[$7] key at the same time. (The keyboard
will return to uppercase if you press (€At] [8] once more). You
could also change from uppercase to mixed case by pressing the
key, which is located on the top row of the keyboard.

2-20 |Installation and Start-up Series 505 BASIC Module User Manual

2.7.4

Enabling VPU
Auxiltary (Printer)
Port

2.7.5
Error Diagnostics

The auxiliary port is turned on by pressing the key and

the (R] key simultaneously. The port is disabled by pressing the

key and [T] key at the same time. You can also turn the port
on or off by pressing the key on the small keypad to the right
of the main keys. This key toggles between enabling and disabling
the auxiliary port.

Error diagnostics are performed by the VPU after the baud rate is
selected. Any hardware or software error is printed on the bottom

line of the VPU screen. There are two general categories of errors:
disk errors and communications errors. The disk errors include the
following:

o Format error.

o Read/Write attempt on operating system disk.
o Hardware error.

e Recad/Write attempt on non-formatted disk.

e Bad disk track. |

e Read/Write error.

e 5-second time-out.

When there is an error in either saving or loading a disk, one of the
following messages is displayed:

DISK SAVE ERROR
DISK LOAD ERROR

A parity error causes the following message to be displayed:
RECEIVE COMMUNICATION ERROR

This error does not halt the command being executed; however,
since a communication error will yield unpredictable data, you must
re-execute the current comrmand after fixing the communication
error. Ensure that you have the correct cable connections and that
the configuration switches are set correctly.

Series 505 BASIC Module User Manual Installation and Start-up 2-21

Starting-up the System (continued)

2.7.6

Starting-up Other For a programming device other than the VPU, read the device
Programming user manual for information on starting-up and connecting it to
Devices the Programmable BASIC Module.

2-22 Installation and Start-up Series 505 BASIC Module User Manual

2.8 Hardware Troubleshooting

2.8.1
Programming
Device and/or
Module Fallure

2.8.2
Battery Fallure

Hardware problems most likely to occur are:

¢ Display failure—the VPU or other programming device fails to
display anything.

e Module failure.

e Battery failure.

If the programming device does not become active or the MOD
GOOD indicator light does not light, check all connections to the
module, the programming device, and the Series 505 I/O base. Make
sure that the module and programming device are receiving power.
Power down the device, disable the battery, wait two minutes, then
enable power. This sometimes clears a fatal error (the program in
the module will be lost). If the module or programming device
remains inactive after you have checked the connections and power,
and powered down and back up, contact your local distributor.

NOTE: If you press [Ese] while UNIT 0 or UNIT 2 is in effect,
keystrokes after pressing [_Ese] are not shown (See Section 3.4.15).
To see the key-strokes on the device, you must type UNIT 1 and
press [Enter] (key-strokes will not be seen on the device connected
to port 1).

The BATT GOOD indicator will be lit when the battery is in place
and able to back up the BASIC memory and internal clock. If the
indicator is not lit or goes out during operation (and switch 4 of the
4-switch configuration set is set to closed), the battery must be
replaced.

Series 505 BASIC Module User Manual installation and Start-up 2-23

Hardware Troubleshooting (continued)

2.8.3
Changing
the Battery

2-24 Installation and Start-up

Follow these steps to change the battery:

1.

Disconnect power from the base and remove the BASIC
module.

Remove the screw that connects the shield to the standoff which
is located in the corner near the battery. (NOTE: Save the star
washer installed between the standoff and the copper surface of
the shield).

The shield can be fiexed to allow removal of the battery. Lift the
battery hold-down clip and slide the battery from the holder.

Insert a new battery.

Replace the star washer between the copper side of the shield
and the standoff.

Reinstall the screw in the standoff,

NOTE: In order to insure proper operation in a high electrical noise .
environment, ensure that step 5 above is properly performed.

Series 505 BASIC Module User Manual

Chapter 3
Programming Language

3.1 Introductioniii e 3-3
3.2 Operatlon Modesc.cvoviiiiieieiiireireienenrananarann, 3-4
3.2.1 RUNMode ... i 3-4
322 PROGRAMMoOde 34
3.2.3 Power-upModes..............c i 3-4
3.2.4 SourceStatement 3-6
3.2.5 CoNStaNtS 3-7
3.2.6 Variables e 3-8
3.3 BASIC COMMANAScccoiviiiniriimene e 3-11
3.3.1 CONTINUECommand ... 3-11
3.3.2 LISTCommandoo i 3-12
3.3.3 LOAD Command ..o 3-12
334 NEW Command and Retentive Memory 3-13
3.3.5 RUNCommandc.ouuoriiiii . 3-14
3.3.6 SAVECOMMANGt 3-14
337 SIZECommand ... 3-15
34 BASICStatementsottt 3-16
3.4.1 DEF Statement 0 3-16
3.4.2 DIMStatement 3-17
34.3 ERROR Statement0 i 3-18
344 ESCAPE/NOESC Statementooneoe 3-20
3.4.5 FINDStatement 0o i 3-21
346 FOR/NEXT Loop Statementc.ovveninii.. 3-22
34.7 INPUT Statement i, 3-25
3.4.8 LET Statement 3-27
3.4.9 PRINT Statement oo . 3-28
3.410 RANDOMStatemento o 3-35
3411 REMStatement 3-36
34.12 STOP/END Statementsouuuri . 3-36
34.13 TABStatemenlo o 3-37
3414 TIMEStatement 3-38
3415 UNITStatementouir 3-39
3.4.16 InternalDataStatements0 . 3-40
3417 BranchStatementscvrr 3-41
34.18 CALL (PLCInterface Statement)cc.. 0. .. 3-44
3.4.19 SubroutineStatements 3-52

Series 505 BASIC Moduie User Manual Programming Language 3-1

3.5

3.6

3.7

3-2

BASIC FUNCHONSc.iitiiiitiiiieneenreccccosanscsccaraseoanns 3-54

3.5.1 ABS Function 3-54
3.5.2 ASCFRuNnction i 3-54
3.5.3 ATNFUNCHiON e e e 3-54
3.5.4 BITFunction i . 3-55
3.5.5 COSFUNCHON i e et aeans 3-58
3.5.6 EXPFunction 3-58
3.5.7 INPFunction i e, 3-59
358 LEN FUNCHON e e 3-59
3.5.9 LOG Function ... 3-60
3510 MCHFRUNCHON e e e eeaas 3-60
3511 MEMFEUNCHON e 3-61
3512 MWD FUNCHOn i e e 3-61
3513 NKYFURCHON i e e 3-62
3514 BNDFRURCHON e 3-63
3515 SINFUNCHONt e it niennns 3-63
3516 SRHFunctiono ittt 3-64
3517 SQRFUNCHON ittt i 3-64
35.18 SYSFRUNCHON i e 3-64
35189 TICFUNCHON ... i e 3-66
3.5.20 StringManipulations 3-66
BASIC Operationsoitiiiiii ittt eirrraeernnenas 3-72
3.6.1 Arithmetic Operatorscoiiiiiiiiiiiiinerennenn. 3-72
3.6.2 LogicalOperators 3-72
3.6.3 Boolean Operatorsttt e 3-73
3.6.4 Relational Operators iiiiiiieiiiiinnn.. 3-73
3.6.5 Order of Operator Evaluation 3-74
Editinga Programccciiiiiiinieiieiiiiiiciieiarcannnenans 3-75
3.71 General EditingProceduresccceiinn... 3-75
3.7.2 EditingwithaVPU i, 3-77

Programming Language Series 505 BASIC Module User Manual

3.1 Introduction

This section describes the modes of operation for the BASIC
programming language, general aspects of the system, and
procedures for editing. BASIC is composed of commands,
statements, operators, and functions. Each is discussed in a separate
section. Appendix A provides a summary of the commands,
statements, and functions discussed in this chapter.

Series 505 BASIC Module User Manual Programming Language 33

3.2 Operation Modes

3.2.1
RUN Mode

3.2.2
PROGRAM Mode

BASIC has two modes of operation: RUN and PROGRAM.

The program is read and/or executed when one of the following
commands is entered from the keyboard:

e RUN
¢ CONTINUE
e GOTO

RUN mode is terminated (and PROGRAM mode entered) when:

o The end of executable statements is reached.
e The key is pressed.
e An error is encountered.

e When either of the following commands is entered from the
keyboard:

END
STOP

The program is loaded or edited in PROGRAM mode. The
following commands, entered one line at a time, function in the
PROGRAM mode:

e CONTINUE
e LIST

e LOAD

¢ NEW

¢ RUN

e SAVE

o SIZE

Control returns to the keyboard after each line is executed.

3-4 Programming Language Series 505 BASIC Module User Manual

3.2.3 ,
Power-up Modes

A\ WARNING

The module may be configured to power-up in either PROGRAM
or RUN mode. In PROGRAM mode, the module waits for a
command from the input device before beginning any action. In
RUN mode, the module begins execution of the installed BASIC
program without any prompting from the keyboard. You may select
the power-up operating mode by setting the proper configuration
switch.

When the module is set to “RUN” for power-up mode, field devices
under the control of the module application program may begin
operating when power is restored, The sudden start-up of these
devices could endanger personnel and equipment. To avoid personal
injury or damage to equipment, before restoring power to the
module: 1) Ensure that all personnel are clear of machinery areas
controlied by the module application program; 2) ensure that all
equipment is prepared for start-up operation.

After a power interruption, the module enters the mode selected by
the configuration switch if the battery is good and enabled. All
memory areas, except the retentive and program memory areas, are
cleared; all system pointers are initialized; and execution begins at
the initial program statement again (if in RUN mode). If in
PROGRAM mode, the following message appears on the display
after power is restored:

SERIES 505 PROGRAMMABLE BASIC MODULE *READY

If the battery is weak, disabled, or absent, then all memory areas,
including retentive and program memory areas, are cleared. After
power is restored, the module will be in PROGRAM mode
regardless of the setting of the configuration switch and will display
the following message:

MEMORY CLEARED
SERIES 505 PROGRAMMABLE BASIC MODULE *READY

After this message appears, enter the program that was lost during
the power interruption and begin execution again.

Series 505 BASIC Module User Manual Programming Language 3-5

Operation Modes (continued)

3.24
Source Statement The following are two sample formats for BASIC:

e <line number> <statement>::<optional statement 2>
¢ <line number> <statement>!<optional remark>

For example, the following is a valid BASIC statement:
50 LET A=10::PRINT A ! PRINT THE VALUE OF A

The format for any BASIC statement begins with a line number
between 1 and 32767 inclusive. The line number should have no
embedded blanks. The line numbers do not have to be entered in
consecutive order, but the interpreter reads the statement numbers
in ascending numerical order regardless of how the statements are
entered. After the program is entered, BASIC rearranges and stores
the statements in an ascending numerical order. It is wise to leave
“gaps” between statement numbers (incrementing by 5 or 10 for
each statement number) so that additions to the program may be
easily inserted. This may be done manually, or automatically, by
using the key (or and keys at the same time
on a VPU) rather than the key when you generate a new line
of the program. This will automatically increase the line numbers by

Multiple statements on one line are allowed. A double colon () is
used to separate the statements.

The characters used in BASIC are A—2Z, 0—9, in addition to several
special characters that will be introduced in this chapter. Characters
may be used in mixed cases, but all keywords must be in uppercase.
If your input or output device does not print all characters, then the
character must be represented by its HEX-ASCII code. The
HEX-ASCII code is enclosed in angle braces and inserted where the
non-printable character would be. HEX-ASCII codes are only
allowed in PRINT statements and string constants. Appendix B
contains the HEX-ASCII codes for the VPU; for other programming
devices, consult that device manual for the appropriate codes.

3-6 Programming Language Series 505 BASIC Module User Manual

3.25
Constants

Non-executable statements, such as remarks, are separated from the
rest of the line with an exclamation point (!) (see Section 3.2.6). The
non-executable statement must be the last entry on the line. You
may also use the REM statement to include entire remark
statements that will be ignored during execution.

The Programmable BASIC Module supports HEX (Hexadecimal)
integer constants, decimal integer constants, decimal real constants,
and string constants.

A decimal integer is any integer between — 32,768 and 32,767; it
requires 48 bits (6 bytes) to store. Decimal reals (floating point
numbers) are numeric values with decimal fractions. As with
integers, 48 bits (6 bytes) are used to represent floating point
numbers. With 48 bits (6 bytes), accuracy to roughly 11 significant
digits and numbers between +/—1E74 and +/— 1E—74 may be
expressed. A floating point number may be expressed as either a
number and a decimal fraction or as an exponent with the base
number. For example, both 123.4 and 1.234E2 are proper decimal
constants.

Hex constants are terminated with an H. There can be no embedded
blanks, and A—F cannot be used as initial HEX digits unless the
letter is preceded by a 0. If more than four digits are given, only the
right-most four are used. Valid combinations range from OH to
OFFFFH.

A string constant is a set of ASCII characters enclosed in either
single or double quotes. Single quotes may be used to enclose
double quotes and vice versa. For example, "THIS IS A "VALID”
STRING’ and SO IS THIS”. Non-printable characters may be
placed in a string by using their HEX-ASCII equivalents in angie
braces. When the HEX-ASCII character is stored, it will occupy 4
bytes of memory; however, when it is used, it is interpreted as 1 byte.
When the string is stored, the brackets are stored with the string, and
when the string is used, the brackets are removed with HEX-ASCII
being changed to HEX. Therefore, attempting to compare both
HEX-ASCII strings will result in errors. Following is an example of a
HEX-ASCII constant stored in the variable A:

10 $A = "<07>"

Series 505 BASIC Module User Manual Programming Language 3-7

Operation Modes (continued)

3.2.6

Variables BASIC supports simple numeric variables, numeric array
variables, simple string variables, and string array variables. All
arrays must be dimensioned before they are used. If this declaration
is not made, numeric array variables will result in an error, and
string array variables will be set to null when they are first used. As
with constants, variables are represented in 48 bits (6 bytes), which
allows accuracy to roughly 11 significant digits and numbers between
+/—1E74 and +/—1E—74 to be expressed.

Variable names must be in capital letters. The name may be
composed of one, two, or three letters. A variable name may also be
a single capital letter followed by a number between 0 and 127. The
letters assigned to the variable cannot be the same as a BASIC
command, statement, or function. For example, neither COS nor
LIS could be a variable name because they conflict with the
COSINE function and the LIST command. See Appendix C for a list
of reserved words.

A string variable must be preceded by a dollar sign ($) except when
in the DIM declaration for an array and in the subroutines of the
CALL statement. The dimension declaration is discussed in Section
3.4.2 CALL is used with the PLC interface subroutine. For example,
even though they share the same memory area, “A” is a numeric
variable but “$A” is a character variable. There is no difference
between numbers and characters at the memory level; the difference
arises from how they are used (i.e., character strings must have a
dollar sign but numeric variables must not). For clarity, it is best to
name each variable differently, whether that variable is to be a
number or a character.

Each array name must be followed by a subscript to indicate a
particular location in the array. There is no limit to the number of
subscripts that an array may have. For example, both A(2,1) and
D12(10) are valid arrays. The number of positions in array A would
be six: A(0,0), A(0,1), A(1,0), A(1,1), A(2,0), and A(2,1). Similarly,
array D12 will have 11 positions. Note that the positions of arrays
begin at 0 and not 1. More information on arrays, including the
memory level representation, is found in the discussion of the DIM
statement (Section 3.4.2) and the BIT function (Section 3.5.4).

