
SIMATIC 545/555/575

Programming
Reference

User Manual

Order Number: PPX:505–8204-2
Manual Assembly Number: 2806090–0002
Second Edition

This manual contains the following notices intended to ensure personal
safety, as well as to protect the products and connected equipment against
damage.

! DANGER
DANGER indicates an imminently hazardous situation that, if not avoided, will
result in death or serious injury .

DANGER is limited to the most extreme situations.

! WARNING
WARNING indicates a potentially hazardous situation that, if not avoided, could
result in death or serious injury, and/or property damage.

! CAUTION
CAUTION indicates a potentially hazardous situation that, if not avoided, could
result in minor or moderate injury, and/or damage to property .

CAUTION is also used for property-damage-only accidents.

Copyright 1998 by Siemens Energy & Automation, Inc.
All Rights Reserved — Printed in USA

Reproduction, transmission, or use of this document or contents is not permitted without express consent of
Siemens Energy & Automation, Inc. All rights, including rights created by patent grant or registration of a utility model or design, are
reserved.

Since Siemens Energy & Automation, Inc., does not possess full access to data concerning all of the uses and applications of
customer’s products, we do not assume responsibility either for customer product design or for any infringements of patents or rights
of others which may result from our assistance.

Safety-Related
Guidelines

MANUAL PUBLICATION HISTORY

SIMATIC 545/555/575 Programming Reference User Manual
Order Manual Number: PPX:505–8204–2

Refer to this history in all correspondence and/or discussion about this manual.

Event Date Description

Original Issue 3/96 Original Issue (2806090–0001)
Second Edition 8/98 Second Edition (2806090–0002)

LIST OF EFFECTIVE PAGES

Pages Description Pages Description

Cover/Copyright Second
History/Effective Pages Second
iii — xxxvi Second

1-1 — 1-11 Second
2-1 — 2-8 Second
3-1 — 3-14 Second
4-1 — 4-11 Second
5-1 — 5-40 Second
6-1 — 6-187 Second
7-1 — 7-80 Second

8-1 — 8-15 Second
9-1 — 9-45 Second
A-1 — A-8 Second
B-1 — B-6 Second
C-1 — C-15 Second
D-1 — D-4 Second
E-1 — E-37 Second
F-1 — F-1 Second

G-1 — G-32 Second
H-1 — H-17 Second
I-1 — I-12 Second
Index-1 — Index-10 Second
Registration Second

Contents iii

Contents

Preface
Introduction xxv.
New Features xxvi.
How to Use This Manual xxvi.
TISOFT Programming Software xxvi.
SIMATIC 505 SoftShop for Windows xxvi.
Technical Assistance xxviii.

Chapter 1 Series 505 System Overview
1.1 The 545, 555, and 575 Systems 1-2.

System Components 1-2.
Using PROFIBUS-DP I/O 1-2.
Local I/O 1-2.
Expansion I/O Channels 1-2.
Series 505 Remote I/O 1-2.
PROFIBUS-DP I/O 1-4.
Output Response on PROFIBUS-DP Slave Devices 1-4.
Assigning I/O Point Numbers 1-5.

1.2 Program Execution Operations 1-6.
CPU Scan Operations 1-6.
Interrupt RLL Execution 1-6.
Cyclic RLL Execution 1-6.
Discrete Scan 1-6.
Analog Task Processing 1-8.
Cyclic Analog Tasks 1-8.
Non-cyclic Analog Tasks 1-9.
Setting the Scan 1-10.

Chapter 2 Data Representation
2.1 Definitions 2-2.

Byte 2-2.
Word 2-2.
Long Word 2-2.
Image Register 2-2.
I/O Point 2-2.

2.2 Integers 2-3.
Signed 16-Bit Integers 2-3.
Unsigned 16-Bit Integers 2-4.
Signed 32-Bit Integers 2-4.

2.3 Real Numbers 2-5.

2.4 Binary-Coded Decimal 2-6.

2.5 Format for an Address Stored in a Memory Location 2-7.

iv Contents

Chapter 3 I/O Concepts

3.1 Reading and Updating the I/O 3-2.

Discrete Image Register 3-3.
Word Image Register 3-5.

3.2 Normal I/O Updates 3-6.

Discrete Control 3-6.
Analog Control 3-6.

3.3 High Speed I/O Updates 3-8.

Immediate I/O 3-8.
Modules that Support Immediate I/O 3-10.
Configuring Immediate I/O 3-10.

3.4 Interrupt I/O Operation 3-11.

Overview 3-11.
Configuring the Interrupt Input Module 3-11.

3.5 Control Relays 3-13.

Using Retentive and Non-retentive Control Relays 3-14.

Chapter 4 Controller Memory

4.1 Introduction to Controller Memory 4-2.

Overview of Controller Memory Types 4-2.
RLL Access to the Memory Types 4-3.

4.2 Controller Memory Types 4-4.

Ladder Memory 4-4.
Image Register Memory 4-4.
Control Relay Memory 4-4.
Special Memory 4-4.
Compiled Special (CS) Memory 4-4.
Temporary Memory 4-4.
Variable Memory 4-4.
Constant Memory 4-5.
Status Word Memory 4-5.
Timer/Counter Memory 4-5.
Table Move Memory 4-6.
One Shot Memory 4-7.
Shift Register Memory 4-8.
Drum Memory 4-9.
PGTS Discrete Parameter Area 4-10.
PGTS Word Parameter Area 4-10.
User External Subroutine Memory 4-11.
Global Memory: 575 Only 4-11.
VME Memory: 575 Only 4-11.

Contents v

Chapter 5 Programming Concepts

5.1 RLL Components 5-2.

RLL Concept 5-2.
RLL Contact 5-3.
RLL Coil 5-8.
RLL Box Instruction 5-12.
RLL Rung Structure 5-12.
RLL Scan Principles 5-13.

5.2 Program Compile Sequence 5-14.

5.3 Using Subroutines 5-16.

RLL Subroutine Programs 5-16.
SF Programs 5-16.
External Subroutines 5-17.

5.4 Cyclic RLL 5-18.

Overview 5-18.
Cyclic RLL Execution 5-20.

5.5 Interrupt RLL (545/555 only) 5-22.

The Interrupt RLL Task 5-22.
Operation 5-25.
Performance Characteristics 5-26.
Troubleshooting 5-27.

5.6 Using Real-Time Clock Data 5-28.

BCD Time of Day 5-28.
Binary Time of Day 5-30.
Time of Day Status 5-31.

5.7 Entering Relay Ladder Logic 5-32.

SoftShop 505 for Windows 5-32.
TISOFT 5-32.
Using APT 5-32.
COM PROFIBUS 5-32.

5.8 Doing Run-Time Program Edits 5-33.

Editing in Run Mode 5-33.
Avoid These Actions During Run-Time Edits 5-34.
Additional Considerations When Doing Run-Time Edits 5-37.

5.9 Password Protection 5-39.

Protected Program Elements 5-39.
Disabled and Enabled Passwords 5-39.
Password Protection Levels 5-40.
Determining the Current State of Password 5-40.
Password Effect on EEPROM 5-40.

vi Contents

Chapter 6 RLL Instruction Set

6.1 Safety Considerations 6-4.
Overview 6-4.
Failure of the Control System 6-4.
Inconsistent Program Operation 6-5.
Editing an Active Process 6-5.

6.2 Introduction 6-6.

6.3 Absolute Value 6-11.
ABSV Description 6-11.
ABSV Operation 6-11.

6.4 Add 6-12.
ADD Description 6-12.
ADD Operation 6-12.

6.5 Bit Clear 6-13.
BITC Description 6-13.
BITC Operation 6-13.

6.6 Bit Pick 6-14.
BITP Description 6-14.
BITP Operation 6-14.

6.7 Bit Set 6-15.
BITS Description 6-15.
BITS Operation 6-15.

6.8 Convert Binary to BCD 6-16.
CBD Description 6-16.
CBD Operation 6-16.

6.9 Convert BCD to Binary 6-18.
CDB Description 6-18.
CDB Operation 6-18.

6.10 Compare 6-20.
CMP Description 6-20.
CMP Operation 6-20.

6.11 Coils 6-22.

6.12 Contacts 6-23.

6.13 Counter (Up Counter) 6-24.
CTR Description 6-24.
CTR Operation 6-24.
Using the Counter Variables 6-25.

Contents vii

6.14 Discrete Control Alarm Timer 6-26.
DCAT Description 6-26.
DCAT State Changes 6-27.
DCAT Operation 6-28.
Open (Input On) 6-28.
Close (Input Off) 6-28.
Using the DCAT Variables 6-29.

6.15 Date Compare 6-30.
DCMP Description 6-30.
DCMP Operation 6-31.

6.16 Divide 6-32.
DIV Description 6-32.
DIV Operation 6-33.

6.17 Time Driven Drum 6-34.
DRUM Description 6-34.
DRUM Operation 6-34.
Calculating Counts/Step 6-36.
Using DRUM Variables 6-36.

6.18 Date Set 6-38.
DSET Description 6-38.
DSET Operation 6-39.

6.19 Time/Event Driven Drum 6-40.
EDRUM Description 6-40.
EDRUM Operation 6-41.
Calculating Counts/Step 6-42.
Timer-triggered Advance Only 6-42.
Event-triggered Advance Only 6-42.
Timer and Event- Triggered Advance 6-43.
Timer or External Event-triggered Advance 6-43.
Using EDRUM Variables 6-43.

6.20 Unconditional End 6-44.
END Description 6-44.
END Operation 6-44.

6.21 Conditional End 6-45.
ENDC Description 6-45.
ENDC Operation 6-45.

6.22 Go To Subroutine 6-46.
GTS Description 6-46.
GTS Operation 6-46.

6.23 Indexed Matrix Compare 6-48.
IMC Description 6-48.
IMC Operation 6-49.

viii Contents

6.24 Immediate I/O Read/Write 6-50.
IORW Description 6-50.
IORW Operation 6-50.

6.25 Jump 6-52.
JMP Description 6-52.
JMP/JMPE Operation 6-52.

6.26 Load Address 6-54.
LDA Description 6-54.
LDA Operation 6-55.
Specifying Source 6-57.
Specifying Index for Source 6-57.
Specifying Destination 6-58.
Specifying Index for Destination 6-58.

6.27 Load Data Constant 6-59.
LDC Description 6-59.
LDC Operation 6-59.

6.28 Lock Memory 6-60.
LOCK Description 6-60.
Acquiring Control of the Lock 6-60.
How the Lock Protects Memory 6-62.

6.29 Motor Control Alarm Timer 6-63.
MCAT Description 6-63.
MCAT State Changes 6-64.
MCAT Operation 6-66.
Open Input Turns On 6-66.
Close Input Turns On 6-66.
Using the MCAT Variables 6-67.

6.30 Master Control Relay 6-68.
MCR Description 6-68.
MCR/MCRE Operation 6-68.

6.31 Maskable Event Drum, Discrete 6-72.
MDRMD Description 6-72.
MDRMD Operation 6-73.
Defining the Mask 6-74.
Calculating Counts/Step 6-74.
Timer-triggered Advance Only 6-74.
Event-triggered Advance Only 6-74.
Timer and Event-Triggered Advance 6-75.
Timer or External Event-Triggered Advance 6-75.
Using MDRMD Variables 6-75.

Contents ix

6.32 Maskable Event Drum, Word 6-76.

MDRMW Description 6-76.
MDRMW Operation 6-78.
Defining the Mask 6-79.
Calculating Counts/Step 6-79.
Timer-triggered Advance Only 6-80.
Event-triggered Advance Only 6-80.
Timer and Event-Triggered Advance 6-80.
Timer or External Event-triggered Advance 6-80.
Using MDRMD Variables 6-81.

6.33 Move Image Register from Table 6-82.

MIRFT Description 6-82.
MIRFT Operation 6-82.

6.34 Move Image Register to Table 6-84.

MIRTT Description 6-84.
MIRTT Operation 6-84.

6.35 Move Image Register to Word 6-86.

MIRW Description 6-86.
MIRW Operation 6-86.

6.36 Move Element 6-88.

MOVE Description 6-88.
MOVE Operation 6-89.
Specifying Type of Elements 6-93.
Specifying Source 6-93.
Specifying Index for Source 6-93.
Specifying Destination 6-94.
Specifying Index for Destination 6-94.
Specifying Number of Elements to Move 6-95.

6.37 Move Word 6-96.

MOVW Description 6-96.
MOVW Operation 6-97.

6.38 Multiply 6-98.

MULT Description 6-98.
MULT Operation 6-98.

6.39 Move Word from Table 6-100.

MWFT Description 6-100.
MWFT Operation 6-100.

6.40 Move Word with Index 6-102.

MWI Description 6-102.
MWI Operation 6-102.

x Contents

6.41 Move Word to Image Register 6-104.

MWIR Description 6-104.
MWIR Operation 6-104.

6.42 Move Word To Table 6-106.

MWTT Description 6-106.
MWTT Operation 6-106.

6.43 NOT 6-108.

NOT Description 6-108.
NOT Operation 6-108.

6.44 One Shot 6-109.

One Shot Description 6-109.
One Shot Operation 6-109.

6.45 PID Loop 6-110.

PID Fast Loop Description 6-110.
PID Operation 6-110.

6.46 Parameterized Go To Subroutine 6-112.

PGTS Description 6-112.
PGTS Operation 6-112.

6.47 Parameterized Go To Subroutine (Zero) 6-118.

PGTSZ Description 6-118.
PGTSZ Operation 6-119.

6.48 Read Slave Diagnostic (RSD) 6-120.

RSD Description 6-120.
RSD Operation 6-121.

6.49 Return from Subroutine 6-122.

RTN Description 6-122.
RTN Operation 6-122.

6.50 Subroutine 6-123.

SBR Description 6-123.
SBR Operation 6-123.

6.51 Call an SF Program 6-126.

SFPGM Description 6-126.
SFPGM Operation 6-126.
In-line SFPGM Execution 6-127.

6.52 Call SF Subroutines from RLL 6-128.

SFSUB Description 6-128.
SFSUB Operation 6-129.
In-line SFSUB Execution 6-130.

Contents xi

6.53 Bit Shift Register 6-132.
SHRB Description 6-132.
SHRB Operation 6-133.

6.54 Word Shift Register 6-134.
SHRW Description 6-134.
SHRW Operation 6-134.

6.55 Skip / Label 6-136.
SKP / LBL Description 6-136.
SKP / LBL Operation 6-138.

6.56 Scan Matrix Compare 6-140.
SMC Description 6-140.
SMC Operation 6-141.

6.57 Square Root 6-142.
SQRT Description 6-142.
SQRT Operation 6-143.

6.58 Search Table For Equal 6-144.
STFE Description 6-144.
STFE Operation 6-144.

6.59 Search Table For Not Equal 6-146.
STFN Description 6-146.
STFN Operation 6-146.

6.60 Subtract 6-148.
SUB Description 6-148.
SUB Operation 6-148.

6.61 Table to Table AND 6-149.
TAND Description 6-149.
TAND Operation 6-149.

6.62 Start New RLL Task 6-150.
TASK Description 6-150.
TASK Operation 6-150.

6.63 Time Compare 6-153.
TCMP Description 6-153.
TCMP Operation 6-153.

6.64 Table Complement 6-154.
TCPL Description 6-154.
TCPL Operation 6-154.

6.65 Text 6-155.
Text Box Description 6-155.

xii Contents

6.66 Timer 6-156.

TMR/TMRF Description 6-156.
TMR/TMRF Operation 6-156.
Using the Timer Variables 6-157.

6.67 Table to Table OR 6-158.

TOR Description 6-158.
TOR Operation 6-158.

6.68 Time Set 6-159.

TSET Description 6-159.
TSET Operation 6-159.

6.69 Table to Word 6-160.

TTOW Description 6-160.
TTOW Operation 6-161.

6.70 Table to Table Exclusive OR 6-162.

TXOR Description 6-162.
TXOR Operation 6-163.

6.71 Up/Down Counter 6-164.

UDC Description 6-164.
UDC Operation 6-165.
Using the UDC Variables 6-166.

6.72 Unlock Memory 6-167.

UNLCK Description 6-167.
UNLCK Operation 6-167.

6.73 Word AND 6-168.

WAND Description 6-168.
WAND Operation 6-168.

6.74 Word OR 6-170.

WOR Description 6-170.
WOR Operation 6-170.

6.75 Word Rotate 6-172.

WROT Description 6-172.
WROT Operation 6-172.

6.76 Word To Table 6-174.

WTOT Description 6-174.
WTOT Operation 6-175.

6.77 Word To Table AND 6-176.

WTTA Description 6-176.
WTTA Operation 6-177.

Contents xiii

6.78 Word To Table OR 6-178.
WTTO Description 6-178.
WTTO Operation 6-179.

6.79 Word To Table Exclusive OR 6-180.
WTTXO Description 6-180.
WTTXO Operation 6-181.

6.80 Word Exclusive OR 6-182.
WXOR Description 6-182.
WXOR Operation 6-182.

6.81 External Subroutine Call 6-184.
XSUB Description 6-184.
XSUB Operation 6-185.

Chapter 7 Special Function Programs

7.1 Defining Special Function Programs 7-2.
Introduction 7-2.
Special Function Program Types 7-2.
SF Programs Called from RLL 7-3.
SF Programs Called from Loops/Analog Alarms 7-3.

7.2 Using PowerMath with Special Function Programming 7-4.
What is PowerMath? 7-4.
32-Bit Signed and 16-Bit Unsigned Integer Math 7-4.
SF Operators, Functions, and Instructions 7-5.
Why Choose Compiled Mode for an SF Program or Subroutine? 7-6.
Why Choose Interpreted Mode for an SF Program or Subroutine? 7-6.
What Can Be Compiled? 7-7.
How Do SF Programs Execute? 7-7.
How Do SF Subroutines Execute? 7-8.
CALL Subroutine Statement Execution 7-9.

7.3 SF Program Statements 7-10.

7.4 Executing Special Function Programs 7-11.
Priority/non-priority SF Programs 7-11.
In-Line Execution of Compiled SF Programs 7-12.
Cyclic Programs 7-12.
Restricted Programs Called by Loops 7-12.
Restricted Programs Called by Analog Alarms 7-13.

7.5 Executing Special Function Subroutines 7-14.
Calling SF Subroutines 7-14.
Designing SF Subroutines 7-14.

7.6 Memory Usage by SF Programs 7-16.

7.7 Entering SF Program Header with TISOFT 7-18.

xiv Contents

7.8 Reporting SF Program or SFSUB RLL Instruction Errors 7-20.
Reporting Errors with the SFEC Variable 7-20.
Reporting Errors with Discrete Points 7-20.
Reporting Errors with V or WY Memory 7-21.

7.9 Entering Special Function Programming Statements 7-22.

7.10 Convert BCD to Binary 7-24.
BCDBIN Description 7-24.
BCDBIN Operation 7-24.

7.11 Convert Binary Inputs to BCD 7-25.
BINBCD Description 7-25.
BINBCD Operation 7-25.

7.12 Call Subroutine 7-26.
CALL Description 7-26.
CALL Operation 7-26.

7.13 Correlated Data Table 7-28.
CDT Description 7-28.
CDT Operation 7-29.

7.14 Exit on Error 7-30.
EXIT Description 7-30.
EXIT Operation 7-30.

7.15 Fall Through Shift Register—Input 7-31.
FTSR-IN Description 7-31.
FTSR-IN Operation 7-32.

7.16 Fall through Shift Register—Output 7-35.
FTSR-OUT Description 7-35.
FTSR-OUT Operation 7-36.

7.17 Go To/Label Function 7-39.

7.18 IF/IIF/THEN/ELSE Functions 7-40.
IF/THEN/ELSE Description 7-40.
IF Operation 7-40.

7.19 Integer Math Operations 7-42.
IMATH Description 7-42.
IMATH Operation 7-43.

7.20 Lead/Lag Operation 7-44.
LEAD/LAG Description 7-44.
LEAD/LAG Operation 7-45.

Contents xv

7.21 Real/Integer Math Operations 7-46.
MATH Description 7-46.
MATH Operation 7-47.
Using Word Indexing 7-48.
Using Element Indexing 7-49.
Indexing Loop and Analog Alarm Variables 7-49.
Using Multiple Subscripts 7-49.
MATH Examples 7-50.

7.22 Pack Data 7-51.
PACK Description 7-51.
PACK TO Operation 7-52.
PACK FROM Operation 7-54.

7.23 Pack Analog Alarm Data 7-56.
PACKAA Description 7-56.
PACKAA Operation 7-57.

7.24 Pack Loop Data 7-58.
PACKLOOP Description 7-58.
PACKLOOP Operation 7-58.

7.25 Pack Ramp/Soak Data 7-60.
PACKRS Description 7-60.
PACKRS Operation 7-60.

7.26 Pet Scan Watchdog 7-66.
PETWD Description 7-66.

7.27 Printing 7-68.
PRINT Description 7-68.
PRINT Operation 7-68.

7.28 Return from SF Program/Subroutine 7-71.

7.29 Scaling Values 7-72.
SCALE Description 7-72.
SCALE Operation 7-73.

7.30 Sequential Data Table 7-74.
SDT Description 7-74.
SDT Operation 7-74.

7.31 Synchronous Shift Register 7-76.
SSR Description 7-76.
SSR Operation 7-76.

7.32 Unscaling Values 7-78.
UNSCALE Description 7-78.
UNSCALE Operation 7-78.

7.33 Comment 7-80.

xvi Contents

Chapter 8 Programming Analog Alarms

8.1 Overview 8-2.

8.2 Analog Alarm Programming and Structure 8-4.
Analog Alarm Numbers and Variable Names 8-4.
Programming Tables 8-4.
Analog Alarm C-Flags 8-5.

8.3 Specifying Analog Alarm V-Flag Address 8-6.
Alarm V-Flag Address 8-6.

8.4 Specifying Analog Alarm Sample Rate 8-7.
Sample Rate 8-7.

8.5 Specifying Analog Alarm Process Variable Parameters 8-8.

Process Variable Address 8-8.
PV Range Low/High 8-8.
PV is Bipolar 20% Offset 8-8.
Square Root of PV 8-8.

8.6 Specifying Analog Alarm Deadband 8-9.
Alarm Deadband 8-9.

8.7 Specifying Analog Alarm Process Variable Alarm Limits 8-10.

PV Alarms: Low-low, Low, High, High-high 8-10.

8.8 Specifying Analog Alarm Setpoint Parameters 8-11.
Remote Setpoint 8-11.
Clamp SP Limits 8-11.

8.9 Specifying Analog Alarm Special Function Call 8-12.
Special Function 8-12.

8.10 Specifying Analog Alarm Setpoint Deviation Limits 8-13.

Deviation Alarms: Yellow, Orange 8-13.

8.11 Specifying Other Analog Alarm Process Variable Alarms 8-14.
Rate of Change Alarm 8-14.
Broken Transmitter Alarm 8-14.

Chapter 9 Programming Loops

9.1 Overview 9-2.

9.2 Using the PID Loop Function 9-4.

Manual Mode 9-4.
Auto Mode 9-4.
Cascade Mode 9-4.
Changing Loop Mode 9-5.

Contents xvii

9.3 Loop Algorithms 9-6.
PID Position Algorithm 9-6.
PID Velocity Algorithm 9-7.

9.4 Programming Loops 9-8.
Loop Numbers and Variable Names 9-8.
Programming Tables 9-8.
Loop C-Flags 9-9.

9.5 Specifying Loop PID Algorithm 9-10.
Pos/Vel PID Algorithm 9-10.

9.6 Specifying Loop V-Flag Address 9-11.
Loop V-Flag Address 9-11.

9.7 Specifying Loop Sample Rate 9-12.
Sample Rate 9-12.

9.8 Specifying Loop Process Variable Parameters 9-13.
Process Variable Address 9-13.
PV Range Low/high 9-13.
PV is Bipolar 20% Offset 9-13.
Square Root of PV 9-13.

9.9 Specifying Loop Ramp/Soak Profile 9-14.
Defining Ramp/Soak Operation 9-14.
Defining Ramp/Soak Steps 9-14.
Controlling the Ramp/Soak Operation 9-14.
Ramp/Soak for SP 9-15.
Programming Ramp/Soak 9-15.

9.10 Specifying Loop Output Parameters 9-18.
Loop Output Address 9-18.
Output is Bipolar 9-18.
20% Offset on Output 9-18.

9.11 Specifying Loop Alarm Deadband 9-19.
Alarm Deadband 9-19.

9.12 Specifying Loop Process Variable Alarm Limits 9-20.
PV Alarms Low-low, Low-high, High-high 9-20.

9.13 Specifying Loop Setpoint Parameters 9-21.
Remote Setpoint 9-21.
Clamp SP Limits 9-21.

xviii Contents

9.14 Specifying Loop Tuning Parameters 9-22.
Loop Gain, Reset, Rate 9-22.
Removing Integral Action 9-22.
Removing Derivative Action 9-22.
Removing Proportional Action 9-22.
Freeze Bias 9-23.
Adjust Bias 9-24.

9.15 Specifying Loop Derivative Gain Limiting 9-25.
Limiting Coefficient 9-25.

9.16 Specifying Loop Special Function Call 9-26.
Special Calculation/ Special Function 9-26.
Calculation Scheduled on Setpoint 9-26.
Calculation Scheduled on Process Variable 9-26.
Calculation Scheduled on Output 9-27.

9.17 Specifying Loop Locked Changes 9-28.
Lock Setpoint, Auto/Manual, Cascade 9-28.

9.18 Specifying Loop Error Operation 9-29.
Error Operation 9-29.
Error Deadband 9-29.
No Error Calculation 9-29.

9.19 Specifying Reverse Acting Loops 9-30.
Reverse Acting 9-30.
Direct-Acting Loop 9-30.
Reverse-Acting Loop 9-30.

9.20 Specifying Loop Setpoint Deviation Limits 9-31.
Deviation Alarms Yellow, Orange 9-31.

9.21 Specifying Other Loop Process Variable Alarms 9-32.
Rate of Change Alarm 9-32.
Broken Transmitter Alarm 9-32.

9.22 Using SmarTune Automatic Loop Tuning (555 CPUs Only) 9-34.
Overview of SmarTune 9-34.
The Loop Tuning Process Equation 9-35.
The Proportional Component 9-35.
The Integral Component 9-36.
The Derivative Component 9-37.
Variable Parameters 9-38.
Value Parameters 9-43.

Contents xix

Appendix A Memory and Variable Types

A.1 RLL Variable Access A-2.

A.2 SF Program Variable Access A-3.

Appendix B RLL Memory Requirements

B.1 Memory Requirements B-2.

Appendix C Controller Performance

C.1 Calculating Performance C-2.
Calculating Normal Scan Time C-2.
Calculating the Cyclic RLL Execution Time C-4.
Total Scan Time Including Cyclic RLL C-5.

C.2 Tuning the Timeline C-8.
Basic Strategy C-8.
Using Peak Elapsed Time Words C-8.
Using the Status Words C-9.
Concepts to Remember When Tuning Timeline C-10.

C.3 RLL Execution Times C-12.

C.4 SF Program Statement Execution Times C-13.

Appendix D Loop and Analog Alarm Flag Formats

D.1 Loop Flags D-2.

D.2 Analog Alarm Flags D-4.

Appendix E Selected Application Examples

E.1 Using the SHRB E-2.

E.2 Using the SHRW E-4.

E.3 Using the TMR E-6.

E.4 Using the BITP E-10.

E.5 Using the DRUM E-11.

E.6 Using the EDRUM E-13.

E.7 Using the MIRW E-17.

E.8 Using the MWIR E-20.

xx Contents

E.9 Using the MWTT E-24.

E.10 Using the MWFT E-26.

E.11 Using the WXOR E-28.

E.12 Using the CBD E-30.

E.13 Using the CDB E-32.

E.14 Using the One Shot E-33.

E.15 Using the DCAT E-34.

E.16 Using Status Words E-37.

Appendix F Special Function Program Error Codes

Appendix G Status Words
STW01: Non-fatal Errors G-2.
STW02: Base Controller Status G-3.
STW03 – STW09: PROFIBUS-DP Slave Status G-4.
STW10: Dynamic Scan Time G-4.
STW11 – STW138: I/O Module Status G-5.
STW11 – STW138: (continued) G-7.
STW139: Discrete Force Count G-8.
STW140: Word Force Count G-8.
STW141 – STW144: Date, Time, and Day of Week G-8.
STW145 – STW146: Receive and Timeout Errors G-11.
STW147: PROFIBUS-DP Slave Errors G-11.
STW148: PROFIBUS-DP Bus Communication Errors G-11.
STW149 - STW160: Reserved G-11.
STW161: Special Function Processor Fatal Errors G-12.
STW162: Special Function Processor Non-fatal Errors G-13.
STW163: RLL Subroutine Stack Overflow G-14.
STW164 – STW165: L-Memory Checksum C0 G-14.
STW166 – STW167: L-Memory Checksum C1 G-14.
STW168: Dual RBC Status G-15.
STW169 – STW175: Reserved G-16.
STW176: Dual Power Supply Status G-16.
STW177 – STW183: Reserved G-17.
STW184: Module Mismatch Indicator G-17.
STW185 – STW191: Reserved G-17.
STW192: Discrete Scan Execution Time G-17.
STW193 – STW199: Reserved G-17.
STW200: User Error Cause G-18.
STW201: First Scan Flags G-19.

Contents xxi

STW202: Application Mode Flags (A – P) G-20.
STW203: Application Mode Flags (Q – Z) G-21.
STW204: Application Installed Flags (A – P) G-22.
STW205: Application Installed Flags (Q – Z) G-23.
STW206 – STW207: U-Memory Checksum C0 G-24.
STW208 – STW209: U-Memory Checksum C1 G-24.
STW210: Base Poll Enable Flags G-25.
STW211 – STW217: PROFIBUS-DP Slave Enable Flags G-26.
STW218: My Application ID G-26.
STW219: RLL Task Overrun G-26.
STW220: Interrupting Slots in Local Base G-27.
STW221: Module Interrupt Request Count G-27.
STW222: Spurious Interrupt Count G-27.
STW223 – STW225: Binary Time-of-Day G-28.
STW226: Time-of-Day Status G-28.
STW227 – STW228: Bus Error Access Address G-30.
STW229 – STW230: Bus Error Program Offset G-30.
STW231 PROFIBUS-DP I/O System Status G-31.
STW232 – STW238: PROFIBUS-DP Slave Diagnostic G-31.
STW239 – STW240: CS-Memory Checksum C0 G-32.
STW241 – STW242: CS-Memory Checksum C1 G-32.

Appendix H External Subroutine Development

H.1 Designing the External Subroutine H-2.
Program Code Requirements H-2.
Loading the Subroutine H-3.

H.2 U-Memory Format H-4.
Header H-4.
Code and Constant Data H-5.
Modifiable Data H-5.
User Stack H-5.

H.3 Guidelines for Creating C Language Subroutines H-6.
Debugging the External Subroutine H-6.
Static Data Initialization H-7.
Accessing Discrete/Word Variables H-10.
Floating Point Operations H-11.
Unsupported C Language Features H-11.

H.4 Developing an External Subroutine — Example H-12.
Example Header File H-12.
Example Subroutine Source H-14.
Preparing the Load Module H-14.
Loading U-Memory H-16.
Using the External Subroutines in RLL H-16.

xxii Contents

Appendix I Interboard Communications for the 575

I.1 Using Applications to Enable CPUs to Exchange Data I-2.
Applications I-2.
Overview I-4.
G-Memory Areas I-4.
Required and Optional Applications I-5.
Locking Mode Transitions for Two or More Applications I-6.

I.2 Using Direct VMEbus Access to Communicate with Third-Party Boards I-8.
Accessing VMEbus Masters and Slaves Directly I-8.

I.3 Coordinating Access to Shared Memory I-10.
Using Locks I-10.

Contents xxiii

List of Figures

1-1 Components for the 545/555/575 System 1-3.
1-2 Discrete Scan Sequence 1-7.
1-3 Analog Task Scan Sequence 1-8.
1-4 Timing Relationship of the Controller Scan Operations 1-11.

2-1 Format of Signed 16-Bit Integers 2-3.
2-2 Format of Unsigned 16-Bit Integers 2-4.
2-3 Format of Signed 32-Bit Integers 2-4.
2-4 Format of Real Numbers 2-5.
2-5 Example of Binary-Coded Decimal Values 2-6.
2-6 Example of Storing an Address 2-8.

3-1 Image Register Update 3-2.
3-2 Discrete Image Register 3-3.
3-3 Word Image Register 3-5.
3-4 Relation of Hardwired Field Devices and the RLL Program 3-7.
3-5 Immediate I/O Update 3-8.
3-6 IORW Instruction 3-9.
3-7 Immediate I/O Configuration Chart 3-10.
3-8 Control Relay 3-13.
3-9 Control Relay Operation 3-14.

4-1 Controller Memory Types 4-2.
4-2 PGTS Discrete Parameter Area 4-10.
4-3 PGTS Word Parameter Area 4-10.

5-1 Single Rung of a Relay Ladder Logic Program 5-2.
5-2 Power Flow and the Contact 5-3.
5-3 Operation of Normal Contact and Electro-mechanical Relay 5-4.
5-4 Operation of a NOT-ed Contact and Electro-mechanical Relay 5-6.
5-5 Power Flow and the Coil 5-8.
5-6 Example of a Box Instruction 5-12.
5-7 How Relay Ladder Logic Is Solved 5-13.
5-8 RLL Program Compile Process 5-14.
5-9 Examples of Cyclic RLL Design 5-19.
5-10 Example of Cyclic RLL Execution Interrupt 5-20.
5-11 Relationship of Cyclic RLL Execution Time to Cycle Time 5-20.
5-12 When Cycle Time Changes Take Effect 5-21.
5-13 Examples of Cyclic RLL Design 5-22.
5-14 Status Word 220 Format 5-23.
5-15 Example RLL Interrupt Program 5-24.
5-16 Status Word Location of Time Data 5-28.
5-17 Clock Data Example 5-29.
5-18 Binary Time of Day 5-30.
5-19 Time-of-Day Status Word 5-31.

xxiv Contents

List of Figures (continued)

6-1 RLL Instruction Format 6-6.
6-2 ABSV Format 6-11.
6-3 ADD Format 6-12.
6-4 BITC Format 6-13.
6-5 BITP Format 6-14.
6-6 BITS Format 6-15.
6-7 CBD Format 6-16.
6-8 Examples of CBD Operation 6-17.
6-9 CDB Format 6-18.
6-10 Examples of CDB Operation 6-19.
6-11 CMP Format 6-20.
6-12 Coil Format 6-22.
6-13 Contact Format 6-23.
6-14 CTR Format 6-24.
6-15 DCAT Format 6-26.
6-16 DCMP Format 6-30.
6-17 DIV Format 6-32.
6-18 Division Example 6-33.
6-19 DRUM Format 6-35.
6-20 DSET Format 6-38.
6-21 EDRUM Format 6-40.
6-22 END Format 6-44.
6-23 ENDC Format 6-45.
6-24 GTS Format 6-46.
6-25 Example Call to Subroutine 6-47.
6-26 IMC Format 6-48.
6-27 IORW Format 6-50.
6-28 JMP Format 6-52.
6-29 Example of JMP Zone of Control 6-53.
6-30 LDA Format 6-54.
6-31 Examples of the LDA Instruction 6-56.
6-32 Address/Index Resolution 6-57.
6-33 LDC Format 6-59.
6-34 LOCK Format 6-60.
6-35 Example of the LOCK Instruction 6-62.
6-36 MCAT Format 6-63.
6-37 MCR Format 6-68.
6-38 Example of MCR Control of a Box 6-69.
6-39 Example of the MCR Zone of Control 6-70.
6-40 MDRMD Format 6-72.
6-41 MDRMW Format 6-77.
6-42 MIRFT Format 6-82.

Contents xxv

6-43 Example of MIRFT Operation 6-83.
6-44 MIRTT Format 6-84.
6-45 Example of MIRTT Operation 6-85.
6-46 MIRW Format 6-86.
6-47 Example of MIRW Operation 6-87.
6-48 MOVE Format 6-88.
6-49 Examples of the MOVE Instruction 6-90.
6-50 Address/Source Index Resolution 6-94.
6-51 Address/Destination Index Resolution 6-95.
6-52 MOVW Format 6-96.
6-53 The MOVW Operation 6-97.
6-54 MULT Format 6-98.
6-55 Multiplication Example 6-99.
6-56 MWFT Format 6-100.
6-57 The MWFT Operation 6-101.
6-58 MWI Format 6-102.
6-59 The MWI Operation 6-103.
6-60 MWIR Format 6-104.
6-61 The MWIR Format 6-105.
6-62 MWTT Format 6-106.
6-63 The MWTT Operation 6-107.
6-64 NOT Format 6-108.
6-65 NOT Example 6-108.
6-66 One Shot Format 6-109.
6-67 PID Format 6-110.
6-68 PGTS Format 6-112.
6-69 PGTS Instruction Example 2 6-114.
6-70 PGTS Instruction Example 1 6-117.
6-71 PGTSZ Format 6-118.
6-72 RSD Instruction Format 6-120.
6-73 RTN Format 6-122.
6-74 SBR Format 6-123.
6-75 SBR Example 6-124.
6-76 SFPGM Format 6-126.
6-77 SFSUB Format 6-128.
6-78 SHRB Format 6-132.
6-79 SHRB Example 6-133.
6-80 SHRW Format 6-134.
6-81 SHRW Operation 6-135.
6-82 SKP / LBL Format 6-137.
6-83 Example of SKP Zone of Control 6-139.
6-84 SMC Format 6-140.

xxvi Contents

List of Figures (continued)

6-85 SQRT Format 6-142.
6-86 STFE Format 6-144.
6-87 STFN Format 6-146.
6-88 SUB Format 6-148.
6-89 TAND Format 6-149.
6-90 TASK Format 6-150.
6-91 Examples of TASK Design 6-151.
6-92 TCMP Format 6-153.
6-93 TCPL Format 6-154.
6-94 Text Box Format 6-155.
6-95 TMR/TMRF Format 6-156.
6-96 TOR Format 6-158.
6-97 TSET Format 6-159.
6-98 TTOW Format 6-160.
6-99 TXOR Format 6-162.
6-100 UDC Format 6-164.
6-101 UNLCK Format 6-167.
6-102 WAND Format 6-168.
6-103 Result of ANDing Bits 6-168.
6-104 Result of ANDing Two Words 6-169.
6-105 WOR Format 6-170.
6-106 Result of ORing Bits 6-170.
6-107 Result of ORing Two Words 6-171.
6-108 WROT Format 6-172.
6-109 WROT Operation 6-172.
6-110 Result of a WROT Operation 6-173.
6-111 WTOT Format 6-174.
6-112 WTTA Format 6-176.
6-113 WTTO Format 6-178.
6-114 WTTXO Format 6-180.
6-115 WXOR Format 6-182.
6-116 Result of an Exclusive OR of Bits 6-183.
6-117 Result of an Exclusive OR of Two Words 6-183.
6-118 XSUB Format 6-184.
6-119 Example of the XSUB Instruction 6-186.

7-1 SFPGM Instruction Format 7-11.
7-2 Special Function Program Format 7-18.
7-3 Word Specification for SF Program Errors 7-21.
7-4 Example of Valid Entries for the FTSR-IN Statement 7-23.
7-5 BCDBIN Format 7-24.
7-6 Example of BCDBIN Operation 7-24.

Contents xxvii

7-7 BINBCD Format 7-25.
7-8 Example of BINBCD Operation 7-25.
7-9 CALL Format 7-26.
7-10 CDT Format 7-28.
7-11 CDT Statement Example 7-29.
7-12 EXIT Format 7-30.
7-13 FTSR-IN Format 7-31.
7-14 Example of FTSR-IN Operation 7-34.
7-15 FTSR-OUT Format 7-35.
7-16 Example Of FTSR-OUT Operation 7-38.
7-17 GOTO/LABEL Format 7-39.
7-18 Example of GOTO/LABEL Statements 7-39.
7-19 IF Format 7-40.
7-20 Example of IF/THEN/ELSE Statements 7-41.
7-21 IMATH Format 7-42.
7-22 IMATH Statement Example 7-43.
7-23 LEAD/LAG Format 7-44.
7-24 MATH Format 7-46.
7-25 MATH Statement Example 7-48.
7-26 PACK Format 7-51.
7-27 Example of PACKing Multiple Blocks of Bits Into Table 7-51.
7-28 Example of PACKing Bits Into Table 7-52.
7-29 Example of PACKing Words Into Table 7-53.
7-30 Example of PACKing Bits and Words Into Table 7-53.
7-31 Example of PACKing Bits from a Table 7-54.
7-32 Example of PACKing Multiple Blocks of Bits from a Table 7-54.
7-33 Example of PACKing Words from a Table 7-55.
7-34 Example of PACKing Bits and Words from a Table 7-55.
7-35 PACKAA Format 7-56.
7-36 Example of PACKAA TO Table Operation 7-57.
7-37 Example of PACKAA FROM Table Operation 7-57.
7-38 PACKLOOP Format 7-58.
7-39 PACKRS Format 7-60.
7-40 Address Format — Short Form 7-62.
7-41 Short Form Address Example 7-62.
7-42 Address Format — Long Form 7-63.
7-43 Long Form Address Example 7-63.
7-44 Example of PACKRS to a Table in V-Memory 7-64.
7-45 Example of PACKRS from a Table in V-Memory 7-65.
7-46 PRINT Format 7-68.
7-47 Example of the RETURN Statement 7-71.
7-48 SCALE Format 7-72.

xxviii Contents

List of Figures (continued)

7-49 SCALE Example 7-73.
7-50 SDT Format 7-74.
7-51 SDT Statement Example 7-75.
7-52 SSR Format 7-76.
7-53 Example of SSR Operation 7-77.
7-54 UNSCALE Format 7-78.
7-55 UNSCALE Example 7-79.
7-56 Comment Format 7-80.

8-1 Example of Analog Alarm Application 8-2.
8-2 Analog Alarm Programming Table 8-4.
8-3 Example of Alarm Deadband For Analog Alarms 8-9.
8-4 Example of Broken Transmitter Alarm 8-15.

9-1 Example of Loop Control 9-2.
9-2 Loop Programming Table 9-8.
9-3 Example Ramp/Soak Cycle 9-14.
9-4 Ramp/Soak Programming Table 9-16.
9-5 Ramp/Soak Table Examples 9-17.
9-6 Example of Alarm Deadband For Loops 9-19.
9-7 Loop Response to the Freeze Bias Option 9-23.
9-8 Loop Response to the Adjust Bias Option 9-24.
9-9 Examples of Direct- and Reverse-Acting Control 9-30.
9-10 Example of Broken Transmitter Alarm 9-33.
9-11 Proportional Band 9-35.
9-12 Steady State Error 9-36.
9-13 Ideal Process Variable Curve 9-37.
9-14 Example of Activation/Deactivation of Auto Tuning Process 9-39.

C-1 Loop/Analog Alarm Execution Time for the 545/575* C-7.

E-1 SHRB Application Example E-2.
E-2 RLL for SHRB Application Example E-3.
E-3 20-Bit Shift Register in Discrete Image Register E-3.
E-4 SHRW Application Example E-4.
E-5 RLL for SHRW Application Example E-5.
E-6 TMR Application Example E-6.
E-7 RLL for TMR Application Example #1 E-7.
E-8 Timing Diagram for TMR Application Example #2 E-8.
E-9 RLL for TMR Application Example #2 E-8.
E-10 Timing Diagram for TMR Application Example #3 E-9.
E-11 RLL for TMR Application Example #3 E-9.
E-12 RLL for BITP Application Example E-10.
E-13 RLL for DRUM Application Example E-12.

Contents xxix

E-14 RLL for EDRUM Application Example E-15.
E-15 MIRW Application Example E-17.
E-16 RLL for MIRW Application Example E-19.
E-17 RLL for MWIR Application Example (continued on next 2 pages) E-21.
E-18 MWTT Application Example E-24.
E-19 RLL for MWTT Application Example E-25.
E-20 RLL for MWFT Application Example E-27.
E-21 RLL for WXOR Application Example E-28.
E-22 RLL for CBD Application Example E-31.
E-23 RLL for CDB Application Example E-32.
E-24 RLL for One Shot Application Example E-33.
E-25 Constructing a One Shot From RLL E-33.
E-26 DCAT Application Example E-34.
E-27 RLL for DCAT Application Example E-35.
E-28 RLL for Status Word Application Example E-37.

G-1 Example of Status Word Reporting Scan Time G-4.
G-2 Example of Status Word Reporting a Module Failure G-7.
G-3 Example of Status Words Reporting Time G-10.

H-1 Externally Developed Subroutine Code Format H-5.
H-2 Initialization Routine Required for Microtec C H-8.
H-3 Example of Passing a Discrete Value H-10.
H-4 Example of Passing a Pointer H-10.
H-5 Example of Passing Normal Values H-10.
H-6 Example Assembly Language Header File H-12.
H-7 Example Subroutine Source File H-14.
H-8 Example Commands for Preparing the Load Module H-14.
H-9 Example Link Command File H-15.
H-10 Example Subroutine Call for Static Variable Initialization H-16.
H-11 Example Call to a Subroutine H-16.

I-1 Typical CPU Application I-2.
I-2 Accessing G-Memory I-4.
I-3 Example of Mode-locked Applications I-6.
I-4 Example of Locks and Their Uses I-11.
I-5 RLL Example for Locks I-12.

xxx Contents

List of Tables

1 Release Levels xxv.

2-1 Data Type Codes for Controller Memory Areas 2-7.

3-1 Discrete/Word I/O Permitted 3-4.
3-2 Logical Points Corresponding to Interrupt Inputs 9 – 16 3-12.
3-3 Control Relays Permitted 3-13.

5-1 RLL Instructions and Condition After Edit 5-38.

6-1 RLL Functional Groups 6-7.
6-2 DCAT States 6-27.
6-3 RSD Buffer Format 6-120.

7-1 SF Program Statements 7-10.
7-2 Specifying Real or Integer Parameters 7-15.
7-3 SF Statement Field Entry Definitions 7-22.
7-4 Specifying Real or Integer Parameters 7-27.
7-5 IMATH Operators 7-42.
7-6 Order of Precedence for IMATH Operators 7-43.
7-7 MATH Operators 7-46.
7-8 MATH Intrinsic Functions 7-47.
7-9 Order of Precedence for MATH Operators 7-48.
7-10 Analog Alarm Variables 7-56.
7-11 Loop Variables 7-59.

8-1 Analog Alarm C-Flags (ACFH and ACFL) 8-5.
8-2 Analog Alarm V-Flags (AVF) 8-6.

9-1 Loop C-Flags (LCFH and LCFL) 9-9.
9-2 Loop V-Flags (LVF) 9-11.
9-3 Loop Ramp/Soak Flags (LRSF) 9-16.
9-4 Variable Parameters 9-38.
9-5 Status Code Bit Values 9-41.
9-6 Value Parameters 9-43.

A-1 Controller Variable Types A-2.
A-2 Variable Names and Types Used in SF Programs A-3.
A-2 Variable Names and Types Used in SF Programs (continued) A-4.
A-2 Variable Names and Types Used in SF Programs (continued) A-5.
A-3 Bit Format for Words AACK and LACK A-7.

B-1 RLL Memory Requirements B-2.

Contents xxxi

C-1 Performance and Overrun Indicators C-9.
C-2 SF Statement Execution Times for the 545/575 C-13.
C-2 SF Statement Execution Times for the 545/575 (continued) C-14.
C-2 SF Statement Execution Times for the 545/575 (continued) C-15.

D-1 Loop V-Flags (LVF) D-2.
D-2 Loop C-Flags (LCFH and LCFL) D-3.
D-3 Analog Alarm V-Flags (AVF) D-4.
D-4 Analog Alarm C-Flags (ACFH and ACFL) D-4.

F-1 Special Function Error Codes F-1.

G-1 Status Words 11 Through 138 G-5.
G-2 Receive Errors and Timeout Errors for STW145 and STW146 G-11.

H-1 Linker Command Functions H-15.

Preface xxxiiiSIMATIC 545/555/575 Programming Reference

Preface

The SIMATIC 545/555/575 Programming Reference Manual contains the
information that you need to design an application program for any of these
Series 505 programmable controllers:

• 545–1103, 545–1104, 545–1105, and 545–1106

• 555–1103, 555–1104, 555–1105, and 555–1106

• 575–2104, 575–2105, and 575–2106

This manual describes the complete instruction set for the SIMATIC�

controllers listed above.

Additionally, this manual assumes that the programming software and the
controller are at the current release at the time of publication, as listed in
Table 1. If your controller is at a newer firmware release level, the Release
Notes included with your controller or firmware upgrade kit may document
new features not covered in this manual.

Table 1 Release Levels

Controller/Software Release PowerMath� SmarTune�

545–1103, 545–1104 4.0 — —

545–1105, 545–1106 4.2 — —

555–1103, 555–1104 4.0 — —

555–1105, 555–1106 5.0 Yes Yes

575–2104 4.0 — —

575–2105, 575–2106 5.0 Yes —

TISOFT 6.3 Yes —

SoftShop 2.2 Yes Yes

Refer to the SIMATIC TI505 Programming Reference User Manual
(PPX:505–8104–x) for information on the following controllers:

• 545–1101 and 545–1102

• 555–1101 and 555–1102

• 575–2101, 575–2102, and 575–2103

• SIMATIC 525/535

• SIMATIC 520C/530C/530T

• SIMATIC 560/565/560T/565P

Introduction

Prefacexxxiv SIMATIC 545/555/575 Programming Reference

Beginning with firmware release 5.0, the 555–1105 and 555–1106 CPUs
support several new features, including PowerMath , SmarTune , and
“fast” PID loops. The 575–2105 and –2106 CPUs support PowerMath.

Additionally, the material about 575 Interboard Communication which was
formerly located in the SIMATIC TI575 System Manual has been moved to
this manual. It is located in Appendix I. For more information, refer to the
SIMATIC 575 Interboard Communication Specification (PPX:575–8103–x).

Relay Ladder Logic (RLL) instructions are identified by a mnemonic in a tab
in the upper outside corner of the page. In cases where the instruction is
restricted to a certain controller or subset of controllers, the tab identifies
which controllers can use the instruction. For instance, the LOCK
instruction is supported by 575 controllers only, as shown in the example
below:

LOCK
575

To help you in your program design tasks, Status Words and performance
data for all controller models are provided in the appendices.

This manual is not intended to be a primer on RLL or Special Function (SF)
programming techniques. If you are not familiar with the techniques of RLL
programming or of loop dynamics, you should refer to other documentation
or call your Siemens Energy & Automation, Inc., distributor or sales office
for technical assistance.

If you need assistance in contacting your distributor or sales office in the
United States, call 1–800–964–4114. Training classes in RLL and Special
Function programming are available at a number of locations. Contact your
distributor for more information. Because there are references to various
hardware components, you should review the appropriate hardware and
installation manuals for your controller as you design your programs.

SIMATIC 505 SoftShop� for Windows� is a Windows-based programming
software for IBM�-compatible personal computers that supports all
SIMATIC 505 series programmable controllers. SoftShop for Windows
Release 2.2 or greater is required to support all the new features in the
555–1105 and 555–1106 CPUs. Refer to your SoftShop manual for detailed
instructions about how to enter a program.

TISOFT Release 6.3 or later, is an MS-DOS-based programming software
package that supports the full instruction set for SIMATIC 505 controllers.
TISOFT, however, does not support SmarTune automatic loop tuning, the
PID box instruction, PID loops above 64, or analog alarms above 128.

New Features

How to Use This
Manual

SIMATIC 505
SoftShop for
Windows

TISOFT
Programming
Software

Preface xxxvSIMATIC 545/555/575 Programming Reference

Topics are listed below by chapter:

• Chapter 1 gives an overview of the components of the Series 505
systems, local remote I/O, PROFIBUS-DP I/O, the concept of I/O
numbering and the hardware/software interface.

• Chapter 2 describes the formats used to represent data types.

• Chapter 3 describes how I/O is read and updated.

• Chapter 4 describes the various controller memory types.

• Chapter 5 presents programming concepts.

• Chapter 6 describes the RLL instructions.

• Chapter 7 describes the Special Function Program statements.

• Chapter 8 describes analog alarm programming.

• Chapter 9 describes loop programming.

• Appendix A lists all the variables used by Series 505 controllers.

• Appendix B lists the RLL instructions, the amount of memory each
requires, and instruction numbering guidelines.

• Appendix C gives information needed to calculate controller program
scan times.

• Appendix D provides the formats for the loop and analog alarm flags.

• Appendix E gives application examples for selected RLL instructions.

• Appendix F lists the Special Function Program error codes.

• Appendix G lists the status words supported by the Series 505
controllers.

• Appendix H describes how to design an external subroutine, and
includes an example subroutine.

• Appendix I describes interboard communication for 575 controllers.

Manual Contents

Prefacexxxvi SIMATIC 545/555/575 Programming Reference

For technical assistance, contact your Siemens Energy & Automation, Inc.,
distributor or sales office. If you need assistance in contacting your sales
agent or distributor in the United States, call 1–800–964–4114.

For additional technical assistance, call the Siemens Technical Services
Group in Johnson City, Tennessee at 423-461-2522, or contact them by
e-mail at simatic.hotline@sea.siemens.com. For technical assistance
outside the United States, call 49-911-895-7000.

Technical
Assistance

Series 505 System Overview 1-1SIMATIC 545/555/575 Programming Reference

Chapter 1

Series 505 System Overview

1.1 The 545, 555, and 575 Systems 1-2.
System Components 1-2.
Using PROFIBUS-DP I/O 1-2.
Local I/O 1-2.
Expansion I/O Channels 1-2.
Series 505 Remote I/O 1-2.
PROFIBUS-DP I/O 1-4.
Output Response on PROFIBUS-DP Slave Devices 1-4.
Assigning I/O Point Numbers 1-5.

1.2 Program Execution Operations 1-6.
CPU Scan Operations 1-6.
Interrupt RLL Execution 1-6.
Cyclic RLL Execution 1-6.
Discrete Scan 1-6.
Analog Task Processing 1-8.
Cyclic Analog Tasks 1-8.
Non-cyclic Analog Tasks 1-9.
Setting the Scan 1-10.

Series 505 System Overview1-2 SIMATIC 545/555/575 Programming Reference

1.1 The 545, 555, and 575 Systems

The programmable controller interacts with your equipment through
input/output (I/O) modules that relay information between the equipment
and the programmable controller. When you design your program, you need
to know the physical and logical configuration of these I/O modules, how
your equipment is connected to them, and how they are addressed and
accessed. The relationships among the system components of the 545, 555,
and 575 systems are illustrated in Figure 1-1. The 575 system has
essentially the same functionality as the 545/555, with the distinction that
the 575 local base is a VMEbus. For details about hardware components and
installation, refer to the SIMATIC 545/555/575 System Manual
PPX:505–8201–x).

NOTE: In this manual, a feature, unless it is explicitly restricted, applies to
all systems.

The 545, 555, and 575 programmable control systems now possess the
capability to communicate with PROFIBUS-DP I/O and other devices that
meet the PROFIBUS standard (DIN 19245, Part 3). The Series 505 CPUs
described in this manual contain a PROFIBUS-DP I/O communication port
(via an optional annex card for the 575 and 545–1103/–1105 CPUs) that
supports all I/O devices that conform to the PROFIBUS-DP standard.

For information about the PROFIBUS-DP I/O port, see the SIMATIC
545/555/575 System Manual. To configure PROFIBUS-DP I/O, Series 505
users must use the COM PROFIBUS configuration utility in conjunction
with TISOFT; consult the SIMATIC 505 TISOFT2 User Manual.

Local I/O comprises those modules located in the same base assembly as the
programmable controller. The base containing the local I/O is numbered 0.
Only Series 505 I/O modules can be installed in the local base.

Two channels are available for expansion I/O. The Series 505 remote I/O
channel supports Series 505 and Series 500 remote I/O. The PROFIBUS-DP
I/O channel supports PROFIBUS-DP I/O slaves and field devices, and also
Series 505 remote I/O (by means of the 505 PROFIBUS-DP RBC,
PPX:505–6870).

When you use the Series 505 remote I/O channel, you can connect up to 15
additional base assemblies with remote I/O modules to the system. These
are numbered 1–15.

NOTE: The 575 CPU requires an annex card, PPX:575–2126, in order to use
the Series 505 remote I/O channel. The 545–1103/–1105 CPU cannot use the
Series 505 remote I/O channel.

System
Components

Using
PROFIBUS-DP I/O

Local I/O

Expansion I/O
Channels

Series 505
Remote I/O

Series 505 System Overview 1-3SIMATIC 545/555/575 Programming Reference

Series 505 Remote
I/O Channel
(1 Mbaud)

PROFIBUS-DP
I/O Channel
(12 Mbaud)

Third Party
Products

Series 505 Base with
505 PROFIBUS-DP RBC

The Series 505 remote I/O channel supports up to 15 Series 505/Series 500 remote bases.

C
P
U

C

R
B
C

R
B
C

S7 I/O

ET 200B
Block I/O

95U/PROFIBUS-DP

ET 200U

ET 200C

Series 505 Base
with RBC

Series 500 Base
with RBC

(505–6851–A RBC)

(500–5114–A RBC)

(505–6870 RBC)

R
B
C

The PROFIBUS-DP I/O channel supports up to 112 SIMATIC and third-party DP I/O slaves and masters.

Siemens AC/DC
Motors and Drives

A 575 CPU can support either I/O channel, but not both simultaneously.
The 545–1103/–1105 CPU only supports the PROFIBUS-DP I/O channel.

ABB
AEG
Allen-Bradley
Bosch
Festo
Mannesmann
Turk
Vickers
etc.

ASI Master

Limit SW P/B Solenoid PE Cell

ASI Bus

Figure 1-1 Components for the 545/555/575 System

Series 505 System Overview1-4 SIMATIC 545/555/575 Programming Reference

The 545, 555, and 575 Systems (continued)

When you use the PROFIBUS-DP I/O channel, you can connect up to 32
PROFIBUS-DP-compatible I/O slaves and masters with the 545–1103/–1105
CPUs, or up to 112 slaves and masters with the 545–1104/–1106, 555, and
575 CPUs.

NOTE: Special Function modules cannot be installed on the PROFIBUS-DP
I/O channel.

The response of output points on ET200B and other PROFIBUS-DP slave
devices that are connected to the PROFIBUS-DP I/O channel is different
from the response of devices on the normal 505 I/O channel.

If network communications are interrupted, or if you power-cycle the master
CPU, the outputs of most PROFIBUS-DP slaves momentarily transition to a
zero state when communications are reestablished.

! WARNING
The outputs of most PROFIBUS-DP slaves momentarily transition to a zero
state when communications are reestablished following a power cycle or
interruption in network communications.

If output points are expected to retain the last valid state received from the
controlling device prior to the communication interruption, erratic operation of
your process may result. This could cause unpredictable operation by the
controller or network, which could result in death or serious injury to
personnel, and/or damage to equipment.

Follow the solutions listed below to avoid unexpected process operation.

• Define your system to withstand the output transition to a zero state
when communications are reestablished following a power cycle or
interruption in network communications.

• Use slaves that support the “Fail-Safe” feature, which is a recent
enhancement to the PROFIBUS-DP Standard DIN 19245 Part 3. The
Fail-Safe feature, combined with an appropriately designed control
program, can prevent the slave outputs from transitioning to zero when
you power up the CPU or reestablish network communications. The
505–6870 Remote Base Controller provides the Fail-Safe feature.

If fail-safe slaves are not used, you must ensure successful process control
through your program design or other external means in the event of an
error condition such as a loss of communication to slave devices due to cable
breaks or a power-cycle of the controlling CPU.

For additional information, contact your distributor.

PROFIBUS-DP I/O

Output Response
on PROFIBUS-DP
Slave Devices

Series 505 System Overview 1-5SIMATIC 545/555/575 Programming Reference

You must assign the I/O point and slot numbers from the I/O Configuration
Chart on your programming device. The programmable controller does not
update discrete or word I/O points in non-configured I/O modules. Refer to
your TISOFT user manual for instructions about configuring the I/O.

For the 545–1103/–1105, a maximum of 1024 I/O points can be assigned. Up
to 4096 control relays are available.

For the 545–1104/–1106, a maximum of 2048 I/O points can be assigned. Of
these, up to 1024 can be discrete or word points, which must be numbered
1–1024. The next 1024 points are discrete only. Up to 32,768 control relays
are available.

For the 555 CPUs, a maximum of 8192 I/O points can be assigned in any
mix of discrete and word I/O. Up to 32,768 control relays are available.

For the 575 CPUs, a maximum of 8192 I/O points can be assigned. Up to
23,552 control relays are available.

You do not need to assign I/O point numbers consecutively. For example, in
a remote system, Base 2 can be assigned I/O points 897–960. If a base is
configured and the modules in the base do not match the configuration, the
programmable controller logs a non-fatal error. Misconfigured modules are
not accessed by your program. Inputs are read as 0; outputs are ignored.

A Special Function Module is divided into the I/O portion and the special
function portion. When a Special Function Module is inserted into a system,
the special function portion of the module is automatically logged in, and
can send data to and receive data from the controller.

NOTE: You must configure the I/O portion so that the controller updates the
I/O points. Non-special function modules are not logged in automatically.

Assigning I/O
Point Numbers

Series 505 System Overview1-6 SIMATIC 545/555/575 Programming Reference

1.2 Program Execution Operations

The 545 and 555 controllers execute four scan operations during the
programmable controller scan.

• Interrupt RLL execution • Discrete scan
• Cyclic RLL execution • Analog task processing

The 575 controllers share the same operations, except that the 575 CPUs
do not execute interrupt RLL.

The interrupt I/O feature allows you to program an immediate response to a
field input transition (interrupt request) from your application. Interrupt
I/O operation requires the use of at least one Interrupt Input Module
(e.g., PPX:505-4317) installed in the local base. See Section 3.4 for more
information on interrupt I/O operation.

A cyclic RLL program consists of a section of ladder logic, usually short for
quick cycle times, that runs independently of the main RLL program. Cyclic
RLL is executed periodically throughout the entire programmable controller
scan, interrupting the discrete scan and the analog scan as necessary.
Because the execution of a cyclic RLL task is not synchronized with the I/O
update, use the immediate I/O instructions to access the I/O.

The discrete scan consists of three primary tasks that are executed
sequentially and at a rate that can be user-specified.

Normal I/O Update. During the normal I/O cycle update, the programmable
controller writes data from the image registers to the outputs, and stores
data from the inputs into the image registers. The length of the I/O update
cycle is dependent upon the number of bases and types of modules (analog,
discrete, or intelligent). All I/O points are fully updated each scan.

Main Ladder Logic Cycle. The programmable controller executes the main
RLL task.

Special Function Module Communication. Communication with special
function (SF) modules, e.g., NIM, BASIC, PEERLINK�, etc., consists of the
following actions:

• Service requests from a previous scan for which processing has been
completed are transmitted to the SF modules.

• Remote bases are polled for initial SF module service requests.

• Remote base communication ports are polled for service requests.

• Service requests from SF modules and remote base communication
ports are processed.

CPU Scan
Operations

Interrupt RLL
Execution

Cyclic RLL
Execution

Discrete Scan

Series 505 System Overview 1-7SIMATIC 545/555/575 Programming Reference

Each SF module that requires service increases the scan time, depending
upon the type of module and task. Each type of module is allowed a certain
number of service requests per scan. Once these are completed, this function
is terminated. Some service requests can be deferred, and these are
processed during the analog task time slice described in Figure 1-2.

RLL
I/O

update

SF
module
access

Analog
tasks

Analog tasks are also executed
during windows occurring in the

discrete scan.

Cyclic
RLL

Cyclic RLL interrupts the discrete scan as
necessary to complete its cyclical execution.

Main

Interrupt
RLL

Interrupt RLL interrupts all processes below whenever
an interrupt module sends an interrupt request.

Figure 1-2 Discrete Scan Sequence

Series 505 System Overview1-8 SIMATIC 545/555/575 Programming Reference

Program Execution Operations (continued)

The analog portion of the scan is composed of five general types of tasks
(Figure 1-3), which are cyclical or non-cyclical in their execution.

Analog tasks are guaranteed execution once per scan, following the discrete
scan, provided there is processing to be done. Analog tasks are also
processed during windows of suspended activity that occur during the
normal I/O and SF portions of the scan. RLL execution is not interrupted by
analog tasks.

You can adjust the amount of time spent per controller scan for all analog
tasks, except diagnostics, with a programming unit and using AUX
Function 19. The time allocation for a given analog task is referred to as its
time slice.

Cyclic and interrupt RLL interrupt
the analog tasks as necessary.

Diagnostics*

*Enabled for execution at the completion of the discrete scan.

Loops
Analog
alarms

SF
programs

Service
requests

Cyclic/
Interrupt

 RLL

RBE
event

detection

Figure 1-3 Analog Task Scan Sequence

The following types of processes are executed cyclically. Each has a sample
rate which determines how often it is executed.

• Loops

• Analog alarms

• Cyclic SF programs

The programmable controller has a separate task to execute each type of
cyclic process. When enabled, each cyclic process is placed in the execution
queue that is managed by the task responsible for executing that type of
process.

Analog Task
Processing

Cyclic Analog
Tasks

Series 505 System Overview 1-9SIMATIC 545/555/575 Programming Reference

The cyclic processes are time-ordered in their individual queues according to
when each process is rescheduled for execution, relative to the other cyclic
processes within the same queues. The process with the highest priority
(closest to overrunning) is executed first. The process is executed until it is
completed or until the time specified for that particular task’s time slice
expires. If the executing process is completed before the time slice expires,
the process with the next highest priority is executed. If the time slice
expires before the process is completed, the process (and the task) is put on
hold in its current position.

The programmable controller then advances to the next analog task. When
the programmable controller sequences through its operations and returns
to an analog task with a cyclic process on hold, the process resumes
execution from the hold point, unless a higher priority process was
scheduled since the last respective time slice. If a process in a cyclic time
slice is not finished executing when it is scheduled to execute again, an
overrun flag is set.

Restricted SF programs, which are called by loops or analog alarms, are
executed from within the loop or analog alarm tasks. Therefore, their
execution time is included within the loop or analog alarm time slice.

NOTE: For CPUs that support PowerMath, while a compiled SF program is
executing, a higher priority process on the queue will not execute until the
program terminates.

SF subroutines, which are called by SF programs or other SF subroutines,
are processed during the calling program’s time slice.

The following types of processes are executed non-cyclically:

• Priority/Non-priority SF programs.

• RLL-requested SF subroutines.

• Service request messages.

• Report by Exception (RBE) event detection.

• Run-time diagnostics.

Non-cyclic Analog
Tasks

Series 505 System Overview1-10 SIMATIC 545/555/575 Programming Reference

Program Execution Operations (continued)

Priority and Non-Priority SF Programs are non-cyclic processes that are queued
when the SFPGM RLL box instruction receives power flow. There is an
analog task that executes priority SF programs, and another analog task
that executes non-priority SF programs. These processes are executed in the
order that they are queued in the appropriate task’s execution queue. When
the programmable controller completes one of these processes, it removes
the process from the respective queue and turns on the SFPGM output.
There are no overrun flags associated with these processes.

RLL-requested SF Subroutines are queued into one of two SFSUB queues when
the SFSUB RLL box instruction receives power flow. One queue handles
SFSUB 0 instructions and the other handles all other SFSUB instructions.

Service Requests received from the communication ports are placed on one of
two communications queues. Read and write commands are placed on the
priority communication queue for fastest response. Commands that may
require several scans to complete, e.g., program edits and the TISOFT FIND
function, are placed in a non-priority communications queue.

Report By Exception event detection task only executes when the
programmable controller is used with SIMATIC� PCS�, Release 3.0 or
later. The RBE event detection task monitors PCS-defined process events
and notifies PCS when an event is detected.

Run-time Diagnostics are enabled for execution at the completion of the
discrete scan. The time slice for diagnostics is 1 ms and cannot be changed.

The 545/555/575 scan is defined as the time between normal I/O updates.
You can set the scan for the controller as follows.

• Fixed — The programmable controller starts a new discrete scan at the
specified time interval. The controller executes the discrete scan once
and then cycles to the analog scan portion, executing the analog tasks
at least one time. If the analog tasks are completed within the specified
time, the controller goes into a loop mode (processing analog tasks or
idling) until time to start the next scan.

A scan overrun status bit is set (bit 14 in Status Word 1) if the total
execution time for the discrete scan portion and the first execution of
the analog scan portion exceeds the fixed scan time.

• Variable — The programmable controller executes all tasks once and
then starts a new scan. All discrete and analog tasks are guaranteed
one execution per scan. Specify variable scan for the fastest possible
execution of the discrete scan.

Setting the Scan

Series 505 System Overview 1-11SIMATIC 545/555/575 Programming Reference

• Variable with upper limit — The programmable controller executes the
discrete scan once and then executes the analog tasks. The controller
remains in the analog portion of the scan as long as there are analog
tasks to be done. When the upper time limit expires, or no analog tasks
require processing, a new scan is begun.

The analog scan portion is executed at least one time. A scan overrun
status bit is set if the total execution time for the discrete scan portion
and the first execution of the analog scan portion exceeds the upper
limit.

Cycle time for the cyclic RLL can be a fixed value or a user-specified
variable. As a variable, the cycle time can be changed by logic in your
application program. If the cyclic RLL completes execution in less than the
specified cycle time, execution does not resume until the next cycle begins.
The programmable controller scan time is extended by the amount of time
to execute the cyclic RLL multiplied by the number of times the cyclic RLL
is executed during the programmable controller scan.

The timing relationship of the scan operations is shown in Figure 1-4. Refer
to the Appendix C for details about how to configure the time slices.

Cyclic RLL
execution*

Discrete scan

Time

Analog scan

One programmable controller scan

* Cyclic RLL program is executed to completion each time it runs.

Interrupt RLL
execution

É
É

É
É
É
É

É
É

Figure 1-4 Timing Relationship of the Controller Scan Operations

Data Representation 2-1SIMATIC 545/555/575 Programming Reference

Chapter 2

Data Representation

2.1 Definitions 2-2.
Byte 2-2.
Word 2-2.
Long Word 2-2.
Image Register 2-2.
I/O Point 2-2.

2.2 Integers 2-3.
Signed 16-Bit Integers 2-3.
Unsigned 16-Bit Integers 2-4.
Signed 32-Bit Integers 2-4.

2.3 Real Numbers 2-5.

2.4 Binary-Coded Decimal 2-6.

2.5 Format for an Address Stored in a Memory Location 2-7.

Data Representation2-2 SIMATIC 545/555/575 Programming Reference

2.1 Definitions

The terms listed below are used throughout this manual and have the
following meanings.

A byte consists of 8 contiguous bits.

1 8
Most

significant bit
Least
significant bit

A word consists of 2 contiguous bytes, 16 bts.

1 16

Byte 0 Byte 1

Most
significant bit

Least
significant bit

For example, the contents of V-Memory word V100 occupy 16 contiguous
bits; the word output WY551 occupies 16 contiguous bits.

A long word consists of 2 contiguous words, 32 bits, that represent a single
value.

1

Byte 0 Byte 1

32

Byte 2 Byte 3

Word 0 Word 1

Most significant word Least significant word

For example, the contents of V-Memory long word V693 occupy two
contiguous words (32 bits), V693 and V694. The next available address is
V695, which can represent a word (16 bits) or another long word (32 bits).

The image register is a reserved memory area used to store the value of all
discrete (on/off) and word I/O data. Discrete I/O data is contained in the
discrete image register. Word I/O data is stored in the word image register.
See Section 3.1 for a more complete discussion of the function of the image
register.

An I/O point consists of an I/O type and a reference number that represent a
location in the image register. An I/O point that represents a discrete bit in
the discrete image register is identified as an X or Y I/O type. An I/O point
that represents a word in the word image register is identified as a WX or
WY I/O type.

Byte

Word

Long Word

Image Register

I/O Point

Data Representation 2-3SIMATIC 545/555/575 Programming Reference

2.2 Integers

Signed integers are stored as 16-bit words in the two’s complement format
as shown in Figure 2-1. The 16-bit format allows you to store values ranging
from –32,768 to +32,767 (decimal integer values). When bit 1 (the sign bit)
is 0, the number is positive; when bit 1 is 1, the number is negative.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 = +2

= +1

= +0

= –1

= –2

= –32767

= –32768

= +32767

Most
significant
bit

Sign
bit

Least
significant
bit

Figure 2-1 Format of Signed 16-Bit Integers

Signed 16-Bit
Integers

Data Representation2-4 SIMATIC 545/555/575 Programming Reference

Integers (continued)

You can display data on your programming unit as an unsigned integer. The
16-bit format allows you to display integer values ranging from 0 to 65535
as shown in Figure 2-2.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= 65535
= 65534

= 2

= 1

= 0

Most
significant
bit

Least
significant
bit

Figure 2-2 Format of Unsigned 16-Bit Integers

Thirty-two bit signed long word integers are stored as 32-bit long words in
the two’s complement format, as shown in Figure 2-3:

0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Sign bit

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Word 0

Word 1 142,091,084

Decimal
equivalent:

Figure 2-3 Format of Signed 32-Bit Integers

Unsigned 16-Bit
Integers

Signed 32-Bit
Integers

Data Representation 2-5SIMATIC 545/555/575 Programming Reference

2.3 Real Numbers

Real numbers are stored in the single-precision 32-bit (two words) binary
format (Figure 2-4). Refer to ANSI/IEEE Standard 754–1985 for details
about the format.

� � � � � � � 	
 �� �� �� �� �� �� ��

Word 1
� � � � � � � 	
 �� �� �� �� �� �� ��

Word 2

S

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018
� 2.71050535 * 10�20to

Supported Range:

Word
bit
content FractionExponent

S = Sign

Precision: 23.5 binary bits or 7.2 decimal digits

Figure 2-4 Format of Real Numbers

Data Representation2-6 SIMATIC 545/555/575 Programming Reference

2.4 Binary-Coded Decimal

Individual BCD digits from a BCD field device are stored in a word in
groups of four bits. For example, the number 0582 is stored as shown in
Figure 2-5:

50 8 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0
Most
significant
bit

Least
significant
bit

Figure 2-5 Example of Binary-Coded Decimal Values

Each digit of the BCD value must be less than or equal to 9. The binary
values 1010, 1011, 1100, 1101, 1110, and 1111 are invalid.

Normally, you would convert a BCD value to the binary format, as described
in Section 6.9, using the resulting value elsewhere in your program.

Data Representation 2-7SIMATIC 545/555/575 Programming Reference

2.5 Format for an Address Stored in a Memory Location

The Load Address (LDA) instruction allows you to store a memory address
in a memory location. A description of LDA and examples of its usage are
given in Section 6.26.

When you use LDA to store an address in a memory location, one long word
is required, as shown below.

Memory type

Byte 0 Byte 1 Byte 2 Byte 3

Word offset

The memory data type is contained in byte 0. The word offset relative to the
base address for the data type is contained in bytes 1–3. Data type codes are
listed in Table 2-1.

Table 2-1 Data Type Codes for Controller Memory Areas

Memory Area Data Type
(Hex) Memory Area Data Type

(Hex)

Subroutine work area 00 Application G Global Variables E8

Variable 01 Application H Global Variables E7

Constant 02 Application I Global Variables E6

Word Input 09 Application J Global Variables E5

Word Output 0A Application K Global Variables E4

Timer/Counter Preset 0E Application L Global Variables E3

Timer/Counter Current 0F Application M Global Variables E2

Drum Step Preset 10 Application N Global Variables E1

Drum Step Current 11 Application O Global Variables E0

Drum Count Preset 12 Application P Global Variables DF

Status Word 1A Application Q Global Variables DE

Drum Count Current 1B Application R Global Variables DD

VME A24 Space D3 Application S Global Variables DC

VME A16 Space D4 Application T Global Variables DB

My Global Variables EF Application U Global Variables DA

Application A Global Variables EE Application V Global Variables D9

Application B Global Variables ED Application W Global Variables D8

Application C Global Variables EC Application X Global Variables D7

Application D Global Variables EB Application Y Global Variables D6

Application E Global Variables EA Application Z Global Variables D5

Application F Global Variables E9

Data Representation2-8 SIMATIC 545/555/575 Programming Reference

Format for an Address Stored in a Memory Location (continued)

The format for logical addresses in the subroutine work areas differs from
the other data types, as shown below.

Memory type

Byte 0 Byte 1 Byte 2 Byte 3

Parameter
number – 1

Subroutine
number – 1

For example, WY77 is stored in V100 and V101 as shown in Figure 2-6. The
code for the WY data type is 0A. The decimal offset for the 77th word is 76,
which is 00004C in hex.

0A
00

4C00

WY
Memory type (Hex)

00 00 4C
V100

V101

Word offset gives the position in Hex:

WY1 = 0000 (Hex) = 0 (Dec) (1st position)
WY2 = 0001 (Hex) = 1 (Dec) (2nd position)

WY77 = 004C (Hex) = 76 (Dec) (77th position)

Address Offset Offset Position
(Hex) (Dec)

Figure 2-6 Example of Storing an Address

NOTE: An address always references a word boundary.

! WARNING
The address that is copied to the destination is a logical, not a physical,
address. The misuse of this address could cause an unsafe condition that
could result in death or serious injury to personnel, and/or damage to
equipment.
Do not use this address as a pointer within an external subroutine.

NOTE: The data type codes are provided to give assistance when you decode
information displayed in TISOFT. You do not have to enter a data type
when you program an LDA. For example, to load V-Memory address V15,
enter V15 in field A of the LDA instruction, not 0100 000E.

I/O Concepts 3-1SIMATIC 545/555/575 Programming Reference

Chapter 3

I/O Concepts

3.1 Reading and Updating the I/O 3-2.
Discrete Image Register 3-3.
Word Image Register 3-5.

3.2 Normal I/O Updates 3-6.
Discrete Control 3-6.
Analog Control 3-6.

3.3 High Speed I/O Updates 3-8.
Immediate I/O 3-8.
Modules that Support Immediate I/O 3-10.
Configuring Immediate I/O 3-10.

3.4 Interrupt I/O Operation 3-11.
Overview 3-11.
Configuring the Interrupt Input Module 3-11.

3.5 Control Relays 3-13.
Using Retentive and Non-retentive Control Relays 3-14.

I/O Concepts3-2 SIMATIC 545/555/575 Programming Reference

3.1 Reading and Updating the I/O

In normal operation the controller updates outputs, reads inputs, and solves
the user application program. The I/O update is shown in Figure 3-1. The
Series 505 controllers have reserved memory areas for storing the value of
all discrete and word I/O points. Discrete I/O values are contained in the
discrete image register, which provides storage for all discrete (on/off) I/O
points. Word values are stored in the word image register, which provides
storage for word and analog data.

Image register

ControllerPower
Supply

Input
module

Output
module

Limit
switch

1

1

X3 Y9

Pilot
light

Controller scan

Normal I/O update
Controller writes
outputs, reads inputs

RLL execution

Figure 3-1 Image Register Update

Following the I/O update, the image registers hold the latest value of all
discrete and word inputs. As the user program is executed, new values for
discrete/word outputs are stored in the image registers. At the completion of
the user program, the controller begins a new cycle. The I/O is updated: the
results of the last program execution are written from the image registers to
the discrete/word outputs, and new values are read for use in the user
program. Then the user program is executed.

I/O Concepts 3-3SIMATIC 545/555/575 Programming Reference

An area of memory within the controller called the discrete image register
(Figure 3-2) is reserved for maintaining the status of all discrete inputs and
outputs.

As a troubleshooting tool, you can use a programming device to force an I/O
point on or off. A record of the forced state of a discrete I/O point is kept by
the force attribute bit, also shown in Figure 3-2. There is a one-bit location
for each of the discrete I/O points. If a discrete I/O point is forced to a
particular state, that point remains in that state and does not change until
it is forced to the opposite state or is unforced. A power cycle does not alter
the value of a forced discrete I/O point as long as the controller battery is
good.

1
2
3
4

5
6
7
8

10

11

9

1
2
3
4

5
6
7
8

10

11

9

Discrete image register

X or Y

Force attribute bit

X or Y

Figure 3-2 Discrete Image Register

Discrete Image
Register

I/O Concepts3-4 SIMATIC 545/555/575 Programming Reference

Reading and Updating the I/O (continued)

The size of the discrete image register depends upon your controller model
(see Table 3-1). Although the discrete and word I/O modules have separate
image registers, they are used in the same physical I/O slots. Therefore, the
total number of both discrete and word I/O cannot exceed the number listed
for your controller model.

Table 3-1 Discrete/Word I/O Permitted

CPU Model Discrete / Word I/O

PPX:545–1103/–1105 1024

PPX:545–1104/–1106 2048/1024*

All 555 CPUs 8192

All 575 CPUs 8192

* The 545–1104/–1106 CPUs support 2048 points. Of these, 1024 can be any combination of
discrete/word points. The second 1024 points are discrete only.

! CAUTION
Xs and Ys use the same discrete image register .

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’ s actions.

Do not assign the same reference number to both an input (X) and an output (Y).

I/O Concepts 3-5SIMATIC 545/555/575 Programming Reference

The word image register (Figure 3-3) is an area of memory within the
controller that is reserved for holding the contents of all 16-bit word inputs
and outputs. The size of the word image register depends upon your
controller model. The total number of discrete and word I/O cannot exceed
the number listed for your controller model.

As a troubleshooting tool, word I/O can be forced. The record of the forced
state of word I/O is kept by a force attribute bit, shown in Figure 3-3. There
is a one-bit location for each of the word I/O points. If an I/O word is forced,
then the value contained within that word does not change until the word
either is forced to a different value or is unforced. A power cycle does not
alter the value of a forced I/O word as long as the controller battery is good.

WX or WYBit WX or WY

1
2
3
4
5
6
7
8

10
11

9

1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16
1
2
3
4
5
6
7
8

10
11

9

Word image register Force attribute bit

Figure 3-3 Word Image Register

! CAUTION
WXs and WYs use the same word image register .

If you assign an input module to an WX image register point and an output
module to the same WY image register point, your program may not be able to
affect the output module’ s actions.

Do not assign the same reference number to both an input (WX) and an
output (WY).

Word Image
Register

I/O Concepts3-6 SIMATIC 545/555/575 Programming Reference

3.2 Normal I/O Updates

To relate the hardwired connections on the equipment that you are
controlling to the program inputs and outputs, you need to focus on the
function of the image register. For normal I/O updates, the interface
between the software RLL program and the physical hardware occurs
within the image register. Refer to Figure 3-4 for an example of the discrete
operation in which a limit switch controls the state of a pilot light.

Analog control is similar in operation to discrete control except that data is
transmitted as 16-bit words. An analog input signal is converted by the
analog input module into a 16-bit digital word. This word of data is written
to the word image register.

The controller solves the RLL logic, executing all the necessary tasks
relating to the data. If controlling an analog output is the function of the
program, then a word of data is written to the word image register.

The controller writes the word from the image register to the analog output
module during the normal I/O cycle portion of the scan. The module
converts the 16-bit digital word into an analog signal, and sends the analog
signal to the appropriate field device.

Discrete Control

Analog Control

I/O Concepts 3-7SIMATIC 545/555/575 Programming Reference

LS 24 PL 99

Point Slot

Slot 1

Slot 2

1 2 3 4 5 6 7 8
number Number

Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

X65 X66 X67 X68 X69 X70 X71 X72

Assigned I/O identifiers

()
X69 Y16

Slot 3
.
..

. . .

Input

Point 5 in

Input module Output module

Output

Point 8 in
Slot 1 = Y16 = high

Slot 1 = X69 = High

PL 99

Controller

X69

1

Y16

0

X69

1

Y16

1

The hardware has been installed in this way:

Limit Switch #24 is connected to Point 5 of the input
module located in Slot 2.

Pilot Light #99 is connected to Point 8 of the output
module located in Slot 1.

These I/O assignments have been made using the
programming unit:

X69 has been assigned to Point 5 in Slot 2.
Y16 has been assigned to Point 8 in Slot 1.

The input module detects when Limit Switch #24
closes.

Slot 2 Slot 1

LS 24

Point 8Point 5

()
X69 Y16

Discrete
image registers

Discrete
image registers

The controller writes a 1 to Y16 in the discrete
image register.

During the next I/O update, the controller writes
the 1 from Y16 in the image register to the output
module. The output module then turns on power to
Pilot Light #99.

Note that if Limit Switch #24 remains on, the controller
still writes a 1 to X69 in the discrete image register
during this I/O update (not shown in the diagram).

During the next I/O update, the controller reads
the state of the input point from the module, and
writes a 1 to X69 in the discrete image register.
Note that Y16 is off, and so the controller writes
a 0 from Y16 to the output module during this
I/O update (not shown in the diagram).

The controller solves the RLL logic. Since X69 is
on, Y16 is turned on.

Figure 3-4 Relation of Hardwired Field Devices and the RLL Program

I/O Concepts3-8 SIMATIC 545/555/575 Programming Reference

3.3 High Speed I/O Updates

The immediate I/O feature allows your RLL application program to access
an I/O point in a local I/O module multiple times per controller scan. This
feature enables you to sample fast-changing inputs more often, providing a
faster response to the application.

Figure 3-5 illustrates the operation for immediate contacts and immediate
coils.

• Use an immediate contact when you want to read an input point
directly from the input module as part of the power flow computation.
The input discrete image register is not updated as the result of an
immediate contact.

• Use an immediate coil when you want to simultaneously write the
result of a power flow computation to the output discrete image register
as well as to the output module.

ControllerPower
Supply

Input
module

Output
module

1

X3 Y9

Image
Register

Limit
Switch Pilot

Light

I I

Figure 3-5 Immediate I/O Update

Immediate I/O

I/O Concepts 3-9SIMATIC 545/555/575 Programming Reference

Figure 3-6 illustrates the operation of the IORW (immediate I/O read/write)
instruction. For further discussion on immediate I/O read/write, see section
6.24.

• Use an IORW instruction specifying a discrete input image register
address (e.g., X1) or a word input image register address (e.g., WX50) to
read a block of I/O point values from a module into the referenced
image register. The entire block must be contained in a single module.

• Use an IORW instruction specifying a discrete output image register
address (e.g., Y17) or a word output image register address (e.g., WY22)
to write a block of I/O point values from the referenced image register
to a module. The entire block must be contained in a single module.

Power
Supply

Controller Input
Module

Output
Module

IORW
A: X1
N: 8

C1 C2

IORW
A: WY22
N: 2

C1 C2

Discrete IR

X1 0
X2 1
X3 1
X4 0
X5 0
X6 1
X7 0
X8 1

Word IR

WY22 2
WY23 5

⇐

⇒

⇐
⇐
⇐
⇐
⇐
⇐
⇐

⇒ ⇒⇒ ⇒⇒

0
1
1
0
0
1
0
1

2
5

Figure 3-6 IORW Instruction

I/O Concepts3-10 SIMATIC 545/555/575 Programming Reference

High Speed I/O Updates (continued)

The 545 and 555 support immediate I/O for all non-SF Series 505 I/O
modules. The 575 supports immediate I/O for all VME-compatible I/O
modules.

When you configure I/O for the controller, do not assign the same number to
both a discrete point and a word point if you intend to access these points as
immediate I/O. For example, if you design your program to access X1
immediately, do not configure the word point WX1. See the example I/O
Configuration Chart in Figure 3-7.

NOTE: Immediate I/O is supported only in modules that are installed in the
local base (Base 0).

Slot 1

I/O Configuration Chart for Channel ...1 Base00
I/O Points

Slot 1

Slot 2

Slot 3

WX0009 WX0010 WX0011

1 2 3

X0001 X0002 X0003

1 2 3

Slot 2

Slot 3

1 2 3

In this configuration, the same number has been assigned
to discrete and word points.

During an immediate I/O access, only the X inputs (X1,
X2, and X3) are updated.

In this configuration, the discrete and word points are
numbered uniquely.

Immediate I/O accesses are allowed for both discrete and
word points.

X0001 X0002 X0003

I/O Configuration Chart for Channel ...1 Base00
I/O Points

WX0001 WX0002 WX0003

1 2 3

Figure 3-7 Immediate I/O Configuration Chart

Modules that
Support Immediate
I/O

Configuring
Immediate I/O

I/O Concepts 3-11SIMATIC 545/555/575 Programming Reference

3.4 Interrupt I/O Operation

The interrupt I/O feature allows your application program to be executed
immediately in response to a field input transition generated by your
application. Refer to Section 5.5 for more information on interrupt I/O
operation.

The interrupt I/O functionality requires a 545 or 555, with at least one
Isolated Interrupt Input Module installed in the local base. This module has
16 isolated discrete input points, 8 of which can be configured to generate
an interrupt on the occurrence of an off-to-on transition, an on-to-off
transition, or a transition in either direction.

The Interrupt Input Module has dipswitches that are used to select the
signal behavior at a pair of input points that will cause an interrupt to be
generated by the module. You must correctly select the interrupt type for
the points being used in the interrupt module by using these dipswitches.
(The points are not individually configurable.) See the section on
“Configuring the Module Operating Mode” in the Isolated Interrupt Discrete
Input Module User Manual for a description on how to set the configuration
switches.

To be used as an interrupt module, this module must be installed in the
local base of the system (i.e., the base in which the controller is located or
Base 0), and at least one pair of the configurable input points must be
specified to be interrupting. Multiple interrupt modules can be used in the
local base of the system.

When the module powers up with interrupting input points configured, it is
logged in by the controller as a 32-point discrete module (24X – 8Y). The
points are a mixture of physical field input points and logical (internal)
points used for status purposes, as described below.

• Points 1–8: Non-interrupting field inputs (these points cannot be used
as interrupting inputs).

• Points 9–16: Configurable field inputs (can be interrupting or
non-interrupting, based upon the settings of the interrupt type
switches on the module).

• Points 17–24: Logical (internal) inputs that indicate which of the
interrupting field inputs has generated an interrupt to the controller. A
value of ON for a given logical input indicates that the module has
generated an interrupt due to the detection of a transition matching
the configuration of the corresponding field input. Each of these points
corresponds to one of the interrupting field inputs, as shown in
Table 3-2.

Overview

Configuring the
Interrupt Input
Module

I/O Concepts3-12 SIMATIC 545/555/575 Programming Reference

Interrupt I/O Operation (continued)

• Points 25–32: Logical (internal) outputs that act as individual interrupt
enables for each of the interrupting field inputs. Turning on a given
output point enables interrupt operation on the corresponding field
input, as shown in Table 3-2.

Table 3-2 Logical Points Corresponding to Interrupt Inputs 9 – 16

Physical Input
Points (X)

Logical Interrupt Status
Inputs (X)

Logical Interrupt Enable
Outputs (Y)

9 17 25

10 18 26

11 19 27

12 20 28

13 21 29

14 22 30

15 23 31

16 24 32

The interrupt status points (17–24) are used by the interrupt RLL program
to distinguish between interrupt events from each of the configured
interrupt input points. See Section 5.5 for more information. The interrupt
enable output points (25–32) give you the option of selectively enabling or
disabling interrupts under program control. The Interrupt Input Module
powers up with all interrupt inputs disabled, so the interrupt enable
outputs must be turned on to allow interrupts to be generated by the
module.

In order for the controller to accept interrupt requests from an interrupt
module, you must correctly configure the module into the I/O map of the
controller, using, for example, the I/O Configuration function of TISOFT.
The controller ignores interrupt requests from an incorrectly configured
module.