3-8 Programming Language Series 505 BASIC Module User Manual

One hundred twenty-eight unique variable names are allowed;
however, dimensional variables may be used to allow more data
storage. For example, XYZ is a unique variable name and can hold
one variable of data, whereas XYZ(10) is one unique variable name
that can hold 11 variables of data (XYZ(0) through XYZ(10)).

If you try to assign more than 128 variable names, the **TOO
MANY VARIABLES** error will appear. To clear this error:

1. Reduce the number of variables used.

2. Store the program to disk.

3. Clear the module memory using the NEW command.
4. Reload the program.

Any variable name assigned is maintained in memory even though
you have deleted it from the program. The only way to reassign
variable memory is to clear the memory.

There is also a special array used for storing values that you wish to
protect from being lost in a power interruption or after execution is
restarted with a RUN command. This array is named RET, which is
an abbreviation for retentive memory area. RET is treated like any
other array except that it cannot be dimensioned with the DIM
statement. The size of the array is set to 1 at power up. This allows
six bytes of retentive memory. You may increase the size of the
retentive memory area by using the NEW command.

NOTE: The size of the retentive array is not stored on disk. Before
loading a program that uses retentive memory from disk, use the
NEW command to set the size of the RET array. Since the NEW
command clears all program and variable values, set the size of RET
before you begin to enter a program.

Series 505 BASIC Module User Manual Programming Language 3-9

Operation Modes (continued)

A\ CAUTION

String variables may have up to 5 characters, with a null being
automatically inserted after the last character. The null is important
because it is the flag to tell BASIC to stop reading the string. This
can be useful when you wish to use strings that are longer than 5
characters. For example, you would use an array to store the
following names: WAREHOUSE, INVENTORY and
MANAGEMENT. Each of these is too long to fit in a single simple
string, so an array must be used. The array would be dimensioned,
and then the names would be entered as follows:

$NML(0,0): = WAREHO $NML(0,1): = USE
$NML(1,0): = INVENT $NML(1,1): = ORY
$NML(2,0): = MANAGE $NML(2,1): = MENT

Notice that each of the array locations in the first column has six
letters. Since the null has been overwritten, BASIC will read the first
two array locations before stopping. (BASIC continues through all
locations until a null is found.) So, entering PRINT $NML(0,0)
would result in WAREHOWUSE being printed. Similarly, PRINT
$NML(1,0) and $NML(2,0) would cause the full names to be
printed. PRINT $NML.(0,1) would result in USE being printed.

As this example shows, overwriting the null causes dramatic changes
in the way variables are read. Be careful when using six characters
instead of five for character strings either alone or in arrays.

Regard.ess of the size given to a string array, any characters may be
entered into that variable. Any characters beyond the size of the
variable will overwrite other memory areas, which may cause
unpredictable operation.

3-10 Programming Language Series 505 BASIC Module User Manual

3.3 BASIC Commands

3.3.1
CONTINUE
Command

The BASIC commands are functional only in the PROGRAM mode
and thus cannot be used in a program. They are used to direct
system functions. The commands interact with the system to initiate
immediate action. Do not confuse commands with statements:
Commands allow operator control; Statements are steps in a
program.

The command keywords are: CONTINUE, LIST, LOAD, NEW,
RUN, SAVE, and SIZE. CONTINUE, LIST and SIZE may be
abbreviated to their first three ietters. The other commands must be
completely written. To enter commands, type them in, then press
. The following sections describe each of these commands.

NOTE: Several statements can also be used as commands in
PROGRAM mode. These include GOTO, PRINT, SYS, TIME and
UNIT.

The CONTINUE (CON) command restarts a program after a
break. If the break occurred because of an error or an ESCAPE
entry from the keyboard, CON will cause execution to restart on the
interrupted line. If the break occurred because of a STOP statement,
CON will cause execution to restart at the line following the
interrupted line. You cannot use CON to proceed beyond an END
statement, nor can you use it to restart execution after you have
edited any part of the program.

Note that CON differs from RUN in that RUN reinitializes all
variables and returns to the beginning of the program. CON always
starts from the point at which a break occurred and does not affect
the values of any variables in the program.

Series 505 BASIC Module User Manual Programming Language 3-11

BASIC Commands (continued)

3.3.2
LIST
Command

3.3.3
LOAD
Command

The LIST (LIS) command displays all or part of a current program.
If no line number precedes the LIS command, display begins at the
lowest numbered line and ascends. When a line number is given, the
statements from that point to the end of the program are displayed.
The given line number need not be a number in the program: the
LIS command begins at the line number of the program equal to or
greater than the given line number. The listing of a program may be
stopped at any time by pressing the key; however, the program
listing will not stop until the RAM buffer memory is emptied. If

there is a long program listing in the buffer, there may be a long

delay before the listing stops.

NOTE: When a program is listed, both square brackets and
parentheses are used. Square brackets appear only around
dimensioned variables and functions; parentheses are used at all
other times. You do not need to enter square brackets when
programming; parentheses are automatically changed to square
brackets when the program is listed.

The LOAD command transfers a program from a disk into the
Programmable BASIC Module memory. Once the VPU has been
initialized, the Operating System Disk can be removed and the
program disk inserted. Entering LOAD causes the program to be
transferred from the disk, through the VPU buffer memory, and into
the memory of the Programmable BASIC Module.

When LOAD is first entered, the VPU screen displays “DISK
LOAD IN PROGRESS.” Once the transfer of data begins, the
display changes to “DATA TRANSFER IN PROGRESS.” When the
LOAD operation is complete, “DISK LOAD COMPLETED” is
displayed on the bottom of the VPU screen.

3-12 Programming Language Series 505 BASIC Module User Manual

3.3.4

NEW Command
and Retentive
Memory

NOTE: The program being loaded will over-write the statements
that have the same line numbers. Statements with different line
numbers will not be affected. While this may be useful in merging
two or more prograrms, it is best to avoid the problems that this may
cause by using the NEW command before loading a new program.

Any errors that occur during loading will halt the procedure at the
point of error. All statements before this position will be successfully
transferred. However, you have to reload the program to get the
complete program. “DISK LOAD ERROR?” appears on the bottom
of the VPU screen to indicate the error that caused LOAD to stop.

The time it takes to LOAD a program depends on the baud rate
selected for the VPU. This time may vary from 90 seconds to 19
minutes.

NOTE: The [Ese] (abort) key is disabled during LOAD operations,
so there is no way to interrupt a LOAD operation without powering
down the VPU.

It is recommended that you do not use the LOAD command for
programming devices other than a VPU.

The NEW command deletes the current program, sets the RET
array to its default value of 0, and clears all variable spaces, stacks,
and pointers. When the command is complete, the Programmable
BASIC Module responds with the following:

MEMORY CLEARED
SERIES 505 PROGRAMMABLE BASIC MODULE *READY

Once the command has finished, a new program may be loaded into
the cleared space.

Series 505 BASIC Module User Manual Programming Language 3-13

BASIC Commands (continued)

3.3.5
RUN
Command

3.3.6
SAVE
Command

NEW may also be used to set the RET array to a value different
from 0. RET may be dimensioned from 0 to 4095 6-byte elements
with the NEW command. Any change in the RET array must be
done before a new program is written, because using the NEW
command destroys the current program. To dimension RET to a new
size, write the size needed after the word “NEW.” The size may be
expressed as either a number or an expression. Each number, or the
number to which the expression evaluates, reserves 6 bytes of
retentive memory space (remember, since RET is an array, memory
positions begin at zero). For example, to reserve 3 elements (18
bytes) of retentive memory, and destroy the current program and
memory contents, if any, enter the following command:

NEW 2

The RUN command is used to begin the execution of a program.
It clears all variable spaces, stacks, and pointers and begins
execution at the lowest line number in the program.

The SAVE command transfers a program from BASIC memory,
through the VPU buffer memory, and onto a formatted disk. The
program remains in BASIC memory after the SAVE operation.

When the SAVE operation is entered, “DATA TRANSFER IN
PROGRESS?” is displayed on the bottom of the VPU screen. During
the transfer of data, “DISK SAVE IN PROGRESS” is displayed.
Once the program has been written to the disk, “DISK SAVE
COMPLETED?” is displayed.

Any errors in the operation cause the SAVE operation to stop.
“DISK SAVE ERROR?” appears on the bottom of the VPU screen
to indicate why the operation stopped. Once the error is corrected,
you must restart the SAVE operation from the beginning of the
program. :

The time it takes to SAVE a program depends on the baud rate
selected for the VPU. This time may vary from 90 seconds to 19
minutes.

3-14 Programming Language Series 505 BASIC Module User Manual

3.3.7
SIZE
Command

NOTE: If you interrupt a SAVE operation by pressing the
(abort) key, the program already on the disk will be destroyed, and
the SAVE operation will stop.

Do not use the SAVE command for programming devices other than
the VPU.

The SIZE (SIZ) command is used to determine the current program
size, variable space allocated, and free memory (in HEX bytes). For
example, after a “NEW 0” command (memory and program cleared,
with RET set to 6 bytes), entering SIZ would result in the following:

PRGM: 014H BYTES
VARS: OCH BYTES
FREE: 06FEEH BYTES

“PRGM” refers to the current user program size, “VARS” to the
variable space allocated; and “FREE” to the amount of remaining
memory space.

Series 505 BASIC Module User Manual Programming Language 3-15

3.4 BASIC Statements

3.4.1
DEF
Statement

Statements form the sequential list of instructions called a program.
All statements except DEF, DATA, END, READ, RESTOR, STOP,
and TAB may be used without line numbers in PROGRAM mode.
When a statement is entered without a line number, it initiates
immediate action. For convenience the statements are listed in
alphabetical order.

NOTE: In the descriptions that follow, angle braces (< >) are used
around certain components of the format statements. The braces
and elements within them provide information about what is
required at that location in a statement format. Braces should not be
entered when using the particular statement in a program; they are
used only to help you read the format for the statement. All other
components of the format for a statement should be entered as
shown.

A DEF statement defines user functions. These functions are
exccuted only when referenced at other places in the program. DEF
must appear before the function is used, and usually these
statements appear as a group at the beginning of a program. Once
defined, the function operates like any other mathematical function
that is included as a part of BASIC.

The format for 2 DEF is:
<line number> DEF FN <LTR> (dummy variables) = <exp>

The line number is required, and also, DEF is not used on a
multi-statement line and it is not followed by a tail-remark (!).

The name of the function must always begin with “FN” and end with
an uppercase “LTR”, which is one letter between A and Z. The
letter chosen can only be used for one particular function. This
requirement necessarily limits the number of functions to 26.

3-16 Programming Language Series 505 BASIC Module User Manual

3.4.2
DIM
Statement

The equation or expression for the function is “exp.” It is any valid
BASIC expression. A function, however, cannot include itself as a
part of the definition. For example, the following statement is
invalid: '

10 DEF FNI(A) = 2*FNI(A)

Dummy variables are variables used only in this function. There
must be at least 1 but not more than 3 dummy variables in each
function. Each dummy variable is a single uppercase letter that is
meaningless except within the function. The letters are “dummies”
and are replaced with the variables used when the function is
executed. The names of the dummy variables may be the same as
other variables in the program; there will be no conflict when the
program is executed. For example, the following statement defines a
function:

10 DEF FNQ{A,B,C) = (—B+(B ~2—4*A*C}))/2*A

When this function is executed, the variables used at the time of
calling will replace A, B, and C. For example:

100 X(0)=FNQ(DAT(0),DAT(1),DAT(2))

will use the FNQ function previously defined with DAT/(0) replacing
A, DAT(1) replacing B, and DAT(2) replacing C.

Other valid DEF statements are the following

20 DEF FNA(X.Y) = X/Y+5
30 DEF FNB(A,B,C} = A/B+C-15
40 DEF FNN(I) = N*2/SQR(2)

The DIM statement initializes the space available for an array.

This must be included before the array is referenced or an error
results. You cannot change the dimensions of an array later in a
program. Also, the DIM statement cannot be used to set the size of
RET (the retentive memory array). RET is dimensioned by using the
NEW command.

Series 505 BASIC Module User Manual Programming Language 3-17

BASIC Statements (continued)

3.4.3
ERROR
Statement

The format for the DIM statement is:
<line number> DIM ARRAYNAME(size 1,size 2,....,size n)

The values in the parentheses are the maximum subscript values
allowed in each dimension. These values may be numeric constants,
simple variables, other dimensioned variables, or function calls. If a
function returns a real value, only the integer portion will be used.
When using the subscripts to find a particular location, the starting
point is zero and continues to the end value assigned. Each address
in an array occupies 6 bytes of memory. For example, an array
dimensioned to 2 would contain 3 elements and occupy 18 bytes of
memory.

The following is an example of a DIM statement:
10 DIM CAT(10),8(1,2)

This initializes the string array “SCAT” to 11 elements ($CAT(0)
through $CAT(10)) and the numeric array “B” to a 2 X 3 matrix
containing 6 elements: B(0,0),B(0,1),B(0,2),B(1,0),B(1,1), and
B(1,2). In terms of bytes, “SCAT” has 66 bytes of available storage
and “B” has 36 bytes of storage. Note that the string array does not
have a dollar sign preceding it in the DIM statement. This and the
CAILL (See 3.4.18) statement, which is used with the PLC interface
subroutines and the FIND statement, are the only statements in
which the dollar sign is omitted. All other references to a string array
must use the dollar sign when the array is to contain character data.

A more detailed description of the bit-level representation of arrays
is given with the BIT function.

The ERROR statement transfers execution to a particular location
when an error occurs. The statement has the following format:

<line number> ERROR <line number>

The second line number is the line number to which execution will
g0 when an error is detected.

3-18 Programming Language Series 505 BASIC Module User Manual

This statement works in conjunction with the SYS(1) and 5YS(2)
functions. SYS(1) will contain the number of the error encountered,
and SYS(2) will contain the number in which the error occurred. See
Appendix D for a list of error messages. The statement to which
execution is transferred may be a subroutine designed to investigate
the error. The error would be investigated and execution restarted at
the line after the statement containing the error.

Each ERROR statement can be used only once. After an error
triggers the ERROR statement, another ERROR statement must be
included to reset the error flag. You may include as many ERROR
statements in a program as you need.

NOTE: Since the ERROR statement uses the memory stacks in the
module, a stack overfiow error cannot be detected with the ERROR
statement.

The following program illustrates the use of the ERROR statement
and an error subroutine:

100 ERROR 1000

1000 REM Read data error handier

1010 REM If PLC does not respond, report alarm

1020 iIF SYS(1)=511 THEN PRINT "comm error with PLC"
1030 ERROR 1000 ! Reset error statement

1040 RETURN

Series 505 BASIC Module User Manual Programming Language 3-19

BASIC Statements (continued)

3.4.4
ESCAPE/NOESC
Statement

Press to terminate the error subroutine.
One exampie of how to use the ERROR statement follows:

Problem: The Programmable BASIC Module automatically changes
itself from RUN to PROGRAM mode when the relay ladder logic
(RLL) program is modified. When the RLL is modified, the PLC is
either taken to PROGRAM mode, or a “pause” in the RUN mode is
allowed. Either way, during this time there is no communication to
special function modules. Therefore, if the Programmable BASIC
Module issues a PLC comm subroutine during this time, the PLC
will not respond, and a PLC comm error will be issued by the
Programmable BASIC Module. The comm error then causes the
module to fall out of RUN mode.