NOTE: For applications requiring quick response to interrupt events,
disable the 10-ms filtering option provided by the module (set by
dipswitches on the module) for the interrupting points used in that type of
application. See the Isolated Interrupt Discrete Input Module User Manual
for details about the setup and usage of this module.

I/O Concepts 3-13SIMATIC 545/555/575 Programming Reference

3.5 Control Relays

Control relays are single-bit internal memory locations (Figure 3-8) and do
not represent actual hardwired devices. A given control relay may be
retentive or non-retentive. A retentive control relay maintains its value
during a power outage if a good battery is installed and enabled.
Non-retentive control relays are initialized to zero (off) following a power
outage. The number of available control relays depends upon your controller
model. See Table 3-3.

Table 3-3 Control Relays Permitted

Non-retentive Retentive

C1–C768 C769–C1024

C1025–C1792 C1793–C2048

C2049–C2816 C2817–C3072

C3073–C3840 C3841–C4096

C4097–C48641 C4865–C51201

C5121–C58881 C5889–C61441

C6145–C69121 C6913–C71681

C7169–C79361 C7937–C81921

C8193–C102401

C10241–C327681, 2

1 Applies to all CPUs except the 545–1103 and 545–1105.
2 For the 575 CPUs, the range of non-retentive Cs is C10241–23552.

As a troubleshooting tool, control relays can be forced. The force attribute
bit, also shown in Figure 3-8, provides a single-bit memory location for
storing the forced status of control relays. If a control relay has been forced,
the control relay retains that forced status during a power cycle as long as
the battery is good.

1
2
3
4

5
6
7
8

10

11

9

1
2
3
4

5
6
7
8

10

11

9

Control
relay
ie.

C1...C(X)

Force attribute bit
ie.

C1...C(X)

Figure 3-8 Control Relay

Control relays are retentive or non-retentive. The state of retentive relays
does not change during a power loss when the back-up battery is good.
Non-retentive relays are turned off if power to the controller is lost.

I/O Concepts3-14 SIMATIC 545/555/575 Programming Reference

Control Relays (continued)

The difference in operation between retentive and non-retentive control
relays is illustrated in Figure 3-9. The starter circuit shown in Figure 3-9a
requires a manual start. The normally open push-button #1 must be
pressed. In the event of a power loss, a manual restart is required. The
equivalent RLL design, built with non-retentive control relay C100,
functions the same way, requiring a manual restart after power loss.

The starter circuit shown in Figure 3-9b also requires a manual start, but in
the event of a power loss, restart occurs automatically. Push-button #2
breaks the circuit. The equivalent RLL design, built with retentive control
relay C769, also restarts automatically after power loss.

X69

PB1
Sol1

Contacts

C100

C100

X69 represents PB1
X70 represents PB2
C100 represents the solenoid.

PB2
X70

X69 represents PB1
X7 represents PB2
C769 represents the solenoid.

Figure 3-9a Operation of Non-retentive Control Relays

Figure 3-9b Operation of Retentive Control Relays

X69

PB1
Sol1

Contacts

C769

C769
PB2

X7

Figure 3-9 Control Relay Operation

Using Retentive
and Non-retentive
Control Relays

Controller Memory 4-1SIMATIC 545/555/575 Programming Reference

Chapter 4

Controller Memory

4.1 Introduction to Controller Memory 4-2.
Overview of Controller Memory Types 4-2.
RLL Access to the Memory Types 4-3.

4.2 Controller Memory Types 4-4.
Ladder Memory 4-4.
Image Register Memory 4-4.
Control Relay Memory 4-4.
Special Memory 4-4.
Compiled Special (CS) Memory 4-4.
Temporary Memory 4-4.
Variable Memory 4-4.
Constant Memory 4-5.
Status Word Memory 4-5.
Timer/Counter Memory 4-5.
Table Move Memory 4-6.
One Shot Memory 4-7.
Shift Register Memory 4-8.
Drum Memory 4-9.
PGTS Discrete Parameter Area 4-10.
PGTS Word Parameter Area 4-10.
User External Subroutine Memory 4-11.
Global Memory: 575 Only 4-11.
VME Memory: 575 Only 4-11.

Controller Memory4-2 SIMATIC 545/555/575 Programming Reference

4.1 Introduction to Controller Memory

Controller memory is composed of several functional types (Figure 4-1). You
can configure the amount of memory dedicated to each type, depending
upon your application. The configurable memory sizes are given in the
SIMATIC 545/555/575 System Manual.

User Program Memory

• Ladder (L) Memory stores RLL program

• Special (S) Memory stores loops, analog alarms, SF Programs

• User (U) Memory stores user-defined subroutines

• Compiled Special (CS) Memory compiles SF programs and SF
subroutines for execution by the floating-point math coprocessor
in CPUs equipped with PowerMath�.

Data Area Memory

• Variable (V) Memory stores variable data

• Constant (K) Memory stores constant data

• Global (G) and VME Memory is used for VME data transfers
(applies to 575 only)

System Memory

• RLL instruction tables: drum, timer/counter, shift register, etc.

• Image registers and control relays

• Subroutine parameter areas

• SF Program temporary memory

• Status Word memory

User Control
Program

User Data

System Operation

Figure 4-1 Controller Memory Types

Overview of
Controller Memory
Types

Controller Memory 4-3SIMATIC 545/555/575 Programming Reference

The various memory types are described in the pages that follow. Memory
types are classified for RLL programming purposes in the following ways:

• Writeable — This memory type is read/write. It can be used for both
input and output fields of RLL instructions.

• Readable — This memory type is read only. It can be used only for the
input fields of RLL instructions.

• No access — RLL instructions have no access to this memory.

Table A-1 lists the RLL access restrictions for variables that are stored in
the various memory types.

RLL Access to the
Memory Types

Controller Memory4-4 SIMATIC 545/555/575 Programming Reference

4.2 Controller Memory Types

A block of memory within the controller is reserved for the RLL program.
This memory type is called Ladder Memory (L-Memory). Each RLL
instruction used in the program requires one or more 16-bit words of
L-Memory. Refer to Appendix B for a detailed list of the number of words
required by each instruction.

A block of memory within the controller is reserved for maintaining the
status of discrete inputs/outputs. This memory type is called the discrete
image register. A word image register holds the values of word
inputs/outputs. Refer to Section 3.1 for information about how the image
registers operate.

A block of memory within the controller is reserved for control relays.
Control relays are single-bit internal memory locations and do not represent
actual hardwired devices. Refer to Section 3.5 for information about how the
control relays operate.

A block of memory within the controller may be allocated for loops, analog
alarms, and Special Function programs. This memory type is called Special
Memory (S-Memory). All loop and analog alarm parameters are stored in
S-Memory when you program the loop or analog alarm. Likewise, when you
create a Special Function program or subroutine, the program is stored in
S-Memory.

For controllers that support PowerMath, you can configure a block of
memory within the controller called Compiled Special Memory (CS-Memory)
to execute compiled Special Function programs and subroutines. When an
SF program or subroutine is marked as compiled, it is translated to the
native instruction set of the CPU’s microprocessor. The compiled code is
then executed whenever the SF program or subroutine is scheduled for
execution.

A block of memory within the controller is temporarily reserved during run
time whenever a Special Function program is run. One block is allocated for
each SF program that is being run. This memory type is 16 words in length
and is called Temporary Memory (T-Memory) since it is not saved when the
program has completed running. The controller writes data related to the
Special Function program to the first seven words. You can read this data
and/or write over it if you choose. You can use all 16 words just as you would
use Variable Memory, except no data is saved when the program has
completed.

A block of memory within the controller may be allocated for user
operations. This memory type is called Variable Memory (V-Memory). For
example, you can do a math operation and store the result in V-Memory. You
can enter values directly into V-Memory with a programming unit.

Ladder Memory

Image Register
Memory

Control Relay
Memory

Special Memory

Compiled Special
(CS) Memory

Temporary Memory

Variable Memory

Controller Memory 4-5SIMATIC 545/555/575 Programming Reference

A block of memory within the controller may be allocated for constants
(unchanging data). This memory type is called Constant Memory
(K-Memory). You can use a programming unit to load a table of data into
K-Memory and read the table during run time whenever you need the data
for an operation.

A block of memory within the controller is allocated for storing status
information relating to controller operations. This information is stored in
one or more status words: STW1, STW2, etc. These status words can be
used in the RLL program to signal and/or correct alarm conditions. See
Appendix E for examples. Refer to Appendix G for a list of the status words
supported by your controller model.

A block of memory within the controller is reserved for the operation of the
timer/counter group of RLL instructions, including the following.

• Timer (TMR, TMRF) • Counter (CTR)

• Discrete Control Alarm Timer
(DCAT)

• Motor Control Alarm Timer
(MCAT)

• Up/Down Counter (UDC)

! WARNING
When you assign a number to a timer , counter , up/down counter, or
discrete/motor control alarm timer, be sure that you do not use that number for
any other timer, counter , up/down counter , or discrete/motor control alarm
timer . For example, if you configure a T imer 6 (TMR6), do not configure any
other operation, e.g., a counter (CTR) or a discrete control alarm timer (DCA T)
with the number 6.

Assigning the same number more than once could cause unpredictable
operation by the controller , which could result in death or serious injury to
personnel, and/or damage to equipment.

Do not use the same reference number more than once for timer , counter ,
up/down counter , and discrete/motor control alarm timer instructions.

Constant Memory

Status W ord
Memory

Timer/Counter
Memory

Controller Memory4-6 SIMATIC 545/555/575 Programming Reference

Controller Memory Types (continued)

This memory type is divided into areas for storing two types of information.
This information consists of Timer/Counter Preset (TCP) data and
Timer/Counter Current (TCC) data. When you designate a preset value for
one of the instructions in this group, this value is stored as a 16-bit word in
TCP-Memory. When the instruction is actually operating, the current time
or count is stored as a 16-bit word in TCC-Memory.

NOTE: If you use an operator interface to change the time/counter values,
the new values are not changed in the original RLL program. If the RLL
presets are ever downloaded, e.g., as the result of a complete restart
(TISOFT Aux 12) or an edit of the network containing the Timer/Counter
instruction, the changes made with the operator interface are replaced by
the values in the RLL program.

A block of memory within the controller is reserved for the operation of the
table-move instructions, including the following:
• Move Word To Table (MWTT

• Move Word From Table (MWFT)

! WARNING
When you assign a number to a table-move instruction, be sure that you do not
use that number for any other table-move instruction. For example, if you
configure a Move W ord To Table #1 (MWTT1) do not configure a Move W ord
From Table #1 (MWFT1).

Assigning the same reference number to more than one table-move instruction
could cause unpredictable operation by the controller, which could result in
death or serious injury to personnel, and/or damage to equipment.

Do not use the same reference number more than once for a table-move
instruction.

This memory type consists of one word per table-move instruction
configured. This word is used to maintain the current count of moves done
since the MWTT or MWFT instruction was last reset.

Table Move
Memory

Controller Memory 4-7SIMATIC 545/555/575 Programming Reference

A block of memory within the controller is reserved for the operation of the
various instructions of the One-Shot group, including the following:

• One Shot

• Time Set

• Date Set

! WARNING
When you assign a number to a One-Shot instruction, be sure that you do not
use that number for any other One-Shot instruction type. For example, do not
configure more than one OS1 1.

Assigning the same number for more than one One-Shot instruction type can
cause unpredictable operation by the controller , which could result in death or
serious injury to personnel, and/or damage to equipment.

Do not use the same number more than once for the same instruction type (e.g.,
use it only once in One Shot, in T imer Set, etc.).

This memory type consists of one byte per configured One-Shot instruction.
This byte is used to save the previous state of the instruction input.

Because the instructions in the One-Shot group use different bits of one
byte, these instructions can be assigned identical reference numbers. That
is, if you configure a One Shot #11 (OS11) you can configure a Date Set #11.

One Shot Memory

Controller Memory4-8 SIMATIC 545/555/575 Programming Reference

Controller Memory Types (continued)

A block of memory within the controller is reserved for the operation of the
shift registers, which include the following:

• Bit Shift Register (SHRB)

• Word Shift Register (SHRW)

! WARNING
When you assign a number to a shift register , be sure that you do not use that
number for any other shift register type. For example, do not configure SHRB1 1
and SHRW11.

Assigning the same number for more than one shift register could cause
unpredictable operation by the controller , which could result in death or serious
injury to personnel, and/or damage to equipment.

Do not assign the same reference number to more than one shift-register
instruction.

This memory type consists of one byte per shift register. This byte is used to
save the previous state of the instruction input.

Shift Register
Memory

Controller Memory 4-9SIMATIC 545/555/575 Programming Reference

A block of memory within the controller is reserved for the operation of the
various drum types, including the following:

• Drum (DRUM) • Event Drum (EDRUM)

• Maskable Event Drum Discrete
(MDRMD)

• Maskable Event Drum Word
(MDRMW)

! WARNING
When you assign a number to a drum-type instruction, be sure that you do not
use that number for any other drum-type instruction. For example, if you
configure a Maskable Event Drum W ord #1 (MDRMW1), do not configure an
Event Drum #1 (EDRUM1).

Assigning the same reference number to more than one drum-type instruction
could cause unpredictable operation by the controller , which could result in
death or serious injury to personnel, and/or damage to equipment.

Do not assign the same reference number to more than one drum-type
instruction.

Drum memory is divided into areas for storing the following types of
information:

• Drum Step Preset (DSP) • Drum Step Current (DSC)
• Drum Count Preset (DCP) • Drum Count Current (DCC)

When you specify step and counts-per-step (count preset) values for a drum
type, the step preset is stored as a 16-bit word in DSP-Memory, and the
counts-per-step values are stored as 16 consecutive 16-bit words in
DCP-Memory (except for the DRUM). For the DRUM instruction,
counts-per-step values are stored in L-Memory; DCP is not used.

When the instruction is actually operating, the current step is stored as a
16-bit word in DSC-Memory. The current count for this step is stored as a
16-bit word in DCC-Memory.

NOTE: If you use an operator interface to change the drum preset values
(DSP or DCP), the new values are not changed in the original RLL program.
If the RLL presets are ever downloaded, e.g., as the result of a complete
restart (TISOFT Aux 12) or an edit of the network containing the drum
instruction, the changes made with the operator interface are replaced by
the values in the RLL program.

Drum Memory

Controller Memory4-10 SIMATIC 545/555/575 Programming Reference

Controller Memory Types (continued)

The Parameterized Go To Subroutine (PGTS) discrete parameter area
(Figure 4-2) is an area of memory within the controller that is reserved for
holding the status of discrete bits referenced as parameters in a PGTS RLL
instruction. Because up to 32 PGTS subroutines can be programmed, the
controller has 32 discrete parameter areas, each capable of storing the
status for 20 discrete parameters. When you use a parameter in the
subroutine, refer to discrete points as Bn where n = the parameter number.

1
2
3
4

5
6

15
16
17
18

19
20

Discrete inputs
Discrete outputs
Control relays

PGTS discrete
parameter area

Values are copied into the
discrete parameter area to
be used by the subroutine.

When parameters are
specified read/write,
changed values are copied
back into appropriate
memory areas.

Figure 4-2 PGTS Discrete Parameter Area

The PGTS word parameter area (Figure 4-3) is an area of memory within
the controller that is reserved for holding the contents of 16-bit words
referenced as parameters in a PGTS RLL instruction. Because up to 32
PGTS subroutines can be programmed, the controller has 32 word
parameter areas, each capable of storing the status for 20 word parameters.
When you use a parameter in the subroutine, refer to words as Wn, where
n = the parameter number.

Bit

1
2
3
4

5
6

1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

Word inputs
Word outputs
Other word data

PGTS word
parameter area

Values are copied into the
word parameter area to be
used by the subroutine.

When parameters are
specified read/write,
changed values are copied
back into appropriate
memory areas.

15
16
17
18

19
20

Figure 4-3 PGTS Word Parameter Area

PGTS Discrete
Parameter Area

PGTS Word
Parameter Area

Controller Memory 4-11SIMATIC 545/555/575 Programming Reference

A block of memory within the controller may be allocated for storing
externally developed programs written in C, Pascal, assembly language, etc.
This memory type is called User Memory (U-Memory). The size of
U-Memory is user configurable.

The 575 CPU allocates a 32K-word block of memory to allow you to transfer
data over the VME backplane. This memory type is called Global Memory
(G-Memory). Refer to Appendix I for more information about G-Memory.

The 575 controller also allows access to physical VME addresses using the
VMM-Memory or VMS-Memory.

• VMM corresponds to VME address modifier 39 (standard
non-privileged data access).

• VMS corresponds to VME address modifier 29 (short non-privileged
access).

! CAUTION
The 575 controller allows you to use a VME address (VMM or VMS) as a
parameter to most word-oriented RLL instructions, e.g., ADD, SUB, or MOVW,
etc.

When a VME address is used and is not recognized by any installed board, a
VMEbus error occurs. If the instruction that used the address was other than
MOVE or XSUB (with the U-Memory header’ s E bit set to 1––see Appendix H),
the controller enters the Fatal Error mode, freezes analog outputs and clears
discrete outputs.

Use the XSUB or MOVE instruction to access the VME address.

User External
Subroutine Memory

Global Memory:
575 Only

VME Memory:
575 Only

Programming Concepts 5-1SIMATIC 545/555/575 Programming Reference

Chapter 5

Programming Concepts

5.1 RLL Components 5-2.
RLL Concept 5-2.
RLL Contact 5-3.
RLL Coil 5-8.
RLL Box Instruction 5-12.
RLL Rung Structure 5-12.
RLL Scan Principles 5-13.

5.2 Program Compile Sequence 5-14.

5.3 Using Subroutines 5-16.
RLL Subroutine Programs 5-16.
SF Programs 5-16.
External Subroutines 5-17.

5.4 Cyclic RLL 5-18.
Overview 5-18.
Cyclic RLL Execution 5-20.

5.5 Interrupt RLL (545/555 only) 5-22.
The Interrupt RLL Task 5-22.
Operation 5-25.
Performance Characteristics 5-26.
Troubleshooting 5-27.

5.6 Using Real-Time Clock Data 5-28.
BCD Time of Day 5-28.
Binary Time of Day 5-30.
Time of Day Status 5-31.

5.7 Entering Relay Ladder Logic 5-32.
SoftShop 505 for Windows 5-32.
TISOFT 5-32.
Using APT 5-32.
COM PROFIBUS 5-32.

5.8 Doing Run-Time Program Edits 5-33.
Editing in Run Mode 5-33.
Avoid These Actions During Run-Time Edits 5-34.
Additional Considerations When Doing Run-Time Edits 5-37.

5.9 Password Protection 5-39.
Protected Program Elements 5-39.
Disabled and Enabled Passwords 5-39.
Password Protection Levels 5-40.
Determining the Current State of Password 5-40.
Password Effect on EEPROM 5-40.

Programming Concepts5-2 SIMATIC 545/555/575 Programming Reference

5.1 RLL Components

Depending upon your controller model, you can choose from several
programming languages to write your application program. The basic
language that is common to all the Series 505 controllers is Relay Ladder
Logic (RLL). In addition, the Special Function (SF) programming language
provides a high-level statement-driven language that can be used for
floating-point math calculations and can call externally developed
subroutines that are written in other high-level programming languages,
such as C, or Pascal.

For a description of these other programming methods, refer to Section 5.3
for the external subroutines, and Chapter 7 for SF programs.

RLL is similar in form and interpretation to the relay diagram. Two vertical
lines represent power and return rails. Connections between the rails (the
ladder rungs) contain circuit components that represent switches, control
relays, solenoids, etc.

The primary function of the RLL program is to control the state of an
output, based on one or more input conditions. An example is shown in
Figure 5-1. This is done at the level of a ladder rung.

In Figure 5-1, the controller tests the input condition, which is represented
by the contacts X20 and X21. When either of the contacts is evaluated as
true, it is defined as having power flow and the circuit is complete to the
next component on the rung, coil Y33. When coil Y33 receives power flow,
the output condition is true, and the circuit is complete to the return rail.

X20 Y33

X21

Power Rail Return Rail

Contacts
Coil

Input Condition Output Condition

Figure 5-1 Single Rung of a Relay Ladder Logic Program

RLL Concept

Programming Concepts 5-3SIMATIC 545/555/575 Programming Reference

A contact can be used anywhere in the program to represent a condition
that needs to be tested. It can represent an actual field input or an internal
memory location. When representing a field input, the contact is referenced
by an address in one of the image registers. When representing an internal
memory location, the contact is referenced by an address in one of the other
RLL-readable memory locations, such as the control relays.

In Figure 5-2, the address for the contact is X1, a point in the discrete image
register. When X1 contains a 1, the contact evaluates as true or on; when X1
contains a 0, the contact evaluates as false or off.

Y10X1

When the referenced address X1 contains the value of 1,
this contact has power flow and the circuit is complete to
the next component on the rung.

Figure 5-2 Power Flow and the Contact

The normal contact is symbolized by in the RLL program. Use the
normal contact when your application requires the referenced address to
equal 1 in order to turn the output on.

• If the referenced address equals 1, the normal contact closes and passes
power flow.

• If the referenced address equals 0, the normal contact remains open
and does not pass power flow.

• Use the normal contact to represent field devices that operate like a
limit switch. When the limit switch closes, the normal contact closes
and passes power flow.

The operation of the normal contact is compared to that of an
electro-mechanical relay in Figure 5-3.

RLL Contact

Programming Concepts5-4 SIMATIC 545/555/575 Programming Reference

RLL Components (continued)

+

–

When TS24 is closed, relay CR5 is energized. In the
ladder diagram, CR5–1 passes power to its output coil
instruction; CR5–2 does not.

CR5–1

CR5–2

Power Return

CR5
Coil

TS24

Electro-mechanical Relay and Ladder Diagram

P/S

TS24

Input

X24

Y10X24

Y11X24
1 I/O Point

X24

Controller

Image
Register

Ladder
Memory

When TS24 is closed, image register point 24 = 1. In
the RLL, the normal contact X24 passes power flow;
the NOT-ed contact X24 does not.

Programmable Controller and RLL

Figure 5-3 Operation of Normal Contact and Electro-mechanical Relay

Programming Concepts 5-5SIMATIC 545/555/575 Programming Reference

The NOT-ed contact is symbolized by in the RLL program. Use the
NOT-ed contact when your application requires the referenced address to
equal 0 in order to turn the output on.

• If the referenced address equals 0, the NOT-ed contact remains closed
and passes power flow.

• If the referenced address equals 1, the NOT-ed contact opens and
interrupts power flow.

The operation of the NOT-ed contact is compared to that of an
electro-mechanical relay in Figure 5-4.

Several different types of contacts are available to enable you to create the
program control that you need for your application. These types of contacts
are described on Pages 5-7 and 5-8.

Programming Concepts5-6 SIMATIC 545/555/575 Programming Reference

RLL Components (continued)

+

–

When TS24 is open, relay CR5 is de-energized. In the
ladder diagram, CR5–2 passes power to its output coil
instruction; CR5–1 does not.

CR5–1

CR5–2

Power Return

CR5
Coil

TS24

Electro-mechanical Relay and Ladder Diagram

P/S

TS24

Input

X24

Y10X24

Y11X24
0 I/O Point

X24

Controller

Image
Register

Ladder
Memory

When TS24 is open, image register point 24 = 0. In the
RLL, the NOT-ed contact X24 passes power flow; the
normal contact X24 does not.

Programmable Controller and RLL

Figure 5-4 Operation of a NOT-ed Contact and
Electro-mechanical Relay

Programming Concepts 5-7SIMATIC 545/555/575 Programming Reference

An X contact corresponds to a point in the discrete image register. The X
contact represents an input from a field device, for example, a limit switch.

! CAUTION
Xs and Ys use the same discrete image register .

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’ s actions.

Do not assign the same reference number to both an input (X) and an
output (Y).

A Y contact corresponds to a point in the discrete image register. The status
of a Y contact is determined by the status of the Y output coil that has the
same address as the Y contact.

A C contact represents a control relay. Control relays are internal memory
locations and do not represent actual hard-wired field devices. The control
relay is used to provide control for other RLL instructions.

A bit-of-word contact represents an individual bit in any readable word,
such as a V- or WX-Memory location. Power flow in a bit-of-word contact is
determined by the state of the bit b (1–16) that it represents.

For example, the bit-of-word contact
V100.13

is closed when bit 13 in
V100 equals 1.

Xn

Xn

Yn

Yn

Cn

Cn

Vn.b

Vn.b

Programming Concepts5-8 SIMATIC 545/555/575 Programming Reference

RLL Components (continued)

An immediate X contact corresponds to a discrete point in an I/O module
and is updated from the I/O module immediately. The immediate X contact
can be updated any time during the controller scan, and is not limited to the
normal I/O update portion of the timeline.

NOTE: Only the power flow for an immediate X contact is updated. The
value in the image register is not updated.

The power flow through a relational contact depends upon the relational
condition that exists between the values contained in two readable words,
such as V- or WX-Memory locations. When the relational condition is true,
the contact is closed. When the relational condition is not true, then the
contact is open.

For example, the relational contact
V1 V25

< is closed when the content
of V1 is less than the content of V25.

The word on the right of the contact symbol can be a signed integer (INT,
–32768 to 32767) or an unsigned integer (UINT, 0 to 65535).

The relational contact
V112 941

= is closed when the content of V112 is
equal to 941.

A coil can be used anywhere in the program to represent an output that
needs to be controlled. It can represent an actual field device or an internal
memory location. When representing a field device, the coil is referenced by
an address in one of the image registers. When representing an internal
memory location the coil is referenced by an address in one of the other
RLL-writeable memory locations, such as control relay memory.

In Figure 5-5, the address for the coil is Y10, a point in the discrete image
register. When the coil is true or on, the controller writes a 1 to Y10; when
the coil is not true or off, the controller writes a 0 to Y10.

Y10X1

When the coil has power flow, the controller writes the
value of 1 to the referenced address Y10. Otherwise, the
controller writes the value of 0 to Y10.

Figure 5-5 Power Flow and the Coil

Xn

Xn

Vn Vm

< >

= <>

≤ ≥

Vn Vm

Vn Vm Vn Vm

Vn Vm Vn Vm

RLL Coil

Programming Concepts 5-9SIMATIC 545/555/575 Programming Reference

The Normal Coil is symbolized by in the RLL program. Use the
normal coil when your application requires the referenced address to equal
1 when the coil has power flow.

• When the rung logic passes power flow to the normal coil, the coil turns
on and the referenced address equals 1.

• When the rung logic does not pass power flow to the normal coil, the
coil remains off and the referenced address equals 0.

• When the normal coil is on, a normal contact that references the same
address also turns on. A NOT-ed contact that references the same
address turns off.

• Use the normal coil to represent field devices that operate like a
solenoid. When the normal coil has power flow, the solenoid is
energized.

The NOT-ed coil is symbolized by in the RLL program. Use the
NOT-ed coil when your application requires the referenced address to
equal 0 when the coil has power flow.

• When the rung logic does not pass power flow to the NOT-ed coil, the
coil remains energized and the referenced address equals 1.

• When the rung logic passes power flow to the NOT-ed coil, the coil is
de-energized and the referenced address equals 0.

• When the NOT-ed coil has power flow, a normal contact that references
the same address turns off. A negative contact that references the same
address turns on.

• The NOT-ed coil does not have any actual field device counterpart. Use
the NOT-ed coil in a situation when you want the output to turn off
when the NOT-ed coil has power flow.

Several different types of coils are available to enable you to create the
program control that you need for your application. These types of coils are
described on Pages 5-10 and 5-11.

Programming Concepts5-10 SIMATIC 545/555/575 Programming Reference

RLL Components (continued)

A Y coil corresponds to a point in the discrete image register. The Y coil can
represent an output to a field device or an internal control relay.

! CAUTION
Xs and Ys use the same discrete image register .

If you assign an input module to an X image register point and an output
module to the same Y image register point, your program may not be able to
affect the output module’ s actions.

Do not assign the same reference number to both an input (X) and an
output (Y).

A C coil represents a control relay. Control relays are internal memory
locations and do not represent actual hard-wired field devices. The control
relay is used to provide control for other RLL instructions.

A bit-of-word coil represents an individual bit in any writeable word, such
as a V- or WY-Memory location. Power flow in a bit-of-word coil determines
the state of the bit b (1–16) that it represents.

For example, when this bit-of-word coil
V18.2

is on, bit 2 in V18 is
set to 1. When the coil is off, bit 2 in V18 is cleared to 0.

An immediate Y coil operates as a normal Y coil with the additional function
that an immediate I/O module update is done when the instruction (coil) is
executed. The immediate Y coil is updated any time during the controller
scan, and is not limited to the normal I/O update portion of the timeline.

NOTE: Both the image register and the I/O module are updated when the
immediate Y coil is executed.

Yn

Yn

Cn

Cn

Vn.b

Vn.b

Yn

Yn

Programming Concepts 5-11SIMATIC 545/555/575 Programming Reference

When it has power flow, a SET Y coil sets a specified bit to one. Otherwise,
the bit remains unchanged. When it has power flow, a RST (Reset) Y coil
clears a specified bit to zero. Otherwise, the bit remains unchanged.

When it has power flow, a SET C coil sets a specified bit to one. Otherwise,
the bit remains unchanged. When it has power flow, a RST (Reset) C coil
clears a specified bit to zero. Otherwise, the bit remains unchanged.

The SET immediate Y coil operates the same as the set Y coil, except that
the specified bit is updated immediately, like the immediate Y coil. The
RST (Reset) immediate Y coil operates the same as the reset Y coil, except
that the specified bit is updated immediately, like the immediate Y coil.

The SET bit-of-word coil operates the same as the set coil, except that the
specified bit is contained in a writeable word, such as a V- or WY-Memory
location. The RST (Reset) bit-of-word coil operates the same as the reset
coil, except that the specified bit is contained in a writeable word.

NOTE: If the referenced bit is only used by set/reset coils, then the bit acts
as a latch.

Yn

Yn

Cn

Cn

Yn

Yn

Vn.b

Vn.b

Programming Concepts5-12 SIMATIC 545/555/575 Programming Reference

RLL Components (continued)

The RLL box instructions are pre-programmed functions that extend the
capabilities of your program beyond the RLL relay-type contact and coil
instructions. The box instructions are described in detail in Chapter 6.

The counter, shown in Figure 5-6, is an example of a box instruction.

X100 Y209CTR 85

P = 3449
C223

A

B

Figure 5-6 Example of a Box Instruction

The counter is enabled by the lower input line, B in the figure. Then off/on
transitions on the upper input line A are counted as pulses. When the pulse
count reaches the preset value of 3449, the output coil is turned on.

You can design a rung in combinations of series and parallel structures to
provide the required logic for controlling the output. The rung shown below
represents a series circuit. When both input conditions are true, the output
is true. In terms of programming logic, the two input conditions are ANDed:
Y16 = (X69 • X70).

X69 Y16X70

This rung represents a parallel circuit. When either input condition is true,
the output is true. In terms of programming logic, the two input conditions
are ORed: Y33 = (X20 + X21).

X20 Y33

X21

RLL Box Instruction

RLL Rung Structure

Programming Concepts 5-13SIMATIC 545/555/575 Programming Reference

When processing an RLL program that contains no cyclic or interrupt RLL
tasks, the sequence of controller operation is summarized in these three
stages.

• The controller reads all inputs, and

• The controller solves the RLL, and

• The controller writes all outputs.

The controller solves all the logic in an RLL rung before proceeding to the
next rung, as shown in Figure 5-7. Refer to Section 3.3 for a discussion of
cyclic RLL and Section 3.4 for a discussion of interrupt RLL operation.

Y10X1

Y10 Y11

RLL logic is solved as follows: X1 turns on. This causes Y10 to turn on,
which then causes Y11 to turn on. Contacts and coils that are on after one
scan are shaded and are defined as having power flow.

Box A
Output

A B

A

B

C

If Box A writes a value to memory, Box B can read the value on the same
scan, immediately after Box A executes and turns on its output.

Logic is solved to point A and then to point B. The logic is then solved
to point C before the logic at point D is solved.

D

Figure 5-7 How Relay Ladder Logic Is Solved

RLL Scan Principles

Programming Concepts5-14 SIMATIC 545/555/575 Programming Reference

5.2 Program Compile Sequence

If an RLL program has been modified, it is compiled when the controller
mode changes from PROGRAM to RUN or from EDIT to RUN. The compile
sequence for an RLL program is illustrated in Figure 5-8. Note the effect of
the END and SBR RLL instructions on the compile process.

L-Memory

Task Segment

Task Segment

RLL Subroutine

RLL Subroutine

END

RTN

RTN

END

END

NOP

NOP

NOP

The controller compiles RLL instructions until an END instruction
is encountered.

The controller compiles RLL between an SBR and an RTN.

The controller continues to read L-Memory until:

1) Two consecutive END instructions are encountered, or
2) The end of L-Memory is reached.

2

1

SBR

SBR

The compiler ignores any RLL between the
END and an SBR.

The compiler ignores any RLL between an
RTN and the next SBR.

4

Note that when the controller encounters two consecutive END
instructions anywhere in the program, the compile is terminated.

The controller compiles RLL between an SBR and an RTN.

3

The compiler ignores any RLL between an
RTN and an END.

Figure 5-8 RLL Program Compile Process

Programming Concepts 5-15SIMATIC 545/555/575 Programming Reference

Remember these rules as you design the RLL program.

• The TASK instruction, not an END instruction, separates task
segments.

• All TASKs must be located before the first END.

• The zone of control for a SKP is limited to the task segment or
subroutine in which the SKP is used. That is, the matching LBL must
be defined after the SKP and in the same task segment or subroutine
as the SKP.

• An END instruction separates RLL subroutines, if any, from the rest of
the program.

• Subroutines must be terminated with an unconditional RTN
instruction.

• Two consecutive END instructions terminate the compile process.
Otherwise, the controller scans all of L-Memory. If the RLL program is
significantly smaller than configured L-Memory, terminate the
program with two END instructions to reduce the scan bump caused by
a change to RUN mode after a run-time edit.

NOTE: The online FIND function does not search past two consecutive END
instructions. You must position your cursor after the two ENDs when you
search for an item occurring after two END instructions.

Programming Concepts5-16 SIMATIC 545/555/575 Programming Reference

5.3 Using Subroutines

The 545, 555, and 575 controllers provide several levels of subroutine
support for your application program. Program subroutines can be designed
as an RLL structure stored in L-Memory, a Special Function (SF) program
located in S-Memory, or an externally developed program (written in C,
Pascal, or certain other high-level languages) stored in U-Memory.

You use the SBR, and RTN ladder logic instructions to create an RLL
subroutine that can be called from the main RLL program. The SBR
instruction marks the start of the subroutine; the RTN instruction marks
the end of the subroutine. The GTS instruction transfers program control to
the subroutine and RTN returns control to the instruction that follows the
calling GTS instruction after the subroutine has executed.

The PGTS ladder logic instruction operates similarly to the GTS instruction.
You use PGTS to call a section of the RLL program that is preceded by an
SBR and execute it. Unlike GTS, the PGTS allows you to pass parameters to
a subroutine.

Refer to Chapter 6 for more information about using the RLL subroutine
instructions.

A Special Function program consists of a set of high-level, statement-driven
programming instructions that can be called from loops, analog alarms, or
from the RLL program, much like a GOSUB subroutine in a BASIC
program or a procedure in a C language program. Typically, the types of
operations that you execute within an SF program either cannot be done
with the RLL instruction set, or they involve complex RLL programming.
Such operations include floating point math, If /Then conditional
statements, table transfers, data consolidation, etc.

Refer to Chapter 7 for more information about designing and writing
SF programs.

RLL Subroutine
Programs

SF Programs

Programming Concepts 5-17SIMATIC 545/555/575 Programming Reference

Use the XSUB instruction to pass appropriate parameters to an externally
developed subroutine and then call the subroutine for execution. The
external subroutine can be developed offline in a non-RLL programming
language, such as C or Pascal.

Refer to Appendix H for more information about designing and writing
external subroutines.

! WARNING
When you call an external subroutine, the built-in protection features of the
controller are by-passed.

Control devices can fail in an unsafe condition that could result in death or
serious injury to personnel, and/or damage to equipment.

You must take care in testing the external subroutine before introducing it to a
control environment. Failure to do so may cause undetected corruption of
controller memory and unpredictable operation by the controller .

External
Subroutines

Programming Concepts5-18 SIMATIC 545/555/575 Programming Reference

5.4 Cyclic RLL

The cyclic RLL function allows you to partition the RLL program into a
cyclic RLL task and a main RLL task. When used with the immediate I/O
feature, the cyclic RLL task can provide very high rates of sampling for
critical inputs.

The TASK instruction, described in Chapter 6, is used to partition an RLL
program into a main RLL task and a cyclic RLL task.

An RLL application program that contains a cyclic RLL task must be
designed as follows.

• The application program can consist of two or three RLL tasks: the
main RLL task, the cyclic RLL task, and an optional interrupt RLL
task. Each RLL task is preceded by the TASK(n) instruction, where
n = 1 designates the main task, n = 2 designates the cyclic task, and
n = 8 designates the interrupt task. Refer to Figure 5-9a.

• The A field of the TASK2 instruction specifies the cycle time of the
cyclic task in milliseconds. The range for this field is 0–65535. You can
specify cycle time as a constant for A or as a readable variable, where
the run-time content of the variable establishes the cycle time.

• A task can consist of multiple segments, each preceded by a TASK
instruction. The segments do not have to be contiguous (Figure 5-9b).
All segments for a TASK2 are executed within the cycle time specified
in the TASK2 instruction for the first segment in the program. Values
specified in subsequent segments are ignored.

When the cyclic RLL task does not complete execution within the
specified cycle time, the appropriate status word bits are set. These are
described in Appendix G.

NOTE: You can use any of the RLL instructions in a cyclic RLL task. Using
cyclic RLL for immediate I/O applications and keeping the cyclic RLL task
as small as possible minimizes the impact to the normal RLL scan.

Overview

Programming Concepts 5-19SIMATIC 545/555/575 Programming Reference

End

Task 1

Task 1
Main RLL
Task

Task 2

Task 2
Cyclic RLL
Task

RLL
Subroutines

Figure 5-9a
Two Unsegmented Tasks

and RLL Subroutines

End

Task 1 *
Segment 1

Task 1

Task 1
Segment 2

Figure 5-9b
Two Segmented Tasks

* Task 1 is assumed when the first
rung does not contain a TASK
instruction.

Task 2

Task 2
Segment 1

Task 2

Task 2
Segment 2

Figure 5-9 Examples of Cyclic RLL Design

Programming Concepts5-20 SIMATIC 545/555/575 Programming Reference

Cyclic RLL (continued)

An RLL program that contains a cyclic RLL task is executed as follows.

• The cyclic RLL task is executed periodically throughout the entire
controller scan, interrupting the discrete scan and the analog scan as
necessary.

NOTE: The execution of a cyclic RLL task is not synchronized with the
normal I/O update or the normal RLL execution. If a cyclic RLL task uses a
value computed by the normal RLL task, you must plan your program
carefully to ensure correct operation when the value is not fully determined.
For example, the cyclic RLL task can run between the execution of the ADD
and SUB boxes in Figure 5-10.

V100
V33
V40

C10X037

A:

ADD

B:
C:

V40
V500
V40

A:

SUB

B:
C:

Cyclic RLL can run after the ADD box is
executed and before the SUB is executed.

Figure 5-10 Example of Cyclic RLL Execution Interrupt

• If the cyclic RLL completes execution in less than the time specified by
cycle time, execution does not resume until cycle time expires
(Figure 5-11).

Cyclic RLL
Execution

Time

Cycle 1

Actual
Execution
Time

Idle

Cycle Time

Actual
Execution
Time

Idle

Cycle 2

Figure 5-11 Relationship of Cyclic RLL Execution Time to Cycle Time

Cyclic RLL
Execution

Programming Concepts 5-21SIMATIC 545/555/575 Programming Reference

• Cycle time can be a constant or a variable. As a variable, the cycle time
can be changed by logic in the main program, logic in the cyclic RLL
task itself, or by other processes. The new cycle time does not take
effect until the current execution of the cyclic RLL task has completed.
See the example in Figure 5-12.

• If cycle time expires before a cyclic task completes, an overrun is
reported in STW219, and the cycle that should have executed upon the
expiration of A is skipped.

Cyclic
RLL
execution

Cycle time
= 15 ms

Normal
RLL
execution

Time 15 ms

Exec.
= 5 ms

Cycle time
changed to
10 ms by
normal RLL

Exec.
= 5 ms

10 ms

Exec.
= 5 ms

Exec.
= 5 ms

10 ms

Next scan

Cycle time
= 10 ms

Cycle time
= 10 ms

Cycle time
= 10 ms

Figure 5-12 When Cycle Time Changes Take Effect

Refer to Chapter 6 for more information about how to use the TASK
instruction.

Programming Concepts5-22 SIMATIC 545/555/575 Programming Reference

5.5 Interrupt RLL (545/555 only)

The interrupt RLL task (available on the 545 and 555 only) is the user
program entity that is executed upon the occurrence of an interrupt request
from an interrupt module. You can create only one interrupt task, and
within it, you must include the RLL instructions required to handle all of
the possible interrupt events in your application.

The TASK instruction, described in Chapter 6, is used to partition the
interrupt RLL task from the main and cyclic RLL tasks. The interrupt RLL
task is denoted as TASK 8 and can be composed of either one segment or
multiple segments in the controller’s L-Memory area, but it must be located
before the first END statement of the program. Refer to Figure 5-13 for
examples of user program partitioning.

End

Task 1

Task 1
Main RLL
Task

Task 2

Task 2
Cyclic RLL
Task

RLL
Subroutines

Figure 5-13a
Three Unsegmented Tasks and RLL Subroutines

End

Task 1*
Segment 1

Task 1

Task 1
Segment 2

Figure 5-13b
Two Segmented Tasks and One Unsegmented Task

* Task 1 is assumed when the first
rung does not contain a TASK instruction.

Task 2

Task 2

Task 8

Task 8
Segment 2

Task 8

Task 8
Interrupt
RLL Task

Task 8
Task 8
Segment 1

Figure 5-13 Examples of Cyclic RLL Design

The Interrupt
RLL Task

Programming Concepts 5-23SIMATIC 545/555/575 Programming Reference

TASK 8 of your RLL program is executed whenever the controller receives
an interrupt request from one or more interrupt modules installed in the
local base. An interrupt request is generated by a module when one or more
of its field inputs undergoes a transition matching the transition type
configured for the inputs.

Since multiple field inputs may simultaneously undergo transitions in your
system, a given interrupt request issued to the controller can result from
transitions occurring simultaneously at multiple inputs on one or more
modules. Therefore, your TASK 8 program must be written to handle
interrupts from multiple sources in a single execution pass. Your program
must incorporate the status word STW220 and the module’s interrupt
status points to determine the source(s) of a given interrupt request.

When an interrupt request occurs, the controller determines which modules
are involved (or “participating”) in that request and places that information
into status word STW220 in the format shown in Figure 5-14. If you are
using more than one interrupt module, you must use the values stored in
STW220 in your TASK 8 program to make decisions on whether or not the
interrupt handlers for a module should be executed. (Remember, more than
one module may be generating interrupt requests simultaneously.)

S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16

MSB LSB

16151413121110987654321

Sx = local base slot number

1 = interrupt request active at module located in this slot

STW220

Figure 5-14 Status Word 220 Format

Once the TASK 8 program has determined that a module is involved in the
current interrupt request, it must determine which of the module’s field
inputs were responsible for the generation of that request. The interrupt
status points (points 17 – 24) of the Interrupt Input module provide that
information. You can use the IORW instruction, described in Chapter 6, to
read the interrupt status points of the module and store their values into
the image register of the controller. Your program can then use these values
to make decisions on which interrupt handlers to execute and which ones to
bypass.

Programming Concepts5-24 SIMATIC 545/555/575 Programming Reference

Interrupt RLL (545/555 only) (continued)

Refer to Figure 5-15 for an example of an RLL program that uses STW220,
IORW instructions, TASK 8, and the interrupt status input points of the
module to execute handlers for inputs participating in the current interrupt
request and to bypass handlers for non-participating inputs.

SKP10

C24

SKP11

LBL11

SKP12

LBL12

LBL10

SKP20

C26

SKP21

LBL21

LBL20

STW220.16

C23

X17

X18

STW220.3

C25

X81

TASK 8

IORW 1
A: X17
N: 8

IORW 2
A: X81
N: 8

Interrupt handler for
interrupting input X9
(whose interrupt
status input is X17).

Read interrupt status
points from interrupt
module in Slot 1.

Interrupt handler for
interrupting input X10
(whose interrupt
status input is X18).

Interrupt handler for
interrupting input X73
(whose interrupt
status input is X81).

Read interrupt status
points from interrupt
module in Slot 14.

In the example program, the first interrupt module is installed
in slot 1 of the local base and its configured I/O address is X1
(which means that its interrupt status points begin at X17).
The second interrupt module is installed in slot 14 and its I/O
address is X65.

Interrupt handling routines
for interrupts generated
from the module installed
in Slot 1.

Interrupt handling routines
for interrupts generated
from the module installed
in Slot 14.

Figure 5-15 Example RLL Interrupt Program

Programming Concepts 5-25SIMATIC 545/555/575 Programming Reference

A number of qualifying conditions determine whether the controller
executes the interrupt RLL task upon the occurrence of an interrupt
request. The interrupt RLL task is not executed if the following are true:

• The controller is in the PROGRAM or FAULT modes.

• The controller is in the process of switching from EDIT to RUN mode.

• The controller is in the process of reconfiguring I/O.

• Interrupt requests are received from a module that is failed, not
configured, or incorrectly configured in the controller’s I/O map.

If interrupt requests occur simultaneously from both a correctly configured
module and an incorrectly configured module, only the bit in STW220
corresponding to the correctly configured module is set to 1 before the
interrupt RLL task is executed. (Bit positions corresponding to slots not
participating in the current interrupt request also contain a 0.)

Upon detection of an interrupt request, the controller performs the following
sequence of actions:

• Acknowledges the interrupt request, to clear the interrupt request
backplane signal and to obtain an indication of which modules are
participating in this interrupt request.

• Determines whether each participating module is qualified to issue
interrupts (based upon configuration and failure state, as described
above), and then writes the resultant bit pattern into STW220.

• Executes the interrupt RLL task if the qualifying conditions are met.

• Sends a rearm signal to each participating module, to clear the current
interrupt request and to allow new interrupt requests.

Operation

Programming Concepts5-26 SIMATIC 545/555/575 Programming Reference

Interrupt RLL (545/555 only) (continued)

The interrupt input feature is designed for rapid response to external
events, which is implemented by servicing interrupt requests at a very high
priority. Because of this emphasis, you must take care to minimize the
length of the interrupt RLL program in order to avoid affecting other
time-dependent functions in the controller.

NOTE: Excessive time spent by the controller executing interrupt RLL can
delay the execution of loops, analog alarms, and cyclic SF programs, extend
the scan time of the controller, degrade the performance of the
communication ports and remote I/O, and possibly result in a timeout of the
scan watchdog timer, causing the controller to enter FAULT mode.

The amount of interrupt RLL execution time is determined both by the
length of the TASK 8 program and the rate of interrupt requests. The
execution time of your TASK 8 program can be determined by using the
Ladder Logic Instruction Execution Time data in the Release Notes which
accompanied your controller or firmware upgrade kit. The rate of interrupt
requests is solely dependent upon your application.

It is important to know that the maximum delay through the Interrupt
Input Module of an interrupt event is 0.5 ms (with 10-ms filter off) and that
the maximum delay time in the controller in reacting to the interrupt
generated by the Interrupt Input Module is also 0.5 ms. Therefore, the
TASK 8 interrupt RLL program begins execution within 1 ms of the
occurrence of a signal transition detectable by the Interrupt Input Module
(assuming that no other interrupt inputs are being processed).

Using the above information, the minimum acceptable sustained interval
between interrupt requests is as follows:

Interrupt interval min (in ms) = 2 * (T ASK 8 max. execution time + 1)

For example, if the maximum execution time of your TASK 8 program is
0.75 ms, then the controller can continuously handle interrupt requests
occurring at intervals down to (2*(.75+1)) or 3.5 ms. The controller can
handle bursts of interrupt events occurring at shorter intervals but
sustained interrupt activity occurring at intervals shorter than the
recommended time will result in system degradation.

Performance
Characteristics

Programming Concepts 5-27SIMATIC 545/555/575 Programming Reference

Successful operation of the interrupt input feature depends upon the
following conditions.

• The interrupt input module is correctly configured.

• The I/O configuration stored in the controller for the Interrupt Input
Module is correct.

• The interrupt RLL task is correctly designed and implemented.

Each interrupt module installed in the local base must be correctly
configured in the I/O map of the controller. When in the interrupt mode,
each module logs in as having 24 discrete inputs and 8 discrete outputs.
Additionally, the module must not be reporting itself as failed.

The example of an interrupt RLL task shown in Figure 5-15 provides a
guide for the development of your interrupt RLL task. If problems with the
execution of your interrupt RLL task occur, verify that your logic for
determining the source of the interrupt request is correct. Remember the
following points:

• STW220 identifies which interrupt modules in the local base have an
active interrupt request. Use STW220 to determine which module or
modules triggered the current execution of the interrupt RLL.

• The status of each internal point (17 – 24) of the Interrupt module
indicates the interrupting points responsible for generating the current
request. Use the immediate I/O read instruction (IORW) to read the
interrupt status point values from the module. (Refer to Table 3-2 on
page 3-12 and the Interrupt Input Module User Manual.)

Also, remember to enable the interrupting points used in your application.
This is done in the normal RLL (TASK 1) program. You must set the
interrupt enable output points in the module to allow operation of the
interrupting input points that you are using (see Table 3-2).

Status word STW221 can assist you in tracking down problems with
interrupt input operation. STW221 contains a count of interrupts generated
by modules on the local base. Whenever a module generates an interrupt
request to the controller, STW221 is incremented by one (even though the
module may have multiple actively interrupting points). Interrupt requests
increment STW221 in any operating mode of the controller (except FAULT).
For example, you can debug some of the interrupt operation in PROGRAM
mode by manually causing a signal transition of the correct direction at a
field input on the interrupt module and verifying that STW221 increments.
(The interrupt RLL task is not executed since the controller is in
PROGRAM mode.) This validates that the interrupt module is detecting the
field input transition and is generating an interrupt to the controller and
that the controller recognizes the interrupt. This does not validate that the
module is correctly configured in the I/O map or that your interrupt RLL
program is correct.

Troubleshooting

Programming Concepts5-28 SIMATIC 545/555/575 Programming Reference

5.6 Using Real-Time Clock Data

Status Words 141–144 contain the status of the real-time clock at the start
of the last I/O update. The real-time clock data includes the following
information:

• Year (two digits), month, day of month, and day of week

• Hour, minute, second, and fraction of second, in 24-hour format

The clock data is stored in the status words in BCD format and is updated
at the start of the I/O cycle, once per controller scan. The clock is backed up
by battery and continues to keep time during a power shutdown.

You can use the Move Element (MOVE byte), or Word Rotate (WROT) and
the Word AND (WAND) instructions to obtain specific segments of the
status words containing the individual time items, such as minutes or
seconds, for use in your RLL program.

Figure 5-16 shows the location of each item of information available with
the clock status words. Each division in the figure represents four bits.

1 Always 0 for 575.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

STW141

STW142

STW143

STW144

Year–Tens

Day–Tens

Minute–Tens

Second–
Tenths

Year–Units

Day–Units

Minute–Units

Second–
Hundredths1

Month–Tens

Hour–Tens

Second–Tens

0

Month–Units

Hour–Units

Second–Units

Day of
Week

Figure 5-16 Status Word Location of Time Data

BCD Time of Day

Programming Concepts 5-29SIMATIC 545/555/575 Programming Reference

Figure 5-17 illustrates clock information on the date: Monday, 5 October,
1992, at 6:39:51.76 P.M. Note that the 24-hour format is used and Sunday is
assumed to be day 1.

MSB LSB

0000100001001001STW141

MSB LSB

0001100010100000STW142

MSB LSB

1000101010011100STW143

MSB LSB

0100000001101110STW144

Figure 5-17 Clock Data Example

Programming Concepts5-30 SIMATIC 545/555/575 Programming Reference

Using Real-Time Clock Data (continued)

Binary time of day is contained in status words STW223 through STW225.
STW223 and STW224 contain a 32-bit binary representation of the relative
millisecond of the current day. STW225 contains a 16-bit binary
representation of the current day relative to 1-January-1984 (day 0).
Figure 5-18 shows the binary time-of-day status words.

Time of Day represented in binary milliseconds MSW

MSB LSB

16151413121110987654321

STW223

Time of Day represented in binary milliseconds LSWSTW224

Day of year relative to 1-January-1984 represented in binarySTW225

Figure 5-18 Binary Time of Day

Binary Time of Day

Programming Concepts 5-31SIMATIC 545/555/575 Programming Reference

STW226 contains the time of day status. See Figure 5-19. The status word
contains the following information:

• Bit 1 is a 1 when the current time is prior to the time reported on the
last Task 1 RLL scan.

• Bit 10 is a 1 when the time has been set and is valid.

• Bit 11 is a 1 when the time of day is synchronized over a network.

• Bits 12 and 13 define the time resolution as follows:

01 = 0.01 second

10 = 0.1 second

11 = 1.0 second

• Bit 14 is a 1 when there is a time synchronization error. This bit is set
if the CPU does not receive a time update from the network at the
expected time.

• Bit 15 is a 1 when there is no time-synchronization input from the time
transmitter network.

01 = 0.01 sec, 10 = 0.1 sec, 11 = 1.0 sec

1 = Current time is prior to time reported on last T ask 1 RLL scan

1 = Time Synchronization is over a network

1 = Time is valid (has been set)

Time Resolution

1 = No time synchronization input from the transmitter

1 = Time Synchronization Error .

1

10

11

12 13

14

15

MSB LSB

16151413121110987654321

Figure 5-19 Time-of-Day Status Word

Time of Day Status

Programming Concepts5-32 SIMATIC 545/555/575 Programming Reference

5.7 Entering Relay Ladder Logic

SIMATIC 505 SoftShop� for Windows� is a Windows-based programming
software that supports all SIMATIC 505 series programmable controllers. It
provides familiar Windows features such as menu-driven commands, tool
bars, and point-and-click functions to help simplify creating and editing
your application program. Refer to your SoftShop manual for detailed
instructions about how to enter a program.

SoftShop for Windows Release 2.1 or greater is required to support all the
new features in the 555–1105 and 555–1106 CPUs.

You can use the TISOFT programming software to create and edit your
application program. TISOFT allows you to work directly in the ladder logic
environment as you design the RLL program. For loops, analog alarms, and
SF programs, TISOFT presents menu-driven programming tools.

To program the features described in this manual, you need TISOFT 6.3 or
greater, which runs on an IBM� PC/AT compatible personal computer.
Refer to your TISOFT manual for detailed instructions about how to enter a
program.

NOTE: TISOFT 6.3 does not support the following features in the 555–1105
and 555–1106 CPUs: SmarTune�, PID loops above 64, the RLL PID Fast
Loop box instruction, or analog alarms above 128.

You can use the SIMATIC Application Productivity Tool — APT to
program your controller. APT is a graphic programming environment that
eliminates the need for you to work in relay ladder logic when you create
your application program. APT presents a familiar structure for process
engineers, allowing them to become more closely involved in up-front design
work. When the APT program is compiled, an RLL program is produced,
generating the language with which the electrician or maintenance person
is already familiar. Refer to the APT manual set for more information.

The COM PROFIBUS configuration utility is a Windows� 3.1-based tool for
configuring PROFIBUS-DP I/O slaves. Refer to the SIMATIC 505 TISOFT2
User Manual and the SIMATIC S5 ET 200 Distributed I/O System Manual
for information about using COM PROFIBUS.

SoftShop 505 for
Windows

TISOFT

Using APT

COM PROFIBUS

Programming Concepts 5-33SIMATIC 545/555/575 Programming Reference

5.8 Doing Run-Time Program Edits

Your controller allows you to edit the RLL control program of a process that
is running. This section provides guidelines for doing run-time edits.

! WARNING
Care must be exercised when doing run-time edits.

Incorrect actions can result in the failure of the process being controlled,
which could result in death or serious injury to personnel, and/or damage to
equipment.

Carefully plan any run-time edits to an active process. A void doing run-time
edits to an active process if at all possible.

Run-time edits to the RLL program are made in the EDIT mode. The
controller enters the EDIT mode automatically when you enter the first edit
change. While in EDIT mode, the process is controlled by the RLL program
as it existed prior to the controller entering the EDIT mode.

! WARNING
TISOFT or SoftShop supports some controller models that do not support
certain RLL instructions and/or memory configurations. It may allow you to
enter unsupported RLL instructions, and depending upon memory
configuration, may allow you to enter unsupported memory addresses for RLL
instructions. Be aware that, if you do a run-time edit and enter an unsupported
RLL instruction or an unsupported memory address, the controller enters
PROGRAM mode and freezes all outputs.

This could cause unpredictable operation, which could result in death or
serious injury to personnel, and/or damage to equipment.

Refer to the documentation for your controller model to see which memory
types are supported, and what their maximum size can be. Use the syntax
check function to validate a program before setting the controller to RUN mode.

You can modify one or more networks, as required, to accomplish the
complete modification. After all required modifications are complete,
request a SYNTAX CHECK to verify that the changes compile correctly. If
errors are detected by SYNTAX CHECK, you can correct these errors and then
re-execute the SYNTAX CHECK. This process can be repeated until the syntax
check is successful, at which time you can set the controller to the RUN
mode.

Editing in Run
Mode

Programming Concepts5-34 SIMATIC 545/555/575 Programming Reference

Doing Run-Time Program Edits (continued)

When you select RUN mode, the controller compiles the edited RLL
program. If you did not run the SYNTAX CHECK and errors are detected
during the RLL compilation, the controller transitions to the PROGRAM
mode, freezing the outputs in their current state. Actions that result in an
error are listed in the “Avoid These Actions During Run-Time Edit” Section
on pages 5-34 to 5-36. If no errors are detected during the RLL compilation,
the controller transitions to the RUN mode and the newly-edited RLL
program assumes control of the process.

NOTE: The process experiences a temporary scan extension during the
compilation of the edited program. The length of the scan extension depends
upon the size of the RLL program (30–70 ms per K-words of programmed
RLL on a 545 or a 575, and approximately have of that time on a 575).

The actions listed in this section cause the controller to enter the
PROGRAM mode with outputs frozen in their current state, if present when
RUN mode is selected from EDIT mode. For users of TISOFT 4.2 or later, or
SoftShop, these conditions are detected and can be corrected prior to
selecting RUN mode when you use the SYNTAX CHECK function.

! WARNING
The conditions that are described on the following pages can cause the process
to become uncontrolled, which could result in death or serious injury to
personnel, and/or damage to equipment.

It is your responsibility to provide for a safe recovery in the event of the
occurrence of any of these conditions.

Be sure to observe the guidelines under the System Commissioning section of
the Safety Considerations document (2588015–0003) included with your
documentation.

SKP instruction without a corresponding LBL The LBL associated with a SKP
instruction must exist within the same program segment (SBR or TASK) as
the SKP instruction. If this is not the case, the controller transitions to
PROGRAM mode and freeze the outputs.

Solution Ensure that both instructions have been entered before selecting
RUN mode.

Avoid These
Actions During
Run-Time Edits

Programming Concepts 5-35SIMATIC 545/555/575 Programming Reference

SBR instruction without a terminating RTN A subroutine must be terminated by
an unconditional RTN instruction. If this is not the case, the controller will
transition to PROGRAM mode and freeze the outputs.

Solution Ensure that both instructions have been entered before selecting
RUN mode.

GTS, PGTS or PGTSZ without corresponding SBR The subroutine referenced by
a GTS or PGTS(Z) instruction must be defined before it can be referenced. If
this is not the case, the controller will transition to PROGRAM mode and
freeze the outputs.

Solution Ensure that both instructions have been entered before selecting
RUN mode.

Use of unsupported features Your RLL program must not use an instruction
that is not supported by the software release installed in your controller, nor
may it reference undefined or unconfigured data elements.

TISOFT and SoftShop have been designed to support a wide range of
controllers. Since a given controller may not support all instructions
supported by TISOFT or SoftShop, it is possible to enter an instruction that
is not supported by your controller. If you enter an unsupported instruction
or reference an unconfigured variable location, the CPU will transition to
PROGRAM mode and freeze the outputs.

Solution Ensure that the instruction that you intend to use is supported by
 the software release installed in your controller. Use the SYNTAX

CHECK function to verify the program before selecting RUN mode.

Programming Concepts5-36 SIMATIC 545/555/575 Programming Reference

Doing Run-Time Program Edits (continued)

Exceeding L-Memory When you edit an RLL program, it is possible for the
edited program to exceed L-Memory. This can occur in two ways, as
described below.

First, when you modify or insert a new network, the networks following the
edited network are “pushed down” toward higher L-Memory addresses. If
the configured L-Memory capacity is exceeded, one or more networks at the
end of the program will be deleted to make room for the edit. TISOFT and
SoftShop provide a warning of this condition prior to entering the editing
change. After selecting RUN mode, the controller enters RUN mode,
assuming none of the other conditions described above is present.

Solution Prior to making run-time edits, ensure that L-Memory can hold
the entire program. With TISOFT 6.3 or greater, select AUX 28 (or
select the SoftShop menu command PLC Utilities → PLC Status...)
to determine the memory availability status of your controller.
Otherwise, follow the steps below:

1. Determine the configured L-Memory size by using the TISOFT Memory
Configuration function. Remember to convert K bytes (shown on the
Memory Configuration display) to K words (1 word = 2 bytes).

2. Find the end of the RLL program.

3. Subtract the rung number of the NOP, which follows the last network
of your program, from the configured K words of L-Memory that you
determined in step 1. This is the amount of available L-Memory.

4. If the size of the additional logic exceeds the amount of available
L-Memory, do not do the run-time edit.

Second, configured L-Memory can be exceeded when the compiled RLL
program is more than twice as large as the uncompiled program. When you
configure L-Memory, the system allocates two bytes for the compiled
program for every byte of RLL memory. Usually this is sufficient to ensure
that the compile does not run out of memory. However, if your RLL program
contains a high percentage of SKP instructions relative to contacts and
coils, it is possible to exceed the allocated compiled program memory. If this
happens following an edit, the controller transitions to PROGRAM mode
and freezes the outputs at the current state.

Solution With TISOFT 6.3 or greater, select AUX 28 (or select the SoftShop
menu command PLC Utilities → PLC Status...) to determine the
memory availability status of your controller. Otherwise, you can use
the SYNTAX CHECK function to detect this problem before selecting the
RUN mode.

Programming Concepts 5-37SIMATIC 545/555/575 Programming Reference

When you edit an existing network, TISOFT or SoftShop deletes the
existing network and then inserts the edited network in its place. If the
existing (pre-edit) network has an instruction with retained state
information, and if this instruction remains in the network after the edit,
unexpected results may be obtained following the edit. These unexpected
results occur due to initialization of the state information for the “retained
state” instruction.

! WARNING
When editing an existing network, TISOFT or SoftShop deletes the existing
network and then inserts the edited network in its place.

If the existing (pre-edit) network has an instruction with retained state
information, and if this instruction remains in the network after the edit, you
could experience unexpected results (following the edit) that could result in
death or serious injury to personnel, and/or damage to equipment.

Table 5-1 lists RLL instructions with retained state information along with the
initialization performed by these instructions when they are compiled on the
to-RUN transition following an edit. If you must edit a network containing one of
these instructions, you must consider the effect upon the process caused by
this initialization and ensure that the process state can safely handle this effect.
Additional information concerning state initialization can be found in
Section 4.2.

For example, consider the following edit operation:

C2C3C1C2C1

Before edit. after edit

: O :: O :: O : : O :

1 1

In this edit, the intent is to add a dependency on C3 for the C2 output. Due
to the edit, however, the C2 output may be unexpectedly driven for one scan.
This will occur, for example, if C1 is on during the edit process and both C1
and C3 are on when the controller enters the run mode following the edit.

Additional
Considerations
When Doing
Run-Time Edits

Programming Concepts5-38 SIMATIC 545/555/575 Programming Reference

Doing Run-Time Program Edits (continued)

Table 5-1 lists the RLL instructions that have retained state and also gives
their initial state on the first run-mode scan following the edit operation.

Table 5-1 RLL Instructions and Condition After Edit

Instruction Initial Condition After Run-Time Edit

CTR Initialized to require a 0 to 1 transition of the count input with TCP (count preset) set to the
instruction’s preset value and TCC (current count) set to 0.

DCAT TCP (time preset) and TCC (time remaining) are set to the preset value in the DCAT
instruction; i.e., the alarm timer is restarted.

DRUM
DSP (preset step) and DSC (current step) are set to the preset step specified in the DRUM
instruction. DCC (current count) is set to the programmed count for his preset step. (The
process is now controlled by the preset step.)

DSET Initialized to require a 0 to 1 transition of the input.

EDRUM

The count preset values for each of the drum’s steps are copied from the EDRUM instruction
to the corresponding DCP (count preset) variables. DSP (preset step) and DSC (current step)
are set to the preset step specified by the instruction and DCC (current count) is set to the
programmed count for this preset step. Finally, the jog input is initialized to require a 0 to 1
transition. (The process is now controlled by the preset step.)

MCAT TCP (time preset) and TCC (time remaining) are set to the preset value in the MCAT
instruction; i.e., the alarm timer is restarted.

MDRMD
MDRMW

The count preset values for each of the drum’s steps are copied from the
MDRUM/MDRUMW instruction to the corresponding DCP (count preset) variables. DSP
(present step) and DSC (current step) are set to the preset step specified by the instruction
and DCC (current count) is set to the programmed count for this preset step. Finally, the jog
input is initialized to require a 0 to 1 transition. (The process is now controlled by the preset
step.)

MWFT
MWTT

The table pointer is set to the table base and the move count is set to 0.

OS Initialized to set the output on the first scan for which the input is a 1.

SHRB
SHRW

Initialized to require a 0 to 1 transition on the input.

TMR TCP (time preset) and TCC (time remaining) are set to the preset value in the TMR/TMRF
instruction; i.e., the timer is restarted.

TSET Initialized to require a 0 to 1 transition of the input.

UDC Initialized to require a 0 to 1 transition of the count input with TCP (count preset) set to the
upper limit specified in the UDC instruction and TCC (current count) set to 0.

Programming Concepts 5-39SIMATIC 545/555/575 Programming Reference

5.9 Password Protection

NOTE: Use your programming software (SoftShop or TISOFT) to enable the
password protection feature. Refer to SIMATIC 505 TISOFT2 User Manual
(PPX:TS505–8101–x) or the SoftShop user manual for password protection
programming information.

The password protection feature allows you to protect the following
elements of the application program from unauthorized access:

• Memory configuration

• I/O configuration

• Scan tuning parameters (scan watchdog, scan type, time-line values,
etc.)

• RLL Program, including constants (K-Memory)

• Loop Configurations

• Analog Alarm Configurations

• Special Function Programs and Subroutines

• User External Subroutines

• Application Dependencies (575 only)

• Password Protection Level

The programmable controller may be in one of three states of password
protection:

• No Password: The application program is not protected. Any user may
enter an initial password.

• Disabled Password: The application program is not protected. Only an
authorized user may change or delete the password. Any user may
enable the password.

• Enabled Password. The application program is protected according to
the protection level assigned to the password (see below). If a protected
operation is attempted from any communications port, the operation is
denied and an error response is given. Only an authorized user may
change, delete, or disable the password.

Protected Program
Elements

Disabled and
Enabled Passwords

Programming Concepts5-40 SIMATIC 545/555/575 Programming Reference

Password Protection (continued)

Three levels of protection are available when a password has been entered
and enabled.

• No Access: The application program cannot be read or
modified.

• Read-only Access: The application program can be read but it
cannot be modified.

• Full Access: The application program is not protected.

The application program may dynamically determine the current state of
password protection by examining status bits defined in STW1.
(See Appendix G, Status Words.)

When the application program is stored in EEPROM the password
information is stored as well. If an application program stored in EEPROM
is password protected, the password will be automatically enabled following
a power cycle or whenever you select to run out of EEPROM.

Password
Protection Levels

Determining the
Current State of
Password

Password Effect on
EEPROM

RLL Instruction Set 6-1SIMATIC 545/555/575 Programming Reference

Chapter 6

RLL Instruction Set

6.1 Safety Considerations 6-4.

6.2 Introduction 6-6.

6.3 Absolute Value 6-11.

6.4 Add 6-12.

6.5 Bit Clear 6-13.

6.6 Bit Pick 6-14.

6.7 Bit Set 6-15.

6.8 Convert Binary to BCD 6-16.

6.9 Convert BCD to Binary 6-18.

6.10 Compare 6-20.

6.11 Coils 6-22.

6.12 Contacts 6-23.

6.13 Counter (Up Counter) 6-24.

6.14 Discrete Control Alarm Timer 6-26.

6.15 Date Compare 6-30.

6.16 Divide 6-32.

6.17 Time Driven Drum 6-34.

6.18 Date Set 6-38.

6.19 Time/Event Driven Drum 6-40.

6.20 Unconditional End 6-44.

6.21 Conditional End 6-45.

6.22 Go To Subroutine 6-46.

6.23 Indexed Matrix Compare 6-48.

6.24 Immediate I/O Read/Write 6-50.

6.25 Jump 6-52.

6.26 Load Address 6-54.

RLL Instruction Set6-2 SIMATIC 545/555/575 Programming Reference

6.27 Load Data Constant 6-59.

6.28 Lock Memory 6-60.

6.29 Motor Control Alarm Timer 6-63.

6.30 Master Control Relay 6-68.

6.31 Maskable Event Drum, Discrete 6-72.

6.32 Maskable Event Drum, Word 6-76.

6.33 Move Image Register from Table 6-82.

6.34 Move Image Register to Table 6-84.

6.35 Move Image Register to Word 6-86.

6.36 Move Element 6-88.

6.37 Move Word 6-96.

6.38 Multiply 6-98.

6.39 Move Word from Table 6-100.

6.40 Move Word with Index 6-102.

6.41 Move Word to Image Register 6-104.

6.42 Move Word To Table 6-106.

6.43 NOT 6-108.

6.44 One Shot 6-109.

6.45 PID Loop 6-110.

6.46 Parameterized Go To Subroutine 6-112.

6.47 Parameterized Go To Subroutine (Zero) 6-118.

6.48 Read Slave Diagnostic (RSD) 6-120.

6.49 Return from Subroutine 6-122.

6.50 Subroutine 6-123.

6.51 Call an SF Program 6-126.

6.52 Call SF Subroutines from RLL 6-128.

6.53 Bit Shift Register 6-132.

6.54 Word Shift Register 6-134.

RLL Instruction Set 6-3SIMATIC 545/555/575 Programming Reference

6.55 Skip / Label 6-136.

6.56 Scan Matrix Compare 6-140.

6.57 Square Root 6-142.

6.58 Search Table For Equal 6-144.

6.59 Search Table For Not Equal 6-146.

6.60 Subtract 6-148.

6.61 Table to Table AND 6-149.

6.62 Start New RLL Task 6-150.

6.63 Time Compare 6-153.

6.64 Table Complement 6-154.

6.65 Text 6-155.

6.66 Timer 6-156.

6.67 Table to Table OR 6-158.

6.68 Time Set 6-159.

6.69 Table to Word 6-160.

6.70 Table to Table Exclusive OR 6-162.

6.71 Up/Down Counter 6-164.

6.72 Unlock Memory 6-167.

6.73 Word AND 6-168.

6.74 Word OR 6-170.

6.75 Word Rotate 6-172.

6.76 Word To Table 6-174.

6.77 Word To Table AND 6-176.

6.78 Word To Table OR 6-178.

6.79 Word To Table Exclusive OR 6-180.

6.80 Word Exclusive OR 6-182.

6.81 External Subroutine Call 6-184.

RLL Instruction Set6-4 SIMATIC 545/555/575 Programming Reference

6.1 Safety Considerations

A programmable controller is a programmed system. When you create or
modify the control program, you must be aware that your program affects
control actions that manipulate physical devices. If the program contains
errors, these errors can cause the controlled equipment to operate in
unpredictable ways. This could cause harm to anyone who uses the
equipment, damage to the controlled equipment, or both. You must ensure
that the control program is correct before you introduce it to the operational
environment of the controlled process. Read this section carefully before you
create or modify the control program.

The Series 505 controllers are highly reliable systems. However, you must
be aware that these systems can fail. If a failure occurs, and if the control
system is able to respond to the failure, the controller enters the Fatal Error
mode. The Fatal Error mode sets all the discrete outputs to zero (off) and
freezes all the word outputs at their values when the failure was detected.
Your control system design must take the Fatal Error mode into
consideration and ensure that the controlled environment can react safely if
a Fatal Error occurs.

! WARNING
It is possible that the system could fail without being able to execute the Fatal
Error actions. It is also possible for the system to continue to operate while
producing incorrect results.

Operating and producing incorrect results could cause unpredictable controller
behavior that could result in death or serious injury to personnel, and/or
damage to equipment.

You must provide for manual overrides in those cases where operator safety
could be jeopardized or where equipment damage is possible because of a
failure. Refer to the safety considerations sheet (2583015–0003).

NOTE: Some user program errors can also cause the controller to enter the
Fatal Error mode. Examples include corruption of SF instruction control
blocks retained in V-Memory and VMEbus bus errors (for 575 only; see page
4-11).

Overview

Failure of the
Control System

RLL Instruction Set 6-5SIMATIC 545/555/575 Programming Reference

You must ensure the correctness of your control program before you
introduce it to the controlled process. An incorrect control program can
cause the process to act incorrectly or inconsistently. Although any number
of programming errors can cause control problems, one of the more subtle
problems occurs with the incorrect assignment of instruction numbers for
box instructions that have retained state information. The timer, counter,
and drum instructions are examples of these instructions. Section 4.2 lists
the various memory areas in the controller where retained state information
is maintained. Section 4.2 also lists the restrictions that exist in assigning
instruction numbers for the boxes that reference these areas. You must
design your program to accommodate these requirements.

! WARNING
Incorrect assignment of instruction numbers for retained state instructions
could result in inconsistent controller action.

If this occurs, it could cause unpredictable controller action that could result in
death or serious injury to personnel, and/or damage to equipment.

You must ensure that instruction numbers are assigned uniquely for boxes with
retained state information. Refer to Section 4.2.

Performing edits on an active process involves a number of considerations
that are detailed in Section 5.8. You must read and fully understand this
information before you make any edits to the control program of an active
process.

! WARNING
Incorrect application of run-time edits could cause the controller to transition to
the program mode, freezing both discrete and word outputs at their current
status.

This could cause failure of the process that could result in death or serious
injury to personnel, and/or damage to equipment.

Avoid doing run-time edits if you can. If you cannot avoid doing a run-time edit,
then ensure that you have read and fully understood Section 5.8, and that your
edits conform to the requirements of that section.

Inconsistent
Program Operation

Editing an Active
Process

RLL Instruction Set6-6 SIMATIC 545/555/575 Programming Reference

6.2 Introduction

This chapter describes the RLL instruction set that is supported by the 545,
555, and 575 controllers. Figure 6-1 shows how the instructions are
illustrated. The fields that you use to program the instruction are defined
below.

DIV #

AA :
B :
CC :

Input Output

Field Valid Values Function

#

AA

Any readable word Memory location for the dividend. This is a long
word. AA holds the 16 most significant bits, and
AA + 1 holds the 16 least significant bits.

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Instruction
format

B
Any readable word
or constant
(–32768 to +32767)

Memory location of the divisor (one word).

or constant
(–32768 to +32767)

Value of the dividend if a constant is used.

Value of the divisor if a constant is used.

CC Any writeable word
Memory location for the result. CC holds the
quotient (a word); CC + 1 holds the remainder
(a word).

Figure 6-1 RLL Instruction Format

Instruction Format illustrates how the instruction appears on the
programming unit.

Field contains the various fields used to define an instruction. For a field
that is denoted by a single character, e.g., B, the entry defines one word. If
you enter V110 for field B in the division example (Figure 6-1), the
controller reads the word at V110. For a field that is defined by a double
character, e.g., AA, the entry consists of one long word. If you enter V55 for
field AA in Figure 6-1, the controller reads the long word at V55 and V56.

Some fields are defined by two characters that are descriptors for the field.
For example, TD = table destination; AI = an index into field A. For these
fields, the parameter description specifies the field size.

RLL Instruction Set 6-7SIMATIC 545/555/575 Programming Reference

Valid Values lists the valid constants and memory locations that can be used
in this field.

A writeable memory location is defined as any memory location to which an
RLL instruction can both read and write (Section A.1).

A readable memory location is defined as any memory location that an RLL
instruction can read (Section A.1).

Function describes the purpose of the field.

Following an instruction’s format and description, the function of the
instruction is described.

RLL instructions are presented alphabetically for ease in reference.
Table 6-1 lists the RLL instructions by functional groups.

Table 6-1 RLL Functional Groups

Operation Type Instruction Function Page

Coil
Normal or NOT output coil; control relay;
set/reset coil; immediate coil; bit-of-word coil. 6-22

Contact
Normal or NOT contact; control relay;
immediate contact; bit-of-word contact;
relational contact.

6-23

NOT Inverts power flow. 6-108

MCR/MCRE Master control relay. 6-68

JMP/JMPE Freezes outputs in zone of control. 6-52

SKP/LBL
Selectively enable/disable program segments during
scan. 6-136

Electro-mechanical SHRB Bit shift register. 6-132Electro-mechanical
Replacement TMR/TMRF Times events. 6-156

DCAT Discrete control alarm timer. 6-26

MCAT Motor control alarm timer. 6-63

CTR Counts recurring events. 6-24

UDC Counts events up or down. 6-164

DRUM Simulates electro-mechanical stepper switch. 6-34

EDRUM
Simulates electro-mechanical stepper switch. Can be
indexed by timer, event, or timer and event. 6-40

MDRMD Drum; uses configurable mask to control coils. 6-72

MDRMW Drum; uses configurable mask to write to words. 6-76

RLL Instruction Set6-8 SIMATIC 545/555/575 Programming Reference

Introduction (continued)

Table 6-1 RLL Functional Groups (continued)

Operation Type Instruction Function Page

BITC Clears a specified bit. 6-13

BITS Sets a specified bit. 6-15

BITP Examines status of a specified bit. 6-14

WAND Does logical bit-by-bit AND on two words. 6-168

WOR Does logical bit-by-bit OR on two words. 6-170

WXOR Does logical bit-by-bit EXCLUSIVE OR on two words. 6-182

Bit Manipulation WROT Rotates the 4-segment bits of a word. 6-172Bit Manipulation

SMC
Compares status of discrete points with a set of
specified bit patterns. 6-140

IMC
Compares status of discrete points with a specified bit
pattern in a set of patterns. 6-48

Bit-of-word
contact

Examines status of a specified bit 6-23

Bit-of-word coil Copies power flow to the specified bit 6-22

BCD Conversions
CDB Converts BCD inputs to binary. 6-18

BCD Conversions
CBD Converts binary to BCD value. 6-16

LDC Loads a constant to a memory location. 6-59

LDA
Copies the logical address of a memory location into a
memory location. 6-54

MIRW
Copies bit status from control relays or discrete image
register to a word. 6-86

MWIR
Copies bits of a word to the discrete image register, or
the control relay memory. 6-104

Word Move Instructions MOVW Copies words from one location to another. 6-96Word Move Instructions

MOVE
Copies bytes, words, or long words from a source
location to a destination location. 6-88

MWTT Copies a word to a table. 6-106

MWFT Copies a word from a table. 6-100

SHRW Word shift register. 6-134

MWI Copies words from one location to another using
indexed addresses.

6-102

RLL Instruction Set 6-9SIMATIC 545/555/575 Programming Reference

Table 6-1 RLL Functional Groups (continued)

Operation Type Instruction Function Page

ADD Addition. 6-12

SUB Subtraction. 6-148

MULT Multiplication. 6-98

DIV Division. 6-32

Math Instructions SQRT Square Root. 6-142

CMP Compare. 6-20

ABSV Take absolute value of a word. 6-11

Relational
Contacts

Power flow depends on relational condition that exists
between values in two readable words. 6-23

MIRTT
Copies status of control relays or discrete image
register bits to table. 6-84

MIRFT
Copies a table into the control relay memory or
discrete image register. 6-82

TAND ANDs the corresponding bits in two tables. 6-149

TOR ORs the corresponding bits in two tables. 6-158

Table Instructions
TXOR

Does an EXCLUSIVE OR on the corresponding bits in
two tables. 6-162

Table Instructions
TCPL Inverts status of each bit in a table. 6-154

WTOT Copies a word into a table. 6-174

TTOW Copies a word from a table. 6-160

WTTA ANDs bits of a word with the bits of a word in a table. 6-176

WTTO ORs bits of a word with the bits of a word in a table. 6-178

WTTXO Does an EXCLUSIVE OR on the bits of a word with
the bits of a word in a table. 6-180

STFE Searches for a word in a table equal to a specified
word. 6-144

STFN Searches for a word in a table not equal to a specified
word. 6-146

DCMP Compares current date with a specified date. 6-30

Clock Instructions
TCMP Compares current time with a specified time. 6-153

Clock Instructions
TSET Sets time in real-time clock. 6-159

DSET Sets date in real-time clock. 6-38

RLL Instruction Set6-10 SIMATIC 545/555/575 Programming Reference

Introduction (continued)

Table 6-1 RLL Functional Groups (continued)

Operation Type Instruction Function Page

GTS Calls a subroutine. 6-46

PGTS Calls an RLL subroutine and passes parameters to it. 6-112

PGTSZ
Calls an RLL subroutine and passes parameters to it.
Discrete parameters indicated as outputs are cleared
when the subroutine is not executed.

6-118

SBR Designates the beginning of an RLL subroutine. 6-123

Subroutine Instructions RTN Returns control from an RLL subroutine to the main
RLL program. 6-122

XSUB Calls an externally developed subroutine and passes
parameters to it. 6-184

SFPGM Calls a special function program from RLL. 6-126

SFSUB Calls a special function subroutine from RLL. 6-128

OS (One Shot) Turns on output for a single scan. 6-109

END Unconditionally terminates a scan. 6-44

ENDC Terminates a scan conditionally. 6-45

Miscellaneous
Instructions

LOCK

UNLCK

Used together and provide a mechanism whereby
multiple applications in the 575 system can coordinate
access to shared resources.

6-60

6-167
Instructions

PID Performs the PID fast loop function 6-110

RSD Transfers a PROFIBUS-DP slave’s current diagnostic
to user memory. 6-120

TASK Start a new RLL program segment. 6-150

TEXT Places textual information into L-Memory. 6-155

Immediate I/O
Instructions

Immediate
Contact/Coil
SETI/RSTI Coil

Immediate I/O update.

Immediate set/reset of a bit.

6-22
6-23
6-22Instructions

IORW Does immediate read or write to discrete or word I/O. 6-50

RLL Instruction Set 6-11SIMATIC 545/555/575 Programming Reference

6.3 Absolute Value

The ABSV instruction (Figure 6-2) calculates the absolute value of a signed
integer.

ABSV #

A:

Input Output

Field Valid Values Function

0–65535 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies word that contains number of which
absolute value is calculated.

Figure 6-2 ABSV Format

When the input is turned on, the ABSV box executes. If the input remains
on, the instruction executes on every scan. The operation executed is A =
|A|.

• If A ≥ 0, A is not changed, and the output turns on.

• If –32768 < A < 0, A is replaced with the value (0 – A) and the output
turns on.

• If A = –32768, A does not change, and the output is off.

When the input is off, the instruction does not execute, and there is no
power flow at the box output.

These RLL instructions can also be used for math operations.

ADD CMP DIV MULT SQRT SUB

Relational Contact

ABSV Description

ABSV Operation

See Also

ABSV

RLL Instruction Set6-12 SIMATIC 545/555/575 Programming Reference

6.4 Add

The ADD instruction (Figure 6-3) adds a signed integer in memory location
A to a signed integer in memory location B, and stores the result in memory
location C.

ADD #

A:
B:
C:

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Memory location for first addend (a word).

B
Any readable word
or constant

Memory location for second addend (a word).
B or constant

(–32768 to +32767) Value to be added if a constant is used.

C Any writeable
word

Specifies memory location for the sum (a word).

Figure 6-3 ADD Format

When the input is on, the ADD box is executed. If the input remains on, the
instruction is executed on every scan. The operation executed is: C = A + B.

If –32768 ≤ sum ≤ 32767, then the output is turned on. Otherwise, the
output is turned off, indicating an addition overflow, and C contains the
truncated (16 bits) sum.

If the input is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions can also be used for math operations.

ABSV CMP DIV MULT SQRT SUB

Relational Contact

ADD

ADD Description

ADD Operation

See Also

RLL Instruction Set 6-13SIMATIC 545/555/575 Programming Reference

6.5 Bit Clear

The Bit Clear instruction (Figure 6-4) clears a specified bit to zero.

BITC #

A:
N:

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies memory location of word containing bit
to be cleared.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-4 BITC Format

When the input is on, the BITC box executes. If the input remains on, the
instruction executes on every scan. The operation executed is Bit N of word
A is cleared to 0.

The output is turned on during each scan in which the instruction is
executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITP BITS IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

BITC Description

BITC Operation

See Also

BITC

RLL Instruction Set6-14 SIMATIC 545/555/575 Programming Reference

6.6 Bit Pick

The Bit Pick instruction (Figure 6-5) examines the status of a specified bit.

BITP #

A:
N:

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of word containing bit
to be examined.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-5 BITP Format

When the input is turned on, the BITP box executes. If the input remains
on, the instruction executes on every scan. The operation executed is the
status of bit N of word A is checked.

• The output is turned on if the selected bit is 1.

• The output is turned off if the selected bit is 0.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

Refer to Section E.4 for an application example of the BITP.

BITP

BITP Description

BITP Operation

See Also

RLL Instruction Set 6-15SIMATIC 545/555/575 Programming Reference

6.7 Bit Set

The Bit Set instruction (Figure 6-6) sets a specified bit to one.

BITS #

A:
N:

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Specifies memory location of word containing bit
to be set to one.

N 1–16 Specifies bit position. The most significant bit
(MSB) = 1; the least significant bit (LSB) = 16.

Figure 6-6 BITS Format

When the input is on, the BITS box executes. If the input remains on, the
instruction executes on every scan. The operation executed is Bit N of word
A is set to 1.

• The output is turned on during each scan in which the instruction is
executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITP IMC SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil Set/Reset Coil

BITS Description

BITS Operation

See Also

BITS

RLL Instruction Set6-16 SIMATIC 545/555/575 Programming Reference

6.8 Convert Binary to BCD

The Convert Binary to BCD instruction (Figure 6-7) converts a binary
representation of an integer to an equivalent Binary Coded Decimal (BCD)
value. That is, a 16-bit word representing an integer is converted into a
32-bit word in which each group of four bits represents a BCD digit. Values
up to 32,767 are converted to equivalent BCD values.

CBD #

A :
BB :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of integer to be
converted.

BB Any writeable
word

Specifies memory location of the BCD word
after conversion. BB contains the most
significant 16 bits, and BB + 1 contains the least
significant 16 bits.

Figure 6-7 CBD Format

When the input is on, the CBD box executes. If the input remains on, the
instruction executes on every scan. The operation of the CBD is described
below and illustrated in Figure 6-8.

• If A contains an integer 0–32767, the value is converted to BCD and
stored in BB and BB + 1 as shown below, and the box output is turned
on.

BB (BB+1)

Ten
Thousands Hundreds Tens OnesThousands000

MSB LSB MSB LSB

• If A is not in the range 0–32767, there is no power flow at the box
output, and BB and BB + 1 do not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

CBD

CBD Description

CBD Operation

RLL Instruction Set 6-17SIMATIC 545/555/575 Programming Reference

Input OutputCBD 1

A: V199
BB: V190

A: V199

0 0 0 0 0 0 01 1 1 0 1 0 0 01

BB: V190

0 0 0 0 0 0 00 0 0 0 0 0 0 00

(BB+1): V191

0 0 0 1 0 1 00 0 0 1 1 0 1 00

0 0 0 0 1 2 3 4

A: V200

0 0 1 1 0 0 00 0 0 1 1 1 0 10

BB: V201

0 0 0 0 0 0 00 0 0 0 0 0 0 10

(BB+1): V202

0 0 1 0 0 1 10 0 1 0 0 0 1 10

0 0 0 1 2 3 4 5

Input OutputCBD 3

A: V200
BB: V201

Binary coded
decimal

1234

Integer to be converted: 1,234

Binary coded
decimal
12345

integer to be converted: 12,345

Example 1
integer value less than 9,999

Example 2
integer value greater than 9,999

Figure 6-8 Examples of CBD Operation

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

This RLL instruction can also be used for BCD conversions.

CDB

Refer to Section E.12 for an application example of the CBD.

See Also

CBD

RLL Instruction Set6-18 SIMATIC 545/555/575 Programming Reference

6.9 Convert BCD to Binary

The Convert BCD to Binary instruction (Figure 6-9) converts BCD inputs to
the binary representation of the equivalent integer.

CDB #

A :
B :
N :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location of BCD word to be
converted.

B Any writeable
word

Specifies memory location of the integer after
conversion.

N 1–4 Number of digits to be converted.

Figure 6-9 CDB Format

When the input turns on the CDB box executes. If the input remains on, the
instruction executes on every scan. The operation of the CDB follows and
illustrated in Figure 6-10:

• The number of digits (N) of the BCD value located in A, is converted to
its equivalent binary integer value and stored in B.

• N may range from 1–4, and the BCD digit count is from right to left.
For example, if N = 2 and the BCD number in A = 4321, then 21 is
converted, and the value stored in B is 00010101.

• The output turns on after the instruction executes if the digits of the
input word are valid. Each digit of the BCD value in A must be less
than or equal to 9. The binary values 1010, 1011, 1100, 1101, 1110, and
1111 are invalid.

If the digits of the input word are not valid, the instruction does not
execute, and the output does not turn on.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

CDB

CDB Description

CDB Operation

RLL Instruction Set 6-19SIMATIC 545/555/575 Programming Reference

Input OutputCDB 3

A: WX09
B: V111

0 1 0 0 0 1 10 0 0 1 0 0 0 10

0 0 0 0 0 0 00 0 0 0 1 0 1 10

4,321 entered from
thumbwheel WX09

N: 2

A: WX09

4 3 2 1

BCD

B: V111 contain integer 21

Input OutputCDB 2

A: WX11
B: V190

0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 00 0 1 1 0 0 10
N: 4

4 1 9 3

4,193 entered from
thumbwheel WX11

A: WX11

BCD

B: V190 contain integer 4,193

1 0 1 0 1

010

Example 2

Example 1

Figure 6-10 Examples of CDB Operation

This RLL instruction can also be used for BCD conversions.

CBD

Refer to Section E.13 for an application example of the CDB.

See Also

CDB

RLL Instruction Set6-20 SIMATIC 545/555/575 Programming Reference

6.10 Compare

The Compare instruction (Figure 6-11) compares a signed integer value in
memory location A with a signed integer value in memory location B.

CMP #

A :
B :
LT :
GT :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A
B

Any readable word Memory locations of the values being compared.

LT C, Y, B or blank
Coil or relay to be turned on if A < B. If you do
not want any contacts turned on, designate this
coil as C0 or leave it blank.

GT C, Y, B or blank
Coil or relay to be turned on if A > B. If you do
not want any contacts turned on, designate this
coil as C0 or leave it blank.

Figure 6-11 CMP Format

If the input is on, the value in A is compared to the value in B with the
results listed below. A and B do not change as a result of this instruction.

• If A < B, LT is turned on, GT is turned off, and there is no power flow at
the box output.

• If A > B, GT is turned on, LT is turned off, and there is no power flow at
the box output.

• If A = B, GT and LT are turned off, and the output is turned on.

If the input is off, the GT and LT coils are turned off and there is no power
flow at the box output.

CMP

CMP Description

CMP Operation

RLL Instruction Set 6-21SIMATIC 545/555/575 Programming Reference

NOTE: The Compare instruction computes power flow based on the equality
test. To compute power flow for two conditions (e.g., ≥), additional RLL is
required, or you can use the relational contacts.

These RLL instructions can also be used for math operations.

ABSV ADD DIV MULT SQR SUB

Relational Contact

See Also

CMP

RLL Instruction Set6-22 SIMATIC 545/555/575 Programming Reference

6.11 Coils

The various types of RLL coils that are supported are shown in Figure 6-12.
Refer to Section 5.1 for a detailed description of their operation.

Y Coils

Normal NOT-ed

C Coils

Normal NOT-ed

Immediate Y Coils

Normal NOT-ed

Set/Reset Coils Y

Set Coil Reset Coil

Yn Yn

Cn Cn

Set/Reset Coil Bit-of-W ord

Yn Yn

Yn Yn

Vn.b Vn.b

Bit-of-W ord Coils

Normal NOT-ed

Set Reset

Vn.b Vn.b

Set/Reset Coil Immediate

Set Reset

Yn Yn

Set/Reset Coils C

Set Coil Reset Coil

Cn Cn

Figure 6-12 Coil Format

These RLL instructions can also be used for electro-mechanical
replacement.

Contacts CTR DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Coils

See Also

RLL Instruction Set 6-23SIMATIC 545/555/575 Programming Reference

6.12 Contacts

The various types of RLL contacts that are supported are shown in
Figure 6-13. Refer to Section 5.1 for a detailed description of their operation.

Xn Xn

Vn Vm

<

> =

<>

≤ ≥

Vn Vm Vn Vm

Vn Vm

Vn Vm Vn Vm

Yn Yn

Cn Cn

Vn.b Vn.b

X Contacts

Normal NOT-ed

Y Contacts

Normal NOT-ed

C Contacts

Normal NOT-ed

Bit-of-W ord Contacts

Normal NOT-ed

Immediate X Contacts

Normal NOT-ed

Relational Contacts

Xn Xn

Figure 6-13 Contact Format

These RLL instructions can also be used for electro-mechanical
replacement.

Coils CTR DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

Contacts

RLL Instruction Set6-24 SIMATIC 545/555/575 Programming Reference

6.13 Counter (Up Counter)

The Counter instruction (Figure 6-14) counts recurring events. The counter
output turns on after the counter counts up to a preset number, making it
an “up counter.”

CTR #

P :
Count Output

Enable

Field Valid Values Function

#
Varies with
configured
memory

Instruction reference number. Refer to your
controller user manual for the number of
counters supported. The assigned instruction
number must conform to the requirements of the
timer/counter memory discussed on page 4-5 in
Section 4.2.

P 0–32767
Preset value of the maximum value (0–32,767) to
which the counter counts. The counter does not
count events beyond the preset value.

Figure 6-14 CTR Format

When the Enable is on:

• The counter is incremented by one each time the Count input
transitions from off to on

• The output is turned on when the count reaches the preset value.

When enable is off, the current count is set to zero and the output is turned
off.

CTR

CTR Description

CTR Operation

RLL Instruction Set 6-25SIMATIC 545/555/575 Programming Reference

The counter’s preset value is stored in TCP# and its current count is stored
in TCC#. Current values are retained following loss of power provided that
the controller battery backup is enabled. Other RLL instructions can be
used to read or write to the counter variables. You can also use an operator
interface to read or write to the counter variables. While you are
programming the counter, you are given the option of protecting the preset
values from changes made with an operator interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts DCAT DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Using the Counter
Variables

See Also

CTR

RLL Instruction Set6-26 SIMATIC 545/555/575 Programming Reference

6.14 Discrete Control Alarm Timer

The Discrete Control Alarm Timer (Figure 6-15) is designed for use with a
single input, double feedback device. The input to the DCAT box is derived
from the logic that determines the state of the device. The output of the
DCAT box controls the device.

You can use the DCAT to replace the several rungs of logic that are required
to time the field device’s operation and generate alarms in case of failure.

DCAT #

P :
OF :
CF :
OA :
CA :

Input Output

Field Valid Values Function

Varies with
configured memory

Instruction reference number. Range depends
on memory configured for timers/counters. The
assigned instruction number must conform to
the requirements of the timer/counter memory
discussed on page 4-5 in Section 4.2.

P 0000.1–3276.7 sec. Time allowed for the device to open or close

OF X, Y, C, B
Open Feedback — input from a field device or a
control relay that senses when the device being
controlled has opened to specified position.

CF X, Y, C, B
Close Feedback — input from a field device or a
control relay that senses when the device being
controlled has closed to specified position.

OA Y, C, B

Open Alarm — control relay or output that
turns on if the input to the DCAT is on, and the
Open Feedback input does not turn on before
the DCAT timer times out.

CA Y, C, B

Close Alarm — control relay or output that
turns on if the input to the DCAT has turned off
and the Close Feedback input does not turn on
before the DCAT timer times out.

Figure 6-15 DCAT Format

DCAT

DCAT Description

RLL Instruction Set 6-27SIMATIC 545/555/575 Programming Reference

The state changes for the DCAT are shown in Table 6-2. The DCAT output
always equals the state of the input.

Table 6-2 DCAT States

1 = open
0 = close
X = do not care

Input Condition IF THEN

ANDFeedback Timer Action Alarm Status

OA CAOF CF

Output

1 0 1 timing 0 0 1

1 0 0 timing 0 0 1

1 1 0 reset 2 0 0 1

1 0 0 timed out 1 1 0 1

0 1 0 timing 0 0 0

0 0 0 timing 0 0 0

0 0 1 reset 2 0 0 0

0 0 0 timed out 0 1 0

X 1 1 X 1 1 3

1 Timed out: timer has timed a full preset value of time without a sensor
closing.

2 Reset: timer is at preset value and is not timing.
3 Follows input.

NOTE: The DCAT output and alarms are under the control of the JMP or
MCR. Unexpected alarm conditions may occur when the DCAT exists within
the zone of control of a JMP or MCR.

DCAT State
Changes

DCAT

RLL Instruction Set6-28 SIMATIC 545/555/575 Programming Reference

Discrete Control Alarm Timer (continued)

The DCAT timer times down from the preset value specified in P that is
stored in TCP-Memory. The timer current time is stored in TCC-Memory.

When the input to the DCAT transitions from off to on, the time delay is set
to the preset value defined by P, both alarm outputs OA and CA turn off,
and the DCAT output turns on.

While the input remains on, the timer counts down until the OF input turns
on or the timer times out.

If the OF input turns on before the timer times out, the time delay is set to
zero and the OA remains off.

If OF does not turn on before the timer times out, OA turns on.

If OF turns on before the timer times down, but then goes off again while
the input is on, OA turns on. The OA turns off if OF then turns on again.

When the input to the DCAT transitions from on to off, the DCAT output
turns off, the time delay is set to the preset value defined by P, and both
alarm outputs OA and CA turn off.

While the input remains off, the timer counts down until the CF input turns
on or the timer times out.

If the CF input turns on before the timer times out, the time delay is set to
zero and the CA remains off.

If CF does not turn on before the timer times out, CA turns on.

If CF turns on before the timer times out, but then goes off again while the
input is off, CA turns on. The CA turns off if CF then turns on again.

NOTE: If both OF and CF are on simultaneously, both OA and CA turn on.

DCAT

DCAT Operation

Open (Input On)

Close (Input Off)

RLL Instruction Set 6-29SIMATIC 545/555/575 Programming Reference

The DCAT preset value is stored in TCP# and the time remaining until time
out is stored in TCC#. Other RLL instructions can be used to read or write
to these variables. You can also use an operator interface to read or write to
the DCAT variables. While you are programming the DCAT, you are given
the option of protecting the preset values from changes made with an
operator interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DRUM EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

 Refer to Section E.15 for an application example of the DCAT.

Using the DCAT
Variables

See Also

DCAT

RLL Instruction Set6-30 SIMATIC 545/555/575 Programming Reference

6.15 Date Compare

The Date Compare instruction (Figure 6-16) compares the current date of
the real-time clock with the values contained in the designated memory
locations.

DCMP #

DT :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

DT V, W, (G, VMS,
VMM, 575)

Designates the memory locations containing
date to be compared to date in real-time clock.*

V(DT) = Year — BCD 0000–0099.

V(DT+1) = Month — BCD 0001–0012.

V(DT+2) = Day of month — BCD 0001–0031.

V(DT+3) = Day of week — BCD 0001–0007.

Enter the hexadecimal value of 00FF for any of
the fields (year, month, day, etc.) that you want
to exclude from the compare operation.

* BCD values are entered using the HEX data format.

Figure 6-16 DCMP Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

DCMP

DCMP Description

RLL Instruction Set 6-31SIMATIC 545/555/575 Programming Reference

When there is power flow to the input of the DCMP instruction, the current
date in the real-time clock is compared to that contained in the designated
memory locations. If a match occurs, the instruction’s output is turned on.

When the input is off, the comparison is not executed and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DSET TCMP TSET

DCMP Operation

See Also

DCMP

RLL Instruction Set6-32 SIMATIC 545/555/575 Programming Reference

6.16 Divide

The Divide instruction (Figure 6-17) divides a 32-bit (long word) signed
integer stored in memory locations AA and AA + 1, by a 16-bit signed
integer in memory location B. The quotient is stored in memory location CC,
and the remainder is stored in CC + 1.

DIV #

AA :
B :
CC :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

AA
Any readable word

Memory location for the dividend. This is a long
word. AA holds the 16 most significant bits, and
AA + 1 holds the 16 least significant bits. When
a variable is used, the dividend can range from
–2,147,483,648 to +2,147,483,647.

or constant
(–32768 to +32767)

Value of the dividend if a constant is used.

B

Any readable word
Memory location for the divisor (one word).
When a variable is used, the divisor can range
from –32,768 to +32,767, but cannot be zero.B

or constant
(–32768 to +32767)

Value of the divisor if a constant is used.

CC Any writeable
word

Memory location for the result. CC holds the
quotient (a word); CC+1 holds the remainder (a
word). Both quotient and remainder must range
from –32,768 to +32,767 to be valid.

Figure 6-17 DIV Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

DIV

DIV Description

RLL Instruction Set 6-33SIMATIC 545/555/575 Programming Reference

When the input is on, the DIV box is executed. If the input remains on, the
operation executes on every scan. The operation of the DIV, that is
illustrated in Figure 6-18, follows:

[CC (quotient), CC + 1 (remainder)] = (AA, AA + 1) ÷ B

If B is non-zero, the division is done and the output turns on.
Otherwise, the output turns off, and the contents of CC and CC + 1 do
not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

0 0 0 0 1 0 0 0 0 0 0 1

integer =

integer = +545
0 0 1 0

V9 =

V10 =

V33 =

V40 =

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V41 =

integer =

integer =

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0

0 0

0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 0 1 1 0 0 0 0 1 1 1

0 0 1 1

0 0 +3,490,183

 +6404

+3

DIV 12

B:

CC:

V9

V33

V40

C10X037

AA:

Figure 6-18 Division Example

These RLL instructions can also be used for math operations.

ABSV ADD CMP MULT SQR SUB

Relational Contact

DIV Operation

See Also

DIV

RLL Instruction Set6-34 SIMATIC 545/555/575 Programming Reference

6.17 Time Driven Drum

The Drum (Figure 6-19) simulates an electro-mechanical stepper switch or
drum. It provides 15 output coils and 16 steps that are operated on
multiples of the time base set up for the drum. Each step controls all 15
output coils.

The drum functions as described below.

When the drum begins to run, it starts at the step specified by the Drum
Step Preset that is stored in DSP-Memory. The drum current step is stored
in DSC-Memory. The counts per step, set in the CNT/STP field, are stored in
L-Memory and cannot be changed without re-programming the drum. The
current count (counts remaining for a step) is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
remains at this step until DCC counts down to zero.

• When DCC for a step reaches zero, the drum advances to the next step,
and the coils are turned on/off according to the drum mask for the new
step. Each 1 in the mask designates that a coil is to be turned on, while
each 0 designates that a coil is to be turned off.

• The drum output comes on and remains on after the last programmed
step is executed. The last programmed step is the last step with a
non-zero CNT/STP value (step 9 in Figure 6-19). The drum remains at
the last step until you reset the drum.

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off but Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All coils maintain the condition specified by the drum mask for this
step.

• When the drum is at the Preset step, the output coils follow the states
specified by the drum mask for that step, even if the Enable/Reset
input is off. Take care to program the mask with a bit pattern that is a
safe (home) state for the Preset step.

DRUM

DRUM Description

DRUM Operation

RLL Instruction Set 6-35SIMATIC 545/555/575 Programming Reference

Start

Enable/

Output

Mask
0 or 1

Coils (C or Y)

1 17
2 50

 3 23
 4 25
 5 100
 6 10
 7 20
 8 10
 9 25
10 0
11 0
12 0
13 0
14 0
15 0
16 0

Y Y Y Y Y C C C C Y Y Y Y Y Y
6 7 8 9 2 2 1 1 1 2 2 2 2 2 3

1 7 4 5 0 5 6 7 8 9 0
5 1 2

4

Reset

PRESET = 1 to 16
SEC/CNT = 0 to 32.767
STP CNT/STP
(1-16) (0 to 32,767)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DRUM #

Field Valid Values Function

#
Varies with
configured
memory

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-9 in Section 4.2.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 sec. Time base. Amount of time for one count.

Coils Y, C, B, or blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT/STP 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT/STP × SEC/CNT in seconds.

Mask 0–1 Mask controls coils turned on (1) or off (0).

Figure 6-19 DRUM Format

DRUM

RLL Instruction Set6-36 SIMATIC 545/555/575 Programming Reference

Time Driven Drum (continued)

Set the Counts/Step for the time that the drum must remain on a step
according to one of the following equations.

CNT�STP �

step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT�STP �

step time
scan time

� If SEC/CNT is 0, ⇒

For example, if Step 2 is to remain on for 5 seconds and you have set the
SEC/CNT at 0.20 seconds, then CNT/STP = 25 as shown.

CNT�STP �

5.0
0.2

CNT�STP � 25

Other RLL instructions can be used to read or write to the DRUM variables.
Use care when programming instructions that can alter or read these
variables. You can also use an operator interface to read or write to the
DRUM variables.

During its operation, the DRUM uses the count preset value that was stored
in L-Memory when the DRUM was programmed. Therefore, a new value for
count preset that is written by RLL or by an operator interface has no effect
on DRUM operation.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. By contrast, an APT
program can display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

DRUM

Calculating
Counts/Step

Using DRUM
Variables

RLL Instruction Set 6-37SIMATIC 545/555/575 Programming Reference

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DCAT EDRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

 Refer to Section E.5 for an application example of the DRUM.

See Also

DRUM

RLL Instruction Set6-38 SIMATIC 545/555/575 Programming Reference

6.18 Date Set

The Date Set instruction (Figure 6-20) sets the date portion of the real-time
clock to the values contained in designated memory locations.

DSET #

DT :

Input Output

Field Valid Values Function

1 to number of one
shots.

Instruction reference number. The assigned
instruction number must conform to the
requirements of the one-shot memory discussed
on page 4-7 in Section 4.2.

DT V, W, (G, VMS,
VMM, 575)

Designates the memory locations containing
date to be written into the real-time clock*.

V(DT) = Year — BCD 0000–0099.

V(DT+1) = Month — BCD 0001–0012.

V(DT+2) = Day of month — BCD 0001–0031.

V(DT+3) = Day of week — BCD 0001–0007.

* BCD values are entered using the HEX data format.

Figure 6-20 DSET Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

DSET

DSET Description

RLL Instruction Set 6-39SIMATIC 545/555/575 Programming Reference

When the input to the DSET instruction transitions from off to on, the date
portion of the real-time clock is set to the values contained within the three
consecutive memory locations designated by DT, and the output is turned
on.

NOTE: The time of day status words (STW141–144 and STW223–225) do
not reflect the date change until the next RLL scan.

When the input is off, the instruction does not execute and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP TCMP TSET

DSET Operation

See Also

DSET

RLL Instruction Set6-40 SIMATIC 545/555/575 Programming Reference

6.19 Time/Event Driven Drum

The Time/Event Drum instruction (Figure 6-21) simulates an
electro-mechanical stepper switch or drum. The EDRUM can be indexed by
a timer only, an event contact only, or a time and event. A jog input enables
you to allow either time or an event to advance the drum a step. The
EDRUM provides 15 coils and 16 steps that are operated on multiples of the
drum time base. Each step controls all 15 output coils.

PRESET = 1–16

Event Drum #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask
0 or 1

Coils (C or Y)

Jog

Y Y Y Y Y C C C C C Y Y Y C Y
6 7 8 9 1 1 1 1 5 5 2 2 2 2 3

0 3 4 5 7 8 6 7 8 9 0

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

STP CNT EVENT
(1-16) (0-32,767) (X, Y or C)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Valid Values Function

#
Varies with
configured
memory

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of drum memory discussed on
page 4-9 in Section 4.2.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 Time base. Amount of time in seconds for one
count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

Coils Y, C, B, or blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask controls coils turned on (1) or off (0).

Figure 6-21 EDRUM Format

EDRUM

EDRUM Description

RLL Instruction Set 6-41SIMATIC 545/555/575 Programming Reference

When the drum begins to run, it starts at the step specified by the Drum
Step Preset that is stored in DSP-Memory. The drum current step is stored
in DSC-Memory. The counts per step, set in the CNT/STP field, is stored in
DCP-Memory. The drum current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
advances to the next step depending upon operation of the timer and/or
event.

• When the drum advances a step, coils turns on or off according to the
mask for the new step. Each 1 in the mask designates that a coil is to
turn on, while each 0 designates that a coil is to turn off.

• The drum output turns on, and remains on, after the last programmed
step is executed. The last programmed step is the last step having an
event programmed or having a non-zero CNT/STP preset value (step 13
in Figure 6-21). The event must be on (if one was programmed for this
step) and DCC must be zero. If the event turns off after DCC reaches
zero, the drum output remains on and the EDRUM remains at the last
programmed step until the drum is reset.

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All coils maintain the condition specified by the drum mask.

• When the drum is at the Preset step, the output coils follow the states
specified by the drum mask for that step, even if the Enable/Reset
input is off. Take care to program the mask with a bit pattern that is a
safe (home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

EDRUM Operation

EDRUM

RLL Instruction Set6-42 SIMATIC 545/555/575 Programming Reference

Time/Event Driven Drum (continued)

Set the Counts for the time that the drum must remain on a step according
to one of the following equations.

CNT �

step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �

step time
scan time

� If SEC/CNT is 0, ⇒

For example, if Step 2 is to remain on for 5 seconds and you have set the
SEC/CNT at 0.20 seconds, then CNT/STP = 25 as shown.

CNT �

5.0
0.2

CNT � 25

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step to 0, and program a contact or coil in the event field for this step.
The drum remains at this step until the contact or coil specified by the event
turns on. The drum then advances to the next step.

EDRUM

Calculating
Counts/Step

Timer-triggered
Advance Only

Event-triggered
Advance Only

RLL Instruction Set 6-43SIMATIC 545/555/575 Programming Reference

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program such that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

Other RLL instructions can be used to read or write to the EDRUM
variables. Use care when programming instructions that can alter or read
these variables. You can also use an operator interface to read or write to
the EDRUM variables.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. By contrast, an APT
program can display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions can also be used for electro-mechanical
replacement.

Coils Contacts CTR DCAT DRUM JMP

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Refer to Section E.6 for an application example of the EDRUM.

Timer and Event-
Triggered Advance

Timer or External
Event-triggered
Advance

Using EDRUM
Variables

See Also

EDRUM

RLL Instruction Set6-44 SIMATIC 545/555/575 Programming Reference

6.20 Unconditional End

The END instruction (Figure 6-22) unconditionally terminates the scan.

END

Figure 6-22 END Format

Always terminate your program with the END instruction. When a
controller executes an END instruction, the program scan terminates. No
instructions occurring after an END executes.

• The controller program scan is always terminated by the unconditional
end.

• No other elements can be on the same rung with an END.

If you use an RLL subroutine, place an END instruction between the last
rung of the main RLL program and the first rung of the subroutine.

Do not use an END instruction to separate RLL tasks. The TASK
instruction indicates that a new RLL task is beginning.

This RLL instruction can also be used for terminating the scan.

ENDC

END

END Description

END Operation

See Also

RLL Instruction Set 6-45SIMATIC 545/555/575 Programming Reference

6.21 Conditional End

The ENDC instruction (Figure 6-23) can terminate the program scan under
specific conditions. Since any instructions after an active ENDC instruction
are not executed, this instruction can be used to decrease scan time.

Input

C

END

Figure 6-23 ENDC Format

When the ENDC instruction executes, the current program scan
terminates. ENDC operates in conjunction with an input and is executed
only when there is power flow at the input. When the input is off, the ENDC
instruction is not executed, and the program scan is not terminated.

When the ENDC instruction is active, ladder logic following the ENDC is
not executed and outputs following the ENDC are frozen. An active ENDC
functions as an end statement for MCRs and JMPs that precede it, if it is in
their zones of control. Outputs between the MCR or JMP and the ENDC
remain under the control of the MCR or JMP.

For an ENDC contained within a SKP zone of control, the ENDC is
overridden if the SKP receives power flow.

This RLL instruction can also be used for terminating the scan.

END

ENDC Description

ENDC Operation

See Also

ENDC

RLL Instruction Set6-46 SIMATIC 545/555/575 Programming Reference

6.22 Go To Subroutine

The GTS instruction (Figure 6-24) enables you to write RLL programs
preceded by a subroutine number and call them to be used where needed.
The subroutine number is entered after the GTS to designate the
subroutine to be executed.

GTS #

Field Valid Values Function

1–255 Subroutine reference number.

Figure 6-24 GTS Format

When there is power flow to the input of the GTS instruction, the RLL
program calls the subroutine indicated by the GTS number. For example,
when GTS44 has power flow to the input, execution of RLL jumps to SBR44.
If there is no power flow to the input, the GTS instruction does not execute,
and RLL program does not jump to the subroutine.

! WARNING
The instructions required to define a subroutine, such as END, RTN, SBR, GTS,
and PGTS/PGTSZ, must be entered the way that the controller expects, or else
the controller changes from RUN to PROGRAM mode and freezes outputs in
their current status, which can cause unexpected controller operation.

Unexpected controller operation can result in death or serious injury to
personnel, and/or damage to equipment.

When you do a run-time edit with TISOFT (Rel 4.2 or later), enter all the
instructions required to define a subroutine (END, RTN, SBR, GTS or
PGTS/PGTSZ) before setting the controller to RUN mode; also, use the TISOFT
syntax check function to validate a program before placing the controller in
RUN mode. When you do a run-time edit using an earlier release of TISOFT , you
must enter the instructions in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

GTS

GTS Description

GTS Operation

RLL Instruction Set 6-47SIMATIC 545/555/575 Programming Reference

An example of a subroutine call is shown in Figure 6-25.

(Unconditional
return)

(Conditional
return)

GTS nnnX1

END

SBR nnn

RTN

RTN

SBR nnn

End
subroutine

Begin next
subroutine

Begin
subroutine

Figure 6-25 Example Call to Subroutine

These RLL instructions are also used for subroutine operations.

PGTS PGTSZ RTN SBR SFPGM XSUB

See Also

GTS

RLL Instruction Set6-48 SIMATIC 545/555/575 Programming Reference

6.23 Indexed Matrix Compare

The Indexed Matrix Compare instruction, Figure 6-26, compares a
predefined 15-bit mask pattern to the status of up to 15 discrete points. The
mask to be compared is selected from a field of up to 16 masks by the step
number currently located in CUR PTR. If a match is found, the output turns
on.

IMC #

STP

CUR PTR:
Compare Output

Mask
0 or 1

I/O Points

Enable

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

X X X Y Y C C C C C C Y Y Y Y
6 7 8 9 1 1 2 3 4 5 5 2 2 2 3

0 8 9 7 8 9 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1 to 16)

Address in
V-Memory

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

CUR PTR
V, W, (G, VMS,
VMM, 575)

Memory location of the step number of the mask
to be compared to the discrete points.

STP 1–16 Specifies step number of the mask.

I/O
Points

X, Y, C, B, or blank The discrete points to be compared to the mask.

Figure 6-26 IMC Format

IMC

IMC Description

RLL Instruction Set 6-49SIMATIC 545/555/575 Programming Reference

The IMC operation is described below.

• If Enable is off, the controller automatically writes 1 to the CUR PTR
address regardless of the signal state of the Compare input. The output
is turned off.

• If Enable is on and Compare is on, the current status of up to 15 X, Y,
or C points is checked against the predefined bit pattern identified by
the step number loaded into CUR PTR. If a match is found, the box
output turns on. Otherwise, the box output turns off.

NOTE: If the CUR PTR value is out of range (greater than 16 or less than
1), the controller uses the mask for step 16 to compare to the discrete points.

• If Enable is on and Compare is off, the instruction does not execute,
and there is no power flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP SMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil

IMC Operation

See Also

IMC

RLL Instruction Set6-50 SIMATIC 545/555/575 Programming Reference

6.24 Immediate I/O Read/Write

The IORW instruction (Figure 6-27) allows you to do an immediate read or
write to discrete or word I/O modules on the local base. For inputs, the data
transfer is directly from the I/O module(s) into the image register. For
outputs, the data transfer is directly from the image register to the I/O
modules. Refer to Section 3.3 for more information about using immediate
I/O in a program.

Output

IORW #

A:
N=

Input

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A X, Y, WX, WY
Designates I/O starting address. If a discrete
point (Xn or Yn), then n – 1 must be a multiple
of 8.

N
Up to number of
points supported
by module.

Designates number of points to move. If A is a
discrete point (Xn or Yn) then N must be a
multiple of 8. All points must reside within the
same I/O module.

Figure 6-27 IORW Format

When the input is on, the IORW box is executed. If the input remains on,
the instruction is executed on every scan.

• The data transfer takes place when the instruction is executed in RLL.

For inputs (Xs and WXs), the status of the specified number of points is
copied from the I/O module to the image register.

For outputs (Ys and WYs), the status of the specified number of points
is copied from the image register to the I/O module.

IORW

IORW Description

IORW Operation

RLL Instruction Set 6-51SIMATIC 545/555/575 Programming Reference

• Output status follows input status, unless an error occurs.

For inputs: when the module is not present or does not match I/O
configuration, the specified input points in the image register are
cleared to zero and the output turns off.

For outputs: when the module is not present or does not match I/O
configuration, the status of the specified output points in the image
register is not copied to the I/O module and the output turns off.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

NOTE: When the IORW copies Y values from the image register to a
module, the current state of the Y points in the image register are written to
the module. If you want these Ys to be controlled by an MCR or a JMP, the
MCR or JMP must be used to control the coils that write to the Ys. The
IORW operation is not directly affected by MCRs and JMPs.

These RLL instructions are also used for immediate I/O applications.

Immediate Contact/Coil Immediate Set/Reset Coil TASK

See Also

IORW

RLL Instruction Set6-52 SIMATIC 545/555/575 Programming Reference

6.25 Jump

The Jump instruction (Figure 6-28) is used to freeze the values of the
discrete image register points of the controlled outputs in the JMP’s zone of
control. This instruction is often used when duplication of outputs is
required and the outputs are controlled by different logic.

JMP #

JMP #

Start of JMP

Zone of control

End of JMPE

Field Valid Values Function

1–8 Instruction reference number. Numbers can be repeated.

Figure 6-28 JMP Format

The JMP operates as an output update-enable instruction. The JMP must
have power flow, and not be nested within the zone of control of a JMP not
having power flow, for ladder logic in the JMP zone of control to change the
status of outputs.

• Discrete outputs between a JMP and its corresponding JMPE do not
change when the JMP loses power flow.

• JMPE marks the end of the zone of control for the JMP having the
same reference number. If you do not use the JMPE, the remainder of
the program is placed under the control of the JMP. You can make the
JMPE conditional by placing a contact on the same rung as the JMPE.

• When an MCR loses power flow, JMP instructions within the MCR’s
zone of control are overridden. That is, all outputs in the MCR’s zone of
control turn off when the MCR loses power flow, even when the outputs
are frozen in an ON state by a JMP. This includes rung outputs within
the rung, such as those specified within a drum.

Refer to Section 6.55 for information about the action of the JMP in
conjunction with the SKP instruction.

JMP

JMP Description

JMP/JMPE
Operation

RLL Instruction Set 6-53SIMATIC 545/555/575 Programming Reference

In Figure 6-29, a JMP is located on rung A, and its zone of control is
terminated by JMPE (End Jump) on rung D.

• When JMP 5 has power flow, the ladder logic within its zone of control,
(rungs B and C), is executed normally.

• When JMP 5 does not have power flow, all RLL instructions in the JMP
zone of control still execute normally, but outputs are not changed.

• Discrete outputs and control relays contained within an instruction,
such as a drum, for example, are also controlled by the JMP. In
Figure 6-29, Y6, Y7, Y8, C1, C2, and C3, as well as Y12 and Y451, are
frozen when the JMP loses power flow.

X037 Y012

JMP 5X001

X777

JMP 5

A

B

C

D

X010

X010

Y451

STP CNT/STP
SEC/CNT = .1
PRESET = 1

Drum 1
Y Y Y C C C
6 7 8 1 2 3

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

 1 17
 2 50
 3 23
 4 25
 5 100
 6 10

E

Zone

of

control

Figure 6-29 Example of JMP Zone of Control

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

MCAT MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

JMP

RLL Instruction Set6-54 SIMATIC 545/555/575 Programming Reference

6.26 Load Address

The Load Address instruction (Figure 6-30) copies the logical address of a
memory location into a specified memory location (a long word). Use the
LDA as a preparatory statement to the MOVE instruction, when the
indirect addressing option is needed.

LDA #

A :
AI :
BB :
BI :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Specifies the source address. See “ Specifying
Source” below.

AI
Blank, unsigned
constant (0 to 65535)
or any readable word

Specifies an index to be applied to the source
address. See “Specifying Index for Source”
below.

BB

For direct address:
any writeable word

For indirect address:
any readable word

Specifies destination. See “Specifying
Destination” below.

BI
Blank, unsigned
constant (0 to 65535)
or any readable word

Specifies index to be applied to destination
address. See “Specifying Index for Destination ”
below.

Figure 6-30 LDA Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

LDA

LDA Description

RLL Instruction Set 6-55SIMATIC 545/555/575 Programming Reference

When the input is turned on the LDA box executes. If the input remains on,
the instruction executes on every scan. The operation of LDA follows and is
illustrated in Figure 6-31.

• The address of the memory location specified in A is copied to the
destination specified in BB.

! WARNING
The address that is copied to the destination is a logical address, not a physical
address.

Using this address as a pointer within as external subroutine can cause
unpredictable operation by the controller , which could result in death or serious
injury to personnel, and/or damage to equipment.

Do not use this address as a pointer within an external subroutine.

• The output is turned on and bit 11 of STW01 is turned off after the
instruction executes, unless an error occurs.

When the destination location is not valid, bits 6 and 11 in STW01 turn
on, and (if bit 6 of STW01 was off) STW200 is set to a value of 5. The
destination contents do not change.

When the input is off, the instruction is not executed and there is no power
flow at the box output. In this case bit 11 of STW01 is turned off.

LDA Operation

LDA

RLL Instruction Set6-56 SIMATIC 545/555/575 Programming Reference

Load Address (continued)

Input Output

A : TCP11
AI :
BB : V71
BI :

LDA 11

Input Output

A : STW201
AI :
BB : @V100
BI :

LDA 12

A: STW201

V100 is an indirect address, as
indicated by the @ character, that
contains the address GA12. LDA
copies address STW201 into GA12
and GA13.

1A 00

Example 3

Input Output
Copy the address GB77 into the relative word 4
(5th position) of a table, that begins at V14.

A : GB77
AI :
BB : V14
BI : WX55

LDA 13

A: GB77

WX55 contains 4; therefore LDA
loads address into V18 and V19.

NOTE: The source and destination are word-length tables.

B[0]:V14

B[1]:V15
B[2]:V16
B[3]:V17

ED 00
4C00

B[4]:V18
B[5]:V19

ED
00
4C00

B[4]:V18
B[5]:V19

GB
Memory Type

(Hex)

Example 2

Copy the address STW201 to GA12 and GA13.
The destination is contained in the indirect address V100.

B[0]:GA12
B[1]:GA1300 C8 1A

00
C800

STW
Memory Type

(Hex)

B[0]:GA12
B[1]:GA13

Example 1

A: TCP11

0E 00

Copy the address TCP11 to V71 and V72.

B[0]:V71
B[1]:V7200 0A 0E

00
0A00

TCP
Memory Type

(Hex)

00 00 0A
Word Offset
(Hex)

B[0]:V71
B[1]:V72

00 00 C8
Word Offset
(Hex)

00 00 4C
Word Offset
(Hex)

STW201 00C8 (Hex) 200 (Dec) 201st position

Address Offset (Hex) Offset (Dec) Position

TCP11 000A (Hex) 10 (Dec) 11th position

Address Offset (Hex) Offset (Dec) Position

LDA13 004C (Hex) 76 (Dec) 77th position

Address Offset (Hex) Offset (Dec) Position

Figure 6-31 Examples of the LDA Instruction

LDA

RLL Instruction Set 6-57SIMATIC 545/555/575 Programming Reference

You can specify one of the following elements in A.

• Direct address — Specify any readable word, e.g., V100. LDA copies the
logical address for this word into the destination.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character,
e.g., @V929. The long word at this indirect address must contain
another address, and LDA copies this second logical address into the
destination.

Use the optional field AI as an index into a table when you want to copy an
address that is in a table. AI designates the relative word, in the table
referenced by A, the address of which is to be copied. The element at A0 is
the first element in the table. You can specify one of the following in AI.

• Constant index (range 0 to 65535) — You can leave AI blank or enter
zero and no indexing is done.

• Variable index — Specify any readable word. The content of this word
is an unsigned integer (0 to 65535) that gives the value of the index.

If an indirect source address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-32.

K10 is an indirect address, as indicated by the @
character, that contains address WX1000.

The actual contents of K10 and K11 are:
K10 = 0900 (hex)
K11 = 03E7 (hex)

Word 0

Word 1

Word 2

A[0]: WX1000

A[1]: WX1001

A[2]: WX1002

LDA 2

A : @K10
AI : 2
BB : V37
BI :

Input Output

Because index AI = 2, the address that is loaded
is WX1002.

The controller resolves
the indirect address...

... and then loads the
address determined by
the index.

The address WX1002
is loaded into V37.

Figure 6-32 Address/Index Resolution

Specifying Source

Specifying Index
for Source

LDA

RLL Instruction Set6-58 SIMATIC 545/555/575 Programming Reference

Load Address (continued)

You can specify one of the following elements in BB.

• Direct address — Specify any writeable word, e.g., V631. LDA copies
the logical address specified by A into the long word at this address.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character, e.g.,
@V929. The long word at this indirect address must contain another
address, and LDA copies the address specified by A into the memory
location specified by this second address. You can enter a readable
word, e.g., a K-Memory address, into field BB, but the second address
referenced by the address in BB must be a writeable word.

Use the optional field BI as an index into a table when you want to copy an
address into a word in a table. BI designates the relative word in a table
referenced by BB, into which the source is copied. The element at BB0 is the
first element in the table.

 You can specify one of the following in BI.

• Constant index (range = 0 to 65535) — You can leave BI blank or enter
zero, and no indexing is done.

• Variable index — Specify any readable address. The content of this
address is an unsigned integer (0 to 65535) that gives the value of the
index.

If an indirect destination address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-32.

These RLL instructions are also used for word moves.

LDC MIRW MOVE MOVW MWFT MWI

MWIR MWTT SHRW

LDA

Specifying
Destination

Specifying Index
for Destination

See Also

RLL Instruction Set 6-59SIMATIC 545/555/575 Programming Reference

6.27 Load Data Constant

The Load Data Constant instruction (Figure 6-33) loads a (positive integer)
constant into the designated memory location.

LDC #

A :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any writeable
word

Memory location where constant is stored.

N 0–32767 Data constant (integer) to be loaded.

Figure 6-33 LDC Format

When the input turns on, the LDC box executes. If the input remains on,
the instruction is executed on every scan.

• The data constant designated by N is loaded into the memory location
specified by A.

• When the function executes, the output turns on.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for word moves.

LDA MIRW MOVE MOVW MWFT MWI

MWIR MWTT SHRW

LDC Description

LDC Operation

See Also

LDC

RLL Instruction Set6-60 SIMATIC 545/555/575 Programming Reference

6.28 Lock Memory

The LOCK instruction (Figure 6-34) works with the UNLCK instruction to
provide a means whereby multiple applications in the 575 system
coordinate access to shared resources, generally G-Memory data blocks.

LOCK #

Mode

T:

Input Output

AA:

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Mode Exclusive or
Shared

An exclusive lock signals other application
programs that the resource is unavailable for
reading or writing. A shared lock signals other
application programs that the resource locations
are available for reading only.

T 0–3276.7 Time in milliseconds for an application program
to attempt to acquire control of the lock.

AA G, VMS, VMM
Memory location (two words) where lock
structure is stored. Use the same address for
associated UNLCK instruction.

Figure 6-34 LOCK Format

The process by which an application program acquires control of a lock is
described below.

• You must initialize the lock data structure prior to its first use.
Initialization consists of setting both AA and AA+1 to zero.

LOCK
575

LOCK Description

Acquiring Control
of the Lock

RLL Instruction Set 6-61SIMATIC 545/555/575 Programming Reference

NOTE: It is recommended that an application initialize all lock data
structures residing in its application space (G-Memory owned by the
application) on any scan in which the first scan status word (STW201)
indicates a transition from program to run, and on any scan in which the
first scan status word indicates a power-up restart or complete restart. If
you use this method, be sure to follow these programming practices for the
indicated first scan conditions:

• Reset all lock-held states associated with the application.

• Do not attempt to acquire any lock in another application’s space.

For this method to operate correctly, all applications sharing a given lock
data structure must be mode-locked, and all restarts involving these
applications must specify the mode-locked option.

• When the input is on, the application attempts to acquire the lock. If
the lock is not available, the application continues to attempt
acquisition of the lock (the scan is suspended in the process) until the
lock is acquired or the specified timeout (T) has expired. A value of 0 for
T results in a single attempt to obtain the lock. A value of 3276.7
indicates that the application tries until it obtains the lock or the scan
watchdog fatal error occurs.

If the application obtains the lock before the timeout expires, the
output turns on and the scan continues.

If the timeout expires before the application obtains the lock, the
output turns off and the scan continues.

• When an application program attempts to acquire control of the lock,
the value in AA (AA+1) is examined. If this value indicates that the
lock is free, control of the lock passes to the inquiring application
program, the output turns on, and RLL execution continues at the next
rung.

• When an application program obtains control of the lock, the LOCK
instruction increments the value of a lock/unlock counter. The UNLCK
instruction decrements the lock/unlock counter when an application
program relinquishes control of a lock. If the counter is not equal to
zero at the end of the RLL scan, Bit 6 in STW01 is set to 1 and a value
of 3 is written to STW200.

• If the input is off, the instruction does not execute and there is no
power flow at the box output.

LOCK
575

RLL Instruction Set6-62 SIMATIC 545/555/575 Programming Reference

Lock Memory (continued)

LOCK does not specify the G-Memory locations that are protected, nor does
LOCK actually prevent an application from reading or writing to these
G-Memory locations. You must determine which G-Memory locations
require lock protection and design your program code not to read from or
write to these locations when control of the lock cannot be acquired. Refer to
Figure 6-35 for an example of the LOCK instruction operation.

• When you program an exclusive lock, no other application program can
acquire control of the lock. Use this capability in programs that update
(write to) the shared resource protected by the lock.

• When you program a shared lock, more than one application program
can acquire control of the lock. Use this capability in programs that
read the shared resource protected by the lock.

C1 C3

C3

Lock data structure is stored in GA2 and GA3.
When C1 turns on, LOCK24 attempts to take
control of the lock at GA2, GA3. When LOCK24
acquires control of the lock, C3 turns on.

All other 575 application programs are designed
not to write to GA102 and GA103 when LOCK
24 is active.

Exclusive

T: .1
AA GA2

LOCK 24

A: V100
B: GA102
C: GA102

ADD 33

ADD 33 is active only when C3 is
turned on by LOCK24.

C3

A: V101
B: GA103
C: GA103

SUB 63

SUB 63 is active only when C3 is
turned on by LOCK24.

C3 C512
UNLCK24 relinquishes control of the
lock stored in GA2, GA3.

AA GA2

UNLCK 24

C512

C512

Figure 6-35 Example of the LOCK Instruction

This RLL instruction is also used to coordinate access to shared resources.

UNLCK

LOCK
575

How the Lock
Protects Memory

See Also

RLL Instruction Set 6-63SIMATIC 545/555/575 Programming Reference

6.29 Motor Control Alarm Timer

The MCAT instruction (Figure 6-36) is designed for use with a double input,
double feedback device. The MCAT operates similarly to the DCAT
instruction. However, the MCAT provides additional functions to operate
motor-driven devices that drive in opposite directions. You can use the
MCAT to replace several rungs of logic that are required to time the field
device’s operation and generate alarms in case of failure.

MCAT #

Output

Open

Close

Stop

P=
OF :
CF :
OA :
CA :
OO :
CO :

Field Valid Values Function

Varies with
configured memory

Instruction reference number. Range depends
on memory configured for timers/counters. The
assigned instruction number must conform to
the requirements of the timer/counter memory
discussed on page 4-5 in Section 4.2.

P 0.1–3276.7 Time allowed for device being controlled to open
or close.

OF X, Y, C, B Open Feedback — Input from field device that
senses when device being controlled has opened.

CF X, Y, C, B Close Feedback — Input from field device that
senses when device being controlled has closed.

OA Y, C, B
Open Alarm — Turns on if Open input to the
MCAT is on and Open Feedback (OF) input does
not turn on before the MCAT timer times out.

CA Y, C, B
Close Alarm — Turns on if Close input to the
MCAT has turned on and Close Feedback (CF)
does not turn on before MCAT timer times out.

OO Y, C, B Open Output — Opens device being controlled.

CO Y, C, B Close Output — Closes device being controlled.

Figure 6-36 MCAT Format

MCAT Description

MCAT

RLL Instruction Set6-64 SIMATIC 545/555/575 Programming Reference

Motor Control Alarm Timer (continued)

The following state changes for the MCAT are evaluated in the order listed.
If a condition is true, the specified actions are executed, and all remaining
conditions are not tested or executed.

1. If both OF and CF are on then
OO turns off, CO turns off,
OA turns on, CA turns on,
MCAT output turns off, and
TCC is set to zero.

2. If Stop input is on and/or both Open input and Close input are on
simultaneously, then
OO turns off, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is disabled.

3. If open was not been commanded, the timer did not time down, and the
Open input transitions from off to on while the Close input and the
Stop input are both off, then
OO turns on, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is reset.

4. If open was commanded, the Close and Stop inputs and OF are all off,
and the timer did not time down, then
OO turns on, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer times down by the amount of the previous scan.

5. If open was commanded, the Close and Stop inputs are off, and OF is
on, then
OO turns off, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is marked as timed down. This provides for immediate
alarming in case the OF input turns off prior to a subsequent close
command.

MCAT

MCAT State
Changes

RLL Instruction Set 6-65SIMATIC 545/555/575 Programming Reference

6. If open was commanded, the Close and Stop inputs and OF are all off,
and if the timer has timed down, then
OO turns off, CO turns off,
OA turns on, CA turns off, and
MCAT output is turned off.

7. If close was commanded, the timer did not time down, and the Close
input transitions from off to on while the Open and Stop inputs are
both off, then
OO turns off, CO turns on,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is reset.

8. If close was commanded, the Open and Stop inputs and CF are all off,
and the timer has not timed down, then
OO turns off, CO turns on,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer times down by the amount of the previous scan.

9. If close was commanded, if the Open and Stop inputs are off, and CF is
on, then
OO turns off, CO turns off,
OA turns off, CA turns off,
MCAT output turns on, and
MCAT timer is marked as timed down. This provides for immediate
alarming in case the CF input turns off prior to a subsequent open or
stop command.

10. If close has been commanded, if the Open and Stop inputs and CF are
all off, and the timer has timed down, then
OO turns off, CO turns off,
OA turns off, CA turns on, and
MCAT output turns off.

11. If none of the above conditions is true, then
OO turns off, CO turns off,
OA turns off, CA turns off, and
MCAT output turns on.

MCAT

RLL Instruction Set6-66 SIMATIC 545/555/575 Programming Reference

Motor Control Alarm Timer (continued)

The MCAT timer times down from the preset value specified in P that is
stored in TCP-Memory. The time current time is stored in TCC-Memory.

When the Open input transitions from off to on and the Close and Stop
inputs are both off, the OO turns on and the timer starts. Once triggered,
OO remains on independent of the Open input until one of the following
events occurs.

• The timer times to 0.
The OA turns on, and the OO turns off.

• The OF turns on while the CF remains off.
The OO turns off, and the timer resets to 0. If OF turns on and then
turns off, the OA comes on immediately (no time delay) the next time
the box is executed.

• The Stop input turns on.
The OO, CO, OA, and CA turn off, and the timer stays where it was
when Stop was received. If the Stop input turns off while the Open
input is on, then the timer starts at the preset value again—not at the
value when the Stop input turned on.

• The Close input turns on after the Open input turns off.
The CO turns on and the timer starts counting at the preset. The OO is
turned off.

When the Close input transitions from off to on, while the Open Command
and Stop Command Inputs are both off, the CO turns on and the timer
starts. CO turns on the motor that closes the valve. Once triggered, the CO
remains on, independent of the Close input, until one of the following events
occurs.

• The timer times to 0.
The CA turns on, and the CO turns off.

• The CF turns on while the OF remains off.
The CO turns off, and the timer resets. If CF turns on and then turns
off, the CA comes on immediately (no time delay) the next time the box
executes.

• The Stop input turns on.
The OO, CO, OA, and CA turn off.

• The Open input turns on after the Close input turns off.
The OO turns on. The CO turns off.

MCAT

MCAT Operation

Open Input
Turns On

Close Input
Turns On

RLL Instruction Set 6-67SIMATIC 545/555/575 Programming Reference

The condition in which both the Close and Open inputs are on
simultaneously is treated as a Stop. The input remaining on when the other
turns off is seen as a transition from off to on, and the MCAT enters the
appropriate state.

When the Stop input overlaps an Open or Close input, the Stop overrides as
long as it is on. When the Stop turns off, the remaining input is seen as a
transition from off to on and drives the MCAT to the corresponding state.

The condition in which both Feedback signals are on simultaneously is an
error condition. Both Open and Close Alarms turn on, and both Open and
Closed Outputs turn off. Removing the conflicting feedback signals does not
clear the Open and Close Alarms. One of the MCAT inputs (Open, Close, or
Stop) must change state in order to clear the error state.

The box output is always on except during an alarm or error condition.

You can use other RLL instructions to read or write to the MCAT variables.
You can also use an operator interface to read or write to the MCAT
variables. While you are programming the MCAT, you are given the option
of protecting the preset values from changes made with an operator
interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded, the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCR MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

Using the MCAT
Variables

See Also

MCAT

RLL Instruction Set6-68 SIMATIC 545/555/575 Programming Reference

6.30 Master Control Relay

The Master Control Relay (Figure 6-37) is used to turn off blocks of outputs
controlled by segments of RLL programs. This is done by clearing the
discrete image register points of the controlled outputs to zero.

MCR #

MCR #

Start of MCR

Zone of control

End of MCRE

Field Valid Values Function

1–8
Instruction reference number. Numbers can be
repeated; however, plan logic carefully when
nesting MCRs.

Figure 6-37 MCR Format

The MCR operates as an output-enable instruction.

• The MCR must have power flow, and must not be nested within the
zone of control of an MCR not having power flow, for discrete outputs in
the MCR zone of control to turn on or stay on.

• The MCR controls the coils and discrete outputs of boxes, e.g., CMP,
DCAT, MCAT, drums, etc., in its zone of control.

• MCRE marks the end of the zone of control for the MCR having the
same reference number. If you do not use the MCRE, the remainder of
the program is placed under the control of the MCR.

You can make the MCRE conditional by placing a contact on the same
rung as the MCRE. If you do this, be sure that the contact that controls
the conditional MCRE is not controlled by the MCR.

MCR

MCR Description

MCR/MCRE
Operation

RLL Instruction Set 6-69SIMATIC 545/555/575 Programming Reference

! WARNING
Using MCR to replace a hardwired mechanical master control relay that is used
for an emergency stop function could jeopardize your control of your process.

Control devices can fail in an unsafe condition that could result in death or
serious injury to personnel, and/or damage to equipment.

Never use the MCR to replace a hardwired mechanical master control relay
used for an emergency stop function.

Although the MCR controls the coils and discrete outputs of box instructions
within its zone of control, it does not control the power rail. Therefore, box
instructions continue to operate normally. In order to disable a box, use an
MCR-controlled coil output as a normal contact on the same rung that
contains the box. See Figure 6-38.

In Figure 6-38 the ADD is controlled by contact C2 when MCR2 is on. When
MCR2 is off, the ADD does not execute, regardless of the state of C2.

C1 Y12

MCR 2X1

MCR 2

E

ADD #

A :
B :
C :

C1 C1

C1

C2

Figure 6-38 Example of MCR Control of a Box

Refer to Section 6.25 and Section 6.55 for information about the action of
the MCR in conjunction with the JMP and SKP instructions.

MCR

RLL Instruction Set6-70 SIMATIC 545/555/575 Programming Reference

Master Control Relay (continued)

In Figure 6-39, an MCR is located on rung A, and its zone of control is
terminated by the End Master Control Relay MCRE on rung D.

• When MCR2 has power flow, the ladder logic within its zone of control,
(rungs B and C), executes normally.

• When MCR2 does not have power flow, all RLL instructions still
execute normally, but outputs are turned off.

• Any Ys and Cs contained within an instruction, e.g., a drum, also turn
off. In Figure 6-39, when the MCR2 loses power flow, Y6, Y7, Y8, C1,
C2, and C3, as well as Y12 and Y451, turn off.

X37 Y12

MCR 2X1

X777

MCR 2

A

B

C

D

Zone

of

control

X10

X10

Y451

STP CNT/STP
SEC/CNT = .1
PRESET = 1

Drum 1
Y Y Y C C C
6 7 8 1 2 3

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 1

 1 17
 2 50
 3 23
 4 25
 5 100
 6 10
 7 20
 8 10
 9 25
10 10
11 9
12 5
13 15
14 61
15 10
16 15

E

Figure 6-39 Example of the MCR Zone of Control

MCR

RLL Instruction Set 6-71SIMATIC 545/555/575 Programming Reference

NOTE: If a SET or a RST coil is within the zone of control of an active MCR
(having no power flow), it stops the SET or RST from changing the state of
its associated operand. (That is, SET and RST execution is disabled by the
active MCR.)

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MDRMD MDRMW NOT SHRB

SKP/LBL TMR UDC

See Also

MCR

RLL Instruction Set6-72 SIMATIC 545/555/575 Programming Reference

6.31 Maskable Event Drum, Discrete

The MDRMD instruction (Figure 6-40) operates similarly to the event drum.
The MDRMD, however, is capable of specifying a configurable mask for each
step, that allows selection of the coils to be under the control of the fixed
mask in each MDRMD step.

PRESET = 1–16

MDRMD #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask

0 or 1

Coils (C or Y)

Jog

Y Y Y Y Y C C C C C Y Y Y C Y
6 7 8 9 1 1 1 1 5 5 2 2 2 2 3

0 3 4 5 7 8 6 7 8 9 0

Fixed

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

STP CNT EVENT
(1-16) (0-32,767) (X, Y, C, B)

MASK: V-, W-Memory

Field Valid Values Function

#
Varies with
configured
memory

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-9 in Section 4.2.

MASK V, W, (G, VMS,
VMM, 575)

First word of a 16-word table that contains the
configurable mask output patterns.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 Time base. Amount of time in seconds for one
count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

Coils Y, C, B, blank Coils controlled by drum. C0 represents no coil.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask turns coils on (1) or off (0) according to bit
pattern in configurable mask.

Figure 6-40 MDRMD Format

MDRMD

MDRMD
Description

RLL Instruction Set 6-73SIMATIC 545/555/575 Programming Reference

When the drum begins to run, it starts at the step specified by the Drum
Step Preset that is stored in DSP-Memory. The current step is stored in
DSC-Memory. The counts per step, set in the CNT field, is stored in
DCP-Memory. The current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
advances to the next step based on operation of the timer and/or event.

• When the drum advances a step, coils turn on/off according to the fixed
mask and the current bit pattern in the configurable mask.

• The drum output comes on, and remains on, after the last programmed
step is executed. The last programmed step is the last step having an
event programmed or having a non-zero CNT preset value (step 13 in
Figure 6-40). The event must be on (if one was programmed for this
step) and DCC must be zero. If the event goes off after DCC reaches
zero, the drum output remains on and the MDRMD remains at the last
programmed step until the drum is reset.

• When the Enable/Reset turns off, the drum output turns off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All coils specified in the configurable mask maintain the condition
specified by the fixed mask.

• When the drum is at the Preset step, the coils specified in the
configurable mask follow the states specified by the fixed mask for that
step, even if the Enable/Reset input is off. Take care to program the
mask with a bit pattern that is a safe (home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

You can use the MDRMD in applications that require a configurable on/off
pattern for the drum coils. To do this, specify all ones (1s) for the fixed mask
of every programmed step of the MDRMD and precede the MDRMD
instruction with the necessary instruction(s) to turn off unconditionally all
the MDRMD’s coils. The configurable mask table in memory must then
contain the on/off patterns that are to be written to the coils for each step.

MDRMD Operation

MDRMD

RLL Instruction Set6-74 SIMATIC 545/555/575 Programming Reference

Maskable Event Drum, Discrete (continued)

The configurable mask is specified for each step by a memory location in the
mask field of the instruction. The configurable mask is located in 16
consecutive memory locations (allocated after entry of the first address). The
first location corresponds to step 1 of the drum; the second, to step 2, etc.
The mask is defined as being configurable because you can change the mask
by writing data to the memory locations.

The configurable mask allows selection of the coils to be controlled by the
fixed mask. When a bit of the configurable mask is on (set to 1), the fixed
mask controls the corresponding coil. When a bit of the configurable mask is
off (set to 0), the corresponding coil is left unchanged by the MDRMD.

The mapping between the configurable mask and the coils is shown below.
To match corresponding bits in the mask, coils are numbered from left to
right.

Configurable
mask word
bit position

Bit 1 of the configurable mask word is unused.

MDRMD coil #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Set the Counts/Step for the time that the drum must remain on a step
according to one of the following equations. (See also p. 6-42 for an
example.)

CNT �

step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �

step time
scan time

� If SEC/CNT is 0, ⇒

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step equal to 0, and program a contact or coil in the event field for this
step. The drum remains at this step until the contact or coil specified by the
event turns on. Then the drum then advances to the next step.

MDRMD

Defining the Mask

Calculating
Counts/Step

Timer-triggered
Advance Only

Event-triggered
Advance Only

RLL Instruction Set 6-75SIMATIC 545/555/575 Programming Reference

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program such that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

Other RLL instructions can be used to read or write to the MDRMD
variables. Use care when programming instructions that can alter or read
these variables. You can also use an operator interface to read or write to
the MDRMD variables.

It is possible to read/write data to/from drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. By contrast, an APT
program can display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMW NOT SHRB

SKP/LBL TMR UDC

Timer and Event-
Triggered Advance

Timer or External
Event-Triggered
Advance

Using MDRMD
Variables

See Also

MDRMD

RLL Instruction Set6-76 SIMATIC 545/555/575 Programming Reference

6.32 Maskable Event Drum, Word

The MDRMW instruction (Figure 6-41) operates similarly to the event
drum, but the MDRMW writes data to a word instead of to individual coils.
The MDRMW also is capable of specifying a configurable mask for each
step. This allows the selection of the bits in the word to be changed by the
fixed mask in each MDRMW step.

MDRMW

MDRMW
Description

RLL Instruction Set 6-77SIMATIC 545/555/575 Programming Reference

 1 17 X25
 2 50
 3 23
 4 25
 5 100 Y45
 6 10
 7 20
 8 10 X34
 9 25 C50
10 0
11 0
12 0
13 0 X95
14 0
15 0
16 0

PRESET = 1–16

MDRMW #

SEC/CNT = 0 to 32.767

Start

Enable/
Reset

Output

Mask

0 or 1

Jog

+ – – – – – – – – – BIT NO. – – – – – – – – +
1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Fixed

OUTPUT: V, WY

STP CNT EVENT
(1-16) (0-32,767) (X, Y, C, B)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

word output

MASK: V-, W-Memory

Field Valid Values Function

#
Varies with
configured
memory

Instruction reference number. Refer to controller
user manual for number supported. The
assigned instruction number must conform to
the requirements of the drum memory discussed
on page 4-9 in Section 4.2.

MASK V, W, (G, VMS,
VMM, 575)

First word of a 16-word table that contains the
configurable mask output patterns.

PRESET 1–16 Step to which the drum returns when reset.

SEC/CNT 0–32.767 Time base. Amount of time in seconds for one
count.

EVENT X, Y, C, B
Discrete point that starts countdown of a step
and that advances the drum to the next step
when count equals zero.

OUTPUT

WY, V, TCP,
TCC,G,W,VMS,
VMM,DSP,DSC,
DCP,DCC

Word location to which the drum writes. Bit 1 is
always set to zero.

STP 1–16 Step number.

CNT 0–32767 Specifies time that drum remains at step. Actual
time/step equals CNT × SEC/CNT in seconds.

Mask 0–1 Mask gives the value of the bits of the output
word.

Figure 6-41 MDRMW Format

MDRMW

RLL Instruction Set6-78 SIMATIC 545/555/575 Programming Reference

Maskable Event Drum, Word (continued)

When the drum begins to run, it starts at the step specified by the Drum
Step Preset that is stored in DSP-Memory. The current step is stored in
DSC-Memory. The counts per step, set in the CNT field, are stored in
DCP-Memory. The current count is stored in DCC-Memory.

• The drum is enabled when the Enable/Reset input is on.

• When the Enable/Reset is on and the Start input turns on, the drum
begins to run. The drum begins at the step specified by DSP and
advances to the next step based on operation of the timer and/or event.

• When the drum advances a step, individual bits of the output word
turn on/off based on the fixed mask and the current bit pattern in the
configurable mask.

• The drum output comes on, and remains on, after the last programmed
step has been executed. The last programmed step is the last step
having an event programmed or having a non-zero CNT preset value
(step 13 in Figure 6-41). The event must be on (if one was programmed
for this step) and DCC must be zero. If the event goes off after DCC
reaches zero, the drum output remains on and the MDRMW remains at
the last programmed step until the drum is reset.

• When the Enable/Reset turns off, the drum output turn off, and the
drum returns to the step specified in DSP.

• If the Start input turns off and Enable/Reset remains on, the drum
remains at the current step (DSC), and DCC holds its current count.
All bits specified in the configurable mask maintain the condition
specified by the fixed mask.

• When the drum is at the Preset step, the bits specified in the
configurable mask follow the states specified by the fixed mask for that
step, even if the Enable/Reset input is off. Take care to program the
mask with a bit pattern that is a safe (home) state for the Preset step.

• The drum advances to the next step immediately if the Jog input
transitions from off to on and the Enable/Reset input is also on.

MDRMW

MDRMW Operation

RLL Instruction Set 6-79SIMATIC 545/555/575 Programming Reference

The configurable mask is specified for each step by a memory location in the
mask field of the instruction. The configurable mask is located in 16
consecutive memory locations (allocated after entry of the first address). The
first location corresponds to step 1 of the drum; the second, to step 2, etc.
The mask is defined as being configurable because you can change the mask
by writing data to the memory locations.

The configurable mask allows selection of the individual bits in the output
word that are set/cleared by the fixed mask. When a bit of the configurable
mask is on (set to 1), the fixed mask sets/clears the corresponding bit. When
a bit of the configurable mask is off (set to 0), the corresponding bit is left
unchanged by the MDRMW.

The mapping between the configurable mask and the individual bits in the
output word is shown below.

Configurable
mask word
bit position

Bit 1 of the configurable mask word is not used.
Bit 1 of the output word is not used and is always equal to zero.

Output word bit #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set the Counts/Step for the time that the drum must remain on a step
according to one of the following equations. (See also p. 6-42 for an
example.)

CNT �

step time
SEC�CNT

� If SEC/CNT is not 0, ⇒

CNT �

step time
scan time

� If SEC/CNT is 0, ⇒

Defining the Mask

Calculating
Counts/Step

MDRMW

RLL Instruction Set6-80 SIMATIC 545/555/575 Programming Reference

Maskable Event Drum, Word (continued)

For a step having timer operation only, set the CNT preset value (DCP)
greater than 0, and do not program a contact or coil in the event field for
this step. The drum remains at this step until the DCC counts down to zero.
When DCC reaches zero, the drum advances to the next step.

For a step having event operation only, set the CNT preset value (DCP) for
the step equal to 0, and program a contact or coil in the event field for this
step. The drum remains at this step until the contact or coil specified by the
event turns on. The drum then advances to the next step.

For a step having timer and event operation, set the CNT preset value
(DCP) for the step greater than 0 and program a contact or coil in the event
field for this step. The following actions occur.

• The timer counts down during every scan in which the event is on. If
the event turns off, the DCC holds its current value. DCC resumes
counting down when the event turns on again. Timing is the same as
for a time-triggered advance.

• When DCC reaches zero, the drum advances to the next step.

For a step having timer or external event operation, set the CNT preset
value (DCP) for the step greater than 0. Do not program a contact or coil in
the event field for this step. Design the RLL program so that an event
external to the drum turns on the Jog input. The drum advances to the next
step based on either the drum timer or the external event.

MDRMW

Timer-triggered
Advance Only

Event-triggered
Advance Only

Timer and Event-
Triggered Advance

Timer or External
Event-triggered
Advance

RLL Instruction Set 6-81SIMATIC 545/555/575 Programming Reference

Other RLL instructions can be used to read or write to the MDRMW
variables. Use care programming instructions that can alter or read these
variables. You can also use an operator interface to read from or write to the
MDRMW variables.

It is possible to read/write data from/to drum memory areas for an
unprogrammed drum, using these memory locations like V-Memory.
However, if you use TISOFT to display values in DSP or DSC memory, any
value not in the range of 1–16 is displayed as 16. By contrast, an APT
program can display values that are greater than 16 for these variables.

NOTE: If you use an operator interface to change drum preset values, the
new values are not changed in the original RLL program. If the RLL presets
are ever downloaded, the changes made with the operator interface are
replaced by the original values in the RLL program.

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD NOT SHRB

SKP/LBL TMR UDC

Using MDRMD
Variables

See Also

MDRMW

RLL Instruction Set6-82 SIMATIC 545/555/575 Programming Reference

6.33 Move Image Register from Table

The Move Image Register from Table instruction (Figure 6-42) allows you to
copy information into the control relays or the discrete image register from a
table of consecutive word locations.

MIRFT #

TS :
IR :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

TS Any readable word Starting address of source table.

IR X, Y, C, B
Starting address of the control relays or the
discrete image register. Must begin on an
8-point boundary (1, 9, 17, etc.)

N 1–256 Length of table in words.

Figure 6-42 MIRFT Format

NOTE: If you plan to use this instruction in a subroutine (using B-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MIRFT box executes. If the input remains on, the
operation executes every scan. The operation of the MIRFT follows and is
illustrated in Figure 6-43.

• The values of up to 256 (N) words (16–4096 bits) are copied, starting at
the memory location specified by TS.

The copy is placed in the control relays or the discrete image register.
The LSB of the first word is copied into the point specified by IR.

The beginning point in the control relays or the discrete image register
must be on an eight-point boundary (1, 9, 17, etc.).

MIRFT

MIRFT Description

MIRFT Operation

RLL Instruction Set 6-83SIMATIC 545/555/575 Programming Reference

• All words are copied into the control relays or the image register on
each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Control relays

0 1 0 1 0 1 0V100
V101
V102
V103

Table

MSB LSB
0 10 10 111 0

MIRFT 2
OutputInput

0 1 0 1 0 1 0

C
14

C
15

C
13

C
11

C
12

C
10

C
9

C
21

C
22

C
20

C
18

C
19

C
17

C
16

C
23

C
24

1 0 1 0 1 0 101

0 0 0 1 1 1 1

C
30

C
31

C
29

C
27

C
28

C
26

C
25

C
37

C
38

C
36

C
34

C
35

C
33

C
32

C
39

C
40

0 0 1 1 1 1 000

0 0 0 1 1 1 11 01 10 100 0

TS : V100
IR : C9
N = 2

Figure 6-43 Example of MIRFT Operation

These RLL instructions are also used for table operations.

MIRTT STFE STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

MIRFT

RLL Instruction Set6-84 SIMATIC 545/555/575 Programming Reference

6.34 Move Image Register to Table

The Move Image Register to Table instruction (Figure 6-44) allows you to
copy information from the control relays or the discrete image register to a
table of consecutive word locations.

MIRTT #

IR :
TD :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

IR X, Y, C, B
Starting address of the control relays or the
discrete image register. Must begin on an
8-point boundary (1, 9, 17, etc.)

TD Any writeable
word

Starting address of the destination table.

N 1–256 Length of table in words.

Figure 6-44 MIRTT Format

NOTE: If you plan to use this instruction in a subroutine (using B-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MIRTT box executes. If the input remains on, the
operation executes on every scan. The operation of the MIRTT follows and is
illustrated in Figure 6-45.

• The On/Off state of up to 4096 bits (256 words × 16 bits) is copied from
the control relays or the discrete image register, starting at the bit
address specified by IR.

The starting point must be on an 8-point boundary (1, 9, 17, etc.). Bits
are copied in groups of 16.

The copy begins with the lowest numbered bit address and is placed
into word locations, beginning with the LSB of the word specified by
TD.

MIRTT

MIRTT Description

MIRTT Operation

RLL Instruction Set 6-85SIMATIC 545/555/575 Programming Reference

• All bits are copied into the word locations each scan. There must be a
sufficient number of discrete points to copy all bits into the table of N
words.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute and there is no power
flow at the box output.

Control relays

1 1 1 0 0 0 0V100
V101
V102
V103

Table

MSB LSB
0 10 01 011 1

IR : C9
TD : V100
N = 2

MIRTT 2

OutputInput

1 1 1 0 0 0 0

C
14

C
15

C
13

C
11

C
12

C
10

C
9

C
21

C
22

C
20

C
18

C
19

C
17

C
16

C
23

C
24

1 1 0 0 0 0 111

1 0 1 0 1 0 1

C
30

C
31

C
29

C
27

C
28

C
26

C
25

C
37

C
38

C
36

C
34

C
35

C
33

C
32

C
39

C
40

0 1 0 1 0 1 010

1 0 1 0 1 0 11 01 01 000 1

Figure 6-45 Example of MIRTT Operation

These RLL instructions are also used for table operations.

MIRFT STFE STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

MIRTT

RLL Instruction Set6-86 SIMATIC 545/555/575 Programming Reference

6.35 Move Image Register to Word

The Move Image Register to Word instruction (Figure 6-46) copies a
specified number of bits from the discrete image register or the control relay
memory locations to a designated word memory location. Up to 16 bits are
copied in a single scan.

MIRW #

IR :
A :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

IR X, Y, C, B Starting address of the control relays or the
discrete image register bits to be copied.

A Any writeable
word

Specifies word memory location to which bits
are copied.

N 1–16 Number of bits to be copied.

Figure 6-46 MIRW Format

NOTE: If you plan to use this instruction in a subroutine (using B-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MIRW box executes. If the input remains on, the
operation executes on every scan. The operation of the MIRW box follows
and is illustrated in Figure 6-47.

• Up to 16 bits (N) are copied, beginning with the lowest numbered
address, that is specified by IR.

• The bits are moved into the word memory location specified by A,
beginning with the LSB of the word. If fewer than 16 bits are moved,
the remaining bits are set to 0. All bits are copied during a single scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MIRW

MIRW Description

MIRW Operation

RLL Instruction Set 6-87SIMATIC 545/555/575 Programming Reference

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

16151413121110987654321

Specified wordMSB LSB

X, Y, C,
or B

Figure 6-47 Example of MIRW Operation

These RLL instructions are also used for word moves.

LDA LDC MOVE MOVW MWFT MWI

MWIR MWTT SHRW

Refer to Section E.7 for an application example of the MIRW.

See Also

MIRW

RLL Instruction Set6-88 SIMATIC 545/555/575 Programming Reference

6.36 Move Element

The Move Element instruction (Figure 6-48) copies data elements (bytes,
words, or long words) from a source location to a destination location.

MOVE #

TS :
SI :
TD :
DI :
N=

Input OutputType

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

Type Byte, Word, or
Long Word

Specifies type of the element(s) to be copied:
byte = 8 bits, word = 16 bits, long word = 32 bits.

TS

Signed constant
(range varies with
size of element) or
Any readable word

Specifies source element to be copied. Can be a
constant, a direct address, or an indirect
address (a memory location containing the
address of another memory location).

SI

Blank,
Unsigned constant
(0 to 65535) or
Any readable word

Optional index. Designates that the SIth

element in a table referenced by TS is to be
copied. The element at TS is zero (0).

TD

For direct address:
Any writeable
word
For indirect
address: Any
readable word

Specifies the destination of the copy. TD can be
a direct address or an indirect address (a long
word containing the address of another memory
location).

DI

Blank,
Unsigned constant
(0 to 65535) or
Any readable word

Optional index. Designates the relative element
in a table referenced by TD, into which the
element is copied. The element at TD is zero (0).

N
Unsigned constant
(1 to 32767) or
Any readable word

Specifies number of elements to be copied.

Figure 6-48 MOVE Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

MOVE

MOVE Description

RLL Instruction Set 6-89SIMATIC 545/555/575 Programming Reference

When the input is on, the MOVE box executes. If the input remains on, the
instruction executes on every scan. The operation of MOVE is described
below and illustrated in Figure 6-49.

• The element(s) specified in A are copied to the destination specified
in B.

• The output turns on and STW01 bit 11 turns off after the instruction
executes, unless an error occurs. See notes below.

NOTE: If the count is invalid or any referenced data element is undefined,
the user program error bit (6) and the instruction failed bit (11) in STW01
are set to 1. If this is the first program error encountered on the current
RLL scan, the value 5 (Table overflow) is written to STW200. Finally, power
flow is turned off and the RLL scan continues with the next instruction of
the current network. The contents of the destination are not changed.

NOTE: For the 575, if a MOVE instruction attempts to access a non-existent
VMEbus address, a VMEbus error occurs. If this is the first VMEbus error,
the offending address is written to STW227-STW228 and STW229-STW230
is cleared. Next, the user program error bit (6) and the instruction failed bit
(11) in STW01 are set to 1 and, if this is the first program error
encountered on the current RLL scan, the value 7 (VMEbus error) is written
to STW200. The controller then continues execution with the next RLL
instruction of the current network after turning power flow off. If the
VMEbus error occurred in the middle of the MOVE operation, a partial
move occurred.

When the input is off, the instruction does not execute and there is no power
flow at the box output. Bit 11 of STW01 turns off.

MOVE Operation

MOVE

RLL Instruction Set6-90 SIMATIC 545/555/575 Programming Reference

Move Element (continued)

Input Output

1 1 1 1 1 1 11 1 1 1 1 1 1 01

Example 1

B: V71 Contains –2

MOVE 34

TS Contains: –2
Copy the value –2 to
location V71.

Example 2Input Output

TD[3]: V114

MOVE 35

TD[2]: V113

TD[1]: V112

TD[0]: V111

Copy the constant value
9137 into a table that
begins at V111. The copy
starts at relative word 3 of
the table. Values are
copied into the 4th, 5th,
6th, 7th and 8th positions
of the table.

Word 0

Word 1

Word 2

Word 3

TD[4]: V115Word 4

TS: Contains 9137

TD[5]: V116Word 5

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

0 0 1 0 0 1 10 1 0 1 1 0 0 10

ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ

0 0 1 0 0 1 10 1 0 1 1 0 0 10

TD[6]: V117Word 6

TS : –2
SI :
TD : V71
DI :
N = 1

Word

TS : 9137
SI :
TD : V111
DI : 3
N = 5

Word

ÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅ

TD[7]: V118Word 7

TS[3]: V114

Example 3Input OutputMOVE 36

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ TS[2]: V113

TS[1]: V112

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

TS[0]: V111

TD[1]: V700

TD[0]: V699

TD[2]: V701

Table 1

Table 2

Word 0

Word 1

Word 2

Word 3

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ Word 0

Word 1

Word 2

TS[4]: V115Word 4

TD[3]: V702Word 3

TS : V111
SI : 3
TD : V699
DI : 2
N = 2

Word Copy the 4th and 5th

words (relative words 3
and 4) of a table that
begins at V111.

Place the copy in a
second table that starts at
V699, beginning at
relative word 2. Values
are copied into the 3rd

and 4th positions of the
table.

Figure 6-49 Examples of the MOVE Instruction

MOVE

RLL Instruction Set 6-91SIMATIC 545/555/575 Programming Reference

Example 4
Input OutputMOVE 37

TS[6], TS[7]: V114

TS[4], TS[5]: V113

TS[2], TS[3]: V112

TS[0], TS[1]: V111

1 byte

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

Table 1

Word 0

Word 1

Word 2

Word 3

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ TD[2], TD[3]: V700

TD[0], TD[1]: V699

TD[4], TD[5]: V701

Table 2

Word 0

Word 1

Word 2

1 byte

Byte 0 Byte 1

Byte 2 Byte 3

Byte 4 Byte 5

Byte 6

Byte 0 Byte 1

Byte 2 Byte 3

Byte 4

MSB LSB

Byte 5

Copy the 6th and 7th bytes
(relative bytes 5 and 6) of
a table that begins at
V111.

Place the copy in a
second table that starts at
V699, beginning at
relative byte 4. Values are
copied into the 5th and 6th

positions of the table.

TS : V111
SI : 5
TD : V699
DI : 4
N = 2

Byte

Example 5Input OutputMOVE 38

TS[0]: V100
V101

Table 1

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V500 contains 2;
therefore the TS index
points to V104.

V501 contains 3;
therefore TD index
points to V26.

Table 2

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

Long Word 5

TS : V100
SI : V500
TD : V20
DI : V501
N = 3

Long Word

Copy the 3rd, 4th and 5th

long words (relative words
2–4) of a table that begins
at V100.

Place the copy in a
second table that starts at
V20, beginning at relative
word 3. Values are copied
into the 4th, 5th, 6th

positions of the table.

TS[1]: V102
V103

TS[2]: V104
V105

TS[3]: V106
V107

TS[4]: V108
V109

TD[0]: V20
V21

TD[1]: V22
V23

TD[2]: V24
V25

TD[3]: V26
V27

TD[4]: V28
V29

TD[5]: V30
V31

Figure 6-49 Examples of the MOVE Instruction (continued)

MOVE

RLL Instruction Set6-92 SIMATIC 545/555/575 Programming Reference

Move Element (continued)

Example 6

Input OutputMOVE 39
Table 1

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V100 is an indirect address, as
indicated by the @ character,
that contains address WX1000.

K30 contains 5; therefore
5 long words are copied.

Table 2

Long Word 0

Long Word 1

Long Word 2

Long Word 3

Long Word 4

V102 contains 3; therefore
the TS index points to
WX1006.

V103 is an indirect address,
as indicated by the @
character, that contains
address WY100.

Long Word 5

Long Word 6

Long Word 7

TS : @V100
SI : V102
TD : @V103
DI :
N = K30

Long Word
Copy the 4th–8th long
words (relative words 3–7)
of a table that begins at
WX1000.

Place the copy in a second
table that starts at WY100,
beginning at relative long
word 0. Values are copied
into the 1st–5th positions of
the table.

TS[0]: WX1000
WX1001

TS[1]: WX1002
WX1003

TS[2]: WX1004
WX1005

TS[3]: WX1006
WX1007

TS[4]: WX1008
WX1009

TS[5]: WX1010
WX1011

TS[6]: WX1012
WX1013

TS[7]: WX1014
WX1015

TD[0]: WY100
WY101

TD[1]: WY102
WY103

TD[2]: WY104
WY105

TD[3]: WY106
WY107

TD[4]: WY108
WY109

The actual contents of
V100 and V101 are:
V100 = 0900 (Hex)
V101 = 03E7 (Hex)

The actual contents of
V103 and V104 are:
V103 = 0A00 (Hex)
V104 = 0064 (Hex)

Figure 6-49 Examples of the MOVE Instruction (continued)

MOVE

RLL Instruction Set 6-93SIMATIC 545/555/575 Programming Reference

Designate the type of the data elements to be moved.

• Byte — The element is 8 bits long.

• Word — The element is 16 bits long.

• Long word — The element is 32 bits long.

You can specify any of the following elements in TS.

• Constant value (range is determined by the data element type) —
Specify any signed integer. When the MOVE executes, the specified
value is copied to each element of the destination table.

• Direct address — Specify any readable word and designate it a direct
address. MOVE copies the contents of the memory location(s), starting
at this address, to the destination.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the “@” character,
e.g., @V929. The long word at this indirect address must contain
another address, and MOVE copies the contents of the memory
location(s), starting at this second address, to the destination.

Use the LDA instruction to load an address into a memory location.

Use the first optional field SI as an index into a table when you want to copy
elements of a table to a destination. SI designates the relative element, in
the table referenced by TS, that is to be copied. The element at TS0 is the
first element in the table. You can specify one of the following in SI.

• Constant index (range = 0 to 65535) — You can leave IN blank or enter
0 and no indexing is done.

• Variable index — Specify any readable word. The content of this word
is an unsigned integer (0–65535) that gives the element number of the
first element to copy.

If an indirect source address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-50.

Specifying Type of
Elements

Specifying Source

Specifying Index
for Source

MOVE

RLL Instruction Set6-94 SIMATIC 545/555/575 Programming Reference

Move Element (continued)

MOVE 3

TS : @K10
SI : 2
TD : V37
DI :
N = 1

Input OutputWord K10 is an indirect address, as indicated by the @ character,
that contains address WX1000.

The actual contents of K10 and K11 are:
K10 = 0900 (Hex)
K11 = 03E7 (Hex)

Word 0

Word 1

Word 2

TS[0]: WX1000

TS[1]: WX1001

TS[2]: WX1002

Because index SI = 2, the contents of WX1002 are moved.

The controller resolves the indirect
address . . .

. . . and then moves the contents at
the address determined by the index.

The contents of
WX1002 are
moved into V37.

Figure 6-50 Address/Source Index Resolution

You can specify one of the following elements in TD.

• Direct address — Specify any writeable word and designate it a direct
address. MOVE copies the source element(s) into the memory
location(s) starting at this address.

• Indirect address — Specify any readable word and designate it an
indirect address by preceding the address with the @ character,
e.g., @V929. The long word at this indirect address must contain
another address, and MOVE copies the source element(s) into the
memory location(s), starting at this second address. Use the LDA
instruction to load an address into a memory location. You can enter a
readable word, e.g., a K-Memory address into field TD, but the second
address referenced by the address in TD must be a writeable word.

Use the second optional field DI as an index into a table when you want to
copy an element(s) into a table. DI designates the relative element in a
table, referenced by TD, into which the source is copied. The element at TD0
is the first element in the table.

You can specify one of the following in DI.

• Constant index (range = 0 to 65535) — You can leave DI blank or enter
0 and no indexing is done.

• Variable index — Specify any readable word. The content of this
address is an unsigned integer (0 to 65535) that gives the element
number of the first element in the table to which the source element(s)
is copied.

If an indirect destination address is indexed, the controller first resolves the
address and then indexes it. See Figure 6-51.

MOVE

Specifying
Destination

Specifying Index
for Destination

RLL Instruction Set 6-95SIMATIC 545/555/575 Programming Reference

MOVE 3

TS : V37
SI :
TD : @K10
DI : 2
N = 1

Input OutputWord K10 is an indirect address, as indicated by the @ character,
that contains address WY1000.

The actual contents of K10 and K11 are:
K10 = 0A00 (Hex)
K11 = 03E7 (Hex)

Word 0

Word 1

Word 2

TD[0]: WY1000

TD[1]: WY1001

TD[2]: WY1002

Because index DI = 2,
the contents of V37 are
moved into WY1002.

The controller resolves the indirect
address . . .

. . . and then moves the value into
the address determined by the index.

Figure 6-51 Address/Destination Index Resolution

Designate the number of elements to be copied in the count field N. You can
specify one of the following in N.

• Constant count: Specify an unsigned integer in the range 1–32767.

• Variable count: Enter any readable word. The value of the count is
determined by the contents of this word when the MOVE executes. The
count range is 0–32767, where 0 means that no elements move.

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVW MWFT MWI

MWIR MWTT SHRW

Specifying Number
of Elements to
Move

See Also

MOVE

RLL Instruction Set6-96 SIMATIC 545/555/575 Programming Reference

6.37 Move Word

The Move Word instruction (Figure 6-52) copies up to 256 contiguous words
from one location to another. The starting memory location for the words to
be moved is specified by A, and the starting memory location for their
destination is specified by B. All words are copied in a single scan.

MOVW #

A :
B :
N =

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A
Any readable word
or constant

Starting memory location for the words to be
copied.A or constant

(–32768 to +32767) Value to be copied if a constant is used.

B Any writeable
word

Starting memory location for the destination.

C 1–256 Number of words to be copied.

Figure 6-52 MOVW Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

MOVW

MOVW Description

RLL Instruction Set 6-97SIMATIC 545/555/575 Programming Reference

When the input is on, the MOVW box executes. If the input remains on, the
operation executes on every scan. The operation of MOVW follows and is
illustrated in Figure 6-53.

• A table of up to 256 (N) words, with a starting memory location
specified by A, is copied.

If a constant value is specified in A, then the constant is copied to all
destination locations.

• The words are copied to a destination beginning at the memory location
designated by B.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Input OutputMOVW 1

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

A: TCP45

TCP46

TCP47

TCP48

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

V301

V302

V303

TCP45

B: V300

V300

A : TCP45
B : V300
N = 4

Figure 6-53 The MOVW Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MWFT MWI

MWIR MWTT SHRW

MOVW Operation

See Also

MOVW

RLL Instruction Set6-98 SIMATIC 545/555/575 Programming Reference

6.38 Multiply

The Multiply instruction (Figure 6-54) multiplies a signed integer in
memory location A by a signed integer in memory location B. The product is
stored in one long word, CC and CC + 1.

MULT #

A :
B :

CC :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Memory location for the multiplicand (a word).

B
Any readable word
or constant

Memory location for the multiplier (a word).
B or constant

(–32768 to +32767) Value of the multiplier if a constant is used.

CC Any writeable
long word

Memory location for the product (a long word).
CC holds the 16 most significant bits, and
CC + 1 holds the 16 least significant bits.

Figure 6-54 MULT Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MULT box executes. If the input remains on, the
operation executes on every scan. The operation of the MULT that is
illustrated in Figure 6-55 is (CC, CC + 1) = A × B.

• The values in A and B are not affected by the operation.

• When the multiplication executes, the output turns on.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MULT

MULT Description

MULT Operation

RLL Instruction Set 6-99SIMATIC 545/555/575 Programming Reference

MULT 1

A:

B:

CC:

0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 1

integer =
 +6404

integer =
 +545

integer =
 +3,490,180

0 0

0 0 1 1

0 0

WX9 =

V307 =

V308 =

V309 =

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V308

V307

WX9

C10X37

Figure 6-55 Multiplication Example

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV SQRT SUB

Relational Contact

See Also

MULT

RLL Instruction Set6-100 SIMATIC 545/555/575 Programming Reference

6.39 Move Word from Table

The Move Word from Table instruction (Figure 6-56) copies a word from a
table to a V-Memory location. A table pointer designates the address of the
next word in the table to be copied. One word is copied each scan.

MWFT #

A :
B :

S :
N=

Input Output

Enable/
Reset

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of table-move memory on
page 4-6 discussed in Section 4.2.

A V, W, (G, VMS,
VMM, 575)

Specifies memory location of the table pointer.
The value contained in pointer A is the memory
location in the table of the next word to be
copied.

B V, W, (G, VMS,
VMM, 575)

Memory location of the destination.

S V Starting address of the table.

N 1–256 Number of words to be copied.

Figure 6-56 MWFT Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

The operation of the MWFT is described below and illustrated in
Figure 6-57.

• When the Enable/Reset is off, the table starting address S loads into
pointer A.

• When the Enable/Reset turns on, the box is enabled. When the Input
also turns on, the following actions occur.

A word is copied from the table address specified by the value
contained in pointer A to the memory location specified by B.

MWFT

MWFT Description

MWFT Operation

RLL Instruction Set 6-101SIMATIC 545/555/575 Programming Reference

After the word is copied, table pointer A, that holds the address of the
next word in the table to be copied, increments by 1.

If the Input and the Enable/Reset remain on, one word is copied every
scan. As each word is copied, the table pointer increments until N
words are copied.

• The output turns on when the last word is copied.

• When the instruction is reset, all table values remain unchanged, and
destination address B contains the last word copied from the table.

If the Enable/Reset is off, the instruction does not execute, and there is no
power flow at the box output.

V200

V229

Input OutputMWFT 2

A: V500

 N=30

B: V100
S: V200

1st word copied from table

30th word copied from table

V201

V202

V228

V227

Enable/
Reset

V100 Pointer A

= 200

= 201

= 202

= 227

= 228

= 229

V500

200

Table starting address
S = V200

Destination
address B

Word copied
from table

When the MWFT is reset, data in location S
is loaded into pointer A so that V500 equals
200. This “200” tells the MWFT to copy the
next word from V200.

When the Enable/Reset turns on and the
Input turns on, the word in V200 is placed in
V100. V500 (the pointer) is incremented by
one so that it points to V201 (V500 equals
201). As long as the Enable/Reset and the
Input are on, operation continues until 29
more words have been copied.

When a word has been copied from V229,
the MWFT output turns on. V500 remains at
229, and the box does not execute again
until it is reset.

Figure 6-57 The MWFT Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWI

MWIR MWTT SHRW

Refer to Section E.10 for an application example of the MWFT.

See Also

MWFT

RLL Instruction Set6-102 SIMATIC 545/555/575 Programming Reference

6.40 Move Word with Index

The Move Word with Index instruction (Figure 6-58) allows you to copy up
to 256 words from one area of V-Memory to another area of V-Memory
during a single scan.

MWI #

A :
B :

N :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A

V, W, (G, VMS,
VMM, 575)
or constant
(–32768 to +
32767)

Memory location of word which gives the
V-Memory index for the base of the source table.
The addressed word can contain a value in the
range 1 to 32767, corresponding to V1 through
V32767, respectively.

B V, W, (G, VMS,
VMM, 575)

Memory location of word which gives the
V-Memory index for the base of the source table.
The addressed word can contain a value in the
range 1 to 32767, corresponding to V1 through
V32767, respectively.

N V, W, (G, VMS,
VMM, 575)

Memory location of word which gives the
number of words to be moved. The addressed
word can contain a value in the range 0 (Don’t
Move) through 256.

Figure 6-58 MWI Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MWI box executes. If the input remains on, the
operation is executed on every scan. The operation of the MWI is described
below and illustrated in Figure 6-59.

• The V-Memory table having a starting index specified in the word
addressed by A is copied to the V-Memory table having a starting index
specified in the word addressed by B.

MWI

MWI Description

MWI Operation

RLL Instruction Set 6-103SIMATIC 545/555/575 Programming Reference

• Up to 256 words can be copied as determined by the content of the word
addressed by N.

• All words are copied into the destination table each scan.

• If the sum of the number of words to move and either the source
(destination) table index exceeds the configured size (in words) of
V-Memory, or if the number of words exceeds 256, the instruction does
not execute. The output turns on when the instruction is executed.

• If either the source or the destination pointer plus table length exceeds
V-Memory size, the instruction does not execute. The output is turned
off, and bit 11 in STW01 is set.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

Input OutputMWI 31

A: V500
B: V100
N: V200

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

A: V500 = 190

V191

V192

V193

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

V1001

V1002

V1003

V190

B: V100 = 1000

V1000

N: V200 = 4

Figure 6-59 The MWI Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWIR MWTT SHRW

See Also

MWI

RLL Instruction Set6-104 SIMATIC 545/555/575 Programming Reference

6.41 Move Word to Image Register

The Move Word to Image Register instruction (Figure 6-60) copies a
specified number of bits from a word memory location to the discrete image
register or into the control relay memory locations. All bits are copied in a
single scan.

MWIR #

A :
IR :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word Specifies memory location from which the bits
are copied.

IR Y, C, B Starting address of the control relays or the
discrete image register.

N 1–16 Number of bits to be copied.

Figure 6-60 MWIR Format

NOTE: If you plan to use this instruction in a subroutine (using B-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the input is on, the MWIR box executes. If the input remains on, the
operation executes on every scan. The operation of the MWIR box is
described below and illustrated in Figure 6-61.

• Up to 16 bits (N) in the word memory location specified by A are copied,
beginning with the least significant bit of the word.

• Bits are copied into the discrete image register or into the control relay
memory locations, starting at the address designated by IR. The bits
are copied during a single scan.

• The output turns on when the instruction is executed.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

MWIR

MWIR Description

MWIR Operation

RLL Instruction Set 6-105SIMATIC 545/555/575 Programming Reference

Y16

Y15

Y14

Y13

Y12

Y11

Y10

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Specified wordMSB LSB

Y, C, or B

Figure 6-61 The MWIR Format

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWTT SHRW

Refer to Section E.8 for an application example of the MWIR.

See Also

MWIR

RLL Instruction Set6-106 SIMATIC 545/555/575 Programming Reference

6.42 Move Word To Table

The Move Word To Table instruction (Figure 6-62) copies a word from a
source in memory to a destination within a table. A pointer designates the
memory location in the table into which the next word is copied. One word is
copied per scan.

MWTT #

A :
B :
S :
N=

OutputInput

Enable/
Reset

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of table-move memory
discussed on page 4-6 in Section 4.2.

A V, W, (G, VMS,
VMM, 575)

Specifies memory location of the word to be
copied.

B V, W, (G, VMS,
VMM, 575)

Specifies memory location of the table pointer.
The value contained in pointer B is the table
memory location into which the next word is
copied.

S V Starting address of the table.

N 1–256 Size of the table in words.