Solution: The ERROR statement in BASIC can be used to capture
the error and allow the module to continue in the RUN mode. The
ERROR statement works in conjunction with SYS(1) and SYS(2) to
tell you what the error encountered was, and on what line it
occurred. You may choose to ignore the error or initiate some action
based on the error type. In this example, it may be decided to print
that a communication error occurred and to continue without
retrying the communication.

This statement either allows or prevents the [Es¢] key on the
keyboard from halting program execution. It is most often used to
protect critical operations from interruption (by disabling the [Esc]
key) and then allowing the operation of the key during
non-critical operations. The default value is ESCAPE; NOESC must
be entered at the beginning of a program if that program is to run
without the possibility of interruption. A sample statement would be:

10 NOESC ! The ESCAPE key is now disabled
100 ESCAPE | The ESCAPE key is now enabled

If the [Esc] key is pressed while a NOESC statement is in effect, the
ESCAPE keystroke is stored until an ESCAPE statement is
encountered, at which time program execution is halted.

3-20 Programming Language Series 505 BASIC Module User Manual

/\ WARNING

3.4.5
FIND
Statement

When “NOESC?” is selected, there is no way to halt program
execution except by powering down the module. The NOESC
statement must be used only when absolutely necessary. To avoid
personal injury or damage to equipment, before restoring power to
the module: 1) Ensure that all personnel are clear of machinery
areas controlled by the module application program. 2) Ensure that
all equipment is prepared for start-up operation.

The FIND subroutine is used to locate the address of a variable

in BASIC memory. It is used in conjunction with the MEM and
MWD functions. FIND locates the address of a variable in memory
and then NEM or MWD can be used to read or alter the data at that
address. The format for FIND is:

<line number> CALL "FIND", <variable name:, <variable name>

The first “variable name” is the variable for which the location is
desired. The second variable name is where the location of the
sought variable will be stored once the variable is found. Since this
statement involves the use of CALL, no dollar sign is used with
character variables.

NOTE: The FIND statement, the PLC interface subroutines, and the
DIM statement are the only statements that do not use a dollar sign.
All other references to character variables must use a dollar sign.

If you wish to find the location of VAR(O), enter the following
statements:

10 DIM VAR(10)
100 ADR=0
110 CALL "FIND",VAR(0),ADR

Series 505 BASIC Module User Manual Programming Language 3-21

BASIC Statements (continued)

3.4.6
FOR/NEXT Loop
Statement

After this is executed, the first location of the address for VAR(0)
will be in ADR. If the sought variable is not found, error message 40
(undefined variable) appears. This error message can also arise if
the variable in which the sought variable address is to be stored is
undefined. A variable is defined if it appears on the left side of the
equal sign (=) before it appears on the right side of the equal sign.

FOR and NEXT appear together and indicate the start and end of
a repeating instruction block. The block is a loop in which a specific
variable is increased or decreased and then operated upon. When
the variable reaches a preset value, the loop ends and execution
passes to the statement following the NEXT statement. The formats
for these two statements are:

<line number> FOR <var>=<exp> TO <exp> STEP <exp>
<line number> NEXT <var>

In the FOR statement, “var” is the variable that will be altered each
time through the loop. This variable must be a simple variable (not
an array) and must be the same as that used in the NEXT statement.
Also, the variable may be used elsewhere after the FOR-NEXT loop
is completed.

The different “exp”s (expressions) can be any valid BASIC
expressions. The first expression is the beginning value for the
variable and the second expression is the last value for the variable.
When the iast value is reached or exceeded, the loop stops and
execution passes to the statement following NEXT. When the loop
ends, the value of the variable will be the last value used in the loop
plus the STEP vaiue. The final expression, after the word STEP, is
the amount added to the variable each time through the loop. The
amount added may be negative or positive. If STEP <exp> is
omitted, the default value is 1. '

3-22 Programming Language Series 505 BASIC Module User Manual

For example, the following are all valid FOR-NEXT statements:

10 FOR X=01t0 3 STEP D
(instructions for this loop)
50 NEXT X

60 FOR X4=(17+C0S(2))/3 TO 3*SQR{10) STEP Y4
(instructions for this loop)
110 NEXT X4

120 FOR A=8 TO 3 STEP -1
(instructions for this loop
170 NEXT A

200 FOR X=1 TO 3000
(instructions for this loop)
250 NEXT X

Notice in this example that the values may be incremented or
decremented. The direction of the steps must coincide with the
direction between the beginning and ending values. If the step value
is positive, the ending value should be greater (more positive) than
the beginning value. Likewise, if the step moves in a negative
direction, the end value should be less than (more negative) than the
beginning value. For example, if statement 50 had been written as:

50 FOR X=81t0 3 STEP 2
the statement would be ignored, because the step value is positive

and the end value is less than (a negative direction) the beginning
value.

Series 505 BASIC Module User Manual Programming Language 3-23

BASIC Statements (continued)

A\ WARNING

FOR-NEXT loops may be nested up to 10 deep provided that each
loop has its own specific variable. Each loop is indented to aid
readability when the program is printed. The following is a typical
FOR-NEXT loop.

10 FORA=1TO 2

20 FORJ=3TO7STEP2

30 FORZ=-1TO —6STEP —1
40 X=A*J*Z

50 PRINT X

60 NEXTZ

70 NEXTJ

80 NEXT A

90 END

When FOR-NEXT loops are nested, the right-most (deepest) is
executed entirely, then the next loop left is incremented, and the
process repeats. With the above example, A will be set to 1, J will be
set to 3, and Z will vary from —1 to —6. When Z reaches —6, J will
increment to its next value (5), and Z will again vary from —1 to —6.
When J finally reaches 7 and Z reaches —6, A will increment to 2,
and the entire range of values for J and Z will begin again.

You should not transfer execution into a FOR-NEXT statement.

Be careful when putting a “FOR” and “NEXT” on the same
statement line. An infinite loop could occur, which could not be
stopped except by powering down the module, To avoid personal
injury or damage to equipment, before restoring power to the
module: 1) Ensure that all personnel are clear of machinery areas
controlled by the module application program. 2) Ensure that all
equipment is prepared for start-up operation.

3-24 Programming Language Series 505 BASIC Module User Manual

3.4.7

INPUT The INPUT statement allows values for variables in the program

Statement to be entered from a keyboard. The NKY (See 3.5.13) function may
be preferable for some applications. Up to 80 characters may be
entered per string or character variable before writing into variable
memory. A question mark is the prompt for numeric values, and a
colon appears if a character string is required. A double question
mark (??) appears if a character string is entered when a number is
required. All values entered are echoed on the programming device,
and the module continues prompting until all values are entered.
Also, all material enclosed in double quotes and inserted into the
INPUT statement is written as is when BASIC prompts for values.

If the value entered for a variable is incorrect, you may correct it
before entering it by pressing the key if you are using a VPU.
This will backspace and remove the incorrect character.

The format for an INPUT is:
<line number> INPUT <value 1>:<value 2>;...;<value n>
For example, consider the following section of a program:

40 INPUT X

50 INPUT $A,$B

60 INPUT $Y,Z

70 PRINT X,$A,$B,$Y,.Z
80 STOP

If this were executed, the module would prompt for data as follows:

? (prompt for a value for X) 256

: (prompt for a character string) CAT
DOG _

: HI

?7 80A

?? (the last entry was invalid; re-type:) 80

Series 505 BASIC Module User Manual Programming Language 3-25

BASIC Statements (continued)

Then, the module would print the values that were entered. The
BASIC system also allows formatting of the entered data. There are
four symbols used to format input: a semi-colon (;), a pound sign
(#), a percent sign (%), and a question mark (?).

Semi-colon The semi-colon cancels the automatic carriage return
which occurs after every value is entered. This is often used in
conjunction with descriptive phrases to help an operator enter a
correct value. For example, the following program:

10 INPUT "VALUE FOR X".X;
20 PRINT "X SQUARE=";X*X

would print:
VALUE FOR X? 12 to enter value) X SQUARE= 144

In this example, the entire output occurs on 1 line. The question
mark given as a prompt may be omitted by placing a semi-colon
before the variable. In the above example, a semi-colon rather than
a comma between “VALUE FOR X” and “X” would have caused
the question mark to be omitted.

Pound and Percent Signs The pound and percent signs are used
to restrict the number of characters that may be entered for a given
variable. The pound sign (#) specifies the maximum number of
characters that may be entered. The percent sign (%) specifies the
exact number of characters to be entered. The format for each is the
same:

<line number> INPUT <#number>,<var. 1>,<var, 2>,...,<var. N>
or
<line number> INPUT <%number>,<var. 1>,<var. 2>,...,<var. N>

For example, consider the following:

10 INPUT #3,A,B
20 INPUT %5,C

3-26 Programming Language Series 505 BASIC Module User Manual

3.4.8
LET
Statement

This example allows up to 3 characters to be entered for A and B
and requires that exactly 5 characters be entered for C. The module
continues prompting until all 5 characters have been given for C; it
will not reset if the carriage return is pressed. Once the 5 characters
are entered, BASIC automatically initiates a carriage return and
begins execution on the next line of the program..

Question Mark The question mark is used to move execution to
specific parts of the program when an invalid character or a control
character is entered. To discover whether a control or invalid
character has been entered, the system function “SYS(0)” must be
read. If “SYS(0)” is equal to —1, then an invalid character has been
entered; otherwise, the value found in “SYS(0)” will be the
HEX-ASCII code for the control character encountered. The format
for the question mark is:

<fine number> INPUT ? <line number>,<variable>
For example:

10 INPUT ? 100,N

would prompt for a numeric input for N. If a character string is
entered (or a control key is pressed), the execution jumps from line
10 to line 100, as in a GOSUB (See 3.4.19) or ERROR statement,
where an error subroutine (which must end with a RETURN
staternent) can be located.

The LET statement assigns a value to a variable. The variable to
be assigned is set equal to an expression containing constants and
variables separated by operators. The variable to be assigned can
appear on both sides of the equation. The format for a LET
statement is: i

<line number> LET <variable> = <expression>

Series 505 BASIC Module User Manual Programming Language 3-27

BASIC Statements (continued)

The word LET is optional, which means that a simple equation is a
valid LET statement. All of the following are valid LET statements:

10LET A = A+10-D
20Z = X+Y
30 $CAT = 'MOUSE’

3.4.9
PRINT The PRINT statement causes the values of all specified variables
Statement to be written to an output device. As with INPUT, the PRINT

statement can be left in free format or formatted to create specific
output patterns. Free format will first be described and then
formatting codes will be discussed.

Free Format. PRINT writes any variable, whether it be numeric,
character string, or HEX-ASCII code. Also, anything enclosed in
double quotes in a PRINT statement is written as is. HEX
characters are separated from the rest of the text by angle braces
and may appear anywhere in a character string. For example, if
<0A> <(0D> is the HEX code for a carriage return and line feed,
then the following command:

10 PRINT "GO THE NEXT LINE <0A> <0D> AND CONTINUE PRINTING"
prints:

GO THE NEXT LINE
AND CONTINUE PRINTING

NOTE: If you are using the VPU, you should not print the
HEX-ASCII codes <12>, <13>, and <14>, because they are used
as VPU control characters and will cause problems in the operation
of the VPU.,

3-28 Programming Language Series 505 BASIC Module User Manual

A numeric value is printed by including the numeric variable in the
PRINT statement. Strings contained in string variables may also be
printed in this way. More than one variable may be included in each
PRINT, with each variable separated by a comma or semi-colon. If a
comma is used, the values will be placed 5 values to a line and each
in a 15-space character field. Semi-colons compress the spacing by
inserting one blank space between the values printed. Therefore, it
is possible to print more than 5 values to a line using semi-colons.
Both semi-colons and commas may be used within the same PRINT
statement.

Semi-colons also serve as shorthand substitutes for the word “print”
when entering a series of PRINT statements. The semi-colons will
be converted to PRINTs when the program is stored in module
memory. The following example illustrates the use of semi-colons
and commas:

10 SNAM="SMITH"

20 81=95

30 S2=85

40 S3-90

50 S4={81+82+53)/3

60 ; "SCORES FOR " ;$NAM; " WERE";51:52;53;
70 ; " DIAGNOSTICS FOLLOW:”

80;

90 ; "THE HIGH SCORE= ";S1,"AVERAGE= ":S4
95 END

This program would print:
SCORES FOR SMITH WERE 95 87 90 DIAGNOSTICS FOLLOW:

THE HIGH SCORE= 95 AVERAGE = 90

Series 505 BASIC Module User Manual Programming Language 3-29

BASIC Statements (continued)

There are several things to note in this example:

¢ The semi-colon at the end of line 60 suppresses the carriage
return and line feed;

» ‘There is one space between all printed words and numbers,
except between 95 and AVERAGE. This occurs because a
comma is used instead of a semi-colon;

e A semi-colon replaces the word “PRINT” in statements 60, 70,
80, and 90. The semi-colons are converted to “PRIN'Ts” when the
program is stored and listed; and,

e PRINT with nothing after it (as in line 80) produces a blank line.

This completes the basic PRINT capabilities provided by the
Programmable BASIC Module.

Formatting Codes It is possible to tailor an output to your exact
needs by using format codes. Print formatting is essentially done by
inserting a pound sign (#) within the PRINT statement along with a
HEX formatting character or a decimal formatting string. Since
formatting codes do not replace the BASIC PRINT capabilities,
commas and semi-colons retain their functions in formatted
statements.

For HEX print formatting, there are three forms for the PRINT
statement: :

<line number> PRINT <#;> <expression>
<line number> PRINT <#,> <expression>
<line number> PRINT <#> <expression>

If “#,” is used, the expression is converted to a HEX value and
printed as a single byte with no preceding or trailing blanks or zeros.
Also, the terminating “H” is omitted. If the HEX value is larger than
one byte, only the least significant portion is printed.

If “#,” is used, the HEX value is printed as two bytes (a full word)

with no preceding or trailing blanks or zeros. The terminating “H” is
also omitted.

3-30 Programming Language Series 505 BASIC Module User Manual

If “#” is used, the HEX value is written in free format. As many
spaces as are needed to write the entire HEX value are used. A zero
is inserted as the preceding character, and an “H” terminates the
value.

The following example illustrates these three forms of HEX
formatting:

10 PRINT #;10;
20 PRINT #,10;
30 PRINT #10

This prints:
OA OOOA OAH

For decimal formatting, there are two forms for the PRINT
statement:

<iine number> PRINT <#> <"string constant”>; <expression>
<line number> PRINT <#> <«string variable>; <expression>

Each line must be formatted because a specified format does not
carry over from one PRINT statement to the next. More than one
format specification may be given in one PRINT statement.

The string constant is enclosed in double-quotes and is composed of
nines or zeros and one of the seven format characters listed below. A
string variable may be used instead of the string constant. It will
contain a specific format code similar to that used in the string
constant. In effect, it replaces a long format code with a single
variable, which may be useful if you have many formatted PRINT
statements. If the specified format for a number is too small, a series
of asterisks (*) is printed across the field where the number would
have gone. To print the number, change the format specification to
include the size of the number.

Series 505 BASIC Module User Manua/ Programming Language 3-31

BASIC Statements (continued)

Nines and zeros serve as digit holders in the string constant. Zeros
also force a zero to be printed in all non-significant digit positions.
Examples of nines and zeros are given in the discussions on the
special symbols. The special symbols are summarized in Table 3-1. A
period is used to specify the location of the decimal point in a string
constant. For example:

10 PRINT #799.0";15.575;128.64
would write:
15.6 ****

That is, 15.575 would be rounded to fit into the “99.0” format
specification, and asterisks would be printed for 128.64 because it is
too large to fit into the specified format.

~ (carat) A carat translates to a decimal point when printed. The
decimal point will always be in the same place in the output as
specified in the format string. For example:

10 PRINT #7899 ~ 00"12058;
20 PRINT #"999 ~ 007200

would print:

120.56 2.00

A number is always printed with a decimal point two digits from the
right, regardless of the number entered. The zeroes used in this

example hold the digits (as a nine would) and also places zeroes in
the right-most two positions if no numbers are specified to go there.

Since the field in the example is specified to exactly five characters,
an error results if six characters are entered.

3-32 Programming Language Series 505 BASIC Module User Manual

. (comma) A comma is used in a character string to force a
comma to be placed in the printed number. The position of the
comma in the format string is where it appears in the output. (When
there are no digits to the left of the comma, the comma is omitted.)

For example:

10 DIM A(3)

10 LET $A(0)="99,999.00"
20 PRINT #8A(0);3529.871
30 PRINT #$A(0);100.3

prints:

3,529.87
100.30

$ (dollar sign) A dollar sign, when used, is included in the printed
output. It is also a digit holder like a nine or zero and will float to
the position next to the left-most digit or decimal point. It is deleted
if the number to be printed is the same size as the specified field.
For example:

10 PRINT "$$$.00"25.32;
20 PRINT #"$$$.00".50;
30 PRINT #"$$$.00"135.62

would write the following:
$25.32 $.50135.62

Note that the last number is too large for the specified field, which
results in the omission of the space and dollar sign.

Series 505 BASIC Module User Manual Programming Language 3-33

BASIC Statements (continued)

S (letter S) This symbol is used to print a signed value. A minus
sign will be inserted for a negative number, and a blank will be used
to indicate a positive number. The “S” is also a digit holder like a
nine or zero and will float to the position next to the left-most digit.
If the “S” is not used, all numbers are printed as positive values. For
example:

10 PRINT #7SSS0.00"208.7;
20 PRINT #°5550.00"-20.73;
30 PRINT #"9990.00" -36.81

prints:
208.70 —20.73 36.81

E (letter E) This symbol places a minus sign following the
right-most digit. It is similar to the “S” above but cannot be used as a
digit holder. For example:

10 PRINT #"990.00E"32.356;
20 PRINT #7990.00E"—356.9

prints:
32.36 356.90-

<> (braces) Braces are used together to print negative numbers
without minus signs appearing in the print-out. Instead, negative
numbers are enclosed in angle braces and positive numbers are left
as is. The left brace (<) is both a sign holder and a digit holder. The
right brace (>) is only a sign holder. The left brace will also float to
the position next to the left-most digit. The right brace will always
appear after the right-most digit.

For example:

10 PRINT #"< < <, < <<, 00>"1250.73;
20 PRINT #"< < <, < < <.00>"—-2568.9;
30 PRINT #"<<,00>"-0.345

prints:

1,250.73 <2,568.90> <.35>

3-34 Programming Language : Series 505 BASIC Module User Manual

3.4.10
RANDOM
Statement

Table 3-1 Formatting String Characters

Char, Function Example

Decimal point specifier PRINT #7999.99725.32: b 25.32

~ Translates to decimal PRINT #°999 ~ 001000; b10.00

' Suppressed if before PRINT #799,999.99”100; bbb100
significant digit

9 Digit holder PRINT #7"99997123; b123

0 Digit holder or forces zero PRINT #79990.99”.23; bbb0.23

$ Digit holder & floats PRINT #7$$$.99”8; b$8.00

S Digit holder & floats sign PRINT #885.99” —6; b—6.00

E Sign holder after decimal PRINT #990.99E” —150.75;150.75—

< Digit holder before decimnal PRINT #” << <.00>" 500;500.00
& fioats on negative number

> Appears after decimal if PRINT #” << <.00>" —50; 50.00
negative

Note: b indicates blank.

The RANDOM statement plants the seed for pseudo-random
number generation. It is used in conjunction with RND function.
The seed may be set to either a constant value or an arbitrary value.
The format for this statement is:

<line number> RANDOM <expression>

“Expression” may be any valid BASIC expression, provided it
evaluates to a number between —32767 and 32767. If no expression
is given, 0 is the default value. A sequence of numbers between 0
and 1 is generated by RND because of the constant seed. The
sequence of numbers restarts every time a RUN command is
entered.

Series 505 BASIC Module User Manual ' Programming Language 3-35

BASIC Statements (continued)

3.4.11
REM
Statement

3.4.12
STOP/END
Statements

The REM statement is used to insert remarks into a program.

The line containing a REM is ignored during execution and is only
seen when the program is listed. Because of this, REM should nof be
used as part of multi-statement line. If a comment is needed after a -
Statement, use a tail-remark (!). REM statements, as well as
tail-remarks, should be concise since they affect the size and rate of
execution of a program. The format for a REM statement is:

<line number> REM <comment>
For example:

100 REM Read values for temperature

Both STOP and END terminate the execution of a program. Both
are also required to have line numbers. STOP is used at all logical
termination points in the program, and END occurs only once as the
last statement of the program. Since STOP is logical in use, a
CONTINUE can be used to restart the program from the point at
which a STOP appears. This is not possible with an END statement.
The line number of the STOP or END statement that causes the
program to cease executing is sent to the device connected to port 1
of the module.

3-36 Programming Language Series 505 BASIC Module User Manual

3.4.13
TAB
Statement

The TAB statement is used to advance to a particular column on

a line and begin printing there. The columns allowed range from 0 to
127. (If your device has lines shorter than 127 characters, specifying
a column beyond the end of the line causes BASIC to wraparound to
the next line. For example, if your line is 80 characters long,
specifying column 100 causes BASIC to begin printing in the 20th
column of the next line.) The format is:

<line number> PRINT TAB(<column number>); <expression>

The column number must be evaluated to be an integer value that
specifies the horizontal column position when printing begins. For
example, to print the word “field” starting in the 20th column, you
would use the following statement:

20 PRINT TAB(20); "field”

There is no limit to the number of TAB statements in a line except
for the line length itself. The TAB settings will reset on a carriage
return. Also, TAB cannot be used to g0 to a column that has already
been passed.

Series 505 BASIC Module User Manua/ Programming Language 3-37

BASIC Statements (continued)

3.4.14
TIME
Statement

The TIME statement is used to set, display or store the 24-hour
clock. It also keeps track of the day, month, and year. TIME may be
read or initialized anywhere in the program. TIME is intended fo be
used to keep track of long periods of time; for short periods of time,
use the TIC function. There are three formats for the TIME
statement:

Format1 <line number> TIME
<YR>,<MO>,<DY>,<HR>,<MN>

This form is used to initialize the internal clock to a specific time.
The time is entered in the order of year, month, day, hour (based on
24-hour time), and minute. (You do not need to enter the number of
seconds because this will be automatically set to zero when the
statement is executed. Also, any values omitted will be interpreted
as zeros upon execution.) For example, to set the clock to December
20, 1986, 2:10 pm, you would enter:

10 TIME 86,12,20,14,10 | Time is set to Dec. 20, 1986
20 REM 2:10 pm each time line is encountered

To set the time once, verify that the battery is active. Then type in

TIME in the command mode (without line number) following the
format outlined above.

Format2 <line number> TIME

This statement reads the time currently in the BASIC clock. It prints
the time in the order of year, month, day, hour, minute, and second.
For example:

100 TIME

could result in this being printed:

86:12:21:14:15:30

This is interpreted as 15 minutes, 30 seconds, past 2 pm on
December 21, 1986.

3-38 Programming Language Series 505 BASIC Module User Manua/

Format3 <line number> TIME <string variable >

This form of the TIME statement places the current time into the
designated string variable. The current time is formatted as in (1)
and (2). For example:

10 DIM TIM(2) ! Dimension to 3 elements

100 TIME $TIM(0) ! Loads the TIME into $TIM(0)

places the time (YR:MO:DY:HR:MN:SC) in $TIM(0). Note that
any array used for storing the time must be dimensioned to 3 and
that the colons are part of the time value as stored in memory. Both
colons and numbers are stored, rather than just numbers.

3.4.15

UNIT Statement The UNIT statement is used to choose which port will send or
receive data. The format for this statement is:
<line number> UNIT <number>

The number may be 0, 1, 2 or 3. It may also be an expression which
evaluates to one of these three numbers. Each number signifies
which ports will be used for inputs or outputs. The following chart
shows what each number means:

Number Action
0 BASIC uses neither port for input or output
1 BASIC uses port 1 for input or output
2 BASIC uses port 2 for input or output
3 BASIC uses ports 1 and 2 for output, and port 1 for input

Series 505 BASIC Module User Manual Programming Language 3-39

BASIC Statements (continued)

3.4.16
internal
Data Statements

The default value for UNIT is 1 (inputs are sought at port 1 and
outputs are directed to port 1). Note that if UNIT 0 or UNIT 2 is
chosen, the Programmable BASIC Module will still accept
commands from port 1 but will not echo the keystrokes back to the
programming device. (Remember that programming is allowed only
through port 1.)

NOTE: Pressing the key does not reset the UNIT statement.
Thus, if you press while UNIT 0 or UNIT 2 is in effect,

- keystrokes after ESCAPE are not shown. To see the keystrokes on

the device, type UNIT 1 and press [Enter] (the keystrokes are not
shown on the device connected to port 1).

BASIC allows a data list to be included in a program. The
statements READ, DATA, and RESTOR are used to place and
obtain the data at different points in the program. All three
statements must have line numbers. Each statement is described
below:

READ The READ statement assigns values from the internal list
to a variable or array element. READ gets the data by sequentially
reading the internal data as requested by the program. If a READ
statement is used and the data list has been read through to the end,
an error results.

RESTOR The RESTOR statement is used to move the read
pointer either to a specific statement number in the list of data
statements or to the first data statement in the program. If a number
(or an expression which evaluates to a number) is entered after
RESTOR, that number must be a line number in the program (or an
error results). The line number entered is the line number of the
DATA statement that the next READ statement uses. (If the given
number is not a DATA statement, the next DATA statement in the
program after the given line number is used.) If no line number is
given, the next READ statement begins at the first position of the
first DATA statement used in the program.

3-40 Programming Language Series 505 BASIC Module User Manual

3.4.17
Branch Statements

DATA The DATA statement contains the list of internal data.
Values are separated by commas, and all string variables are
enclosed in quotes. DATA statements may appear anywhere in a
program except as part of a multi-statement line. DATA statements
usually appear as a group near the beginning or end of a program.

The formats for these three statements are;

<fine number> READ <variables>
<fine number> RESTOR <optional line number>
<line number> DATA <data>

The following example shows how these three statements work:

10 READ A,B,C.D ! Gets the first 4 values from 80

20 H = A*B*C*D

30 READ E,F.G ! Gets the 5th, 6th, and 7th values from 80
401 = E*F*G

50 RESTOR ! Resets data pointer to first data element 80
60 READ X,Y,Z ! This obtains the first three values in 80
70 PRINT A;B;CH;LXY.Z

80 DATA 1,2,3,4,5,10,20

90 END

The output from this program would be:
1 2 3 24 1000 1 2 3

In this example, note how READ moved sequentially through the
data string and did not return to the beginning of the string for the
second READ statement. The RESTOR statement reset the data
pointer to the beginning of the data list, which resulted in A,B,C
being the same as X,Y,Z. If the RESTOR had not beer used, an
error would have occurred when the third READ statement was
used.

There are a variety of ways to transfer execution to different parts of
a program, or to prevent the transfer of execution. [IF-THEN-ELSE,
GOTO, and ON are the statements used in BASIC to alter the
sequential flow of a program. These statements are explained in the
following paragraphs.

Series 505 BASIC Module User Manual Programming Language 3-41

BASIC Statements (continued)

IF-THEN-ELSE This statement is used to branch a program in two
directions depending on a conditional statement. The two branches
are the “IF-THEN,” which appears on one statement line and
contains the conditional statement, and the “ELSE,” which appears
on a line following the IF-THEN and initiates the second branch.

The function of the IF-THEN statement is to compare two
expressions and arrive at a true or false result. If the statement is
true, the expression following the THEN is executed. If the
statement is false, execution skips the rest of the line and passes to
the line immediately following the IF-THEN line. The format for the
IF-THEN is:

<line number> IF <expression> THEN < BASIC staternents>

“Expression” may be any variable along with logical and relational
operators. For example, all of the following are valid [F-THEN
statements:

20 IF A=0 THEN GOTO 100

30 IF SQR(J)=4 THEN K=J*J/I::PRINT J,K
35 REM J & K printed when "IF" is true

40 IF BIT(A,1) THEN BIT (B,1)=1

50 IF X<6 OR X>2 THEN PRINT "IN RANGE"

The ELSE statement is placed after an I[F-THEN statement and is
executed when the IF-THEN is false. ELSE should appear on a line
by itself; it cannot be used as part of a multi-statement line. If the
IF-THEN is true, the ELSE statement is ignored. More than one
ELSE may follow an IF-THEN statement. Each ELSE is executed
when the IF-THEN is false. The format for an ELSE is:

<line number> ELSE <BASIC Statements>
The following short prdgram illustrates an IF-THEN-ELSE:

100 1F A=0 THEN PRINT “DATA EXHAUSTED"
110 ELSE PRINT "MORE DATA TO RUN"

3-42 Programming Language Series 505 BASIC Module User Manual

These two statements give information to an operator depending on
the status of the data to be run. When A is 0, the entire [F-THEN
statement of line 100 will be executed. The ELSE statement of line
110 will be ignored. For all other values of A, only the IF part of line
100 will be read, and then execution will pass to line 110.

GOTO The GOTO statement transfers execution to a specified
line of the program. Execution then proceeds sequentially from the
specified line. As shown below, there is no embedded blank between
GO and TO:

<line number> GOTO <liine number>
For example:
10 GOTO 500

skips all statements between 10 and 500 and resumes execution at
line 500.

ON The ON statement specifies a variabie that triggers a GOTO
or GOSUB statement. It cannot be used as part of a multi-statement
line, nor can it be followed by a tail-remark (!). The format for an
ON is:

<line number> ON <variable> then GOSUB <«<line number>
or
<line number> on <variable> then GOTO <line number>

The “variable” may also be an expression, in which case the
expression would be evaluated, and then, depending on the answer,
execution would be transferred elsewhere in the program by the
GOTO or GOSUB. It is possible to indicate more than one location
for the GOTO or GOSUB transfer. The value that arises from the
variable or expression is used as a counter to find a specific number
in the list of line numbers after the GOTO or GOSUB statement. If
the variable indicates a number greater than the number of available
line numbers, then the ON statement will be ignored.

Series 505 BASIC Module User Manwual Programming Language 3-43

BASIC Statements (continued)

3.4.18

CALL

(PLC Interface
Statement)

For example, the following ON statement:
10 ON J THEN GOTO 15,20,35
would do the following:

When J=0, the statement would be ignored;

When J=1, execution would go to line number 15;
When J=2, execution would go to line number 20;
When J=3, execution would go to line number 35; and,
When J=4, the statement would be ignored.

CALL is the statement used to invoke subroutines that obtain
information from, or send information to, the PLC. There are five
of these subroutines available in BASIC: IOREAD, IOWRITE,
PCREAD, PCWRITE, and SRTC. Note that in all of these
subroutines the dollar sign is omitted for character strings. For
instance, when invoking PCREAD, a character string would be
included without the usual prefix of a dollar sign. These subroutines
(and the DIM and FIND statements) are the only elements in
BASIC where the dollar sign is omitted. All other references to a
character array must include a doHar sign.