Figure 6-62 MWTT Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

The operation of the MWTT is described below and shown in Figure 6-63.

• When the Enable/Reset is off, the table starting address S is loaded into
pointer B.

• When the Enable/Reset turns on, the box is enabled. When the Input
also turns on, the following actions occur.

MWTT

MWTT Description

MWTT Operation

RLL Instruction Set 6-107SIMATIC 545/555/575 Programming Reference

A word is copied from the memory location specified by A to the table
memory location specified by the value contained in pointer B.

Pointer B, which holds the destination memory location in the table for
the next word, increments by 1.

If the Input remains on, one word is copied every scan. As each word is
copied, the table pointer increments until N words are copied.

• The output turns on when the last word is copied.

• When the instruction is reset, all values in the table remain
unchanged.

If the Enable/Reset is off, the instruction does not execute, and there is no
power flow at the box output.

V200

V229

Input OutputMWTT 1

A: V100

N: 30

B: V500
S: V200

1st word copied into table

30th word copied into table

V201

V202

V228

V227

Enable/
Reset

V100 Pointer B

= 200

= 201

= 202

= 227

= 228

= 229

V500

200

Table starting address
S = V200

Source address A

Word to copy
into table

When the MWTT is reset, data in location S
is loaded into pointer B so that V500 equals
200. This “200” tells the MWTT to copy the
next word into V200.

When the Enable/Reset turns on and the
Input turns on, the word in V100 is placed in
V200. V500 (the pointer) is incremented by
one so that it points to V201 (V500 equals
201). As long as the Enable/Reset and the
Input are on, operation continues until 29
more words have been copied.

When a word has been copied into V229,
the MWTT output turns on. V500 remains at
229, and the box does not execute again
until it is reset.

Figure 6-63 The MWTT Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWIR SHRW

Refer to Section E.9 for an application example of the MWTT.

See Also

MWTT

RLL Instruction Set6-108 SIMATIC 545/555/575 Programming Reference

6.43 NOT

The NOT instruction (Figure 6-64) inverts the power flow.

:NOT:
Input Output

Figure 6-64 NOT Format

The NOT changes the power flow to the state opposite its current state.
Refer to Figure 6-65 for an example of how the NOT can simplify
programming.

NOTE: Do not program a NOT in parallel with any rung that does not
connect to the power rail.

C10X38 X39X37

: NOT :

C10X37

X38

X97

The NOT enables you to replace this structure with this one.

Figure 6-65 NOT Example

These RLL instructions are also used for electromechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW SHRB

SKP/LBL TMR UDC

NOT

NOT Description

NOT Operation

See Also

RLL Instruction Set 6-109SIMATIC 545/555/575 Programming Reference

6.44 One Shot

The One Shot instruction (Figure 6-66) turns on an output for a single scan.

:O:Input Output
#

Field Valid Values Function

Varies with controller
model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of One Shot memory
discussed on page 4-7 in Section 4.2. Each One
Shot instruction must have a unique
instruction number.

Figure 6-66 One Shot Format

The operation of the One Shot is described below.

• When the input transitions from off to on, the output turns on for
exactly one scan.

• After the One Shot executes, its input must be off for at least one scan
before the instruction executes again.

If the input is off, the instruction does not execute, and there is no power
flow at the output.

Refer to Section E.14 for an application example of the One Shot.

One Shot
Description

One Shot
Operation

One Shot

RLL Instruction Set6-110 SIMATIC 545/555/575 Programming Reference

6.45 PID Loop

The PID instruction (Figure 6-67) performs the proportional – integral –
derivative (PID) fast loop function.

NOTE: The PID instruction is not supported by TISOFT.

PID #

A:

Input Output

Field Valid Values Function

0–65535 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

A Any readable word
or constant

Specifies word that contains the fast loop
number (valid fast loop number: 129 to 256).

A Any readable word
or constant PID fast loop number if constant is used (valid

fast loop number: 129 to 256).

Figure 6-67 PID Format

The PID instruction can be used anywhere within the RLL program that a
single-line input box instruction can be used. This instruction allows you to
schedule a fast loop for immediate execution.

When power flow is on for the PID instruction, the referenced fast loop
executes immediately to completion. The result of the fast loop is available
to the next element of the current RLL rung. The fast loop algorithm uses
the floating-point math coprocessor; consequently, it executes faster and
with less overhead than a standard loop.

You can schedule a fast loop to execute every scan or cyclically by placing
the PID instruction in a cyclic task. However, to ensure correct functioning
of the fast loop (and SmarTune, if used,) schedule the fast loop to execute on
a consistent time basis.

PID

PID Fast Loop
Description

PID Operation

RLL Instruction Set 6-111SIMATIC 545/555/575 Programming Reference

Fast loop programming is done by using the same programming table used
for loops 1 through 128. Data entered in the SAMPLE RATE field, however,
is not used since the sample rate is based on when you schedule the PID
instruction to execute. Refer to Chapter 9, section 9.4 for information about
programming loops.

NOTE: The ramp/soak feature is not supported by the fast loops.

When the input is turned on, the PID box will execute the loop algorithm for
a particular fast loop (129–256) to completion as part of the RLL process
and the box output will turn on. If the input remains on, the instruction
executes on every scan. The following exceptions cause the program’s
execution to fail:

• If the fast loop is not configured, user program error 13 is logged in
STW200 and there is no power flow at the box output.

• If the fast loop is disabled, user program error 14 is logged in STW200
and there is no power flow at the box output.

When the input is off, the instruction does not execute, and there is no
power flow at the box output.

Refer to Chapter 9 for information on loop programming.See Also

PID

RLL Instruction Set6-112 SIMATIC 545/555/575 Programming Reference

6.46 Parameterized Go To Subroutine

PGTS (Figure 6-68) operates similarly to the GTS instruction. Use PGTS to
call a section of the RLL program that is preceded by a subroutine number
and execute it. Unlike GTS, the PGTS allows you to pass parameters to a
subroutine. These parameters allow you to write a generic subroutine using
parameter identifiers (IN1–IN20) instead of specific memory locations.
Several PGTS instructions (using different memory locations as
parameters) can then call the same general subroutine.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

PGTS #
Input

Field Valid Values Function

1–32 Designates subroutine to call. You can pass
parameters only to subroutines numbered 1–32.

IN

IN followed by any
readable bit or
word; IO followed
by any writeable
bit or word.

Designates address that contains data to be
read by the subroutine. Change the field to
show IO when you want the subroutine to write
data to the address after it completes execution.
When the field shows IN, the subroutine only
reads data at the address. B and W locations are
valid only when PGTS is used in a subroutine.

Figure 6-68 PGTS Format

NOTE: If subroutine parameters (W or B memory) are used as operands of
instructions, note that parameter passing by PGTS and PGTSZ if by value.
An operand that implies multiple memory locations will access multiple W
or B locations and not multiple locations from their original memory area.
Only explicitly passed parameters may be accessed with W or B operands.
Refer to page 4-10 for the discussion of how parameters are passed to
ensure correct operation of the instruction.

PGTS

PGTS Description

RLL Instruction Set 6-113SIMATIC 545/555/575 Programming Reference

PGTS operation is described below and shown in Figure 6-69.

• When the input turns on, the contents of each parameter are set equal
to the contents of the memory location specified in the parameter field.
Then the subroutine indicated by the PGTS number is called.

• When the subroutine returns control to the main RLL program, the
contents of the memory location specified in each read/write (IO)
parameter field is set equal to the contents of the parameter. The
contents of memory locations designated IN are not changed.

• Contents of parameters are stored in PGTS discrete and word
parameter areas (Section 4.2). When you use a parameter in the
subroutine, refer to discrete points as Bn and words as Wn, where
n = the number of the parameter.

• When you program a PGTS with TISOFT, the parameters must be
entered consecutively. That is, do not skip any parameters.

• If you do not need to specify parameters, use the GTS instead (GTS
uses less L-Memory).

• While you can still access any memory location from a subroutine, the
PGTS allows you to create a generic subroutine that is called by
multiple PGTS instructions, varying the parameters.

If the input is off, the instruction does not execute and the subroutine is not
called for execution.

! WARNING
When you do a run-time edit, you must enter all the instructions required to
define a subroutine before setting the controller to RUN mode. If you enter
these instructions out of order , the controller changes from RUN to PROGRAM
mode and freezes the outputs in their current status, which could cause
unexpected operation of the controller .

Unexpected controller operation can result in death or serious injury to
personnel, and/or equipment damage.

To ensure that instructions have been entered correctly , use the syntax check
function to validate a program before placing the controller in RUN mode.
When you do a run-time edit using an earlier release of TISOFT, you must enter
the instructions in this order: END, RTN, SBR, GTS or PGTS/PGTSZ.

PGTS Operation

PGTS

RLL Instruction Set6-114 SIMATIC 545/555/575 Programming Reference

Parameterized Go to Subroutine (continued)

W5 : � W4 � W2
W3

W4
in
scale

C444

END

IN1: C444
IN2: K5
IN3: K6
IN4: WX1
IO5: V7

IN19:
IN20:

PGTS 24

Simple scaling with rounding

C444
IN1: C444
IN2: K7
IN3: K8
IN4: WX2
IO5: V8

IN19:
IN20:

PGTS 24

0–32000 0–1000 16 32

C444
IN1: C444
IN2: K9
IN3: K10
IN4: WX3
IO5: V9

IN19:
IN20:

PGTS 24

W5 = Output from scaler
W4 = Input to scaler
W3 = Scaling constant
W2 = Rounding constant

W5
out
scale

W2 loaded
from
K5

W3 loaded
from
K6

0–32000 0–100 160 320

W4
in
scale

W5
out
scale

W2 loaded
from
K7

W3 loaded
from
K8

0–32000 0–500 32 64

W4
in
scale

W5
out
scale

W2 loaded
from
K9

W3 loaded
from
K10

B1

W2–W5

B1

W2–W5

B1

W2–W5

Figure 6-69 PGTS Instruction Example 2

PGTS

RLL Instruction Set 6-115SIMATIC 545/555/575 Programming Reference

SBR 24

C770

DIV1

A: W6

B: W3

B1 C770

ADD1

A: W4

C: W7

B: W2

B1 C770

RTN

C: W6

MOVW2

A: W6

B: W5

B1

N= 1

Add the constant to provide for proper rounding after the
division.

Divide by the scaling constant.

Output the scaled value to W5.

C770
MOVW1

A: +0

B: W6

B1

N= 1

W6 is the most significant word in the dividend and must be
cleared to zero for division to be correct.

Figure 6-69 PGTS Instruction Example 2 (continued)

PGTS

RLL Instruction Set6-116 SIMATIC 545/555/575 Programming Reference

Parameterized Go To Subroutine (continued)

NOTE: Avoid a direct reference in a subroutine to a memory location that is
also identified as a parameter in the PGTS instruction. Otherwise, you can
create a condition where the value of the parameter and the value in the
memory location do not agree. Refer to the example in Figure 6-70.

If you use an instruction that copies long words into or from the subroutine,
you need to allocate a parameter for each word of each long word that is
copied.

For example, the product of a multiplication is stored as a long word. Two
parameters are required to transfer the product from the subroutine to the
main program. If you multiply the contents of V22 by the contents of V23
and store the product in V50 and V51, then both V50 and V51 must be
listed as consecutive parameters.

These RLL instructions are also used for subroutine operations.

GTS PGTSZ RTN SBR SFPGM SFSUB XSUB

PGTS

See Also

RLL Instruction Set 6-117SIMATIC 545/555/575 Programming Reference

C1

END

SBR 24

RTN

IO: Y1

IN19:
IN20:

PGTS 24

C1 C1 Y1

C1

Y1 Y2

C1

C1

B1

Y1 is off.

Although Y1 is now on,
Y2 is off. If program
intent was to have Y2
on whenever Y1 turns
on, the program failed
because of referencing
both B1 and Y1 (the
memory location).

B1 is turned on.
(Y1 is not affected.)

Since Y1 is off,
Y2 is off.

B1 is moved to Y1.
(Y1 turns on)

Y1 is moved to B1.
(B1 is off.)
Control goes to
Subroutine 24.

1.

2.

3.

4.

5.

6.

If an IO parameter IO1, that specifies a non-parameter memory location Y1, is passed to a subroutine, and
the subroutine references Y1 directly, then the values for IO1 and Y1 may not agree when the subroutine
returns control back to the main program.

Control returns to
RLL program

Figure 6-70 PGTS Instruction Example 1

PGTS

RLL Instruction Set6-118 SIMATIC 545/555/575 Programming Reference

6.47 Parameterized Go To Subroutine (Zero)

The PGTSZ instruction (Figure 6-71) operates similarly to the PGTS
instruction. PGTSZ calls an RLL subroutine for execution and passes
parameters to it. Unlike PGTS, the PGTSZ clears all discrete I/O
parameters when the input to the PGTSZ is off.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

PGTSZ #

Input

Field Valid Values Function

1–32 Designates subroutine to call. You can pass
parameters only to subroutines numbered 1–32.

IN

IN followed by any
readable bit or
word; IO followed
by any writeable
bit or word.

Designates address that contains data to be
read by the subroutine. Change the field to
show IO when you want the subroutine to write
data to the address after it completes execution.
When the field shows IN, the subroutine only
reads data at the address. B and W locations
valid only when PGTS is used in a subroutine.

Figure 6-71 PGTSZ Format

NOTE: If subroutine parameters (W or B memory) are used as operands of
instructions, note that parameter passing by PGTS and PGTSZ if by value.
An operand that implies multiple memory locations will access multiple W
or B locations and not multiple locations from their original memory area.
Only explicitly passed parameters may be accessed with W or B operands.
Refer to page 4-10 for the discussion of how parameters are passed to
ensure correct operation of the instruction.

PGTSZ

PGTSZ Description

RLL Instruction Set 6-119SIMATIC 545/555/575 Programming Reference

When the input turns on, operation is identical to that of the PGTS,
described in Section 6.46.

If the input is off, all discrete I/O parameters turn off, and the subroutine is
not called for execution.

! WARNING
When you do a run-time edit with TISOFT (Rel 4.2 or later), enter all the
instructions required to define a subroutine (END, RTN, SBR, GTS or
PGTS/PGTSZ) before setting the controller to RUN mode. Otherwise, the
controller changes from RUN to PROGRAM mode and freezes outputs in their
current status, which could cause unexpected operation of the controller .

Unexpected controller operation can result in death or serious injury to
personnel, and/or equipment damage.

Use the TISOFT syntax check function to validate a program before placing the
controller in RUN mode. When you do a run-time edit using an earlier release of
TISOFT, you must enter the instructions in this order: END, RTN, SBR, GTS or
PGTS/PGTSZ.

These RLL instructions are also used for subroutine operations.

GTS PGTS RTN SBR SFPGM SFSUB XSUB

PGTSZ Operation

See Also

PGTSZ

RLL Instruction Set6-120 SIMATIC 545/555/575 Programming Reference

6.48 Read Slave Diagnostic (RSD)

The Read Slave Diagnostic instruction (Figure 6-72) transfers a
PROFIBUS-DP slave’s diagnostic buffer to user memory.

Input OutputRSD#

A:
N=

Field Valid Values Function

1 – 112 Instruction reference number. The number
entered indicates the address of the
PROFIBUS-DP slave whose diagnostic is to be
read. Numbers can be repeated.

A Any writeable word Starting memory location for the destination.

N 1 – 256 Maximum number of words to be read. See
Table 6-3.

Figure 6-72 RSD Instruction Format

The diagnostic buffer, whose address in user memory is specified by A, is
formatted as shown in Table 6-3.

Table 6-3 RSD Buffer Format

Word Byte Content

A 0 Status as follows:
0 Transfer successful.
1 Transfer successful. A previous diagnostic

was signaled and not read.
2 Transfer failed. The specified slave has

not signaled a diagnostic.

1 Length, in bytes, of actual diagnostic.

A+1...A+N–1 all Diagnostic area

RSD

RSD Description

RLL Instruction Set 6-121SIMATIC 545/555/575 Programming Reference

NOTE: The length (byte 1 of word A) indicates the actual diagnostic length,
as signaled by the PROFIBUS-DP slave. If the size [(N–1)*2] of the
destination buffer’s diagnostic area is less than the actual diagnostic length,
the diagnostic is truncated by the transfer.

When the input is on, the RSD box executes. If the input remains on, the
operation executes on every scan. The operation of RSD is as follows:

• If the PROFIBUS-DP I/O subsystem is stopped or if the indicated slave
has not signaled a diagnostic since the last execution of an RSD
instruction for the slave, the destination buffer’s status byte is set
equal to 2 and the length is set equal to 0.

• If the slave has not signaled more than one diagnostic since the last
execution of an RSD instruction for the slave, the destination buffer’s
status byte is set equal to 0, the length byte is set equal to the length of
the last diagnostic signaled, and the value (possibly truncated) of the
latest signaled diagnostic is copied to the diagnostic area.

• If the slave has signaled more than one diagnostic since the last
execution of an RSD instruction for the slave, the destination buffer’s
status byte is set equal to 1, the length byte is set equal to the length of
the last diagnostic signaled, and the value (possibly truncated) of the
latest signaled diagnostic is copied to the diagnostic area.

If the input is off, the instruction does not execute and the output is off.

NOTE: Status words STW232 through STW238 indicate the PROFIBUS-DP
slaves that have signaled a diagnostic that has not been read by an RSD
instruction. Use a bit-of-word contact specifying the slave’s status word bit
as the input to the RSD instruction. Do this in order to execute the
instruction whenever there is a diagnostic for the slave corresponding to the
bit.

NOTE: The format of a slave’s diagnostic buffer is dependent upon the
PROFIBUS-DP slave type. See the user documentation for your slave(s).

RSD Operation

RSD

RLL Instruction Set6-122 SIMATIC 545/555/575 Programming Reference

6.49 Return from Subroutine

The RTN instruction (Figure 6-73) ends execution of an RLL subroutine,
and returns program execution to the rung following the GTS instruction.

RTN
Conditional
return

Unconditional
return

RTN

Figure 6-73 RTN Format

An RLL subroutine is executed until a RTN instruction is encountered.
When an active RTN is reached in the subroutine, execution is returned to
the first instruction following the GTS instruction in the RLL program. The
RTN instruction can be either unconditional or conditional. The conditional
RTN can be used within a subroutine to satisfy a condition that requires
termination of the subroutine. The unconditional RTN must be used as the
last instruction in a subroutine.

If the input is off to a conditional RTN instruction, program execution
remains with the subroutine.

! WARNING
When you do a run-time edit with TISOFT (Rel 4.2 or later), enter all the
instructions required to define a subroutine (END, RTN, SBR, GTS or
PGTS/PGTSZ) before setting the controller to RUN mode. Otherwise, the
controller changes from RUN to PROGRAM mode and freezes outputs in their
current status, which could cause unexpected controller operation.

Unexpected controller operation can result in death or serious injury to
personnel, and/or equipment damage.

Use the TISOFT syntax check function to validate a program before placing the
controller in RUN mode. When you do a run-time edit using an earlier release of
TISOFT, you must enter the instructions in this order: END, RTN, SBR, GTS or
PGTS/PGTSZ.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ SBR SFPGM SFSUB XSUB

RTN

RTN Description

RTN Operation

See Also

RLL Instruction Set 6-123SIMATIC 545/555/575 Programming Reference

6.50 Subroutine

Use the SBR instruction (Figure 6-74) before a set of RLL instructions (the
RLL subroutine) to be executed only when they are called by the GTS,
PGTS, or PGTSZ instructions.

SBR #

Field Valid Values Function

#

1–255 if called by
GTS.
1–32 if called by a
PGTS or PGTSZ.

Instruction reference number. Numbers cannot
be repeated within a program.

Figure 6-74 SBR Format

When the subroutine is called, it executes until either a conditional RTN
with power flow or an unconditional RTN is encountered. When this occurs,
RLL execution returns to the instruction following the calling (GTS, PGTS,
PGTSZ) instruction.

Program subroutines according to the following guidelines.

• Place all subroutines at the end of the main RLL program.

• Separate the main RLL program from the subroutine(s) with an
unconditional END instruction.

• A subroutine must be terminated by an unconditional RTN instruction,
or a compile error is generated. An END within a subroutine also
generates an error.

The unconditional RTN instruction separates a subroutine from a
subsequent subroutine.

• You can nest subroutines to the 32nd level. A run-time non-fatal error
occurs when this level is exceeded. (Bit 7 in STW1 is set, indicating a
stack overflow.)

• When you pass parameters to the subroutine by calling the subroutine
from a PGTS instruction, refer to discrete parameters as Bn, and word
parameters as Wn, where n = the number of the parameter in the
PGTS. See the example in Figure 6-75.

SBR Description

SBR Operation

SBR

RLL Instruction Set6-124 SIMATIC 545/555/575 Programming Reference

Subroutine (continued)

C444
IO1: C444
IN2: K5
IN3: X6

IN19:
IN20:

PGTS 24

END

SBR 24

B1 C770

RTN

B3 C771

In the subroutine, reference parameter IO1 as B1,
parameter IN2 as W2, and parameter IN3 as B3.

When the PGTS calls SBR24

B1 = C444

W2 = K5

B3 = X6

Note that since K5 and X6 are both read-only, the
parameters must be specified IN, not IO, in the
PGTS instruction.

MOVW1

A: W2

N = 1

B: V2

Figure 6-75 SBR Example

SBR

RLL Instruction Set 6-125SIMATIC 545/555/575 Programming Reference

! WARNING
When you do a run-time edit with TISOFT (Rel 4.2 or later), enter all the
instructions required to define a subroutine (END, RTN, SBR, GTS or
PGTS/PGTSZ) before setting the controller to RUN mode. Otherwise, the
controller changes from RUN to PROGRAM mode and freezes outputs in their
current status, which can cause unexpected controller operation.

Unexpected controller operation can result in death or serious injury to
personnel, and/or damage to equipment.

Use the TISOFT syntax check function to validate a program before placing the
controller in RUN mode. When you do a run-time edit using an earlier release of
TISOFT, you must enter the instructions in this order: END, RTN, SBR, GTS or
PGTS/PGTSZ.

Note these effects of subroutines on execution of MCRs, JMPs, and SKPs.

• All MCRs and JMPs in a subroutine remain active after a RTN if the
instructions within the SBR do not turn them off before the RTN.

• MCRs and JMPs that are active at the time that the subroutine is
called, remain active while the SBR is executing.

• A SKP/LBL pair must be defined within the same SBR or a compile
error occurs.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SFPGM SFSUB XSUB

See Also

SBR

RLL Instruction Set6-126 SIMATIC 545/555/575 Programming Reference

6.51 Call an SF Program

Use the SFPGM instruction (Figure 6-76) to call an SF program for
execution.

OutputInput
SFPGM #

[IN-LINE]

Field Valid Values Function

1–1023 Number of the SF program to be called for execution.

IN-LINE* —

If selected, the SF program executes immediately
in-line to the RLL program and its result is available
for use in the next rung of the current RLL scan.
[SF program type must be priority or non-priority and
compiled for in-line execution.]

*In-line execution is available only with controllers that support PowerMath.
Refer to Section 7.2 for more information on in-line SFPGM execution.

Figure 6-76 SFPGM Format

The RLL SFPGM instruction can be used anywhere within the RLL
program that a single-line input box instruction can be used. When a
priority/non-priority or cyclic SF program is called by the RLL SFPGM
instruction with IN-LINE not selected, the SF program is placed in a queue
for execution. Up to 32 SF programs of each type (for a total of 96 in three
queues) can be queued at a given time. If a queue is full, the request for
placement in the queue is made again on the next scan. This continues as
long as the input to the RLL SFPGM instruction remains on.

Priority/Non-Priority SF Programs When power flow to the RLL SFPGM
instruction transitions from off to on, the output from the instruction is
examined. If the output is off and the SF program is not executing, the SF
program is placed in the queue for execution.

• After the SF program executes, the output turns on.

• The SF program does not execute again until the input to the SFPGM
instruction transitions from off to on.

If the controller changes from PROGRAM to RUN mode while the input
to the RLL SFPGM instruction is on, the SF program is queued for
execution.

SFPGM

SFPGM Description

SFPGM Operation

RLL Instruction Set 6-127SIMATIC 545/555/575 Programming Reference

Cyclic Programs When power flow to the SFPGM instruction transitions
from off to on, the cyclic SF program is placed in the queue for execution.

• After the cyclic SF program executes one time, the output turns on. The
SF program is automatically re-queued for execution, based on the
programmed cycle time. This process continues as long as the input to
the RLL SFPGM instruction is on.

• The output remains on until the input to the RLL SFPGM instruction
turns off.

• A cyclic SF program is removed from the queue when it completes a
scheduled cycle and the SFPGM instruction’s input is off.

The SFPGM box instruction can be marked for in-line execution if the
referenced SF program type is priority or non-priority and has been
compiled. Cyclic SF programs cannot be marked for in-line execution.

When power flow is on for an in-line SFPGM, the compiled code for the SF
program executes immediately as part of the RLL scan and the output turns
on. The result of the box’s execution is available to the next element of the
current RLL rung. When the input is off, the instruction does not execute,
and there is no power flow at the box output.

The following exceptions cause the program’s execution to fail:

• If the SF program does not exist or if it has not been marked as
compiled, user program error 8 is logged in STW200 and there is no
power flow at the output.

• If the SF program is not enabled, user program error 9 is logged in
STW200 and there is no power flow at the output.

• If the SF program’s type is CYCLIC or RESTRICTED, user program
error 10 is logged in STW200 and there is no power flow at the output.

• If an edit operation is in progress, user program error 11 is logged in
STW200 and there is no power flow at the output.

• If the SFPGM instruction is being executed by an interrupt RLL task
(555 specific), user program error 12 is logged in STW200 and there is
no power flow at the output.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFSUB XSUB

In-line SFPGM
Execution

See Also

SFPGM

RLL Instruction Set6-128 SIMATIC 545/555/575 Programming Reference

6.52 Call SF Subroutines from RLL

Use the SFSUB instruction, (shown in Figure 6-77) to call an SF subroutine
for execution.

OutputInput SFSUB #

P2:

ER:

P3:
P4:

P5:

P1:

STOP/CONTINUE ON ERROR [IN-LINE]

Field Valid Values Function

0 – 1023

If 1 – 1023, the number of the SF subroutine to be
called for execution.

If 0, then only the instruction parameters will be
evaluated.

STOP/
CONTINUE
ON ERROR

Select STOP ON ERROR if you want the SF
Subroutine to terminate if an error is detected.
Select CONTINUE ON ERROR if you want the SF
Subroutine to continue, e.g., you want to handle
errors within the subroutine.

IN-LINE* —

If selected, the SF subroutine executes immediately
in-line to the RLL program and its result is
available for use in the next rung of the current
RLL scan. [SF subroutine must be compiled for
in-line execution.]

ER C, Y, WY, V

Designates a single C or Y bit, or the first word of a
3 word area in WY or V Memory, where the error
status will be written if an error occurs during
parameter evaluation or during execution of the SF
subroutine. Refer to Section 7.8, Reporting SF
Program or SFSUB RLL Instruction Errors, for a
description of the ER parameter.

Pn

Constant;
any readable
bit, word, or
expression

Designates parameters to be evaluated and if # is 1
– 1023, it is passed to the SF subroutine. Up to five
parameters may be specified; they must be specified
in order; i.e., P entries must not be skipped.

*In-line execution is available only with controllers that support PowerMath.
Refer to Section 7.2 for more information on in-line SFSUB execution.

Figure 6-77 SFSUB Format

SFSUB

SFSUB Description

RLL Instruction Set 6-129SIMATIC 545/555/575 Programming Reference

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

When the # is 0, only the instruction parameters are evaluated (this variety
is called an SFSUB 0). You can use an SFSUB 0 to execute up to five
expressions without calling an actual SF subroutine or program. The
programming device may limit the length of the expression that can be
placed into the P fields.

Multiple SFSUB instructions with the same value of # can be used in your
program, since your application may require multiple accesses to the same
SF subroutine but with different parameters for each access.

A variable in the P fields can be one of the following data types:

• Constant – Any integer or real number.

• Discrete or word element – An element is comprised of a data type and
a number. A period following the element designates the element as an
address of a real number. The absence of a period designates the
element as an address of an integer.

Examples are V100, V252., C101, etc.

• Expression – An expression is a logical group of tokens evaluating to an
address or a value, where a token is the smallest indivisible unit, e.g.,
an element address, operator, constant, parenthesis, etc. Refer to
Section 7.9 for details on expressions.

Examples are V101.:=V65. + 14.2 and LSP1.:= V14. +K19.

The RLL SFSUB instruction can be used anywhere within the RLL program
that a large box instruction, such as a drum, can be used. When power flow
to the RLL SFSUB instruction transitions from off to on, the output from
the RLL SFSUB instruction is examined to determine subsequent actions.

If the instruction is not currently executing, then the instruction is placed in
one of the SFSUB queues for execution. There are two SFSUB execution
queues, one to handle SFSUB 0 instructions and the other to handle all
other SFSUB instructions.

SFSUB Operation

SFSUB

RLL Instruction Set6-130 SIMATIC 545/555/575 Programming Reference

When an SFSUB 0 instruction is pulled from its execution queue, the
instruction parameters are evaluated and the instruction output turns on.
When SFSUB instructions are pulled from the other execution queue, the
instruction parameters are evaluated, statements in the corresponding SF
subroutine are executed, and the instruction output turns on.

Upon completion of the SFSUB instruction, the instruction output remains
on until the input turns off.

The SFSUB box instruction can be marked for in-line execution if the
referenced SF subroutine has been marked as compiled.

When power flow is on for an in-line SFSUB, the SFSUB’s compiled
parameter evaluation code is executed and then, if the subroutine number is
not 0, the compiled code for the subroutine is executed and the output turns
on. The result of the box’s execution is available to the next element of the
current RLL scan. When the input is off, the instruction does not execute,
and there is no power flow at the box output.

The following exceptions cause an in-line SFSUB instruction to fail prior to
parameter evaluation:

• An edit operation is in progress. User program error 11 is logged in
STW200 and there is no power flow at the output.

• The SFSUB statement is being executed by an interrupt RLL task.
User program error 12 is logged in STW200 and there is no power flow
at the output.

The following exceptions cause the SFSUB instruction to fail after
parameter evaluation:

• The referenced SF subroutine does not exist.

• The referenced SF subroutine has not been compiled.

• The referenced SF subroutine is not enabled.

In each of these cases, the output turns on. These errors are logged in the
SFSUB instruction’s Error Status Address and the SF subroutine is not
executed.

SFSUB

In-line SFSUB
Execution

RLL Instruction Set 6-131SIMATIC 545/555/575 Programming Reference

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFPGM XSUB

See Also

SFSUB

RLL Instruction Set6-132 SIMATIC 545/555/575 Programming Reference

6.53 Bit Shift Register

The Bit Shift Register instruction (Figure 6-78) creates a bit shift register
using a specified number of control relays or points in the discrete image
register. The shift register may be up to 1023 bits long.

SHRB #

IR :

 N=

Clock
Output

Data

Enable/
Reset

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of memory discussed on
page 4-8 in Section 4.2.

IR Y, C, B
Lowest numbered control relay or location in
the discrete image register into which the data
is shifted.

N 1–1023 Size of the shift register (number of bits).

Figure 6-78 SHRB Format

NOTE: If you plan to use this instruction in a subroutine (using B-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

SHRB

SHRB Description

RLL Instruction Set 6-133SIMATIC 545/555/575 Programming Reference

The operation of the bit shift register follows.

• When the Enable/Reset turns on, the SHRB box is enabled.

• When the clock transitions from zero to one, the following actions occur.

The last (highest numbered) bit of the shift register moves to the
output.

The data in the shift register shifts one address.

The status of the Data input (0 or 1) moves into the lowest numbered
point, as specified in the IR field.

• When the clock does not transition from zero to one, the last bit of the
shift register moves to the output. The data does not shift.

• The Enable/Reset must be kept on as long as data are to be shifted into,
and kept in, the SHRB. When the Enable/Reset loses power flow, the
SHRB clears; i.e., all control relays or image register points comprising
the SHRB clear to 0.

• If the Enable/Reset does not receive power flow, the instruction does
not execute and the output does not turn on.

The example in Figure 6-79 shows the status of the shift register on two
consecutive scans.

Y1 Y2 Y3 Y4 Y5

0 1 0 0 1

Data Input Clock Output
Shift Register

1 or 0 1

1 0 1 0 01 1

Scan

N

N +1

1 0 1 0 01 or 0 0N +2 or

Figure 6-79 SHRB Example

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SKP/LBL TMR UDC

Refer to Section E.1 for an application example of the bit shift register.

SHRB Operation

See Also

SHRB

RLL Instruction Set6-134 SIMATIC 545/555/575 Programming Reference

6.54 Word Shift Register

The Word Shift Register instruction (Figure 6-80) copies words from a
memory location into a shift register. The shift register is located in
V-Memory and can be up to 1023 words long.

SHRW #

A :
B :

N=

Clock
Output

Enable

Reset

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of memory discussed on
page 4-8 in Section 4.2.

A Any readable word Memory location of the word to be copied into
the shift register.

B V, W, (G, VMS,
VMM, 575)

Starting address for the shift register.

N 1–1023 Size of the shift register (number of words).

Figure 6-80 SHRW Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

The operation of the SHRW is described below and shown in Figure 6-81.

• The Enable and Reset inputs must both be on for the SHRW box to
execute.

• When the Clock transitions from off to on, the word currently in
memory location A shifts into the shift register at the memory location
specified by B. The shift occurs as follows.

Word B+(N–1) is discarded.

Word B+(N–2) is then copied to word B+(N–1); word B+(N–3) is copied
to word B+(N–2), etc.

Word B is copied to word B+1; word A is copied to word B.

SHRW

SHRW Description

SHRW Operation

RLL Instruction Set 6-135SIMATIC 545/555/575 Programming Reference

• After each shift is completed, the output turns on for one scan.

• If the Enable turns off, but the Reset remains on, all words currently in
the SHRW are retained, but no words are shifted.

• If the Reset turns off, all words in the shift register clear to zero. The
instruction does not execute, and there is no power flow at the box
output.

A: WX11 0 0 0 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 00 0 1 1 0 0 0 10

1 1 1 1 0 0 00 0 1 1 0 0 0 10

0 0 0 1 0 0 10 1 1 1 1 1 1 11

1 1 1 1 1 1 11 1 1 1 0 0 0 10

Clock
Output

SHRW 2

Enable

Reset

B: V190

V191

V192

V193

When the last word is shifted out
of the register, the word is lost

A : WX11
B : V190
N : 4

Figure 6-81 SHRW Operation

These RLL instructions are also used for word moves.

LDA LDC MIRW MOVE MOVW MWFT

MWI MWIR MWTT

Refer to Section E.2 for an application example of the SHRW.

See Also

SHRW

RLL Instruction Set6-136 SIMATIC 545/555/575 Programming Reference

6.55 Skip / Label

The SKP and LBL instructions (Figure 6-82) provide a means of enabling or
disabling segments of a program during a scan. These instructions are often
used when duplication of outputs is required, and those outputs are
controlled by different logic. These instructions can be used to decrease scan
time since the instructions between any active SKP and LBL instructions do
not execute.

• SKP and LBL must be used together. The LBL must appear before the
instruction that terminates the current program segment (TASK, END,
or RTN).

• If you use an RLL subroutine (controllers 545, 555, and 575), you can
use up to 255 SKP/LBL instructions within each subroutine and up to
255 SKP/LBL instructions for each TASK segment in the program.

• The reference numbers for the subroutine SKP/LBL instructions range
from 1–255, and numbers cannot be duplicated within a given
subroutine or TASK segment.

• The subroutine is distinct from the main RLL program, and reference
numbers used in the subroutine can also be used in the main program.
That is, a SKP23 in the main program does not interfere with a SKP23
in the subroutine.

SKP/LBL

SKP / LBL
Description

RLL Instruction Set 6-137SIMATIC 545/555/575 Programming Reference

SKP #

LBL #

Start of SKP

End of SKP

Rungs of ladder logic skipped
by SKP/LBL instructions.

Field Valid Values Function

1–255

Instruction reference number. Same number must
be used for a SKP and its associated LBL.
Numbers cannot be repeated, except for the 545,
555, and 575 that do allow numbers to be repeated.

Figure 6-82 SKP / LBL Format

SKP/LBL

RLL Instruction Set6-138 SIMATIC 545/555/575 Programming Reference

Skip / Label (continued)

The operation for the skip and label instructions is described below.

• The SKP and the LBL instructions must be used together for the SKP
to be executed.

• For the 545, 555, and 575, a SKP without a LBL generates a compile
error.

• For other controllers, either instruction appearing without the other
is ignored.

• When the SKP receives power flow, all ladder logic between the SKP
and its associated LBL is ignored by the controller. Outputs between
the SKP and the LBL are frozen, i.e., their current status in the image
register is unchanged.

• All ladder logic within the SKP zone of control executes normally when
the SKP does not have power flow.

• For a SKP to LBL function located within the zone of control of an
MCR or JMP, the SKP to LBL function overrides the MCR or JMP
when the SKP has power flow.

• The zone of control for a SKP is limited to the task segment or
subroutine in which the SKP is used. That is, the matching LBL must
be defined after the SKP and be located in the same task segment or
subroutine as the SKP.

• For a JMPE or MCRE contained within a SKP’s zone of control, the
program functions as if the JMPE or MCRE is located at the end of the
program whenever the SKP is active.

! WARNING
If you do not enter the LBL and SKP instructions in the correct order , the
controller changes from RUN to PROGRAM mode and freezes outputs in their
current status, which could cause unexpected controller operation.

Unexpected controller operation could result in death or serious injury to
personnel, and/or equipment damage.

When you do a run-time edit with TISOFT (Rel 4.2 or later), enter the LBL
instruction before setting the controller to RUN mode; also, use the TISOFT
syntax check function to validate a program before placing the controller in
RUN mode. When you do a run-time edit using an earlier release of TISOFT , you
must enter the instructions in this order: LBL, then SKP .

SKP/LBL

SKP / LBL Operation

RLL Instruction Set 6-139SIMATIC 545/555/575 Programming Reference

NOTE: When a SKP is active, timers between the SKP and its LBL do not
run. Use care in the placement of timer instructions (TMR, DCAT, and
MCAT) and drum instructions (DRUM, EDRUM, MDRMD, and MDRMW) if
they are to continue operation while a SKP is active.

The operation of the SKP and LBL instructions is illustrated in Figure 6-83.
In this example, SKP5 is located on rung A. When the SKP has power flow,
the ladder logic within its zone of control (rungs B and C) does not execute.

X37 Y12

Y111

X1

X777

A

B

C

D

ADD 4

A: WX13

B: WX14

C: V4

X2
Zone

of

control

SKP5

LBL5

Figure 6-83 Example of SKP Zone of Control

These RLL instructions are also used for electro-mechanical replacement.

Coils Contacts CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB TMR UDC

See Also

SKP/LBL

RLL Instruction Set6-140 SIMATIC 545/555/575 Programming Reference

6.56 Scan Matrix Compare

The Scan Matrix Compare instruction (Figure 6-84) compares up to 16
predefined bit patterns to the current states of up to 15 discrete points. If a
match is found, the step number that contains the matching bit pattern is
entered into the memory location specified by the pointer, and the output is
turned on.

LAST STEP: 1 to 16

SMC #

CUR PTR:

Compare Output

Mask
0 or 1

I/O Points

address in
memory

STP
1 to 16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

X X X Y Y C C C C C Y Y Y Y Y
6 7 8 2 3 1 1 1 1 1 8 8 8 8 9

9 0 3 4 5 6 7 6 7 8 9 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

LAST
STEP 1–16 Specifies last instruction step to be scanned for

a match.

CUR
PTR

V, G, W, VMS,
VMM

Memory location that holds the step number
where a match is found, or zero if no match is
found.

I/O
Points

X, Y, C, B,or blank The discrete points to be compared to the step
mask.

Figure 6-84 SMC Format

SMC

SMC Description

RLL Instruction Set 6-141SIMATIC 545/555/575 Programming Reference

The SMC operation is described below.

• The instruction executes when the Compare input is on.

If the Compare input remains on, the SMC instruction checks all
programmed steps on every scan.

• The status of up to 15 discrete points is checked against the predefined
bit patterns.

• If a match is found, the step number of the matching mask is entered
into the memory location specified by CUR PTR, and the output turns
on.

• If no match is found, CUR PTR is cleared to 0, and the output turns off.

If the Compare input is off, the instruction does not execute, and there is no
power flow at the box output. The CUR PTR retains its last value.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC WAND WOR

WROT WXOR Bit-of-Word Contact/Coil

SMC Operation

See Also

SMC

RLL Instruction Set6-142 SIMATIC 545/555/575 Programming Reference

6.57 Square Root

The Square Root instruction (Figure 6-85) finds the integer square root of a
32-bit (long word) positive integer stored in memory locations AA and
AA + 1. The result is stored in memory location B.

SQRT #

AA :
B :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

AA Any readable word

Specifies integer of which square root is taken.
This is a long word. AA holds the 16 most
significant bits, and AA + 1 holds the 16 least
significant bits. Range: 0 ≤ AA ≤ (32,767)2

B Any writeable
word

Memory location for the result.

Figure 6-85 SQRT Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

NOTE: The answer to the square root function can have large margins of
error because this is integer math and the answer is truncated.

SQRT

SQRT Description

RLL Instruction Set 6-143SIMATIC 545/555/575 Programming Reference

When the input is on, the SQRT box executes. If the input remains on, the
operation is executed on every scan. The operation of the SQRT follows:

�� �� ���

• If the result of the square root is not an integer, SQRT reports only the
integer portion of the root. For example, although the square root of 99
is 9.95, the SQRT function reports a square root of 9.

• The operation is valid if 0 ≤ AA ≤ (32,767)2.

• If the result is valid, the output turns on when the operation executes.
Otherwise it turns off, and the contents of B do not change.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV MULT SUB

Relational Contact

SQRT Operation

See Also

SQRT

RLL Instruction Set6-144 SIMATIC 545/555/575 Programming Reference

6.58 Search Table For Equal

The Search Table For Equal instruction (Figure 6-86) locates the next
occurrence of a word in a table that is equal to a source word. The position
of the matching word is shown by an index.

STFE #

WS :
TS :
IN:
N=

OutputEnable

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies the next word in the
table to be compared with the source word.

N 1–256 Specifies length of the table.

Figure 6-86 STFE Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

The operation of the STFE is described below.

• You must turn off the Reset to initialize the index, setting it to –1.

• You must turn on the Reset before the STFE can operate.

• When the Enable turns on, the index increments by one and specifies
the next word in the table to be compared with the source word. The
value contained by the index ranges from 0 to N–1 while the STFE
executes. N is the length of the table.

• The source word WS and the word in the table TS specified by the
index are compared.

STFE

STFE Description

STFE Operation

RLL Instruction Set 6-145SIMATIC 545/555/575 Programming Reference

• If the two words are equal, the STFE output turns on for one scan and
then turns off.

The index contains the position of the matching word in the table for
the duration of this scan. The contents of the index must be used or
saved during this scan since the STFE looks for the next match on the
next scan as long as the Enable and Reset remain on.

• If the two words are not equal, the index increments by one and the
next word in the table is compared to the source word.

• If no matches are found in the table, the output remains off. The index
contains the position of the last word in the table.

• The entire table is searched during one scan until one match or no
match is found.

• If the Enable turns off while the Reset is on, the index holds its current
value. If the Reset turns off, the index resets to –1.

• After the entire table has been searched, i.e., the output is off and the
index = N–1, the STFE must be reset (Reset turns off) in order to be
executed again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFN TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

STFE

RLL Instruction Set6-146 SIMATIC 545/555/575 Programming Reference

6.59 Search Table For Not Equal

The Search Table For Not Equal instruction (Figure 6-87) locates the next
occurrence of a word in a table that is not equal to a source word. The
position of the non-matching word is shown by an index, and the value of
the non-matching word is copied into a specified memory location.

STFN #

WS :
TS :
IN :
WO:
N=

Enable Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies the next word in the
table to be compared with the source word.

WO Any writeable
word

Memory location to which the non-matching
word is written.

N 1–256 Specifies length of the table.

Figure 6-87 STFN Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

The operation of the STFN is described below.

• You must turn off the Reset to initialize the index, setting it to –1.

• You must turn on the Reset before the STFN can operate.

• When the Enable turns on, the index increments by one and specifies
the next word in the table to be compared with the source word. The
value contained by the index ranges from 0 to N–1 while the STFN
executes. N is the length of the table.

• The source word WS and the word in the table TS specified by the
index are compared.

STFN

STFN Description

STFN Operation

RLL Instruction Set 6-147SIMATIC 545/555/575 Programming Reference

• If the two words are not equal, the STFN output turns on for one scan
and then turns off. The value of the non-matching word is copied into
another memory location specified by WO.

The index contains the position of the non-matching word in the table
for the duration of this scan. The contents of the index must be used or
saved during this scan since the STFN looks for the next match on the
next scan as long as the Enable and Reset remain on.

• If the two words are equal, the index increments by one and the next
word in the table is compared to the source word.

• If no mismatches are found in the table, the output remains off. The
index contains the position of the last word in the table.

• The entire table is searched during one scan until one mismatch or no
mismatch is found.

• If the Enable turns off while the Reset is on, the index holds its current
value. If the Reset does turn off, the index resets to –1.

• After the entire table has been searched, i.e., the output is off and the
index = N–1, the STFN must be reset (Reset turns off) in order to be
executed again.

If the Reset is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE TAND TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

See Also

STFN

RLL Instruction Set6-148 SIMATIC 545/555/575 Programming Reference

6.60 Subtract

The Subtract instruction (Figure 6-88) subtracts a signed integer in memory
location B from a signed integer in memory location A, and stores the result
in memory location C.

SUB #

A :
B :
C :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A
Any readable word Memory location for the minuend (a word), the

number from which a value is subtracted.
A

or constant
(–32768 to +32767)

Value of the minuend if a constant is used.
A and B cannot both be constants.

B
Any readable word Memory location for the subtrahend (a word),

the number that is subtracted.
B

or constant
(–32768 to +32767)

Value of the subtrahend if a constant is used.
A and B cannot both be constants.

C Any writeable
word

Memory location for the result (a word).

Figure 6-88 SUB Format

When the input is on, the SUB box executes. If the input remains on, the
instruction executes on every scan. The operation executed is C = A – B.

If –32768 ≤ result ≤ 32767, then the output turns on. Otherwise, the
output turns off, and the least significant (16 bits) of the result are
stored in C.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for math operations.

ABSV ADD CMP DIV MULT SQRT

Relational Contact

SUB

SUB Description

SUB Operation

See Also

RLL Instruction Set 6-149SIMATIC 545/555/575 Programming Reference

6.61 Table to Table AND

The Table to Table AND instruction (Figure 6-89) ANDs the corresponding
bits in two tables and places the results in a specified third table. If both
bits are 1s, then the resultant bit is set to 1. Otherwise, the resultant bit is
set to 0.

TAND #

T1 :
T2 :
TD :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address for the first table.

T2 Any readable word Starting address for the second table.

TD Any writeable
word

Starting address for the destination table. TD
can be the same as T1 or T2, or be different.

N 1–256 Specifies table length. All tables are N words
long.

Note: If you plan to use this instruction in a subroutine, refer to page 4-10 for the discussion
of how parameters are passed to ensure correct operation of the instruction.

Figure 6-89 TAND Format

The operation of the TAND follows.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• Each pair of bits is ANDed, and the resultant bit is placed in the third
table (TD). If both bits are 1s, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

• The bits in all the words of the two tables are ANDed each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TCPL TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

TAND Description

TAND Operation

See Also

TAND

RLL Instruction Set6-150 SIMATIC 545/555/575 Programming Reference

6.62 Start New RLL Task

Use the TASK instruction (Figure 6-90) to delimit the main (I/O
synchronous) RLL task and the cyclic RLL task.

TASK #

A:

Field Valid Values Function

1, 2, 8 Designates task. 1 = normal RLL task;
2 = cyclic RLL task; 8 = interrupt RLL task

A:
0–32767 or any
readable word that
contains 0–65535.

Specifies cycle time in milliseconds. All
segments for a TASK2 are executed within the
cycle time specified in the TASK instruction for
the first TASK2 segment. Values specified in A
for subsequent segments are ignored.
For TASK2, a value of 0 indicates that default
(10) is used.
A must set to 0 for TASK1 and TASK8. The data
file will not be displayed for TASK1 and TASK8
except during edit.

Figure 6-90 TASK Format

The operation of the TASK is described below.

• The TASKn instruction indicates that the RLL instructions that follow
it comprise an RLL task segment, where n = 1 designates segments of
the main RLL task, n = 2 designates segments of the cyclic RLL task,
and n = 8 designates segments of the interrupt task. Refer to
Figure 6-91a.

Task 1 is assumed when the first rung does not contain a TASK
instruction. A task can consist of multiple segments, each preceded by a
TASK instruction. The segments do not have to be contiguous
(Figure 6-91b). Terminate an RLL task with another TASK instruction
or with the END instruction.

• TASK2 is executed with a higher priority than TASK1. Therefore,
normal RLL execution is interrupted by a cyclic RLL task.

• TASK8 is executed with a higher priority than TASK1 or TASK2.
Therefore, both the normal RLL and the cyclic RLL are interrupted by
a configured I/O interrupt.

TASK

TASK Description

TASK Operation

RLL Instruction Set 6-151SIMATIC 545/555/575 Programming Reference

• If you specify the cycle time A for a TASK2 task as a readable word,
you can change the cycle time on a cycle-by-cycle basis. When A = 0, the
default time of 10 ms is used.

! CAUTION
Use caution in determining the time requirements for a cyclic task.

As the ratio of execution time to cycle time approaches 1:1, the risk increases
that the main RLL task reports a scan watchdog Fatal Error , causing the
controller to enter the Fatal Error mode, freeze analog outputs and turn off
discrete outputs, which could lead to equipment failure.

You need to assess the time requirements for a cyclic task with care.

End

Task 1

Task 1
main RLL
program

Task 2

Task 2
cyclic RLL

task

RLL
subroutines

Figure 6-91a
Two Unsegmented Tasks and RLL Subroutines

End

Task 1
segment 1

Task 1

Task 1
segment 2

Figure 6-91b
Two Segmented Tasks

Task 2

Task 2
segment 1

Task 2

Task 2
segment 2

Figure 6-91 Examples of TASK Design

TASK

RLL Instruction Set6-152 SIMATIC 545/555/575 Programming Reference

Start New RLL Task (continued)

• When the normal RLL task fails to complete execution within the
specified cycle time, bit 1 is set in STW219, and bit 14 is set in STW1
on the next TASK1 scan. When the cyclic RLL task fails to complete
execution within the specified cycle time, bit 2 is set in STW219 on the
next TASK2 scan. When a cyclic task overruns, the cycle on which the
overrun is detected, is skipped. For example, a 3-ms task that overruns
then executes at a 6-ms cycle rate.

You can display the peak execution time for a task using an operator
interface and specifying TPET1 for TASK1 and TPET2 for TASK2.

• You can call any subroutine from a task and the normal subroutine
nesting rules apply. Call a given subroutine from only one task.
Subroutines are not re-entrant, and subroutine execution initiated by
one task interferes with subroutine execution initiated by a second
task.

These RLL instructions can also be used for immediate I/O applications.

Immediate Contact/Coil Immediate Set/Reset Coil IORW

 Refer to Section 3.3 for more information about using TASK in a program.

TASK

See Also

RLL Instruction Set 6-153SIMATIC 545/555/575 Programming Reference

6.63 Time Compare

The Time Compare instruction (Figure 6-92) compares current time in the
real-time clock with values in the designated V-Memory locations.

TCMP #

TM :
LT :
GT :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

TM V, G, W, VMS,
VMM

Specifies the memory locations containing time
to be compared to time in real-time clock.

V(TM) = Hour — BCD* 0000–0023.

V(TM+1) = Minute — BCD* 0000–0059.

V(TM+2) = Second — BCD* 0000–0059.

Enter the hexadecimal value of 00FF for any of
the fields (hour, minute, second, etc.) that you
want to exclude from the compare operation.

LT Y, C, B, or blank Bit turned on when time represented in TM
locations < the real-time value in the clock.

GT Y, C, B, or blank Bit turned on when time represented in TM
locations > the real-time value in the clock.

Note: If you plan to use this instruction in a subroutine, refer to page 4-10 for the discussion
of how parameters are passed to ensure correct operation of the instruction.

* BCD values are entered using the HEX data format.

Figure 6-92 TCMP Format

When there is power flow to the input of the TCMP instruction, the current
hours, minutes, and seconds in the real-time clock are compared to the
values in the designated memory locations.

If a match occurs, the output of the instruction turns on. If the time
represented by the memory locations is less than the real-time value in the
clock, the bit designated by LT turns on. If the time represented by the
memory locations is greater than the real-time value in the clock, the bit
designated by GT turns on.

When the input is off, the comparison does not execute and there is no
power flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP DSET TSET

TCMP Description

TCMP Operation

See Also

TCMP

RLL Instruction Set6-154 SIMATIC 545/555/575 Programming Reference

6.64 Table Complement

The Table Complement (Figure 6-93) inverts the status of each bit in a table
and places the results in another specified table.

TCPL #

TS :
TD :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

TS Any readable word Starting address of the table containing the bits
to be inverted.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or be different.

N 1–256 Specifies length for both tables.

Figure 6-93 TCPL Format

The operation of the TCPL is described below.

• When the input turns on, each bit in the source table specified by TS
inverts and stores in the destination table specified by TD.

0 inverted is 1; 1 inverted is 0.

• The bits in all the words of the table are inverted each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TOR

TTOW TXOR WTOT WTTA WTTO WTTXO

TCPL

TCPL Description

TCPL Operation

See Also

RLL Instruction Set 6-155SIMATIC 545/555/575 Programming Reference

6.65 Text

The Text box allows you to place textual information, such as copyright,
software version, or other text into your RLL program. The instruction
forms a single network and takes no action. The Text Box’s sole purpose is
for documentation.

The text box (Figure 6-94) can hold up to five lines of 40 characters each.
Characters allowed in the text box are: A through Z, 0 through 9, space, and
printable special characters.

TEXT #

PROGRAM: UNIT 6 CONTROL

VERSION: 1.3

COPYRIGHT: 1994 ABC, INC.

DESCRIPTION: CONTROL

UNIT 6 OF THE WIDGET

Figure 6-94 Text Box Format

Text Box
Description

TEXT

RLL Instruction Set6-156 SIMATIC 545/555/575 Programming Reference

6.66 Timer

The Timer instruction (Figure 6-95) is used to time events. The timer output
turns on after the timer times down, making this an “on delay” timer. A fast
timer is denoted by the mnemonic TMRF; a slow timer is denoted by TMR.

TMR #

P :

Start/Stop
Output

Enable/Reset

Field Valid Values Function

Varies with
configured memory

Instruction reference number. Refer to
controller user manual for number supported.
The assigned instruction number must conform
to the requirements of timer/counter memory
discussed on page 4-5 in Section 4.2.

P 0–32767

Preset value from which the timer times down.
P ranges from 0.000 to 32.767 seconds for a fast
(1 ms) timer, and from 0.0 to 3276.7 seconds for
a slow (.1 second) timer.

Figure 6-95 TMR/TMRF Format

The timer times down from the value specified in the preset, P. The preset is
stored in TCP-Memory. The timer’s current time is stored in TCC-Memory.

• The Enable/Reset must be on for the timer to operate.

• When the Start/Stop input is on and the Enable/Reset is on, the timer
begins to time down.

• Timing begins at the preset value P and continues down to zero.

• If the Start/Stop input turns off and the Enable/Reset input remains
on, the timer stops but it saves the current value, TCC. If the
Start/Stop input turns on again, the timer resumes timing.

TCC is also saved if the Enable/Reset input is on and a loss of power
occurs, provided the controller battery backup is enabled.

TMR/TMRF

TMR/TMRF
Description

TMR/TMRF
Operation

RLL Instruction Set 6-157SIMATIC 545/555/575 Programming Reference

• If the Enable/Reset input turns off, the timer resets to the preset time
specified in P.

• The output turns on when the timer reaches zero, and it stays on until
the timer resets; i.e., the Enable/Reset input turns off.

If the Enable/Reset does not receive power flow, the instruction does not
execute and the output does not turn on.

You can use other RLL instructions to read from or write to the timer
variables. You can also use an operator interface to read or write to the
timer variables. While you are programming the timer, you are given the
option of protecting the preset values from changes made with an operator
interface.

These RLL instructions are also used for electro-mechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB SKP/LBL UDC

 Refer to Section E.3 for an application example of the timer.

Using the Timer
Variables

See Also

TMR/TMRF

RLL Instruction Set6-158 SIMATIC 545/555/575 Programming Reference

6.67 Table to Table OR

The Table to Table OR instruction (Figure 6-96) ORs the corresponding bits
in two tables and places the results in a specified third table. If either bit
is 1, then the resultant bit is set to 1. Otherwise, the resultant bit is set to 0.

TOR #

T1 :
T2 :
TD :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address for the first table.

T2 Any readable word Starting address for the second table.

TD Any writeable
word

Starting address for the destination table. TD
can be the same as T1 or T2, or be different.

N 1–256 Specifies table length. All tables are N words
long.

Note: If you plan to use this instruction in a subroutine, refer to page 4-10 for the discussion
of how parameters are passed to ensure correct operation of the instruction.

Figure 6-96 TOR Format

The operation of the TOR is described below.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• Each pair of bits is ORed, and the resultant bit is placed in the third
table (TD). If either bit is 1, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

• The bits in all the words of the two tables are ORed each scan.

• The output is turned on when the instruction is executed.

If the input is off, the instruction is not executed, and there is no power flow
at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TTOW TXOR WTOT WTTA WTTO WTTXO

TOR

TOR Description

TOR Operation

See Also

RLL Instruction Set 6-159SIMATIC 545/555/575 Programming Reference

6.68 Time Set

The Time Set instruction (Figure 6-97) sets the time portion of the real-time
clock to the values contained in designated memory locations.

TSET #

TM :

Input Output

Field Valid Values Function

1 to number of one
shots.

Instruction reference number. The TSET uses
one shot memory. The assigned instruction
number must conform to the requirements of
one-shot memory discussed on page 4-7 in
Section 4.2. Each TSET instruction must have a
unique number.

TM V, G, W, VMS,
VMM

Designates the memory locations containing
time to be written into the real-time clock.*

V(TM) = Hours — BCD value 0000–0023.

V(TM+1) = Minutes — BCD value 0000–0059.

V(TM+2) = Seconds — BCD value 0000–0059.

Note: If you plan to use this instruction in a subroutine, refer to page 4-10 for the discussion
of how parameters are passed to ensure correct operation of the instruction.

* BCD values are entered using the HEX data format.

Figure 6-97 TSET Format

When the input to the TSET instruction transitions from off to on, the time
portion of the real-time clock is set to the values contained within the three
consecutive V-Memory locations designated by TM, and the output turns on
for one scan.

NOTE: The time of day status words (STW141–144 and STW223–225) do
not reflect the time change until the next RLL scan.

When the input is off, the operation does not execute, and there is no power
flow at the box output.

These RLL instructions can also be used for date/time functions.

DCMP DSET TCMP

TSET Description

TSET Operation

See Also

TSET

RLL Instruction Set6-160 SIMATIC 545/555/575 Programming Reference

6.69 Table to Word

The Table to Word instruction (Figure 6-98) copies a word in a table and
places it in another memory location.

TTOW #

WD:
TS :
IN :
N=

Enable
Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WD Any writeable
word

Memory location for destination of the word.

TS Any readable word Starting address of source table.

IN V, G, W, VMS,
VMM

Specifies memory location where index is stored.
The index indicates which word in the table is
copied.

N 1–256 Length of table in words.

Figure 6-98 TTOW Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

TTOW

TTOW Description

RLL Instruction Set 6-161SIMATIC 545/555/575 Programming Reference

The operation of the TTOW is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, a copy is made of the specified word in the
table TS.

The index (IN) indicates which word in the table is copied. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is copied. If N ≤ IN or N < 0, the word
is not copied.

• The word is placed in the memory location specified by WD. After the
word is placed there, the value contained by the index increments by
one.

• If both Enable and Reset remain on, one word is duplicated each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the word is not moved.

If the Reset turns off, the index resets to 0.

• The TTOW output remains on until the last word in the table is copied.
It then turns off.

• The TTOW must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TXOR WTOT WTTA WTTO WTTXO

TTOW Operation

See Also

TTOW

RLL Instruction Set6-162 SIMATIC 545/555/575 Programming Reference

6.70 Table to Table Exclusive OR

The Table to Table Exclusive OR instruction (Figure 6-99) executes an
Exclusive OR on the corresponding bits in two tables and places the results
in a specified third table. If the bits compared are the same, the resultant
bit is set to a 0. If the bits compared are different, the resultant bit is set
to 1.

TXOR #

T1 :
T2 :
TD :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

T1 Any readable word Starting address of the first table.

T2 Any readable word Starting address of the second table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as T1 or T2, or can be different.

N 1–256 Table length. All tables are N words long.

Figure 6-99 TXOR Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

TXOR

TXOR Description

RLL Instruction Set 6-163SIMATIC 545/555/575 Programming Reference

The operation of the TXOR is described below.

• When the input turns on, a comparison is made between each bit of
each word in the first (T1) and second (T2) tables.

• An Exclusive OR is executed on each pair of bits, and the resultant bit
is placed in the third table (TD). If the bits compared are either both 1s
or both 0s, the resultant bit is set to a 0. If the bits compared are unlike
(1 and 0), the resultant bit is set to 1.

• An Exclusive OR is executed on the bits in all the words of the two
tables each scan.

• The output turns on when the instruction executes.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW WTOT WTTA WTTO WTTXO

TXOR Operation

See Also

TXOR

RLL Instruction Set6-164 SIMATIC 545/555/575 Programming Reference

6.71 Up/Down Counter

The Up-Down Counter instruction (Figure 6-100) counts the number of
events (up or down) from 0 to 32,767.

UDC #

P=

Z:

Up
Output

Enable/Reset

Down

Field Valid Values Function

Varies with
controller model

Instruction reference number. Refer to controller
user manual for number supported. The assigned
instruction number must conform to the
requirements of timer/counter memory discussed
on page 4-5 in Section 4.2.

P 0–32767 Preset maximum value to which the UDC counts.
The UDC does not count events beyond P.

Z Y, C, B, or blank Address of the coil to be turned on when the
current count is equal to zero.

Figure 6-100 UDC Format

UDC

UDC Description

RLL Instruction Set 6-165SIMATIC 545/555/575 Programming Reference

When the counter counts up, it counts to the preset value specified in P, that
is stored in TCP-Memory. The current count is stored in TCC-Memory.

• The Enable/Reset must be on for the counter to operate.

• When the Enable/Reset is on, the counter increments by one when the
Up input transitions from off to on.

• When the Enable/Reset is on, the counter decrements by one when the
Down input transitions from off to on. The UDC does not decrement to
a number less than zero.

• TCC does not change if the Up and Down inputs both change from off
to on during the same scan.

• If the Enable/Reset turns off, TCC resets to zero.

• The output specified in Z turns on whenever TCC equals zero. This
output turns off when TCC does not equal zero.

• The box output turns on whenever TCC equals zero or TCP.

• After having counted to the preset value (TCP), the box does not
require resetting in order to resume counting in the opposite direction.
TCC does not ever exceed TCP.

If the Enable/Reset does not receive power flow, the instruction does not
execute and the output does not turn on.

UDC Operation

UDC

RLL Instruction Set6-166 SIMATIC 545/555/575 Programming Reference

Up/Down Counter (continued)

Other RLL instructions can be used to read from or write to the UDC
variables. You can also use an operator interface to read from or write to the
UDC variables. While you are programming the UDC, you are given the
option of protecting the preset values from changes made with an operator
interface.

NOTE: If you use an operator interface to change TCP, the new TCP value is
not changed in the original RLL program. If the RLL presets are ever
downloaded the changes made with the operator interface are replaced by
the original values in the RLL program.

These RLL instructions are also used for electromechanical replacement.

Contacts Coils CTR DCAT DRUM EDRUM

JMP MCAT MCR MDRMD MDRMW NOT

SHRB SKP/LBL TMR

UDC

Using the UDC
Variables

See Also

RLL Instruction Set 6-167SIMATIC 545/555/575 Programming Reference

6.72 Unlock Memory

The Unlock instruction (Figure 6-101), works with the LOCK instruction to
provide a means whereby multiple applications in the 575 system
coordinate access to shared resources, generally G-Memory data blocks.

UNLCK #

AA :
Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers for
documentation purposes only; can be repeated.

AA G, VMS, VMM
Memory location (2 words) where lock structure
is stored. Use same address for associated
LOCK instruction.

Figure 6-101 UNLCK Format

Refer to Section 6.28 for a description of how UNLCK works with the LOCK
instruction.

This RLL instruction is also used to coordinate access to shared resources.

LOCK

UNLCK Description

UNLCK Operation

See Also

UNLCK
575

RLL Instruction Set6-168 SIMATIC 545/555/575 Programming Reference

6.73 Word AND

The Word AND instruction (Figure 6-102) logically ANDs a word in memory
location A with a word in memory location B, bit for bit. The result is stored
in memory location C.

WAND #

A :
B :
C :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the AND
operation.

B
Any readable word Memory location of the second word in the AND

operation.
B

or constant
(–32768 to +32767)

Value of the second word when a constant is
used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-102 WAND Format

When the input turns on, the instruction executes. If the input remains on,
the instruction is executed on every scan.

• The word stored in the memory location specified by A is ANDed with
the word stored in the memory location specified by B. The operation is
done bit by bit, as illustrated in Figure 6-103.

The words in A and B are not affected by the WAND instruction and
retain their original values.

A B C

0 0 0

0 1 0

1 0 0

1 1 1

For each bit location A and B,
the result of an AND operation is given in C.

Figure 6-103 Result of ANDing Bits

WAND

WAND Description

WAND Operation

RLL Instruction Set 6-169SIMATIC 545/555/575 Programming Reference

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-104.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

The word in A is ANDed with
the word in B. The result is
stored in C.

A

B

C

Figure 6-104 Result of ANDing Two Words

• If C is not zero, the output turns on when the instruction executes.

• If C is zero, the output turns off.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WOR

WROT WXOR Bit-of-Word Contact/Coil

See Also

WAND

RLL Instruction Set6-170 SIMATIC 545/555/575 Programming Reference

6.74 Word OR

The Word OR instruction (Figure 6-105) logically ORs a word in memory
location A with a word in memory location B. The result is stored in memory
location C.

WOR #

A :
B :
C :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the OR
operation.

B
Any readable word Memory location of the second word in the OR

operation.
B

or constant
(–32768 to +32767)

Value of the second word when a constant is
used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-105 WOR Format

When the input is on, the WOR box executes. If the input remains on, the
instruction executes on every scan.

• The word stored in the memory location specified by A is ORed with the
word stored in the memory location specified by B. The operation is
done bit by bit, as illustrated in Figure 6-106.

The words in A and B are not affected by the OR instruction and retain
their original values.

A B C

0 0 0

0 1 1

1 0 1

1 1 1

For each bit location A and B,
the result of an OR operation is given in C.

Figure 6-106 Result of ORing Bits

WOR

WOR Description

WOR Operation

RLL Instruction Set 6-171SIMATIC 545/555/575 Programming Reference

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-107.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

A

B

C

The word in A is ORed
with the word in B, and
the result is stored in C.

Figure 6-107 Result of ORing Two Words

• If C is not zero, the output turns on when the instruction executes.

• If C is zero, the output turns off.

If the input is off, the instruction does not executes, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WROT WXOR Bit-of-Word Contact/Coil

See Also

WOR

RLL Instruction Set6-172 SIMATIC 545/555/575 Programming Reference

6.75 Word Rotate

The Word Rotate instruction (Figure 6-108) operates on the 4-bit segments
of a word, rotating them to the right.

WROT #

A :
N=

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any writeable
word

Memory location of the word to be rotated.

N 1–3 Number of times that the 4-bit segments are
rotated.

Figure 6-108 WROT Format

When the input is turned on, the WROT box executes. If the input remains
on, the instruction executes on every scan.

• Each 4-bit segment of the word specified in memory location A shift to
the right as shown in Figure 6-109.

4-bit
segment

4-bit
segment

4-bit
segment

4-bit
segment

Figure 6-109 WROT Operation

WROT

WROT Description

WROT Operation

RLL Instruction Set 6-173SIMATIC 545/555/575 Programming Reference

• A segment can shift up to 3 positions as specified by N. See
Figure 6-110.

• If A is not zero, the output turns on when the instruction executes.

• If A is zero, the output turns off.

If the input is off, the instruction does not executes, and there is no power
flow at the box output.

0010 1000 0110 0111

0111 0010 1000 0110

N = 1

The following word is rotated as shown:

0010 1000 0110 0111

1000 0110 0111 0010

N = 3

Figure 6-110 Result of a WROT Operation

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WOR WXOR Bit-of-Word Contact/Coil

See Also

WROT

RLL Instruction Set6-174 SIMATIC 545/555/575 Programming Reference

6.76 Word To Table

The Word To Table instruction (Figure 6-111) places a copy of a word at a
specified address within a table.

WTOT #

WS :
TD :
IN :
N=

Enable Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TD Any writeable
word

Starting address of the table.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies where the word is
placed in the table.

N 1–256 Specifies length of the table.

Figure 6-111 WTOT Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

WTOT

WTOT Description

RLL Instruction Set 6-175SIMATIC 545/555/575 Programming Reference

The operation of the WTOT is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, a copy of the source word WS is placed in
the destination table TD.

The index (IN) indicates where the word is placed in the table. The
value contained by the index ranges from 0 to N–1, where N is the
length of the table. If 0 ≤ IN < N, the word is moved. If N ≤ IN or
N < 0, the word is not moved.

• After the word is placed into the table, the value contained by the index
increments by one.

• If both Enable and Reset remain on, one word is moved each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the word is not moved.

If the Reset turns off, the index resets to 0.

• The WTOT output remains on until a word is placed in the last position
in the table. It then turns off.

• The WTOT must be reset (Reset turns off) after the output turns off, in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTTA WTTO WTTXO

WTOT Operation

See Also

WTOT

RLL Instruction Set6-176 SIMATIC 545/555/575 Programming Reference

6.77 Word To Table AND

The Word To Table AND instruction (Figure 6-112) ANDs each bit in a
source word with the corresponding bit of a designated word in a table. The
results are placed in a destination table. If both bits are 1s, a 1 is stored in
the destination table. Otherwise, the resultant bit is set to 0.

WTTA #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies that word in the
table is ANDed.

N 1–256 Specifies length of the table.

Figure 6-112 WTTA Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

WTTA

WTTA Description

RLL Instruction Set 6-177SIMATIC 545/555/575 Programming Reference

The operation of the WTTA is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates which word in the table is ANDed. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is ANDed. If N ≤ IN or
N < 0, the word is not ANDed.

• Each pair of bits is ANDed, and the resultant bit is placed in the
destination table TD. If both bits are 1s, the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the source word and a word in the
table are ANDed each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the AND does not occur.

If the Reset turns off, the index resets to 0.

• The WTTA output remains on until the last word in the table has been
ANDed with the source word. It then turns off.

• The WTTA must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTO WTTXO

WTTA Operation

See Also

WTTA

RLL Instruction Set6-178 SIMATIC 545/555/575 Programming Reference

6.78 Word To Table OR

The Word To Table OR instruction (Figure 6-113) ORs each bit in a source
word with the corresponding bit of a designated word in a table. The results
are placed in a destination table. If either bit is 1, a 1 is stored in the
destination table. Otherwise, the resultant bit is set to 0.

WTTO #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies which word in the
table is ORed.

N 1–256 Specifies length of the table.

Figure 6-113 WTTO Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

WTTO

WTTO Description

RLL Instruction Set 6-179SIMATIC 545/555/575 Programming Reference

The operation of the WTTO is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates which word in the table is ORed. The value
contained by the index ranges from 0 to N–1, where N is the length of
the table. If 0 ≤ IN < N, the word is ORed. If N ≤ IN or
N < 0, the word is not ORed.

• Each pair of bits is ORed, and the resultant bit is placed in the
destination table TD. If either bit is 1, then the resultant bit is set to 1.
Otherwise, the resultant bit is set to 0.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the source word and a word in the
table are ORed each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the OR does not occur.

If the Reset turns off, the index resets to 0.

• The WTTO output remains on until the last word in the table has been
ORed with the source word. It then turns off.

• The WTTO must be reset (Reset turns off) after the output turns off in
order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTA WTTXO

WTTO Operation

See Also

WTTO

RLL Instruction Set6-180 SIMATIC 545/555/575 Programming Reference

6.79 Word To Table Exclusive OR

The Word To Table Exclusive OR (Figure 6-114) executes an Exclusive OR
on each bit in a source word with the corresponding bit of a designated word
in a table. The results are placed in a destination table. If the bits compared
are the same, the resultant bit is set to a 0. Otherwise, the resultant bit is
set to 1.

WTTXO #

WS :
TS :
TD :
IN :
N=

Enable Output

Reset

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

WS Any readable word Memory location of the source word.

TS Any readable word Starting address of the source table.

TD Any writeable
word

Starting address of the destination table. TD
can be the same as TS or can be different.

IN V, G, W, VMS,
VMM

Specifies memory location where the index is
stored. The index specifies on which word in the
table that the Exclusive OR is executed.

N 1–256 Specifies length of the table.

Figure 6-114 WTTXO Format

NOTE: If you plan to use this instruction in a subroutine (using W-memory
operands), refer to page 4-10 for the discussion of how parameters are
passed to ensure correct operation of the instruction.

WTTXO

WTTXO Description

RLL Instruction Set 6-181SIMATIC 545/555/575 Programming Reference

The operation of the WTTXO is described below.

• The Reset must be on for the instruction to execute.

• When the Enable turns on, each bit of the source word WS and of a
specified word in the table TS is compared.

The index (IN) indicates the word in the table on which the
Exclusive OR occurs. The value contained by the index ranges from 0 to
N–1, where N is the length of the table. If 0 ≤ IN < N, the Exclusive OR
takes place. If N ≤ IN or N < 0, the Exclusive OR does not take place.

• An Exclusive OR is executed on each pair of bits, and the resultant bit
is placed in the destination table TD. If the bits compared are the same,
the resultant bit is set to a 0. If the bits compared are different, the
resultant bit is set to 1.

After a word in the table is compared, the value contained by the index
increments by one.

• If both Enable and Reset remain on, the Exclusive OR executes on the
source word and a word in the table each scan.

• If the Enable turns off while the Reset is on, the index holds its current
value and the Exclusive OR does not take place.

If the Reset turns off, the index resets to 0.

• The WTTXO output remains on until the last word in the table has
been compared with the source word. It then turns off.

• The WTTXO must be reset (Reset turns off) after the output turns off
in order to execute again.

If the Reset is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for table operations.

MIRFT MIRTT STFE STFN TAND TCPL

TOR TTOW TXOR WTOT WTTA WTTO

WTTXO Operation

See Also

WTTXO

RLL Instruction Set6-182 SIMATIC 545/555/575 Programming Reference

6.80 Word Exclusive OR

The Word Exclusive OR instruction (Figure 6-115) executes a logical
Exclusive OR on a word in memory location A with a word in memory
location B. The result is stored in memory location C.

WXOR #

A :
B :
C :

Input Output

Field Valid Values Function

0–32767 Instruction reference number. Numbers are for
documentation purposes only; can be repeated.

A Any readable word Memory location of the first word in the
Exclusive OR operation.

B
Any readable word Memory location of the second word in the

Exclusive OR operation.
B

or constant
(–32768 to +32767)

Value of second word when a constant is used.

C Any writeable
word

Memory location where the result is stored.

Figure 6-115 WXOR Format

When the input is turned on, the WXOR box execute. If the input remains
on, the instruction executes on every scan.

• An Exclusive OR operation executes on the word stored in the memory
location specified by A with the word stored in the memory location
specified by B. The operation is done bit by bit, as illustrated in
Figure 6-116.

• The words in A and B are not affected by the WXOR instruction and
retain their original values.

WXOR

WXOR Description

WXOR Operation

RLL Instruction Set 6-183SIMATIC 545/555/575 Programming Reference

A B C

0 0 0

0 1 1

1 0 1

1 1 0

For each bit location A and B, the
result of an Exclusive OR operation
is given in C.

Figure 6-116 Result of an Exclusive OR of Bits

• The result is stored in the memory location specified by C, as
illustrated in Figure 6-117.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bit

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

A

B

C

An Exclusive OR operation
is executed on the words in
A and B and the result is
stored in C.

Figure 6-117 Result of an Exclusive OR of Two Words

• If C is not zero, the output turns on when the instruction executes.

• If C is zero, the output turns off.

If the input is off, the instruction does not execute, and there is no power
flow at the box output.

These RLL instructions are also used for bit manipulation.

BITC BITS BITP IMC SMC WAND

WOR WROT Bit-of-Word Contact/Coil

 Refer to Section E.11 for an application example of the WXOR.

See Also

WXOR

RLL Instruction Set6-184 SIMATIC 545/555/575 Programming Reference

6.81 External Subroutine Call

The XSUB (Figure 6-118) allows you to pass parameters to a subroutine
that is developed offline in a non-RLL programming language, such as C or
Pascal, and then call the subroutine for execution. Refer to Appendix H for
more information about designing and writing external subroutines.

IN1 :
IN2 :
IN3 :
IN4 :
IN5 :
IN6 :
IN7 :
IN8 :
IN9 :
IN10 :
IN11 :
IN12 :
IN13 :
IN14 :
IN15 :
IN16 :
IN17 :
IN18 :
IN19 :
IN20 :

XSUB #

Input

Field Valid Values Function

1–32767 Designates subroutine to call.

IN/IO

IN followed by any
readable bit or word.

IO followed by any
readable bit or word.

IN: Designates address that contains data to
be read by the subroutine.

IO: Designates an address to be passed to the
subroutine.

B and W locations are valid only when XSUB
is used in a subroutine.

Figure 6-118 XSUB Format

NOTE: The parameter fields (IN1–IN20) allow read-only addresses, e.g., K
or WX, to be specified as I/O parameters. This allows you to pass the base
address of a read-only array to the subroutine. It is recommended that you
not design the subroutine to alter the contents of the read-only variable(s)
since other instructions assume that they do not change.

XSUB

XSUB Description

RLL Instruction Set 6-185SIMATIC 545/555/575 Programming Reference

! WARNING
When you call an external subroutine, the built-in protection features of the
controller are by-passed. Take care in testing the external subroutine before
introducing it to a control environment.

Failure of the external subroutine may cause undetected corruption of
controller memory and unpredictable operation by the controller, which could
result in death or serious injury to personnel, and/or damage to equipment.

You must be careful in testing the external subroutine before introducing it to a
control environment.

The operation of the XSUB instruction is described below. See Figure 6-119.

• Parameters must be numbered consecutively, i.e., you cannot skip
parameter numbers.

• When the input is turned on:

The parameters are pushed on the user stack, in order, from the last
parameter to the first parameter, and then the subroutine is called.
This corresponds to the C language calling convention.

When a discrete data element (X, Y, C, B) is specified as an IN
parameter, the discrete value is passed in the least significant bit of a
long word. All other bits of the long word are unspecified (may be 0 or
1).

When a discrete data element is specified as an IO parameter, the
address of the data element is passed. The actual value of the data
element is contained in the least significant bit of the byte at this
address. Other bits of this byte are unspecified.

When a word data element (V, K, etc.) is specified as an IN parameter,
the value of the long word at this specified data element and the
specified data element + 1 (e.g., V100 and V101) is passed. The
addressed word is in the most significant half, and the next consecutive
word is in the least significant half. Any readable data element is
allowed.

When a word data element is specified as an IO parameter, the address
of the data element is passed. The value of the parameter is contained
at this address.

After all parameters have been pushed onto the stack, the subroutine is
called. If the subroutine successfully executes (see Notes below)
STW01 bit 11 turns off, and the controller continues the scan with the
next network.

XSUB Operation

XSUB

RLL Instruction Set6-186 SIMATIC 545/555/575 Programming Reference

External Subroutine Call (continued)

IO1 C11
IO2 V110
IO3 K99
IN4 8871

IN19
IN20

END

XSUB 179

C100

L-memory

U-Memory

Before the XSUB is executed,
assume the following values
for these memory locations:

C11 = 1
V110,V111 = 0, 27706
K99,K100 = 1948

When C100 = 1,

IO1 = C11 = 1
IO2 = V110,V111 = 27706
IO3 = K99,K100 = 1948
IN = 8871

User-defined
subroutine # 179

Subroutine reads

IO1 = 1
IO2 = address of V110
IO3 = 1948
IN4 = 8871

After execution that changes
V110, V111 to 98250,

Subroutine returns control to
the RLL program.

When control returns to RLL,

C11 = unchanged
V110,V111 = 98250
K99,K100 = unchanged

Control passes to
subroutine.

Control passes
to RLL.

Figure 6-119 Example of the XSUB Instruction

NOTE: An XSUB in RLL with no defined external subroutine causes the
user program error bit (6) and the instruction failed bit (11) to be set in
STW01, with the reason set to 6 in STW200 (if this is the first error logged).
The controller remains in RUN mode.

XSUB

RLL Instruction Set 6-187SIMATIC 545/555/575 Programming Reference

NOTE: For the 575, if an XSUB instruction attempts to access a
non-existent VMEbus address a VMEbus error occurs. If this is the first
VMEbus error, the offending VMEbus address is written to
STW227-STW228 and the U-Memory offset of the offending instruction is
written to STW229-STW230.

If you set the U-Memory header’s E bit to 1 when you create your external
subroutine(s), a VMEbus error will terminate the XSUB and continue RLL
execution with the network following the XSUB instruction. In this case the
user program error bit (6) and instruction failed bit (11) in STW01 are set to
1 and, if this is the first user program error encountered on the current RLL
scan, the value 7 (VMEbus error) is written to STW200.

! WARNING
If you set the U-Memory header ’s E bit to 0 and a VMEbus error occurs during
execution of an XSUB, the 575 controller will transition to the Fatal Error mode.
The transition to Fatal Error mode freezes word outputs and clears discrete
outputs, which could cause unexpected process operation.

Unexpected process operation could result in death or serious injury to
personnel, and/or damage to equipment.

Avoid setting the U-Memory header ’s E bit to 0 when you create external
subroutines.

• When the input is off, the instruction does not execute and the
subroutine is not called. Bit 11 of STW01 turns off.

These RLL instructions are also used for subroutine operations.

GTS PGTS PGTSZ RTN SBR SFPGM SFSUB

See Also

XSUB

Special Function Programs 7-1SIMATIC 545/555/575 Programming Reference

Chapter 7

Special Function Programs

7.1 Defining Special Function Programs 7-2.

7.2 Using PowerMath with Special Function Programming 7-4.

7.3 SF Program Statements 7-10.

7.4 Executing Special Function Programs 7-11.

7.5 Executing Special Function Subroutines 7-14.

7.6 Memory Usage by SF Programs 7-16.

7.7 Entering SF Program Header with TISOFT 7-18.

7.8 Reporting SF Program or SFSUB RLL Instruction Errors 7-20.

7.9 Entering Special Function Programming Statements 7-22.

7.10 Convert BCD to Binary 7-24.

7.11 Convert Binary Inputs to BCD 7-25.

7.12 Call Subroutine 7-26.

7.13 Correlated Data Table 7-28.

7.14 Exit on Error 7-30.

7.15 Fall Through Shift Register—Input 7-31.

7.16 Fall through Shift Register—Output 7-35.

7.17 Go To/Label Function 7-39.

7.18 IF/IIF/THEN/ELSE Functions 7-40.

7.19 Integer Math Operations 7-42.

7.20 Lead/Lag Operation 7-44.

7.21 Real/Integer Math Operations 7-46.

7.22 Pack Data 7-51.

7.23 Pack Analog Alarm Data 7-56.

7.24 Pack Loop Data 7-58.

7.25 Pack Ramp/Soak Data 7-60.

7.26 Pet Scan Watchdog 7-66.

7.27 Printing 7-68.

7.28 Return from SF Program/Subroutine 7-71.

7.29 Scaling Values 7-72.

7.30 Sequential Data Table 7-74.

7.31 Synchronous Shift Register 7-76.

7.32 Unscaling Values 7-78.

7.33 Comment 7-80.

Special Function Programs7-2 SIMATIC 545/555/575 Programming Reference

7.1 Defining Special Function Programs

A special function program (SF program) consists of a set of instructions
that can be called from loops, analog alarms, or from the RLL program,
much like a GOSUB subroutine in a BASIC program or a procedure in a
C-language program.

The higher-level, statement-driven programming language used in an
SF program makes your programming task easier. You can derive solutions
for complex programs that would require extensive RLL programming and
consume large blocks of ladder memory. Operations such as mathematical
calculations, if/then statements, unit and number format conversions, table
transfers, data consolidation, etc., can be done with an SF program.
Typically, these types of operations either cannot be done with the RLL
instruction set, or they involve complex RLL programming.

An SF program can call a subroutine (SF subroutine) for execution. After
completion, the SF subroutine returns control to the SF program that called
it. The same programming statements used to write SF programs are used
to write SF subroutines. An SF program cannot call other SF programs for
execution, but SF subroutines can call other SF subroutines.

• Up to 1023 SF programs and 1023 SF subroutines can be defined on the
545–1104 and 545–1106 CPUs, all 555 CPUs, and all 575 CPUs.

• The 545–1103 and 545–1105 CPUs can support up to 64 SF programs
and subroutines.

You must allocate a block of memory called Special Memory (S-Memory)
before you can create SF programs. You do this with your programming unit
when you configure controller memory. SF programs and SF subroutines are
stored in S-Memory.

SF programs are categorized functionally by how they are called for
execution. You designate the program type when you enter the program.
The various SF program types are Priority, Non-priority, Cyclic, and
Restricted.

Introduction

Special Function
Program Types

Special Function Programs 7-3SIMATIC 545/555/575 Programming Reference

Priority, non-priority, and cyclic SF programs are called from the RLL
program by the RLL SFPGM instruction.

• A priority/non-priority SF program executes once after the input to the
RLL SFPGM instruction transitions from off to on. The SF program
does not execute again until the input to the RLL SFPGM instruction
transitions from off to on again.

If the controller changes from PROGRAM to RUN mode while the input
to the RLL SFPGM instruction is on, the SF program is queued for
execution.

The difference between priority and non-priority SF programs is based
on the amount of processor time allocated to executing the SF program.
You allocate processor time to the two types of SF programs using the
scan time tuning features (aux 19) of TISOFT.

• A cyclic SF program executes when the input to the RLL SFPGM
instruction transitions from off to on. When the cyclic SF program has
terminated, it is automatically re-queued for execution based on the
programmed cycle time (0.5 second increments). This process continues
as long as the input to the RLL SFPGM instruction is on. When the
input turns off, the cyclic SF program is not re-queued for execution.
(However, if it has been queued, it will execute one more time.)

You can adjust the cyclic SF processor time using AUX 19 of TISOFT.

Restricted SF programs are called by loops and analog alarms only. The
processor program execution time dedicated to restricted SF programs is
determined by the time allocated to loop and analog alarm processing. For
the 545, 555, and 575, this processor time is user configurable.

SF Programs Called
from RLL

SF Programs Called
from Loops/Analog
Alarms

Special Function Programs7-4 SIMATIC 545/555/575 Programming Reference

7.2 Using PowerMath with Special Function Programming

PowerMath is supported in the 555–1105/–1106 and 575–2105/–2106 CPUs.
PowerMath provides an easy-to-use computational environment which
greatly extends the CPU’s power by taking advantage of the new on-board
floating-point co-processor and the built-in integer processor in the CPU’s
microprocessor. In addition, high-level Special Function programs can now
be automatically compiled at run-time, reducing resource demand and
thereby greatly increasing execution speed.

• SF programs and subroutines can now be marked as either “compiled”
or “interpreted.” A compiled SF program or subroutine uses the CPU’s
integer and floating-point processors to execute the program directly,
providing significant execution speed improvements over the default
interpreted execution method.

• An SFPGM or SFSUB box instruction can be marked for “in-line”
execution if the referenced SF program or subroutine has been
compiled. When power flow is on for an in-line SFPGM or SFSUB box,
it executes immediately as part of the RLL scan. The result of the box’s
execution is available to the next element of the current RLL rung.

In addition to these capabilities, PowerMath provides a number of
extensions to the Special Function (SF) language. These extensions are
available to compiled and interpreted SF programs and subroutines.

Special Function integer and floating-point expressions now support
unsigned 16-bit integer and signed 32-bit (“long”) integer operands where
expressions are allowed in PowerMath CPUs.

• An unsigned integer operand is identified with a “U” suffix, e.g., V105U
or 32768U, and has a range of 0 to 65,535, inclusive. Unsigned integer
variables occupy one word (16 bits) of controller memory.

• A long integer operand is identified with an “L” suffix, e.g., K15L or
–200L, and has a range of –2,147,483,648 to 2,147,483,647, inclusive.
Long integer variables occupy two consecutive words of controller
memory. (In an interpreted SF program or subroutine, you should limit
use of long integer operands to integer expressions. This will avoid loss
of accuracy caused by the single-precision accumulator used for
interpreted floating-point expressions.)

• Unsigned and long integer variables can reside in constant (K), user
variable (V, G, VMS, or VMM), or temporary (T) memory, only.

What is
PowerMath?

32-Bit Signed and
16-Bit Unsigned
Integer Math

Special Function Programs 7-5SIMATIC 545/555/575 Programming Reference

Two new SF statements have been added to PowerMath CPUs:

• IIF (Integer IF) allows you to code IF-THEN-ELSE blocks using an
integer expression for the conditional. An integer expression will
execute faster than the equivalent floating-point expression. (Compiled
integer expressions also use less memory than the equivalent
floating-point expression.)

• PETWD (Pet Scan Watchdog) allows you to extend the scan watchdog
limit while performing an in-line SFPGM or SFSUB from an RLL
program.

Integer expressions (IMATH and IIF statements) now support the following
additional operators:

• Logical AND

• Logical OR

• Comparison: “<”, “<=”, “=”, “>”, “>=”, and “<>”

• Absolute value (ABS)

Integer expressions (both interpreted and compiled) are now evaluated
using a 32-bit accumulator1. This was necessary in order to support
unsigned and long integer operands.

Compiled floating-point expressions are evaluated using a double-precision2

floating-point accumulator. The double-precision accumulator allows a
compiled floating-point expression to produce a true 32-bit integer result. It
also improves the accuracy of all floating-point computations. (The SF
interpreter continues to use a single-precision floating-point accumulator.)

The IMATH and MATH operators WAND, WOR, and WXOR now operate on
a 32-bit integer accumulator. Because their names imply a 16-bit word
operation, these operators have been renamed. WAND is now displayed as
“&”, WOR as “|”, and WXOR as “^”.

1This change may cause a program which was expecting a “silent” integer truncation to log an
arithmetic overflow error. Potential areas for consideration should this occur are shift
operations and multiply operations.
2The data types of an operand of a floating-point expression can be either 16-bit signed integer,
16-bit unsigned integer, 32-bit signed integer, or single-precision floating-point operands.
Double-precision floating-point operands are not supported. When an expression is used as a
parameter to a CALL statement, the value passed to the called subroutine has the type of the
variable on the left-hand side of the expression’s assignment (“.=”) operator, if present. If the
expression does not assign its result to a variable, the expression’s value is passed as a
single-precision floating-point value.

SF Operators,
Functions, and
Instructions

Special Function Programs7-6 SIMATIC 545/555/575 Programming Reference

Using PowerMath with Special Function Programming (continued)

When compiled mode is selected, the SF program or subroutine is translated
to the native instruction set of the CPU’s microprocessor. The compiled code
is then executed whenever the program or subroutine is scheduled for
execution. The advantages of compiled execution are:

• Significant execution speed improvement. For example, a MATH
statement that adds two floating-point values will execute in under
10 �s when compiled versus more than 100 �s when executed by the SF
interpreter. Depending on the program’s size and the placement of the
target LABEL within the program, a GOTO statement may take 1 ms
or more when executed by the interpreter. Compiled execution of a
GOTO statement takes less than 1 �s no matter where in the program
the LABEL is located. This represents a 1,000x improvement.

• A compiled SF program or subroutine can be executed in-line to the
user RLL program. This means that when the enable input to the
SFPGM or SFSUB box instruction is on, the program or subroutine is
executed immediately and its result is available for use in the next
rung of the current RLL scan.

There are several reasons to choose interpreted mode for an SF program.
The primary reasons are as follows:

• If the program has one or more statements which are not allowed in a
compiled program (see page 7-7), or if it calls a subroutine which is
not compiled, then it may not be compiled.

• A compiled program requires both S-Memory and Compiled Special
(CS)-Memory, while an interpreted program requires only S-Memory.
As a rule of thumb, the compiled code for an SF program requires twice
as much CS-Memory as S-Memory. For example, an SF program that
uses 1 Kbyte of S-Memory also uses 2 Kbytes of CS-Memory.

• A compiled SF program or subroutine can not be preempted by a
second SF program or subroutine on the same execution queue. This
may present a scheduling problem for a cyclic, loop or analog alarm
queue. For example, if a compiled program is executing on a loop
setpoint, a higher priority loop will not execute until the compiled
program completes. This is not a problem if the program’s execution
time is small. However, if the program requires significant execution
time, this could cause unnecessary loop overruns.

• The SF interpreter provides superior debug capability. For example, if a
programming error causes an interpreted program to be in an infinite
loop, you can disable the program to fix the problem. If the same
program is compiled, a power cycle may be required. It is a good idea to
debug the logic of a complex program or subroutine using the
interpreter and then mark the program for compilation.

Why Choose
Compiled Mode
for an SF Program
or Subroutine?

Why Choose
Interpreted Mode
for an SF Program
or Subroutine?

Special Function Programs 7-7SIMATIC 545/555/575 Programming Reference

Most SF programs and subroutines can be compiled. However, an SF
program or subroutine which contains any of the following instructions
cannot be compiled:

• The data compacting instructions: PACK, PACKLOOP, PACKRS, and
PACKAA

• The shift register instructions: SSR, FTSR–IN and FTSR–OUT

• The PRINT instruction

• The BCD instructions: BCDBIN and BINBCD

Additionally, the CDT and SDT instructions, when used in a compiled SF
program or subroutine, must specify a static table; that is, the table’s base
address must be a V, K, G, VMS, or VMM address and the table’s size must
be specified as a constant.

Special Function programs execute in the following ways:

SFPGM RLL instruction without the IN-LINE attribute — The
transition from OFF to ON of the SFPGM box input causes the referenced
program to be placed in the appropriate execution queue (normal, priority,
or cyclic). When the program reaches the top of the queue, it executes as
follows:

• If the program is marked as compiled, its compiled code will execute to
completion. If it is executing from a cyclic queue, a higher priority
process on the queue will not execute until the program terminates.

• If the program is not marked as compiled, it will be executed by the SF
interpreter. If it is executing from a cyclic queue and a higher priority
process needs execution time, the higher priority process may interrupt
the program’s execution on any SF statement boundary.

SFPGM RLL instruction with the IN-LINE attribute — When the
SFPGM box input is on, the program will execute to completion as part of
the RLL process and the box output will remain on. The following
exceptions cause the program’s execution to fail:

• If the SF program does not exist or if it has not been compiled, user
program error 8 is logged in STW200 and there is no power flow at the
box output.

• If the SF program is not enabled, user program error 9 is logged in
STW200 and there is no power flow at the box output.

What Can Be
Compiled?

How Do
SF Programs
Execute?

Special Function Programs7-8 SIMATIC 545/555/575 Programming Reference

Using PowerMath with Special Function Programming (continued)

• If the SF program’s type is CYCLIC or RESTRICTED, user program
error 10 is logged in STW200 and there is no power flow at the box
output.

• If an edit operation is in progress3, user program error 11 is logged in
STW200 and there is no power flow at the box output.

• If the SFPGM statement is being executed by an interrupt RLL task
(555 specific), user program error 12 is logged in STW200 and there is
no power flow at the box output.

Loop or analog alarm — The program may be compiled or interpreted. If
the program is compiled, it will execute to completion when the loop or
analog alarm schedules it. If the program is interpreted, it will be initiated
when the loop or analog alarm schedules it. While an interpreted SF
program is in execution, a higher priority process on its queue may
interrupt it on any SF statement boundary.

Special Function subroutines execute in the following ways:

SFSUB RLL instruction without the IN-LINE attribute — When
power flow to the SFSUB box transitions from OFF to ON, the subroutine
call is queued to the appropriate SF subroutine queue based on the
subroutine number. When the subroutine call reaches the top of its queue,
the SF interpreter evaluates the subroutine’s parameters and then, if the
subroutine number is not 0, executes the subroutine. If the subroutine has
been compiled, its compiled code is executed.

SFSUB RLL instruction with the IN-LINE attribute — When power
flow to the SFSUB box is on, the SFSUB’s compiled parameter evaluation
code is executed and then, if the subroutine number is not 0, the compiled
code for the subroutine is executed. Power flow remains on.

The following exceptions cause an in-line SFSUB instruction to fail prior to
parameter evaluation:

• An edit operation is in progress. User program error 11 is logged in
STW200 and there is no power flow at the box output.

• The SFSUB statement is being executed by an interrupt RLL task.
User program error 12 is logged in STW200 and there is no power flow
at the box output.

3An edit operation is any change to L-memory (relay ladder logic), S-memory (SF programs and
SF subroutines, loops, and analog alarms), U-memory (external subroutines), or system
configuration (scan watchdog, I/O configuration, RAM/ROM program source, port lockout, etc.).
Execution is inhibited while the change is in progress, that is, while the user is waiting for the
operation’s “enter” command to respond at the operator interface.

How Do
SF Subroutines
Execute?

Special Function Programs 7-9SIMATIC 545/555/575 Programming Reference

The following exceptions cause the SFSUB instruction to fail after
parameter evaluation:

• The referenced SF subroutine does not exist.

• The referenced SF subroutine has not been compiled.

• The referenced SF subroutine is not enabled.

In each of these cases, power flow remains ON. These errors are logged in
the SFSUB instruction’s Error Status Address and the subroutine is not
executed.

CALL Subroutine statement in an interpreted SF program or
subroutine — The subroutine parameters are evaluated by the SF
interpreter. If the SF subroutine does not exist or if it is not enabled, an
error is logged in the program’s Error Status Address and the subroutine is
not executed. Otherwise, if the subroutine has been compiled, its compiled
code is executed to completion as part of the call statement, i.e., the
subroutine can not be interrupted by a higher priority cyclic program, loop,
or analog alarm executing from the same queue. If the subroutine has not
been compiled, it is executed by the SF interpreter and can be interrupted
(between statements) by a higher priority process in its queue.

CALL Subroutine statement in a compiled SF program or
subroutine — The subroutine parameters are evaluated by the compiled
SF program or subroutine. If the SF subroutine does not exist, has not been
compiled, or is not enabled, an error is logged in the program’s Error Status
Address and the subroutine is not executed. Otherwise, the subroutine’s
compiled code is executed to completion, i.e., the subroutine cannot be
interrupted by a higher priority cyclic program, loop or analog alarm
executing from the same queue.

CALL Subroutine
Statement
Execution

Special Function Programs7-10 SIMATIC 545/555/575 Programming Reference

7.3 SF Program Statements

Table 7-1 lists programming statements that are used in SF programs and
SF subroutines, and their functions. Compiled SF execution can be used by
all controllers that support PowerMath. Certain statements cannot be used
in compiled SF programs and subroutines, or can be used with restrictions.

Table 7-1 SF Program Statements

Operation Type Statement Function Compile Page

BCDBIN Convert BCD To Binary No 7-24

Data conversion
BINBCD Convert Binary Inputs To BCD No 7-25

Data conversion
SCALE Scaling Values Yes 7-72

UNSCALE Unscaling Values Yes 7-78

Documentation * Comment Yes 7-80

IMATH Integer Math Operations Yes 7-42

Math LEAD/LAG Lead/Lag Operation Yes 7-44Math

MATH Real/Integer Math Operations Yes 7-46

CALL Call Subroutine Yes 7-26

EXIT Exit On Error Yes 7-30

GOTO/LABEL Go To/Label Function Yes 7-39

Program flow IF/THEN/ELSE/ENDIF If/Then/Else Functions Yes 7-40Program flow

IIF/THEN/ELSE/ENDIF Integer If/Then/Else Functions Yes 7-40

PETWD Pet Scan Watchdog (w/ compiled SF only) Only 7-66

RETURN Return from SF program/SF subroutine Yes 7-71

Printing PRINT Print Functions No 7-68

CDT Correlated Data Table Yes* 7-28

FTSR–IN Fall Through Shift Register–In No 7-31

FTSR–OUT Fall Through Shift Register–Out No 7-35

PACK Pack Data No 7-51

Table handling PACKAA Pack Analog Alarm Data No 7-56Table handling

PACKLOOP Pack Loop Data No 7-58

PACKRS Pack Ramp/Soak Table No 7-60

SDT Sequential Data Table Yes* 7-74

SSR Synchronous Shift Register No 7-76

*The CDT and SDT statements, when used in a compiled SF program or subroutine, must specify a static table; that is, the
table’s base address must be a V, K, G, VMS or VMM address and the table’s size must be specified as a constant.

Special Function Programs 7-11SIMATIC 545/555/575 Programming Reference

7.4 Executing Special Function Programs

When a priority/non-priority or cyclic SF program is called by the RLL
SFPGM instruction, the SF program is placed in a queue for execution. Up
to 32 SF programs of each type (for a total of 96 in three queues) can be
queued at a given time. If a queue is full, the request for placement on the
queue is made again on the next scan. This continues as long as the input to
the RLL SFPGM instruction remains on.

The SFPGM instruction can be used anywhere within the RLL program
that a single-line input box instruction can be used. Figure 7-1 shows the
format of the RLL SFPGM instruction. The # is the number of the
SF program to be called for execution.

= 1 –1023

OutputInput
SFPGM #

[IN-LINE]

Figure 7-1 SFPGM Instruction Format

When power flow to the RLL SFPGM instruction (when not marked as
in-line) transitions from off to on, the output from the instruction is
examined. If the output is off and the SF program is not executing, the
SF program is placed in the queue for execution.

• After the SF program executes, the output turns on.

• The SF program does not execute again until the input to the SFPGM
instruction transitions from off to on.

! CAUTION
Following a transition from PROGRAM to RUN, and with the input on during the
first execution of the RLL SFPGM instruction, the SF program is queued for
execution.

The SF program executes to completion only as long as the input remains on.

Make sure the input to the SFPGM instuction is not turned off until after the SF
program has executed to completion and the output has turned on.

Priority/non-priority
SF Programs

Special Function Programs7-12 SIMATIC 545/555/575 Programming Reference

Executing Special Function Programs (continued)

With CPUs that support PowerMath, an SFPGM or SFSUB box instruction
can be marked for “in-line” execution if the referenced SF program or SF
subroutine has been compiled. When power flow is on for an in-line SFPGM
or SFSUB box, it executes immediately as part of the RLL scan. The result
of the box’s execution is available to the next element of the current RLL
scan. Cyclic SF programs cannot be marked for in-line execution.

When power flow to the RLL SFPGM instruction transitions from off to on,
the cyclic SF program is placed in the queue for execution.

• After the cyclic SF program executes one time, the output turns on. The
SF program automatically re-queues for execution, based on the
programmed cycle time. This process continues as long as the input to
the RLL SFPGM instruction is on.

• The output remains on until the input to the RLL SFPGM instruction is
turned off.

• A cyclic SF program is removed from the queue when it completes a
scheduled cycle and the SFPGM instruction’s input is off.

You can program a loop to call an SF program to do a calculation on any
constant, variable, or I/O point. When you program a loop, you can schedule
the SF program call to be made when the process variable, setpoint, or
output is accessed.

Calculation Scheduled on Setpoint When the loop is in auto or cascade
mode, the SF program is called at the sample rate and T2 (defined in
Section 7.6) always equals 2. When the loop is in manual mode, the
SF program is not called for execution.

Calculation Scheduled on Process Variable When the loop is in auto,
cascade, or manual mode, the SF program executes every 2.0 seconds or at
the sample rate, whichever is less. The SF program is called at least every 2
seconds to monitor/activate the PV alarms associated with the loop, even
though loop calculations are not being performed.

In-Line Execution
of Compiled
SF Programs

Cyclic Programs

Restricted
Programs Called
by Loops

Special Function Programs 7-13SIMATIC 545/555/575 Programming Reference

In the case of a loop sample time greater than 2.0 seconds, the SF program
is called at a 2.0 second-interval, with T2 = 3 indicating that the SF was
called on PV. This allows for PV manipulation before PV alarming occurs in
the loop. When it is time to perform the loop calculation, T2 equals 2 to
indicate that the loop calculation is about to be performed. This allows for
manipulation of PV and setpoint before the loop calculation executes. If the
loop sample time is less than 2.0 seconds, T2 always equals 2.

NOTE: SF programs called on PV or SP execute after PV and SP are
determined by the loop, but before any processing is performed, based on
the values obtained. This allows SF programs to manipulate the PV or SP
before the loop uses them for output adjustments.

Calculation Scheduled on Output When a loop with a sample time of less
than 2.0 seconds calls an SF program, the SF program is actually called
twice for every loop calculation.

• After PV and SP are determined, the SF program is called on SP
(T2 = 2). This call allows for PV and SP manipulation before PV
alarming and loop calculations are run. The loop calculation is then
performed and the resultant output value is placed into the loop-output
variable (LMN).

• Next, the SF program is then called on output (T2 = 5) to allow for
manipulation of the loop output value in LMN before this value is written
to the loop-output address.

If the sample time of the loop is greater than 2.0 seconds, the same applies
except that the SF program is called at least every 2.0 seconds and T2 = 3 if
it is not time to perform a loop calculation.

Refer to Section 7.6 for a description of T-Memory.

You can program an Analog Alarm to call an SF program to do a calculation
on any constant, variable, or I/O point. The Analog Alarm is called at the
SF program sample rate.

Restricted
Programs Called
by Analog Alarms

Special Function Programs7-14 SIMATIC 545/555/575 Programming Reference

7.5 Executing Special Function Subroutines

An SF subroutine can be called for execution by an SF program or another
SF subroutine through the CALL statement. See Section 7.12 for
information about how the CALL statement operates.

Additionally, an SF subroutine can be called from RLL using the SFSUB
RLL instruction. Refer to section 6.52 for information about how the SFSUB
RLL instruction operates.

SF subroutines allow you to design modular programs. A calculation
required in several places in the program may be placed in a subroutine and
called by the routine number whenever it is needed. For example, consider a
calculation such as:

y � 0.929783 * x � 2 * �
ez

� ln(x)
x0.25

�

0.5

where y is the output and x and z are inputs. This calculation could be
placed in an SF subroutine as follows:

SF Subroutine 0113

MATH P1: = 0.929783 * P2 + 2 * ((exp(P3) + ln(P2))/(P2 ** 0.25))** .5

where P1 corresponds to the y output, and P2 and P3 correspond to the x
and z inputs respectively. The SF subroutine 0113 would be called by a
CALL statement as shown in the following example.

CALL SFSUB : 113 P1 : V100..
P2 : T15 P3 : V202..
P4 : P5 :.

where V100. corresponds to the y output, T15 corresponds to the x input,
and V202. corresponds to the z input.

Calling
SF Subroutines

Designing
SF Subroutines

Special Function Programs 7-15SIMATIC 545/555/575 Programming Reference

When you reference a parameter (P1, P2, etc.) in a SF subroutine you
should not include the “.” suffix. A reference without this suffix, e.g., “P1”,
instructs the controller to use the parameter according to the data type
(integer or real) that was specified when the subroutine was called. For
example, if parameter P1 is coded as “V100.” in the CALL statement, then a
reference to P1 in the called subroutine would access the value at
V100-V101 as a real number. If, on the other hand, P1 is coded as “V100”
(without the “.” suffix) in the CALL statement, then the same reference to
P1 in the called subroutine would access the value at V100 as an integer. In
both cases the expected operation occurs.

If you reference a SF subroutine parameter using the “.” suffix, e.g. “P1.”,
you are instructing the controller to ignore the parameter’s data type, as
specified in the CALL statement, and to use the parameter as a real
number. If in fact the CALL statement had coded P1 as V100 (a 16-bit
integer) and the subroutine referenced parameter one as “P1.”, the
subroutine would access the value at V100-V101 as a real number. (It would
not convert V100 from integer to real and use the converted result.) In
almost all cases this is not the expected operation.

Table 7-2 summarizes the effect of the “.” suffix when used on a parameter
reference.

Table 7-2 Specifying Real or Integer Parameters

Data Type Specified in
CALL statement

Parameter Reference
in SF Subroutine

Data Type Used in
Calculation

real (V100.) Pn real

integer (V100) Pn integer

real Pn. real

integer Pn. real, no conversion

Special Function Programs7-16 SIMATIC 545/555/575 Programming Reference

7.6 Memory Usage by SF Programs

When an SF program is called, the operating system automatically allocates
a block of temporary memory, T-Memory, to the program for the duration of
that program. When the program terminates, the T-Memory allotted for
that program clears.

T-Memory is 16 words long. Each word contains the following information.

• T1 — SF program Program Number.

• T2 — Code indicating how a program is called:

1 = RLL program

2 = SF program scheduled on a loop setpoint

3 = SF program scheduled on a loop process variable

4 = SF program on an analog alarm

5 = SF program scheduled on a loop output

• T3 — If the SF program is called from a loop, then T3 contains the
number of that loop from which the program was called. If the
SF program is called from an analog alarm, T3 contains the number of
that analog alarm. Otherwise, T3 contains 0.

• T4 and T5 — If the SF program is called from a loop, analog alarm, or is
a cyclic SF program, T4 and T5 contain the cycle period in seconds
stored as a real (32-bit) value. Otherwise, T4 and T5 contain 0.

Special Function Programs 7-17SIMATIC 545/555/575 Programming Reference

• T6 — If the SF program is called from a loop, analog alarm, or is a cyclic
SF program, T6 contains 1 when the loop, analog alarm, or SF program
has overrun. Otherwise, T6 contains 0.

• T7 — If the SF program is called from a loop, analog alarm, or is a cyclic
SF program, T7 is set to 1 if this is the first time the SF program is
called. T7 is also set to 1 if this is the first time the loop executes after a
commanded restart, or following a program-to-run transition, or
following a mode change (i.e., manual to auto, auto to manual).
Otherwise, T7 contains 0.

• T8–T16 — No data is written to these words. You can use them any time
during the program to store intermediate calculations.

You can use all 16 words in your SF program. You can read the information
stored in T1–T7 by the controller; or if you prefer, store data into these
locations as you can with T8–T16, writing over the information written by
the controller.

Special Function Programs7-18 SIMATIC 545/555/575 Programming Reference

7.7 Entering SF Program Header with TISOFT

The general steps for entering an SF program are listed below. Refer to your
TISOFT user manual for detailed instructions.

• Select the SF program option (SFPGM-F8) from the menu on your
programming device. The SF Program/Subroutine Directory is
displayed.

• Select the SF program that you want to enter (Program 1, Program 2,
etc.). Then press SHOW-F2 to access the SF program.

• The screen displays the program format. The program format consists of
a header section and a program section, as illustrated in Figure 7-2.

TITLE: TANK 50 SF PROGRAM: 1022
CONTINUE ON ERROR (Y, N): NO

ERROR STATUS ADDR: (Y, C, WY, V): V500
PROGRAM TYPE (N, P, C, R): CYCLIC

CYCLE TIME (SEC): 1.0

00001 * THE COMMENT STATEMENTS (*) EXPLAIN THE
PURPOSE OF THE PROGRAM.

00002 SCALE BINARY INPUT : WX10 SCALED RESULT : V1
LOW LIMIT : 0.0 HIGH LIMIT : 20.0
20% OFFSET : YES BIPOLAR : NO.

00003 IF V1 = 5
00004 PRINT PORT : 1 MESSAGE: :.

“TANK LEVEL IS LOW. PRESENT LEVEL IS” V1 “FT.”
00005 MATH LKC1. : = 3.0
00006 ELSE
00007 MATH LKC1. : = 1.0
00008 ENDIF
**** END ****

S-MEMORY AVAILABLE: 1808 DISBL
555 NEWPGM

EXIT-F1 EDIT-F2 FIND-F4 DELST-F5 INSST-F6 COMMNT-F7 DIS/CP-F8

Header

Program

Figure 7-2 Special Function Program Format

Special Function Programs 7-19SIMATIC 545/555/575 Programming Reference

• Press EDIT-F2 to enter SF program edit mode.

• Enter a title for the program. The title is optional and can be left blank.

• The CONTINUE ON ERROR field specifies if the program is to continue
to run when an error occurs. Enter Y in this field to have the program
continue when an error occurs. Enter N in this field to have program
stop when an error occurs. See Section 7.8 for a discussion of error
reports.

• The ERROR STATUS ADDRESS field specifies how error conditions are
handled. In order to have an error code written when a program error
occurs, you must specify a V-Memory location or a word output (WY) in
this field. If you enter a control relay or discrete output point in this
field, then this point is set when an error occurs. Refer to Section 7.8 for
a discussion of error reports.

• The PROGRAM TYPE field specifies the program type. Enter N for a
non-priority program, P for a priority program, C for a cyclic program, or
R for a restricted program. Refer to Section 7.1 for a discussion of
SF program types.

• The CYCLE TIME field sets the periodicity of the program execution.
For a cyclic program, enter the cycle time in seconds (0.5–6553.5). For
example, a program with a cycle time of 5 seconds is executed every five
seconds. Note that the controller rounds the value that you enter up to
the next 0.5 second interval.

• Save the header information, and then proceed to the program section.

Special Function Programs7-20 SIMATIC 545/555/575 Programming Reference

7.8 Reporting SF Program or SFSUB RLL Instruction Errors

When you enter an SF program or an SFSUB RLL instruction, you have the
option of specifying how to report errors. You assign an address in the
ERROR STATUS ADDRESS field of the SF program header, (described in
Section 7.7) or in the ER field of the SFSUB RLL instruction (described in
Section 6.50). In this field, you can specify a control relay (C), a discrete
output (Y), a V-Memory location, or a word output (WY).

The Special Function Error Code (SFEC) variable may be used to read from
or write to the error code for an SF program or for an SFSUB RLL
instruction. Each SF program or SFSUB RLL instruction contains one
SFEC variable. All references to SFEC within an SF program or an SFSUB
RLL instruction’s parameters, or within any SF subroutine called by the SF
program or SFSUB RLL instruction, refers to this single SFEC variable.
(The programming system may require that you specify a number when you
enter the SFEC variable name, e.g., SFEC1. The programmable controller
ignores this number.)

When an SF program or an SFSUB RLL instruction is queued for execution,
the SFEC for that SF program or SFSUB RLL instruction is cleared to zero.
If an error occurs during execution, the error code associated with the error
(refer to Appendix F) is written to SFEC. Errors can be detected by the
operating system or they can be detected by the user program. If an error is
detected by the user program, you indicate it to the system by an
assignment to SFEC in a MATH or IMATH statement.

If you select NO in the CONTINUE ON ERROR field when you enter an SF
Program, or, if you select STOP ON ERROR when you enter an SFSUB RLL
instruction, assigning a non-zero value to the SFEC variable causes the SF
program or SFSUB RLL instruction to terminate. (You can force
termination of the SF program or SFSUB instruction by having your
program or subroutine assign a non-zero value to SFEC.)

If you select YES in the CONTINUE ON ERROR field when you enter an
SF Program, or CONTINUE ON ERROR when you enter an SFSUB RLL
instruction, writing to the SFEC variable does not cause the SF program or
SFSUB RLL instruction to terminate. In this case, your SF program or SF
subroutine can examine the SFEC variable and take corrective active, as
applicable. However, you are not able to force termination by writing to
SFEC.

If you specify a control relay (C) or discrete output (Y) in the ERROR
STATUS ADDRESS field when you enter an SF program, or in the ER field
when you enter an SFSUB RLL instruction, this discrete point is set to one
if an error occurs. No other report of the error is made; no error code is
written.

Reporting Errors
with the SFEC
Variable

Reporting Errors
with Discrete Points

Special Function Programs 7-21SIMATIC 545/555/575 Programming Reference

If you specify a V-Memory location (Vn) or word output (WYn) in the
ERROR STATUS ADDRESS field when you enter an SF program, or in the
ER field when you enter an SFSUB RLL instruction, then three words of
memory are reserved, as shown in Figure 7-3.

V or WY
n

n+1

n+2

Bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Error Code

Control Block ID

Statement Number

Figure 7-3 Word Specification for SF Program Errors

The error code is contained in the low-order eight bits of the first word
(word n) in the group. Appendix F lists the error codes and their definitions.

The second word in the group (word n+1) is the control block ID. The
controller assigns a control block for each loop, analog alarm, SF program
and SF subroutine. The header in each control block stores information in
the following format.

• Bits 1 and 2 (in word n+1) always contain zero.

• The next four bits (bits 3–6 in word n+1) indicate the control block type
as follows.

0000: Loop Control Block

0001: Analog Alarm Control Block

0010: SF program Control Block

0011: SF subroutine Control Block or SFSUB RLL Instruction

0100 through 1111 are not used

• The next 10 bits (bits 7–16 in word n+1) are allocated for the Control
Block Number or SFSUB RLL Instruction number.

The third word in the group (word n+2) contains the statement number of
either the last SF statement to be executed correctly, or the statement
number of the statement executing when the error occurred. (The Control
Block ID indicates the SF program or SF subroutine that contains the
statement.)

Reporting Errors
with V or WY
Memory

Special Function Programs7-22 SIMATIC 545/555/575 Programming Reference

7.9 Entering Special Function Programming Statements

Each SF statement has one or more fields in which you enter data when you
use the statement in an SF program. For each field, you enter a field type
and a field descriptor, which are defined in Table 7-3.

Table 7-3 SF Statement Field Entry Definitions

Field Type

Element

Elements are comprised of a data type and a number. A period following the
element designates the element as an address of a real number. No period
designates the element as an address of an integer. Examples of elements
are: V100 or V100. or LPVH1. or C102, etc.

Address

Address
Expression

An address expression is a logical group of tokens evaluating to an address,
where a token is the smallest indivisible unit, e.g., an element, operator,
constant, parenthesis, etc. PowerMath CPUs also support 16-bit unsigned
integers (identified with a U suffix, e.g., V105U) and 32-bit signed integers
(identified with an L suffix, e.g., K15L) Examples of address expressions are

V100(3) evaluates to the address V102

V100.(2) evaluates to the address V101.

V102.(:T16 + 10:) if T16 = 2, evaluates to the address V124.

V105U, K15L (PowerMath CPUs only)

Literal
Constant

A literal constant is a real or integer number, such as 78, 3.468, 32980, etc.

Value
Value
Expression

A value expression is a logical group of tokens evaluating to a value, where a
token is the smallest indivisible unit, e.g., an element, operator, constant,
parenthesis, etc. Examples of value expressions are

V100:= LKD2.**3

(V100 + K774)

(V102(3))

32768U (PowerMath CPUs only)

600L (PowerMath CPUs only)

Field Descriptor

Integer only
This field only accepts an integer value (e.g., 3761 or (V11 + 7)) or an address containing an
integer value (e.g., V100 or WX88 or V100(2); PowerMath CPUs also support unsigned 16-bit
integers and signed 32-bit integers (e.g., V105U, K15L).

Real only This field only accepts a real value (e.g., 33.421) or an address containing a real value,
(e.g., V121. or V888. (13)).

Integer/Real This field accepts a real or integer value or an address containing a real or integer value.

Writeable This field only accepts a writeable address, (e.g., WY1000 or V23. or C55). Read-only
addresses, (e.g., K551 or WX511 or X69) are not allowed.

Optional An entry in this field is optional and the field can be left blank.

Bit This field only accepts an address that contains a bit value (e.g., X17 or C200 or Y91).

Special Function Programs 7-23SIMATIC 545/555/575 Programming Reference

Figure 7-4 shows an example of the entries that are valid for the fields in
the FTSR-IN statement.

Field type Field descriptors

Field A

Field type Enter either an element or an address expression.

Field descriptors The entry in field A must contain the address of an integer.

Field B

Field type Enter either an element or an address expression.

Field descriptors The entry in field B must contain the address of an integer,
and that address must be writeable.

A = Address Integer
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR–IN Input : A Register start : B.
Register length : C Status bit : D.

Field C

Field type Enter an element, address expression, literal constant, or
a value expression.

Field descriptors The entry in field C must contain an integer (literal constant
or value expression) or an address to an integer (element or
address expression).

Field D

Field type Enter only an element.

Field descriptors The entry in field D must contain the address of a bit and
that address must be writeable.

Figure 7-4 Example of Valid Entries for the FTSR-IN Statement

Special Function Programs7-24 SIMATIC 545/555/575 Programming Reference

7.10 Convert BCD to Binary

The Convert BCD to Binary statement converts binary coded decimal (BCD)
inputs to a binary representation of the equivalent integer. The BCDBIN
format is shown in Figure 7-5.

BCDBIN BCD input : A Binary result : B.

A = Address Integer
B = Address Integer, writeable

Figure 7-5 BCDBIN Format

• A is the memory location of the BCD word to be converted.

• B is the memory location of the integer value after conversion.

The operation of BCDBIN is described below and illustrated in Figure 7-6.

• Each time the BCDBIN statement executes, the four digits of the BCD
value located in the address specified by A are converted to the binary
representation of the equivalent integer value.

• The result is stored in the address specified by B.

BCDBIN BCD Input: WX01 Binary result: WY11

0 1 0 0 0 0 10 1 0 0 1 0 0 11

0 0 0 1 0 0 00 0 1 1 0 0 0 10

4 1 9 3

WX01 contains BCD value 4193
entered from a thumbwheel

WY11 contains binary
representation of integer 4193

A: WX01 B: WY11

Figure 7-6 Example of BCDBIN Operation

BCDBIN

BCDBIN Description

BCDBIN Operation

Special Function Programs 7-25SIMATIC 545/555/575 Programming Reference

7.11 Convert Binary Inputs to BCD

The Convert Binary Inputs to BCD statement (Figure 7-7) converts the
binary representation of an integer to the equivalent Binary Coded Decimal
(BCD) value. Values up to 9999 are converted to equivalent BCD values.

BINBCD Binary input : A BCD result : B.

A = Address Integer
B = Address Integer, writeable

Figure 7-7 BINBCD Format

• A is the memory location of the integer to be converted.

• B is the memory location of the BCD word after conversion.

The operation of BINBCD is described below and illustrated in Figure 7-8.

• Each time the BINBCD statement executes, the integer located in the
address specified by A is converted to BCD.

• An error occurs if the input value contained in A is less than zero or
greater than 9999.

• The BCD value is stored in the address specified by B.

A: V77

0 0 0 0 0 0 01 1 1 0 1 0 0 01

B: WY11

0 0 0 1 0 1 00 0 0 1 1 0 1 00

1 2 3 4

BINBCD Binary input: V77 BCD result: WY11

V77 contains binary
representation of integer 1234

WY11 contains BCD 1234

Figure 7-8 Example of BINBCD Operation

BINBCD Description

BINBCD Operation

BINBCD

Special Function Programs7-26 SIMATIC 545/555/575 Programming Reference

7.12 Call Subroutine

The CALL statement calls an SF subroutine for execution. Up to five
parameters may be passed to the subroutine by the CALL statement. The
CALL format is shown in Figure 7-9.

CALL SFSUB A P1 : B. .
P2 : C P3 : D.
P4 : E P5 : F.

A = Literal constant Integer
B–F = Address or value Integer/real, optional

Figure 7-9 CALL Format

• A is the number of the SF subroutine to be called and ranges from 1 to
1023.

• B–F are the fields in which constant values or variables are specified to
be passed between the SF subroutine that is called, and the SF program
or the SF subroutine that contains the CALL statement.

The operation of the CALL statement is described below.

• Up to five parameters may be specified in the P (B–F) fields to be passed
to the SF subroutine.

The P fields are optional and can be left blank. If you have fewer than
five entries for the P fields, enter them in order. That is, do not skip any
of the P fields.

To specify a real value rather than an integer in a P field, place a period
after the variable. For example, P1...: V100. passes a real number to P1;
P2...: V102 passes an integer. Table 7-4 shows how data types are
passed to an SF subroutine.

To specify a long (32-bit) signed integer, place an L after the variable.
For example, V200L specifies a 32-bit (long) integer instead of a real
value. (This integer type is supported by PowerMath CPUs only.)

To specify an unsigned 16-bit integer, place a U after the variable. For
example, V202U specifies a 16-bit unsigned integer. (This integer type is
supported by PowerMath CPUs only.)

CALL

CALL Description

CALL Operation

Special Function Programs 7-27SIMATIC 545/555/575 Programming Reference

• When the CALL statement executes, the following actions occur:

Control is transferred to the specified SF subroutine. Any parameters
specified in the P fields are read by the SF subroutine.

Statements within the SF subroutine execute, and parameters in the P
fields that are modified by the SF subroutine are updated. Then control
transfers back to the SF program that called the SF subroutine.

Table 7-4 Specifying Real or Integer Parameters

Data Type Specified in
CALL Statement

Data Type Specified in
SF Subroutine*

P Data Type Used in
SF subroutine*

real (real (real (

real (integer real (

integer real (real (

integer integer integer

*See Section 7.5 for more information about specifying data types in SF subroutines.

! CAUTION
Subroutines may be nested to four levels. If the limit of four levels is exceeded,
an error results.

This causes termination of the SF program and all subroutines prior to the one
that exceeded the level.

CONTINUE ON ERROR does not override this condition. Ensure that you do not
nest subroutines for more than four levels.

CALL

Special Function Programs7-28 SIMATIC 545/555/575 Programming Reference

7.13 Correlated Data Table

The Correlated Data Table statement compares an input value (the input)
to a table of values (the input table), and locates a value in the input table
that is greater than or equal to the input. The CDT then writes the value
located in a second table (the output table), that is correlated with the value
located in the input table, to an output address (the output). The CDT
format is shown in Figure 7-10.

CDT Input : A Output : B.
Input table : C Output table : D.
Table length : E.

A = Address Integer/real
B = Address Integer/real, writeable
C = Address Integer/real
D = Address Integer/real
E = Address or value Integer

Figure 7-10 CDT Format

• A is the input address.

• B is the address to which the output value is written.

• C is the starting address for the input table. When used in a compiled
SF program or subroutine, you must specify a static table; that is, the
table’s base address must be a V, K, G, VMS, or VMM address.

• D is the starting address for the output table. When used in a compiled
SF program or subroutine, you must specify a static table; that is, the
table’s base address must be a V, K, G, VMS, or VMM address.

• E is the length of each table and must be a value greater than zero.
When used in a compiled SF program or subroutine, the table length
must be specified as a value.

CDT

CDT Description

Special Function Programs 7-29SIMATIC 545/555/575 Programming Reference

CDT statement operation is described here and illustrated in Figure 7-11.

• When the CDT is executed, the CDT compares the value of an input
element specified in A to a pre-existing table of values having a starting
address specified in C. The first value in the input table that is greater
than or equal to the input is located.

• A value in a second pre-existing table (starting address specified in D)
that correlates with the selected value in the input table is written to an
output address specified in B.

• The input table must be in ascending order. That is, the lowest value is
located in the lowest memory location and the highest value is located in
the highest memory location.

• Table length E depends upon the memory location that you choose, and
how much memory you allocated if the memory is user configurable.

• Both tables must have the same number of entries.

Input table Output table
K64 = 20 K84 = 48
K65 = 28 K85 = 23
K66 = 34 K86 = 62
K67 = 39 K87 = 98

(Input value) V1=40 K68 = 43 K88 = 72 (Output value) V2=72
K69 = 47 K89 = 65
K70 = 50 K90 = 41

CDT Input : V1 Output : V2.
Input table : K64 Output table : K84. . .
Table length : 7.

Figure 7-11 CDT Statement Example

The input address V1 contains the value 40. The value in the input table
that is greater than or equal to 40 is 43, contained in K68. The correlated
value in the output table is in K88. The value written to the output address
V2 is 72.

CDT Operation

CDT

Special Function Programs7-30 SIMATIC 545/555/575 Programming Reference

7.14 Exit on Error

The EXIT statement allows you to terminate an SF program or
SF subroutine and have an error code logged. The EXIT format is shown in
Figure 7-12.

EXIT Errcode : A. .

A = Literal constant Integer, optional

Figure 7-12 EXIT Format

• A contains the value of the error code and can range from 0 to 255.

The operation of the EXIT statement is described below.

• When the SF program encounters the EXIT statement, program
execution terminates. If an SF subroutine encounters the EXIT
statement, the subroutine and calling SF program are terminated.

• If you use the EXIT statement in conjunction with an IF statement, you
can terminate the program under specific conditions.

You can leave A blank and the current error code is written to the
ERROR STATUS ADDRESS that you specify in the SF program header.
If this address is a discrete point, it turns on.

You can define an error condition and assign it an error code 200–255
(codes 0–199 are reserved). When the EXIT statement executes, the
program terminates and this error code is written to the ERROR
STATUS ADDRESS. If this address is a discrete point, it turns on.

EXIT

EXIT Description

EXIT Operation

Special Function Programs 7-31SIMATIC 545/555/575 Programming Reference

7.15 Fall Through Shift Register—Input

The Fall Through Shift Register Input statement operates an asynchronous
shift register. The shift register is essentially a table of 16-bit words. The
FTSR-IN moves a word into the shift register each time the statement
executes. The FTSR-IN is used in conjunction with the Fall Through Shift
Register Output statement (FTSR-OUT) that moves words out of the shift
register. The FTSR-IN format is shown in Figure 7-13.

A = Address Integer
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR-IN Input : A Register start : B.
Register length : C Status bit : D.

Figure 7-13 FTSR-IN Format

• A is the input address from which the words are moved.

• B is the starting address for the shift register. Four words (B through
B + 3) are automatically reserved for the operation of the statement and
make up the header of the shift register. The first word of your data is
shifts into address B + 4.

NOTE: Do not write data to the header fields. The shift register does not
operate correctly if any of these fields is modified by an external action.
These fields may be redefined in future software releases.

• C is the length of the table. If a constant is used, it must be greater than
zero. The total length of the shift register is C + header.

• D is the status bit and can be C or Y. The bit specified by D turns on
when the register is full. The bit (D + 1) is automatically reserved as a
second status bit. The bit specified by (D + 1) turns on when the register
is empty.

FTSR-IN Description

FTSR-IN

Special Function Programs7-32 SIMATIC 545/555/575 Programming Reference

Fall Through Shift Register—Input (continued)

The operation of the FTSR-IN statement is described below.

• FTSR-IN is used in conjunction with an FTSR-OUT; you must use the
same corresponding values for register start, register length, and status
bit in the two FTSR statements.

• A is the input address from which the words are moved into the shift
register.

• The starting address B determines the memory area in which the shift
register is located. The first word of your data shifts into address B + 4.

• The four words (B through B + 3) are automatically reserved for the
operation of the shift register.

(B) contains the Count, which equals the current number of entries in
the shift register.

(B + 1) contains the Index, which acts like a pointer to indicate the next
available location of the shift register into which a word can be shifted.
When the Index equals zero, the next available location is (B + 4); when
the Index equals one, the next available location is (B + 5), and so on.

(B + 2) contains the Length, which equals the maximum size of the shift
register in words.

(B + 3) contains the Checkword. The checkword is used internally to
indicate whether the FTSR is initialized.

• The register length C determines the size of the shift register. The
register length depends upon the memory location that you choose and
how much memory you have allocated (if the memory is
user-configurable).

• The status bit specified by D is turned on to indicate that the register is
full. The bit (D + 1) is automatically reserved as a second status bit and
turns on whenever the shift register is empty.

Use the same status bits for the FTSR-IN that you use for the
FTSR-OUT. FTSR-IN sets D when the register fills. FTSR-OUT clears
this bit as the function executes. FTSR-OUT sets (D + 1) when the
register is empty. FTSR-IN clears this bit.

FTSR-IN

FTSR-IN Operation

Special Function Programs 7-33SIMATIC 545/555/575 Programming Reference

• If the shift register is empty, status bit D is off and (D + 1) is on.

• When the FTSR-IN executes, the following actions occur.

The word currently in memory location A is shifted into the location
specified by the Index.

The Count and the Index are each incremented by one.

Status bit (D + 1) turns off.

• Each time the FTSR-IN executes, another word moves into the next
available location; the Index and the Count increment by one. When the
Index equals the length, it resets to zero after the next execution by the
FTSR-IN.

• When the shift register is full, another word cannot be shifted in until
one is shifted out by the FTSR-OUT statement.

• When the shift register is full, status bit D turns on. If you attempt to
shift in another word, an error generates. (Appendix F, error 87).

• You can use FTSR-OUT to remove words from the shift register before
all locations are full. You can use FTSR-IN to shift more words into the
shift register before all words are removed.

Figure 7-14 illustrates the operation of the FTSR-IN statement.

FTSR-IN

Special Function Programs7-34 SIMATIC 545/555/575 Programming Reference

Fall Through Shift Register—Input (continued)

Input word in V100

Index points
to location 0

V196

V197

V198

V199

V200

V201

V202

Count = 0
Index = 0
Length = 3

Checkword

• The Count (V196) contains 0 because the shift register is empty.
• The Index (V197) contains 0 because the next available location is

number 0 (V200).
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is on.

 1 This status is set automatically by the controller the first time that
the FTSR is executed.

9137

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 1
Index = 1
Length = 3

Checkword

• The input address V100 contains the value 9137.
• The Count (V196) contains 1 because one location is filled.
• The Index (V197) contains 1 because the next available location is

number 1 (V201).
• The shift register location V200 contains the value 9137.
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is off.

3391

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 2
Index = 2
Length = 3

Checkword

9137

3391
9137

• The input address V100 contains the value 3391.
• The Count (V196) contains 2 because two locations are filled.
• The Index (V197) contains 2 because the next available location

is number 2 (V202).
• The shift register location V201 contains the value 3391.
• The Register Full Status Bit (C99) is off. The Register Empty

Status Bit (C100) is off.

7992

3391
9137

Input word in V100

V196

V197

V198

V199

V200

V201

V202

Count = 3
Index = 0
Length = 3

Checkword

• The input address V100 contains the value 7992.
• The Count (V196) contains 3 because three locations are filled.
• The Index (V197) contains 0 because the next available location

is number 0 (V200) after the word currently in V200 is
removed.

• The shift register location V202 contains the value 7992.
• The Register Full Status Bit (C99) is on. The Register Empty

Status Bit (C100) is off. 7992

Shift register status before first word is moved in1

Shift register status after first word is moved in

Shift register status after second word is moved in

Shift register status after third word is moved in

FTSR-IN Input :V100 Register start :V196.
Register length :3 Status bit : C99.

Index points
to location 1

Index points
to location 2

Index points
to location 3

Figure 7-14 Example of FTSR-IN Operation

FTSR-IN

Special Function Programs 7-35SIMATIC 545/555/575 Programming Reference

7.16 Fall through Shift Register—Output

The Fall Through Shift Register Output statement operates an
asynchronous shift register. The shift register is essentially a table of 16-bit
words. The FTSR-OUT moves data out of the shift register each time the
statement executes. The FTSR-OUT is used in conjunction with the Fall
Through Shift Register Input statement (FTSR-IN) that moves words into
the shift register. Figure 7-15 shows the FTSR-OUT format.

A = Address Integer, writeable
B = Address Integer, writeable
C = Address or value Integer
D = Element Bit, writeable

FTSR-OUT Register start : A Output : B.
Register length : C Status bit : D. . .

Figure 7-15 FTSR-OUT Format

• A is the starting address for the shift register. The four words
(A through A + 3) are automatically reserved for the operation of the
statement and make up the header of the shift register.

NOTE: Do not write data to the header fields. The shift register does not
operate correctly if any of these fields is modified by an external action.
These fields may be redefined in future software releases.

• B is the output address to which the words are moved.

• C is the length of the table. If a constant is used, it must be greater
than 0.

• D is the status bit and can be C or Y. The bit specified by D is turned on
when the register is full. The bit (D + 1) is automatically reserved as a
second status bit. The bit specified by (D + 1) is turned on when the
register is empty.

FTSR-OUT
Description

FTSR-OUT

Special Function Programs7-36 SIMATIC 545/555/575 Programming Reference

Fall Through Shift Register—Output (continued)

The operation of the FTSR-OUT statement is described below.

• FTSR-OUT is used in conjunction with a FTSR-IN; you must use the
same corresponding values for register start, register length, and status
bit in the two FTSR statements.

• Starting address A determines the memory area in which the shift
register is located. The first word of user data is located in address
A + 4.

• The four words (A through A + 3) are automatically reserved for the
operation of the shift register.

(A) contains the Count, which equals the current number of entries in
the shift register.

(A + 1) contains the Index, which acts like a pointer to indicate the next
available location of the shift register into which a word can be shifted.
When the Index equals zero, the next available location is (A + 4); when
the Index equals one, the next available location is (A + 5), and so on.

(A + 2) contains the Length, which equals the maximum size of the shift
register in words.

(A + 3) contains the Checkword. The checkword is used internally to
indicate whether the FTSR has been initialized.

• B is the output address into which the words are moved.

• The register length C determines the size of the shift register. The
register length depends upon the memory location that you choose and
how much memory you allocated (if the memory is user configurable).

• D is the status bit and can be C or Y. The bit specified by D turns on to
indicate that the register is full. The bit (D + 1) is automatically
reserved as a second status bit and turns on whenever the shift register
is empty.

Use the same status bits for the FTSR-OUT that you use for the
FTSR-IN. FTSR-IN sets D when the register is full. FTSR-OUT clears
this bit as the function executes. FTSR-OUT sets (D + 1) when the
register is empty. FTSR-IN clears this bit.

FTSR-OUT

FTSR-OUT
Operation

Special Function Programs 7-37SIMATIC 545/555/575 Programming Reference

• If the shift register contains one or more words, the Count equals the
number of current entries. The Index points to the next available
location of the shift register into which a word can be moved. Status bit
(D + 1) is off. Status bit D is on if the shift register is full.

• When the FTSR-OUT executes, the following actions occur.

The oldest word in the shift register shifts into memory location B.

The Count decrements by one.

The Index is unchanged and continues to point to the next available
location into which a word can be moved.

• Each time the FTSR-OUT executes, another word moves out of the shift
register and the Count is decremented by one. The Index remains
unchanged.

• After the shift register is empty, the Index and Count contain zero.
Status bit D turns off and status bit (D + 1) turns on. If you attempt to
shift a word out of an empty shift register, an error is generated
(Appendix F, error 86).

• You can use FTSR-OUT to remove words from the shift register before
all locations are full. You can use FTSR-IN to shift more words into the
shift register before all words are removed.

Figure 7-16 illustrates the operation of the FTSR-OUT statement.

FTSR-OUT

Special Function Programs7-38 SIMATIC 545/555/575 Programming Reference

Fall Through Shift Register—Output (continued)

• The Count (V196) contains 3 because three locations
are filled.

• The Index (V197) contains 0 because the next available
location for a word to be moved in is number 0 (V200).

• The Register Full Status Bit (C99) is on.
The Register Empty Status Bit (C100) is off.

 1 This status is set automatically by the controller the first time that
the FTSR is executed.

• The output address V300 contains the value 9137.
• The Count (V196) contains 2 because two locations

are filled.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is off.

• The output address V300 contains the value 3391.
• The Count (V196) contains 1 because one location

is filled.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is off.

• The output address V300 contains the value 7992.
• The Count (V196) contains 0 because the shift

register is empty.
• The Index (V197) contains 0 because the next

available location for a word to be moved in is
number 0 (V200).

• The Register Full Status Bit (C99) is off.
The Register Empty Status Bit (C100) is on.

Shift register status before first word Is moved out1

Shift register status after first word is moved out

Shift register status after second word is moved out

Shift register status after third word is moved out

Index points
to location 0

V196

V197

V198

V199

V200

V201

V202

Count = 3
Index = 0

Checkword
Length = 3

Output word in V300

3391
9137

7992

3391
9137

7992

V196

V197

V198

V199

V200

V201

V202

Count = 2
Index = 0
Length = 3

Checkword

9137

3391
9137

7992

3391

V196

V197

V198

V199

V200

V201

V202

Count = 1
Index = 0
Length = 3

Checkword

A location in the shift register is not cleared when a word is moved out. The Count determines how many words remain in the
shift register.

3391
9137

7992

7992

V196

V197

V198

V199

V200

V201

V202

Count = 0
Index = 0
Length = 3

Checkword

FTSR-OUT Register start :V196 Output :V300.
Register length :3 Status bit :C99. . .

Index points
to location 0

Output word in V300

Index points
to location 0

Output word in V300

Index points
to location 0

Output word in V300

Figure 7-16 Example Of FTSR-OUT Operation

FTSR-OUT

Special Function Programs 7-39SIMATIC 545/555/575 Programming Reference

7.17 Go To/Label Function

The GOTO statement continues program execution at a specified LABEL
statement. The GOTO and the LABEL statements are always used together.
The format of the two statements is shown in Figure 7-17.

A = Literal constant Integer

GOTO LABEL : A.

<SF Statement>
<SF Statement>
<SF Statement>

LABEL LABEL : A.

Figure 7-17 GOTO/LABEL Format

• The <SF statement> may be any of the SF program statements.

• A is the label and can range from 0 to 65535.

When the SF program encounters the GOTO, program execution continues
at the LABEL specified by A.

Figure 7-18 illustrates the use of the GOTO/LABEL statement.

00005 MATH V100 := V500

00006 IF V100 < 1000

00007 GOTO LABEL 37415

00008 ELSE

00009 GOTO LABEL 38000

00010 ENDIF

00011 LABEL LABEL 37415

00012 MATH V100 := V465/K99

Figure 7-18 Example of GOTO/LABEL Statements

! CAUTION
Do not repeat label definitions or leave a label undefined.

To do so may cause the controller to enter the F ATAL ERROR mode, freeze
analog outputs and turn off discrete outputs.

Ensure that all labels have a unique definition.

GOTO

Special Function Programs7-40 SIMATIC 545/555/575 Programming Reference

7.18 IF/IIF/THEN/ELSE Functions

The IF or IIF (Integer IF) statement is used for the conditional execution of
statements and operates in conjunction with the ELSE and the ENDIF
statements. When an IF statement is used, a THEN result is understood.
The IF format is shown in Figure 7-19.

NOTE: Integer IF operations are available only in CPUs that support
PowerMath.

IF (IIF) Free format based on the following structure:

IF <valid MATH (or IMATH) expression> <THEN understood> . .
<SF statement>
<SF statement>
...
<SF statement>

ELSE
<SF statement>
<SF statement>
...
<SF statement>

ENDIF
(The <SF statement> may be any
of the SF program statements.)

Figure 7-19 IF Format

! CAUTION
Do not use an IF (or IIF) without an ENDIF .

To do so may cause the controller to enter the F ATAL ERROR mode, freeze
analog outputs and turn off discrete outputs.

Ensure that all IF statements are completed with an ENDIF statement.

Figure 7-20 illustrates the operation of the IF (or IIF) statement described
below.

• Each time the IF executes, the condition defined within the statement is
tested.

• If the <expression> is true (non-zero), statements in the THEN section
execute; any statements in the ELSE section are skipped.

• If the <expression> is false (zero), statements in the THEN section are
skipped; any statements in the ELSE section execute.

IF/IIF

IF/THEN/ELSE
Description

IF Operation

Special Function Programs 7-41SIMATIC 545/555/575 Programming Reference

• The <expression> can be any MATH expression in IF statements or
IMATH expresion in IIF statements. See Table 7-7 for a list of the
MATH functions. The use of the assignment operator (:=) in an
expression is optional.

• The IF statement operates in conjunction with the ENDIF statement
and an optional ELSE statement.

• IIF (Integer IF) allows you to code IF-THEN-ELSE blocks using an
integer-only expression for the conditional. An integer expression
executes faster than the equivalent floating-point expression.

• The ENDIF indicates the end of an IF-THEN-ELSE structure.

• If there is no ELSE statement, the statements between the IF and the
ENDIF are treated as THEN statements.

• If an ELSE statement is used, then any statements between IF and
ELSE constitute by default a THEN section. An ELSE statement
indicates the end of the THEN section and the beginning of the ELSE
section in an IF-THEN-ELSE structure.

• Statements between ELSE and ENDIF constitute the ELSE section in
the IF statement.

• IF, ELSE and ENDIF statements may be nested to any level.

0003 IF V1. >= 5.35 AND V1. <= 7.65

0004 PRINT PORT.....:1 MESSAGE.....:
“TANK LEVEL IS LOW. PRESENT LEVEL IS”

 V1 “FT.”

0005 MATH LKC1. := 3.00

0006 ELSE

0007 MATH LKC1. := 1.00

0008 ENDIF

0009 IIF V1 = 5

0010 PRINT PORT.....:1 MESSAGE.....:
“TANK LEVEL IS LOW. PRESENT LEVEL IS”

 V1 “FT.”

0011 MATH LKC1. := 3.00

0012 ELSE

0013 MATH LKC1. := 1.00

0014 ENDIF

Figure 7-20 Example of IF/THEN/ELSE Statements

IF/IIF

Special Function Programs7-42 SIMATIC 545/555/575 Programming Reference

7.19 Integer Math Operations

The Integer Math statement executes integer arithmetic computations. The
IMATH format, based on the functions in Table 7-5, is shown in Figure 7-21.

NOTE: Non-PowerMath CPUs do not support the following operators:
 = <> < <= > >=, AND, OR, and the ABS intrinsic function.

Table 7-5 IMATH Operators

Operator Description

NOT Unary Not—The expression “NOT X” returns the one’s complement of X.

> > Shift right (arithmetic)1

< < Shift left (arithmetic)1

* Multiplication

/ Integer division— Any remainder left over after the division is truncated.

MOD Modulo arithmetic—The expression “X mod Y” returns the remainder of X after
division by Y.

+ Addition

– Subtraction/unary minus (negation)

= Equal. The expression X = Y returns 1 if X equals Y, and zero if not.2

<> Not equal. The expression X <> Y returns 1 if X is not equal to Y, and zero if so.2

< Less than. The expression X < Y returns 1 if X is less than Y, and zero
otherwise.2

<= Less Than or Equal. The expression X <= Y returns 1 if X is less than or equal to
Y, and zero otherwise.2

> Greater Than. The expression X > Y returns 1 if X is greater than Y, and zero
otherwise.2

>= Greater Than or Equal. The expression X >= Y returns 1 if X is greater than or
equal to Y, and zero otherwise.2

AND Logical AND. The expression X AND Y returns 1 if both X and Y are non-zero,
and zero otherwise.2

OR Logical OR. The expression X OR Y returns 1 if either X or Y is non-zero, and
zero otherwise.2

& Bit-by-bit AND of two integers.

| Bit-by-bit OR of two integers.

^ Bit-by-bit exclusive OR of two integers.

:= Assignment

ABS Math intrinsic function Absolute Value2

1 See page 7-50 for an application example.
2 Supported by PowerMath CPUs only.

IMATH A : = B

A = Address Integer, writeable
B = Address or value Integer

Figure 7-21 IMATH Format

IMATH

IMATH Description

Special Function Programs 7-43SIMATIC 545/555/575 Programming Reference

Figure 7-22 shows the operation of the IMATH statement described below.

• Each time the IMATH statement executes, the calculations within the
statement are made.

• The IMATH computations are executed using the rules of precedence for
arithmetic operations listed in Table 7-6.

Functions within a group are equivalent in precedence. Execution takes
place from left to right. For example, in the operation (X * Y / Z), X is
multiplied by Y, and the result is divided by Z.

A subexpression enclosed in parentheses is evaluated before
surrounding operators are applied, e.g., in (X+Y) * Z, the sum of X+Y is
multiplied by Z.

• Parentheses, constants, and subscripted variables are allowed in the
expressions.

• You can use only integers in an IMATH statement. Mixed mode
operation (integer and real numbers) is not supported.

• Denote a binary number by the prefix 0B (e.g.0B10111), a hexadecimal
number by the prefix 0H (e.g. 0H7FFF). Add the suffix L to denote a
long (32-bit) signed integer; add the suffix U to denote a 16-bit unsigned
integer. (“L” and “U” integers are supported by PowerMath CPUs only.)

• The programming device checks to see if a statement is valid as you
enter the statement and reports an error by placing the cursor in the
field where the error occurs.

Table 7-6 Order of Precedence for IMATH Operators

Highest Precedence Intrinsic function ABS1, NOT, Negation NOT –

Multiplication, Division, MOD * / MOD

Addition, Subtraction + –

Shift left, Shift right << >>

Relational Operators (= < < = > = < >)1

&, Logical AND1

|, ^, Logical OR1

Lowest Precedence Assignment (:=) :=
1 Supported by PowerMath CPUs only.

IMATH V100(V5 + 2 * V7):= NOT(WX7 &(V99 ^ WX5))

Figure 7-22 IMATH Statement Example

IMATH Operation

IMATH

Special Function Programs7-44 SIMATIC 545/555/575 Programming Reference

7.20 Lead/Lag Operation

The LEAD/LAG statement (Figure 7-23) allows filtering to be done on an
analog variable. This procedure calculates an output based on an input and
the specified gain, lead, and lag values. The LEAD/LAG statement can only
be used with cyclic processes, such as loops, analog alarms, and cyclic
SF programs.

LEAD/LAG Input : A Output : B.
Lead time (Min) : C Lag time (Min) : D.
Gain (% %) : E Old input : F.

A = Address Integer/real
B = Address Integer/real, writeable
C = Address or value Real
D = Address or value Real
E = Address or value Real
F = Address Integer/real, writeable

Figure 7-23 LEAD/LAG Format

• A specifies the location of the input value of the current sample period
that is to be processed.

• B specifies the location of the output variable, the result of the
LEAD/LAG operation.

• C specifies the lead time in minutes.

• D specifies the lag time in minutes.

• E (Gain) specifies the ratio of the change in output to the change in
input at a steady state, as shown in the following equation. The
constant must be greater than zero.

����� �
���	��	��

�����	��

• F specifies the memory location of the input value from the previous
sample period.

• For sample time, LEAD/LAG algorithm uses the sample time of the
loop, analog alarm, or cyclic SF program from which it is called

• The first time it executes, LEAD/LAG is initialized and output equals
input.

LEAD/
LAG

LEAD/LAG
Description

Special Function Programs 7-45SIMATIC 545/555/575 Programming Reference

The LEAD/LAG algorithm uses the following equation.

�� � �

�
���

�
���

� ��

������ � �������
�

����
� ��

�
���

� ��

���� � ������
�

����

�
���

� ��

������

!������� � �������������������� � ��� �������������

�� � ������������������� � ��� ����������

�� � �����������������������

The output depends on the ratio of lead to lag as explained below. Assume
the following values in each example: ������������������# �# ���

If TLead / TLag is greater than 1.0, then the initial response overshoots the
steady-state output value.

�������������� � ������� � �������
�

����

�
���

�
� �����������

���

���
�
� ���

2.0

n = 1 2 3

��

0

�����"���������������
����

4

If TLead / TLag is less than 1.0, then the initial response undershoots the
steady-state output value.

�������������� � ������� � �������
�

����

�
���

�
� ���� � ������

���

���
�
� ��	

0.5

n = 1 2 3

��

0

�����"���������������
����

4

If TLead / TLag is equal to 1.0, then the initial response instantaneously
reaches the steady-state output value.

�������������� � ������� � �������
�

����

�
���

�
� ���� � ������

���

���
�
� ���

n = 1 2 3

��

0

�����"���������������
����

4

LEAD/LAG
Operation

LEAD/
LAG

Special Function Programs7-46 SIMATIC 545/555/575 Programming Reference

7.21 Real/Integer Math Operations

The MATH statement executes arithmetic computations involving both
integers and real numbers. The MATH format, based on the operators in
Table 7-7, is shown in Figure 7-24.

• Parentheses, constants, subscripted variables, and a set of intrinsic
functions (listed in Table 7-8) are allowed in the expressions.

• Assignment operator (:=) is required.

Table 7-7 MATH Operators

Operator Description

** Exponentiation

* Multiplication

/ Division

+ Addition

– Subtraction/Unary Minus (negation)

:= Assignment

>> Shift right (arithmetic). The sign bit is shifted into the vacated bits.

<< Shift left (arithmetic). Zeros are shifted into the vacated bits.

= Equal. The expression X = Y returns 1 if X equals Y, and zero if not.

< > Not equal. The expression X <> Y returns 1 if X is not equal to Y, and zero if so.

< Less Than. The expression X < Y returns 1 if X is less than Y, and zero
otherwise.

<= Less Than or Equal. The expression X <= Y returns 1 if X is less than or equal to
Y, and zero otherwise.

> Greater Than. The expression X > Y returns 1 if X is greater than Y, and zero
otherwise.

>= Greater Than or Equal. The expression X >= Y returns 1 if X is greater than or
equal to Y, and zero otherwise.

MOD Modulo arithmetic. The expression X mod Y returns the remainder of X after
division by Y.

NOT The expression NOT X returns 1 if X is equal to zero, and zero otherwise.

AND Logical AND. The expression X AND Y returns 1 if both X and Y are non-zero,
and zero otherwise.

OR Logical OR. The expression X OR Y returns 1 if either X or Y is non-zero, and
zero otherwise.

& Bit-by-bit AND of two integers or real numbers.

| Bit-by-bit OR of two integers or real numbers.

^ Bit-by-bit exclusive OR of two integers or real numbers.

MATH A : = B

A = Address Integer/real, writeable
B = Address or value Integer/real

Figure 7-24 MATH Format

MATH

MATH Description

Special Function Programs 7-47SIMATIC 545/555/575 Programming Reference

Table 7-8 MATH Intrinsic Functions

Function Description

ABS Absolute value

ARCCOS Inverse Cosine in radians

ARCSIN Inverse Sine in radians

ARCTAN Inverse Tangent in radians

CEIL CEIL(X) returns the smallest integer that is greater than or equal to X

COS Cosine in radians

EXP Exponential

FLOOR FLOOR(X) returns the largest integer that is less than or equal to X

FRAC FRAC(X) returns the fractional portion of X

LN Natural (base e) Logarithm

LOG Common (base 10) Logarithm

SIN Sine in radians

TAN Tangent in radians

ROUND ROUND(X) returns the integer closest to X

SQRT Square Root

TRUNC TRUNC(X) returns the integer portion of X

The operation of MATH is described below and illustrated in Figure 7-25.

• Each time the MATH statement is executed, the calculations within the
statement are made.

• The MATH computations are executed using the rules of precedence for
arithmetic operations listed in Table 7-9. Functions within a group are
equivalent in precedence. Execution takes place from left to right for all
operators except exponentiation. For example, in the operation
(X * Y / Z), X is multiplied by Y, and the result is divided by Z.

A subexpression enclosed in parentheses is evaluated before
surrounding operators are applied, e.g., in (X+Y) * Z, the sum of X+Y is
multiplied by Z.

• When you read a discrete point in an SF program expression, a zero is
returned if the discrete bit is off; a one is returned if the discrete bit is
on. When you write to a discrete point in an SF program expression, the
discrete bit turns off if the value is zero; the discrete bit turns on if the
value is non-zero.

• You can use both integers and real numbers in a MATH statement. The
controller executes this mixed-mode operation by converting all integers
to real on input and rounding the resulting real to integer if the
destination is an integer. (Refer to Section 2.3 for the supported range
and precision of real numbers.)

MATH Operation

MATH

Special Function Programs7-48 SIMATIC 545/555/575 Programming Reference

Real/Integer Math Operations (continued)

• Real variables are designated by a period following the memory address
or variable name (V300. or LPV35.).

• Denote a binary number by the prefix 0B (e.g.: 0B10111), a hexadecimal
number by the prefix 0H (e.g.: 0H7FFF). Add the suffix L to denote a
long (32-bit) signed integer; add the suffix U to denote a 16-bit unsigned
integer. (“L” and “U” integers are supported by PowerMath CPUs only.)

• The programming software checks a statement as you enter it, and, if
necessary, reports an error by placing the cursor in the field containing
the error.

Table 7-9 Order of Precedence for MATH Operators

Highest Precedence Intrinsic Functions, NOT, Negation NOT –

Exponentiation1 * *

Multiplication, Division, MOD * / MOD

Addition, Subtraction + –

Shift left, Shift right << >>

Relational Operators (= < < = > = < >)

&, Logical AND

|, ^, Logical OR

Lowest Precedence Assignment (:=)
1 Execution of exponentiation takes place from right to left. For example, in the operation

(X ** Y ** Z), Y is raised to the power of Z; and then X is raised to the power determined
by the result.

MATH V75.:= 0.929783 * V77. + 2* SQRT ((EXP(V300.)
+LN(V302.))/(V304.**0.25))

MATH V100:= V901/(V45. + V46.)

Figure 7-25 MATH Statement Example

Your can use two kinds of subscripted variables. Denote word indexing by
the expression Z(n). Use word indexing to access the nth word from variable
Z. Examples of word indexing follow:

V100(1) ≡ V100 V100.(1) ≡ V100. V100L(1) ≡ V100L
V100(2) ≡ V101 V100.(2) ≡ V101. V100L(2) ≡ V101L
V100(3) ≡ V102 V100.(3) ≡ V102. V100L(3) ≡ V102L

MATH

Using Word
Indexing

Special Function Programs 7-49SIMATIC 545/555/575 Programming Reference

Denote element indexing by the expression Z(:n:). Use element indexing to
access the nth element of an array Z; the actual variable accessed depends
upon the type of array. Examples of element indexing follow:

V100(:1:) ≡ V100 V100.(:1:) ≡ V100. V100L(:1:) ≡ V100L
V100(:2:) ≡ V101 V100.(:2:) ≡ V102. V100L(:2:) ≡ V102L
V100(:3:) ≡ V102 V100.(:3:) ≡ V104. V100L(:3:) ≡ V104L

For the loop and analog alarm variables, the two kinds of indexing are
equivalent, as shown below:

LPV1(1) ≡ LPV1(:1:) ≡ LPV1 LPV1.(1) ≡ LPV1.(:1:) ≡ LPV1.
LPV1(2) ≡ LPV1(:2:) ≡ LPV2 LPV1.(2) ≡ LPV1.(:2:) ≡ LPV2.
LPV1(3) ≡ LPV1(:3:) ≡ LPV3 LPV1.(3) ≡ LPV1.(:3:) ≡ LPV3.

Since TISOFT does not use multiple subscripts, these expressions are not
allowed: Z(n)(m), Z(:n:)(:m:), Z(n)(:m:). Re-code the first two expressions as:

Z(n)(m) ≡ Z(n + m –1)
Z(:n:)(:m:) ≡ Z(:n + m –1:)

Re-code the third expression as:

Z(n)(:m:) ≡ Z(n + m –1)
when Z is an integer, or a loop or analog alarm variable.

Z(n)(:m:) ≡ Z(n + 2*m –2)
when Z is a real number but not a loop or analog alarm variable.

A subscript may itself be an expression [as V100.(V5+2*V7)] and may
include real terms. All calculations are done according to the rules of real
arithmetic. For example, V100.(12/6) ≡ V100.(2.0) ≡ V101.

Using Element
Indexing

Indexing Loop and
Analog Alarm
Variables

Using Multiple
Subscripts

MATH

Special Function Programs7-50 SIMATIC 545/555/575 Programming Reference

Real/Integer Math Operations (continued)

The following examples use some of the MATH functions.

• If X = 5.5, then CEIL (X) = 6. If X = –5.9, then CEIL (X) = –5.

• If X = 5.9, then FLOOR (X) = 5. If X = –5.9, then FLOOR (X) = –6.

• The shift right/left functions operate as follows. Assume that V300
contains 0000 0000 0000 1000, that equals 8.

V200 := V300 >> 1 places the following value into V200:
0000 0000 0000 0100, that equals 4.

V200 := 8 >> 1 places the following value into V200:
0000 0000 0000 0100, that equals 4.

V200 := V300 << 1 places the following value into V200:
0000 0000 0001 0000, that equals 16.

V200 := 8 << 1 places the following value into V200:
0000 0000 0001 0000, that equals 16.

If V400 contains 0000 0000 0000 0011, that equals 3, then
V200 := V300 << V400 places the following value into V200:
0000 0000 0100 0000, that equals 64.

For the shift right function, the sign bit is shifted into the vacated bits.
If V677 contains 1000 1000 0000 0000, then V677 >> 3 places the
following value into V677: 1111 0001 0000 0000.

For the shift left function, zeros are shifted into the vacated bits. If V677
contains 0000 0001 0000 0000, then V677 << 3 places the following
value into V677: 0000 1000 0000 0000.

MATH

MATH Examples

Special Function Programs 7-51SIMATIC 545/555/575 Programming Reference

7.22 Pack Data

The Pack Data statement moves discrete and/or word data to or from a
table. You can access the image register directly by using the PACK
statement. PACK is primarily intended for use in consolidating data so that
it can be efficiently transmitted to a host computer. The PACK format is
shown in Figure 7-26.

PACK To/from table = A Table address : B.
Number of points = C Data start addr : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Address or value Integer/real, writeable if from table

Figure 7-26 PACK Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are written or
read.

• C is an integer number that specifies how many points or words are to
be moved.

• For a TO table, D specifies the starting address of the points or words
that are to be written to the table.
For a FROM table, D specifies the starting address in memory into
which data is to be read from the table.
D + (C–1) must be within configured memory range.

• Fields C and D can be repeated for up to 20 writes/reads to and from the
table (Figure 7-27).

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

MSB LSB

Figure 7-27 Example of PACKing Multiple Blocks of Bits Into Table

PACK Description

PACK

Special Function Programs7-52 SIMATIC 545/555/575 Programming Reference

Pack Data (continued)

The operation of the PACK TO statement is described below.

• For a TO Table, data are written into a table. This write operation
begins with the data starting at the first Data Start Address and writes
the specified number of points or words into the table, beginning with
the first word of the table.

Bits are written sequentially as illustrated in Figure 7-28 below.

0 0 1 0 1 0 1

0 0 1 0 1 0 1

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.

C
6

C
5

C
7

C
9

C
8

C
10

C
11

V100
V101
V102
V103

TableMSB LSB

Figure 7-28 Example of PACKing Bits Into Table

You can specify multiple blocks of data to be written into the table.
When the first word of the table is full, PACK begins to fill the second
word.

PACK

PACK TO Operation

Special Function Programs 7-53SIMATIC 545/555/575 Programming Reference

Words are written sequentially into the table, as illustrated in
Figure 7-29. You can also PACK multiple blocks of words.

Word image register

PACK To/from table = T Table address : V100.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

WX77
WX78
WX79

V992

0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 11 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V-Memory

MSB LSB

Figure 7-29 Example of PACKing Words Into Table

• You can PACK blocks of words and blocks of bits into a table with one
PACK statement. See Figure 7-30. The data are PACKed according to
these rules.

Discrete points are PACKed into the next available bit in the table.

Words are PACKed into the next available word in the table. Unused
bits in the previous word fill with zeros when a word is written to the
table.

PACK To/from table = T Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

WX77
WX78
WX79

V992

0 0 0 0 0 0 0 0 0 0 0

Word image register

V993

V104
V105
V106

V-Memory

MSB LSB

Figure 7-30 Example of PACKing Bits and Words Into Table

PACK

Special Function Programs7-54 SIMATIC 545/555/575 Programming Reference

Pack Data (continued)

The operation of the PACK FROM statement is described below.

• For a FROM Table, data are read from a table. This read operation
begins with the table starting address and reads the specified number of
points or words from the table. PACK then writes this data, starting
with the address designated in the Data Start Address.

Bits are written sequentially as illustrated in Figure 7-31.

0 0 1 0 1 0 1

0 0 1 0 1 0 1

PACK To/from table = F Table address : V100.
Number of points = 7 Data start addr : C5.

C
6

C
5

C
7

C
9

C
8

C
10

C
11

V100
V101
V102
V103

TableMSB LSB

Figure 7-31 Example of PACKing Bits from a Table

You can specify multiple blocks of data to be PACKed from the table, as
illustrated in Figure 7-32. You cannot skip sections of the table to PACK
data located within the table. For example, refer to Figure 7-32. If the
data that you want to read are located in the least significant nine bits
of V100 and the most significant five bits of V101, you must still PACK
out the first seven bits of V100 and discard them.

V100

PACK To/from table = F Table address : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.

V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

MSB LSB

Figure 7-32 Example of PACKing Multiple Blocks of Bits from a Table

PACK

PACK FROM
Operation

Special Function Programs 7-55SIMATIC 545/555/575 Programming Reference

Words are read sequentially from the table, as illustrated in Figure 7-33.
You can also PACK multiple blocks of words.

Word image register
V100

PACK To/from table = F Table address : V100.
Number of point = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V101
V102
V103

WX77
WX78
WX79

V992

0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 11 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

V-Memory

MSB LSB

Figure 7-33 Example of PACKing Words from a Table

• You can PACK blocks of words and blocks of bits from a table with one
PACK statement. See Figure 7-34. The data are packed according to
these rules.

All discrete points designated in the Number of Points field are packed
from the table.

Words are packed from the first available word in the table. That is,
unused bits in the previous word of the table are not included as part of
a word that is PACKed from the table.

Bit
Image
Register

PACK To/from table = F Table addr : V100.
Number of points = 7 Data start addr : C5.
Number of points = 14 Data start addr : C14.
Number of points = 3 Data start addr : WX77.
Number of points = 2 Data start addr : V992.

V100
V101
V102
V103

Table

C
6

C
5

C
7

C
8

C
14

C
15

C
9

C
10

C
11

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

WX77
WX78
WX79

V992

Word image register

V993

V104
V105
V106

V-Memory

MSB LSB

Figure 7-34 Example of PACKing Bits and Words from a Table

PACK

Special Function Programs7-56 SIMATIC 545/555/575 Programming Reference

7.23 Pack Analog Alarm Data

The Pack Analog Alarm Data statement moves analog alarm data to or from
a table. PACKAA is primarily intended for use in consolidating analog
alarm data to be accessed from an operator interface. The PACKAA format
is shown in Figure 7-35.

PACKAA To/from table : A Table address : B.
Alarm number : C. . . .
Parameters : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Element Integer/real, writeable if from table, only

analog alarm data types

Figure 7-35 PACKAA Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the number of the analog alarm to be accessed. C may range
from 1 to the maximum number of alarms.

• D specifies the analog alarm variables. Up to eight variables can be
designated. See Table 7-10 for a list of the analog alarm variables.

Table 7-10 Analog Alarm Variables

Mnemonic Variable Name Mnemonic Variable Name

AACK Acknowledge APV* Process Variable

AADB* Deadband APVH. Process Variable High Limit

ACF C-Flags (32 bits) APVL. Process Variable Low Limit

ACFH Most Significant Word of C-Flags ARCA. Rate of Change Alarm Limit

ACFL Least Significant Word of C-Flags ASP* Set Point

AERR* Error ASPH* Set Point High Limit

AHA* High Alarm Limit ASPL* Set Point Low Limit

AHHA* High-High Alarm Limit ATS. Sample Rate

ALA* Low Alarm Limit AVF V Flags

ALLA* Low-Low Alarm Limit AYDA* Yellow Deviation Alarm Limit

AODA* Orange Deviation Alarm Limit

* Variables with an asterisk can be either a real number or an integer. Variables followed by a period are
real numbers. Variables not followed by a period are integers. When you execute PACKAA using real
numbers, two memory locations are allocated for each real number.

PACKAA

PACKAA
Description

Special Function Programs 7-57SIMATIC 545/555/575 Programming Reference

The operation of the PACKAA statement is described below and illustrated
in Figure 7-36 and Figure 7-37. When the PACKAA statement executes, the
following actions occur.

• For a TO Table, the value of the analog alarm variable specified in D is
written into the table at the address designated by B.

If additional variables are specified, the second variable is written to
(B + 1), the third to (B + 2), and so on up to eight variables.

S-Memory
TableMSB LSB

APV.

AACK

ASP.

AODA

V100
V101
V102
V103

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V105

PACKAA To/from table : T Table address. : V100
Alarm number : 10.
Parameters : AACK APV. ASP. AODA.

Figure 7-36 Example of PACKAA TO Table Operation

• For a FROM Table, PACKAA writes the word in the table starting
address B into the specified analog alarm variable.

If additional variables are specified, the second word in the table is
written to the second variable, and so on up to eight variables.

TableMSB LSB
V100
V101
V102
V103

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0V105

PACKAA To/from table : F Table address. : V100
Alarm number : 10.
Parameters : AACK APV. ASP. AODA.

S-Memory
AACK

APV.

ASP.

AODA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-37 Example of PACKAA FROM Table Operation

PACKAA Operation

PACKAA

Special Function Programs7-58 SIMATIC 545/555/575 Programming Reference

7.24 Pack Loop Data

The PACKLOOP statement (Figure 7-38) moves loop data to or from a table.
PACKLOOP is primarily intended for use in consolidating loop data to be
accessed from an operator interface.

PACKLOOP To/from table : A Table address : B.
Loop number : C. . . .
Parameters : D.

A = T(o) or F(rom)
B = Address Integer, writeable if to table
C = Address or value Integer
D = Element Integer/real, writeable if from table, only

loop data types

Figure 7-38 PACKLOOP Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the number of the loop to be accessed. The range for C is
from 1 to the maximum number of loops.

• D specifies the loop variables. Up to eight variables can be designated.
See Table 7-11 for a list of the loop variables.

The operation of the PACKLOOP statement is described below. PACKLOOP
operates similarly to the PACKAA statement. See Figure 7-36 and
Figure 7-37 for an example of how the PACKLOOP statement executes.

When the PACKLOOP statement executes the following actions occur.

• For a TO Table, the value of the loop variable specified in D is written
into the table at the address designated by B.

If additional variables are specified, the second variable is written to
(B + 1), the third to (B + 2), and so on up to eight variables.

• For a FROM Table, PACKLOOP writes the word in the table starting
address B into the specified loop variable.

If additional variables are specified, the second word in the table is
written to the second variable, and so on up to eight variables.

PACK-
LOOP

PACKLOOP
Description

PACKLOOP
Operation

Special Function Programs 7-59SIMATIC 545/555/575 Programming Reference

Table 7-11 Loop Variables

Mnemonic Variable Name

LACK Alarm Acknowledge

LADB* Alarm Deadband

LCF C-Flags (32 bits)

LCFH Most Significant Word of C-Flags

LCFL Least Significant Word of C-Flags

LERR* Error

LHA* High Alarm Limit

LHHA* High-high Alarm Limit

LKC. Gain

LKD. Derivative Gain Limiting Coefficient

LLA* Low Alarm Limit

LLLA* Low-low Alarm Limit

LMN* Output

LMX* Bias

LODA* Orange Deviation Alarm Limit

LPV* Process Variable

LPVH. Process Variable High Limit

LPVL. Process Variable Low Limit

LRCA. Rate of Change Alarm Limit

LRSF Ramp/Soak Flags

LRSN Ramp/Soak Step Number

LSP* Set Point

LSPH* Set Point High Limit

LSPL* Set Point Low Limit

LTD. Rate

LTI. Reset

LTS. Sample Rate

LVF V-Flags

LYDA* Yellow Deviation Limit

* Variables with an asterisk can be either a real number or an integer.
Variables followed by a period are real numbers. Variables not followed by a
period are integers. When you execute PACKLOOP using real numbers, two
memory locations are allocated for each real number.

PACK-
LOOP

Special Function Programs7-60 SIMATIC 545/555/575 Programming Reference

7.25 Pack Ramp/Soak Data

The Pack Ramp/Soak Data statement moves one or more elements (steps) of
the ramp/soak profile for a given loop to or from a table. PACKRS is
primarily intended to make the ramp/soak profiles accessible to an operator
interface and to provide a method for dynamic ramp/soak profiling. The
PACKRS format is shown in Figure 7-39.

PACKRS TO/FROM TABLE : A. .
LOOP NUMBER : C. . .
NO. OF STEPS : D. . . .

TABLE ADDRESS : B. .

STARTING STEP : E. .

A = T(o) or F(rom)
B = Address Integer, writeable if to table.
C = Address or value Integer.
D = Address or value Integer.
E = Address or value Integer.

Figure 7-39 PACKRS Format

• A specifies whether you are writing data to or from the table.

• B specifies the address of the table, to or from which data are moved.

• C specifies the loop number whose ramp/soak profile is involved in the
pack operation.

• D specifies the number of ramp/soak steps to pack.

• E specifies the starting step in the ramp/soak profile at which the pack
operation will begin.

The number of steps in a ramp/soak profile is established when it is
programmed using TISOFT or your programming package. The PACKRS
instruction cannot expand or shorten the ramp/soak profile for a given loop.
This instruction can only read or modify existing steps in a preexisting
profile.

PACKRS instructions that specify operations on non-existent profile steps
are invalid, and the execution of this instruction terminates.

PACKRS

PACKRS Description

PACKRS Operation

Special Function Programs 7-61SIMATIC 545/555/575 Programming Reference

If TO Table is specified, this instruction copies the specified number of steps
from the ramp/soak profile of a given loop, starting at the specified step
number, to a table in memory whose starting address is indicated in the
instruction.

If FROM Table is specified, this instruction copies the specified number of
profile steps from a memory table into the ramp/soak profile for the
indicated loop starting at the specified step number. The new step values
overwrite the affected step values in the profile.

NOTE: Care should be taken when using the PACKRS instruction with a
FROM Table specified. If the ramp/soak profile being modified is in progress
when the PACKRS instruction executes, then your process could react
erratically due to the sudden replacement of values in the profile steps. You
can use one of the following methods to ensure that the profile update is
done when the current profile is not in progress.

• In your program, check the state of the profile finished bit (bit 4) in
LRSF for the corresponding loop. Do not execute the PACKRS
statement unless the finished bit is set.

• In your program, place the loop in the manual mode, execute the
PACKRS to update the ramp/soak profile, then return the loop to
automatic mode. (Remember, this causes the ramp/soak profile to be
restarted at the initial step.)

PACKRS

Special Function Programs7-62 SIMATIC 545/555/575 Programming Reference

Pack Ramp/Soak Data (continued)

When stored in a memory table, ramp/soak profile steps are six words long
and have the following format:

• Word 1 (bit 1): Step type — 0 = ramp step, 1 = soak step (bit)

• Word 1 (bits 2–16) + Word 2: Address of status bit (special address
format)

• Words 3/4: Setpoint, if ramp step, or Soak time, if soak step (REAL
number)

• Words 5/6: Ramp rate, if ramp step, or Deadband, if soak step (REAL
number)

The status bit address points to either an output point (Y) or a control relay
(C). This address takes a short form for point numbers C1 – C512 and
Y1 – Y1024. Higher point numbers use a long form of address. If all bits of
the status bit address field are 0, then no status bit is selected for the step.

The short address form is shown in Figure 7-40.

MSB LSB
16151413121110987654321

Word 1

0000000000000000

Point Type Offset

Word 2

S

S = Step type: 0 = ramp step, 1 = soak step
Point Type = 0 0 0 ⇒ control relay (C)

1 1 0 ⇒ output (Y)
Offset = same as point number

Figure 7-40 Address Format — Short Form

For example, the encoded address for Y23 using the short form is shown in
Figure 7-41.

Word 1

Word 2

Ramp step with status bit Y23

0000000000000000

1110100000000110

S = 0 (Ramp step)
Point Type = 110 (Y output)
Offset = 017 Hex (23)

MSB LSB
16151413121110987654321

Figure 7-41 Short Form Address Example

PACKRS

Special Function Programs 7-63SIMATIC 545/555/575 Programming Reference

The long address form is shown in Figure 7-42.

MSB LSB
16151413121110987654321

Word 1

Point Type

Page Number

Word 2

0000111

S = Step type: 0 = ramp step, 1 = soak step
Point Type = 0 0 0 ⇒ control relay (C)

1 1 0 ⇒ output (Y)
Page Number = (Point number – 1) / Page size
Offset = offset within current page

Offset = ((Point number – 1) modulo Page size) + 1
NOTE: Page size = 512 for control relays (C), 1024 for output points (Y)

Offset0

S

Figure 7-42 Address Format — Long Form

For example, the encoded address for C514 using the long form is shown in
Figure 7-43.

MSB LSB
16151413121110987654321

Word 1

Word 2

1000000000001111

0100000000000000

Soak step with status bit C514

S = 1 (Soak step)
Point Type = 000 (C control relay)
Page Number: (514 – 1) / 512 = 1
Offset: ((514–1) modulo 512) + 1 = 2

Figure 7-43 Long Form Address Example

PACKRS

Special Function Programs7-64 SIMATIC 545/555/575 Programming Reference

Pack Ramp/Soak Data (continued)

Figure 7-44 shows an example of the PACKRS instruction moving values
from a ramp/soak profile to a V-memory table.

Table in V-Memory

8 0 2 1

0 0 0 0

4 0 C 0

0 0 0 0

3 F C 0

0 0 0 0

0 2 0 0

0 0 0 0

4 2 8 2

0 0 0 0

4 0 C 0

0 0 0 0

F 0 0 1

0 0 0 1

4 1 2 0

0 0 0 0

4 0 6 0

0 0 0 0

Table after execution of PACKRS
instruction To Table, from Loop 2,
packing 3 steps, starting at step 2.

Loop 2 RAMP/SOAK Profile

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

Step 2 Values

Step 3 Values

Step 4 Values

V100
V101
V102
V103
V104
V105
V106
V107
V108
V109
V110
V111
V112
V113
V114
V115
V116
V117

PACKRS To/from Table : TO. .
Loop Number : 2. .
No. of Steps : 3. . .

Table Address : V100.

Starting Step : 2. . .

1

2

3

4

5

Ramp C32 56.2 3.6

Soak C33 6.0 1.5

Ramp C512 65.0 6.0

Soak C513 10.0 3.5

Ramp C1025 45.0 5.0

Soak step; status bit address C33

IEEE floating-point representation of 6.0

IEEE floating-point representation of 1.5

IEEE floating-point representation of 65.0

IEEE floating-point representation of 6.0

Ramp step; status bit address C512

Soak step; status bit address C513

IEEE floating-point representation of 10.0

IEEE floating-point representation of 3.5

Figure 7-44 Example of PACKRS to a Table in V-Memory

PACKRS

Special Function Programs 7-65SIMATIC 545/555/575 Programming Reference

Figure 7-45 shows an example of the PACKRS instruction moving values
from a V-memory table to a Loop Ramp/Soak profile, changing two of the
values in the profile, and leaving the remaining values unchanged.

Table in V-Memory

6 4 0 0

0 0 0 0

4 2 2 0

0 0 0 0

4 0 A 0

0 0 0 0

F 0 0 1

6 0 0 1

4 1 2 0

0 0 0 0

4 0 A 0

0 0 0 0

Loop 1 RAMP/SOAK Profile before PACKRS is executed

Ramp step; status bit address Y1024V1000
V1001
V1002
V1003
V1004
V1005
V1006
V1007
V1008
V1009
V1010
V1011

IEEE floating-point representation of 40.0

IEEE floating-point representation of 5.0

IEEE floating-point representation of 10.0

IEEE floating-point representation of 5.0

Soak step; status bit address Y1025

Loop 1 RAMP/SOAK Profile after PACKRS is executed

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

In this example, the Ramp/Soak profile for Loop 1 is changed after executing the PACKRS instruction.
The Setpoint value in Step 1 is modified from 30.0 to 40.0 and the Soak Time value in Step 2 is changed
from 3.0 to 10.0. All other values in the profile have been left unchanged.

PACKRS To/from Table : FROM. .
Loop Number : 1. .
No. of Steps : 2. . .

Table Address : V1000.

Starting Step : 1. . .

1

2

3

4

Ramp Y1024 30.0 5.0

Soak Y1025 3.0 5.0

Ramp Y1026 20.0 4.0

Soak Y1027 5.0 6.5

Step R/S
Status

Bit
Setpoint
(Units)

Ramp Rate
(Units/Min)

Soak Time
(Min)

Deadband
(Units)

Ramp Y1024 40.0 5.0

Soak Y1025 10.0 5.0

Ramp Y1026 20.0 4.0

Soak Y1027 5.0 6.5

1

2

3

4

Step 1 Values

Step 2 Values

Figure 7-45 Example of PACKRS from a Table in V-Memory

PACKRS

Special Function Programs7-66 SIMATIC 545/555/575 Programming Reference

7.26 Pet Scan Watchdog

PETWD (Pet Scan Watchdog) allows you to extend the scan watchdog limit
while performing an in-line SF program or SF subroutine from an RLL
program. When the PETWD instruction executes, the scan watchdog timer
is reset at that instance of time during the scan, therefore extending the
scan watchdog limit beyond the configured scan watchdog limit.

A possible use would be in a large table lookup operation performed while
the controlled process is at a steady-state condition.

The RETURN format has no subfields.

The PETWD instruction is intended to be used in the normal RLL task
(TASK 1).

PETWD is available only for in-line compiled SF programs or subroutines in
CPUs that support PowerMath.

! WARNING
The PETWD instruction allows you to place the PETWD instruction in an infinite
loop, therefore preventing the scan watchdog limit from ever being reached.

If the PETWD instruction is in an infinite loop, the PLC would not issue a scan
watchdog FATAL ERROR to shut the process down, therefore leaving your
process uncontrolled. An uncontrolled process could result in death or serious
injury to personnel, and/or damage to equipment.

Ensure that the PETWD instruction is not located in an infinite loop. T o ensure
that the PETWD instruction is not located in an infinite loop within an SF
program or subroutine, place the PETWD instruction without a label at the
beginning of the SF program or subroutine.

PETWD

PETWD Description

Special Function Programs 7-67SIMATIC 545/555/575 Programming Reference

PETWD

Special Function Programs7-68 SIMATIC 545/555/575 Programming Reference

7.27 Printing

The Print statement sends a message to the ASCII communication ports.
This statement can be used to print both text and the contents of integer
and real variables. The PRINT format is shown in Figure 7-46.

A = 1
B = Address Text enclosed in double quotes

PRINT Port : A Message :.
B:

Figure 7-46 PRINT Format

• A is the port number. You must enter a 1 in this field.

• B contains a free format message. The message begins on the line
following the port and message designator fields. Element addresses
and Expressions are separated by a space. No embedded space or the
assignment operator (:=) in an expression is accepted.

The operation of the PRINT statement is described below.