NOTE: When using PCREAD, PCWRITE, or SRTC, be aware that
PLC scan time will be slightly affected. The increase in scan time is
not more than 2 ms, which is negligible in most applications. This
can be avoided by implementing the lock-out bit as described under

IOREAD/IOWRITE.

344 Programming Language Series 505 BASIC Module User Manua/

IOREAD/IOWRITE These two subroutines transfer data directly
from or to the I/O registers on the module (data type must be
integer). The PLC input points are numbered 1 to 4, and the output
points are 5 through 8. In addition, a complete I/O address will have
the particular channel, base, and slot that the BASIC module
occupies. For exampie, a module inserted in the first slot of base 0
would have the following input and output points:

YO WRITE I/O READ

1 2 3 4 5 6 7 8
WX9 WX10 WX11 WX12 WY13 WY14 WY15 WY16

The format for both subroutines is the same:

<line number> "IOWRITE", <number>, <array>,<number>
or
<line number> "IOREAD", <number>,<array>,<number>

The first “number” before the array is the input or output point to
be used; the “array” is the location to which or from which the data
is to be transferred; and the final number after the array is the
number of consecutive words to be transferred.

10 CALL "IOREAD",5,DAT(0} 4
20 CALL "IOWRITE",1,DAT(0),4

Statement 10 transfers 4 words to $DAT(0) from output registers 5
through 8 and sends 4 words from $DAT(0) to input points 1 through
4 in statement 20.

Be sure that the array in the statement is dimensioned large enough
to accept the words being sent.

Series 505 BASIC Module User Manual Programming Language 3-45

BASIC Statements (continued)

The following program shows how IOREAD and IOWRITE
subroutines may be used in a program:

10 REM Dimension data arrays to at least size of

20 REM points to be transferred.

30 DIM DAT(3) ! Dimension the array for storing values to 3
40 DIM VAL(3) IDimension the array from which data is sent
50 REM Clear data array before reading

60 DAT(G)=0

70 DAT(1)=0

80 DAT(2}=0

890 DAT(3)=0

100 CALL "IOREAD",5,DAT(0),4 ! Obtains data from PLC
110 REM Enter values to be sent in array

120 VAL(0)=100

130 VAL{1}=200

140 VAL(2)=300

150 VAL(3)=400

160 CALL “JOWRITE",1,VAL(0),4 | Sends values to PLC
170 END

After this program is executed, the array DAT(0) contains the values
present in the output points 5 through 8, and the PLC wil] have the
values 100, 200, 300, and 400 for the input points 1 through 4.

Lock-Out Bit Communications between the Programmable
BASIC Module and the PLC employing the PCREAD, PCWRITE,
or SRTC statements extend the scan time of the PLC by allowing this
communications window. If it is necessary to prevent this scan
extension, the module must be prevented from requesting
PCREAD, PCWRITE or SRTC communications. This can be done
by assigning a “pseudo” lock-out bit in the normal I/O update
communication allowed to the module. This involves setting a bit in
a WY word of the module.

The module operating system does not recognize a lock-out bit. The
bit, however, must be mutually understood by the module and the
PLC RLL program. Simply setting the selected bit does not
automatically impede PCREAD, PCWRITE, or SRTC
communications. A subroutine in the BASIC module program must
be executed prior to any extended scan communications to
determine if the bit has been set.

3-46 Programming Language Series 505 BASIC Module User Manual

For example, a Programmable BASIC Module resides in slot 1 of
base 1, occupying WX1, WX2, WX3, WX4, WYS5, WY6, WY7, WYS8
in “normal” I/O. The least significant bit of WY$ has been selected
to be the Jock-out bit. Therefore, if the PLC RLL program loads a 1
into WY8, the scan extension communications should not be allowed
by the BASIC program.

NOTE: The WY location used as the lock-out bit is shared by the
module and the PLC. The PLC recognizes the bit as the least
significant bit (bit 16), while the module recognizes it as the least
significant bit of an integer format (bit 32).

The following program section should then appear in the
Programmable BASIC Module program:

200 GOSUB 520 | Check to see it lock-out bit is set

205 IF FLG=1 THEN GOTO 220 ! Lock-out bit set, skip PLC
comm

210 CALL "PCREAD",ADR(1),DAT(1)4 | Scan extending comm

220 REM Continue without obtaining data from PLC

520 REM check for lock-out bit

525 FLG=0

530 CALL "IOREAD",8,LOK,1 ! LL.SB of WY8 is lock-out bit

540 IF BIT(LOK,32)=1 THEN FLG=1 | 32 is least significant bit
550 RETURN | Bit is not set, communications is allowed

NOTE: When using a bit as a lock-out bit, it is critical that the bit is
not altered by any data passed through the word. For this reason, it
might be advantageous to reserve the word for use as only a lock-out
bit, should a lock-out bit be useful in your application.

Series 505 BASIC Module User Manua! Programming Language 3-47

BASIC Statements (continued)

PCREAD/PCWRITE These two subroutines transfer data from or
to avariable in the PLC. Variables in the PLC may be any of the

following:
Variable Address Example

V variable $SADR = “V100”

WX analog word input $ADR = “WX6”
WY analog word output $ADR = “WY14”

X discrete input SADR = “X440”

Y discrete output $ADR = “Y3”

C internal control relay $ADR = “C210”
TCC timer/counter current value $ADR = “TCC6”
TCP timer/counter preset value $ADR = “TCP18”
DSC drum step current value $ADR = “DSC127”
DCC drum count current value $ADR = “DCC12”
DCP drum count preset value $ADR = “DCP1201”

DCC returns two words. First, the step drum is on 0 to 15; second, the current value of the
step. The current count counts down from preset.

DCP is applicable to event drums only and requires additional addressing to write to it.
DCP12 refers to the drum number; 01 is the step in the drum to be looked at or altered.

NOTE: If your module is operating in a TI5S60™/TI565™ PLC
system, there are some limitations on accessing memory. The
following upper limits are placed on the data accessible from the
PLC through the PCREAD and PCWRITE statements.

e & & 0 @

Vmemory V65535
Kmemory none accessible
DCC memoryDCC127
Smemory none accessible
DCP memory D127816

3.48

Programming Language

Series 505 BASIC Module User Manual

Once the variable name has been determined and correctly
formatted, the format for both subroutines is as follows:

<line number> CALL"PCWRITE", <variablename > ,<array>,<number>
<tine number: CALUPCREAD", <variablename>, <array>, <number>

The “variable name” is the string variable from which data is to be
obtained or to which data is to be written from the PLC. The “array”
is where the data will be placed in the BASIC memory or where the
data to be sent to the PLC is located. “Number” is how many
consecutive words or data points are to be transferred. The PLC
addresses, as well as the BASIC variables, must be sequential to be
accessed in a single scan. Consider the following example.

05 $SADR(0) = "V200"
10 CALL "PCREAD" ,ADR(0),DAT(0),14
20 CALL "PCWRITE" ADR(0),DAT(0), 14

The first statement gets 14 sequential points starting at the PL.C
variable represented by $ADR(0) and puts them in DAT(0) in the
BASIC memory. Statement 20 takes the 14 sequential points and
puts them sequentially in the PLC memory starting at V200,

For the subroutines to execute properly, the following conditions
must exist:

¢ The variable name must be dimensioned to at least 2;
¢ The variable name must be assigned to a valid PLC address;

® The array must be dimensioned correctly for the incoming data.

Series 505 BASIC Module User Manual Programming Language 3-49

BASIC Statements (continued)

The following example shows a program containing PCREAD and
PCWRITE subroutines:

5 REM Dimension data arrays to at least size of

10 REM points to be transferred.

15 DIM ADR(2) | Dimension address array to 2

20 DIM DAT(13) ! Dimension data array

25 DIM SET(1) ! Dimension write array

30 DIM VAL(13) ! Dimension data array

35 LET $ADR(0)="V100"

40 LET $SET(0)="C64"

45 REM Clear out entire data array before reading values
S0 FORI=0TO 13

60 DAT(l)=0

7JONEXT |

80 CALL "PCREAD", ADR(0),DAT(0),10 ! Gets values from PLC
90 FORI=0TOS

100 PRINT DAT(}) { Prints the values obtained from the PLC
110 NEXT |

120 REM Enter values to be written into data array

130 VAL(0)=0 ! Set C64 to off

140 VAL(1)=1 | Set C85 to on

150 CALL "PCWRITE”,SET(0),VAL(0).2

160 END

If PLC addresses V100 through V109 contain the values
100,200,300,..., 1000, the output will be these 10 values at line 100,
Also C64 will be off and C65 will be on after the execution of the

program.

NOTE: Care should be taken when using PCWRITE to send data to
word memory areas (WX or WY). Unlike discrete memory points
(X, Y, or C), word memory areas can be overwritten even if they are
forced.

3-50 Programming Language Series 505 BASIC Module User Manual

The PCREAD and PCWRITE subroutines permit up to a maximum
number of consecutive data points to be transferred between the
Programmable BASIC Module and the PLC during a single PLC
scan. The maximum number of data points transferable follows:

Consecutive Points Per Scan

Type of Data Point PCREAD PCWRITE
DISCRETE: C,XorY 26 18
Word: V, WX, WY, TCC
TCP, DSF, DCP, DSC 30 28
DCC 20 values (40 words) N/A
per scan

The above values are valid only if the PLC is in the RUN mode.

Only one PCREAD or PCWRITE subroutine can be called per scan, regardless of the
amount of data to be transferred.

If a call to PCREAD or PCWRITE is made requesting more data than can be transferred
in a single scan, the remaining data will be transferred on subsequent scags.

SRTC The SRTC (Send and Receive Task Codes) subroutine
allows a BASIC program to send operational codes (rather than
values) to the PLC. The codes may be sent only to the PLC; they
cannot be sent through a Network Interface Module to the TIWAY
network. SRTC sends specific task codes to the PLC in a
HEX-ASCII format. The HEX-ASCH format (A-F, 0—9) must be
enclosed in a variable that will be used in the CALL statement. Byte
count and message delimiters will be added by the subroutine. The
format is: :

<line number> CALL "SRTC",<string variable> ,<string variable>

The first “string variable” contains the HEX-ASCII code to be read,
and the second string variable is where the task code response is to
be written. For example, the following:

100 CALL "SRTC",TCC(0}, TCR(0)

takes the task code in $TCC(0) and places the response to the code
in STCR(0).

Series 505 BASIC Module User Manual Programming Language 3-51

BASIC Statements (continued)

A\ WARNING

3.4.19
Subroutine
Statements

To ensure that no values are overwritten, both string variables must
be properly dimensioned. Since 61 characters is the maximum
possible number for a HEX code, a dimension of 10 prevents values
from being overwritten.

Please see your Siemens Industrial Automation, Inc. distributor for
further information on these task codes and this subroutine.

Use of SRTC can cause unpredicable machine behavior. Because it
can change the PLC program, SRTC has the potential to endanger
personnel and equipment if used incorrectly. To avoid the risk of
personal injury or damage to equipment, be sure you understand
how SRTC works. Some task code requests may cause the module to
time out before the PLC can respond.

GOSUB, POP, and RETURN are used for program subroutines

in BASIC. There are also subroutines that are used for errors (see
3.4.3) and statements that simply transfer execution (see the GOTO
and ON statements in 3.4.17).

GOSUB GOSUB is used for entry into a subroutine. It has the
following form:

<line number> GOSUB <line number>
“Expression” is either a number or a BASIC expression which

evaluates to a number. The number is the line number to which
execution passes.

3-52 Programming Language Series 505 BASIC Module User Manual

When a GOSUB statement is reached, the next statement after the
GOSUB is placed in a wait stack, and execution passes to the line
number specified in the GOSUB statement.

RETURN A RETURN statement ends the subroutine and returns
execution to the statement at the top of the wait stack. All
subroutines must end with a RETURN, and a RETURN should not
appear without being coupled to a GOSUB or ERROR statement.

The following is a simple example of these two commands.

10X=2

20 GOSUB 90
30 PRINT X;Z
40 END

90 Z = 2*X-1
100 X = X*Z
110 RETURN

results in:
63

POP Subroutines may be nested up to 20 deep. Sometimes the
wait stack can become filled or you may wish to escape the current
subroutine and go back to the last routine. For such cases, use a POP
statement to remove the top line number in the wait stack. POP will
not return to the removed statement; it only removes the line
number at the top of the stack, and then execution passes to the
statement after POP. Incorrect use of a POP statement could result
in a stack overflow error.

NOTE: When using GOSUB statements, terminate the main
program with an END statement. Failure to do so may result in a
stack overflow error.

Series 505 BASIC Module User Manual Programming Language 3-53

3.5 BASIC Functions

3.5.1
ABS Function

3.5.2
ASC Function

3.5.3
ATN Function

BASIC supports many pre-defined mathematical and string
functions. These functions are of the form:

<line number>....<function name(argument)>...,

The “function name” is a 3-digit letter designation for a particular
function. “Argument” is the variable, string, or expression on which
the function will operate. The dots indicate that functions may be
used in conjunction with any other BASIC expressions. In the
following sections, each of the functions used in BASIC is described.

The ABS (absolute value) function operates only on negative
numbers. These numbers are converted to positive values with ABS
(positive values are not affected).

20 PRINT SQR(ABS(X))

The ASC (ASCII conversion) function obtains the decimal ASCII
value of the first character of a particular string. ASC is the inverse
operation of the byte replacement operator (%). Note that, if you
use the byte replacement operator, you must terminate the
characters being replaced by putting a null at the end as shown in
the following program:

10 $i="B" | Assign value to $I

20 J=ASC($!) ! J = decimal ASCII value of $}

30 K=J+020H | increment value of J by 20H; B+20H=b
40 $L=%K%00 ! Return decimal ASCH! to alphanumeric rep.
50 M=ASC($L) | M = decimal ASCH value of $L

60 PRINT $!,J;$L;M

70 STOP

This program prints:
B 66 b 98
The ATN (arctangent) function returns the value in radians for a

ratio representing the tangent. (Radians may be converted to
degrees by multiplying the value in radians by 180/Pi.)

3-54 Programming Language Series 505 BASIC Module User Manual

3.5.4
BIT Function

The BIT (bit modification) function is used to read or modify the
bits of a variable. If you wish to alter bytes or words, use the MEM
or MWD functions. Each variable is composed of 6 bytes or 48 bits
of memory. With 48 bits, accuracy to roughly 11 significant digits and
numbers between +/—1E74 and +/—1E—74 may be expressed. The
internal representation of these bits is in either integer or floating
point (real) format.

With each box below containing 8 bits, integer format is represented
as follows:

[00000000 | 00000000 | 00000000 | 00000000 |
—16 bits for number—

The binary string is interpreted by converting the string to a decimal
number.

With each box below containing 8 bits, floating point format is
represented as follows:

{ 220000 ! i | l

mantissa (decimal fraction)

Z = bit for sign (1 = negative, 0 = positive)
Xs = exponent (Excess-64 notation)

An example for floating point format is the following:
01000010 01010000 00000000 GOC00000 00000000 00000000

To interpret this number, start with the exponent. “1000010” is part
of the first 8 bits which is in “Excess-64 notation.” This notation is
used to express both positive and negative exponents of 16. To derive
the exponent, you would interpret the 7 bits to a decimal number
and subtract 64. For the example, “1000010” is equivalent to decimal
66, which, when 64 is subtracted from it, yields an exponent of 2. The
exponent is applied to 16, which is equal to 256.

Series 505 BASIC Module User Manual _ Programming Langiuage 3-55

BASIC Functions (continued)

After the exponent is derived, the mantissa is interpreted. The
mantissa is a fraction; it contains the value to the right of the
decimal point. Each bit represents 2 raised to a negative power. For
the example, the mantissa “01010000” is interpreted as

27 =242 =4, which is equal to 0.3125.

The final result is obtained by multiplying the interpreted mantissa
by the interpreted exponent. In this example, the final result is 256
multiplied by 0.3125, which equals 80.

After the number is derived, you would obtain the sign of the
number by checking the first position of the binary string. For the
example, this is 0, which means that the number is positive, and 80 is
the decimal equivalent of the binary string.

The structure of arrays is the same as above with each position in the
array taking up 6 bytes of memory . In other words, each position of
an array is arranged at the bit level in either the floating point or
integer format. For example, the following is a representation of an
array dimensioned to (2,1) starting at HEX address C200H:

Position Address
(0,0) 6 Bytes: C200, C202, C204
0,1) 6 Bytes: C206, C208, C20A
(1,0) 6 Bytes: C20C, C20E, C210
(1,1) 6 Bytes: C212, C214, C216
(2,0) 6 Bytes: C218, C214, C21C
(VA 6 Bytes: C21E, C220, C222

3-56 Programming Language Series 505 BASIC Module User Manua/

Each byte of the array contains one ASCII character, which
translates to 6 characters per array position. The sixth character is
most often a null, which is used to indicate the end of a word. For
example, if the word “dog” were stored in position (0,0) of the above
array, the address would look like this:

p | 0 G| 00000000 |x0000000¢ Poooooo
C200H C202H C204H

BIT has the following format:
BIT(<var>, <position>}

Bit positions range from 1 (most significant) to 48 (least significant).
Recall integer values are stored in bits 17 through 32. If you use a
number greater than 48, the next memory address will be read or
modified. For example, the following program reads the variable “A”
and writes its bit representation:

10 INPUT A,

20 FOR I=1TO 48

30 PRINT BIT (A,l);

40 IF I=1 THEN PRINT "~";
50 IF i=8 THEN PRINT " ",
60 IF 1=16 THEN PRINT * ";
65 IF =24 THEN PRINT " ";
701F 1=32 THEN PRINT " ";
80 IF =40 THEN PRINT " ";
S0 NEXT |

100 GOTO 10

If this were executed, it would prompt for a value (1) and print the
following:

71 0-00000000 00000000 000000C0 00000001 00000000 00000000
71.0—~10000001 00010000 00000000 000C0000 00000000 00000000

Series 505 BASIC Module User Manual Programming Language 3-57

BASIC Functions (continued)

/\ WARNING

3.55
COS Function

3.5.6
EXP Function

Note the differences in representation for the integer value 1 and the
floating point value 1. BIT can also be used to change the structure
of an address. For example, if you wanted to change a number from
positive to negative, BIT would be used to change the first position
of the address from a 0 to a 1. The following program shows this
change:

10 A=1.23
20 BIT(A,1)=1 | Changes the sign of the number
30 PRINT A

If this were executed, this would be the output:

-1.23

Be careful when using the BIT function. If you rewrite part of the
module memory rather than variable memory, the module may
perform unpredictably. To avoid personal injury or damage to
equipment, before restoring power to the module: 1) Ensure that al!
personne] are clear of machinery areas controlled by the module
application program. 2) Ensure that all equipment is prepared for
start-up operation.

The COS (cosine) function determines the cosine value of an angle
entered in radians. The angle cannot be entered in degrees. (To
obtain radians from degrees, you must multiply the value in degrees
by Pi/180.)

The EXP (exponential) function is used to raise the value of “e” (the
base of natural logarithms) to the power indicated by the argument.
The argument is the exponent of “e.” The argument used with “e”

should be 87 or less. For example, the following would raise “e” to
the fifth power:

10 2=5
20 PRINT EXP(2)

3-58 Programming Language Series 505 BASIC Modu_le User Manual

3.5.7
INP Function

3.5.8
LEN Function

The INP (integer part) function returns the signed integer portion of
the entered value. The value is truncated rather than rounded when
converted to integer form. The entered value should not exceed
6.87E10 or erroneous answers result, For example, the following
program:

10 INPUT X,Y,2
20 PRINT INP(X);INP(Y):INP(2)
30 END

prompts for values for X, Y, and Z;

?1.145 -2535

and prints:

1 -25

The LEN (length) function is used with character strings to find the
number of non-null characters in the string. 0 is returned if no

characters are found in a string. For example:

10 $I="ABC"

20 PRINT LEN($I):

30 PRINT LEN ("DEF G")
40 END

prints:

35

Series 505 BASIC Module User Manual Programming Language 3-59

BASIC Functions (continued)

3.5.9
LOG Function

3.5.10
MCH Function

The LOG (logarithm) function is the inverse of the EXP function:
The value entered is the number for which the natural logarithm (e)
is required. The entered value must be positive; a negative number
results in an error. For example, the following program:

10 L=5280
20 PRINT LOG(L)
30 STOP

prints:

8.57168

The MCH (match) function is used only with character strings. It
compares two character strings and returns a value for the number
of characters in exact agreement between the two strings. Zero will
result if no characters are in agreement. For example, the following
program:

10 $C="ABCD"

20 M=MCH("ABF",$C)

30 PRINTM
40 END

prints: -

2

3-60 Programming Language Series 505 BASIC Module User Manual

3.5.11
MEM Function

A\ WARNING

3.5.12
MWD Function

After using the FIND statement to locate a variable address in
BASIC memory, the MEM (byte modification) function may be used
to read or modify the data at that memory address. It reads in bytes:
if you wish to read in bits or words, refer to the BIT function or the
MWD function for instructions on reading other lengths of
addresses. The argument which follows MEM is the address to be
read or altered. For example, the following:

M=MEM(0C200H)
places the byte in address 0C200H into M, while:
MEM(0C200H) =07FH

replaces the byte at address 0C200H with 07FH (or 127 in decimal
form).

Be careful when using the MEM function. If you rewrite part of the
module memory rather than variable memory, the module may
perform unpredictably. To avoid personal injury or damage to
equipment, before restoring power to the module: 1) Ensure that all
personne] are clear of machinery areas controlled by the module
application program, 2} Ensure that all equipment is prepared for
start-up operation.

After using the FIND statement to locate a variable address in
BASIC memory, the MWD (word modification) function can be
used to modify or read a word (2 bytes) of data at that memory
address.

This function is similar to the MEM function, except MWD works
on a word rather than just one byte.

Series 505 BASIC Module User Manual Programming Language 3-61

BASIC Functions (continued)

A\ WARNING

3.5.13
NKY Function

The argument which follows MWD is the address that will be read
or modified. Note that, since all variables are stored starting at even
address boundaries, the argument for MWD must be even. For
example, the following:

M=MWD(0C200H)

reads the word starting at address 0C200H and places it in M. The
following:

MWD(0C200H) =07FFFH

replaces the word starting at address 0C200H with 07FFFH (or
32,767 in decimal form).

Be careful when using the MWD function. If You rewrite part of the
module memory rather than variable memory, the module may
perform unpredictably. To avoid personal injury or damage to
equipment, before restoring power to the module: 1) Ensure that all
personnel are clear of machinery areas controlled by the module
application program. 2) Ensure that all equipment is prepared for
start-up operation.

The NKY (key) function reads characters out of the input buffer of
either port without interrupting the execution of the program. This is
useful in keyboard polling applications where characters need to be
entered without halting program execution such as in interaction
with bar code readers. The format for NKY is the following:

NKY {<number>)

NKY reads a character from the port designated as input by the
UNIT statement. If the number used with NKY is 0, the number
read from the input buffer is returned. If no number was in the
buffer, a 0 is returned. If the value given with NKY is not 0, the
HEX equivalent of the given number is compared with the HEX
equivalent of the number in the input buffer. If the two agree, a 1 is
returned; if they do not match, a 0 is returned.

3-62 Programming Language Series 505 BASIC Module User Manual

3.5.14
RND Function

3.5.15
SIN Function

The following program illustrates the use of the NKY function:

2010 REM Keyboard polling: Echo keystroke
2020 N=NKY(0)

2030 IF N=0 THEN RETURN

2040 $N1=%N%00 | Convert to ASCll

2050 PRINT $N1; ! Print the last keystroke
2070 GOTO 2020

3080 REM polling for a specific input

3090 N=NKY(41) ! A is the target value

4000 IF N=0 THEN RETURN | A is not found
4010 ELSE PRINT "A WAS INPUT"

4020 GOTO 2090

The NKY function is often used with the % operator. This operator
converts the HEX or decimal value of a character into the
alphanumeric representation.

10 LET A=65 ! Decimal A
20 A1=%A%D ! Convert
30 PRINT A1

RUN
A

The RND (random) function is used to generate a pseudo-random
number between 0 and 1. It is used in conjunction with the
RANDOM statement. RANDOM specifies the string of numbers to
be read, and RND sequentially steps through these numbers. This
sequence of 32,767 numbers is repeated until the seed value of
RANDOM is changed.

The SIN (sine) function determines the sine value of an angle
entered in radians. The entered value cannot be in degrees (radians
may be obtained by multiplying the value in degrees by Pi/180).

Series 505 BASIC Module User Manual Programming Language 3-63

BASIC Functions (continued)

3.5.16
SRH Function

3.5.17
SQR Function

3.5.18
SYS Function

The SRH (search) function is used with character striugé. It finds the
location of one string within a second string. If the search is
unsuccessful, 0 will be returned. For example:

10 $C="ABCDEFG"
20 S=SRH("BCD" $C)
30 PRINT S

40 END

prints:

2 (the location where the sought-after string begins)

The SQR (square root) function returns the square root of the
specified value. The specified value must be positive or an error will
result.

The SYS (system interrogation) function reads 13 system
parameters. The parameters are read by enclosing a number from 0
to 12 in parentheses after SYS. The 13 parameters and their
associated SYS functions are explained below:

SYS(0) This function works in conjunction with the question mark
option of formatted INPUT statements. It stores a value of ~1 if an
invalid character is entered or the HEX representation of the
control character encountered.

SYS(1) This function works in conjunction with the ERROR
statement. It contains the error code number for the error
encountered. See Appendix D.

SYS(2) This function works with the ERROR statement. It stores
the line number in which an error occurred.

SYS(3) This function reads the task code error after an error 63
(PLC task code communication error) is encountered. If you have
questions, contact your Siemens distributor.

SYS(4) This function will store a 1 if the battery is in place and
capable of backing up the internal clock and memory. If the battery
is weak or missing, a 0 will be stored.

3-64 Programming Language Series 505 BASIC Module User Manual

SYS(5) This function reads the number of free bytes remaining in
the print buffer memory of port 1.

SYS(6) This function reads the number of free bytes remaining in
the print buffer memory of port 2.

SYS(7) This function reads the number of free bytes remaining in
the input buffer memory of port 1.

SYS(8) This function reads the number of free bytes remaining in
the input buffer memory of port 2.

SYS(9) This function reads a 1 if port 1 is clear to send is active, or
a 0 otherwise.

SYS(10) This function is the same as SYS(9) except it reads the
clear to send status for port 2.

SYS(11) This function keeps track of receiver errors (parity,
overrun, framing) at port 1 since the last power-up or self-test.

8SYS(12) This function keeps track of receiver errors at port 2
since the last power-up or self-test.

The RS232C/423 receivers are always enabled. Pins 5 and 6 must be
active to enable the transmitter. The status of pin 5 may be checked
with SYS(9) or SYS(10).

NOTE: If you are missing characters while using the 19.2k baud rate
(as indicated by SYS(11) or SYS(12)), reduce the baud rate or pad
the data to reduce the effective data transfer to 9600 baud or less.

Delays in output may be avoided by first checking SYS(5) or SYS(6)
(depending on which port is used for output) for space remaining in
the buffer. If the buffer is full, requests to print may be set aside
through a program subroutine until the buffer empties.

Series 505 BASIC Module User Manua/ Programming Language 3-65

BASIC Functions (continued)

3.5.19
TIC Function

If the input buffer becomes full, input characters will be ignored
until there is room in the buffer for more characters. You may
determine how much room is in each buffer by reading SYS(9) or
SYS(10), depending on which port is being used for input. Under
certain conditions, input characters may be missed when the baud
rate is set to the maximum rate (19.2K bps). Depending on which
port is being used for output, SYS(11) or SYS(12) keeps track of
transmission errors.

The TIC (delta time) function is used to obtain the length of time
between two events. One TIC is equal to 40 milliseconds. The
resulting value is the difference between the time at sampling and
the expressed value in the TIC function (to obtain seconds from the
TIC value, divide by 25). For example:

T=TIC (0)
places the current TIC count in T, and
D=TIC(T)

calculates the elapsed time since the last count was stored in variable
T. Multiple and overlapping TICs are allowed in a program.

NOTE: TIC does not use the same time base as TIME, which means

the two functions may not be exactly equal over long periods of time.

3.5.20
String
Manipulations

In addition to the specific functions LEN, MCH, and SRH,
character strings may be manipulated in other ways. Strings may
have a specific character or series of characters picked out; an
clement may be added or deleted from a string; or two strings may
be put together. The following paragraphs describe each of the
operations.

3-66 Programming Language Series 505 BASIC Module User Manual

Plcking a Single Character out of a String The first character
of the string is assigned a value of 1, and numbering continues
sequentially to the end of the string. These numbers are referred to
as index numbers and are separated from the string name by a
semi-colon.This operation can be demonstrated by returning to a
modification of an earlier example. The names in the example are
stored in the following array:

$NML(0,0): WAREHO $NML(0,1): USE
$NML(1,0): INVENT $NML(1,1): ORY
$NML(2,0): MANAGE $NML(2,1): MENT

If the following were entered:

10 $A=$NML(0,0;4),1
20 PRINT $A

Then "E” would be printed because this is the 4th letter in position
(0,0) of array SNML.

Picking a Serles of Characters from a String Either a comma
or a semi-colon is placed after the final parenthesis of a statement
and is followed by a number (the number of characters to be
picked). If a comma is used, a null is placed at the end of the picked
series of characters; using a semi-colon instead of a comma deletes
the null. Remember that the null is important because it is the flag
to stop BASIC from reading any further .If the above example is
continued, then:

10 $A=$NML(0,0;4),5
20 PRINT $A

would print “EHOUS” because those are the five characters starting
from the 4th letter of position (0,0) in the array. A null exists after
the “S” in $A, although this could be omitted in a semi-colon were
used instead of a comma.

NOTE: You must assign the result of a character pick to a new
variable and then print the new variable. If you try to combine the
two, you will get all the string from the designated character to the
terminating null.

Series 505 BASIC Module User Manual Programming Language 3-67

BASIC Functions (continued)

Character pick can be used to remove a particular element from the
TIME function. To do this, assign the current time to a variable such
as:

05 DIM $TIM(3)
10 TIME $TIM(0)

Examine the format of the data stored to determine what characters
are needed. Note that the colons are also stored in the variable:

~ $TIM(0)=YR:MO:DY:HR:MN:SC
Now the string must be dissected:

20 $YR=$TIM(0;1).2
30 SMTH=$TIM(0;4),2
40 $DAY=$TIM(0;7),2
50 $HR=$TIM(0;10).2
60 SMIN=$TIM(0;13),2
70 $SEC=$TIM(0;16),2

It is recommended that you do character picks from left to right.
Using the correct format for character pick is especially important
when dissecting the TIME element. If it is required to have the time
or date as numeric data (rather than string), use the format
explained in changing strings to real numbers.