• When the PRINT statement executes, the message is sent to the port(s)
specified.

• The maximum message length is 1019 characters, with characters
counted in entries as follows:
Each text character = 1 character
Each variable entry = 6 characters
Each variable text entry = 6 characters
Carriage Return & Linefeed = 2 characters

• Text Entries contain ASCII text to be printed. Text entries are enclosed
in quotation marks.

Example: PRINT PORT=1 MESSAGE:
“END OF SHIFT REPORT”

• Variable Entries print the contents of variables in either integer or real
format. Variables must be separated by spaces. Real numbers are
indicated by following the address with a period (.). Integers are printed
right-justified in a six character field with a floating minus sign. Real
numbers are printed right-justified in a twelve character field using a
FORTRAN G12.5 format.

Example: PRINT PORT=1 MESSAGE:
“THE VALUES ARE” WX5 V104.

PRINT

PRINT Description

PRINT Operation

Special Function Programs 7-69SIMATIC 545/555/575 Programming Reference

• Time Entries are used to print out a variable in time format. The
variable is printed out as hh:mm:ss. Time entries are indicated by
following the address of the variable (EL or EXP) with :TIME.

Example: PRINT PORT=1 MESSAGE:
“THE TIME IS NOW” STW141:TIME

• Date Entries are used to print out a variable in date format. The
variable is printed out as yy/mm/dd. Date entries are indicated by
following the address of the variable (EL or EXP) with :DATE.

Example: PRINT PORT=1 MESSAGE:
“THE DATE IS NOW” STW141:DATE

• Variable Text Entries are used to print out text stored in either V or K
memory. Variable Text Entries are indicated by following the address of
the text (EL or EXP) to be printed with a percent sign (%) and the
number of characters to be printed. If the number is coded as zero,
PRINT assumes that the first word of the indicated variable contains
the number of characters to print.

Example: PRINT PORT=1 MESSAGE:
“BOILER” V250%16
“DESCRIPTION” V102%0

“Boiler” V250%16 causes the 16 characters in V-Memory locations
V250–V257 to be printed. Each word contains two 8-bit characters.

“Description” V102%0 causes the number of characters specified in V102
to be printed. If V102 contains 5, then the characters in V103–V105 are
printed.

Variable Text Entries are a valuable tool for embedding control characters to
be used by the device receiving the ASCII characters. The next page gives
instructions about how to embed a control character in variable text.

PRINT

Special Function Programs7-70 SIMATIC 545/555/575 Programming Reference

Printing (continued)

The form-feed indicator <FF> is entered as: “<FF>”.

Follow these steps.

1. Enter the double quote character “

2. Enter the less than character <

3. Enter the F character F

4. Enter the F character F

5. Enter the greater than character >

6. Enter the double quote character ”

Example: PRINT PORT=1 MESSAGE:
“THERE IS A FORMFEED
AFTER THIS <FF>”

To enter a <CR><LF> (Carriage return/Linefeed), follow these steps.

1. Enter the double quote character “

2. Press the carriage return key Enter or Return

3. Enter the double quote character ”

Example: PRINT PORT=1 MESSAGE:
“THERE IS A CARRIAGE RETURN
LINEFEED AFTER THIS
 ”

To print the double quotes ““, precede it with another double quote “ as
shown in the example below.

Example: PRINT PORT=1 MESSAGE:
“ ““THIS QUOTED TEXT IS PRINTED INSIDE

DOUBLE QUOTE CHARACTERS”” ”

PRINT

Special Function Programs 7-71SIMATIC 545/555/575 Programming Reference

7.28 Return from SF Program/Subroutine

The Return statement is used to terminate an SF program or an
SF subroutine. If invoked from an SF program, the program terminates. If
invoked from an SF subroutine, control returns to the statement in the
SF program following the SF subroutine call. The RETURN format has no
subfields. If there is no RETURN statement, the program terminates after
the last statement. The format of the RETURN statement is shown in
Figure 7-47.

<SF Statement>
<SF Statement>
<SF Statement>
RETURN

Figure 7-47 Example of the RETURN Statement

RETURN

Special Function Programs7-72 SIMATIC 545/555/575 Programming Reference

7.29 Scaling Values

The Scale statement uses as input an integer input and converts it to
engineering units scaled between high and low limits. The SCALE format is
shown in Figure 7-48.

SCALE Binary input : A Scaled result : B.
Low limit : C High limit : D.
20% offset : E Bipolar : F.

A = Address Integer
B = Address Integer/real, writeable
C = Literal constant Real (C ≤ D)
D = Literal constant Real (C ≤ D)
E = Y(es) or N(o)
F = Y(es) or N(o)

Figure 7-48 SCALE Format

• A is the memory location of the input.

• B is the memory location of the result after conversion.

• C is the lower limit to which the input can be scaled.

• D is the upper limit to which the input can be scaled.

• E indicates if the input is 20% offset (Yes) or 0% offset (No).

• F indicates if the input is bipolar (Yes) or not (No).

NOTE: You cannot choose both bipolar and 20% offset for an input
(Fields E–F).

SCALE

SCALE Description

Special Function Programs 7-73SIMATIC 545/555/575 Programming Reference

The operation of the Scale statement is described below and illustrated in
Figure 7-49.

• Each time the SCALE statement executes, an integer located in A
converts to an integer or real number in engineering units, scaled
between high and low limits.

If the input is a variable that could range from –32000 to +32000, the
variable is bipolar. Set option F to Y(es). If the input is a variable that
could range from 0 to 32000, the variable is unipolar. Set option F to
N(o).

If the input is a variable that has a 20% offset (ranges from 6400 to
32000), set option E to Y(es). If the input is a variable that has a 0%
offset, set option E to N(o).

• The result is stored in the address specified by B.

The low and high limits specified in C and D determine the range of the
converted number. Values of C and D may fall within the following
limits.

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018
� 2.71050535 * 10�20to

Range =

• An error is logged if the input value is outside the low-limit to high-limit
range; and the output is clamped to the nearer of either the low limit or
the high limit.

You can use the SCALE statement to convert an input signal from an analog
input module to a value in engineering units. For example, consider these
conditions.

• The input is a 4–20 mA signal that is converted by the analog input
module to a value between 6400 and 32000 (unipolar, 20% offset) and
sent to WX33.

• You want the result of the SCALE statement to be a real number
ranging between 0 and 100 and be placed in V100., as shown below.

The SCALE fields would contain these values.

SCALE Binary input : WX33 Scaled result : V100..
Low limit : 0 High limit : 100.
20% offset : Y Bipolar : N.

Figure 7-49 SCALE Example

SCALE Operation

SCALE

Special Function Programs7-74 SIMATIC 545/555/575 Programming Reference

7.30 Sequential Data Table

The Sequential Data Table statement moves words one at a time from an
existing table to a destination address. A pointer designates the address of
the next word in the table to be moved. Each time the statement is
executed, one word moves and replaces the word at the destination address.
The SDT format is shown in Figure 7-50.

SDT Input table : A Output : B.
Table PTR : C Table length : D.
Restart bit : E.

A = Address Integer/real
B = Address Integer/real, writeable
C = Address Integer, writeable
D = Address or value Integer
E = Element Bit, writeable

Figure 7-50 SDT Format

• A is the starting address for the table. When used in a compiled SF
program or subroutine, you must specify a static table; that is, the
table’s base address must be a V, K, G, VMS, or VMM address.

• B is the output address to which the words are moved. When used in a
compiled SF program or subroutine, you must specify a static table; that
is, the table’s base address must be a V, K, G, VMS, or VMM address.

• C is the address of the pointer.

• D is the length of the table and must be a value greater than zero. When
used in a compiled SF program or subroutine, the table length must be
specified as a value.

• E is the address of the restart (status) bit and can be a C or Y.

The operation of the SDT statement is described below and illustrated in
Figure 7-51.

• The SDT moves words from a pre-existing table.

The size of the table depends upon the memory location that you choose
and, if the memory is user-configurable, how much memory you
allocated.

• Before the SDT is executed, pointer C contains zero. You must design
your program to set the pointer to zero.

SDT

SDT Description

SDT Operation

Special Function Programs 7-75SIMATIC 545/555/575 Programming Reference

• Each time the SDT is executed, the following actions occur:

The table pointer is incremented by 1. Then the word in the table
location specified by the pointer is moved to the destination address
specified by B.

The process is repeated until the number of words specified in D has
been moved.

• When the last word has been moved, the pointer is reset to zero.

• The restart bit E is on, except for the following conditions:

When the SDT resets the pointer, the restart bit turns off.

Prior to the first execution of the SDT, the bit could be either off or on
depending upon prior usage.

The value of the pointer does not change when the SDT is not executing. All
values in the table remain the same, and destination address B contains the
value of the last word moved from the table.

You can use other logic to reset the pointer to zero, but the restart bit does
not turn off.

SDT Input table :V200 Output :V100.
Table PTR :V500 Table length :30.
Restart bit :C77.

V200

V229

Table Starting Address A = V200

~~
~~

1st word moved from table

30th word moved from table

V201

V202

V228

V227

Pointer CDestination Address B = V100
Word moved from table

V500 = 1

V500 = 2

V500 = 3

V500 = 28

V500 = 29

V500 = 0

V100

C77 = ON

C77 = ON

C77 = ON

C77 = ON

C77 = ON

C77 = OFF

Restart Bit E
is C77V500

Value of restart bit
after word moved

from table

1

2

3

4

29

27

28

30

Value of pointer
after word moved

from table.

Figure 7-51 SDT Statement Example

Before the SDT executes, the pointer V500 contains 0 (zero). When the
statement executes, the pointer increments by 1, and the value in V200 is
moved to V100. This process repeats each time the statement executes.
After the last word is moved, the pointer resets to 0.

SDT

Special Function Programs7-76 SIMATIC 545/555/575 Programming Reference

7.31 Synchronous Shift Register

The Synchronous Shift Register statement builds a table that functions as
synchronous shift register. The SSR format is shown in Figure 7-52.

SSR Register start. : A Status bit : B. . . .
Register length : C. .

A = Address Integer/real, writeable
B = Element Bit, writeable
C = Address or value Integer

Figure 7-52 SSR Format

• A is the starting address for the shift register.

• B is the status bit (C or Y) and is turned on when the register is empty.

• C is the length of the shift register. The maximum number of elements
stored in the register is C. If a constant value is entered, it must be
greater than zero.

The operation of the SSR statement is described below and illustrated in
Figure 7-53.

• The starting address A designates the memory area in which the shift
register is located.

• The register length C determines the size of the shift register. Size
depends upon the memory location that you choose and how much
memory you allocated (if the memory is user-configurable). The
maximum number of elements stored in the register is C.

• The first position of the register, Register Start A, is empty until an
element moves into A from another source.

• Each time the SSR executes, the element currently in memory location
A shifts to A + 1. The element in A + 1 shifts to A + 2. Elements move
down the shift register to A + 3, A + 4, etc., and A resets to zero.

• After the register is full, shifting in a new word causes the loss of the
last word in the register at location [A + (C – 1)].

• The register is considered empty when it contains all zeros. The status
bit B turns on when the register is empty.

NOTE: If the register contains the value –0.0, the register is not recognized
as empty, and the status bit does not turn off.

SSR

SSR Description

SSR Operation

Special Function Programs 7-77SIMATIC 545/555/575 Programming Reference

V100

V101

V102

V103

V104

• The application program moves a word into the SSR from WY37.

• The application program moves a word into V100.
• The register start address V100 now contains the value 7988.

• The word 7988 shifts to V101.
• Register start address V100 is reset to 0 (V100 = 0).
• The Status Bit (C17) is turned off.

• Register start address V100 contains the value 6655.
• Shift register location V101 contains the value 7988.
• The Status Bit (C17) is off.

Shift register status before first word is moved in.

SSR executes one time.

Shift register status after application program moves first
word in; SSR has not executed yet.

Shift register status after application program moves
second word in. Another word source (WY200) is used.

V100

V101

V102

V103

V104

V100

V101

V102

V103

V104

V100

V101

V102

V103

V104

C17 IS OFF

C17 IS OFF

C17 IS OFF

WY377988

WY377988

0
0
0
0

0

7988
0
0
0
0

Word source

Word source

Word source

Word source

7988
0
0
0

0

WY2006655

0

0
0

7988
6655

WY377988

• The word 7988 shifts to V102.
• The word 6655 shifts to V101.
• Register start address V100 is reset to 0 (V100 = 0).
• The Status Bit (C17) is off.

SSR executes one time.

V100

V101

V102

V103

V104

C17 IS OFF

Word source
WY2006655

7988

0
0

6655
0

SSR Register start. : V100 Status bit : C17. . . .
Register length : 5. .

C17 IS ON

Figure 7-53 Example of SSR Operation

SSR

Special Function Programs7-78 SIMATIC 545/555/575 Programming Reference

7.32 Unscaling Values

The Unscale statement takes as input a value in engineering units, scaled
between high and low limits, and converts it to an integer. The UNSCALE
format is shown in Figure 7-54.

UNSCALE Scaled input : A Binary result : B.
Low limit : C High limit : D.
20% offset : E Bipolar : F.

A = Address Integer/real
B = Address Integer, writeable
C = Literal constant Real (C ≤ D)
D = Literal constant Real (C ≤ D)
E = Y(es) or N(o)
F = Y(es) or N(o)

Figure 7-54 UNSCALE Format

• A is the memory location of the input.

• B is the memory location of the result after conversion.

• C is the lower limit of scaled input A.

• D is the upper limit of scaled input A.

• E indicates if the output is 20% offset (Yes) or 0% offset (No).

• F indicates if the output is bipolar (Yes) or not (No).

NOTE: You cannot choose both bipolar and 20% offset for an output
(Fields E–F).

The operation of the UNSCALE statement is described below and
illustrated in Figure 7-55.

• Each time the UNSCALE statement executes, an integer or real number
located in A is converted to a scaled integer.

The high and low limits of the value in A are specified in C and D. These
limits can fall within the following range.

5.42101070 * 10�20 9.22337177 * 1018to

� 9.22337177 * 1018
� 2.71050535 * 10�20to

Range =

UNSCALE

UNSCALE
Description

UNSCALE
Operation

Special Function Programs 7-79SIMATIC 545/555/575 Programming Reference

• The result is stored as an integer in the address specified by B.

If the output is a variable that has a 20% offset (ranges from 6400 to
32000), set option E to Y(es). If the output is a variable that has a 0%
offset, set option E to N(o).

If the output is a variable that could range from –32000 to +32000, the
variable is bipolar. Set option F to Y(es). If the output is a variable that
could range from 0 to 32000, the variable is unipolar. Set option F to
N(o).

• An error is logged if the scaled value of the input is outside the ranges
given above, and the input is clamped to the nearer of either the low
limit or the high limit.

You can use the UNSCALE statement to convert a value in engineering
units to an output signal to an analog output module. For example, consider
these conditions.

The value to be converted is at memory location V100. The value at
V100 ranges between 0.0 and 100.0. You want the result of the
UNSCALE statement to be an integer between 6400 and 32000
(unipolar, 20% offset) and to be sent to WY66.

The analog output module converts the UNSCALEed value at WY66 to
a signal between 4 and 20 mA signal and sends the result to the field
equipment.

The UNSCALE fields would contain these values.

UNSCALE Scaled input : V100 Binary output : WY66.
Low limit : 0.0 High limit : 100.0.
20% offset : Y Bipolar : N.

Figure 7-55 UNSCALE Example

UNSCALE

Special Function Programs7-80 SIMATIC 545/555/575 Programming Reference

7.33 Comment

The Comment statement inserts a comment in a program for documentation
purposes. The Comment statement is ignored during program execution.
The COMMENT format is shown in Figure 7-56.

This is an example of the free-form Comment statement.

Figure 7-56 Comment Format

• A comment statement can contain a maximum of 1021 characters.

Programming Analog Alarms 8-1SIMATIC 545/555/575 Programming Reference

Chapter 8

Programming Analog Alarms

8.1 Overview 8-2.

8.2 Analog Alarm Programming and Structure 8-4.
Analog Alarm Numbers and Variable Names 8-4.
Programming Tables 8-4.
Analog Alarm C-Flags 8-5.

8.3 Specifying Analog Alarm V-Flag Address 8-6.
Alarm V-Flag Address 8-6.

8.4 Specifying Analog Alarm Sample Rate 8-7.
Sample Rate 8-7.

8.5 Specifying Analog Alarm Process Variable Parameters 8-8.
Process Variable Address 8-8.
PV Range Low/High 8-8.
PV is Bipolar 20% Offset 8-8.
Square Root of PV 8-8.

8.6 Specifying Analog Alarm Deadband 8-9.
Alarm Deadband 8-9.

8.7 Specifying Analog Alarm Process Variable Alarm Limits 8-10.
PV Alarms: Low-low, Low, High, High-high 8-10.

8.8 Specifying Analog Alarm Setpoint Parameters 8-11.
Remote Setpoint 8-11.
Clamp SP Limits 8-11.

8.9 Specifying Analog Alarm Special Function Call 8-12.
Special Function 8-12.

8.10 Specifying Analog Alarm Setpoint Deviation Limits 8-13.
Deviation Alarms: Yellow, Orange 8-13.

8.11 Specifying Other Analog Alarm Process Variable Alarms 8-14.
Rate of Change Alarm 8-14.
Broken Transmitter Alarm 8-14.

Programming Analog Alarms8-2 SIMATIC 545/555/575 Programming Reference

8.1 Overview

The analog alarm function allows you to monitor an analog input signal by
setting standard alarms on a process variable (PV) and a target setpoint
(SP). Eight alarms are available, as illustrated in Figure 8-1.

• High-high alarm point on the PV

• High alarm point on the PV

• Low alarm point on the PV

• Low-low alarm point on the PV

• Yellow deviation alarm point referenced to the SP

• Orange deviation alarm point referenced to the SP

• Rate of change alarm, for a PV changing too fast

• Broken transmitter, for a PV outside the designated valid range.

Setpoint

• Yellow

• Orange

Green

• Orange

• Yellow

Deviation alarms

• High-High

• High

• Low

• Low-Low

Absolute alarms

Hot water Input

Miscellaneous alarms

Product input

Product output

TIC
402

• Broken transmitter
• Rate of change

Figure 8-1 Example of Analog Alarm Application

Programming Analog Alarms 8-3SIMATIC 545/555/575 Programming Reference

The high-high, high, low, and low-low alarms are fixed absolute alarms and
can correspond to warnings and shutdown limits for the process equipment
itself. The yellow and orange deviation alarms move up and down with the
target setpoint and can refer to specification tolerances around the target.

A PV alarm deadband is provided to minimize cycles in and out of alarm
(chattering) that generate large numbers of messages when the PV hovers
near one of the alarm limits.

An option is also available to call an SF program, discussed in Chapter 7, to
initiate a special function calculation. This allows you to use the timing and
scaling capabilities of the analog alarm algorithm in conjunction with
SF program programming to provide a standard set of alarm checking
capabilities on advanced custom-control algorithms written in SF programs.

Programming Analog Alarms8-4 SIMATIC 545/555/575 Programming Reference

8.2 Analog Alarm Programming and Structure

Analog alarms are referenced by a user-assigned number from 1 to 128. The
variables within each analog alarm are accessed by variable names assigned
to each variable type. For example, the analog alarm setpoint is designated
by ASP; to read the value of the setpoint for Analog Alarm 10, you would
read ASP10. To read the value of the setpoint low limit for Analog Alarm
117, you would read ASPL117. Appendix A lists the analog alarm variable
names.

When you program an analog alarm, you display the analog alarm
programming table on your programming unit and enter the data in the
appropriate fields. The general steps for entering analog alarm data follow.
Refer to the TISOFT user manual for detailed instructions about
programming analog alarms.

1. Select the ALARM option from the prompt line on your programming
device.

2. Display the analog alarm that you want to program (#1, #2, etc.).

3. Enter the data for each field in the table.

The analog alarm programming table is shown in Figure 8-2. The page on
which a field is described is also listed. All analog alarm parameters are
stored in Special Memory (S-Memory) when you program the analog alarm.
The size of S-Memory is user configurable. Refer to the TISOFT user
manual for detailed instructions about configuring S-Memory.

ANALOG ALARM 128

SAMPLE RATE (SECS):

PROCESS VARIABLE ADDRESS:

SQUARE ROOT OF PV:

TITLE: XXXXXXXX

ALARM VFLAG ADDRESS:

PV IS BIPOLAR:

20% OFFSET ON PV:

REMOTE SETPOINT:

ALARM DEADBAND:

PV ALARMS:

MONITOR LOW–LOW/HI–HI:
MONITOR LOW/HIGH:

PV RANGE: LOW =
HIGH =

LOW–LOW =
LOW =
HIGH =

HIGH–HIGH =

CLAMP SP LIMITS: LOW =
HIGH =

SPECIAL FUNCTION:

MONITOR DEVIATION:
DEVIATION ALARM: YELLOW =

ORANGE =

MONITOR RATE OF CHANGE:
RATE OF CHANGE ALARM:

MONITOR BROKEN TRANSMITTER:

Page 8-6

Page 8-8

Page 8-8
Page 8-8
Page 8-8

Page 8-8

Page 8-7

Page 8-11

Page 8-12

Page 8-13

Page 8-14

Page 8-14

Page 8-9

Page 8-10

MONITOR REMOTE SETPOINT:

Figure 8-2 Analog Alarm Programming Table

Analog Alarm
Numbers and
Variable Names

Programming
Tables

Programming Analog Alarms 8-5SIMATIC 545/555/575 Programming Reference

A set of flags (C-Flags) store the programming data that you enter into the
Programming Tables for the analog alarms. The C-Flags correspond to
individual bits making up the two words ACFH, that contains the most
significant 16 bits, and ACFL, that contains the least significant 16 bits.
Table 8-1 shows the designation for each bit in the C-Flag.

Table 8-1 Analog Alarm C-Flags (ACFH and ACFL)

Variable Word
Bit

Flag
Bit Analog Alarm Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset

2 2 1 = Take square root of PV

3 3 1 = Monitor HIGH/LOW alarms

4 4 1 = Monitor HIGH-HIGH/LOW-LOW alarms

ACFH 5 5 1 = Monitor Deviation alarm

6 6 1 = Monitor Rate-of-change alarm

7 7 1 = Monitor Broken Transmitter Alarm

8 8 0 = Local Setpoint
1 = Remote Setpoint

9–16 9–16 Unused

1–4 17–20 Unused

ACFL
5 21 0 = Process Variable is unipolar

1 = Process Variable is bipolar
ACFL

6 22 Unused

7–16 23–32 Contains SF program number
(if an SF program is scheduled to be called)

Analog Alarm
C-Flags

Programming Analog Alarms8-6 SIMATIC 545/555/575 Programming Reference

8.3 Specifying Analog Alarm V-Flag Address

Enter an address: C, Y, V, or WY in the ALARM VFLAG ADDRESS field. If
you select NONE, no data is written from the V-Flags in the analog alarm.

The V-Flags contain the operational data for an analog alarm. The V-Flags
comprise the individual bits making up the 16-bit word AVF. The bits are
defined in Table 8-2.

An entry in the ALARM VFLAG ADDRESS field causes analog alarm data
to be written from the V-Flags to another address. The address can be either
a bit (Y or C) that allocates 11 contiguous bits, or a word (WY or V) that
allocates one word for V-Flag data.

Bits 1–2 are designated as control flags. If you create a V-Flag table in
V-Memory, for example, the controller reads these two bits in the V-Memory
address and writes over the corresponding bits in the AVF word. You can
enable or disable the analog alarm by setting/clearing these control flags.
You can read bits 3–12, but any changes that you make to them are
overwritten by the controller.

Table 8-2 Analog Alarm V-Flags (AVF)

Bit Analog Alarm Function

1 1 = Enable alarm

2 1 = Disable alarm

3 1 = PV is in high-high alarm

4 1 = PV is in high alarm

5 1 = PV is in low alarm

6 1 = PV is in low-low alarm

7 1 = PV is in yellow deviation alarm

8 1 = PV is in orange deviation alarm

9 1 = PV is in rate of change alarm

10 1 = Broken transmitter alarm

11 1 = Analog alarm is overrunning

12 1 = Alarm is enabled *

13–16 Unused

* If a word is selected for the analog alarm V-Flags, bit 12 is written. If a C or Y is
selected, bit 12 is not used.

NOTE: If you program an analog alarm and do not disable it, the controller
begins to monitor the programmed variables as soon as you place the
controller in RUN mode.

Alarm V-Flag
Address

Programming Analog Alarms 8-7SIMATIC 545/555/575 Programming Reference

8.4 Specifying Analog Alarm Sample Rate

Enter a time in seconds in the SAMPLE RATE field.

The sample rate determines how often deviation alarm bits and associated
math are evaluated. Sample rates are programmable in 0.1 second
increments, with alarms checked at least once every two seconds. The
sample rate can be any floating point number between 0.1 and 1.6772 × 106

seconds.

Sample Rate

Programming Analog Alarms8-8 SIMATIC 545/555/575 Programming Reference

8.5 Specifying Analog Alarm Process Variable Parameters

Enter an address: V, WX or WY in the PROCESS VARIABLE ADDRESS
field. (The 575 CPUs also allow G, VMM, or VMS memory address areas.)

A process variable must be specified for each analog alarm. The process
variable can be taken from the following.

• A word input or output module – The programming table uses a WX or
WY address.

• A location in V-Memory – The programming table uses an address in
V-Memory.

If you select NONE, the analog alarm does not read an address to obtain the
process variable. In this case, you can use an SF program, to, for example,
calculate a process variable. The result can be written to APV for processing
by the analog alarm.

Enter the low and high values of the process variable in the following fields:
PV RANGE LOW and PV RANGE HIGH.

You must specify the engineering values that correspond to the upper and
lower ranges of the input span. If the span is 0 to 100%, the lower range is
the engineering value corresponding to 0 volts. If the span is 20% to 100%,
then the lower range is the engineering value corresponding to 1 volt. If the
span is bipolar, the lower range is the engineering value corresponding to
–5 or –10 volts.

Select YES or NO to specify analog inputs as no offset, 20% offset, or bipolar
in the following fields: PV IS BIPOLAR, and 20% OFFSET ON PV.

The span of the analog inputs can be 0 to 5.0 volts, 0 to 10 volts, –10 to 10
volts, or –5 to 5 volts. The analog alarm processing feature provides a linear
conversion over any of these process variable input spans. When you
program the analog alarm, specify whether the process variable is to be no
offset, 20% offset, or bipolar.

A span of 0 to 5.0 volts (0 to 20.0 milliamps) is referred to as a span of 0 to
100%. A span of 1.0 to 5.0 volts (4.0 to 20.0 milliamps) is referred to as a
span of 20% to 100% (20% offset on the process variable). Use bipolar with a
span of –10 to 10 volts or –5 to 5 volts.

Select YES or NO for the square root option in the SQUARE ROOT OF PV
field.

Select YES if the input for the process variable is from a device (such as an
orifice meter) that requires a square root calculation to determine the
correct value to use.

Process Variable
Address

PV Range
Low/High

PV is Bipolar
20% Offset

Square Root of PV

Programming Analog Alarms 8-9SIMATIC 545/555/575 Programming Reference

8.6 Specifying Analog Alarm Deadband

Enter a value in engineering units for the alarm deadband in the ALARM
DEADBAND field.

When you specify an alarm deadband, the controller can provide hysteresis
on all alarms except the rate of change alarm to prevent them from
chattering when the process variable is near one of the alarm limits. The
analog alarm does not exit the alarm condition until the process variable
has come inside the alarm limit minus the deadband. This is shown
graphically in Figure 8-3.

The range for the deadband (AADB) is 0.0 ≤ AADB ≤ (APVH – APVL),
where APVH and APVL are the process variable high and low limits,
respectively. Typically, the deadband ranges from 0.2% to 5% of the span.

∆

100% PV

SCALE

ALARM

DEADBAND

SP

Y

∆Y

∆ 0

∆ 0

0% PV

SCALE

(LOW) (LOW) (LOW) (HIGH) (HIGH) (HIGH)

ALARM

DEADBAND

YELLOW ORANGE YELLOW YELLOW ORANGE YELLOW

Figure 8-3 Example of Alarm Deadband For Analog Alarms

Alarm Deadband

Programming Analog Alarms8-10 SIMATIC 545/555/575 Programming Reference

8.7 Specifying Analog Alarm Process Variable Alarm Limits

Enter values in engineering units for the process variable alarm limits in
the following fields: LOW, LOW-LOW, HIGH, And HIGH-HIGH. To have the
controller monitor the alarm limits, select YES in the following fields:
MONITOR LOW-LOW/HIGH-HIGH and MONITOR LOW/HIGH.
Otherwise, select NO.

The high-high and low-low alarms can be entered as values requiring
critical actions, while the high and low can be set at values requiring
remedial measures. The range of possible values that can be used is given
below.

• Low-low alarm — real number in engineering units; must be less than
or equal to low alarm value and greater than or equal to low range of
PV.

• Low alarm — real number in engineering units; must be less than or
equal to high alarm value of PV.

• High alarm — real number in engineering units; must be less than or
equal to high high alarm value of PV.

• High-high alarm — real number in engineering units; must be greater
than or equal to high alarm value and less than or equal to high range
of PV.

PV Alarms:
Low-low, Low,
High, High-high

Programming Analog Alarms 8-11SIMATIC 545/555/575 Programming Reference

8.8 Specifying Analog Alarm Setpoint Parameters

Enter an address: V, K, WX, or WY, (or also G, VMM, or VMS in a 575), or a
value, in the REMOTE SETPOINT field. Select NONE if there is no remote
setpoint. To have the controller monitor the remote setpoint, select YES in
the MONITOR REMOTE SETPOINT field. If you select NO, the analog
alarm uses the current value in the analog alarm variable ASP.

If you want to use a value external to the analog alarm for the setpoint, you
specify the address for this value in the REMOTE SETPOINT field. For
example, you can use data from a field transmitter for the setpoint by using
a WX address for the transmitter input. Then specify this WX address in
the REMOTE SETPOINT field.

Enter values for the setpoint limits in the CLAMP SP LIMITS field. Select
NONE if there are no limits, and zeroes are placed in the high and low fields.

Remote Setpoint

Clamp SP Limits

Programming Analog Alarms8-12 SIMATIC 545/555/575 Programming Reference

8.9 Specifying Analog Alarm Special Function Call

Enter an SF program number in the SPECIAL FUNCTION field. Select
NONE if no SF program is to be called for execution.

You can program the analog alarm to call an SF program to do a calculation
on any constant, variable, or I/O point. This calculation occurs each time
that the analog alarm processing is done, as required by the sample rate.
The order of events follows.

When the analog alarm is processed, the process variable and the
setpoint are read.

Before the analog alarm makes any comparisons between the process
variable and the setpoint, the SF program is called for execution.

The SF program executes and writes results to the appropriate memory
locations.

After the SF program terminates, the analog alarm continues
processing.

NOTE: With PowerMath CPUs, an SF program can be compiled or
interpreted. If the SF program is compiled, it executes to completion when
the analog alarm calls it. If the SF program is interpreted, it is initiated
when the alarm schedules it. While an interpreted SF program is executing,
a higher priority process on its queue may interrupt it on any SF statement
boundary.

Special Function

Programming Analog Alarms 8-13SIMATIC 545/555/575 Programming Reference

8.10 Specifying Analog Alarm Setpoint Deviation Limits

Enter values in engineering units for the setpoint deviation limits in the
following fields: YELLOW and ORANGE. To have the controller monitor the
deviation alarm limits, select YES in the MONITOR DEVIATION field.
Otherwise, select NO.

The deviation alarm bands are always centered around the target or
setpoint; i.e., the deviation alarm test is actually on the control error.

There are two levels of deviation alarms.

• Yellow Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the yellow deviation alarm. The yellow deviation
limit must be within the span of the process variable, and it must be
less than or equal to the orange deviation alarm.

• Orange Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the orange deviation alarm. The orange deviation
limit must be within the span of the process variable, and it must be
greater than or equal to the yellow deviation alarm.

Deviation Alarms:
Yellow, Orange

Programming Analog Alarms8-14 SIMATIC 545/555/575 Programming Reference

8.11 Specifying Other Analog Alarm Process Variable Alarms

Enter a value in engineering units for the rate of change alarm in the RATE
OF CHANGE ALARM field. To have the controller monitor the rate of
change, select YES in the MONITOR RATE OF CHANGE field. Otherwise,
select NO.

If you program the controller to monitor the rate of change, an alarm occurs
when the rate of change of the process variable exceeds the limit specified.
This is a real number in engineering units/minute that is used to set the
rate-of-change alarm flag.

To have the controller monitor for the broken transmitter condition, select
YES in the MONITOR BROKEN TRANSMITTER field. Otherwise,
select NO.

If you program the controller to monitor for the broken transmitter
condition, an alarm occurs if the raw process variable is outside the valid
range designated for the PV. The valid ranges follow.

• Bipolar: –32000 to 32000

• 0% Offset: 0 to 32000

• 20% Offset: 6400 to 32000

Figure 8-4 shows the process variable in broken transmitter alarm.

Rate of Change
Alarm

Broken Transmitter
Alarm

Programming Analog Alarms 8-15SIMATIC 545/555/575 Programming Reference

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVHI

PVHI + Deadband

HI/HI

HI

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVLO – Deadband
PVLO

LO/LO

LO

BROKEN TRANSMITTER

ORANGE
YELLOW

YELLOW
ORANGE

SP

PV

BROKEN TRANSMITTER

Figure 8-4 Example of Broken Transmitter Alarm

Programming Loops 9-1SIMATIC 545/555/575 Programming Reference

Chapter 9

Programming Loops

9.1 Overview 9-2.

9.2 Using the PID Loop Function 9-4.

9.3 Loop Algorithms 9-6.

9.4 Programming Loops 9-8.

9.5 Specifying Loop PID Algorithm 9-10.

9.6 Specifying Loop V-Flag Address 9-11.

9.7 Specifying Loop Sample Rate 9-12.

9.8 Specifying Loop Process Variable Parameters 9-13.

9.9 Specifying Loop Ramp/Soak Profile 9-14.

9.10 Specifying Loop Output Parameters 9-18.

9.11 Specifying Loop Alarm Deadband 9-19.

9.12 Specifying Loop Process Variable Alarm Limits 9-20.

9.13 Specifying Loop Setpoint Parameters 9-21.

9.14 Specifying Loop Tuning Parameters 9-22.

9.15 Specifying Loop Derivative Gain Limiting 9-25.

9.16 Specifying Loop Special Function Call 9-26.

9.17 Specifying Loop Locked Changes 9-28.

9.18 Specifying Loop Error Operation 9-29.

9.19 Specifying Reverse Acting Loops 9-30.

9.20 Specifying Loop Setpoint Deviation Limits 9-31.

9.21 Specifying Other Loop Process Variable Alarms 9-32.

9.22 Using SmarTune Automatic Loop Tuning (555 CPUs Only) 9-34.

Programming Loops9-2 SIMATIC 545/555/575 Programming Reference

9.1 Overview

Process and batch control capability is provided using the controller’s
proportional-integral-derivative (PID) loop functions, illustrated in
Figure 9-1. When you program a loop, you can set the same eight alarm
types used by analog alarms and described in Chapter 8.

• High-high alarm point on the process variable (PV)

• High alarm point on the PV

• Low alarm point on the PV

• Low-low alarm point on the PV

• Yellow deviation alarm point referenced to the setpoint (SP)

• Orange deviation alarm point referenced to the SP

• Rate of change alarm, for a PV changing too rapidly

• Broken transmitter, for a PV outside the designated valid range.

Setpoint

• Yellow

• Orange

Green

• Orange

• Yellow

Deviation alarms

• High-High

• High

• Low

• Low-Low

Absolute alarms

Hot water
input

Product input

Product output

TIC
601

• Broken transmitter
• Rate of change

Miscellaneous alarms

Figure 9-1 Example of Loop Control

Programming Loops 9-3SIMATIC 545/555/575 Programming Reference

The high-high, high, low, and low-low alarms are fixed absolute alarms and
may correspond to warnings and shutdown limits for the process equipment
itself. The yellow and orange deviation alarms move up and down with the
setpoint and may refer to specification tolerances around the setpoint.

A PV alarm deadband is provided to minimize cycles in and out of alarm
(chattering) that generate large numbers of messages when the PV hovers
near one of the alarm limits.

An option is also available to call a Special Function Program (SF program,
discussed in Chapter 7) to initiate a special function calculation. The
SF program call can be scheduled on the PV, the SP, or the output.

Programming Loops9-4 SIMATIC 545/555/575 Programming Reference

9.2 Using the PID Loop Function

Loops operate in one of three states: Manual, Automatic, and Cascade. A
fourth state — Loop Is Not Operating — is in effect when the controller is in
Program mode.

In Manual Mode, the loop output is not calculated by the controller but,
instead, comes from the operator. While a loop is in Manual, the controller
still monitors the Broken Transmitter, High-High, High, Low, Low-Low, and
Rate-of-Change alarms. The Yellow and Orange deviation alarms are not
monitored.

In Auto Mode, the controller computes the loop output. The SP for the loop
comes from either an operator interface, SF program, or from a Ramp/Soak
Table. All alarms are monitored.

In Cascade Mode, the controller computes the loop output. The setpoint for
the loop comes from a user-specified location called the remote setpoint. For
truly cascaded loops, the remote setpoint is the output of another loop. The
controller also allows the remote setpoint to be some other variable in the
controller. Such loops are not truly cascaded, but the same term is used. All
alarms are monitored.

For cascaded loops, the loop for which the output is used as the setpoint for
another loop is called the outer loop. The loop that uses the output of
another loop for its setpoint is called the inner loop. It is possible to cascade
loops more than two levels deep.

If an inner loop of a cascade is placed in Auto or Manual, then all its outer
loops must be placed in Manual to prevent reset windup. Similarly, an outer
loop cannot be placed in Auto until all inner loops are in Cascade. The logic
to handle opening and closing of cascades is built into the controller. Briefly,
this is done as follows.

• If an inner loop is switched out of Cascade, then all of its outer loops
are switched to Manual.

• A request to place an outer loop in Auto or Cascade is denied unless the
inner loop is in Cascade.

If a loop is not truly cascaded, but is simply using a remote setpoint,
changes to and from Cascade mode are allowed.

Manual Mode

Auto Mode

Cascade Mode

Programming Loops 9-5SIMATIC 545/555/575 Programming Reference

The controller allows the loop mode to be changed by an SF program, ladder
logic, or an operator interface device. While the loop can be requested to
enter any mode from any other mode, the controller actually only performs
the following mode transitions.

MANUAL

AUTO

CASCADE

AUTO

AUTO

CASCADE

AUTO

MANUAL

The other requests (Manual Cascade and Cascade Manual) are
handled as transitions to Auto and then to the final mode as follows.

MANUAL CASCADE is done as MANUAL AUTO CASCADE

CASCADE MANUAL is done as CASCADE AUTO MANUAL

Changing Loop
Mode

Programming Loops9-6 SIMATIC 545/555/575 Programming Reference

9.3 Loop Algorithms

The controller implements both the position and the velocity forms of the
PID algorithm. For the position algorithm, the position of the device being
controlled is computed based on the error. The velocity form of the PID
algorithm computes the change in the device position based on the error.

For the position form of the PID equation, the controller output Mn is
computed as follows.

Mn � Kc � en � Ki
n
�

j � 1
ej � Kr (PVn � PVn�1) � M0

Variable Definition Loop Variable Mnemonic

Ts Sample rate LTS

Kc Proportional gain LKC

Ki Coefficient of the integral term:
Kc × (Ts / Ti)

Kr Coefficient of the derivative term:
Kc × (Td / Ts)

Ti Reset or integral time LTI

Td Derivative time or rate LTD

SP Setpoint LSP

PVn Process Variable at nth sample LPV

en Error at nth sample:
SP – PVn

M0 Output at sample time 0

Mn Output at sample time n LMN

The controller combines the integral sum and the initial output into a single
term called the bias (Mx). This results in the following equations that define
bias and output at sample time.

Mn � Kc � en � Kr (PVn � PVn�1) � Mxn

Mxn � Ki
n
�

j � 1
ej � M0

Bias at sample time n

Output at sample time n

PID Position
Algorithm

Programming Loops 9-7SIMATIC 545/555/575 Programming Reference

The following is an example of the computation done by the controller
during a single sample period for a loop. The rate portion of the algorithm is
usually used for special cases and is set to 0 in this example.

Variable Definition Value

Ts Sample rate 1 second

Kc Proportional gain .01

Ti Reset or integral time 1 minute

Td Derivative time or rate 0

SP Setpoint .5

PVn Process Variable for this sample .75

PVn–1 Process Variable for previous sample .77

en Error for this sample: SP – PV .5 – .75 = –.25

Mxn–1 Bias .5

Ki Coefficient of integral term: Kc × (Ts / Ti) .01 × (1s / 60s) = .00017

Kr Coefficient of derivative term: Kc × (Td / Ts) .01 × (0s / 1s) = 0

� Mn � Kc � en � Kr � (PVn � PVn�1) � Mxn
New Output

New Bias
� Mxn � Ki � en � Mxn�1

� Mxn � (.00017 � � (.25)) � .5
� Mxn � .4999

� Mn � .49746
� Mn � .01 �� (.25) � 0� (.75� .77) � .4999

The new bias is .4999 and the new output is 49.746%.

The velocity form of the PID equation is obtained by subtracting the
equation at time (n–1) from the equation at time (n).

� Kc �(en � en�1) �

Ts
Ti

� en �

Td
Ts

(PVn � 2PVn�1 � PVn�2)�

�Mn � Mn � Mn�1

Variable Definition

Mn Loop output at the nth sample

Ti Reset time

Kc Proportional gain

Td Rate Time

en Error (SP–PV) at the nth sample

Ts Sample time

PVn Process Variable at the nth sample

PID Velocity
Algorithm

Programming Loops9-8 SIMATIC 545/555/575 Programming Reference

9.4 Programming Loops

Loops are referenced by a user-assigned number. The variables within each
loop are accessed by variable names assigned to each variable type. For
example, the loop setpoint is designated by LSP; to read the value of the
setpoint for Loop 10, you read LSP10. To read the value of the setpoint low
limit for Loop 64, you read LSPL64. Appendix A lists the loop variable
names.

When you program a loop, you display the loop programming table on your
programming unit and enter the data in the appropriate fields. The general
procedure for entering loop data are listed below. Refer to the TISOFT user
manual for detailed instructions.

• Select the Loop option from the prompt line on your programming
device.

• Display the loop that you want to program (# 1, # 2, etc.).

• Enter the data for each field in the table.

The loop programming table is shown in Figure 9-2. The page on which a
field is described is also listed. All loop parameters are stored in Special
Memory (S-Memory) when you program the loop. The size of S-Memory is
user-configurable. Refer to the TISOFT user manual for detailed
instructions about configuring S-Memory.

PID LOOP 12

LOOP VFLAG ADDRESS:
SAMPLE RATE (SECS):

SQUARE ROOT OF PV:

TITLE: XXXXXXXX

POS/VEL PID ALGORITHM:

PV IS BIPOLAR:

20% OFFSET ON PV:

LOOP OUTPUT ADDRESS:

PV ALARMS:

MONITOR LOW–LOW/HI–HI:
MONITOR LOW/HIGH:

PROCESS VARIABLE ADDRESS:
PV RANGE:

LOW–LOW =
LOW =
HIGH =

HIGH–HIGH =

LOW =
HIGH =

OUTPUT IS BIPOLAR:
20% OFFSET ON OUTPUT:

RAMP/SOAK PROGRAMMED:
RAMP/SOAK FOR SP:

ALARM DEADBAND:

REMOTE SETPOINT:
CLAMP SP LIMITS: LOW =

HIGH =

LOOP GAIN:
RESET (INTEGRAL TIME):
RATE (DERIVATIVE TIME):

FREEZE BIAS:

DERIVATIVE GAIN LIMITING:
LIMITING COEFFICIENT:

SPECIAL CALCULATION ON:
SPECIAL FUNCTION:

LOCK SETPOINT:
LOCK AUTO/MANUAL:

LOCK CASCADE:

ERROR OPERATION:
REVERSE ACTING

MONITOR DEVIATION:
DEVIATION ALARM: YELLOW =

ORANGE =

MONITOR RATE OF CHANGE:
RATE OF CHANGE ALARM:

MONITOR BROKEN TRANSMITTER:

Page 9-28

Page 9-10

Page 9-18

Page 9-13

Page 9-12

Page 9-13

Page 9-13
Page 9-13

Page 9-11

Page 9-18

Page 9-14

Page 9-13

Page 9-19

Page 9-23

Page 9-21

Page 9-21

Page 9-22

Page 9-25

Page 9-26

Page 9-29
Page 9-30

Page 9-31

Page 9-32

Page 9-32
Page 9-20

Figure 9-2 Loop Programming Table

Loop Numbers and
Variable Names

Programming
Tables

Programming Loops 9-9SIMATIC 545/555/575 Programming Reference

A set of flags (C-Flags) stores the programming data that you enter into the
Programming Tables for the loops. The C-Flags correspond to individual bits
making up the two words LCFH and LCFL. LCFH contains the most
significant 16 bits, and LCFL contains the least significant 16 bits.
Table 9-1 shows the designation for each bit in the C-Flag.

Table 9-1 Loop C-Flags (LCFH and LCFL)

Variable Word
Bit

Flag
Bit Loop Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset—only valid if PV is unipolar. See bit 21.

2 2 1 = Take square root of PV

3 3 1 = Monitor HIGH/LOW alarms

4 4 1 = Monitor HIGH-HIGH/LOW-LOW alarms

5 5 1 = Monitor yellow/orange deviation alarm

6 6 1 = Monitor rate-of-change alarm

7 7 1 = Monitor broken transmitter alarm

LCFH 8 8
PID algorithm type
0 = Position algorithm
1 = Velocity algorithm

9 9 0 = Direct acting
1 = Reverse acting

10 10 1 = Control based on error squared

11 11 1 = Control based on error deadband

12 12 1 = Auto-mode lock

13 13 1 = Cascade-mode lock

14 14 1 = Setpoint lock

15 15 0 = Output scale 0% offset
1 = Output scale 20% offset—only valid if output is unipolar. See bit 20.

16 16

and

16 17
0 1 No special function
1 0 Special function on the process variable

1
and

17

0 1 No special function
1 0 Special function on the process variable
0 1 Special function on the setpoint
1 1 Special function on the output

2 18 1 = Freeze bias when output is out-of-range

3 19 1 = RAMP/SOAK on the setpoint

LCFL 4 20 0 = Output is unipolar
1 = Output is bipolar

5 21 0 = PV is unipolar
1 = PV is bipolar

6 22 1 = Perform derivative gain limiting

7–16 23–32 Contains SF program number (if an SF program is scheduled to be called)

Loop C-Flags

Programming Loops9-10 SIMATIC 545/555/575 Programming Reference

9.5 Specifying Loop PID Algorithm

Select POS for the position algorithm or VEL for the velocity algorithm in the
POS/VEL PID ALGORITHM field. See Section 9.3 for a discussion of the
PID algorithm.

For the position algorithm, the position of the device being controlled is
computed based on the error. The velocity form of the PID algorithm
computes the change in the device position based on the error.

! WARNING
Control devices can operate unpredictably causing damage to equipment.

Unpredictable operation can cause damage to equipment and/or death or
serious injury to personnel.

Do not change the equation form (velocity to position, or vice versa) while the
algorithm is executing.

Pos/Vel PID
Algorithm

Programming Loops 9-11SIMATIC 545/555/575 Programming Reference

9.6 Specifying Loop V-Flag Address

Enter an address: C, Y, V, or WY (or also G, VMM, or VMS in a 575), in the
LOOP VFLAG ADDRESS field. If you select NONE, no data is written from
the V-Flags in the loop.

The V-Flags contain the operational data for a loop. The V-Flags correspond
to individual bits making up the 16-bit word LVF. Bits are defined in
Table 9-2.

An entry in the LOOP VFLAG ADDRESS field causes loop data to be
written from the V-Flags to another address. The address can be either a bit
(Y or C) that allocates 15 contiguous bits, or a word (WY or V) that allocates
one word for V-Flag data.

The first three V-Flags are designated as control flags. If you create a V-Flag
table in V-Memory, for example, the controller reads these three bits in the
V-Memory address and writes over the corresponding bits in the LVF word.
You can change the loop mode by setting/clearing these control flags. You
can read bits 4–15, but any changes that you make to them are overwritten
by the controller.

If you select NONE in the LOOP VFLAG ADDRESS field, no data is written
from the loop V-Flags. You can still control the loop mode by using an
SF program to change the control flag bits in LVF, or manually using
TISOFT to write to LVF.

Table 9-2 Loop V-Flags (LVF)

Bit Loop Function

1 1 = Go to manual mode
2 1 = Go to auto mode
3 1 = Go to cascade mode

4 & 5
4 5
0 0 Loop is in manual mode
1 0 Loop is in auto mode
0 1 Loop is in cascade mode

6 0 = Error is positive
1 = Error is negative

7 1 = PV is in high-high alarm
8 1 = PV is in high alarm
9 1 = PV is in low alarm

10 1 = PV is in low-low alarm
11 1 = PV is in yellow deviation alarm

12 1 = PV is in orange deviation alarm
13 1 = PV is in rate-of-change alarm

14 1 = Broken transmitter alarm
15 1 = Loop is overrunning

16 unused

Loop V-Flag
Address

Programming Loops9-12 SIMATIC 545/555/575 Programming Reference

9.7 Specifying Loop Sample Rate

Enter a time in seconds in the SAMPLE RATE field.

The sample rate determines how often deviation alarm bits and associated
math are evaluated. Sample rates are programmable in 0.1 second
increments, with alarms checked at least once every two seconds. The
sample rate can be any floating point number between 0.1 and 1.6772 × 106

seconds.

Sample Rate

Programming Loops 9-13SIMATIC 545/555/575 Programming Reference

9.8 Specifying Loop Process Variable Parameters

Enter an address: V, WX or WY, (or also G, VMM, or VMS in a 575), or select
NONE in the PROCESS VARIABLE ADDRESS field.

A process variable must be specified for each loop. The variable may be
taken from the following.

• A word input or output module — Use WX or WY address in the
programming table.

• A location in V-Memory — Use an address in V-Memory in the
programming table. When a special calculation is performed on a
process variable, the result (called the computed variable) is stored in
V-Memory where it is accessed by the loop.

If you select NONE, the loop does not read an address to obtain the process
variable. In this case, you can use an SF program, for example, to calculate
a process variable. The result can be written to LPV for processing by the
loop.

Enter the low and high values of the process variable in the following fields:
PV RANGE LOW and PV RANGE HIGH.

You must specify the engineering values that correspond to the upper and
lower ranges of the input span. If the span is 0 to 100%, the lower range is
the engineering value corresponding to 0 volts. If the span is 20% to 100%,
then the lower range is the engineering value corresponding to 1 volt. If the
span is bipolar, the lower range is the engineering value corresponding to –5
or –10 volts.

Select YES or NO to specify analog inputs as no offset, 20% offset, or bipolar
in the following fields: PV IS BIPOLAR, and 20% OFFSET ON PV.

The span of the analog inputs may be either 0 to 5.0 volts, 0 to 10 volts,
–10 to 10 volts, or –5 to 5 volts. The loop processing feature provides for a
linear conversion over any of these process variable input spans.

A span of 0 to 5.0 volts (0 to 20.0 milliamps) is referred to as a span of 0 to
100%. A span of 1.0 to 5.0 volts (4.0 to 20.0 milliamps) is referred to as a
span of 20% to 100% (20% offset on the process variable). Use the bipolar
option with a span of –10 to 10 volts or –5 to 5 volts.

Select YES or NO for the square root option in the SQUARE ROOT OF PV
field.

Select YES if the input for the process variable is from a device (such as an
orifice meter) that requires a square root calculation to determine the
correct value to use.

Process Variable
Address

PV Range Low/high

PV is Bipolar
20% Offset

Square Root of PV

Programming Loops9-14 SIMATIC 545/555/575 Programming Reference

9.9 Specifying Loop Ramp/Soak Profile

The ramp/soak feature allows you to define a variation for the process
variable by specifying the time characteristics of the loop setpoint
(Figure 9-3). The capability of varying the loop setpoint can be useful in a
number of processes, such as heat treating and batch cooking.

Time

S
et

po
in

t

Figure 9-3 Example Ramp/Soak Cycle

You can use simple ramp operations to improve some process startup
procedures. For example, the controllers do a bumpless transfer from
manual to automatic mode. This transfer holds the process at the initial
state when the mode change occurs. A two-step ramp/soak profile can then
move the setpoint to a predefined value following the mode change, with
minimal disturbance to the process.

Ramp/Soak is programmed as a set of time periods, or steps. A step can be
one of three types: a ramp, a soak, or an end.

• The ramp step changes the loop setpoint linearly from its current value
to a new value, at a specified rate of change.

• The soak step holds the setpoint constant for a specified period of time.
You can guarantee a soak period by entering a deadband value. This
form of soaking ensures that the process variable is within a specified
deadband around the setpoint for a specified period of time.

• The end step terminates a ramp/soak profile. When the program
reaches an end step, the loop remains in automatic mode and holds the
setpoint constant.

You can program a status bit for each step of the ramp/soak. This bit is set
to 1 when the loop is executing this step. It is reset when the loop leaves the
step. This allows for easy tracking in the RLL program.

Ramp/Soak operation can be controlled by two methods: allowing the profile
to be executed automatically, or by writing values to the variables that
control ramp/soak.

Defining
Ramp/Soak
Operation

Defining
Ramp/Soak Steps

Controlling the
Ramp/Soak
Operation

Programming Loops 9-15SIMATIC 545/555/575 Programming Reference

Automatic Whenever the loop changes from manual to automatic mode, the
loop begins to execute the ramp/soak profile at the initial step (Step 1). The
loop continues to execute the profile until an end step is encountered in the
profile. At this point, the loop remains in automatic mode, and the setpoint
is held at the last value in the profile.

Using Ramp/Soak Number Each loop ramp/soak profile has a corresponding
16-bit variable, LRSN, that contains the current step. You can monitor
LRSN with an SF program and also write a step number to it with an SF
program. The ramp/soak profile changes to the step that is currently
contained in LRSN. Note that the step number is zero-based. LRSN
contains 0 when the profile is on step #1, 1 when the profile is on step #2,
etc.

Using the Ramp/Soak Flags Each loop ramp/soak profile has a corresponding
16-bit variable, LRSF, that contains operational and status information for
the profile.

When you program a ramp/soak profile, you may optionally specify a
RAMP/SOAK FLAG ADDRESS. When you enter an address into this field,
the controller writes the ramp/soak data from LRSF to this address. You can
use TISOFT or APT or design your RLL program to write to the first three
bits at the specified address. The controller reads these bits and then writes
their status over the corresponding bits in LRSF. This enables you to change
the ramp/soak operation by setting/clearing the three bits as needed. The
controller ignores changes that you make in bits 4–16.

You can also monitor LRSF with an SF program and write changes to bits
1–3 with an SF program.

Select YES or NO in the RAMP/SOAK FOR SP field to indicate whether a
ramp/soak program for the loop is to be executed. The RAMP/SOAK
PROGRAMMED field is a read-only field and contains YES or NO to indicate
the creation of a ramp/soak program for the loop.

To create a ramp/soak profile for a loop, exit the Loop Programming Table
and select the Ramp/Soak Programming Table, shown in Figure 9-4.

Ramp/Soak for SP

Programming
Ramp/Soak

Programming Loops9-16 SIMATIC 545/555/575 Programming Reference

Specifying Loop Ramp/Soak Programming (continued)

PID LOOP XX
RAMP/SOAK FLAG ADDRESS: XXXXXX

STEP R/S BIT (UNITS) (UNITS/MIN) (MIN) (UNITS)
STATUS SETPOINT RAMP RATE SOAK TIME DEADBAND

1
2
3
4

S
R
S
R

XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXX
XXXXXX
XXXXXX

EXIT–F1 UP–F2 DOWN–F3 EDIT–F4

Figure 9-4 Ramp/Soak Programming Table

The first field in the table contains the ramp/soak flag address. An entry in
this field causes ramp/soak data to be written from the ramp/soak variable
(LRSF) to another address, as described on Page 9-15. The address can be
either a bit (Y or C) that allocates 5 contiguous bits, or a word (WY or V)
that allocates one word for ramp/soak data. The format of the bits in a
ramp/soak flag address correspond to the individual bits making up the
16-bit word LRSF. Bits are defined in Table 9-3.

Table 9-3 Loop Ramp/Soak Flags (LRSF)

Bit Loop Function

1 1 = Restart at the first step. To restart, toggle bit off, on, then off again. The restart occurs on the
trailing edge of a square wave.

2 1 = Hold at the current step. To hold, set bit on.

3 1 = Jog to next step. To jog, set bit on. Jog occurs on the rising edge of a square wave.

4 1 = Finish. Indicates ramp/soak is completed.

5 1 = Wait. This bit is set during a soak period when the PV is not within a specified deviation from
the SP. The loop holds the soak timer when bit 5 is set.

6 1 = Hold in progress at current step.

7–8 Unused (always returned as 0).

9–16 1 = Contains step number loop is currently executing. Step number is zero-based. Step number
contains 0 when the Ramp/Soak is on step #1, 1 when the Ramp/Soak is on step #2, etc.

Enter an address: C, Y, V, or WY (or also G, VMM, or VMS in a 575), in the
RAMP/SOAK FLAG ADDRESS field. If you select NONE, no data is written
from LRSF.

The rest of the ramp/soak program consists of entering data for each step:
setpoint and ramp rate for ramp steps, and soak time and deadband for
soak steps.

You can program a status bit (C or Y) for each step of the ramp/soak. This
bit is set to 1 when the loop is executing this step. It is reset when the loop
leaves the step.

Programming Loops 9-17SIMATIC 545/555/575 Programming Reference

Examples of ramp/soak profiles are shown in Figure 9-5.

STEP R/S
1
2
3
4

R
S
R
S

In this example, when the loop
goes from manual to auto, it starts
at step #1. At the start of ramp #1
the initial setpoint is the value of
PV at mode change (bumpless).

Manual Auto
Time

Setpoint goes to PV

STEP R/S
1
2
3
4

END
R
S
R

In this example, at manual/auto
transition, the loop stays in auto.
JOG then starts ramp/soak. You
also can initiate the ramp/soak
profile with an SF program that sets
LRSNn to the starting step number,
where n is the loop number.

5 S

Time

Setpoint goes to PV

Manual Auto

Jog

5 END

6 END

Manual Auto
Time

Setpoint goes to PV

Time

Setpoint goes to PV

Manual Auto

STEP R/S
1
2
3
4

END
R
S
R

5 S
6
7
8
9

END
R
S
R
S

END
10
11

Profile #1

Profile #2

P
ro

fil
e

#1
P

ro
fil

e
#2

In this example, initiation of either
profile is done by setting LRSNn
to the start of the profile. The n is
the loop number.

LRSN set to 1

LRSN set to 6

Figure 9-5 Ramp/Soak Table Examples

Programming Loops9-18 SIMATIC 545/555/575 Programming Reference

9.10 Specifying Loop Output Parameters

Enter an address: WY or V (or also G, VMM, or VMS in a 575), in the LOOP
OUTPUT ADDRESS field. Select NONE when you do not want the loop to
write the output to an address.

Use the LOOP OUTPUT ADDRESS field to specify the address into which
the loop writes the value of the output. You can select NONE in situations,
such as for cascaded loops, in which the outer loop does not require an
output address.

Select YES or NO in the OUTPUT IS BIPOLAR field. If you select YES, the
output range is –32000 to +32000.

Select YES or NO in the 20% OFFSET ON OUTPUT field. If you select YES,
the output range is +6400 to +32000.

If you select NO for both fields (no 20% offset and output is not bipolar) then
the output range is 0–32000.

Loop Output
Address

Output is Bipolar

20% Offset on
Output

Programming Loops 9-19SIMATIC 545/555/575 Programming Reference

9.11 Specifying Loop Alarm Deadband

Enter a value in engineering units for the alarm deadband in the ALARM
DEADBAND field.

When you specify an alarm deadband, the controller can provide hysteresis
on all alarms (except the rate of change alarm) to prevent them from
chattering when the process variable is near one of the alarm limits. The
loop does not exit the alarm condition until the process variable has come
inside the alarm limit minus the deadband. This is shown graphically in
Figure 9-6.

The range for the deadband (LADB) is 0.0 ≤ LADB ≤ (LPVH – LPVL), where
LPVH and LPVL are the process variable high and low limits, respectively.
Typically, the deadband ranges from 0.2% to 5% of the span.

100% PV

SCALE

ALARM

DEADBAND

SP

∆

∆

∆

∆

0% PV

SCALE

ALARM

DEADBAND

Y

Y

0

0

(LOW) (LOW) (LOW) (HIGH) (HIGH) (HIGH)
YELLOW ORANGE YELLOW YELLOW ORANGE YELLOW

Figure 9-6 Example of Alarm Deadband For Loops

Alarm Deadband

Programming Loops9-20 SIMATIC 545/555/575 Programming Reference

9.12 Specifying Loop Process Variable Alarm Limits

Enter values in engineering units for the process variable alarm limits in
the following fields: LOW-LOW, LOW, HIGH, and HIGH-HIGH. To have the
controller monitor the alarm limits, select YES in the following fields:
MONITOR LOW-LOW/HIGH-HIGH and MONITOR LOW/HIGH.
Otherwise, select NO.

The high-high and low-low alarms can be entered as values requiring
critical actions, while the high and low can be set at values requiring
remedial measures. The range of possible values that can be used is given
below.

• Low-low alarm — real number in engineering units; must be less than
or equal to low alarm value and greater than or equal to low range of
PV.

• Low alarm — real number in engineering units; must be less than or
equal to high alarm value of PV.

• High alarm — real number in engineering units; must be less than or
equal to high high alarm value of PV.

• High-high alarm — real number in engineering units; must be greater
than or equal to high alarm value and less than or equal to high range
of PV.

PV Alarms
Low-low, Low-high,
High-high

Programming Loops 9-21SIMATIC 545/555/575 Programming Reference

9.13 Specifying Loop Setpoint Parameters

Enter an address: V, K, WX, WY, or LMN (or also G, VMM, or VMS in a 575), in
the REMOTE SETPOINT field. Select NONE if there is no remote setpoint.

If you want to use a value external to the loop for the setpoint, you specify
the address for this value in the REMOTE SETPOINT field. For example,
you can use data from a field transmitter for the setpoint by using a WX
address for the transmitter input. Then, specify this WX address in the
REMOTE SETPOINT field.

If you want to use a remote setpoint for either cascading loops or performing
a special function on the setpoint outside of a loop, you must specify the
cascade mode.

If the controller is to control the mode of the inner loop in a cascade
configuration, the remote setpoint for the inner loop must be specified as
LMNn (the output of the outer loop n).

Enter values for the setpoint limits in the CLAMP SP LIMITS field. Select
NONE if there are no limits, and if zeroes are placed in the high and low
fields.

Remote Setpoint

Clamp SP Limits

Programming Loops9-22 SIMATIC 545/555/575 Programming Reference

9.14 Specifying Loop Tuning Parameters

Enter values for the loop tuning constants in the following fields: LOOP
GAIN, RESET (INTEGRAL TIME), and RATE (DERIVATIVE TIME).

It is not always necessary (or even desirable) to have full three-mode PID
control of a loop. Parts of the PID equation can be eliminated by choosing
appropriate values for the gain (Kc), reset (Ti), and rate (Td) thus, yielding a
P, PI, PD, I, and even an ID or a D loop.

The contribution to the output due to integral action can be eliminated by
setting Ti = infinity. When this is done, you can manually control the bias
term (Mx) to eliminate any steady-state offset.

The contribution to the output due to derivative action can be eliminated by
setting Td = 0.

The contribution to the output due to the proportional term can be
eliminated by setting Kc = 0. Since Kc is also normally a multiplier of the
integral coefficient (Ki) and the derivative coefficient (Kr), the controller
makes the computation of these values conditional on the value of Kc as
follows.

� Kc � (Ts�Ti)
� Ts�Ti

if Kc � 0.

if Kc � 0.

if Kc � 0.

if Kc � 0.
� Kc � (Td�Ts)
� Td�Ts

Ki

Kr

(for I or ID control)

(for ID or D control)

The units and range of each of the tuning constants follow:

Coefficient Unit Range

Proportional Gain, Kc %/% 0.01–100.00

Reset (Integral Time)Time, Ti minutes 0 < Ti ≤ Infinity

Derivative Time, Td minutes 0 ≤ Td < Infinity

Loop Gain, Reset,
Rate

Removing Integral
Action

Removing
Derivative Action

Removing
Proportional Action

Programming Loops 9-23SIMATIC 545/555/575 Programming Reference

Select YES in the FREEZE BIAS field to have the bias frozen when output
goes out of range. Select NO to have the bias adjusted when output goes out
of range.

If you select YES for the FREEZE BIAS option, the controller stops changing
the bias Mx whenever the computed output M goes outside the interval
[0.0, 1.0]. When this option is selected, the computation of the new output
Mn and bias Mx is done as follows.

Calculated Bias

Calculated Output

New Output

New Bias

Mx

M

Mn

Mxn

� Ki � en � Mxn�1

� Kc � en � Kr �PVn � PV(n�1)
	

� Mx

� 0.0

� M

� 1.0

if M � 0.0

if 0.0 � M � 1.0

if M � 1.0

if 0.0 � M � 1.0
� Mx

� Mxn�1 otherwise

In this example, it is unlikely that the bias will go all the way to zero. When
the PV does begin to come down, the loop begins to open the valve sooner
than it would have if the bias had been allowed to go all the way to zero.
This action has the effect of lessening the amount of overshoot.

Figure 9-7 illustrates the results of freezing the bias after a disturbance.

100%

Disturbance

Bias — Frozen

Actual output (100%)

Calculated output

Time

Span

Calculated output
begins to return
to required level.

Actual output
begins to return
to required level.

Figure 9-7 Loop Response to the Freeze Bias Option

Freeze Bias

Programming Loops9-24 SIMATIC 545/555/575 Programming Reference

Specifying Loop Tuning Parameters (continued)

If you select NO for the FREEZE BIAS option, the controller makes the
computation of the bias term conditional on the computation of the output
as follows.

Calculated Bias

Calculated Output

New Output

New Bias

Mx

M

Mn

Mxn

� Ki � en � Mxn�1

� Kc � en � Kr �PVn � PV(n�1)
	

� Mx

� 0.0

� M

� 1.0

if M � 0.0

if 0.0 � M � 1.0

if M � 1.0

if 0.0 � M � 1.0
� Mx

� Mn � �Kc � en � Kr �PVn � PVn�1
		 otherwise

With this method, the valve begins to close as soon as the process variable
begins moving back toward the setpoint. If the loop is properly tuned,
overshoot can be eliminated entirely, assuming that the setpoint is not
changing. If the output goes out of range due to a setpoint change, then the
loop probably oscillates because the bias term must stabilize again.

The choice of whether to use the default loop action or to freeze the bias
depends on the application.

Figure 9-8 illustrates the results of adjusting the bias after a disturbance.

100%

Disturbance

Time

Span

Calculated output, before bias adjustment

Actual output (100%)

Bias - adjusted

Actual output begins to
return to required level.

Figure 9-8 Loop Response to the Adjust Bias Option

Adjust Bias

Programming Loops 9-25SIMATIC 545/555/575 Programming Reference

9.15 Specifying Loop Derivative Gain Limiting

Enter a value for the derivative gain limiting coefficient in the LIMITING
COEFFICIENT field. Select YES or NO in the DERIVATIVE GAIN
LIMITING field to have derivative gain limiting done. If you specify NO
then derivative gain limiting is not done, even if a value is entered in the
field. Typically, Kd should be in the range of 10 to 20.

In the standard PID algorithm, the algorithm responds excessively to
process noise if the coefficient of the derivative term (Td/Ts) is significantly
above the 10 to 20 range. This causes disturbances that lead to erratic
behavior of the process.

To solve this problem, the controller allows you the option of selecting a
derivative gain limiting coefficient (Kd). Using this coefficient enables the
Process Variable to be filtered with a time constant that is proportional to
the derivative time (Td). The PID equations with the derivative gain
limiting coefficient follow.

• Position Algorithm.

Yn

Mx

M

� Yn�1 �

Ts
Ts � (Td�Kd)

�

�PVn � Yn�1
�

� Ki � en � Mxn�1

� Kc � en � Kr (Yn � Yn�1) � Mx

• Velocity Algorithm.

Yn

�Mn

� Yn�1 �

Ts
Ts � (Td�Kd)

�

�PVn � Yn�1
�

� Kc � (en � en�1) � Ki � en � Kr � (Yn � 2 � Yn�1 � Y

Variable Definition Variable Definition

Mn Loop output Mx Bias (Mx is the initial valve
position

Kc Proportional gain Td Rate time

en Error (SP – PV) Ki Integral gain

Ts Sample time Kd Derivative gain-limiting
coefficient

PVn Process variable

Limiting Coefficient

Programming Loops9-26 SIMATIC 545/555/575 Programming Reference

9.16 Specifying Loop Special Function Call

Enter an SF program number in the SPECIAL FUNCTION field and select
a variable (PROCESS VARIABLE, SETPOINT, or OUTPUT) in the SPECIAL
CALCULATION ON field.

If you enter an SF program number in the SPECIAL FUNCTION field but
select NONE for the SPECIAL CALCULATION ON field, the SF program is
not called for execution.

You can program the loop to call an SF program to do a calculation on any
constant, variable, or I/O point. You can schedule the SF program call to be
made when the process variable, setpoint, or output is read.

NOTE: With PowerMath CPUs, an SF program can be compiled or
interpreted. If the SF program is compiled, it executes to completion when
the loop calls it. If the SF program is interpreted, it is initiated when the
loop calls it. While an interpreted SF program is executing, a higher priority
process on its queue may interrupt it on any SF statement boundary.

When the loop is in AUTO or CASCADE mode, the SF program calls at the
sample rate and T2 always equals 2. When the loop is in MANUAL mode,
the SF program does not call for execution.

When the loop is in AUTO, CASCADE, or MANUAL mode, the SF program
either executes every 2.0 sec or at the sample rate, whichever is less. The SF
program is called at least every 2 seconds to monitor/activate the PV alarms
associated with the loop, even though loop calculations are not being done.

In the case of a loop sample time greater than 2.0 seconds, the SF program
is called at a 2.0 second interval, and T2 equals 3, indicating that the SF
was called on PV. This allows for PV manipulation before PV alarming
occurs in the loop. When it is time to do the loop calculation, T2 equals 2 to
indicate that the loop calculation is about to begin. This allows for
manipulation of both PV and setpoint before the loop calculation is done. If
the loop sample time is less than 2.0 seconds, T2 always equal 2.

NOTE: SF programs called on PV or SP are executed after PV and SP have
been determined by the loop, but before any processing is done based on the
values obtained. This allows SF programs to manipulate the PV or SP
before the loop uses them for output adjustments.

Special
Calculation/
Special Function

Calculation
Scheduled on
Setpoint

Calculation
Scheduled on
Process Variable

Programming Loops 9-27SIMATIC 545/555/575 Programming Reference

When a loop with a sample time of less than than 2.0 seconds calls an SF
program, the SF program is actually called twice for every loop calculation.

• After PV and SP are determined, the SF program is called on SP
(T2 = 2). This call allows for PV and SP manipulation before PV
alarming and loop calculations are run. The loop calculation is then
performed and the resultant output value is placed in LMN.

• The SF program is then called on output (T2 = 5) to allow for
manipulation of the loop output value in LMN before this value is
written to the loop output address.

If the sample time of the loop is greater than 2.0 seconds, the same applies,
except that the SF program is called at least every 2.0 seconds, and T2 = 3 if
it is not time to do a loop calculation. (Refer to Section 7.6 for a description
of T-Memory.)

Calculation
Scheduled on
Output

Programming Loops9-28 SIMATIC 545/555/575 Programming Reference

9.17 Specifying Loop Locked Changes

Select YES or NO for the lock option in the following fields: LOCK
SETPOINT, LOCK AUTO/MANUAL, LOCK CASCADE.

The loop programming table provides the option of locking setpoint,
auto/manual, or cascade by answering YES in the fields for the option
desired. Operator interface devices use the lock bits; these bits are not used
by the controller.

Lock Setpoint,
Auto/Manual,
Cascade

Programming Loops 9-29SIMATIC 545/555/575 Programming Reference

9.18 Specifying Loop Error Operation

Select SQUARED or DEADBAND in the ERROR OPERATION field. The Error
Squared and the Error Deadband options are mutually exclusive. Select
NONE if there is to be no calculation on the error value.

In calculating the control equation, the controller uses an error value equal
to, or less, than 1.0 (% of PV span over 100). Therefore, selecting error
squared gives a lower gain for a higher error. The control equation with
error squared is based on signed error squared, instead of the error alone.

For example, an error of 0.5 squared sets the error term in the control
equation to 0.25. Since this means the control equation is less responsive to
the process variable, error squared is best used with PH control types of
applications. When error squared control is selected, the error is calculated
as follows.

e

en

� SP � PVn

� e � abs (e)

Since en � e, a loop using the error squared is less responsive than a loop
using just the error. In fact, the smaller the error, the less responsive the
loop.

To implement a high gain for large errors, and no gain for small errors,
incorporate an error deadband. When error deadband is selected, the
controller does not take any action on the output if the process variable is
within the yellow deviation limits.

When error deadband control is selected, the error is calculated as:

e

en

� SP � PVn

� 0

� e � YDEV

� e � YDEV

if e � YDEV

if e � � YDEV

if abs (e) � YDEV

YDEV is the yellow deviation alarm limit.

If you select the NONE option, no calculation is done on the error value. The
error is determined by the following equation.

en � SP � PVn

Error Operation

Error Deadband

No Error
Calculation

Programming Loops9-30 SIMATIC 545/555/575 Programming Reference

9.19 Specifying Reverse Acting Loops

Select YES for a reverse-acting loop in the REVERSE ACTING field. Select
NO for a direct-acting loop.

The controller can give the gain output as positive or negative and the loop
is defined as direct- or reverse-acting (Figure 9-9).

A direct-acting loop is defined to have a positive gain; i.e., a positive change
in error (SP–PV) results in a positive change in the output from the
controller. The value of the output signal increases as the value of the error
increases. Note that different manufacturers define forward- and
reverse-acting controller responses in different ways.

A reverse-acting loop is defined to have a negative gain; i.e., a positive
change in error (SP–PV) results in a negative change in the output from the
controller. The value of the output signal decreases as the value of the error
increases.

Steam

Trap

Temperature controller

Return

Process requiring reverse acting control.

Process requiring direct acting control.

Temperature controller

Air-to-open valve

Air-to-open valve

Cooling water

Figure 9-9 Examples of Direct- and Reverse-Acting Control

Reverse Acting

Direct-Acting Loop

Reverse-Acting
Loop

Programming Loops 9-31SIMATIC 545/555/575 Programming Reference

9.20 Specifying Loop Setpoint Deviation Limits

Enter values in engineering units for the setpoint deviation limits in the
fields: YELLOW and ORANGE. To have the controller monitor the deviation
alarm limits, select YES in the MONITOR DEVIATION field. Otherwise,
select NO.

The deviation alarm bands are always centered around the setpoint; i.e., the
deviation alarm test is actually on the control error. Therefore, they are only
processed while the loop is in the auto or cascade mode.

There are two levels of deviation alarms.

• Yellow Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the yellow deviation alarm. The yellow deviation
limit must be within the span of the process variable, and it must be
less than or equal to the orange deviation alarm.

• Orange Deviation — This value indicates the maximum allowable error
(SP – PV) that sets the orange deviation alarm. The orange deviation
limit must be within the span of the process variable, and it must be
greater than or equal to the yellow deviation alarm.

Deviation Alarms
Yellow, Orange

Programming Loops9-32 SIMATIC 545/555/575 Programming Reference

9.21 Specifying Other Loop Process Variable Alarms

Enter a value in engineering units for the rate of change alarm in the RATE
OF CHANGE ALARM field. To have the controller monitor the rate of
change, select YES in the MONITOR RATE OF CHANGE field. Otherwise,
select NO.

If you program the controller to monitor the rate of change, an alarm occurs
when the rate of change of the process variable exceeds the limit specified.
This is a real number in engineering units/minute that is used to set the
rate-of-change alarm flag.

To have the controller monitor for the broken transmitter condition, select
YES in the MONITOR BROKEN TRANSMITTER field. Otherwise,
select NO.

If you program the controller to monitor for the broken transmitter
condition, an alarm occurs if the raw process variable is outside the valid
range designated for the PV. The valid ranges follow.

• Bipolar : –32000 to 32000

• 0% Offset : 0 to 32000

• 20% Offset : 6400 to 32000

Figure 9-10 shows the process variable in broken transmitter alarm.

Rate of Change
Alarm

Broken Transmitter
Alarm

Programming Loops 9-33SIMATIC 545/555/575 Programming Reference

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVHI

PVHI + Deadband

HI/HI

HI

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

PVLO – Deadband
PVLO

LO/LO

LO

BROKEN TRANSMITTER

ORANGE
YELLOW

YELLOW
ORANGE

SP

PV

BROKEN TRANSMITTER

Figure 9-10 Example of Broken Transmitter Alarm

Programming Loops9-34 SIMATIC 545/555/575 Programming Reference

9.22 Using SmarTune Automatic Loop Tuning (555 CPUs Only)

SmarTune� is an automatic PID loop tuning process that is built into the
new SIMATIC 555 CPUs with Release 5.0 or greater firmware. You must
also use SoftShop 505 for Windows programming software, Release 2.2 or
greater to use the SmarTune loop tuning feature. SmarTune is not
supported by TISOFT. For complete information on how to configure
SmarTune, refer to your SoftShop user manual.

SmarTune temporarily puts a loop into manual mode. It makes a selectable
change to a loop’s output (Mn) to cause a process variable (PV) movement
toward the center of the PV span. Resultant PV changes are sampled. After
sampling criteria is met, sampled values are used to calculate theoretical
optimum gain (Kc), reset (Ti), and rate (Td). Theoretical optimums are
converted to pragmatic optimums by a heuristic and assigned. The loop is
switched to its previous mode and its previous set point (SP) is re-assigned.

Only one SmarTune session is in progress at a time. Other requests are
automatically queued. A SmarTune queue can hold all possible entries.
Each entry is processed in the order requested. A session may be aborted at
any time, whether in progress or queued.

A SmarTune configuration consists of 33 parameters for each loop, which
are either value parameters or variable parameters. These parameters
allow you to automate loop tuning as desired. For example, you can choose
whether or not to automatically load the new tuning parameters directly
into the referenced loop.

NOTE: SmarTune can only be used for position or temperature loops. It is
not applicable to velocity loops.

The following section describes, in general terms, the PID autotune process
for a temperature control loop.

! CAUTION
SmarTune should not be used if a process might experience harmful effects as
a result of arbitrary M n assignment. During a tuning session, M n values are
assigned in such a way as to determine the frequency response of a process.

The tuning process may result in process product that does not meet required
standards. This product may need to be purged before and/or after a tuning
session.

Ensure that your process is designed to handle the results of loop tuning.

Overview of
SmarTune

Programming Loops 9-35SIMATIC 545/555/575 Programming Reference

The PID algorithm consists of three components: the Proportional, the
Integral (Reset), and the Derivative (Rate). Each component impacts the
output to address the varied characteristics of the process variable. The PID
expression is:

Output = P_Gain * Error + I_Gain * �
�

�

Error (dt) + D_Gain * Error (d / dt)

where,
Error = Setpoint – Process Variable
P_Gain = Proportional Gain
I_Gain = Integral Gain
D_Gain = Derivative Gain

Temperature control with PID has two regions of operation, the proportional
band, and the saturated region. The proportional band is the region above
and below the setpoint where the controller output is less than 100%. The
heat or cooling output is time proportioned as determined by the PID
output. The proportional gain value determines the proportional band.

A typical proportional band might be around ±30�F for a given machinery
temperature control, as shown in Figure 9-11. For example, with a setpoint
of 300�F, a proportional band of ±30�F would equate to the region between
270�F and 330�F, where the controller would be in the proportional band.
Outside of this region, on either side, is the saturated region where the
controller output would be 100%, which equates to 100% heating or cooling.

330�F

300�F

270�F

100% Output

Setpoint

100% Output

Proportional Band

Output = Proportional Gain * Error

Figure 9-11 Proportional Band

The Loop Tuning
Process Equation

The Proportional
Component

Programming Loops9-36 SIMATIC 545/555/575 Programming Reference

Using SmarTune Automatic Loop Tuning (555 CPUs Only), (continued)

A temperature controller using only the proportional component of the PID
expression may experience a steady state error, as shown in Figure 9-12.
This error is induced by thermal loading on a temperature zone. As the
thermal loading on a temperature zone increases, the magnitude of the
steady state error is increased.

330�F

300�F

270�F

Setpoint Steady state error

Figure 9-12 Steady State Error

Thermal loading is induced by energy losses to the surroundings, conduction
through the machine, as well as the process. A proportional-only controller
can resolve this error only to a limited degree.

The integral term of the PID expression provides a means to eliminate the
error in the proportional band. This term is defined as the Error integrated
over time. Thus, in the case of the steady state error, the output would be
increased (or decreased depending on the sign of the Error) over time. The
amount of the integral adjustment is determined by the magnitude of the
Error, and the Integral gain. Excessive Integral gain would cause an
oscillation about the setpoint. Likewise, minimal Integral gain would not
reduce the Error in a timely manner and be ineffective.

The Integral
Component

Programming Loops 9-37SIMATIC 545/555/575 Programming Reference

The Derivative term of the PID expression provides a mathematical means
for limiting the rate of change of the process variable. As the rate of change
becomes larger, the derivative term reduces the output, resulting in the
reduction of the rate of change of the process variable. The Derivative gain
defines the magnitude of the output reduction as a function of the rate of
change of the process variable. Excessive Derivative gain would result in an
undesirable output oscillation as the controller continues to eliminate the
Error.

When the PID gains are set appropriately, the resulting process variable
curve would take on the “ideal curve” appearance, as shown in Figure 9-13.

330�F

300�F

270�F

Setpoint

Figure 9-13 Ideal Process Variable Curve

Many factors affect the process variable curve. These factors may take the
process beyond where the controller can create the ideal curve. It is the
function of the PID SmarTune utility to determine the optimum PID gain
values to achieve a response as close to the ideal curve as possible.

Essentially, the SmarTune utility creates a disturbance by initiating a step
increase of the PID output. Process variable samples are collected as this
increase in output precipitates a change in the process variable. When the
sample period is complete, the data collection is analyzed for time lag,
gradient, overshoot, steady state error, and oscillation. Using a frequency
analysis method, the optimum PID gain values are determined. You can
choose to accept the newly calculated gain values, or keep the present PID
gain settings.

The Derivative
Component

Programming Loops9-38 SIMATIC 545/555/575 Programming Reference

Using SmarTune Automatic Loop Tuning (555 CPUs Only), (continued)

The SmarTune variable parameters are listed and described in this section.
Start Variable is the only variable that must be specified. It names a
discrete variable used to activate a SmarTune session. The others may be
null.

Variable parameters provide the coupling between a PLC program and
SmarTune. If only Start Variable is specified, no program coupling is
needed; a session begins when Start Variable becomes true and ends with a
loop changing back to its previous mode and SP. Since coupling is done with
variables, any program type may be used to monitor and control SmarTune
(relay ladder logic, SFPGM, or SFSUB).

Table 9-4 lists the variable parameters used by SmarTune. The following
paragraphs describe the parameters.

Table 9-4 Variable Parameters

Name Type Allowable Variable Types

Start Variable discrete X Y C WX WY V

Abort Variable discrete X Y C WX WY V

Ack Variable discrete Y C WY V

SmarTune Restart discrete X Y C WX WY V

Status Variable word WY V

PIN Variable word WX WY V

Previous Mode word V

Previous SP real V

Previous Output word V

Previous Gain real V

Previous Reset real V

Previous Rate real V

Calculated Gain real V

Calculated Reset real V

Calculated Rate real V

Variable
Parameters

Programming Loops 9-39SIMATIC 545/555/575 Programming Reference

Start Variable, Abort Variable, Ack Variable

These three discrete variables allow easy activation/deactivation via an RLL
program, as shown in Figure 9-14.

StartVariable

RST

StartVariable

AbortVariable

AckVariable

RST

AbortVariable

Figure 9-14 Example of Activation/Deactivation of Auto Tuning Process

These variables could just as easily be manipulated with IF, IMATH or
MATH statements in an SFPGM or SFSUB. Allowed discrete variables
include bits in a V-memory word.

• When Start Variable transitions from a false to a true, a SmarTune
session is activated.

• When Abort Variable is true, a SmarTune session is deactivated.

• If both are true, a session is deactivated, and Start Variable must
transition before a session will be activated.

• If a SmarTune session is already queued or in progress, Start Variable
transitions are ignored.

Ack Variable acknowledges that SmarTune has detected that Start Variable
or Abort Variable is true. It is used to synchronize Start Variable and Abort
Variable program logic with SmarTune. If not used, Start Variable and
AbortVariable should remain true for a relatively large amount of time.
What constitutes a large amount of time depends on program size and time
slice assignments. See the discussion for Activation Time Slice for further
guidance.

SmarTune Restart

If this discrete variable is true, then SmarTune is restarted completely.
SmarTune will act as if a run–program–run transition occurred. If
SmarTune Restart is specified in more than one configuration, all are tested
for true and acted upon.

Programming Loops9-40 SIMATIC 545/555/575 Programming Reference

Using SmarTune Automatic Loop Tuning (555 CPUs Only), (continued)

Status Variable

This word variable reports on the current state of a session. Three bits are
used in the word to allow easy use by an RLL program. Bit 2 is set when a
SmarTune session is completed, with or without errors or warnings. If bit 3
is also set then an error was detected. Similarly, if bit 4 is set, then a
warning condition occurred. If only bit 2 is set, then a SmarTune session
completed with no errors or warnings. See Table 9-5 for a complete listing.
Note that entries with x’s represent ranges of values.

PIN Variable

PIN Variable and PIN are provided to force a two-step procedure to be
followed before a loop is tuned. To use this feature, PIN Variable and PIN
must both be set. If PIN Variable is a null or PIN is zero, then SmarTune
activation is a one-step procedure dependent only on Start Variable. If both
are specified, then PIN Variable must equal PIN or a SmarTune session will
not be started or queued.

Previous Mode

If Previous Mode is used, it is set by SmarTune to a value which will switch
a loop to its pre-session mode when written to a loop’s LVF. This was
conceived for use when Automatic Download has been configured as false,
but may be used for other purposes. If Automatic Download is false, a loop
is left in manual mode with its output set to Safe Output when a tuning
session has completed. When AutomaticDownload is true, a loop is switched
back to its previous mode and is assigned its previous SP on completion.

Previous SP, Previous Output, Previous Gain, Previous Reset,
Previous Rate

You can use these five parameters to record the prior SP, Mn, Kc, Ti, and Td
of a loop before a SmarTune session starts. See Previous Mode for a short
discussion on why they would be configured.

Calculated Gain, Calculated Reset, Calculated Rate

You can use these three variables to record the tuning values calculated by
SmarTune. See Previous Mode for a short discussion on why they would be
configured.

Programming Loops 9-41SIMATIC 545/555/575 Programming Reference

Table 9-5 lists the loop tuning errors written to the Status Variable word.

Table 9-5 Status Code Bit Values

qponmlkjihgfwecr

r — reserved (always 0)
c — complete (operation is complete)
e — error (error condition detected)
w — warning (warning condition detected)
f–>q meanings dependent on c–e–w bits
x — irrelevant for this condition

rcew fghi jklm nopq Description

0000 xxxx xxxx xxxx SmarTune in progress or not active

0000 0000 0000 0000 Not active

0000 0000 0000 1000 Waiting in SmarTune queue

0000 0000 0001 0000 Waiting for Loop to enter manual mode

0000 0000 0001 1000 Wait 1 (PV value stabilize)

0000 0000 0010 0000 Wait 2 (PV value stabilize)

0000 0000 0010 1000 Wait 3 (PV value stabilize)

0000 0000 0011 0000 Calculating Tuning Parameters

0100 0000 0000 0000 SmarTune complete with no errors or warnings

0101 xxxx xxxx xxxx SmarTune complete with warning(s)

0101 xxxx xxxx xx01 Data questionable, tuning may not be reliable

0101 xxxx xxxx xx10 Data questionable, tuning is not reliable

0101 xxxx xxx0 01xx Sample interval too large for optimal tuning

0101 xxxx xxx0 10xx Small PV change; Step too small?

0101 xxxx xxx0 11xx PV near span low; Range marginal?

0101 xxxx xxx1 00xx PV near span high; Range marginal?

0101 xxxx xxx1 01xx Small output change; Step too small?

0101 xxxx xxx1 10xx Output near span low; Range marginal?

0101 xxxx xxx1 11xx Output near span high; Range marginal?

0101 xxxx xx1x xxxx PV changes before output; Noisy signal?

0101 xxxx x1xx xxxx PV changes inconsistent with output; Noisy signal?

0101 xxxx 1xxx xxxx Gain clamped to high/low limit

0101 xxx1 xxxx xxxx Reset clamped to high/low limit

0101 xx1x xxxx xxxx Rate clamped to high/low limit

0110 xxxx xxxx xxxx SmarTune complete with error(s)

0110 0000 0000 0000 Unanticipated error

Programming Loops9-42 SIMATIC 545/555/575 Programming Reference

Using SmarTune Automatic Loop Tuning (555 CPUs Only), (continued)

Table 9-5 Status Code Bit Values (continued)

rcew fghi jklm nopq Description

0110 xxxx xxxx 0001 PIN mismatch

0110 xxxx xxxx 0010 Loop would not go to Manual Mode

0110 xxxx xxxx 0011 Loop not completely under SmarTune control

0110 xxxx xxxx 0100 SmarTune timeout (Maximum time exceeded)

0110 xxxx xxxx 0101 Not enough free memory

0110 xxxx xxxx 0110 Out of required system resources

0110 xxxx xxxx 0111 PV greater than high stop

0110 xxxx xxxx 1000 PV lower than low stop

0110 xxxx xxxx 1001 PV change too small

0110 xxxx xxxx 1010 Operation aborted

0110 xxxx xx01 xxxx Sample interval (LTS) range error
(allowed range: 0.1 ms to 2 hours)

0110 xxxx xx10 xxxx PV (LPV) or output (LMN) range error
(range < 0.00001)

0110 xxxx xx11 xxxx Sample size too small (probably would never happen)
size < 33 (increase STEP or decrease NOISE)

0110 xxx0 01xx xxxx PV/output inconsistent 1; Noisy PV/output signal?

0110 xxx0 10xx xxxx PV/output inconsistent 2; Noisy PV/output signal?

0110 xxx0 11xx xxxx PV/output inconsistent 3; Noisy PV/output signal?

0110 xxx1 00xx xxxx PV/output inconsistent 4; Noisy PV/output signal?

0110 xxx1 01xx xxxx PV/output inconsistent 5; Noisy PV/output signal?

Programming Loops 9-43SIMATIC 545/555/575 Programming Reference

Table 9-6 lists the value parameters used by SmarTune, with the default
values and the ranges possible for each.