Adding an Element to a String A slash (/) is used to insert a
character or series of characters into a string. The index system
described is also used in this operation. For example, the following
program:

10 DIM A(10),B(10)

20 $A(0)="ABCDEFG"

30 $A(0;4)=/"..."

40 PRINT $A(0)
50 STOP

prints:

ABC...DEFG

3-68 Programming Language Series 505 BASIC Module User Manual

Deleting an Element from a String This has the same form as
inserting, except that a number is used after the slash instead of the
characters to be inserted. This number refers to the number of
characters to be deleted from the string. For example, if the above
program had statement 30 replaced with:

30 $A(0;4)=/3
then the output would be:
ABCG

Combining Separate Strings Various strings can be combined
into one large string by using a plus sign (+) between strings to be
added. For example, the following array:

$A(0)=$A(0)+"FG"+$C+"Z"

would contain all of its original contents along with the contents in C
and the letters FGZ. The order of the letters would be as they
appeared in the concatenating statement.

Changing Strings to Real Numbers If you have a string which
encloses a number, then you may convert that string to a real
number by using the following format:

<var> = <var>, <var>

The first "var” is the variable that contains the real number. The
second var is the string variable containing the number you wish to
convert. The final var is the variable which contains the first
non-numeric character encountered in the string variable. (If there
are no non-numeric characters in the string variable, this will be set
to a null.) The following example illustrates how a number contained
in a string is changed to a real number:

10 N="1234"E
20 N1="12DE",E1
30 PRINT N;$E
40 PRINT N1;$E1
50 STOP

Series 505 BASIC Module User Manual Programming Language 3-69

BASIC Functions (continued)

When this is executed, the output is:

1234
12D

Converting a Number to a String Variable This reverse
operation is accomplished by assigning a real number to a string
variable. Print formatting can be used to store decimal values into a
string. For example, the following two statements take numbers and
store them as characters:

110 $A(0)=2*25
120 $B(0)=#"99.00" 25*2

If these were printed, the numbers would look like:

50
50.00

Inserting Non-printable Characters into Strings There are two
ways to insert non-printable characters into a string. The first is to
enclose the HEX-ASCII representation of the non-printable
character in angle braces. This would then be placed in a string
constant at the point where the non-printable character would have
gone. The following program demonstrates this method:

10 DIM A(8)
20 $A(0)="This rings the bell.<07>"
30 PRINT $A(0) _

When this program is executed, the following is printed:
This rings the bell.

and the bell sounds.

3-70 Programming Language Series 505 BASIC Module User Manua/

The second method for replacing non-printable characters is to use
the byte replacement operator. This operator is symbolized by the
sign (%). The byte replacement operator causes a low order byte
(i.e., the byte stored at an even address) of an integer constant or
variable 1o be copied to the specified character position of a string
variable. The byte replacement operator must be followed by a null
or an error results. The following program uses the byte replacement
operator:

10 DIMA(D)

20 $A(0)="This rings the bell.”

30 $A{0;21)=%7%0 ! Attach bell character and terminator
40 PRINT $A(0)

While these two methods achieve the same result, the manner in
which they work is different. Specifically, in the first method the
string is stored exactly as it is written, but in the second method the
bell character is stored as itself (rather than as a HEX-ASCII
representation which must be interpreted before it can be used).

NOTE: The null character cannot be printed in either of these ways.

Series 505 BASIC Module User Manual Programming Language 3-71

3.6 BASIC Operators

Operators perform prescribed functions between BASIC variables
and constants. The entire string of operators and variables or
constants is termed a BASIC expression. There are three types of
BASIC operators: arithmetic, logical, and relational.

:.:t..l?lmeﬂc The arithmetic operators supported in BASIC are:
Operators

+ Addition

— Subtraction

~ Exponentiation*

* Multiplication

/ Division

+/— Signed values
3.6.2

Logical Operators There are two sets of operators supported by BASIC: “logical”
operators, which operate bit-wise on HEX values, and Boolean
operators, which manipulate true and false values.

The “logical” operators are:

LNOT 1s complement of a HEX value

LAND Bit-wise AND of two HEX values

LOR Bit-wise OR of two HEX values

LXOR Bit-wise exclusive OR

For example, if A=0AAAAH, B=05555H, and C=0BBBBH, then:

LNOT(A) = 5555 ALORB = FFFF
ALANDB =0 ALXORC = 1111

* The limit to answers given by exponentiation is E+/—37.

3-72 Programming Language Series 505 BASIC Module User Manual

3.6.3

Boolean Operators Boolean operators are applied to the TRUE or FALSE conditions

3.6.4
Relational
Operators

set by the relational operators. They may also be applied to variables
in a program, where all non-zero values are treated as TRUE and all
zero values as FALSE. The Boolean operators return a 1 for TRUE
or a 0 for FALSE after the evaluation of the expression to which they
are applied.

NOT Returns a TRUE value if the expression it is applied to
evaluates to FALSE (0); otherwise returns a FALSE value.

AND Returns a TRUE value if both expressions it is applied to
evaluate to TRUE (not 0); otherwise returns a FALSE value.

OR Returns a TRUE value if either of the expressions it is applied
to evaluate to TRUE (not 0); otherwise returns a FALSE value.

Relational operators are placed between two arithmetic
expresstons and return vatues of 1 for TRUE and 0 for FALSE.
These values may, in turn, be used with Boolean logical operators.
The relational operators supported in BASIC are:

= Exactly equal

< > Not equal

< Lessthan

> Greater than

<= Less than or equal

>= Greater than or equal

Approximately equal (+/- 5.96E~(8)

Series 505 BASIC Module User Manual Programming Language 3-73

BASIC Operators (continued)

3.6.5
Order of Operator The evaluation of BASIC expressions occurs from left to right
Evaluation and in the foliowing hierarchical order:

1. Expressions in parentheses (inner-most parentheses first)
Exponentiation and negation
Multiplication and division

Addition and subtraction

Greater than or equal (>=) and less than (<)
Equal (=) and greater than (>)
Approximately equal (==) and LXOR
NOT and LNOT

10. AND and LAND

11. OR and LOR

12. Assignment (as in LET statements)

2

3

4

5. Less than or equal (<=) and not equal (< >)
6

7

8

9

3-74 Programming Language Series 505 BASIC Module User Manual

3.7 Editing a Program

3.7.1
General Editing
Procedures

Once a program is entered into BASIC memory, changes may be
made to the program to correct faults or add instructions. This
section describes general editing procedures for any terminal and
also contains a description of the editing keys on the VPU,
Regardless of the terminal used, RUN must be used after editing to
re-start execution of the program. Also, an edit line may be up to

100 characters in length. If your particular terminal does not have a

line length of the same size, be sure it can wrap around before
attempting to create 100-character lines. (The VPU wraps around to
give a 100-character line.) BASIC uses square brackets and
parentheses interchangeably. You do not have to enter square
brackets; parentheses are automatically changed to square brackets
where appropriate.

NOTE: Any editing change may be aborted by pressing the
key before pressing to enter the change.

Adding a Line To add an instruction, find the place where it is to
go in the program, note the line numbers of the statements on either
side of the desired location, and type a new line with a line nurnber
between the two existing line numbers. When the program is
executed or listed, the new statement will be read at the proper time
because, when the statement is entered, the program is rearranged
into ascending numeric order.

Modification of Existing Line To alter a particular statement,
place the line to be altered into EDIT mode. To do this, type the line
number and then press and['E] at the same time. After this,
you may use the following symbols to position the cursor on the
incorrect character and then overwrite it with a correct character.
There are also symbols to create or delete characters and spaces
within a line. These editing symbols are shown in Table 3-2.

Series 505 BASIC Module User Manual Programming Language 3-75

Editing a Program (continued)

Table 3-2 VPU Editing Symbols

Action/Symbol Result

Carriage return enter line

CTRL] (line feed) enter line and generate next
nCTRLE edit line number n

CTRLF move cursor forward
CTRLH move cursor backward
Space replace with space
CIRLDn delete n characters (n=1-9)
CTRLIn insert n spaces (n=1-9)

refers to the Control Key, which must be held down while a
particular letter is pressed. For example, £ means that you
must hold the Control Key down while pressing the [F] key to move
the cursor one space forward.

The carriage return or line feed enters the current line regardiess of
the cursor position. In addition, line feed automatically generates
the next line number by adding 10 to the line being edited.

For delete and insert operations, the number is added after the
(o] or[cmi] is completed. For example, if you want to
add a third variable to the following statement:

10 AU+1)=SQR(B(1,1)~B(1,2))

First put the line in EDIT mode by typing 10 and then]
Place the cursor under the last parenthesis by pressing [F]
or (€L] [H]. Then press [together, and finally[7_]
(the number of spaces needed for a third element). This moves the
last parenthesis over as shown below:

10 A(0+1)=SQR(B{1,1)~-B(1,2))

3-76 Programming Language Series 505 BASIC Module User Manual

3.7.2
Editing with a VPU

After this, insert the variable. Pressing carriage [Return | or [Tine Feed)
completes the operation by entering the edited line into memory.
Note that if is used, the next line will automatically be put
on the screen with an increment of 10 for the line number. The

key only enters the edited line. The new line looks like the
following:

10 A(J+1)=SQR(B(1,1)-B(1,2)— B(1,3))

Deleting a Line An entire line may be deleted by writing the line
number to be deleted and pressing [Retum], This in effect overwrites
the line with a null line, which is ignored during execution. To
duplicate a line, dispiay it, then backspace to and change the line
number. Press [Retum] to give you two statements: one at the old
location and one at the new location.

In addition to the general editing procedures described in the last
section, the VPU has keys specifically devoted to editing. If you are
using a VPU as your editing device, it is simpler to use these keys
rather than the general procedures shown above. The editing keys
are located on the keypad to the right of the main set of keys. Some
keys are labeled as symbols. The editing keys and their families are
listed in Table 3-3.

Table 3-3 VPU Editing Keys

VPU Key ' Action

n ROLL DOWN Display line n for editing
RETURN Enter displayed line

(down arrow) Enter line and display next line
INSn Insert n characters (n=1-9)
DEL Delete 1 character

[] (box) n Dejete n characters (n=1-9)
———————— > Move cursor forward
Cm—————— Move cursor backward

ESC or HELP Discard changes

Series 505 BASIC Moduie User Manual Programming Language 3-77

Appendix A
Summary of BASIC Language

A1 Introduction ... A-2
A.2 Table of BASIC Functlons ... A-3
A3 Table of BASIC Statements.....................................___ A-4

Series 505 BASIC Module User Manual Summary of BASIC Language A-1

A.1 Introduction

This appendix lists the commands, statements, and functions of the
BASIC language. After the name, the action is summarized. In the
chart for BASIC statements, the abbreviation <In> stands for line
number. The summary is not meant to be a complete explanation;
turn to the appropriate section for complete information on the
command, statement, or function.

Table A-1 BASIC Commands

Command Action Reference
CONTINUE(CON) Restart execution from where it stopped 3341
LIST (LIS) Display part or all of a program 332
LOAD Transfer program to BASIC memory 333
NEW Destroy program and reset RET and values 334
RUN Start execution from beginning of program 3.35
SAVE Transfer program from BASIC memory 3.3.6
SIZE (S1Z) List space available in BASIC memory 3.3.7

A-2 Summary of BASIC Language Series 505 BASIC Module User Manual

A.2 Table of BASIC Functions

Table A-2 BASIC Functions

Command Action Reference
ABS Converts negative numbers to positive 3.5.1
ASC Obtains ASCII value of a character 3.5.2
ATN Calculates arctangent 353
BIT Reads or modifies a variable in bits 354
COos Calculates cosine 35.5
EXP Calculates the natural antilogarithm 3.5.6
INP Converts real numbers to integers 3.5.7
LEN Qbtains the length of a character string 358
LOG Calculates the natural logarithm 359
MCH Compares two strings for agreement 3510
MEM Reads or modifies memory in bytes 3511
MWD Reads or modifies memory in words 3512
NKY Obtains value from input buffer 3513
RND Steps through sequence of random numbers 3.5.14
SIN Calculates sine 3.5.15
SRH Finds a character in a string 3.5.16
SQR Calculates square root 3517
SYS Reads system parameter 3.5.18
TIC Calculates time intervals 3.5.19

Series 505 BASIC Module User Manual

Summary of BASIC Language A-3

A.3

Table of BASIC Statements

A-4

Table A-3 BASIC Statements

Statement

Description

CALL

DATA

DEF

DIM

EISE

END

ERROR

ESCAPE

FOR

See the individual routines: FIND, IOREAD, IOWRITE,
PCREAD, PCWRITE, and SRTC.

<In> DATA <var.1>, <var.2> ,..,<var.N>

Source of data stored in a program; used with READ

and RESTOR. See Section 3.4.16.

NOTES: Must have a <In> and it cannot appear on
a multi-statement line.

<In> DEF FN <LTR> (dum.vars.) = <expression>

Initializes user—defined functions. See Sec.3.4.1.

NOTES: Must have a <In> ; cannot appear on a
multi-statement line nor be followed by a
tail-remark (!)

<In> DIM ARRAYNAME (sizel, size2,...,sizeN)

Assigns memory space for an array. See Sec. 3.4.2.

NOTES: Retentive memory cannot be set with this; use
the NEW command.

<In> ELSE <BASIC expression>

Executes only when the preceding IF-THEN is false.
See Sec. 3.4.17.

NOTES: Cannot be used on multi-statement line.

<In> END

Final termination of program and execution.
See Sec. 3.4.12.

NOTES: Must have a <in>.

<In> ERROR <destination line number>

Transfers execution upon error.

See Sec.3.4.3.

NOTES: Works only once; a second ERROR must be
used if further errors are to be detected.
RETURN must be used at end of error
subroutine.

<In> ESCAPE
Enables the ESCAPE (abort) key. See Sec. 3.4.5.

<In> CALIFIND”, <var. >, <var.>
Looks in BASIC memory for the address of a specific
variable. See Sec.3.4.5.

<In> FOR <var.> = <exp.> TO <exp.> STEP <exp.>
Begins repeating instruction block; used with NEXT.
See Sec. 3.4.6.

NOTES: Default value of Step is 1.

Summary of BASIC Language

Series 505 BASIC Module User Manual

Table A-3 BASIC Statements (continued)

Statement

Description

GOSUB

GOTO

IF-THEN

INPUT

IOREAD

IOWRITE

NOESC

ON

PCREAD

PCWRITE

POP

<In> GOSUB <destination line number>

Transfers execution to program subroutine.

See Sec. 3.4.19.

NOTES: RETURN must be use at end of subroutine.

<In> GOTO <destination line number>
Transfers execution to a specified line.
See Sec. 3.4.17.

<> IF <exp.> THEN <expression or statement>

Branches execution in two directions depending on

whether IF is true or false. See Sec. 3.4.17.

NOTES: When the IF is false, execution passes to next
line; rest of the line is not read.

<In> INPUT <var.1> , <var.2 >, <var.N>
Allows data entry from the keyboard.
See Sec.3.4.7.

<In> CALL “IOREAD”, <no.> , <array> , <no.>
Reads P/C data directly from I/O registers,
See Sec. 3.4.18.

<In> CALI“IJOWRITE”, <no.> , <array> , <no.>
Writes data directly to P/C I/O registers. See Sec. 3.4.18.

<In> LET <var.> = <exp.>
Assigns a value to program variable. See Sec. 3.4.8.

<In> NEXT <var>
Terminates repeating instruction block; used with FOR.
See Sec. 3.4.6.

<In> NOESC
Disables ESCAPE (abort) key. See Sec. 3.4.4.

<In> ON <var.> THEN GOSUB or GOTO <destination>

Transfers execution when specified value encountered.

See Sec. 3.4.17.

NOTES: Cannot be used on a multi-statement line nor
can a tail—mark (!) follow it.

<In> CALLI“PCREAD”, < var.> , <array> ,< no.>
Reads up to 26 consecutive data points per scan from
a P/C variable. See Sec. 3.4.18.

<In> CALI“PCWRITE”, <var.> , <array> ,< no.>
Sends up to 30 consecutive data points per scan to
a P/Cvariable. See Sec. 3.4.18.

<In> POP
Removes top statement from the "wait” stack where it
had been placed by a GOSUB. See Sec. 3.4.19,

Series 505 BASIC Module User Manua/

Summary of BASIC Language

A-5

Table of BASIC Statements (continued)

Table A-3 BASIC Statements (continued)

Statement

Description

PRINT

RANDOM

READ

RESTOR

RETURN

SRTC

STOP

TAB

UNIT

<In> PRINT <var.l>, <var.2 >,.., <varN>
Writes data to output device in either free format or
formatted forms. See Sec. 3.4.9.

<In> RANDOM <exp.>
Sets seed for random number generation,
See Sec. 3.4.10.

<In> READ <var.1> , <var.2> .. <varN>
Obtains data from program data list; used with DATA
and RESTOR. See Sec. 3.4.16.

NOTES: Must have a <In>.

<In> REM <remark>
Contains comments that are ignored during execution.
See Sec. 3.4.11.

<in> RESTOR <optional line number>

Resets data pointer; used with DATA and READ. See
Sec. 3.4.16

NOTES: Must have a <in>.

<In> RETURN
Transfer execution from a subroutine to the line
after ERROR or GOSUB. See Sec. 3.4.19,

<In> CALI*SRTC”, <var.> , <var.>
Sends task codes to the P/C. See Sec. 3.4.18.

<In> STOP
Logical end to execution. See Sec. 3.4.12.
NOTES: Must have a <in>.

<In> PRINT TAB(column), <exp.>
Writes data to specific columns. See Sec. 3.4.13.
NOTES: Must have a <In>.

<In> TIME <YR>, <MO >, <DY >, <HR >, <MN>

(set time)

<In> TIME (read time)

(in> TIME <var.> (store time)

Accesses internal clock. See Sec. 3.4.14.
NOTES: For short spans of time, use TIC.

<In> UNIT <expression>
Sets ports for input and output. See Sec. 3.4.15.
NOTES: Default value is 1.

Summary of BASIC Language

Series 505 BASIC Module User Manual

Appendix B
VPU Hex-ASCII Codes

B.1 VPUCharacter Codescovuvvuuiireemmineenninnnnnnn, B-2

Series 505 BASIC Module User Manual VPU Hex-ASCIl Codes B-1

B.1 VPU Character Codes

The following list gives the HEX-ASCII codes for the VPU. These
codes may be placed in braces and inserted in place of the character
in a program. For devices other than a VPU, please consult that
device manual for the appropriate HEX-ASCII codes.

Table B-1 VPU Character Codes

Key or Sequence ASCII Representation
Character Decimal Hexadecimal

CTRL F1 NULL 60 00
CTRL A SOH 01 01
CTRLB STX 02 02
CTRLC ETX 03 03
CIRLD EOQOT 04 04
CTRLE ENQ 05 05
CTRLF ACK 06 06
CIRL G BEL 07 07
CTRLH BS 08 08
CIRLI HT 09 09
CTRL] LF 10 0A
CIRLK vT 11 0B
CTRLL FF 12 oC
ENTER CR 13 oD
CTRL N SO 14 0E
CTRL O SI 15 OF
CTRLP DLE 16 10
CIRLQ DC1 17 11
CTRLR DC2 18 12
CTRLS DC3 19 13
CIRLT DC4 20 14
CIRLU NAK 21 15
CIRLYV SYN 2 16
CTRLW ETB 23 17
CTRL X CAN 24 18
CTRLY EM 25 19

B-2 VPU Hex-ASCIl Codes Series 505 BASIC Module User Manual

Table B-1 VPU Character Codes {continued)

Key or Sequence ASCII Representation
Character Decimal Hexadecimal

CTRL Z SUB 26 1A
ESC ESCAPE 27 1B
CTRL 1 FS 28 1C
CTRL2 GS 29 1D
CTRL 3 RS 30 1E
CTRL 4 : us 31 1F
SPACE SPACE 32 20
SHIFT1 ! 33 21
SHIFT’ » 34 22
SHIFT 3 # 35 23
SHIFT 4 $ 36 24
SHIFT 5 % 37 25
SHIFT 7 & 38 26
’ i 39 27
SHIFT 9 (40 28
SHIFT 0) 41 29
SHIFT / * 42 2A
SHIFT - + 43 2B
s) 44 2C
SHIFT ARROW RT - 45 2D
. 46 2E
/ / 47 2F
0 0 48 30
1 1 49 31
2 2 50 32
3 3 51 33
4 4 52 34
S 5 53 35
6 6 54 36
7 7 55 37
8 8 56 38
9 9 57 39

Series 505 BASIC Module User Manual VPU Hex-ASCIi Codes B-3

VPU Character Codes (continued)

Table B-1 VPU Character Codes (continued)

Key or Sequence ASCII Representation
Character Decimal Hexadecimal

SHIFT ; : 58 3A
; ; 59 3B
SHIFT, < 60 3C
= = 61 3D
SHIFT. > 62 3E
SHIFT 8 ? 63 3F
SHIFT 2 @ 64 40
SHIFT a A 65 41
SHIFT b B 66 42
SHIFT ¢ C 67 43
SHIFT d D 68 44
SHIFT e E 69 45
SHIFT £ F 70 46
SHIFT g G T 47
SHIFT h H 72 43
SHIFTi I 73 49
SHIFT j J 74 4A
SHIFT k K 75 4B
SHIFT | L 76 4C
SHIFT m M 77 4D
SHIFT n N 78 4E
SHIFT o) 79 4F
SHIFT p P 80 50
SHIFT q Q 81 51
SHIFT r R 82 52
SHIFT s S 83 53
SHIFT't T 84 54
SHIFT u 8) 85 55
SHIFT v v 86 56
SHIFT w w 87 57
SHIFT x X 88 58
SHIFTy Y 89 59

B-4 VPU Hex-ASCIl Codes Series 505 BASIC Module_ User Manual

Table B-1 VPU Character Codes (continued)

Key or Sequence ASCH Representation
Character Decimal Hexadecimal
SHIFT z Zz 90 5A
CTRL, [91 5B
CTRL/ \ 92 5C
CTRL.] 93 5D
SHIFT 6 ~ 94 SE
' = (UNLN) 95 5F
9% 60
A a 97 61
B b 98 62
C c 99 ‘63
D d 100 64
E ¢ 101 65
F f 102 66
G g 103 67
H h 104 68
I i 105 69
J j 106 6A
K k 107 6B
L] 108 6C
M m 109 6D
N n 110 6E
O o 111 6F
P p 112 70
Q q 113 71
R r 114 72
S 3 115 73
T t 116 74
U u 117 75
v v 118 76
W w 119 77
X X 120 78
Y y 121 79

Series 505 BASIC Module User Manual VPU Hex-ASCH Codes B-5

VPU Character Codes (continued)

Table B-1 VPU Character Codes (continued)

Key or Sequence ASCII Representation
Character Decimal Hexadecimal

z z 122 7A
CTRL; { 123 7B
CTRL 8 | 124 7C
CTRL’ } 125 7D
CIRLO - 126 7E
DEL DEL 127 7F

B-6 VPU Hex-ASCIl Codes Series 505 BASIC Module User Manual

Appendix C
Reserved Words

C.1 Reserved Words List

Series 505 BASIC Module User Manual Reserved Words C-1

C.1

Reserved Words List

C-2

Reserved Words

The following reserved words cannot be used as variable names or
any part of a variable name:

ABS
ASC
ATN
BIT
CALL

CON

CONTINUE

COSs
CRB

CR
DATA
DEF
DIM
ELSE
END
ERROR
ESC
ESCAPE
EXP

FIND
FOR
GOSUB
GOTO

IF
IOREAD
IOWRITE

MEM

NOESC
ON
PCREAD
PCWRITE
POP
PRINT
PRO

RANDOM

RUN
SAVE
SCH
SIZE
SRH
SIN
SRTC
SQR
STEP
STOP
SYS
TAB
THEN
TIC
TIME

Series 505 BASIC Module User Manual

Appendix D
Error Format

Series 505 BASIC Module User Manual Error Format - D-1

D.1

Introduction

D-2

Error Format

BASIC checks for syxtax errors both when the statements are
entered and when the program is executed. If you attempt to enter a
line with a syntax error in it, entry of the statement is prevented. The
line you attempt to enter is displayed with the cursor over the
character that caused the error and a message describing the error.
For example, attempting to enter the following:

100 PRINT SIN(A(0)
causes the following:

*s*UNMATCHED PARENTHESES***
100 PRINT SIN(A(0)

If errors are detected during execution, execution is halted if no
ERROR statement is in effect. When execution halts, the error
message and line number containing the error are written to the
output device. You may also read SYS(1) and SYS(2) to obtain the
error message number and the line number respectively. The
following is an example of what is written when an execution error is
encountered and no ERROR statement is in effect:

+SUBSCRIPT OUT OF RANGE* AT 100

Series 505 BASIC Module User Manual

D.2 Error Messages

Table D-1 contains is a list of error messages and their code

numbers.

Table D-1 Error Messages

Code
Number

Error Message

01
02
03

05

07
08

10
11
12
13
14

15
16

Syntax error—invalid BASIC grammar
Unmatched parentheses—check for left and right pairs

Invalid line number—line number does not exist

Iiegal variable name—violates one of the variable name rules:

» Nothing
» One or two more capital letters
¢ A numeric value from 0 to 127

Too many variables—Iimit of 128 unique variable names.
To clear this error:

» Reduce the number of variable names used

» Store program to disk

¢ Clear module memory via the NEW command

» Reload program

Illegal character—use of lowercase letter in commands
Expecting operator—syntax error
Diegal function name—functions must be named

Tllegal function argument

function can only deal with numeric data

dummy parameters for a function can be only one letter
variable names

Storage overflow—out of memory

Stack overflow—more than 20 nested subroutines
Stack underflow—return without GOSUB

No such line number—trying to edit a nonexistent line

Expecting string variable—make sure the $ precedes the
variable name and that the data really is a string

Invalid screen command—invalid direct command

Expecting dimensioned variable—check syntax of DIM statement

Series 505 BASIC Module User Manual

Error Format .

D3

Error Messages (continued)

D-4

Error Format

Table D-1 Error Messages (continued)

Code
Number Error Message

17 Subscript out of range—subscript larger than that dimensioned

18 Too few subscripts—dimensioning a single subscripted array and
addressing it as a double subscripted array:

» More commonly caused by memory mismanagement that
overwrites existing memory

« Putting more than five characters in a string and not allowing
for overrun

» Violating the format for character manipulation, especially
with the use of TIME

19 Too many subscripts—dimensioning a tripie subscripted array and
addressing it as a double subscript

20 Expecting simple variable—applying a subscript to an
undimensioned variable

21 Digits out of range—assigning unit to more than 4, or the
retentive array (using NEW command) to more than 4095

22 Expecting variable—syntax error

23 READ out of data—all data has been read; either more data is
needed or data should be restored

24 READ type differs from DATA type—if reading data to string
variables, each data element must be enclosed in quotation marks
and separated by commas.

25 Square root of a negative number—imaginary numbers are not
supported

26 Log of a non—positive number—not supported

27 Expression too complex—nested too deep

28 Division by zero—infinite numbers not supported

29 Floating point overflow—numbers > 1x10 E—/5 in excess 64
notation are illegal. Misreading a string value into a floating-
point variable may cause this error.

30 Fix error—-most generally flagged on a PCWRITE statement, but
caused prior to that. An error in trying to convert a value to
integer to transmit to the PLC. Can be corrected in most cases by
taking the integer part (INP) of a variable before attempting a
PCWRITE.

31 FOR without NEXT—lcop end parameter omitted

Series 505 BASIC Module User Manual

Table D-1 Error Messages (continued)

Code
Number Error Message

32 NEXT without FOR—loop start parameter omitted

33 EXP function has invalid argument—the largest allowable
exponential value is 87. Anything larger will flag an error.

34 Un-normalized number—a normalized number will be stored in
excess 64 notation with the fraction as large as possible, and the
exponent as small as possible, Should the interpreter find a bit
pattern that does not agree with this convention, an error will
occur. This is likely to occur when a numeric variable attempts to
read a string location.

35 Parameter error—probably relates to user—defined function
parameters

36 Missing assignment operator-—syntax calls for an “="

37 Dlegal delimiter—possibly caused by violating rujes governing
the use of multiple statement separator)

38 Undefined function—using a user~defined function that has not
been defined

39 Undimensional variable—all subscripted arrays must be
dimensioned. The $ that precedes string variables is omitted
in the dimension statement.

40 Undefined variable—a value must be assigned to a variable
before it can appear on the right side of an equation

4] Not used

42 Not used

43 Not used

4“4 Notused

45 Not used

46 Not used

47 Unknown command name—caused by making a call to a
nonexistent subroutine or function

48 Invalid response from the PLC—check hardware. Are
connections good? Properly grounded system? Problem with SF
communication?

Series 505 BASIC Module User Manual Error Format D-5

Error Messages (continued)

Table D-2 Error Messages (continued)

Code
Number Error Message

49 Program cannot be continued—if program is stopped (either
through the use of a STOP statement or use of the ESC key),
and the program is edited, it cannot resume execution via the
CONTINUE command. If the program is not edited, it usually
can continue.

50 Number of points requested is too large—excessive number of
data elements requested by PCREAD or PCWRITE

51 No response from PLC—the SFIC watchdog timed out. Are
comnections between base and PLC good? Is PLC in RUN?

Is P/C GOOD light on?

52 Hlegal PLC address specified—legal P/C addresses are: V, C,
X, Y, WX, WY, TCC, TCP, DSC, DCC, DCP. They must be
assigned to a string variable; the $ on the variable name
does not appear in the call to PCREAD or PCWRITE

53 Dllegal non—HEX data encountered—encountered in using
SRTC subroutine when data is not in correct HEX format
(letters greater than F)

54 No response to the store and forward—time out on SRTC call

55 Store and forward buffer is full—PLC buffer full

56 Store and forward error—catch all error messages for
incorrect use of task code 43

57 Fix error—same as error code 30 but is specific to special
function communication fix errors

58 Tllegal 1/O point specified—used with IOREAD and IOWRITE,
the only legal I/O points are numbered 1 through 8

59 All requested data not read—read was started, but not
completed. May be error of PLC or BASIC

60 Unknown subroutine specified in CALL—the only legal call
subroutines are: PCREAD, PCWRITE, IOREAD, IOWRITE,
SRTC, FIND

61 Subroutine error—catch—all error for above subroutines

62 Communications parity error—serial port error; a bit was
dropped

63 PLC task code error encountered—miscellaneous task code
eITOTS

D-6 Error Format Series 505 BASIC Module User Manual