Table 9-6 Value Parameters

Name Default Value Range

Max Time 30.0 minutes 0 to 71582 minutes (maximum is
about 49 days)

Noise Band 0.005 of PV range PV range (engineering units)

Step Change 0.07 of PV range PV range (engineering units)

Wait Time 0.5 minutes same as Max Time

PIN 0 (PIN not required) 0 to 32767

Automatic Download TRUE TRUE/FALSE

Calculate Derivative FALSE TRUE/FALSE

Safe Output use Previous Output Previous Output, 0 to 32000

High Stop 0.8 of PV range PV range (engineering units)

Low Stop 0.2 of PV range PV range (engineering units)

Largest Gain 8000000.0 %/% real

Smallest Gain 0.0000008 %/% real

Largest Reset 8000000.0 minutes real

Smallest Reset 0.0000008 minutes real

Largest Rate 8000000.0 minutes real

Smallest Rate 0.0000008 minutes real

Activation Time Slice 0 0:not configured here, 1 to 255 ms

Calculation Time Slice 0 0:not configured here, 1 to 255 ms

Max Time

Max Time is a time in minutes. When a SmarTune session is started, a
timer is set to this value. If that timer expires before the session has
completed, the session is aborted with an error (see Table 9-5).

Noise Band

When electrical signals are converted to values, they vary randomly by
insignificant amounts. An insignificant amount is application dependent.
Noise Band gives a value in engineering units denoting the boundary
between a significant and an insignificant change. If a PV value differs from
a prior value by a Noise Band or greater amount, then a PV change has
occurred. Otherwise the PV is considered unchanged. Some errors and
warnings in Table 9-5 could be caused by an incorrect Noise Band setting. A
correct setting may be calculated from hardware specifications, or
determined by experiment and observation, or both.

Value Parameters

Programming Loops9-44 SIMATIC 545/555/575 Programming Reference

Using SmarTune Automatic Loop Tuning (555 CPUs Only), (continued)

Step Change

SmarTune works best with a PV change of about 7%. This change is
accomplished by changing Mn proportional to the ratio between
Step Change and PV span. Step Change is specified in engineering units of
the PV. If a PV span is 0 to 60 degrees and Step Change is 5 degrees, then
Mn would be changed by about 2667 (5/60 * 32000). Due to round-off error,
the actual value might be slightly different. This example is based on an Mn
span of 0 to 32000. If a 20% offset on output is selected for a loop, an Mn
change of about 2133 (Mn span of 25600) would be accomplished. See
Table 9-5 for possible warnings and errors associated with Step Change.

Wait Time

The SmarTune sample algorithm looks for a PV to change by Step Change
or to quit changing. Wait Time is required to determine when a PV has quit
changing. If a PV value does not change by a Noise Band amount within a
Wait Time period, then it has stopped changing.

PIN

PIN and PIN Variable are provided to force a two-step procedure to be
followed before a loop is tuned. To use this feature, PIN and PIN Variable
must both be set. If PIN is a zero or PIN Variable is a null, then SmarTune
activation is a one-step procedure dependent only on Start Variable. If both
are specified, PIN Variable must equal PIN or a SmarTune session will not
be started or queued.

Automatic Download

If Automatic Download is true, a loop tuning session is accomplished with
minimum additional support. After tuning values are calculated, three
actions are taken:

• Calculated Kc, Ti, and Td are written to a loop.

• The loop is changed to its prior mode.

• The loop’s SP is assigned its prior value.

Calculate Derivitive

If Calculate Derivitive is false, only Kc and Ti are calculated, and Td is set
to zero. If Calculate Derivitive is true, Kc, Ti, and Td are calculated.

Safe Output

Safe Output is an Mn value that will not cause any harm to a process. The
default is to use the loop Mn value just prior to a tuning session start.

Programming Loops 9-45SIMATIC 545/555/575 Programming Reference

High Stop

If a PV goes above High Stop, Mn is set to Safe Output and an error is
declared (see Table 9-5).

Low Stop

If a PV goes below Low Stop, Mn is set to Safe Output and an error is
declared (see Table 9-5).

Largest Gain, Largest Reset, Largest Rate

If a calculated value is larger than a configured value, then it is reduced to a
configured value and a warning is declared (see Table 9-5).

Smallest Gain, Smallest Reset, Smallest Rate

If a calculated value is smaller than a configured value, then it is increased
to a configured value and a warning is declared (see Table 9-5).

Activation Time Slice, Calculation Time Slice

These two values set how much impact SmarTune will have on PLC scan
time. If zero in all configurations, a default will be used (2 milliseconds).
Otherwise, in each category, the largest value specified will be used.

Activation Time Slice controls how responsive SmarTune is to tuning
session requests. Increase this value if SmarTune is taking an excessive
amount of time to start a tuning session. Remember that as this value is
increased, PLC scan time will increase.

Calculation Time Slice determines how much real time it will take to
calculate tuning parameters. It is possible a calculation might take 20
seconds or more of PLC time. If a PLC has a scan time of 10 milliseconds
and Calculation Time Slice is 2 milliseconds, then a 20-second calculation
would take about 120 seconds in real time: (10ms + 2ms) / 2ms * 20s = 120s.
The above formula is an algebraic simplification of: Xs / (2ms / 12ms) = 20s
where X is real time in seconds. This value should be increased if a
SmarTune session takes an excessive amount of time with a status of
calculating (see Table 9-5 and Status Variable). Remember that as this
value is increased, PLC scan time will increase while a SmarTune session is
calculating.

Memory and Variable Types A-1SIMATIC 545/555/575 Programming Reference

Appendix A

Memory and Variable Types

A.1 RLL Variable Access A-2.

A.2 SF Program Variable Access A-3.

Memory and Variable TypesA-2 SIMATIC 545/555/575 Programming Reference

A.1 RLL Variable Access

Table A-1 lists variable types used in all of the 545, 555, and 575 controllers
and which can be accessed by RLL instructions.

Table A-1 Controller Variable Types

Variable Type RLL Access Controller Notes

Constant (K) Read Only All

Control Relay (C) Read/Write All

Drum (DSP, DCP, DSC, DCC) Read/Write All

The time-driven drum (DRUM) uses the
count preset stored in L-Memory when
the DRUM is programmed. A new value
for count preset written by RLL has no
effect on DRUM operation.

It is possible to read/write data to/from
drum memory areas for an
unprogrammed drum, using these
memory locations like V-Memory. If you
use TISOFT to display values in DSP or
DSC memory, any value not in the range
of 1–16 is displayed as 16. An APT
program can display values that are
greater than 16 for these variables.

Global (G) Read/Write 575 only

Image Register
(X, WX)
(Y, WY)

Read Only
Read/Write

All

PGTS Discrete Parameter Area (B) Read/Write All

PGTS Word Parameter Area (W) Read/Write All

Status Word (STW) Read Only All

STW1 cannot be accessed by a
multi-word move instruction, e.g.,
MOVE, MOVW. STW1 is a local variable
that is only valid within a given RLL
task. Do not do multiple-word move
operations that begin with STW1.

Timer/Counter (TCP, TCC) Read/Write All

Variable (V) Read/Write All

VME (VMM, VMS) Read/Write 575 only

Memory and Variable Types A-3SIMATIC 545/555/575 Programming Reference

A.2 SF Program Variable Access

Table A-2 lists the variable types defined by the 545, 555, and 575
controllers that can be used in SF programs.

Table A-2 Variable Names and Types Used in SF Programs

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Analog Alarm/Alarm Acknowledge Flags AACK � 15

Analog Alarm Deadband AADB eu 1, 2, 8

Most Significant Word of Analog Alarm C-flags ACFH � 1

Least Significant Word of Analog Alarm C-flags ACFL � 1

Analog Alarm Error AERR eu � 3

Analog Alarm High Alarm Limit AHA eu 1, 2, 8

Analog Alarm High-High Alarm Limit AHHA eu 1, 2, 8

Analog Alarm Low Alarm Limit ALA eu 1, 2, 8

Analog Alarm Low-Low Alarm Limit ALLA eu 1, 2, 8

Analog Alarm Orange Deviation Alarm Limit AODA eu 1, 2, 8

Analog Alarm Process Variable APV eu 2

Analog Alarm Process Variable High Limit APVH eu � 1, 7

Analog Alarm Process Variable Low Limit APVL eu � 1, 7

Analog Alarm Rate of Change Alarm Limit ARCA eu/
min

� 1, 7

Analog Alarm Setpoint ASP eu 2, 8

Analog Alarm SP High Limit ASPH eu 1, 2, 8

Analog Alarm SP Low Limit ASPL eu 1, 2, 8

Analog Alarm Sample Rate ATS sec � 1

Analog Alarm Flags AVF � 9

Analog Alarm Yellow Deviation Alarm Limit AYDA eu 1, 2, 8

Alarm Peak Elapsed Time APET ms � � 16

Loop Alarm/Alarm Acknowledge Flags LACK � 15

Loop Alarm Deadband LADB eu 1, 2, 8

Most Significant Word of Loop C-flags LCFH � 1

Least Significant Word of Loop C-flags LCFL � 1

Loop Error LERR eu � 3

Loop Alarm High Limit LHA eu 1, 2, 8

Loop Alarm High-High Limit LHHA eu 1, 2, 8

Loop Gain LKC %/% �

Memory and Variable TypesA-4 SIMATIC 545/555/575 Programming Reference

SF Program Variable Access (continued)

Table A-2 Variable Names and Types Used in SF Programs (continued)

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Loop Derivative Gain Limiting Coefficient LKD �

Loop Low Alarm Limit LLA eu 1, 2, 8

Loop Low-Low Alarm Limit LLLA eu 1, 2, 8

Loop Output LMN % 10

Loop bias LMX % 11

Loop Orange Deviation Limit LODA eu 1, 2, 8

Loop Process Variable LPV eu 2

Loop PV High Limit LPVH eu � 1, 7

Loop PV Low Limit LPVL eu � 1, 7

Loop Rate of Change Alarm Limit LRCA eu/
min

� 1, 8

Loop Ramp/Soak Flags LRSF � 9

Loop Ramp/Soak Step Number LRSN � 14

Loop Setpoint LSP eu 2, 8

Loop Setpoint High Point LSPH eu 1, 2, 8

Loop Setpoint Low Limit LSPL eu 1, 2, 8

Loop Rate LTD min �

Loop Reset LTI min �

Loop Sample Rate LTS sec � 1

Loop V-flags LVF � 9

Loop Yellow Deviation Alarm Limit LYDA eu 1, 2, 8

Loop Peak Elapsed Time LPET ms � � 16

SF Subroutine Parameters P 5, 6

SF Error Code SFEC � 4, 12

SF Program Peak Elapsed Time PPET ms � � 16

SF Subroutine Peak Elapsed Time SPET ms � � 16

Constant Memory K �

Temporary memory T 4

RLL Tasks Peak Elapsed Time TPET ms � � 16

Memory and Variable Types A-5SIMATIC 545/555/575 Programming Reference

Table A-2 Variable Names and Types Used in SF Programs (continued)

Name Mnemonic Units Real
Only

Integer
Only

Read
Only

See
Note

Discrete Input accessed from an SF Program X � � 14

Discrete Output accessed from an SF Program Y � 14

Control Relay accessed from an SF Program C � 14

Drum Counter Preset DCP �

Drum Step Preset DSP �

Drum Count Current DCC �

Drum Step Current DSC �

Timer/Counter Preset TCP �

Timer/Counter Current TCC �

Variable Memory V

Word Input WX �

Word Output WY

Global Memory G*

VME Memory (A16 Addresses) VMS*

VME Memory (A24 Addresses) VMM*

* These variables are supported only by the 575 controllers.

Unit Abbreviations Meaning

eu
ms
min
sec
%/%

%

engineering units
milliseconds
minutes
seconds
gain
percent

Memory and Variable TypesA-6 SIMATIC 545/555/575 Programming Reference

SF Program Variable Access (continued)

NOTES to Table A-2:

1. Variable is read-only if S-memory is in ROM.

2. When accessed as an integer, the value returns as a scaled-integer
number between 0 and 32000. When accessed as a real, the variable
returns as a value in engineering units between the low-limit and the
high-limit.

3. When accessed as an integer, the value returns as a scaled-integer
number between -32000 and 32000. When accessed as a real, the
variable returns as a value in engineering units between – span and +
span.

4. This variable type may only be accessed in an SF program or SF
subroutine.

5. This variable type may only be accessed in an SF subroutine.

6. The access restrictions are dependent on the type of variable passed to
the subroutine.

7. If xPVL is changed to a value larger than xPVH, then xPVH is set to
the new xPVL. Similarly, if xPVH is changed to a value smaller than
xPVL, then xPVL is set to the new xPVH.

8. If xPVL or xPVH is modified and the current value of any of these
variables is outside the new PV range, the value clamps to the nearest
endpoint of the new PV range.

9. When written, only the control bits are actually modified. When read,
only the status bits are returned, the control bits are always returned
as zeros.

10. The value is dependent upon the PID algorithm in use as follows:

Position: The value is a percent between 0.0 and 1.0 (if accessed as a
real) , or 0 and 32000 (if accessed as an integer).

Velocity: The value is a percent-of-change between -1.0 and 1.0 (if
accessed as a real), or -32000 and 32000 (if accessed as an integer).

11. These variables are meaningless if the Velocity PID algorithm is being
used.

Memory and Variable Types A-7SIMATIC 545/555/575 Programming Reference

12. The value written to SFEC must range from 0–255. Unless “Error
Continuation” is specified in the SF program, writing a non-zero value
to SFEC terminates the program with the specified error code.

13. LRSN is only effective if the loop is in Auto and ramp/soak for that loop
is enabled. Error #49 is logged if the step is not programmed. If the
step is programmed, the loop exits the current step and enters the
specified step. Writing a value larger than the number of the last
programmed ramp/soak step to LRSN completes the ramp/soak and
sets the ramp/soak finish bit flag word.

LRSN is zero-based. LRSN contains 0 when the ramp/soak is on
step #1, 1 when the ramp/soak is on step #2, etc.

14. When you read a discrete point in an SF program expression, a zero is
returned if the discrete bit is off; a one is returned if the discrete bit is
on. When you write to a discrete point in an SF program expression,
the discrete bit is turned off if the value is zero; the discrete bit is
turned on if the value is non-zero.

15. The bit format is shown in Table A-3 for the words AACK and LACK.

Bits 1–4 indicate which alarm is active.

Bits 9–12 indicate which alarms have not been acknowledged. You can
acknowledge an alarm by using an operator interface to write a 1 to one
of these bits.

Table A-3 Bit Format for Words AACK and LACK

Bit Number Alarm

1 1 = PV is in broken transmitter alarm.

2 1 = PV is in rate-of-change alarm.

3 1 = PV is in high-high/low-low alarm.

4 1 = PV is in orange deviation alarm.

5–8 Bits 5–8 are not used.

9 1 = Broken transmitter alarm is unacknowledged.

10 1 = Rate-of-change alarm is unacknowledged.

11 1 = High-high/low-low alarm is unacknowledged.

12 1 = Orange deviation alarm is unacknowledged.

13–16 Bits 13–16 are not used.

Memory and Variable TypesA-8 SIMATIC 545/555/575 Programming Reference

SF Program Variable Access (continued)

16. PET variables apply to all of the 545, 555, and 575 controllers.

APETn contains the peak elapsed time for each analog alarm, which is
the time from which the alarm is scheduled, until the process completes
execution (n = 1–128).

LPETn contains the peak elapsed time for each loop, which is the time
from which the loop is scheduled, until the process completes execution
(n = 1–64).

PPETn contains the peak elapsed time for each SF program, which is
the time from which the SF program is scheduled, until the process
completes execution (n = 1–1023). PPET is only valid for SF programs
that are queued from RLL.

SPETn contains the peak elapsed time for each SF subroutine, which is
the time from which the SF subroutine is scheduled, until the process
completes execution (n = 1–1023). SPET is only valid for
SF subroutines that are queued from RLL.

TPETn contains the peak elapsed time for the execution of an RLL
task, TPET1 for TASK1 and TPET2 for TASK2.

RLL Memory Requirements B-1SIMATIC 545/555/575 Programming Reference

Appendix B

RLL Memory Requirements

B.1 Memory Requirements B-2.

RLL Memory RequirementsB-2 SIMATIC 545/555/575 Programming Reference

B.1 Memory Requirements

This appendix gives the complete set of Relay Ladder Logic instructions
used by the Series 505 controllers. Table B-1 lists each instruction, its
mnemonic code, the range of reference numbers it may be assigned, and the
minimum amount of L-memory it uses.

When calculating the actual amount of memory used by an instruction, add
one word for each of the following cases:

• A box instruction reference number greater than 255.

• An image register (X, Y, WX, WY) point number greater than 1024.

• A control relay point number greater than 512.

• A TCP or TCC reference number greater than 128.

Table B-1 RLL Memory Requirements

nstruction Mnemonic Words
Mem

Reference NumberInstruction Mnemonic Words
L-Mem

Reference Number
Range

Absolute Value ABSV 3 1–327671

Add ADD 4 1–327671

Bit Clear BITC 3 1–327671

Bit Pick BITP 3 1–327671

Bit Set BITS 3 1–327671

Convert Binary To BCD CBD 3 1–327671

Convert BCD To Binary CDB 4 1–327671

Compare CMP 5 1–327671

Y Yn
-–()-–|

Yn
-–(/)-–| 1 Table 3-3

Y, Immediate Yn
-–()-–|

Yn
-–(/I)-–| 3 Table 3-3

Set/Reset Y Yn
-–(SET)-–|

Yn
-–(RST)-–| 3 Table 3-3

Coils

Set/Reset Y,
Immediate

Yn
-–(SETI)-–|

Yn
-–(RSTI)-–| 3 Table 3-3

Coils
C Cn

-–()-–|
Cn

-–(/)-–| 1 Table 3-3

Set/Reset C Cn
-–(SET)-–|

Cn
-–(RST)-–| 3 Table 3-3

Bit-of-Word Vn,b
-–()-–|

Vn,b
-–(/)-–| 3 n: Configurable

b: 1 – 16

Set/Reset
Bit-of-Word

Vn,b
-–(SET)-–|

Vn,b
-–(RST)-–| 3 n: Configurable

b: 1 – 16
1 Numbers are for reference only.

RLL Memory Requirements B-3SIMATIC 545/555/575 Programming Reference

Table B-1 RLL Memory Requirements (continued)

nstruction Mnemonic Words
Mem

Reference NumberInstruction Mnemonic Words
L-Mem

Reference Number
Range

X, Y Xn
-–()-–|

Xn
-–(/)-–| 1 Table 3-3

X, Immediate Xn
-–(I)-–|

Xn
-–(/I)-–| 3 Table 3-3

Contacts C Cn
-–()-–|

Cn
-–(/)-–| 1 Table 3-3

Bit-of-Word Vn,b
-–()-–|

Vn,b
-–(/)-–| 3 n: Configurable

b: 1 – 16

Relational Vn Vm
-–(<>)-–| 3 n: Configurable

b: 1 – 16

Control Relay C 1 Table 3-3

Counter CTR 2 Configurable

Discrete Control Alarm
Timer DCAT 6 Configurable

Date Compare DCMP 3 1–327671

Divide DIV 4 1–327671

Drum DRUM 50 Configurable

Date Set DSET 3 1–327671

Event Drum EDRUM 66 Configurable

End Unconditional END 1 None

End Conditional END(C) 1 None

Go To Subroutine GTS 2 1–255

Indexed Matrix Compare IMC 33 1–327671

Immediate I/O Read/Write IORW 4 1–327671

Jump JMP 1 1–8

End Jump JMP(E) 1 1–8

End Jump Conditional JMP(E) 2 1–8

Label LBL 1 1–255

Load Address LDA 53 1–327671

1 Numbers are for reference only.
2 Varies with controller model. See documentation for specific controller for number

supported.
3 Add 1 word for each index parameter.

RLL Memory RequirementsB-4 SIMATIC 545/555/575 Programming Reference

Memory Requirements (continued)

Table B-1 RLL Memory Requirements (continued)

nstruction Mnemonic Words
Memory

Reference NumberInstruction Mnemonic Words
L-Memory

Reference Number
Range

Load Data Constant LDC 3 1–327671

Lock Memory (575 Only) LOCK 4 1–327671

Motor Control Alarm Timer MCAT 9 Configurable

Master Control Relay (MCR) MCR 1 1–8

End MCR MCR(E) 1 1–8

End MCR Conditional MCR(E) 2 1–8

Maskable Event Drum
Discrete MDRMD 68 Configurable

Maskable Event Drum Word MDRMW 54 Configurable

Move Image Register From
Table

MIRFT 4 1–327671

Move Image Register To
Table

MIRTT 4 1–327671

Move Discrete Image
Register To Word MIRW 4 1–327671

Move Element MOVE 53 1–327671

Move Word MOVW 4 1–327671

Multiply MULT 4 1–327671

Move Word From Table MWFT 5 Configurable

Move Word With Indirect
Addressing MWI 5 1–327671

Move Word To Discrete
Image Register MWIR 4 1–327671

Move Word To Table MWTT 5 Configurable

NOT :NOT: 2 None

One Shot :O: 1 Configurable

Parameterized Go To
Subroutine PGTS 8 + 1/para. 1–32

Parameterized Go To
Subroutine Zero PGTSZ 8 + 1/para. 1–32

1 Numbers are for reference only.
2 Varies with controller model. See documentation for specific controller for number

supported.
3 Add 1 word for each index parameter.

RLL Memory Requirements B-5SIMATIC 545/555/575 Programming Reference

Table B-1 RLL Memory Requirements (continued)

nstruction Mnemonic Words
Memory

Reference NumberInstruction Mnemonic Words
L-Memory

Reference Number
Range

PID Fast Loop PID 3 129–256

Read Slave Diagnostic RSD 4 1–112

Return (Conditional or
Unconditional) RTN 2 None

Subroutine SBR 2 1–255

Queue SF Program SFPGM 1 See Note 2

Queue SF Subroutine SFSUB 53 0–10232

Bit Shift Register SHRB 3 Configurable

Word Shift Register SHRW 4 Configurable

Skip SKP 1 1–255

Scan Matrix Compare SMC 34 1–327671

Square Root SQRT 3 1–327671

Table Search For Equal STFE 6 1–327671

Table Search For Not Equal STFN 7 1–327671

Subtract SUB 4 1–327671

Table To Table AND TAND 6 1–327671

Start New RLL Task TASK 4 1–327671

Text TEXT 2 + (NC+
NL)/2 4 1–327671

Time Compare TCMP 5 1–327671

Table Complement TCPL 5 1–327671

Timer TMR/
TMRF 2 Configurable

Table To Table OR TOR 6 1–327671

Time Set TSET 3 1–327671

Table To Word TTOW 6 1–327671

Table To Table Exclusive OR TXOR 6 1–327671

Up/Down Counter UDC 3 Configurable
1 Numbers are for reference only.
2 Varies with controller model. See documentation for specific controller for number

supported.
3 With no parameters; words of L-memory varies according to expressions used in each

parameter.
4 NC=number of characters of text; NL=number of lines of text.

RLL Memory RequirementsB-6 SIMATIC 545/555/575 Programming Reference

Memory Requirements (continued)

Table B-1 RLL Memory Requirements (continued)

nstruction Mnemonic Words
Memory

Reference NumberInstruction Mnemonic Words
L-Memory

Reference Number
Range

Unlock Memory (575 Only) UNLCK 3 1–327671

Word AND WAND 4 1–327671

Word OR WOR 4 1–327671

Word Rotate WROT 3 1–327671

Word To Table WTOT 6 1–327671

Word To Table AND WTTA 7 1–327671

Word To Table OR WTTO 7 1–327671

Word To Table Exclusive OR WTTXO 7 1–327671

Word Exclusive OR WXOR 4 1–327671

External Subroutine Call XSUB 8 + 1/par. 1–327671

1 Numbers are for reference only.

Controller Performance C-1SIMATIC 545/555/575 Programming Reference

Appendix C

Controller Performance

C.1 Calculating Performance C-2.
Calculating Normal Scan Time C-2.
Calculating the Cyclic RLL Execution Time C-4.
Total Scan Time Including Cyclic RLL C-5.

C.2 Tuning the Timeline C-8.
Basic Strategy C-8.
Using Peak Elapsed Time Words C-8.
Using the Status Words C-9.
Concepts to Remember When Tuning Timeline C-10.

C.3 RLL Execution Times C-12.

C.4 SF Program Statement Execution Times C-13.

NOTE: This section is to be used only as a reference guide for calculating
controller performance characteristics. Figures given in tables of execution
times may not apply to your controller release. For the current models of the
listed controllers, consult the Release Notes included with your controller
for up-to-date specifications for your firmware release.

Controller PerformanceC-2 SIMATIC 545/555/575 Programming Reference

C.1 Calculating Performance

Use the information in this section to estimate a worst-case scan time for
your application program. If a feature is not present, no time is added to the
scan.

To calculate scan time for the normal scan, follow steps 1–7. Remember, the
normal scan does not include any programmed cyclic RLL.

Add the I/O update times for the local base, for each of the
remote bases, and for the DP slaves.

• Local Base 545/555 575
For discrete inputs add 2.0 µs/point *.
For discrete outputs add 2.5 µs/point *.
If any word modules are
configured, add overhead 50 µs N/A.
For word inputs/outputs
add 3.6 µs/word *.

• Remote Bases 545/555 575
For the first remote base,
add 5 ms 5 ms.
For each additional remote
base, add 1 ms 1 ms.
For word inputs/outputs,
add 16 µs/word 16 µs/word.
If more than 128 word
inputs/outputs on a base —
On each base that this
is true, for every 128 words add 2 ms 2 ms.

• DP I/O 545/555 575
Information not available at time of publication. See
Release Notes to obtain this information.

Add the execution times for the non-cyclic RLL instructions.

• For RLL instructions 545/555 575
(see the execution times in the
Controller release notes), add _____ms _____ms.

* Not available at time of publication.

Calculating
Normal Scan Time

Total

RLL Instructions ms

2

Normal I/O Update

Non-Cyclic RLL Execution

2 ms

Local base ms
Remote bases ms
DP I/O ms

Total

1

1 ms

Note: 1000 µs = 1 ms

Controller Performance C-3SIMATIC 545/555/575 Programming Reference

Add the values you choose for each portion of the time-slice.

• Loops: See loop execution times (Figure C-1) _____ms.

• Analog Alarms: See analog alarm execution
times (Figure C-1) _____ms.

• Cyclic SF Programs: See statement execution
times (Table C-2) _____ms.

• Priority SF Programs: See statement execution
times (Table C-2) _____ms.

• Non-Priority SF Programs: See statement
execution times (Table C-2) _____ms.

• Normal Communication (processing service
requests on the non-priority queue) _____ms.

• Priority Communication (processing service
requests on the priority queue) _____ms.

• RBE (scan for PCS events) _____ms.

Add the SF module access times for each module in the local
base and for each module in the remote bases.

• Local Base 545/555 575
SF modules require 0.1–4 ms
for update.
For each low-activity module,
e.g., ASCII, BASIC, DCP,
add (typical) 1.0 ms N/A.

For each high-activity module,
e.g., NIM, PEERLINK,
add (typical) 2.5 ms N/A.

• Remote Bases 545/555 575
SF modules require 2–40 ms
for update.
If any SF modules are
installed, add overhead 2 ms 2 ms.

For each low-activity module,
e.g., ASCII, BASIC, DCP,
add (typical) 12 ms 12 ms.

For each high-activity module,
e.g., NIM, PEERLINK,
add (typical) 25 ms 25 ms.

Total

Loops ms
Analog alarms ms
Cyclic SF Pgm ms
Priority SF Pgm ms
No-Prty SF Pgm ms
Normal Comm

Port ms
Priority Comm

Port ms
RBE ms

3
Analog Timeslice

3 ms

Local base ms
Remote bases ms

SF Module Access
4

Total 4 ms

Controller PerformanceC-4 SIMATIC 545/555/575 Programming Reference

Calculating Performance (continued)

Add the overhead times for the local communication ports and
for the remote communication ports.

• Local Ports For each 545/555/575 communication
port used during normal operation add 1 ms.

• Remote Ports For each RBC communication port used
during normal operation add 2 ms.

Add the CPU overhead.

• For these controller models 545/555 575
add 2 ms 2 ms.

Add the values 1–6 for the normal scan time. _____ ms.

This step completes the calculation for the
normal controller scan. If you have programmed
cyclic RLL, continue with steps 8–10.

To determine the execution time for the cyclic RLL portion of an application
program, do the calculations in step 8.

Add the overhead and execution times for the cyclic RLL
boolean and box instructions.

• For these controller models 545/555 575
add overhead of 0.16 ms 0.16 ms.

For RLL instructions
(see the execution times in the
Controller release notes), add _____ms _____ms.

Overhead 2 ms

Local ports ms
Remote ports ms

Normal scan time

5

Communications Port
Overhead

CPU Overhead
6

Normal Scan T ime

Total 5

Total 6

1 2+ 3+

4+ 5+ 6+

ms

ms

ms

7

Total

Overhead 0.16 ms

RLL Instructions ms

8
Cyclic RLL Execution

8 ms

Cyclic RLL execution

2

Calculating the
Cyclic RLL
Execution Time

Controller Performance C-5SIMATIC 545/555/575 Programming Reference

To determine the total scan time for an application program that has cyclic
RLL, do the calculations in steps 9–10.

Calculate a preliminary number of times (frequency) that the
cyclic RLL executes during the normal scan.

The determination of the total scan time is an iterative process.
After you obtain a value (Value 10) for the total scan time,
substitute it for Value 7 in the cyclic RLL execution frequency
calculation in Step 9, and then do step 10 again. Repeat this
until the execution frequency for the cyclic RLL (Value 9) no
longer changes.

The calculation in step 10 is based on these values.

• Cyclic RLL frequency of execution Value 9.

• Cyclic RLL execution time Value 8.

An example of the iterative process is shown in a sample
calculation on page C-6.

Total Scan Time
Including Cyclic
RLL

9

Cyclic RLL Execution
Frequency

Total Scan Time
10

Value 9 Times

Frequency =

[×] +8

Scan time total =

ms

 ÷ T

T = Cyclic RLL cycle time

Value

Repeat steps 9–10, substituting

until no longer changes.

10 for

9

9

7

7

7

in step 9

10

Controller PerformanceC-6 SIMATIC 545/555/575 Programming Reference

Calculating Performance (continued)

Consider this example, that has the following assumptions.

• Cyclic RLL cycle time is 10 ms • Normal scan = 100 ms

• Cyclic RLL execution = 2.16 ms

Freq � 100 ms � 10 ms
� 10 times

Frequency of cyclic RLL execution per
scan (1st calculation) = 10

9

Scan � (10 � 2.16) � 100 Preliminary total scan
time = 121.6 ms

� 121.6 ms

Freq � 121.6 ms � 10 ms
� 12 times

Scan � (12 � 2.16) � 100
� 125.92 ms

Frequency of cyclic RLL execution per
scan (2nd calculation) = 12 rounded
down to previous integer

Preliminary total scan
time = 125.92 ms

10

9

10

Freq � 125.92 ms � 10 ms
� 12 times

Frequency of cyclic RLL execution per
scan (3rd calculation) = 12 rounded
down to previous integer

9

The third iteration shows that the total scan time is approximately 126 ms,
and the cyclic RLL executes 12 times per scan.

Figure C-1 shows the loop/analog execution time for the 545/575.

Controller Performance C-7SIMATIC 545/555/575 Programming Reference

No alarms enabled 1.470 ms.

All Alarms monitored 1.640 ms.

All Alarms monitored 2.110 ms.
One ramp/soak step added

All Alarms monitored 2.110 ms.
One ramp/soak step added
20% Offset added

All Alarms monitored 2.200 ms.
One ramp/soak step added
20% Offset added
Square root of PV added

All Alarms monitored 2.690 ms.
One ramp/soak step added
20% Offset added,
Square root of PV
Minimal Special Function Program added

High, High-High, Low, Low-Low Alarms enabled 0.724 ms.
All other options disabled

High, High-High, Low, Low-Low Alarms enabled 0.740 ms.
Deviation Alarms enabled
No V-Flag address enabled
No PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.858 ms.
Deviation Alarms enabled
No V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.842 ms.
No Deviation Alarms enabled
No V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 0.922 ms.
No Deviation Alarms enabled
V-Flag address enabled
PV address enabled

High, High-High, Low, Low-Low Alarms enabled 1.250 ms.
Deviation Alarms enabled
V-Flag address enabled
PV address enabled
Remote SP enabled

Loop Execution

Analog Alarm Execution

Figure C-1 Loop/Analog Alarm Execution Time for the 545/575*

* Times for the 555 are one-half of the times specified in Figure C-1.

Controller PerformanceC-8 SIMATIC 545/555/575 Programming Reference

C.2 Tuning the Timeline

For most applications, you do not need to adjust the default timeslices for
the timeline. After you have made your best predictions for analog process
execution times (loops, analog alarms, SF programs, etc.), you may still
want to make adjustments in the timeline, based on empirical data. You
have the option of fine-tuning the sub-slices of the analog timeslice to
ensure that these analog processes are executed as quickly as possible and
do not overrun. The sections that follow describe some suggestions about
how to approach the fine-tuning.

When you set the timeslices, you are also affecting the length of the overall
controller scan. Shorter analog timeslices reduce the overall scan, and
results in a faster I/O update. Typically, you want to reduce the analog
portion of the scan as much as possible to reduce the overall scan time.
However, do not allow too little time for the analog portion. Loops and
analog alarms can begin to overrun, and the time for SF programs to
execute after scheduling can be longer.

The controller stores the peak elapsed time for a process to execute in a PET
variable. The peak elapsed time is the time from when a process is
scheduled (placed in the queue) until the process completes execution. The
controller updates these words each time the process is scheduled and
executed.

• LPETn for loops
(n = 1–64)

• PPETn for SF Programs
(n = 1–1023)

• APETn for analog alarms
(n = 1–128)

• SPETn for SF Subroutines
(n = 1–1023)

You can determine if the loops, analog alarms, or cyclic SF programs are
coming close to overrunning. If the value in the APET, the LPET, or the
PPET approaches the sample time, you can increase the timeslice for the
analog alarms or for the loops. Alternatively, you can decrease the other
timeslices. This reduces the overall scan, allowing the analog alarms or
loops to run more often in a given time. The time needed for the discrete
portion of the scan limits how much you can reduce the overall scan.

If the PPET indicates that an SF program is taking significantly more time
for execution than your calculation based on times in Table C-2, you can
increase the timeslice appropriately. If the SF program is critical, move that
SF program to the Priority queue.

PPET is only valid for an SF program queued from RLL (priority,
non-priority, or cyclic SF programs). The time for executing an SF program
called from a loop or analog alarm is included in LPET or APET,
respectively.

Basic Strategy

Using Peak Elapsed
Time Words

Controller Performance C-9SIMATIC 545/555/575 Programming Reference

SPET is only valid for an SF subroutine queued from RLL. The time for
executing an SF subroutine called from an SF program is included in the
PPET for the SF program. The time for executing an SF subroutine called
from an SF program called from a loop or analog alarm is included in the
appropriate LPET or APET.

Check the status of the following bits in Status Word 162 (STW162) to see if
these analog processes are overrunning.

• Bit 3 Loops are overrunning.

• Bit 4 Analog Alarms are overrunning.

• Bit 5 Cyclic SF programs are overrunning.

• Bit 6 Non-priority SF program queue is full.

• Bit 7 Priority SF program queue is full. All priority and non-priority
SF programs will be executed in turn.

• Bit 8 Cyclic SF program queue is full.

Check bit 14 in Status Word 1 (STW01) to see if the overall scan is
overrunning. When the bit is true (= 1), the scan time required to execute
the entire program is greater than the designated scan time.

The instantaneous discrete execution time (the time to execute the discrete
portion of the scan) is reported in Status Word 192 (STW192). The
instantaneous total scan time is reported in Status Word 10 (STW10).

Table C-1 summarizes the performance and overrun indicators.

Table C-1 Performance and Overrun Indicators

Performance Overrun Indication Status Word/AUX Function

Discrete scan overrun indicator STW01 and AUX 29

Previous discrete scan time STW192 and AUX 19

Previous total scan time STW10 and AUX 19

Peak discrete and total scan time AUX 19

Cyclic process overrun indicators STW162

Individual cyclic process overrun indicators V-Flags and T6

SF queue full STW162

Process peak elapsed time LPET, APET, PPET, SPET

Scan watchdog AUX14

Using the
Status Words

Controller PerformanceC-10 SIMATIC 545/555/575 Programming Reference

Tuning the Timeline (continued)

SF modules: When you determine the base location for SF modules,
consider the impact on the controller scan. Update time for an SF module is
an order of magnitude faster when you install the module in the local base,
versus a remote base, resulting in less extension of the controller scan.

If all SF modules cannot be installed in the local base, consider placing
low-activity SF modules, such as the ASCII, BASIC, or DCP modules, in a
remote base. Locate high-activity modules, such as the NIM or PEERLINK,
in the local base.

NOTE: SF modules cannot be placed in the 575 local base.

SF program execution time: Your calculation of an SF program execution
time based on the statement times (Table C-2) is the actual execution time
required for the controller to run the SF program. The time from when the
SF program program is placed in the queue until the point at which
execution begins can vary. This wait depends upon the number of SF
programs scheduled, how long they take for execution, how long the
timeslice is, and the priority of other analog tasks scheduled for processing.

Priority/non-priority SF program queues: The two SF program queues
provide a means of separating critical SF programs, (needing to run quickly)
from less important SF programs. Keep the number of priority SF programs
as small as possible, and if it is not essential that an SF program be
executed very rapidly, assign it to the other queue.

You can increase the timeslice for the Priority SF programs to ensure that
queued programs are executed as quickly as necessary.

Cyclic SF program queue: The controller allows you to queue up to 32
cyclic SF programs at once. If you create more than 32, only the first 32 that
are queued are executed.

Do not overload the controller: Remember that the controller has a
finite set of resources. Though the controller may support up to 128 loops,
you cannot run them all at 0.1 second intervals without adversely affecting
the execution of the other analog processes. You cannot run all allowed
analog alarms at 0.1 second intervals for the same reason.

Concepts to
Remember When
Tuning Timeline

Controller Performance C-11SIMATIC 545/555/575 Programming Reference

RLL versus SF math: The controller processes RLL math much faster
than SF program math. When possible, use RLL for integer mathematical
calculations for faster response time.

Timeslice resolution: Timeslices have a resolution of 1 ms. When you
program a 4 ms timeslice, that timeslice is executed for four 1 ms clock
pulses. The time from the beginning of the timeslice to the first pulse can
vary from zero time to a full 1 ms pulse. Therefore, the actual time in a 4 ms
timeslice is greater than 3 but less than or equal to 4 ms.

Each transition between timeslices takes approximately 200 µs of overhead.
This overhead is included in the time allotted to each timeslice and does not
have an additional impact on the overall scan.

Controller PerformanceC-12 SIMATIC 545/555/575 Programming Reference

C.3 RLL Execution Times

Execution times for RLL instructions are listed in release notes for your
controller.

To calculate RLL program execution time, multiply the instruction
execution time by the instruction frequency of occurrence for all instructions
in your ladder logic program. Then sum these products. For example, if your
program contains four ADD instructions, four contacts, and four coils with
execution times of 10.30 µs, 0.33 µs, and 0.40 µs, respectively, the program
execution time is calculated as follows.

4 ADDs x 10.30 = 41.20
4 Contacts x 0.33 1.32
4 Coils x 0.40

=
= 1.60

RLL execution time = 44.12

µs

µs
µs

µs

µs
µs

µs

Controller Performance C-13SIMATIC 545/555/575 Programming Reference

C.4 SF Program Statement Execution Times

Execution times for the SF statements are listed in Table C-2 for the 545
and 575 controllers. All times are in microseconds.

NOTE: For the 555, execution times are 1/2 of the stated times. The
execution times for the 545–1103 are approximately 1.2 times the stated
times.

To calculate SF program execution time, multiply the statement execution
time by the statement frequency of occurrence for all statements in your
SF program. Then sum these products.

For example, if your program contains 1 SSR (table length = 3), 2 BINBCDs,
3 COMMENTS, then the program execution time for a 545 or 575 controller
is calculated as follows.

1 SSR x = 670.0
2 BINBCDs x 365 730.0
3 COMMENTS x 20.6

=
= 61.8

SFPGM Execution Time =

250 + 140x 3)(µs
µs
µs

µs

µs
µs

µs1,461.8

NOTE: The calculation based on these statement execution times is the
actual execution time required for the controller to run the SF program. The
time from when the SF program is placed in the queue until the point at
which execution begins can vary. This wait depends upon the number of
SF programs scheduled, how long they take for execution, and the priority
of other analog tasks scheduled for processing.

Table C-2 SF Statement Execution T imes for the 545/575

SF Statement Notes/Assumptions Execution Time

Arrays
Accessing V102 using V100(3)

Accessing V102 using V100(V1) where V1 = 3

add 50 µsec to variable access

add 150 µsec to variable access

BCDBIN input=V4, output=V5 297 µsec

BINBCD input=V5, output=V4 365 µsec

CALL ≈ 81 µsec + (60 µsec × # of parameters)

Controller PerformanceC-14 SIMATIC 545/555/575 Programming Reference

SF Program Statement Execution Times (continued)

Table C-2 SF Statement Execution T imes for the 545/575 (continued)

SF Statement Notes/Assumptions Execution Time

CDT
input=V1, output=V2
in_table=V10, out_table=V20
length=x

best case: ≈ 689 µsec
worst case: ≈ 689 µsec + (120 µsec × (length – 1))

COMMENT 20.6 µsec

Expressions relational operators, e.g., >, >=, =, etc. ≈ 70 µsec

EXIT 41.0 µsec

FTSR–IN input=V1, length=4,
register start=V100 status=C50 625 µsec

FTSR–OUT output=V3, length=4,
register start=V100, status=C50 653 µsec

GOTO GOTO Label 1 38.4 µsec + (5.3 µsec × # of intervening statements
between GOTO and LABEL)

IF-THEN-ELSE

IF (expression) and the expression is true

IF (expression) and the expression is false

95 µsec + time to evaluate expression

95 µsec + time to evaluate expression +
≈ 7 µsec × # of statements prior to ENDIF
or ELSE

ELSE or ENDIF ≈ 20.5 µsec

IMATH Assume integer variables, when used

175 µsec (assignment, e.g. V200 := 10) +
20 µsec (per each operator, e.g. +, –,) +
5 µsec (per each constant operand +
100 µsec (per each variable operand, e.g.. V100)

LABEL Label 1 ≈ 22 µsec

LEAD/LAG ≈ 1440 µsec

MATH Assume real variables

182 µsec (assignment, e.g. V200 := 10.0) +
[60 µsec (for most operators, such as +,–.

exp(**) ≈500 µsec)] +
7 µsec (per each constant operand) +
100 µsec (per each variable operand, e.g., V100)

Notes:

1) Intrinsic functions, such as ABS, FRAC, etc.,
average 315 µsec of time for execution (max.
≈ 470 µsec for LOG.

2) Integers are converted to reals before
computation is done. Add 25 µsec for each
integer → real, real→ integer conversion that
must occur.

Controller Performance C-15SIMATIC 545/555/575 Programming Reference

Table C-2 SF Statement Execution T imes for the 545/575 (continued)

SF Statement Notes/Assumptions Execution Time

PACK ≈ 110 µsec +
Σ block time

Discrete block time
≈ 179 µsec +

((#points–1) × 87 µsec) +
(((#points–1) / 16) × 220 µsec)

Integer block time
≈ 276 µsec +

((#points–1) × 170 µsec)

Real block time
≈ 413 µsec +

((#points–1) × 259 µsec)

PACK AA
≈ 225 µsec +

(# of integer parameters × 152 µsec) +
(# of real parameters × 300 µsec)

PACKLOOP

≈ 228 µsec +
(# of integer parameters × 374 µsec) +
(# of real parameters × 325 µsec) for PACK_TO

 or
(# of real parameters × 500 µsec) for PACK_FROM

PRINT
Time to start print operation; the actual print time
varies with the length of the print job, port baud
rate, etc.

≈ 165 µsec

RETURN ≈ 60 µsec

SCALE
input=V1, output=V2
low=0, high=100,
20%=no, bipolar=no

≈ 579 µsec

SDT input table=V10, output=V1,
pointer=V2, restart=C50, length=x ≈ 604 µsec

SSR using tablestart=V10,
status bit=C10 ≈ 250 µsec + (140 µsec × table length)

UNSCALE
input=V2, output=V1,
low=0, high=100
20%=no, bipolar=no

≈ 582 µsec

Loop and Analog Alarm Flag Formats D-1SIMATIC 545/555/575 Programming Reference

Appendix D

Loop and Analog Alarm Flag Formats

D.1 Loop Flags D-2.

D.2 Analog Alarm Flags D-4.

Loop and Analog Alarm Flag FormatsD-2 SIMATIC 545/555/575 Programming Reference

D.1 Loop Flags

Table D-1, Table D-2, Table D-3, and Table D-4 give the formats for the
C-Flags and V-Flags used by the 545, 555, and 575 controllers.

Table D-1 Loop V-Flags (LVF)

Bit Loop Function

1 1 = Go to manual mode

2 1 = Go to auto mode

3 1 = Go to cascade mode

4 and 5
4 5
0 0 Loop is in manual mode
1 0 Loop is in auto mode
0 1 Loop is in cascade mode

6 0 = Error is positive
1 = Error is negative

7 1 = PV is in high-high alarm

8 1 = PV is in high alarm

9 1 = PV is in low alarm

10 1 = PV is in low-low alarm

11 1 = PV is in yellow deviation alarm

12 1 = PV is in orange deviation alarm

13 1 = PV is in rate-of-change alarm

14 1 = Broken transmitter alarm

16 unused

Loop and Analog Alarm Flag Formats D-3SIMATIC 545/555/575 Programming Reference

Table D-2 Loop C-Flags (LCFH and LCFL)

Variable Word
Bit

Flag
Bit Loop Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset—only valid if PV is unipolar. See bit 21.

2 2 1 = Take square root of PV

3 3 1 = Monitor high/low alarms

4 4 1 = Monitor high-high/low-low alarms

5 5 1 = Monitor yellow/orange deviation alarm

6 6 1 = Monitor rate-of-change alarm

7 7 1 = Monitor broken transmitter alarm

LCFH

8 8
PID algorithm type
0 = Position algorithm
1 = Velocity algorithm

LCFH
9 9 0 = Direct acting

1 = Reverse acting

10 10 1 = Control based on error squared

11 11 1 = Control based on error deadband

12 12 1 = Auto-mode lock

13 13 1 = Cascade-mode lock

14 14 1 = Setpoint lock

15 15 0 = Output scale 0% offset
1 = Output scale 20% offset—only valid if output is unipolar. See bit 20.

16 16

and

16 17
0 1 No special function
1 0 Special function on the process variable

1
and

17

1 0 Special function on the process variable
0 1 Special function on the setpoint
1 1 Special function on the output

2 18 1 = Freeze bias when output is out-of-range

3 19 1 = Ramp/Soak on the setpoint

LCFL 4 20 0 = Output is unipolar
1 = Output is bipolar

5 21 0 = PV is unipolar
1 = PV is bipolar

6 22 1 = Perform derivative gain limiting

7–16 23–32 Contains SF program number (if an SF program is scheduled to be called)

Loop and Analog Alarm Flag FormatsD-4 SIMATIC 545/555/575 Programming Reference

D.2 Analog Alarm Flags

Table D-3 Analog Alarm V-Flags (AVF)

Bit Analog Alarm Function

1 1 = Enable alarm

2 1 = Disable alarm

3 1 = PV is in high-high alarm

4 1 = PV is in high alarm

5 1 = PV is in low alarm

6 1 = PV is in low-low alarm

7 1 = PV is in yellow deviation alarm

8 1 = PV is in orange deviation alarm

9 1 = PV is in rate of change alarm

10 1 = Broken transmitter alarm

11 1 = Analog alarm is overrunning

12 1 = Alarm is enabled *

13–16 Unused

* If a word is selected for the analog alarm V-Flags, bit 12 is written. If a C or Y is
selected, bit 12 is not used.

Table D-4 Analog Alarm C-Flags (ACFH and ACFL)

Variable Word
Bit

Flag
Bit Analog Alarm Function

1 1 0 = PV scale 0% offset
1 = PV scale 20% offset

2 2 1 = Take square root of PV

3 3 1 = Monitor high/low alarms

4 4 1 = Monitor high-high/low-low alarms

ACFH 5 5 1 = Monitor Deviation alarmACFH

6 6 1 = Monitor Rate-of-change alarm

7 7 1 = Monitor Broken Transmitter Alarm

8 8 0 = Local Setpoint
1 = Remote Setpoint

9–16 9–16 Unused

1–4 17–20 Unused

ACFL
5 21 0 = Process Variable is unipolar

1 = Process Variable is bipolar
ACFL

6 22 Unused

7–16 23–32 Contains SF program number
(if an SF program is scheduled to be called)

Selected Application Examples E-1SIMATIC 545/555/575 Programming Reference

Appendix E

Selected Application Examples

E.1 Using the SHRB E-2.

E.2 Using the SHRW E-4.

E.3 Using the TMR E-6.

E.4 Using the BITP E-10.

E.5 Using the DRUM E-11.

E.6 Using the EDRUM E-13.

E.7 Using the MIRW E-17.

E.8 Using the MWIR E-20.

E.9 Using the MWTT E-24.

E.10 Using the MWFT E-26.

E.11 Using the WXOR E-28.

E.12 Using the CBD E-30.

E.13 Using the CDB E-32.

E.14 Using the One Shot E-33.

E.15 Using the DCAT E-34.

E.16 Using Status Words E-37.

Selected Application ExamplesE-2 SIMATIC 545/555/575 Programming Reference

E.1 Using the SHRB

An inspector tests a partially assembled piece and pushes a reject button
when a defective piece is found. As the piece moves through the last 20
stations of final assembly, a reject lamp must light in each assembly station
with the defective piece. Figure E-1 illustrates this application.

Inspector
pushes for
reject

X1

Reset

X3
Pushbutton

Test
station

X2

Y18
Reject lamps

Y19 Y20

NO. 2 NO. 3

ASSY
STA
NO. 1

Y36 Y37

NO. 19 NO. 20

Figure E-1 SHRB Application Example

The following solution was devised.

• Pushbutton X1 is the reject button.

• Pushbutton X3 is the reset button.

• Outputs Y18 through Y37 control the status of assembly station reject
lamps.

• Limit switch X2 cycles each time a piece is indexed.

• SHRB 1 shifts the status of the piece (lights the reject lamp) as indexed
through the last 20 stations of final assembly.

The RLL solution is shown in Figure E-2.

• When the reject pushbutton X1 is pressed, coil C1 is latched on through
contact C1.

• Coil C2 shows the status of Y37.

• When the piece is indexed through limit switch X2, the status of coil C1
is shifted into Y18.

SHRB Application
Example

Explanation

Selected Application Examples E-3SIMATIC 545/555/575 Programming Reference

• In Figure E-2, a shift register provides a 20-bit register for controlling
the SHRB application. The 20-bit shift register, SHRB1 (shown in
Figure E-3), controls the REJECT lamps at the 20 assembly stations.

• The reset pushbutton resets the 20-bit shift register to zero.

• In this application, the part must be inspected and, if found defective,
the reject button must be pressed before limit switch X2 is cycled
off-to-on by the passing box. This application assumes that X2 is off
until a box strikes it.

C2X2

SHRB1

IR: Y18

N= 20

C1

X3

C1X1

C1

X2

Figure E-2 RLL for SHRB Application Example

Discrete
IR

1 2 3 1023

Bits are shifted in this direction.

20 BIT
shift register

18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37

Figure E-3 20-Bit Shift Register in Discrete Image Register

Selected Application ExamplesE-4 SIMATIC 545/555/575 Programming Reference

E.2 Using the SHRW

A paint line is to carry multiple parts (identified by part numbers), each of
which must be painted a different color based on its part number. The part
number is read by a photocell reader, and a limit switch sets up a load robot
to load the part onto a carrier conveyer. The carrier conveyer is indexed
through 12 stations, and the part number must accompany the part through
each work station to actuate the desired functions. The part is removed from
the carrier conveyer by an unload robot in station 12, and the main
conveyer moves the part to the packing area. Figure E-4 illustrates this
application.

Photocell
reader

9 8 7 6

11

10

Overhead chain
conveyor

Parts carrier

Main conveyer

to WX89

Limit switch
to X18

Load robot

32112

5

4

Unload robot

Figure E-4 SHRW Application Example

The following solution was devised.

• The photocell reader is connected to input #1 of a Word Input Module
located in Slot 4 of Base 1 (WX89).

• A limit switch is connected to input #2 of a Discrete Input Module
located in Slot 3 of Base 0 (X18).

• An SHRW shifts the number with the part as it is indexed through
work stations.

• A CMP checks the part number in each station against a mask

• X11 is connected to a reset pushbutton.

SHRW Application
Example

Selected Application Examples E-5SIMATIC 545/555/575 Programming Reference

The RLL solution is shown in Figure E-5.

Operate station #2 spray guns
to paint parts blue

C66X18

SHRW 5
A: WX89
B: V300
N= 12

C25

X11

C67C66

CMP 1
A: V301
B: V400
LT=
GT=

C67

C67

Station
#2

C153

Figure E-5 RLL for SHRW Application Example

• The photocell reader (WX89) reads the number of a part moving along
the main conveyer.

• Limit switch X18 turns on, allowing SHRW 5 to shift the part number
(WX89) to V300, setting up the load robot to load the part onto the
carrier conveyer at station 1. (The network to control the load robot is
not shown.) C66 is energized for one scan.

• When the second part moves to limit switch X18, the sequence
described above is repeated, the part number that was in memory
location V300 is shifted to V301, and the part is indexed to station 2.
CMP1 compares the station 2 mask (V400) with the part number in
V301; coil C67 turns on if there is a compare (latched through contact
C67) and initiates the network to paint the part blue.

• C153 resets the station 2 compare network when the work cycle is
complete.

• A similar compare network is used to initiate the work cycle in the
remaining stations, if required for that particular part number.

Explanation

Selected Application ExamplesE-6 SIMATIC 545/555/575 Programming Reference

E.3 Using the TMR

A piece is to be indexed automatically into a drilling station. The piece is
clamped and drilled in the station before being indexed out on a conveyer. If
the automatic index and drilling cycle stops, a fault detection circuit must
be actuated. Figure E-6 illustrates this application.

X6 X7
5LS 6LS

1LS X2

2LS X3

3LS X4

4LS X5

Clamp

Conveyer

Figure E-6 TMR Application Example

The following solution was devised.

• Input X1 (1SSW) = Auto-Manual selector switch

• Input X2 (1LS) = drill in home position

• Input X3 (2LS) = drill advanced to piece

• Input X4 (3LS) = maximum drill depth reached

• Input X5 (4LS) = piece in position

• Input X6 (5LS) = piece clamped

• Input X7 (6LS) = piece unclamped

The RLL solution is shown in Figure E-7. Timers are used for dwell and
cycle fault.

• When the Auto-Manual switch is in the auto mode (contact X1 is
closed), the piece is unclamped (X7 closed) and the drill is in the home
position (X2 closed). Coil Y9 turns on, allowing the conveyer to index a
new piece into the drilling station.

TMR Application
Example #1

Explanation #1

Selected Application Examples E-7SIMATIC 545/555/575 Programming Reference

• When the piece is in position (X5 closed), output Y10 operates a
solenoid to clamp the piece.

• When the piece is clamped (X6 closed, X7 open), the index conveyer
turns off (Y9 turns off), TMR2 starts timing, and output Y11 energizes
a motor or solenoid to move the drill to the piece.

• When the drill reaches the piece (X3 closed, X2 open), drilling is started
by output Y12.

• When the maximum drilling depth is reached (X4 on), the drill stops
moving and the dwell timer TMR 1 starts timing.

• When TMR 1 times out, C1 turns on and output Y13 energizes a motor
or solenoid to move the drill back to home position.

• TMR 2 times out if the drill machine fails to complete the index drill
cycle.

Y9X1

Index
conveyor

C2Y9

TMR 2

P = 34.2

C1X4

TMR 1

P = 1.9

X7

Y12

X2

Y10C1 X2 X5

C1

Y11Y10 X6 C1

Y12X6 X3

X2

X2

X2

C1

X1 X4

Clamp

Drill down

Y13

Start drill

Drill up

Drill timer

Cycle fault
timer

Figure E-7 RLL for TMR Application Example #1

Selected Application ExamplesE-8 SIMATIC 545/555/575 Programming Reference

Using the TMR (continued)

Figure E-8 is a timing diagram for the timer logic shown in Figure E-9.

• X24 is the enable and the reset switch.

• Y9 is the On Delay output.

• Y11 is a timed pulse that operates when Y9 is closed and X24 is open.

Off

ON

On

OffOff

Off

OffX24

Y9

Y11

6 Seconds

Off

Off

On

On

On

Figure E-8 Timing Diagram for TMR Application Example #2

Y9X24

TMR 5

P = 6.0X24

Y11X24

On Delay

Timed Pulse
Y9

Figure E-9 RLL for TMR Application Example #2

TMR Application
Example #2

Selected Application Examples E-9SIMATIC 545/555/575 Programming Reference

Figure E-10 is a timing diagram for the timer logic shown in Figure E-11.

• X24 is the enable and the reset switch.

• Y10 is the Off Delay output.

• Y11 is a timed pulse that operates when Y10 is closed and X24 is open.

Off

On

On

Off

OffX24

Y11

6 Seconds

Off

On

On

Y10 On On On

Off

Figure E-10 Timing Diagram for TMR Application Example #3

X24

TMR 5

P = 6.0
X24

Y10

Y11X24 Y10

Off Delay

Figure E-11 RLL for TMR Application Example #3

Application #3

Selected Application ExamplesE-10 SIMATIC 545/555/575 Programming Reference

E.4 Using the BITP

A panel indicator lamp is to warn of a low battery in the controller.

The following procedure was devised.

• X1 has power flow when the system is started.

• BITP1 checks bit 15 of STW1 for a 1 or a 0.

• X2 is a reset pushbutton.

• Output Y10 turns on a lamp.

Figure E-12 shows the RLL solution.

• When the system is started, contact X1 has power flow, enabling the
BITP 1 instruction. Each scan, the BITP 1 checks the status of bit 15 in
STW1.

• If bit 15 of STW1 is 1, coil Y10 energizes, lighting an indicator lamp.

• The lamp remains on until the controller battery is replaced and the
reset button (X2) is pressed.

STW01

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Battery low

Y10X1

BITP 1
A: STW1
N= 15

Y10

X2
Battery
low

Figure E-12 RLL for BITP Application Example

BITP Application
Example

Explanation

Selected Application Examples E-11SIMATIC 545/555/575 Programming Reference

E.5 Using the DRUM

A time-based drum with two programmed modes controls the operation of a
machine. Mode 1: the drum indexes through the programmed steps in the
normal sequence. Mode 2: the starting drum step is increased for one drum
cycle, as controlled by discrete inputs. The solution is listed below, and the
RLL is shown in Figure E-13.

• Input contact X9 starts the drum.

• The drum controls output coils Y2 through Y8.

• Input contact X11 transfers a step value from inputs X12 through X16,
to force the drum to a specified step.

When the controller is in RUN mode, DRUM 1 is in PRESET step 2; and Y2,
Y3, Y7, and Y8 remain on until X9 is energized.

Mode 1 When X9 is energized, and X11 is off, the drum remains in its
current state (step 2) for 5 seconds.

• After 5 seconds, DRUM 1 indexes to step 3 and remains there for
6 seconds. Output coil Y4 energizes, and Y2, Y3, Y7, and Y8 remain on
for the duration of this step.

• DRUM 1 continues to index through successive steps and remains in
each step for the duration of the programmed CNT/STP times
SEC/CNT. The output coils take on the states of the active step Mask.

• When step 16 is reached output coils Y2 through Y8 turn off. The drum
remains in this step for 10 seconds, then Y1 turns on, resetting DRUM
1 to step 2; then the sequence continues.

Mode 2 Each time X11 is energized, the drum is forced to a step number,
that is determined by the states of inputs X12–X16. For example, if X16=0,
X15=0, X14=1, X13=0, and X12=1, (00101) the drum is forced to step 5.

• When X11 is energized, O/S 1 turns on for one scan. This moves the
drum step preset (DSP1) to memory location V1, the states of inputs
X12–X16 to memory location V2, and turns on C1.

• With C1 energized, CMP 1 compares the step preset (in V1) to the step
specified by the inputs (in V2). If the new step number in V2 is less
than the value in V1, C5 turns on.

• With C5 energized, MOVW 2 loads the step number V1 to V2, thus
defaulting to the step previously defined by DSP1. This limits the
range of possible steps to a value between DSP1 and 16.

• MOVW 3 moves the step in location V2 to DSP1 and turns on C2. If the
value loaded into DSP1 is not between 1 and 15, DSP1 defaults to 16.

• With C2 energized, the drum resets and then indexes to the value
specified by DSP1.

• MOVW 4 loads the step preset from V1 back to DSP1.

DRUM Application
Example

Explanation

Selected Application ExamplesE-12 SIMATIC 545/555/575 Programming Reference

Using the DRUM (continued)

DRUM 1
PRESET = 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SEC/CNT = 1.000
STP CNT/STP

0
5
6

10
3
4
8
5

10
2
9
5
7
3
6

10

0
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0

0
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0

0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
1
0
1
1
1
0
0

0
1
1
0
0
0
1
0
1
0
0
1
0
1
1
0

0
1
1
0
1
1
1
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2 3 4 5 6 7 8
Y Y Y Y Y Y Y

C4C2

MOVW 4

A: V1
B: DSP1
N= 1

C1X11

C3C1

CMP 1

A: V2
B: V1
LT=C5
GT=

C6C5

MOVW 2

A: V1
B: V2
N= 1

C2C1

MOVW 3

A: V2
B: DSP1
N= 1

Y1X9

Y1 C2

MOVW 1

A: DSP1
B: V1
N= 1

MIRW 1

IR: X12
A: V2
N= 5

:O:
1

Figure E-13 RLL for DRUM Application Example

Selected Application Examples E-13SIMATIC 545/555/575 Programming Reference

E.6 Using the EDRUM

A cam limit-switch on a rotating grinder is to be replaced by an event drum.
The following solution was devised.

• An absolute encoder with a 10-bit Gray code output provides shaft
position location from 0 (0 degrees) to 1024 (360 degrees) for the
grinder table.

• An EDRUM is used to alter discrete outputs to control functions such
as speed, pressure, and coolant at 15 pre-programmed shaft angles..

• The 15 angles are loaded in V-Memory locations V90 through V104.

Figure E-14, beginning on page E-15, illustrates the RLL solution.

NOTE: Gray code is binary code where only 1 bit changes as the counting
number increases. For example: in Gray code, the integer 2 is represented
as 0011, the integer 3 is represented as 0010, and the integer 4 is
represented as 0110. Each number is different from the next by one digit.

• A 10-bit Gray-to-binary circuit converts the absolute shaft encoder
input and stores the result in V603.

• Input X10 controls the operation of the grinder. When X10 is off,
MWFT 1 is reset to the start of the angle table, SHRB 1 is cleared and
EDRUM 1 is held at the preset step where all outputs are off.

• When X10 turns on, the scaling constants required to convert the 10-bit
binary shaft position into degrees are loaded by LDC 1 and LDC 2.
MULT 1 and DIV 1 perform the scaling and cause the current shaft
position (in degrees) to be loaded into V606.

EDRUM Application
Example

Explanation

Selected Application ExamplesE-14 SIMATIC 545/555/575 Programming Reference

Using the EDRUM (continued)

• One Shot 1 causes C1 to turn on for one scan. This allows MWFT 1 to
load the first angle (V90) into V200

• Power flow through C1 also causes the C2 latch to be set. This allows a
1 to be the first data clocked into SHRB 1 when the correct starting
angle (V90) is reached.

• CMP 1 compares the current shaft position loaded into V606 with the
next angle in the table. When the values match C3 is turned on. This
causes MWFT 1 to load the next value in the angle table in V200

• Each time C3 is turned on, SHRB 1 shifts one bit. The first time C3
turns on, the C2 latch is still set and a 1 is loaded. After that, only 0s
are clocked until the SHRB is full.

As the 1 moves through the bit shift register, each move causes the
next event in Event Drum 1 to occur. This causes the EDRUM to move
to the next step and adjust to the states of outputs Y17 through Y31.
These outputs control the speed, pressure, and coolant.

• The process repeats as long as X10 remains on. This indicates that a
new part was loaded and that the grinder has returned to the correct
start position at the end of each cycle.

• To set the grinder for a new part, alter the values in V90 – V104. The
grinder can run multiple parts by using controller logic to change the
locations to match the part indexed in the grinder.

Selected Application Examples E-15SIMATIC 545/555/575 Programming Reference

X10

C3

C1

C102

MULT 1

X10 C101

DIV 1

LDC 1
X10 C100

MWFT 1

A: V89

B: V200

S: V90

N = 15

GRAY CODE TO BINARY CONVERSION ON A 10-BIT
ABSOLUTE ENCODER INPUT WITH RESULT STORED IN V603.

POSSIBLE RANGE OF V603 IS FROM 0 (0 DEGREES) TO
1024 (360 DEGREES).

A: V50

N: 360

LDC 2

A: V51

N: 1024

A: V603

B: V50

CC: V604
 (V605)

AA: V604

B: V51

CC: V606
 (V607)

 (V605)

X10

C1 C2C3

C4

C2

:O:
1

Figure E-14 RLL for EDRUM Application Example

Selected Application ExamplesE-16 SIMATIC 545/555/575 Programming Reference

Using the EDRUM (continued)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

EVENT DRUM 1
PRESET = 1
SEC/CNT = 0.000
STP CNT/STP EVENT

0 Y769
0 Y770
0 Y771
0 Y772
0 Y773
0 Y774
0 Y775
0 Y776
0 Y777
0 Y778
0 Y779
0 Y780
0 Y781
0 Y782
0 Y783
0 Y784

0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
1
1
1
1
1
0
1
1
1
1
0
0
0
0
0

0
1
1
1
0
0
0
1
1
0
1
1
1
1
0
1

0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0

0
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1

0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1

0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1

0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0

0
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0

0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1

0
1
0
1
0
1
0
1
1
1
0
0
0
0
1
0

1 1 1 2 2 2 2
Y Y Y Y Y Y Y

2 2 2 2 2 2 3
Y Y Y Y Y Y Y

3
Y

2 3 4 5 6 7 8 9 0 17 8 9 0 1

C3X10

CMP 1

A: V606
B: V200

C4C3

SHRB 1

IR: Y769

N = 16

C2

X10 C4

C5X10

X11

X10 C5

Figure E-14 RLL for EDRUM Application Example (continued)

Selected Application Examples E-17SIMATIC 545/555/575 Programming Reference

E.7 Using the MIRW

A ribbon-width measuring device tracks the edge of a product sheet moving
along a conveyer. Two shaft encoders with a Gray code output provide
sensors with position data. When both encoders are zero at the center of
conveyer, the distance between the edge sensors is 16 inches (8 inches from
the conveyer centerline). Three width calculations are required: 1) the width
from the conveyer centerline to one edge; 2) the width from the centerline to
the other edge, (these are for sheet-to-conveyer tracking information); and
3) the total width for product output calculations. Figure E-15 illustrates
this application.

NOTE: Gray code is a binary code in which only 1 bit changes as the
counting number increases. For example: in Gray code, the integer 2 is
represented as 0011, the integer 3 is represented as 0010, and the integer 4
is represented as 0110. Each number is different from the next by one digit.

The following procedure provides a solution.

• The edge sensors track the sheet edge by providing a feedback signal to
the appropriate drive motor (1M or 2M).

• Limit switches 1LS, 2LS, 3LS, and 4LS are over-travel limit detectors.

• The following values are loaded in V–Memory.

V900 = integer 24 (bit scaling)
V901 = integer 800 (distance from centerline is 8.00 inches)
V902 = integer 100 (scale encoder input to correct format prior

to adding)

Edge
sensor

1 Encoder BIT represents .0024 inch
Distance from 1LS to 2LS and 3LS to 4LS = 75 inches

1M

1LS 2LS 3LS 4LS

Word input module

Input #1 (WX57)

Word input module

Input #2 (WX58)

2M

Edge
sensor

Figure E-15 MIRW Application Example

Application

Selected Application ExamplesE-18 SIMATIC 545/555/575 Programming Reference

Using the MIRW (continued)

Figure E-16 illustrates the RLL solution.

• When C27 has power flow, MWIR 3 loads the shaft encoder input into
IR locations C124 through C138.

• The encoder Gray code is converted to binary logic, that is stored in IR
locations Y140 through Y154.

• When C14 has power flow, MIRW 3 moves the status of Y540–Y554
into memory location V975.

• With C27 still on, MWIR 4 loads the second shaft encoder input into IR
locations C156–C170.

• Gray code is converted to binary and stored in Y172–Y186.

• When C16 turns on, MIRW 4 moves the status of Y172–Y186 into
memory location V976.

• When C15 and C17 turn on, MULT 10 multiplies the contents of V975
(encoder binary equivalent) by the scaling constant in V900 (integer
24), and stores the result in memory locations V977 and V978. MULT
11 multiples V976 by V900, and stores the result in V979 and V980.

• When C18 turns on, DIV 8 and DIV 9 divide the scaled encoder values
by 100.

• When C19 turns on, ADD 21 adds the scaled value (V981) for one side
of the sheet to the fixed distance (V901) from the conveyer center line
and stores the result in V985. V985 now contains the width of half the
sheet, from the conveyer center line to one outside edge.

• ADD 22 adds V983 to V901 and stores the width of the other side of the
sheet into memory location V986. The operator examines V985 and
V986 to see whether the sheet is tracking to the left or right.

• ADD 23 adds the values in V985 and V986 and stores sheet width in
V987. If WX57 = 31,68010 and WX58 = 29,99010

���	���� ��

���
��� 	��� �� 	�������	����������

�

	���� ��

���
��� 	��� �� �

������
�
�������

Sheet Width = 8403 + 7996 = 16,399 or 163.99 inches

Explanation

Selected Application Examples E-19SIMATIC 545/555/575 Programming Reference

CONVERT GRAY CODE TO BINARY LOGIC

MWIR 3

MIRW 3

IR: Y140
A: V975
N = 15

A: WX57
IR: C124
N = 15

MWIR 4

A: WX58
IR: C156
N = 15

CONVERT GRAY CODE TO BINARY LOGIC

MIRW 4

IR: Y172
A: V976
N = 15

MULT 10

A: V975
B: V900
CC: V977

MULT 11

 (V978)

A: V976
B: V900
CC: V979
 (V980)

DIV 8

AA: V977
 (V978)

B: V902

DIV 9

CC: V981
 (V982)

AA: V979
 (V980)

B: V902
CC: V983

 (V984)

ADD 21

A: V981

B: V901

ADD 22

C: V985

A: V983

B: V901
C: V986

ADD 23

A: V985

B: V986
C: V987

C14C27

C15C14

C16C27

C17C16

C18C15

C19C18

C20C19

C17

Figure E-16 RLL for MIRW Application Example

Selected Application ExamplesE-20 SIMATIC 545/555/575 Programming Reference

E.8 Using the MWIR

A 15-bit Gray code encoder is used to input shaft position into the controller.
The Gray code is to be converted to integer format for scaling and
mathematical operations.

The following solution was devised.

• The MWIR converts from word format to bit format.

• Use Ladder logic to convert the bits from Gray code to integer.

• An MIRW converts the altered bits back to word format.

The RLL solution shown in Figure E-17 solves the application.

• If contact C27 has power flow, MWIR 3 moves the encoder input data
from word IR WX57 to discrete IR locations C124–C138. (C124 is the
LSB.)

• Bit 1 (MSB) of the Gray code is the same as the first bit of a binary
number; therefore, Y154 and C138 are the same state (1 or 0).

• If bit 2 of the Gray code is 0, the second binary bit is the same as the
first; if bit 2 of the Gray code is 1, the second binary bit is the inverse of
the first binary bit. If C137 is open, Y153 follows the state of Y154.
When C137 has power flow, Y153 is energized if Y154 is off; and Y153
is de-energized if Y154 is on

• The above step is repeated for each bit.

• MIRW 4 moves the converted word located in discrete IR Y140–Y154 to
memory location V975. Y140 is the LSB. V975 now contains the binary
equivalent of the Gray code encoder input.

Application

Explanation

Selected Application Examples E-21SIMATIC 545/555/575 Programming Reference

Y154

C14C27

MWIR 3

A: WX57
IR: C124
N= 15

C137

C137

C138

Y153Y154

Y154

C136

C136

Y152Y153

Y153

C135

C135

Y151Y152

Y152

Figure E-17 RLL for MWIR Application Example
(continued on next 2 pages)

Selected Application ExamplesE-22 SIMATIC 545/555/575 Programming Reference

Using the MWIR (continued)

C134

C134

Y150Y151

Y151

C133

C133

Y149Y150

Y150

C132

C132

Y148Y149

Y149

C131

C131

Y147Y148

Y148

C130

C130

Y146Y147

Y147

C129

C129

Y145Y146

Y146

Figure E-17 RLL for MWIR Application Example (continued)

Selected Application Examples E-23SIMATIC 545/555/575 Programming Reference

C128

C128

Y144Y145

Y145

C127

C127

Y143Y144

Y144

C126

C126

Y142Y143

Y143

C125

C125

Y141Y142

Y142

C124

C124

Y140Y141

Y141

C27 C15

MIRW 3

IR: Y140
A: V975
N= 15

LSB

Figure E-17 RLL for MWIR Application Example (continued)

Selected Application ExamplesE-24 SIMATIC 545/555/575 Programming Reference

E.9 Using the MWTT

A thermocouple temperature reading is to be logged every five minutes. The
thermocouple input is linearized through a transmitter (shown in
Figure E-18) and input to the controller through the first input of an Analog
Input Module in Slot 3 of Base 10 (WX657). The temperature table is to be
used for work shift history of trend recording.

TX

Thermocouple

To analog input module
located in slot 3; WX657

Figure E-18 MWTT Application Example

The following solution was devised.

• A one shot is turned on every five minutes by a timer.

• The one shot activates the logic to scale the thermocouple input, adds a
low end offset temperature, and loads the result into a table with 150
locations.

The RLL solution shown in Figure E-19 solves the application.

• Every five minutes, C36 is turned on by a timing circuit (not shown)
and C36 turns on one shot 5. One shot 5 activates MULT 38 for the
first scan in which C36 is on, to multiply the analog input value
(WX657) times a scaling constant loaded in memory location V117. The
result is stored in locations V118 and V119.

• DIV 38 divides the scaled value in V118 and V119 by a constant loaded
in V100. The quotient is stored in V120 and the remainder in V121.

• C37 turns on after DIV 38 executes, allowing ADD 38 to add the scaled
temperature input (V120) to an offset temperature value that has been
loaded into V101.

• C38 is energized after ADD 38 executes, allowing MWTT 7 to load the
temperature value (located in V122) into the table at the pointer
address in V123.

• When MWTT 7 is reset (contact X10 is off for one scan), the pointer
address in V123 is reset to 700.

• When the pointer address in V123 reaches 849, C39 turns on, and no
additional values are loaded into the table until MWTT 7 is reset.

Application

Explanation

Selected Application Examples E-25SIMATIC 545/555/575 Programming Reference

C36 C37

MULT 38

A: V117
B: WX657
CC: V118

(V119)

DIV 38

AA: V118
(V119)

B: V100
CC: V120

(V121)

C37 C38

ADD 38

A: V120
B: V101
C: V122

C38 C39

MWTT 7

A: V122
B: V123
S: V700
N= 150

X10

:O:
5

Figure E-19 RLL for MWTT Application Example

Selected Application ExamplesE-26 SIMATIC 545/555/575 Programming Reference

E.10 Using the MWFT

The following example recovers the data (in locations V700–V849) stored in
the MWTT application example program. The data points are plotted for a
report. The plotter is connected to output word WY57. The data should
change every second. Therefore, one second on the plot represents five
minutes of the process.

The RLL solution shown in Figure E-20 solves the application.

• When X1 is turned on, plotting begins. Once every second, TMR1
causes C1 to turn on for one scan.

• Each time C1 turns on, MWFT1 transfers a new word from the memory
table to V101, beginning at V700. This continues once per second until
all 150 words have been moved to V101, i.e., until V849 has been
transferred.

• MOVW1 transfers the data in V101 to WY57, that is the plotter output
word.

• Once started, X1 must be cycled off and then on to restart the plotting
process.

Application

Explanation

Selected Application Examples E-27SIMATIC 545/555/575 Programming Reference

X1 C1

TMR 1

P= 1.0

X1 C1

C1 C2

MWFT 1

A: V100
B: V101
S: V700
N= 150

X1

C2

C1 C3

MOVW 1

A: V101
B: WY57

Figure E-20 RLL for MWFT Application Example

Selected Application ExamplesE-28 SIMATIC 545/555/575 Programming Reference

E.11 Using the WXOR

At a critical point in a process, the status of 16 discrete inputs must be in a
specific state to execute an operation. If any of the 16 inputs is not in the
correct state, an alarm is sounded. There are 16 indicators that display
which inputs are in the wrong state.

This application could be solved with contacts and coils without box
functions. To save ladder logic and execution speed, use the RLL shown in
Figure E-21.

• Before C1 has power flow, V1 is initialized to zero and V2 is loaded to
contain the 16 critical states.

• When the critical process is ready to begin, C1 has power flow causing
X1–X16 to be loaded into V3. An Exclusive OR is then executed on V3
and V2. V1 contains the result and contains a one in any bit location
where V2 and V3 differ. If V2 and V3 are identical, then V1 contains all
zeros and the WXOR 1 output C3 does not turn on.

• A difference between V3 and V2 causes C3 to come on. V1 is moved out
to indicators Y41–Y56 to show which inputs are incorrect and alarm
Y33 is latched on.

• Reset switch X17 can be turned on to reset alarm Y33 and to clear
indicator panel Y41–Y56.

C1 C2

LDC 1

A: V1
N: 0X17

LDC 2

A: V2
N: 30006

C1 C3

MIRW 1

IR: X1
A: V3
N: 16

WXOR 1

A: V3
B: V2
C: V1

C1 Y33

MWIR 1

A: V1
IR: Y41
N: 16

C3 X17

Y33

Figure E-21 RLL for WXOR Application Example

Application

Explanation

Selected Application Examples E-29SIMATIC 545/555/575 Programming Reference

Before C1 has power flow, the desired values for X1–X16 are loaded into V2,
as shown below.

BIT

V2: = 30,006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

• When C1 is on, the actual values of X1–X16 are loaded into V3:

30,006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

Desired Values In V2 30,0060 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0From The WXOR V1 =

X1 = OFF X5 = ON X9 = ON X13 = ON
X2 = ON X6 = ON X10 = OFF X14 = ON

X3 = ON X7 = OFF X11 = ON X15 = ON
X4 = OFF X8 = OFF X12 = OFF X16 = OFF

Actual Values In V3

• Since the WXOR 1 result is zero, C3 is not turned on, and MWIR 1 in
the next rung is not executed. Alarm Y33 is not sounded.

The inputs from the example above are used, except that inputs #5 and #12
are incorrect.

32,038

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0

X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1

30,0060 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0

2,0640 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Y56 Y55 Y54 Y53 Y52 Y51 Y50 Y49 Y48 Y47 Y46 Y45 Y44 Y43 Y42 Y41

Desired Values In V2

From The WXOR V1 =

Actual Values In V3

• Since the WXOR result is not all zeros, C3 is turned on and the MWIR
is executed. Y45 indicates that X5 is in the wrong state, and Y52
indicates that X12 is in the wrong state. Alarm Y33 stays on until reset
by X17.

Inputs are Correct

Inputs are
Incorrect

Selected Application ExamplesE-30 SIMATIC 545/555/575 Programming Reference

E.12 Using the CBD

A 0-volt to +5-volt signal is monitored, and the voltage is read on a panel
meter located at the controller. The 0–volt to +5–volt signal is the third
input of an analog module located in slot 8 of Base 9. The following
procedure provides a solution.

• MULT 36 and DIV 36 scale the analog input.

• CBD 16 converts the scaled integer value to a BCD value.

• MOVW 81 moves the BCD value to a word IR for output to a panel
meter through a Word Output Module.

The RLL in Figure E-22 does the function that follows.

When X19 has power flow, the analog equivalent value located in the word
IR WX635. . .

�� ��
�������������

�������
��� ��� ���

BIT

WX635 = =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0
Binary
integer 28,896

. . . is multiplied by a scaling factor that previously has been loaded into
memory location V123,

V123 = =0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0
Binary
integer 1562

�����

�����
��� ���� ��

� �� ��	�

. . . and the result is stored in memory locations V124 and V125.

V124 =

=

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0
Binary
integer 45,135,552

V125 = 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0

The output of MULT 36 is energized, starting the DIV 36 operation. The
value stored in memory locations V124 and V125 is divided by a scaling
factor that previously has been loaded into memory location V100,

V100 = =0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0
Binary
integer 10,000

. . . and the result is stored in memory locations V126 and V127.

Application

Explanation

Selected Application Examples E-31SIMATIC 545/555/575 Programming Reference

V126 = =0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1
Binary
integer 4513

V127 = =0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0
Binary
integer 5552

The output of DIV 36 energizes C73, starting the CBD 16 operation. The
value stored in memory location V126 is converted to its BCD equivalent,
and the result is stored in memory locations V128 and V129.

V128 = = 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V129 = = BCD 45130 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1

4 5 1 3

The output of CBD 16 energizes, starting the MOVW 81 operation. The
value stored in memory location V129 is moved to the output IR WY65. IR
WY65 outputs the BCD number to a Word Output Module located in Slot 1
of Base 1. WY65 is the first output of this module. A reading of 4.513 volts is
displayed on a digital panel meter where the decimal point is fixed
internally to the panel meter.

From analog input or WX, V input = (Binary integer x 5 volts) ÷ 32,000

X19 C73
MULT 36

A: WX635
B: V123
CC: V124

(V125)

C73 C74
CBD 16

A: V126
BB: V128

(V129)

DIV 36

AA: V124
(V125)

B: V100
CC: V126

(V127)

MOVW 81

A: V129
B: WY65
N= 1

Figure E-22 RLL for CBD Application Example

Selected Application ExamplesE-32 SIMATIC 545/555/575 Programming Reference

E.13 Using the CDB

BCD thumbwheels are input 2 of a Word Input Module located in Slot 3 of
Base 6 (WX402). The thumbwheel input is to be converted to a binary
integer equivalent for use in mathematics instructions.

The following solution was devised.

• CDB 1 converts the word input from BCD to an integer.

• DIV 3 is a mathematics instruction in which the divisor is modified by
a thumbwheel switch.

Figure E-23 shows the RLL for this operation.

• When contact C67 has power flow, CDB 1 converts the BCD value
located in IR WX402 to an integer value, that is put in memory location
V238.

10WX402 64040

1

0 1 0

9

0 1 0 0

0

0 0 0 1

4

0 0

0 19040 0 0 0 1 1 1 0 1 1 1 0 0 0 0 10

10

V238

1 9 0 4

• DIV 3 divides V635 and V636 by V238, and puts the quotient in V79.

• Coil C1 is energized when the instructions execute.

C67 C1

CDB 1

A: WX402
B: V238
N= 4

DIV 3

AA: V635
(V636)

B: V238
CC: V79

(V80)

Figure E-23 RLL for CDB Application Example

Application

Explanation

Selected Application Examples E-33SIMATIC 545/555/575 Programming Reference

E.14 Using the One Shot

Each time a momentary pushbutton is pressed, an ADD executes once. The
pushbutton address is X1.

The following solution was devised.

• A one shot preceding an ADD instruction solves this example.

Figure E-24 shows the RLL for this operation.

• When X1 is pressed, the output of one shot 20 is energized for one
controller scan, and ADD 41 executes only during this controller scan.

• X1 must be turned off for at least one controller scan, and then turned
on again, for the ADD 41 to execute again.

Values prior to network execution:
WX100= 7010

 WX101= 5110
 V74= 010

Values after network execution:
WX100= 7010
WX101= 5110
V74= 121

X1 C1

A: WX100
B: WX101
C: V74

ADD 41:O:
20

Figure E-24 RLL for One Shot Application Example

If all the One Shot instruction numbers have been used, you can build one
from RLL, as shown in Figure E-25.

X1 Y9C10

X1 C10

Figure E-25 Constructing a One Shot From RLL

Application

Explanation

Selected Application ExamplesE-34 SIMATIC 545/555/575 Programming Reference

E.15 Using the DCAT

A remotely located pipeline valve is opened and closed by control logic.
Because of the diameter of the pipeline, the valve requires 30 seconds to
open or close. Feedback for the valve status informs maintenance personnel
whether the valve is open, closed, traveling, failed to open, failed to close, or
the sensor has failed. See Figure E-26.

Electro-solenoid

Normally open
open feedback switch

normally open
closed feedback switch

X17

X18

Failed to open
alarm

Failed to close
alarm

Controller logic
 controls Y7

Y7=1=open valve

Y7=0=close valve

Y1

Y2

Y3

Y4

Sensor alarm

Traveling indicator

Figure E-26 DCAT Application Example

The following solution was devised.

• Control logic opens or closes the valve by sending power flow to
electro-solenoid Y7.

• Limit Switch X17 is the normally open feedback switch that closes to
indicate that the valve is open.

• Limit Switch X18 is the normally open feedback switch that closes to
indicate that the valve is closed.

• While the valve transitions, the Y4 indicator (traveling) is on.

• If the valves fails to open, alarm Y1 turns on.

• If the valves fails to close, alarm Y2 turns on.

• If both feedback sensors are closed (for example, a sensor sticks), sensor
failure alarm Y3 is turned on.

Application

Selected Application Examples E-35SIMATIC 545/555/575 Programming Reference

The RLL solution is shown in Figure E-27. Valve control is accomplished by
the events described below. Other program steps control the status of valve
Y7 by turning Control Relay C40 off or on. Y7 follows the status of C40,
unaffected by the DCAT instruction.

Under normal conditions, the following events occur.

• If C40 goes to 1 (on), X17, X18, C5, and C6 are 0 (off) as long as it takes
the valve to open.

• Subsequent program steps check the status of X17, X18, C5, and C6. If
they are all off, the valve status is reported through indicator Y4 as
traveling.

• Open feedback sensor X17 then closes and disables Open Alarm C5.

• If C40 goes to 0 (off) and commands the valve to close, closed feedback
sensor X18 closes and disables the Close Alarm C6.

Y7C40

C5 C6

C5 C6

C5 C6

X17 X18 C5 C6

Y1

Y2

Y3

Y4

failed to open

failed to close

failed sensor

traveling

P= 30
OF: X17
CF: X18
OA: C5
CA: C6

DCAT 4

Figure E-27 RLL for DCAT Application Example

Explanation

Normal Operation

Selected Application ExamplesE-36 SIMATIC 545/555/575 Programming Reference

Using the DCAT (continued)

If the valve fails to open, the following events occur.

• If C40 goes to 1 (on), commanding the valve to open, and open feedback
does not turn on, the timer times out and energizes Open Alarm C5.

• Subsequent RLL steps check the status of C5 and C6. If C5=1 and
C6=0; the failed to open indicator Y1 turns on.

If the valve fails to close, the following events occur.

• If C40 goes to 0 (off), commanding the valve to close, and closed
feedback does not turn on, the timer times out and energizes Closed
Alarm C6.

• Subsequent RLL steps check the status of C5 and C6. If C5=0 and
C6=1, the failed to close indicator Y2 turns on.

If the sensor fails, the following events occur.

• At any time that X17 and X18 are both on, the DCAT turns on C5 and
C6. Y4 reports a failure of the valve sensor system.

Valve Fails to Open

Valve Fails to Close

Sensor Fails

Selected Application Examples E-37SIMATIC 545/555/575 Programming Reference

E.16 Using Status Words

A procedure is required that logs off a failed I/O module and logs on a
backup-module in the same base.

NOTE: Only self-diagnosing modules can indicate their own failure.

Y24 = Module Failure Alarm. Example module assignments:

• Module 1 in slot 1, Base 0 = WX1 to WX8 — STW11, Bit 16

• Module 2 in slot 2, Base 1 = WX9 to WX16 — STW12, Bit 15

• Module 3 in slot 3, Base 0 = Y17 to Y24

The RLL solution is shown in Figure E-28. The status of Input Module #1 is
checked with a bit-of-word contact. If the contact turns on (bit 16 in
STW11 = 1), the alarm Y24 turns on. The program then uses Y24 to
determine which module should source V200 through V207.

For this method to function in an application, both input modules must be
hardwired to the same field devices (i.e. WX1 through WX8 should be
connected to the same devices, such as WX9 through WX16, respectively).

STW11.16 Y24

Y24 C22

A: WX1
B: V200
N= 8

MOVW 1

Y24 C23

MOVW 2
A: WX9
B: V200
N= 8

Alarm

Figure E-28 RLL for Status Word Application Example

Application

Explanation

Special Function Program Error Codes F-1SIMATIC 545/555/575 Programming Reference

Appendix F

Special Function Program Error Codes

Table F-1 Special Function Error Codes

Code
Meanin

Hex Decimal
Meaning

02 02 Address out of range.

03 03 Requested data not found.

09 09 Incorrect amount of data sent with request.

11 17 Invalid data.

40 64 Operating system error detected.

42 66 Control block number out of range.

43 67 Control block does not exist or has not been compiled.

46 70 Offset out of range.

47 71 Arithmetic error detected while writing loop or analog alarm parameters.

48 72 Invalid SF program type.

49 73 Instruction number or ramp/soak step number out of range.

4A 74 Attempt to access an integer-only variable as a real.

4B 75 Attempt to access a real-only variable as an integer.

4E 78 Attempt to write a read-only variable (for example: X, WX, or STW).

4F 79 Invalid variable data type for this operation.

52 82 Invalid return value.

53 83 Attempt to execute a Cyclic Statement in a non-cyclic SF program.

54 84 Control block is disabled.

56 86 Attempt to perform an FTSR-OUT Statement on an empty FIFO.

57 87 Attempt to perform an FTSR-IN Statement on a full FIFO.

58 88 Stack overflow while evaluating a MATH, IF, or IMATH expression.

59 89 Maximum SFSUB nesting level exceeded. Subroutines may only be nested to a
depth of 4.

5A 90 Arithmetic Overflow.

5B 91 Invalid operator in an IF, MATH, or IMATH expression.

5D 93 Attempt to divide by zero (IMATH statement).

5E 94 FIFO is incompatible with FTSR-IN/FTSR-OUT statement.

5F 95 FIFO is invalid.

60 96 Invalid Data Type code. This error is generally caused by an ill-formed MATH,
IMATH, or IF expression.

Status Words G-1SIMATIC 545/555/575 Programming Reference

Appendix G

Status Words

STW01: Non-fatal Errors G-2.
STW02: Base Controller Status G-3.
STW03 – STW09: PROFIBUS-DP Slave Status G-4.
STW10: Dynamic Scan Time G-4.
STW11 – STW138: I/O Module Status G-5.
STW139: Discrete Force Count G-8.
STW140: Word Force Count G-8.
STW141 – STW144: Date, Time, and Day of Week G-8.
STW145 – STW146: Receive and Timeout Errors G-11.
STW147: PROFIBUS-DP Slave Errors G-11.
STW148: PROFIBUS-DP Bus Communication Errors G-11.
STW149 - STW160: Reserved G-11.
STW161: Special Function Processor Fatal Errors G-12.
STW162: Special Function Processor Non-fatal Errors G-13.
STW163: RLL Subroutine Stack Overflow G-14.
STW164 – STW165: L-Memory Checksum C0 G-14.
STW166 – STW167: L-Memory Checksum C1 G-14.
STW168: Dual RBC Status G-15.
STW169 – STW175: Reserved G-16.
STW176: Dual Power Supply Status G-16.
STW177 – STW183: Reserved G-17.
STW184: Module Mismatch Indicator G-17.
STW185 – STW191: Reserved G-17.
STW192: Discrete Scan Execution Time G-17.
STW193 – STW199: Reserved G-17.
STW200: User Error Cause G-18.
STW201: First Scan Flags G-19.
STW202: Application Mode Flags (A – P) G-20.
STW203: Application Mode Flags (Q – Z) G-21.
STW204: Application Installed Flags (A – P) G-22.
STW205: Application Installed Flags (Q – Z) G-23.
STW206 – STW207: U-Memory Checksum C0 G-24.
STW208 – STW209: U-Memory Checksum C1 G-24.
STW210: Base Poll Enable Flags G-25.
STW211 – STW217: PROFIBUS-DP Slave Enable Flags G-26.
STW218: My Application ID G-26.
STW219: RLL Task Overrun G-26.
STW220: Interrupting Slots in Local Base G-27.
STW221: Module Interrupt Request Count G-27.
STW222: Spurious Interrupt Count G-27.
STW223 – STW225: Binary Time-of-Day G-28.
STW226: Time-of-Day Status G-28.
STW227 – STW228: Bus Error Access Address G-30.
STW229 – STW230: Bus Error Program Offset G-30.
STW231 PROFIBUS-DP I/O System Status G-31.
STW232 – STW238: PROFIBUS-DP Slave Diagnostic G-31.
STW239 – STW240: CS-Memory Checksum C0 G-32.
STW241 – STW242: CS-Memory Checksum C1 G-32.

Status WordsG-2 SIMATIC 545/555/575 Programming Reference

Each status word description explains the function or purpose of each bit
within the word. If a bit is not used, it is not described; all unused bits are
set to zero. If several bits perform a single function, they are described by a
single definition. If a status word is reserved, it is noted accordingly.

MSB LSB

5

6

7

8

10

11

12

13

14

15

16151413121110987654321

1 = Subroutine stack overflow

1 = User program error; see STW200

1 = Time of day clock failure

1 = Previous RLL instruction failed

1 = Communication port failure

1 = I/O module failure or I/O configuration mismatch

1 = Battery low

1 = Scan overrun

1 = Special function module communication error

1 = A Password has been entered and is disabled

NOTE: For the controllers that support the TASK instruction, STW1 cannot be accessed
by a multi-word move instruction, e.g., MOVE, MOVW. STW1 is a local variable that is
only valid within a given RLL task. Do not do multiple-word move operations that begin
with STW1.

1 = Password has been entered

4

Applicable Controller ALL

STW01:
Non-fatal Errors

Status Words G-3SIMATIC 545/555/575 Programming Reference

16151413121110987654321

Base 15: 0 = Status good; 1 = Base not present or has problem

Base 13: 0 = Status good; 1 = Base not present or has problem

Base 14: 0 = Status good; 1 = Base not present or has problem

Base 11: 0 = Status good; 1 = Base not present or has problem

Base 12: 0 = Status good; 1 = Base not present or has problem

Base 9: 0 = Status good; 1 = Base not present or has problem

Base 10: 0 = Status good; 1 = Base not present or has problem

Base 8: 0 = Status good; 1 = Base not present or has problem

MSB LSB

Base 7: 0 = Status good; 1 = Base not present or has problem

Base 5: 0 = Status good; 1 = Base not present or has problem

Base 6: 0 = Status good; 1 = Base not present or has problem

Base 3: 0 = Status good; 1 = Base not present or has problem

Base 4: 0 = Status good; 1 = Base not present or has problem

Base 1: 0 = Status good; 1 = Base not present or has problem

Base 2: 0 = Status good; 1 = Base not present or has problem

Base 0: 0 = Status good; 1 = Base not present or has problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Applicable Controller ALL

STW02: Base
Controller Status

Status WordsG-4 SIMATIC 545/555/575 Programming Reference

16151413121110987654321Bit

STW03 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

STW04 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

STW05 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

STW06 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

STW07 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

STW08 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

STW09 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

MSB LSB

STW03 through STW09 give the status for PROFIBUS-DP slaves. The
slave’s bit, as indicated in the cells above, is a 1 if the slave is not present or
is failed.

16151413121110987654321

Binary value of previous scan time

MSB LSB

Applicable Controller ALL

Figure G-1 illustrates an example of STW10 containing a scan time of
145 ms.

MSB LSB

1000100100000000STW10

Figure G-1 Example of Status Word Reporting Scan Time

STW03 – STW09:
PROFIBUS-DP Slave
Status

STW10:
Dynamic Scan
Time

Status Words G-5SIMATIC 545/555/575 Programming Reference

Status words STW11 through STW138 indicate the status of the individual
I/O modules installed in the local base, an RBC in a remote base, or a
PPX:505–6870 RBC on the PROFIBUS-DP I/O channel. Status
word 11 applies to the local base, status words 12 – 26 apply to the 505
remote I/O channel, and status words 27 – 138 apply to the PROFIBUS-DP
I/O channel. The illustration on page G-6 shows the content of these status
words. Table G-1 lists the status words that correspond to the status of each
base/slave.

Table G-1 Status Words 11 Through 138

Status
word

505 Modules
Local/Remote

Status
word

PROFIBUS-DP
Module

Status
word

PROFIBUS-DP
Module

Status
word

PROFIBUS-DP
Module

11 Local Base 27 Slave 1 43 Slave 17 59 Slave 33

12 Remote I/O Base 1 28 Slave 2 44 Slave 18 60 Slave 34

13 Remote I/O Base 2 29 Slave 3 45 Slave 19 61 Slave 35

14 Remote I/O Base 3 30 Slave 4 46 Slave 20 62 Slave 36

15 Remote I/O Base 4 31 Slave 5 47 Slave 21 63 Slave 37

16 Remote I/O Base 5 32 Slave 6 48 Slave 22 64 Slave 38

17 Remote I/O Base 6 33 Slave 7 49 Slave 23 65 Slave 39

18 Remote I/O Base 7 34 Slave 8 50 Slave 24 66 Slave 40

19 Remote I/O Base 8 35 Slave 9 51 Slave 25 67 Slave 41

20 Remote I/O Base 9 36 Slave 10 52 Slave 26 68 Slave 42

21 Remote I/O Base 10 37 Slave 11 53 Slave 27 69 Slave 43

22 Remote I/O Base 11 38 Slave 12 54 Slave 28 70 Slave 44

23 Remote I/O Base 12 39 Slave 13 55 Slave 29 71 Slave 45

24 Remote I/O Base 13 40 Slave 14 56 Slave 30 72 Slave 46

25 Remote I/O Base 14 41 Slave 15 57 Slave 31 73 Slave 47

26 Remote I/O Base 15 42 Slave 16 58 Slave 32 74 Slave 48

Status
word

PROFIBUS-DP
Module

Status
word

PROFIBUS-DP
Module

Status
word

PROFIBUS-DP
Module

Status
word

PROFIBUS-DP
Module

75 Slave 49 91 Slave 65 107 Slave 81 123 Slave 97

76 Slave 50 92 Slave 66 108 Slave 82 124 Slave 98

77 Slave 51 93 Slave 67 109 Slave 83 125 Slave 99

78 Slave 52 94 Slave 68 110 Slave 84 126 Slave 100

79 Slave 53 95 Slave 69 111 Slave 85 127 Slave 101

80 Slave 54 96 Slave 70 112 Slave 86 128 Slave 102

81 Slave 55 97 Slave 71 113 Slave 87 129 Slave 103

82 Slave 56 98 Slave 72 114 Slave 88 130 Slave 104

83 Slave 57 99 Slave 73 115 Slave 89 131 Slave 105

84 Slave 58 100 Slave 74 116 Slave 90 132 Slave 106

85 Slave 59 101 Slave 75 117 Slave 91 133 Slave 107

86 Slave 60 102 Slave 76 118 Slave 92 134 Slave 108

87 Slave 61 103 Slave 77 119 Slave 93 135 Slave 109

88 Slave 62 104 Slave 78 120 Slave 94 136 Slave 110

89 Slave 63 105 Slave 79 121 Slave 95 137 Slave 111

90 Slave 64 106 Slave 80 122 Slave 96 138 Slave 112

STW11 – STW138:
I/O Module Status

Status WordsG-6 SIMATIC 545/555/575 Programming Reference

16151413121110987654321

Module 16: 0 = Status good; 1 = Module not present or has problem

Module 14: 0 = Status good; 1 = Module not present or has problem

Module 15: 0 = Status good; 1 = Module not present or has problem

Module 12: 0 = Status good; 1 = Module not present or has problem

Module 13: 0 = Status good; 1 = Module not present or has problem

Module 10: 0 = Status good; 1 = Module not present or has problem

Module 1 1: 0 = Status good; 1 = Module not present or has problem

Module 9: 0 = Status good; 1 = Module not present or has problem

MSB LSB

Module 8: 0 = Status good; 1 = Module not present or has problem

Module 6: 0 = Status good; 1 = Module not present or has problem

Module 7: 0 = Status good; 1 = Module not present or has problem

Module 4: 0 = Status good; 1 = Module not present or has problem

Module 5: 0 = Status good; 1 = Module not present or has problem

Module 2: 0 = Status good; 1 = Module not present or has problem

Module 3: 0 = Status good; 1 = Module not present or has problem

Module 1: 0 = Status good; 1 = Module not present or has problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Applicable Controller ALL

Status Words G-7SIMATIC 545/555/575 Programming Reference

The controller reports an I/O mismatch (an installed module that does not
agree with the I/O configuration) as a failed I/O module. Although the
module has not actually failed, you must enter correct I/O configuration
data or install the proper module to correct the failure report.

In Figure G-2, the 1 in bit 10 indicates that slot seven in Base 4 contains a
defective or incorrectly configured module (I/O mismatch). All other slots
either contain correctly configured, working modules or are correctly
configured as empty.

MSB LSB

0000001000000000STW15

Module 7: 1 = Module not present or has problem

10

Figure G-2 Example of Status Word Reporting a Module Failure

NOTE: When a 505 remote I/O base loses communication with the
controller, the appropriate bit in STW02 shows a 1. The bits in the status
word (STW11–STW26) corresponding to the modules in that base show
zeroes, even if modules on that base have failed or been incorrectly
configured. That is, the modules of a failed base are not individually
indicated as failed.

When a PPX:505–6870 RBC loses communication with the controller, the
appropriate bit in STW02 shows a 1. The bits in the status word
(STW27–STW138) corresponding to the slave module maintain their most
recent value.

When you disable a base from the TISOFT I/O Configuration Screen, all bits
in the status word (STW11–STW138) that corresponds to that base are set
to zero.

STW11 – STW138:
(continued)

Status WordsG-8 SIMATIC 545/555/575 Programming Reference

Status word STW139 provides a count of discrete points (X/Y or C) that are
currently forced.

Status word STW140 provides a count of word points (WX/WY) that are
currently forced.

16151413121110987654321STW141

Year – tens digit

Month – tens digit

Year – units digit

Month – units digit

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

16151413121110987654321STW142

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Day – tens digit

Hour – tens digit

Day – units digit

Hour – units digit

See also the description of Time of Day Status for STW226 on G–33.

NOTE: The time of day is initialized to 1-Jan-1984 at 12:00 AM. (See also
STW223-STW226.)

STW139: Discrete
Force Count

STW140: Word
Force Count

STW141 – STW144:
Date, Time, and
Day of Week

Status Words G-9SIMATIC 545/555/575 Programming Reference

16151413121110987654321STW143

Minute – tens digit

Second – tens digit

Minute – units digit

Second – units digit

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

STW144 16151413121110987654321

MSB LSB

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Second – tenths digit *

Not used, always 0

Second – hundredths digit *

Day of the week

* The resolution of these units of time is controller specific. A controller fills a field with
zeros for time units that it does not support.

Applicable Controller ALL

Status WordsG-10 SIMATIC 545/555/575 Programming Reference

Figure G-3 illustrates clock information on the date: Monday, 5 October,
1992 at 6:39:51.76 P.M. Note that the 24-hour (military) format is used and
Sunday is assumed to be day 1.

MSB LSB

0000100001001001STW141

MSB LSB

0001100010100000STW142

MSB LSB

1000101010011100STW143

MSB LSB

0100000001101110STW144

Figure G-3 Example of Status Words Reporting Time

Status Words G-11SIMATIC 545/555/575 Programming Reference

Status words STW145 and STW146 contain communication error counts for
Remote I/O channel one. The channel records the number of receive errors
and the number of timeout errors which have occurred since the most recent
restart as shown in Table G-2. The counts are in binary.

Table G-2 Receive Errors and Timeout Errors for STW145 and STW146

Receive Errors Timeout Errors

Channel Status Word Channel Status Word

1 STW145 1 STW146

NOTE: A typical system should have no more than one detected and
corrected error over the I/O link per 20,000 scans. If this error rate is
exceeded, it may indicate a possible wiring or noise problem. Three
consecutive errors to an RBC causes the base to be logged off and the
corresponding bit in STW2 to be set.

Status word STW147 records the number of times, since the most recent
restart, that PROFIBUS-DP slaves have failed to respond to a request from
the Series 505 CPU.

Status word STW148 indicates the number of times, since the most recent
restart, that the PROFIBUS-DP I/O channel has experienced a loss of
token, possibly due to a problem with the cable. Such errors generally cause
total failure for the PROFIBUS-DP I/O link.

Reserved.

STW145 – STW146:
Receive and
Timeout Errors

STW147:
PROFIBUS-DP Slave
Errors

STW148:
PROFIBUS-DP Bus
Communication
Errors

STW149 - STW160:
Reserved

Status WordsG-12 SIMATIC 545/555/575 Programming Reference

1 = ROM error

1 = Operating system error

1 = RAM error

1 = Diagnostic failure

1 = Invalid control block encountered

1 = S-Memory is inconsistent

1 = Special function program received from RLL is invalid

MSB LSB

1

2

3

4

5

6

7

16151413121110987654321

Applicable Controller ALL

STW161:
Special Function
Processor Fatal
Errors

Status Words G-13SIMATIC 545/555/575 Programming Reference

1 =Printer Port 1 communications error*

1 = Loop overrun error

1 = Cyclic special function programs overrun error

1 = Analog alarm overrun error

1 = Priority special function program queue is full

1 = Normal special function program queue is full

1 = Cyclic special function program queue is full

MSB LSB

1 = Loop calculation error

1 = Control block disabled

1 = Analog alarm calculation error

1 = Attempt to invoke restricted SF program or SF subroutine

1 = Attempt to execute undefined SF program or SF subroutine

1

3

4

5

6

7

8

9

10

11

12

13

* A Printer Port 1 communications error is logged if the 545, 555, or 575
CPU card has a character queued for printing to Printer Port 1 for more
than 30 seconds.

16151413121110987654321

Applicable Controller ALL

STW162:
Special Function
Processor
Non-fatal Errors

Status WordsG-14 SIMATIC 545/555/575 Programming Reference

Number of the subroutine that caused the stack overflow*

MSB LSB

* Does not apply to XSUB routines.

16151413121110987654321

Applicable Controller ALL

L-Memory checksum C0 MSW

MSB LSB

16151413121110987654321

STW164

L-Memory checksum C0 LSWSTW165

Applicable Controller ALL

L-Memory checksum C1 MSW

MSB LSB

16151413121110987654321

STW166

L-Memory checksum C1 LSWSTW167

Applicable Controller ALL

STW163:
RLL Subroutine
Stack Overflow

STW164 – STW165:
L-Memory
Checksum C0

STW166 – STW167:
L-Memory
Checksum C1

Status Words G-15SIMATIC 545/555/575 Programming Reference

Base 15: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 13: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 14: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 11: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 12: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 9: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 10: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 8: 0 = Dual RBCs present and good; 1 = Error or single RBC

MSB LSB

Base 7: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 5: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 6: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 3: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 4: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 1: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 2: 0 = Dual RBCs present and good; 1 = Error or single RBC

Base 0: 0 = Dual RBCs present and good; 1 = Error or single RBC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable Controller ALL

STW168:
Dual RBC Status

Status WordsG-16 SIMATIC 545/555/575 Programming Reference

Reserved.

Base 15: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 13: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 14: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 11: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 12: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 9: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 10: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 8: 0 = Dual P/S present and good; 1 = Error or single P/S

MSB LSB

Base 7: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 5: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 6: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 3: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 4: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 1: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 2: 0 = Dual P/S present and good; 1 = Error or single P/S

Base 0: 0 = Dual P/S present and good; 1 = Error or single P/S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable Controller ALL

STW169 – STW175:
Reserved

STW176:
Dual Power Supply
Status

Status Words G-17SIMATIC 545/555/575 Programming Reference

Reserved.

Base having module failure

1 = Module failure

Number of the base with the module mismatch error

1 = Module mismatch error

MSB LSB

1

5 6 7 8

0000 = base 0
1111 = base 15

16151413121110987654321

9

13 14 15 16

Note: Bits 9–16 as shown apply to systems that support
remote I/O only. For systems that support both remote
I/O and PROFIBUS-DP I/O, bits 9–16 are always 0.

Applicable Controller ALL

Reserved.

Discrete scan execution time in milliseconds

MSB LSB

16151413121110987654321

Applicable Controller ALL

Reserved.

STW177 – STW183:
Reserved

STW184:
Module Mismatch
Indicator

STW185 – STW191:
Reserved

STW192:
Discrete Scan
Execution Time

STW193 – STW199:
Reserved

Status WordsG-18 SIMATIC 545/555/575 Programming Reference

Error reason code associated with bit 6 of STW01

MSB LSB

Currently defined integer values:
0 No error
1 Reference to an application that is not installed (575 only)
2 Attempted to unlock a flag that is not held by an application (575 only)
3 Mismatched LOCK/UNLOCK instructions (575 only)
4 Exceeded subroutine nesting level
5 Table overflow
6 Attempted to call a non-existent subroutine
7 VMEbus access failed due to a bus error (575 only)
8 SF program does not exist or has not been compiled (PowerMath CPUs only)
9 SF program is not enabled (PowerMath CPUs only)
10 SF program marked for in-line is cyclic or restricted (PowerMath CPUs only)
11 In-line SF program or subroutine: edit operation is in progress. (PowerMath CPUs only)
12 In-line SFpgm/sub statement is being executed by interrupt task. (PowerMath CPUs only)
13 User-scheduled fast loop is not configured
14 User-scheduled fast loop is disabled

16151413121110987654321

Applicable Controller ALL (except as noted)

STW200 reports the first error that occurs in a given scan of the RLL
program. After you correct the problem that causes the error, recompile and
run the program again. If there is a second problem, the error code for this
problem is recorded in STW200. Subsequent errors are recorded accordingly.

STW200:
User Error Cause

Status Words G-19SIMATIC 545/555/575 Programming Reference

1 = First RUN mode scan or single scan after compile

1 = First RUN mode scan after transition from EDIT mode

1 = First RUN mode scan or single scan after PROGRAM mode

1 = First scan after battery good power-up restart

1 = First scan after battery bad power-up restart

1 = First scan after partial restart

1 = First scan after complete restart

MSB LSB

1

2

3

9

10

11

12

16151413121110987654321

Applicable Controller ALL

STW201:
First Scan Flags

Status WordsG-20 SIMATIC 545/555/575 Programming Reference

1 = Application A is in RUN or EDIT mode

1 = Application C is in RUN or EDIT mode

1 = Application B is in RUN or EDIT mode

1 = Application E is in RUN or EDIT mode

1 = Application D is in RUN or EDIT mode

1 = Application G is in RUN or EDIT mode

1 = Application F is in RUN or EDIT mode

1 = Application H is in RUN or EDIT mode

MSB LSB

1 = Application I is in RUN or EDIT mode

1 = Application K is in RUN or EDIT mode

1 = Application J is in RUN or EDIT mode

1 = Application M is in RUN or EDIT mode

1 = Application L is in RUN or EDIT mode

1 = Application O is in RUN or EDIT mode

1 = Application N is in RUN or EDIT mode

1 = Application P is in RUN or EDIT mode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable Controller 575

STW202:
Application Mode
Flags (A – P)

Status Words G-21SIMATIC 545/555/575 Programming Reference

1 = Application Q is in RUN or EDIT mode

1 = Application S is in RUN or EDIT mode

1 = Application R is in RUN or EDIT mode

1 = Application U is in RUN or EDIT mode

1 = Application T is in RUN or EDIT mode

1 = Application W is in RUN or EDIT mode

1 = Application V is in RUN or EDIT mode

1 = Application X is in RUN or EDIT mode

MSB LSB

1 = Application Y is in RUN or EDIT mode

1 = Application Z is in RUN or EDIT mode

1

2

3

4

5

6

7

8

9

10

16151413121110987654321

Applicable Controller 575

STW203:
Application Mode
Flags (Q – Z)

Status WordsG-22 SIMATIC 545/555/575 Programming Reference

1 = Application A is installed

1 = Application C is installed

1 = Application B is installed

1 = Application E is installed

1 = Application D is installed

1 = Application G is installed

1 = Application F is installed

1 = Application H is installed

MSB LSB

1 = Application I is installed

1 = Application K is installed

1 = Application J is installed

1 = Application M is installed

1 = Application L is installed

1 = Application O is installed

1 = Application N is installed

1 = Application P is installed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable Controller 575

STW204:
Application
Installed Flags
(A – P)

Status Words G-23SIMATIC 545/555/575 Programming Reference

1 = Application Q is installed

1 = Application S is installed

1 = Application R is installed

1 = Application U is installed

1 = Application T is installed

1 = Application W is installed

1 = Application V is installed

1 = Application X is installed

MSB LSB

1 = Application Y is installed

1 = Application Z is installed

1

2

3

4

5

6

7

8

9

10

16151413121110987654321

Applicable Controller 575

STW205:
Application
Installed Flags
(Q – Z)

Status WordsG-24 SIMATIC 545/555/575 Programming Reference

U-Memory checksum C0 MSW

MSB LSB

16151413121110987654321

STW206

U-Memory checksum C0 LSWSTW207

Applicable Controller ALL

U-Memory checksum C1 MSW

MSB LSB

16151413121110987654321

STW208

U-Memory checksum C1 LSWSTW209

Applicable Controller ALL

STW206 – STW207:
U-Memory
Checksum C0

STW208 – STW209:
U-Memory
Checksum C1

Status Words G-25SIMATIC 545/555/575 Programming Reference

Base 15: 0 = Base cannot be polled; 1 = Base can be polled

Base 13: 0 = Base cannot be polled; 1 = Base can be polled

Base 14: 0 = Base cannot be polled; 1 = Base can be polled

Base 11: 0 = Base cannot be polled; 1 = Base can be polled

Base 12: 0 = Base cannot be polled; 1 = Base can be polled

Base 9: 0 = Base cannot be polled; 1 = Base can be polled

Base 10: 0 = Base cannot be polled; 1 = Base can be polled

Base 8: 0 = Base cannot be polled; 1 = Base can be polled

MSB LSB

Base 7: 0 = Base cannot be polled; 1 = Base can be polled

Base 5: 0 = Base cannot be polled; 1 = Base can be polled

Base 6: 0 = Base cannot be polled; 1 = Base can be polled

Base 3: 0 = Base cannot be polled; 1 = Base can be polled

Base 4: 0 = Base cannot be polled; 1 = Base can be polled

Base 1: 0 = Base cannot be polled; 1 = Base can be polled

Base 2: 0 = Base cannot be polled; 1 = Base can be polled

Base 0: 0 = Base cannot be polled; 1 = Base can be polled

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16151413121110987654321

Applicable Controller ALL

STW210:
Base Poll Enable
Flags

Status WordsG-26 SIMATIC 545/555/575 Programming Reference

16151413121110987654321Bit

STW211 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

STW212 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

STW213 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

STW214 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

STW215 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

STW216 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

STW217 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

MSB LSB

STW211 through STW217 indicate the enable status for PROFIBUS-DP
slaves. The slave’s bit, as indicated in the cells above, is a 1 if the slave is
defined and enabled.

Binary number represents an integer 1 – 26 = Application A – Z.

MSB LSB

Application ID :

1 Application A
 .
 .
26 Application Z

16151413121110987654321

Applicable Controller 575

Task 1: 0 = Status good; 1 = T ask scan cycle overrun

Task 2: 0 = Status good; 1 = T ask scan cycle overrun

MSB LSB

1

2

16151413121110987654321

Applicable Controller ALL

STW211 – STW217:
PROFIBUS-DP Slave
Enable Flags

STW218:
My Application ID

STW219: RLL Task
Overrun

Status Words G-27SIMATIC 545/555/575 Programming Reference

S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16

MSB LSB

16151413121110987654321

Sx = local base slot number

1 = interrupt request active at module located in this slot

Applicable Controller 545 and 555

Binary integer: 0 – 65,535, counts number of interrupt requests

MSB LSB

16151413121110987654321

STW221 is a 16-bit integer (0 – 65,535) that is incremented each time an
interrupt request is received from any interrupting module installed in the
local base.

Applicable Controller 545 and 555

Binary integer: 0 – 65,535, counts number of spurious interrupts

MSB LSB

16151413121110987654321

STW222 is a 16-bit integer (0 – 65,535) that is incremented each time a
spurious interrupt occurs. A spurious interrupt is a VMEbus interrupt that
is removed before the 575 can acknowledge it.

Applicable Controller 575

STW220:
Interrupting Slots in
Local Base

STW221: Module
Interrupt Request
Count

STW222: Spurious
Interrupt Count

Status WordsG-28 SIMATIC 545/555/575 Programming Reference

Time of Day represented in binary milliseconds MSW

MSB LSB

16151413121110987654321

STW223

Time of Day represented in binary milliseconds LSWSTW224

Day relative to 1-January-1984 represented in binarySTW225

Applicable Controller ALL

STW223 and STW224 contain a 32-bit binary representation of the relative
millisecond of the current day. STW225 contains a 16-bit binary
representation of the current day relative to 1-January-1984, (day 0).
See also the following description of Time-of-Day Status for STW226.

1 = Current time is prior to time reported on last T ask 1 RLL scan

1 = Time synchronization is over a network

1 = Time is valid (has been set)

1 = Time resolution

1 = No time synchronization input from the time transmitter

1 = Time Synchronization Error . Time synchronization did not
occur by the scheduled time

MSB LSB

1

10

11

12 13

14

15

16151413121110987654321

00 = 0.001 sec, 01 = 0.01 sec, 10 = 0.1 sec, 11 = 1.0 sec

Applicable Controller ALL

STW223 – STW225:
Binary Time-of-Day

STW226:
Time-of-Day Status

Status Words G-29SIMATIC 545/555/575 Programming Reference

STW226 contains a 16-bit representation of the Time-of-Day status.

If you use the time update feature of the SINEC H1 Communications
Processor (PPX–505–CP1434TF), you should consider the following in
specifying the communications processor’s update time interval.

• Time updates from the communications processor result in the
controller’s time of day clock being written with the new time value.
This results in a minor (<1 ms) scan time extension on the scan in
which the update occurs.

• Between time updates, the time of day is reported based on the
controller’s time of day clock. This clock may drift (loose or gain time)
relative to the SINEC H1 time source. Because of this time drift, the
time reported on the controller scan following a time update from the
communications processor may be before the time reported on
the previous controller scan. Time status (STW226) bit 1 will indicate
this occurrence.

NOTE: The programmable controller hides negative (to the past) clock
changes due to time synchronization if the change is less than 50 ms. For
such a change, the controller freezes the time of day until the updated time
catches up to the controller’s time when the update was received.

Status WordsG-30 SIMATIC 545/555/575 Programming Reference

Bus error access address MSW

MSB LSB

16151413121110987654321

STW227

Bus error access address LSWSTW228

Applicable Controller 575

STW227 and STW228 contain a 32-bit binary representation of the VMEbus
address of the first data access that was aborted due to a bus time out. Use
them with STW1, STW200, and STW229-230 to diagnose user programming
errors on a 575 system.

NOTE: For the 575, the most significant 8 bits of the VMEbus address are
0116 for a normal (VMM) address space access, or F016 for a short (VMS)
address space access. The remaining 24 bits of the address contain the
address space offset.

Bus error program offset MSW

MSB LSB

16151413121110987654321

STW229

Bus error program offset LSWSTW230

Applicable Controller 575

STW229 and STW230 contain a 32-bit binary representation the program
offset. If a VMEbus access was aborted while executing an XSUB routine,
these status words contain the U-Memory offset of the instruction that
caused the aborted VMEbus access. Use them with STW1, STW200, and
STW227-228 to diagnose user programming errors on a 575 system.

STW227 – STW228:
Bus Error Access
Address

STW229 – STW230:
Bus Error Program
Offset

Status Words G-31SIMATIC 545/555/575 Programming Reference

1 = DP I/O Bus System is not configured

1 = DP I/O in OPERATE state

1 = DP I/O in CLEAR state

MSB LSB

1

2

16151413121110987654321

16

16151413121110987654321Bit

STW232 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

STW233 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

STW234 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

STW235 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

STW236 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

STW237 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

STW238 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

MSB LSB

STW232 through STW238 indicate the PROFIBUS-DP slaves that have
signaled a diagnostic that has not been read by an RSD instruction (see
page 6-120). The slave’s bit, as indicated in the cells above, is a 1 if a
diagnostic has been signaled and not yet read.

STW231
PROFIBUS-DP I/O
System Status

STW232 – STW238:
PROFIBUS-DP Slave
Diagnostic

Status WordsG-32 SIMATIC 545/555/575 Programming Reference

CS-Memory checksum C0 MSW

MSB LSB

16151413121110987654321

STW239

CS-Memory checksum C0 LSWSTW240

Applicable Controller PowerMath CPUs only

CS-Memory checksum C1 MSW

MSB LSB

16151413121110987654321

STW241

CS-Memory checksum C1 LSWSTW242

Applicable Controller PowerMath CPUs only

STW239 – STW240:
CS-Memory
Checksum C0

STW241 – STW242:
CS-Memory
Checksum C1

External Subroutine Development H-1SIMATIC 545/555/575 Programming Reference

Appendix H

External Subroutine Development

H.1 Designing the External Subroutine H-2.
Program Code Requirements H-2.
Loading the Subroutine H-3.

H.2 U-Memory Format H-4.
Header H-4.
Code and Constant Data H-5.
Modifiable Data H-5.
User Stack H-5.

H.3 Guidelines for Creating C Language Subroutines H-6.
Debugging the External Subroutine H-6.
Static Data Initialization H-7.
Accessing Discrete/Word Variables H-10.
Floating Point Operations H-11.
Unsupported C Language Features H-11.

H.4 Developing an External Subroutine — Example H-12.
Example Header File H-12.
Example Subroutine Source H-14.
Preparing the Load Module H-14.
Loading U-Memory H-16.
Using the External Subroutines in RLL H-16.

External Subroutine DevelopmentH-2 SIMATIC 545/555/575 Programming Reference

H.1 Designing the External Subroutine

! WARNING
When you call an external subroutine, the built-in protection features of the
controller are by-passed. Use care when you test the external subroutine before
introducing it to a control environment.

Failure to do so may cause undetected corruption of controller memory and
unpredictable operation by the controller , which could result in death or serious
injury to personnel, and/or damage to equipment.

You must take care in testing the external subroutine before introducing it to a
control environment.

Follow these rules when you develop an external subroutine.

• Use a compiler, such as Microtec� MCC68K, that allows generation of
position independent code targeted as follows:

For the 545/555: Motorola� 68020.
For the 575: Motorola 68020 and optionally, the 68881 or the 68882
floating-point processor, if installed.

The object code must be position-independent, i.e., it must use
PC-relative addresses for all references to programs and data contained
in U-Memory.

• Link all subroutines into one downloadable load module in Motorola
S-Record format. The resulting file must conform to the format
specified in Section H.2.

• To help ensure that the subroutine interacts correctly and safely with
the controller program, follow the guidelines in Section H.3 as you
develop an external subroutine for your application.

Program Code
Requirements

External Subroutine Development H-3SIMATIC 545/555/575 Programming Reference

Follow these steps to prepare the external subroutine for use in the
controller.

1. Compile/assemble the subroutines and header to create object modules.

2. Link the object modules for the header and subroutines to create the
load module. The file name must have the extension .rec. The output
must have the header at zero followed by the code and data constants,
then the variables, and finally the stack.

3. Use TISOFT to configure U-Memory, if you have not already done so.

4. Use the TISOFT Convert S-Records option (AUX 40) to import the
linked program into the TISOFT environment.

5. Use the TISOFT Load U-Memory option (AUX 43) to load the file
created in step 4 into U-Memory.

An example application illustrating this process is given in Section H.4.

Loading the
Subroutine

External Subroutine DevelopmentH-4 SIMATIC 545/555/575 Programming Reference

H.2 U-Memory Format

External subroutines are stored in U-Memory. U-Memory consists of four
logical segments, described below, and illustrated in Figure H-1.

The header contains the following data elements, that must be defined in
the order specified.

E/Version This 16-bit word contains two data elements:

• Bit 1 (the MSB) specifies the error action taken in the event of a bus
error while accessing the VMEbus in an XSUB routine on a 575. If bit 1
is a 0 and a VMEbus error occurs while processing an XSUB, the
controller enters the Fatal Error mode. If bit 1 is a 1, and a VMEbus
error occurs while processing an XSUB, the XSUB’s execution
terminates, bits 6 and 11 of STW1 are set, and STW200 is set to 7 (if
this is the first error encountered on this RLL scan). The controller
stays in RUN mode. This bit is ignored by 545 and 555.

• Bits 2 through 16 specify the header version number. It must have a
binary value of 1 or the U-Memory load operation (TISOFT AUX
function 43) fails.

Num_XSUBs Specifies the number of external subroutines defined in the
load module. This element is a 16-bit word.

Data_Start Specifies the U-Memory offset for the beginning of the
modifiable data area. This element is a 32-bit long word.

Stack_Start Specifies the U-Memory offset to the lowest U-Memory
location available for use as a run-time stack. The block of memory from
this location to the end of U-Memory is available to the main RLL task
(TASK1) during XSUB calls. This element is a 32-bit long word.

NOTE: For an XSUB called by the cyclic or interrupt RLL tasks (TASK2 or
TASK8), the stack is allocated by the operating system and is relatively
small (approximately 500 bytes).

Stack_Size Specifies the minimum number of bytes that must be
available for use as the run-time stack area when an external subroutine is
called by the main RLL task. This element is a 32-bit long word.

Entry_Points This is a table containing n 32-bit elements, where n
equals the number of subroutines, as specified in Num_XSUBs. Each element
in this table specifies the U-Memory offset for the entry point of each of the
subroutines 1 through n, respectively. A value of 0 indicates that the
specified subroutine is not present.

Header

External Subroutine Development H-5SIMATIC 545/555/575 Programming Reference

The code and constant data area immediately follow the header area. This
area consists of position-independent, invariant machine code, and data
constants.

The modifiable data area follows the code and constant data area and
contains the static variables used by the subroutines.

The user stack follows the modifiable data area in U-Memory. The size of
the user stack depends upon the configured size of U-Memory and how
much memory is used by the header, the code and constant data, and the
modifiable data areas. The user stack starts at the last location of
U-Memory and grows downwards, toward the address specified by
Stack_Start. Stack_Size specifies the minimum size of this area.

Data_Start: U-Memory offset to modifiable data

Stack_Start: U-Memory offset to user stack

Stack_Size: Size of user stack

Entry_Points(1): U-Memory offset to subroutine 1

Entry_Points(2): U-Memory offset to subroutine 2

Header Version

Entry_Points(n): U-Memory offset to subroutine n

Code and constant data: Contains fully resolved, position-independent
subroutine executables and constant data.

Modifiable data: Static variables used by the subroutines.

User Stack: The user stack starts at the last location of U-Memory and grows
toward the location referenced by Stack_Start.

Num_XSUBs: Number of Subroutines

H
ea

de
r

Bit *
1 16 17 32

Long Word

* The bit numbering shown is consistent with the long word format described in Chapter 2.
The processor numbering is 31–0, corresponding to 1–32, respectively.

E
2

Figure H-1 Externally Developed Subroutine Code Format

NOTE: When U-Memory is loaded, the system verifies that sufficient
U-Memory is configured to hold the header, code, data, and stack. The load
is rejected unless there is enough memory. A subsequent attempt to
reconfigure loaded U-Memory to a size less than the sum of header, code,
data, and stack is also rejected.

Code and
Constant Data

Modifiable Data

User Stack

External Subroutine DevelopmentH-6 SIMATIC 545/555/575 Programming Reference

H.3 Guidelines for Creating C Language Subroutines

The guidelines in this section can answer some questions that may arise as
you develop your code. These guidelines assume that you are using the
Microtec MCC68K tool set. Version 4.2A of this compiler has been tested in
a limited number of 545 and 575 applications and has been verified to
generate code that reliably runs on these machines. MCC68K runs on IBM
compatible personal computers, as well as a number of minicomputers and
work stations. The MCC68K tool set is available from:

Microtec Research, Inc.
2350 Mission College Blvd.
Santa Clara, CA 95054
Toll Free 800.950.5554

If you are using a different compiler, you need to make changes in these
guidelines to fit that compiler’s requirements.

Facilities for debugging external subroutines on the controller are very
limited. It is strongly recommended that you develop and test your external
subroutines using a native compiler on your development computer. A
number of C compilers are available commercially for this purpose,
including Quick C� and Turbo C� for the MS-DOS� environment.

Before coding the external subroutine, be aware that compiler differences
may exist between the native compiler on the development computer and
the MCC68K compiler. A native compiler, designed for use on a general
purpose system, e.g., the IBM PC/AT, usually has a larger set of runtime
facilities than does a compiler like MCC68K, that is designed for embedded
systems. If you use these facilities, they will not exist when you port your
external subroutines to the controller.

After you have written and debugged your subroutines on the development
computer, you must port the debugged subroutines to the controller. If you
avoid architectural features of the development machine, and if you have
not used runtime elements from the native compiler that are not present in
MCC68K, then this is a straight forward procedure.

Before attempting to control an actual process, always check the subroutine
in a test environment (on a controller that is not connected to a factory-floor
process) to verify that the subroutine and controller program operate as
expected.

Debugging the
External Subroutine

External Subroutine Development H-7SIMATIC 545/555/575 Programming Reference

In C, variables declared outside of functions or declared with the static
attribute are initialized when the program starts, just before entering the
main procedure. When you write external subroutines you do not have a
main procedure and the normal initialization does not occur. Therefore, you
need to assign one of your subroutines to perform the C initialization
function. This subroutine must be called from the main RLL task whenever
your application is (re)started, e.g., at power-up or a transition from
PROGRAM to RUN mode.

Assembly subroutine vinit.src * (Figure H-2) contains the necessary
initialization routine for version 4.2A of MCC68K. Include the initialization
subroutine as XSUB1 in all U-Memory load modules. You should call
XSUB1 whenever your RLL performs its startup initialization. Subroutine
_vinit (XSUB1) must be called before any static variables are referenced by
your external subroutines.

* The VINIT routine is based in part on INITCOPY.C, Copyright (C) 1990,
Microtec Research, Inc.

Static Data
Initialization

External Subroutine DevelopmentH-8 SIMATIC 545/555/575 Programming Reference

Guidelines for Creating C Language Subroutines (continued)

 TTL _VINIT –– Initialize Static Variables
 OPT CASE

*===
* function _vinit –– Initialize Static Variables.
*
* * SYNOPSIS:
*
* void _vinit (long int * code);
*
* where code is:
*
* 0 if initialization was successful.
* 1 if initialization failed due to invalid start code in ??INITDATA.
* 2 if initialization failed due to unknown flag byte in a copy
* specification.
*
* * DESCRIPTION:
*
* This function may be called as an external subroutine in order to
* initialize all static variables declared by the U Memory load module.
*
* Subroutine _vinit zeroes all ”zerovars” variables and sets all ”vars”
* variables to their specified initial values. A ”zerovars” variable
* is a variable declared using statements of the form:
*
* [static] int var;
*
* A ”vars” variable is a variable declared using statements of the form:
*
* [static] int var = 5;
*
* External subroutine _vinit must be called before any other external
* subroutine. It should be called once whenever the RLL process is
* started or restarted.
*
* * ASSUMPTIONS:
*
* This subroutine assumes the Microtec C compiler has been used to create
* the objects comprising the load module and that the Microtec linker
* has been used with (at least) the ”INITDATA vars” command. It also
* assumes that the U Memory header is the first element of section ”const”
* and is located at U Memory offset 0.
*
* The structure of section ??INITDATA (created by the Microtec linker) is
* as follows. Byte 0 contains an ’S’ indicating start of ??INITDATA.
* This byte is followed by zero or more copy specifications (see below).
* The last copy specification is followed by an ’E’ indicating the end
* of the ??INITDATA section.
*
* A copy specification has four fields:
*
* flag One byte containing a ’C’, indicating start of copy specification;
* length Four bytes containing the length (in bytes) of the <data> field;
* dest Four bytes containing the starting U–Memory offset to which the
* <data> field is to be copied;
* data The values to be copied to <dest>. The length of this field is
* specified by the <length> field.
*
*===

Figure H-2 Initialization Routine Required for Microtec C

External Subroutine Development H-9SIMATIC 545/555/575 Programming Reference

**** Initialize the ’zerovars’ section to all 0.
*
 SECTION code,,C int __vinit ()
 XDEF __vinit {
__vinit LEA .startof.(zerovars)(PC),A0 ptr1 = address of zerovars;
 MOVE.L #.sizeof.(zerovars),D0 length = size of zerovars;
 BRA.S LOOP00S while (––length >= 0) {
LOOP00 CLR.B (A0)+ *ptr1 = 0;
LOOP00S SUBQ.L #1,D0 }
 BHS LOOP00 .

**** Copy initial values from the ??INITDATA section (constructed by the
* linker due to the INITDATA command) to the appropriate destination
* address.
*
 MOVE.L #.sizeof.(??INITDATA),D0 if (??INITDATA not empty)
 SUBQ.L #2,D0 .
 BLO.S ENDIF10 {
 LEA .startof.(??INITDATA)(PC),A0 ptr1 = address of ??INITDATA
 CMPI.B #’S’,(A0)+ error if (*ptr1++ != ’S’)
 BNE.S ERROR1 .
LOOP20 MOVE.B (A0)+,D0 while ((t = *ptr1++) != ’E’)
 CMPI.B #’E’,D0 .
 BEQ.S ELOOP20 {
 CMPI.B #’C’,D0 error if (t != ’C’)
 BNE.S ERROR2 .
 MOVE.L (A0)+,D0 length = *((long *) ptr1);
 LEA .startof.(const)(PC),A1 ptr2 = address_of (header)
 ADDA.L (A0)+,A1 . + *((long *) ptr1);
 BRA.S LOOP30S while (––length >= 0) {
LOOP30 MOVE.B (A0)+,(A1)+ *dest++ = *source++;
LOOP30S SUBQ.L #1,D0 }
 BHS LOOP30 .
 BRA LOOP20 }
ELOOP20 EQU * .
ENDIF10 EQU * }
 MOVEQ #0,D0 code = no error;

**** Return the value of <code> to the user.
*
GOBAK MOVEA.L 4(SP),A0 return (code);
 MOVE.L D0,(A0) .
 RTS .

**** Error handlers:
*
ERROR1 EQU * error1:
 MOVEQ #1,D0 code = no starting point;
 BRA GOBAK return (code);

ERROR2 EQU * error2:
 MOVEQ #2,D0 code = unknown flag byte;
 BRA GOBAK return (code);
 END ! };

Figure H-2 Initialization Routine Required for Microtec C (continued)

External Subroutine DevelopmentH-10 SIMATIC 545/555/575 Programming Reference

Guidelines for Creating C Language Subroutines (continued)

As specified in Section 6.81, the calling conventions used by the XSUB
instruction always pass 32-bit values or pointers to the external subroutine.

When passing a discrete value, e.g., IN X5, the on/off state of the parameter
is in the least significant bit of the 32-bit value. Other bits are unspecified.
The example in Figure H-3 shows one way to isolate the actual value of the
discrete parameter.

void sub1 (long int D, ...)
{

unsigned char D_value;
D_value = D & 0x1;
...

}

Figure H-3 Example of Passing a Discrete Value

When passing a pointer to a discrete variable, e.g., IO X5, you must declare
the data type of the parameter as an unsigned char pointer. The discrete
value is in the least significant bit of the 8-bit value addressed by the
pointer. Refer to the example in Figure H-4.

void sub2 (unsigned char *D, ...)
{

if (*D & 0x1)
... handle case where parameter is on (true) ...
else
... handle case where parameter is off (false)

}

Figure H-4 Example of Passing a Pointer

When passing a normal value, e.g., IN V103, the value is assumed to occupy a
long word (V103 and V104). If only a word is required, you must include
code to isolate this word from the most significant 16 bits of the value. See
the example in Figure H-5.

void sub3 (long int V, ...)
{

short int V_value;
V_value = V >>16;
...
}

Figure H-5 Example of Passing Normal Values

Accessing
Discrete/Word
Variables

External Subroutine Development H-11SIMATIC 545/555/575 Programming Reference

When passing a pointer to a normal variable, e.g., IO V15, you control the
data element type since you completely declare the data type in your
C Language function.

! CAUTION
For the 575 controller , word image register values can only be accessed as
words or long words.

If you access a word image register location as a byte (8 bits), the result is
unspecified, and could cause damage to equipment,

Ensure that you always use words or long words with the 575 controller .

NOTE: The controller allows pointers to read-only variables (STW, K, X) to
be passed to external subroutines. It is recommended that you not design
the subroutine to alter the content of these variables since other
instructions assume that the content does not change.

The controller uses single precision floating-point math. The default type for
floating-point constants and operations in the MCC68K compiler is double
precision. On the 545, 555, and 575 without a math coprocessor, you may
want to avoid the overhead associated with double precision math. Refer to
your compiler’s documentation for instructions for forcing single precision
math.

Do not use operating system-dependent language elements in external
subroutines. This includes the C Language runtime routines listed below.
Refer to your compiler’s documentation for possible additional
OS-dependent runtime.

clearerr feof fopen fsacnf lseek puts ungetc

close ferror fprintf fwrite open read

create fflush fputc getc printf setbuf

_exit fgetc fputs getchar putc scanf

fclose fgets fread gets putchar sprintf

Floating Point
Operations

Unsupported
C Language
Features

External Subroutine DevelopmentH-12 SIMATIC 545/555/575 Programming Reference

H.4 Developing an External Subroutine — Example

This section illustrates the creation of a U-Memory load module that defines
two external subroutines: long_add (XSUB2) and long_subtract (XSUB3).
The example was developed with the MS-DOS version of MCC68K.

The header.src file (Figure H-6) defines the U-Memory header for the
example application. When the header is linked with the initialization
routine and the application-specific subroutine file, the header must be
placed at location 0 of the load module. Additionally, all code and data
constants must be loaded before any variables (zerovars and vars), which
must be loaded before the stack section. See the sample link command file in
Figure H-9.

 TTL HEADER –– U–Memory header for sample application.

*===
* HEADER.SRC –– U–Memory header for sample application.
*
* * DESCRIPTION:
*
* File HEADER.SRC contains the definition for the U Memory header required
* for the sample XSUB application. This file is written in the Microtec
* ASM68K assembly language. The object from this file must be loaded at
* relative address 0 of the U Memory load image.
*
*===
 OPT CASE Labels are case sensitive
 SECTION const,,R Header must be first in <const> section
 DC.W 1 Header version is 1 for rel 2.x
 DC.W NUM_SUB Number of subroutine entry points
 DC.L .startof.(zerovars) Start of modifiable variables
 DC.L .startof.(stack) Lowest address for valid stack pointer
 XREF STACKSIZE Size of stack (defined at link time)
 DC.L STACKSIZE
EP_TBL EQU * Entry point table
 XREF __vinit XSUB1 initializes static variables
 DC.L __vinit .
 XREF _long_add XSUB2 performs a long integer ADD
 DC.L _long_add .
 XREF _long_subtract XSUB3 performs a long integer SUB
 DC.L _long_subtract
NUM_SUB EQU (*–EP_TBL)/4 Computes number of entry points
 END

Figure H-6 Example Assembly Language Header File

Example Header
File

External Subroutine Development H-13SIMATIC 545/555/575 Programming Reference

The header.src file contains pointers to the base of the zerovars and stack
sections, and to external entry points __vinit, _long_add, and _long_subtract.
Note that the subroutine entry point names are preceded with an
underscore. This is a C Language requirement. During execution, these
pointers are used by the controller’s operating system as offsets relative to
the start of U-Memory.

! WARNING
Other than the header, external subroutines should not define or use static
pointers.

Use of invalid pointers is likely to cause unpredictable operation that could
result in death or serious injury to personnel, and/or damage to equipment.

Pointers passed as parameters on a given subroutine call may be invalidated if
you reconfigure user memory .

! WARNING
Do not change any portion of the U-Memory content loaded in front of the base
address of zerovars after the U-Memory load. Otherwise, the controller enters
the FATAL ERROR mode due to a U-Memory checksum violation, turns off
discrete outputs and freezes analog outputs.

This could cause unpredictable operation of the controller that could result in
death or serious injury to personnel, and/or damage to equipment.

Only properly trained personnel should work on programmable
controller-based equipment.

External Subroutine DevelopmentH-14 SIMATIC 545/555/575 Programming Reference

Developing an External Subroutine — Example (continued)

Depending on the complexity of your application, the subroutine source may
be a single file or several files. Figure H-7 shows file xsubs.c, which defines
the application-specific subroutines comprising the example. The
initialization routine is contained in file vinit.src (Figure H-2).

/*Procedure long_add: Compute the sum of two long words */
/* and store the result in a third */
/* long word. */

void long_add (long addend_1, long addend_2, long *sum)
{

*sum = addend_1 + addend_2;
return;

}
/* Procedure long_subtract: Subtract one long word from a */
/* second long word and store the */
/* result in a third long word. */

void long_subtract
(long minuend, long subtrahend, long *difference)
{

*difference = minuend – subtrahend;
return;

}

Figure H-7 Example Subroutine Source File

Figure H-8 shows the MS-DOS commands required to create a Motorola
S-record load module for the example.

• The first two commands assemble header.src and vinit.src, producing
object files header.obj and vinit.obj, respectively.

• The third command compiles xsubs.c, producing object file xsubs.obj.
Compiler options force the compiler to generate PC-relative code (–Mcp)
and data (–Mdp) references. These options are mandatory. They ensure
that the resulting load module is position-independent. The –c option
instructs MCC68K to create an object module without invoking the
linker.

• The fourth command invokes the linker with command file xsubs.cmd
and output file xsubs.rec. The .rec extension is required by TISOFT.

> asm68k header.src
> asm68k vinit.src
> mcc68k –Mcp –Mdp –c xsubs.c
> lnk68k –c xsubs.cmd –o xsubs.rec

Figure H-8 Example Commands for Preparing the Load Module

Example
Subroutine Source

Preparing the Load
Module

External Subroutine Development H-15SIMATIC 545/555/575 Programming Reference

The content of the link command file depends on the complexity of your
application. File xsubs.cmd shown in Figure H-9 is sufficient for the
example application. Table H-1 lists the functions of the linker commands
contained in this file.

CASE
FORMAT S
LISTABS NOPUBLICS,NOINTERNALS
ORDER const,code,strings,literals,??INITDATA
ORDER zerovars,vars,tags,stack
INITDATA vars
PUBLIC STACKSIZE=1024
BASE 0
LOAD header.obj
LOAD vinit.obj
LOAD xsubs.obj
LOAD c:\mcc68k\mcc68kpc.lib
END

Figure H-9 Example Link Command File

Table H-1 Linker Command Functions

Command Description

CASE Indicates that symbols are case sensitive.

FORMAT Indicates that the linker output is to be in Motorola S-record format.

LISTABS Tells the linker to omit symbol table information from the load module.

ORDER Specifies the order in which sections are to be placed in the load image generated by the linker.

The first ORDER statement lists all sections whose content do not change after U-Memory is
loaded. Section const must be named first so that the U Memory header is at 0. This is followed
by the names of other invariant sections produced by the compiler and linker.

The second ORDER statement lists all sections whose content may change after U-Memory is
loaded. These sections must be linked after all invariant sections. The zerovars section must be
named first and the stack section must be named last.

INITDATA Tells the linker to create a read only copy of initialized variables (section vars) in section
??INITDATA. Subroutine _vinit uses this copy to initialize the actual variables in section vars.

PUBLIC Tells the linker to define variable STACKSIZE. The value on the right of the equal sign in
placed in the U-Memory header’s stack size data element.

BASE Tells the linker to link relative to address 0.

LOAD Tells the linker which modules are to be included in the load module. Name the header file
(header.obj) first. You can load other modules in any order.

File C:\mcc68k\68020\mcc68kpc.lib is the position independent run-time library for
MCC68K.

External Subroutine DevelopmentH-16 SIMATIC 545/555/575 Programming Reference

Developing an External Subroutine — Example (continued)

Use the TISOFT Convert S-Records option (AUX 40) to import xsubs.rec into
the TISOFT file system; then use the TISOFT Load U-Memory option
(AUX 43) to download to U-Memory.

NOTE: If you have not configured U-Memory, you must do so before TISOFT
allows these functions.

When you initialize the RLL program, you must also initialize the external
subroutine variables. Figure H-10 illustrates a call to _vinit (XSUB1), which
occurs once, whenever control relay C1 is off. Note that the _vinit call must
specify a single IO parameter. This parameter is written with the return
code from _vinit.

C1

IO1: V1

C1

SET

C1

XSUB1

Figure H-10 Example Subroutine Call for Static Variable Initialization

Figure H-11 illustrates an RLL network that calls the long_add subroutine.
There are three parameters in the XSUB2 box. These correspond to the
three parameters in the long_add subroutine. The first parameter (IN1)
corresponds to parameter addend_1 in the definition of long_add. The
second parameter (IN2) corresponds to addend_2, and the third parameter
(IO3) corresponds to sum.

Y24

IN1: V1

IN2:

IO3:

V33

V75

XSUB2

Figure H-11 Example Call to a Subroutine

Loading U-Memory

Using the External
Subroutines in RLL

External Subroutine Development H-17SIMATIC 545/555/575 Programming Reference

There must be a one-to-one correspondence between parameters in the
XSUB call (from top to bottom) and parameters in the subroutine definition
(from left to right for C).

• Parameters one and two are IN parameters in the XSUB call. This is
required since long_add expects addend_1 and addend_2 to be long
integer values.

• Parameter three is an IO parameter in the XSUB call. This agrees with
long_add’s definition of sum as a pointer, or address, parameter.

! WARNING
You must ensure agreement between the XSUB call and the XSUB’ s definition in
the number and use of parameters.

If, for example, you were to specify IN for parameter three in the example
XSUB2 call, the long_add subroutine would use the value of V75–76 as an
address. The result, although unspecified, is likely to be a fatal error due to
access to an undefined address or due to corruption of the controller execution
environment.

This could cause unpredictable operation of the controller that could result in
death or serious injury to personnel, and/or damage to equipment

Only properly trained personnel should work on programmable
controller-based equipment.

Interboard Communications for the 575 I-1SIMATIC 545/555/575 Programming Reference

Appendix I

Interboard Communications for the 575

I.1 Using Applications to Enable CPUs to Exchange Data I-2.
Applications I-2.
Overview I-4.
G-Memory Areas I-4.
Required and Optional Applications I-5.
Locking Mode Transitions for Two or More Applications I-6.

I.2 Using Direct VMEbus Access to Communicate with Third-Party Boards I-8.
Accessing VMEbus Masters and Slaves Directly I-8.

I.3 Coordinating Access to Shared Memory I-10.
Using Locks I-10.

Interboard Communications for the 575I-2 SIMATIC 545/555/575 Programming Reference

I.1 Using Applications to Enable CPUs to Exchange Data

In the 575 system, an application is a user program that executes on a
single 575 CPU (or another CPU that conforms to the SIMATIC 575
Interboard Communication Specification). An application on a 575 CPU
consists of the following program elements.

• RLL programs

• SF programs

• Loops

• Analog alarms

• External subroutines

Each 575 application presents an area of memory (G-Memory) to the
VMEbus. G-Memory allows CPUs and intelligent I/O to exchange data over
the VMEbus backplane. For example, an application within a CPU can read
data from another application and write data back to that application. See
Figure I-1.

Application A Application B

G-Memory
area
reserved for
application A

G-Memory
area
reserved for
application B

GA1
through
GA32768

GB1
through
GB32768

Application A can
access the
G-Memory area
reserved for
application B

Application B can
access the
G-Memory area
reserved for
application A

RLL program
SF program
loops
analog alarms

CPU

VME backplane

CPU

RLL program
SF program
loops
analog alarms

Figure I-1 Typical CPU Application

Applications

Interboard Communications for the 575 I-3SIMATIC 545/555/575 Programming Reference

Boards can work together to control a process by communicating through
their G-Memory areas. Using G-Memory, you can do the following tasks:

• Exchange data between applications without being aware of the
physical addresses of the application’s memory.

• Set locks so that one application can manipulate data in specific
G-Memory locations without having those locations accessed by another
application at the same time.

• Synchronize applications so that they initialize status words at the
same time.

• Share data in memory instead of over the communication network. This
practice allows data to be shared quickly and efficiently.

Interboard Communications for the 575I-4 SIMATIC 545/555/575 Programming Reference

Using Applications to Enable CPUs to Exchange Data (continued)

Each application uses G-Memory to make data available to other
applications. G-Memory resides on the VMEbus, and consists of up to 26
separate memory areas, totalling 32 Kwords. These areas are accessed by
using the G-Memory addresses GAn through GZn (n is a value from 1 to
32768). See Figure I-2.

G-Memory

GA1 through GA32768

GB1 through GB32768

GC1 through GC32768

GX1 through GX32768

GY1 through GY32768

GZ1 through GZ32768

RLL Program in Application AApplication

CPU
Application A

MOVW1

K1
GC25

MOVW1

GZ10
V100

Moves a constant from K1 to
G-Memory location GC25.

Moves a word from G-Memory
location GZ10 to V100.

X4 C2

C2 C3

X5

NOTE: These G-Memory locations
are available only if their
corresponding applications are
installed in the base.

Figure I-2 Accessing G-Memory

Each 575 application is automatically assigned a G-Memory area. The
memory area is determined by the relationship of the board to the first
application inserted in the base.

Application A is assigned to the primary 575 CPU. G-Memory locations GA1
through GA32768 are automatically assigned to that board. If a board is the
sixth application board installed in the base, G-Memory locations GF1
through GF32768 automatically belong to that board.

As long as the assignments for each of the installed applications are unique,
any non-575 applications may be assigned to any of the unused application
identifiers (B – Z).

Overview

G-Memory Areas

Interboard Communications for the 575 I-5SIMATIC 545/555/575 Programming Reference

Applications depend on G-Memory to exchange data. Therefore, you must
designate whether an application is required or optional. If an application is
required, it must be installed before the application that refers to it can go
to the RUN mode. If an application is optional, it does not have to be
installed before the application that refers to it can operate.

In order for an application to reference another application’s G-Memory, the
second application must be installed as either required or optional.

If an optional application is installed:

• The application referring to that application can go to RUN mode.

• References to that application perform their specified function.

If an optional application is not installed:

• The application referring to that application can go to RUN mode.

• A reference to that application’s G-Memory sets error bit 6 in STW1 if
the reference actually is executed.

• If it is the first error logged, STW200 (uninstalled application) is logged
as well.

To designate which applications are required or optional, use the REQAPP
option from the TISOFT Memory Configuration menu.

Required and
Optional
Applications

Interboard Communications for the 575I-6 SIMATIC 545/555/575 Programming Reference

Using Applications to Enable CPUs to Exchange Data (continued)

You can configure CPUs so that they experience mode transitions
(PROGRAM to RUN, etc.) simultaneously. When you request this function,
the CPUs and their applications are mode-locked.

When you change an application from PROGRAM mode to RUN mode, all
mode-locked applications change to RUN mode with it. The duration of the
first scan is the same for all these applications, but the length of this scan
does not affect the peak scan time. This feature allows you to initialize
status words and memory so that applications do not inadvertently access
corrupt data.

If you change a mode-locked application from RUN mode to PROGRAM
mode, all mode-locked applications change to PROGRAM mode with it. See
Figure I-3.

Application A

Application B

Scan time = 100 ms

Scan time = 27 ms

Begin transition to RUN mode
from PROGRAM mode

Begin transition to PROGRAM
mode from RUN mode

1st scan

The duration of the first scan is the
same for both applications,
regardless of the length of the actual
scan for each application.

When a transition from RUN mode
to PROGRAM mode occurs, all
applications update their I/O at the
same time, regardless of the length
of the actual scan for each
application.

Mode-locked operation extends
the scan of Application B so its
I/O are updated at the same
time as Application A.

Figure I-3 Example of Mode-locked Applications

Locking Mode
Transitions for Two
or More
Applications

Interboard Communications for the 575 I-7SIMATIC 545/555/575 Programming Reference

To mode-lock two or more applications, use TISOFT to bring up the Memory
Configuration menu. Select REQAPP and follow the prompts.

You can perform run-time edits on mode-locked applications. If you perform
a run-time edit to initialize values in a mode-locked application, the edit
does not affect the other mode-locked applications, unless a compile error
occurs, in which case all mode-locked applications go to PROGRAM mode.

If a fatal error occurs, the system transitions to the FAULT mode and shuts
down all applications. A power-up restart synchronizes the first scan of all
the 575 CPU applications, regardless of whether they are mode-locked. If
you try to restart a different way, the system asks you whether or not you
want mode-locked operation. You can specify which applications you want to
mode-lock.

Interboard Communications for the 575I-8 SIMATIC 545/555/575 Programming Reference

I.2 Using Direct VMEbus Access to Communicate with Third-Party Boards

Most third-party boards that you can use in the 575 system do not conform
to the SIMATIC 575 Interboard Communications Specification. This means
that they do not provide application memory (G-Memory) as the means for
interboard communication. To communicate with these boards, you must
use direct VMEbus access.

You can access VMEbus slaves and masters directly from your 575 user
program in the ways described below. All user-program access to VMEbus
A16 address space (VMS memory type) is performed using VMEbus address
modifier 2916 (short, non-privileged access). User-program access to
VMEbus A24 address space (VMM memory type) is performed using
address modifier 3916 (standard, non-privileged data access).

Accessing VMEbus
Masters and Slaves
Directly

Interboard Communications for the 575 I-9SIMATIC 545/555/575 Programming Reference

The 575 provides the following three ways to access VMEbus addresses
directly from your user program.

• The Move Element (MOVE) RLL instruction allows you to move bytes,
words, and long-words1 to/from VMEbus memory. The MOVE
instruction provides for recovery from VMEbus access errors. Access to
an invalid VMEbus location results in an instruction error being
reported to your RLL program, but the 575 does not enter FATAL
ERROR mode.

• All word-oriented RLL instructions (e.g., ADD, SUB, MOVW, etc.) allow
you to operate on VMEbus locations. They do not, however, provide for
recovery from VMEbus access errors. If a VMEbus access error occurs,
the 575 enters FATAL ERROR mode.

• You can create an external subroutine (XSUB) to perform the VMEbus
access. You can pass the VMEbus address to the external subroutine to
access the VMEbus by using an I/O parameter specifying VMS (A16) or
VMM (A24) memory, or you can code the VMEbus address in your
external subroutine. If you code the address in your external
subroutine, you must offset the VMEbus address with the appropriate
“address space selector” as follows:

575 CPU address F0xxxx16 selects VMEbus A16 address xxxx16.

575 CPU address 01xxxxxx16 selects VMEbus A24 address xxxxxx16.

Refer to Chapter 6 for a complete description of these instructions.

NOTE: The VMS and VMM variable types provide access to word
(even-numbered) addresses. To specify an odd byte address in RLL, you
must use the MOVE instruction, specifying an element size of byte and an
odd index.

1Because the 575 is a D16 master, long-word (32-bit) VMEbus accesses are performed
(physically) as two consecutive word (16-bit) accesses. This means that a long-word access may
not be atomic. It is possible for the long word to be changed (if the board is accessed) after the
first word is read and before the second word is read. It is also possible for the long word to be
read (if the board is accessed) after the first word is written and before the second word is
written.

Interboard Communications for the 575I-10 SIMATIC 545/555/575 Programming Reference

I.3 Coordinating Access to Shared Memory

If you need to manipulate data stored in shared memory (G, VMM, or VMS)
without interference from other applications, design your application to
coordinate access to the shared memory using a lock. Figure I-4 and
Figure I-5 illustrate how a lock operates. In these examples, 575
applications A and B are coordinating access to location GA110 using a lock
that resides in location GA2 (and GA3).

A lock can be held in either an exclusive or a shared mode. When the lock is
held in exclusive mode by an application, other applications are notified not
to read from or write to the associated shared memory. When a lock is held
in shared mode by an application, other applications are notified that they
can read from the associated shared memory, but they should not write to it.

NOTE: Although a lock establishes something like a software contract, the
575 does not enforce this contract. If an application either fails to use the
lock or ignores its state, access to the shared memory area can be corrupted.

On the 575, you can acquire a lock with the LOCK instruction and you can
release it with the UNLCK instruction. For details on the lock data
structure and the algorithms used to acquire and release a lock using a
third-party board, refer to the SIMATIC 575 Interboard Communication
Specification (PPX:575–8103–x).

Using Locks

Interboard Communications for the 575 I-11SIMATIC 545/555/575 Programming Reference

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Application A

Application B

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á
Á

Initial value:
GA110 = 20 GA110 = 30 GA110 = 24

Application B attempts to
acquire shared control of
the lock but cannot
because Application A has
exclusive control of it.

Application A
releases the lock. Application A cannot

acquire exclusive
control of the lock until
Application B releases
control.

Application A acquires
exclusive control of the
lock at GA2.

Application A adds 10
to the value in memory
location GA110.

Application A subtracts
6 from the value in
memory location GA110.

Application B attempts to
acquire shared control of the
lock and, in this case, is able
to because Application A has
released its control.

If Application B ignores the
lock, it reads the intermediate
value 30 stored in memory
location GA110 instead of the
final result (GA110 = 24).

G-Memory
location
GA110

Figure I-4 Example of Locks and Their Uses

Interboard Communications for the 575I-12 SIMATIC 545/555/575 Programming Reference

Coordinating Access to Shared Memory (continued)

C1 C3

Mode Exclusive
T: 1
LK: GA2

LOCK: 24

C3 C512

A GA2

UNLCK: 24

C3 C512

A: GA110
B: +10
C: GA110

ADD: 33

STW201 +0 C1

A: +0
B: GA2
N: 2

MOVW

C220 C300

Mode Shared
T 1
A GA2

LOCK: 3

C300 C350

A GA2

UNLCK: 3

C300 C350

A: GA110
B: V150
C: 1

MOVW

Application A

Application B

C3 C512

A: GA110
B: +6
C: GA110

SUB: 15

MOVE 13 initializes memory locations GA2 and
GA3. This memory location is used by the
following lock to store the lock data structure.
Always initialize lock data structures on the first
scan to remove invalid data.

LOCK 24 obtains exclusive control of the lock
before LOCK 3 in Application B. Application B
has been programmed so that it does not access
the memory locations used by Application A while
the lock is on. Application B cannot obtain the
lock until Application A releases the lock.

Application A adds the 10 to the value in GA110
and stores the result back in GA110. Application
B cannot read the value in GA110 until the
UNLCK 24 instruction executes. If Application B
ignores the lock, it may read an intermediate
value that is not the final result of the calculation
in Application A.

Application A subtracts 6 from the value in GA110
and stores the result back in GA110. Application
B still cannot read the value in GA110 until the
UNLCK 24 instruction is executed.

Application A unlocks the memory locations. If
the time value for LOCK 3 in Application B has
not timed out, Application B obtains the lock.

�

STW201 +0 C220

=

Figure I-5 RLL Example for Locks

Index-1

Index

A
ABSV (compute absolute value), 6-11

ADD (addition), 6-12

Alarm deadband
analog alarm, 8-9
loop, 9-19

Algorithm, loop, 9-6, 9-10

Analog alarm
alarm deadband, 8-9
deviation alarms, 8-13
process variable alarms, 8-10
sample rate, 8-7
SF program call, 8-12
V-flags, 8-6

Analog tasks
545/555/575 controllers, 1-8–1-11
RBE, 1-9

Annex card, PROFIBUS-DP, 1-2

Application example
BITP (bit pick), E-10
CBD (convert binary to BCD), E-30–E-31
CDB (convert BCD to binary), E-32
DCAT (discrete control alarm timer),

E-34–E-36
DRUM (time-driven drum), E-11–E-12
EDRUM (time/event drum), E-13–E-16
MIRW (move image register to word),

E-17–E-19
MWFT (move word from table), E-26–E-27
MWIR (move word to image register),

E-20–E-23
MWTT (move word to table), E-24–E-25
One shot, E-33
SHRB (bit shift register), E-2–E-3
SHRW (word shift register), E-4–E-5
STW (status word), E-37
TMR (timer), E-6–E-9
WXOR (word exclusive OR), E-28–E-29

Application flags, status word, G-20, G-21

Application ID, status word, G-26

Application installed flags, status word, G-22,
G-23

Applications
and G-memory, I-4
in controllers, I-2–I-4
mode-locked, I-6–I-8
required and optional, I-5

APT, programming software, 5-32

Assistance, technical, xxxvi

Automatic loop tuning, 9-34–9-45

B
Base poll enable flags, status word, G-25

BCD
conversions

CBD (convert binary to BCD), 6-16
CDB (convert BCD to binary), 6-18

defined, 2-6
format, 2-6

BCDBIN (SF program BCD conversion math),
7-24

Bias, loop
adjusting, 9-24
freezing, 9-23

BINBCD (SF program BCD conversion math),
7-25

Bit manipulations
BITC (bit clear), 6-13
BITS (bit set), 6-15
IMC (indexed matrix compare), 6-48
SMC (scan matrix compare), 6-140
WAND (word AND), 6-168
WOR (word OR), 6-170
WROT (word rotate), 6-172
WXOR (word exclusive OR), 6-182

Bit-of-word coil, 5-10, 6-22

Index-2

Index (continued)

Bit-of-word contact, 5-7

BITC (bit clear), 6-13

BITP (bit pick), application example, E-10

BITS (bit set), 6-15

Byte defined, 2-2

C
C control relay, 5-7, 5-10

CALL (SF program flow), 7-26

CBD (convert binary to BCD), 6-16
application example, E-30–E-31

CDB (convert BCD to binary), 6-18
application example, E-32

CDT (SF program table handling), 7-28

Clock data, 5-28

Clock instructions
DCMP (date compare), 6-30
DSET (date set), 6-38
TCMP (time compare), 6-153
TSET (time set), 6-159

CMP (compare), 6-20

Coil
(normal), 5-9
(not-ed), 5-9

COM PROFIBUS, 5-32

Compiled mode SF execution, 7-6

Compiled Special (CS) memory, 4-4

Configuration, software
COM PROFIBUS, 5-32
SoftShop, 5-32
TISOFT, 5-32

Constant (K) memory, 4-5

Contact
(normal), 5-3
(not-ed), 5-5

Control relay
forcing, 3-13
memory, 3-13, 4-4
non-retentive, 3-13, 3-14
retentive, 3-13, 3-14

Controller systems, overview, 1-2–1-5

CS Memory, 4-4

CS-Memory checksum, status word, G-32

CTR (counter), 6-24

Cyclic RLL
defined, 1-6, 5-18
IORW (immediate I/O read/write), 6-50
TASK (start new RLL task), 6-150
task overrun, status word, G-26

Cyclic SF program, 6-126, 7-3, 7-12

D
Data representation

BCD, 2-6
byte, 2-2
I/O point, 2-2
integer, 2-3, 2-4
long word, 2-2
real number, 2-5
word, 2-2

Day of year, current status word, 5-30, 5-31,
G-28

DCAT (discrete control alarm timer), 6-26
application example, E-34–E-36

DCMP (date compare), 6-30

Derivative gain limiting, loop, 9-25

Deviation alarms
analog alarm, 8-13
loop, 9-31

Direct-acting, loop, 9-30

Discrete image register, 3-3, 4-4

Discrete scan, controllers, 1-6

Discrete scan execution time, status word, G-17

DIV (division), 6-32

DRUM (time-driven drum), 6-34
application example, E-11–E-12

Drum memory
DCC, 4-9
DCP, 4-9
DSC, 4-9
DSP, 4-9

Index-3

DSET (date set), 6-38

Dual power supply status, status word, G-16

Dual RBC status, status word, G-15

E
E bit, U-memory header, 6-187

E/Version word, H-4

Editing during run-time, 5-33–5-40

EDRUM (event-driven drum), application
example, E-13–E-16

EDRUM (time/event drum), 6-40

Electromechanical replacement
bit-of-word coil, 5-10, 6-22
bit-of-word contact, 5-7
C control relay, 5-7, 5-10
CTR (counter), 6-24
DCAT (discrete control alarm timer), 6-26
DRUM (time-driven drum), 6-34
EDRUM (time/event drum), 6-40
immediate X contact, 5-8
immediate Y coil, 5-10
JMP (jump), 6-52
LBL (label), 6-136
MCAT (motor control alarm timer), 6-63
MCR (master control relay), 6-68
MDRMD (maskable event drum, discrete),

6-72
MDRMW (maskable event drum, word), 6-76
relational contact, 5-8, 6-23
reset coil, 5-11, 6-22
reset coil bit-of-word, 5-11
reset coil immediate, 5-11
set coil, 5-11, 6-22
set coil bit-of-word, 5-11
set coil immediate, 5-11
SHRB (bit shift register), 6-132
SKP (skip), 6-136
TMR (timer), 6-156
X contact, 5-7
Y coil, 5-10
Y contact, 5-7

END (unconditional end), 6-44

ENDC (conditional end), 6-45

Error operation, loop, 9-29

Errors, SF program, 7-20, F-1

EXIT (SF program flow), 7-30

External subroutine
code requirements, H-2
guidelines, H-6

accessing word/discrete variables, H-10
debugging, H-6
floating point operations, H-11
static data initialization, H-7

header elements, H-4
header file example, H-12
link command file example, H-15
loading procedure, H-3
RLL XSUB call example, H-16
source file example, H-14

F
Fast loop (PID instruction), 6-110

First scan flags, status word, G-19

Forcing function, 3-3, 3-5, 3-13

Format
BCD, 2-6
integer, 2-3, 2-4
real number, 2-5

FTSR-IN (SF program table handling), 7-31

FTSR-OUT (SF program table handling), 7-35

G
G-memory, 4-11

access to, I-10
addresses, I-4
description of, I-2
LOCK and UNLCK, I-11
locks, I-10–I-14
locks and RLL, I-11

Gain, loop, 9-22

Global (G) memory, 4-11

GOTO (SF program flow), 7-39

GTS (go to subroutine), 6-46

Index-4

Index (continued)

H
Header, U-Memory, H-4

Hotline, for technical assistance, xxxvi

I
I/O

base status, status word, G-3
channel

PROFIBUS-DP, 1-4
Series 505 remote, 1-2

expansion, 1-2
forcing, 3-3, 3-5
immediate, 3-8
local, 1-2
module status, status word, G-6
modules supporting immediate I/O, 3-10
point defined, 2-2
point numbers, 1-5

IF (SF program flow), 7-40–7-41

IIF (SF program flow), 7-40–7-41

Image register
discrete, 3-3, 4-4
immediate update, 3-8
normal update, 3-2
word, 3-5, 4-4

IMATH (SF program integer math), 7-42

IMC (indexed matrix compare), 6-48

Immediate I/O
defined, 3-8
instructions

IORW (immediate I/O read/write), 6-50
TASK (start new RLL task), 6-150

Immediate X contact, 5-8

Immediate Y coil, 5-10

In–line SF program execution, 7-12

Integer, format, 2-3, 2-4

Integer defined, 2-3, 2-4

Interpreted mode SF execution, 7-6

Interrupt I/O operation, 3-11–3-12
configuring interrupt module, 3-11–3-12
defined, 1-6, 3-11
performance characteristics, 5-26

RLL program, 5-22–5-24
troubleshooting, 5-27
using IORW instruction, 5-23–5-24
using status word 220, 5-23–5-36
using status word 221, 5-27
using Task 8, 5-22–5-24

Interrupt request count, status word, G-27

Interrupting slots in local base, status word,
G-27

IORW (immediate I/O read/write), 3-9, 6-50

J
JMP (jump) instruction, 6-52

K
K-Memory, 4-5

L
L-Memory, 4-4

L-Memory checksum, status word, G-14

LABEL (SF program flow), 7-39

Ladder (L) memory, 4-4

LBL (label) RLL instruction, 6-136

LDA (load address) instruction, 6-54

LDC (load data constant), 6-59

LEAD/LAG (SF program signal processing
math), 7-44

LMN, remote setpoint, 9-21

LOCK (lock memory) instruction, 6-60

Locks
G-memory, I-10–I-14
in RLL, I-11–I-14

Long word defined, 2-2

Loop
alarm deadband, 9-19
algorithm, 9-6, 9-10
broken transmitter alarm, 9-5
derivative gain limiting, 9-25
deviation alarms, 9-31

Index-5

Loop (continued)
direct-acting, 9-30
error operation, 9-29
locking mode, 9-28
locking setpoint, 9-28
mode, locking, 9-28
operational states, 9-28
output

20% offset, 9-18
address, 9-18
bipolar, 9-18

overview, 9-2
process variable alarms, 9-20
ramp/soak, 9-14
reverse-acting, 9-30
sample rate, 9-12
setpoint, locking, 9-28
SF program call, 9-26
V-flags, 9-11

M
MATH (SF program real/integer math), 7-46

Math operations
ABSV (compute absolute value), 6-11
ADD (addition), 6-12
CMP (compare), 6-20
DIV (division), 6-32
MULT (multiplication), 6-98
SQRT (square root), 6-142
SUB (subtraction), 6-148

MCAT (motor control alarm timer), 6-63

MCR (master control relay) instruction, 6-68

MDRMD (maskable event drum, discrete), 6-72

MDRMW (maskable event drum, word), 6-76

Memory, G. See G–memory

Memory types
Compiled special (CS), 4-4
constant (K), 4-5
control relay, 4-4
drum, 4-9
global (G), 4-11
image register, 4-4
ladder (L), 4-4
one shot, 4-7
readable memory (defined), 4-3
shift register, 4-8

special (S), 4-4
status word, 4-5
table move, 4-6
temporary (T), 4-4, 7-16
timer/counter, 4-5
user subroutine (U), 4-11
variable (V), 4-4
VME, 4-11
writeable memory (defined), 4-3

MIRFT (move image register from table), 6-82

MIRTT (move image register to table), 6-84

MIRW (move image register to word), 6-86
application example, E-17–E-19

Mode, loop, locking, 9-28

Mode-locked applications
examples, I-6
run-time edits, I-7
two or more, I-6

Module (I/O), modules supporting immediate
I/O, 3-10

Module mismatch indicator, status word, G-17

MOVE (move element), 6-88

MOVW (move word), 6-96

MULT (multiplication), 6-98

MWFT (move word from table), 6-100
application example, E-26–E-27

MWI (move word with indirect addressing),
6-102

MWIR (move word to image register), 6-104
application example, E-20–E-23

MWTT (move word to table), 6-106
application example, E-24–E-25

N
Non-priority SF program, 6-126, 7-3, 7-11

timeslice, 1-9

NOT instruction, 6-108

O
One shot, 6-109

application example, E-33

Index-6

Index (continued)

One shot memory, 4-7

Output, loop
20% offset, 9-18
address, 9-18
bipolar, 9-18

P
PACK (SF program table handling, 7-51

PACKAA (analog alarm handling), 7-56

PACKLOOP (move loop data), 7-58

PACKRS (pack ramp/soak data), 7-60

Parameter area
PGTS discrete, 4-10
PGTS word, 4-10

Password protection, 5-39

PETWD (pet scan watchdog), 7-66

PGTS
(parameterized go to subroutine), 6-112
discrete parameter area, 4-10
word parameter area, 4-10

PGTSZ (parameterized go to subroutine zero),
6-118

PID (call fast loop), 6-110

Position algorithm, loop, 9-6, 9-10

Power flow, 5-2

PowerMath, using with SF programming,
7-4–7-9

Priority SF program, 6-126, 7-3, 7-11
timeslice, 1-10

Process variable alarms
analog alarm, 8-10
loop, 9-20

Programmable controller status, status word,
G-2

Programming software
APT, 5-32
SoftShop, 5-32
TISOFT, 5-32

R
Ramp/soak, 9-14

Rate, loop, 9-22

RBE, 1-9
event detection, 1-10

Readable memory, 4-3

Real number
defined, 2-5
format, 2-5

Relational contact, 5-8, 6-23

Reset, loop, 9-22

Reset coil, 5-11, 6-22

Reset coil bit-of-word, 5-11

Reset coil immediate, 5-11

Restricted SF program, 7-3, 7-12

RETURN (SF program flow), 7-71

Reverse-acting, loop, 9-30

RLL
box instruction, 5-12
coil, 5-8
contact, 5-3
rung structure, 5-12
scan principles, 5-13
subroutine stack overflow, status word, G-14

RLL instructions
ABSV (compute absolute value), 6-11
ADD (addition), 6-12
bit-of-word coil, 5-10, 6-22
bit-of-word contact, 5-7
BITC (bit clear), 6-13
BITS (bit set), 6-15
C control relay, 5-7, 5-10
CBD (convert binary to BCD), 6-16
CDB (convert BCD to binary), 6-18
CMP (compare), 6-20
CTR (counter), 6-24
DCAT (discrete control alarm timer), 6-26
DCMP (date compare), 6-30
DIV (division), 6-32
DRUM (time-driven drum), 6-34
DSET (date set), 6-38
EDRUM (time/event drum), 6-40
END (unconditional end), 6-44
ENDC (conditional end), 6-45
GTS (go to subroutine), 6-46

Index-7

RLL instructions (continued)
IMC (indexed matrix compare), 6-48
immediate X contact, 5-8
immediate Y coil, 5-10
IORW (immediate I/O read/write), 6-50
JMP (jump), 6-52
LBL (label), 6-136
LDA (load address), 6-54
LDC (load data constant), 6-59
LOCK (lock memory), 6-60
MCAT (motor control alarm timer), 6-63
MCR (master control relay), 6-68
MDRMD (maskable event drum, discrete),

6-72
MDRMW (maskable event drum, word), 6-76
MIRFT (move image register from table), 6-82
MIRTT (move image register to table), 6-84
MIRW (move image register to word), 6-86
MOVE (move element), 6-88
MOVW (move word), 6-96
MULT (multiplication), 6-98
MWFT (move word from table), 6-100
MWI (move word with indirect addressing),

6-102
MWIR (move word to image register), 6-104
MWTT (move word to table), 6-106
NOT, 6-108
One shot, 6-109
PGTS (parameterized go to subroutine), 6-112
PGTSZ (parameterized go to subroutine zero),

6-118
PID fast loop, 6-110
relational contact, 5-8, 6-23
reset coil, 5-11, 6-22
reset coil bit-of-word, 5-11
reset coil immediate, 5-11
RSD (return slave diagnostic), 6-120
RTN (return from subroutine), 6-122
SBR (subroutine), 6-123
set coil, 5-11, 6-22
set coil bit-of-word, 5-11
set coil immediate, 5-11
SF program called from RLL, 7-11
SF subroutine (call SF subroutine from RLL),

7-14
SFPGM (SF program call), 6-126
SFSUB (SF subroutine call), 6-128
SHRB (bit shift register), 6-132
SHRW (word shift register), 6-134

SKP (skip), 6-136
SMC (scan matrix compare), 6-140
SQRT (square root), 6-142
STFE (search table for equal), 6-144
STFN (search table for not equal), 6-146
SUB (subtraction), 6-148
TAND (table to table AND), 6-149
TASK (start new RLL task), 6-150
TCMP (time compare), 6-153
TCPL (table complement), 6-154
TEXT, 6-155
TMR (timer), 6-156
TOR (table to table OR), 6-158
TSET (time set), 6-159
TTOW (table to word), 6-160
TXOR (table to table exclusive OR), 6-162
UNLK (unlock memory), 6-167
WAND (word AND), 6-168
WOR (word OR), 6-170
WROT (word rotate), 6-172
WTOT (word to table), 6-174
WTTA (word to table AND), 6-176
WTTO (word to table OR), 6-178
WTTXO (word to table exclusive OR), 6-180
WXOR (word exclusive OR), 6-182
X contact, 5-7
XSUB (external subroutine call), 6-184
Y coil, 5-10
Y contact, 5-7

RLL theory
box instruction, 5-12
coil, 5-8

normal, 5-9
not-ed, 5-9

concept, 5-2
contact, 5-3

normal, 5-3
not-ed, 5-5

cyclic RLL, 5-18
immediate I/O, 3-8
power flow, 5-2
rung structure, 5-12
scan principles, 5-13
subroutines, 5-16

RSD (read slave diagnostic), 6-120

RTN (return from subroutine), 6-122

Run-time editing, 5-33–5-40

Index-8

Index (continued)

S
S-Memory, 4-4

Sample rate
analog alarm, 8-7
loop, 9-12

SBR (subroutine), 6-123

SCALE (SF program data conversion math),
7-72

Scan operations, 1-6
setting, 1-10

Scan time, status word, G-4

SDT (SF program table handling), 7-74

Set coil, 5-11
bit-of-word, 5-11
defined, 5-11, 6-22
immediate, 5-11

SF processor non-fatal errors, status word, G-13

SF program
called from analog alarm, 8-12
called from loop, 9-26
called from RLL, 6-126, 7-11
defined, 5-16, 7-2
element (defined), 7-22
errors, 7-20, F-1
expression (defined), 7-22
types

cyclic, 6-126, 7-3, 7-12
non-priority, 6-126, 7-3, 7-11
priority, 6-126, 7-3, 7-11
restricted, 7-3, 7-12

SF program statements
BCDBIN (BCD conversion math), 7-24
BINBCD (BCD conversion math), 7-25
CALL (program flow), 7-26
CDT (table handling), 7-28
EXIT (program flow), 7-30
FTSR-IN (table handling), 7-31
FTSR-OUT (table handling), 7-35
GOTO (program flow), 7-39
IF (program flow), 7-40–7-41
IIF (program flow), 7-40–7-41
IMATH (integer math), 7-42
LABEL (program flow), 7-39
LEAD/LAG (signal processing math), 7-44
MATH (real/integer math), 7-46
PACK (table handling), 7-51

PACKAA (analog alarm handling), 7-56
PACKLOOP (move loop data), 7-58
PACKRS (pack ramp/soak data), 7-60
PETWD (pet scan watchdog), 7-66
RETURN (program flow), 7-71
SCALE (data conversion math), 7-72
SDT (table handling), 7-74
SSR (table handling), 7-76

SF subroutine
(call SF subroutine from RLL), 7-14
timeslice, 1-9

SFPGM (SF program call from RLL), 6-126

SFSUB (SF subroutine call from RLL), 6-128

Shift register memory, 4-8

SHRB (bit shift register), 6-132
application example, E-2–E-3

SHRW (word shift register), 6-134
application example, E-4–E-5

SKP (skip) instruction, 6-136

Slaves, supported on PROFIBUS channel,
configuring with COM PROFIBUS, 5-32

SmarTune, automatic loop tuning, 9-34–9-45

SMC (scan matrix compare), 6-140

SoftShop programming software, xxxiv, 5-32

Special (S) memory, 4-4

Spurious interrupt count, status word, G-27

SQRT (square root), 6-142

SSR (SF program table handling), 7-76

Status word
application example, E-37
application flags, G-20, G-21
application ID, G-26
application installed flags, G-22, G-23
base poll enable flags, G-25
CS-Memory checksum, G-32
cyclic RLL task overrun, G-26
discrete scan execution time, G-17
dual power supply status, G-16
dual RBC status, G-15
first scan flags, G-19
I/O base status, G-3
I/O module status, G-6
interrupt request count, G-27
interrupting slots in local base, G-27
L-Memory checksum, G-14

Index-9

Status word (continued)
memory, 4-5
module mismatch indicator, G-17
programmable controller status, G-2
receive errors, timeout errors, G-11
RLL subroutine stack overflow, G-14
scan time, G-4
SF processor non-fatal errors, G-13
spurious interrupt count, G-27
time data, 5-28, G-9
U-Memory checksum, G-24
user error cause, G-18

STFE (search table for equal), 6-144

STFN (search table for not equal), 6-146

SUB (subtraction), 6-148

Subroutine, external
accessing word/discrete variables, H-10
coding requirements, H-2
debugging, H-6
floating point operations, H-11
guidelines, H-6
header elements, H-4
header file example, H-12
link command file example, H-15
loading procedure, H-3
RLL XSUB call example, H-16
source file example, H-14
static data initialization, H-7

Subroutine instructions
GTS (go to subroutine), 6-46
PGTS (parameterized go to subroutine), 6-112
PGTSZ (parameterized go to subroutine zero),

6-118
RSD (return slave diagnostic), 6-120
RTN (return from subroutine), 6-122
SBR (subroutine), 6-123
XSUB (external subroutine call), 6-184

Subroutines, 5-16

Subscripting variables, SF program math, 7-49

T
T-Memory, 4-4, 7-16

Table move memory, 4-6

Table operations
MIRFT (move image register from table), 6-82
MIRTT (move image register to table), 6-84

STFE (search table for equal), 6-144
STFN (search table for not equal), 6-146
TAND (table to table AND), 6-149
TCPL (table complement), 6-154
TOR (table to table OR), 6-158
TTOW (table to word), 6-160
TXOR (table to table exclusive OR), 6-162
WTOT (word to table), 6-174
WTTA (word to table AND), 6-176
WTTO (word to table OR), 6-178
WTTXO (word to table exclusive OR), 6-180

TAND (table to table AND), 6-149

Task, RLL program segments, 5-18

TASK (start new RLL task), 5-18, 6-150

TCMP (time compare), 6-153

TCPL (table complement), 6-154

Technical assistance, xxxvi

Temporary (T) memory, 4-4, 7-16

TEXT, Text Box documentation, 6-155

Text box, 6-155

Time data, 5-28
status word, G-9

Time of day, binary status word for, 5-30, 5-31,
G-28

Time slice, analog task processing, 1-8

Timer/counter memory, 4-5

TISOFT, programming software, 5-32

TMR (timer), 6-156
application example, E-6–E-9

TOR (table to table OR), 6-158

Transmitter alarm, broken, loop, 9-5

TSET (time set), 6-159

TTOW (table to word), 6-160

Tuning loops, 9-22

TXOR (table to table exclusive OR), 6-162

U
U-Memory, 4-11

external subroutine and, H-4
header, H-4

Index-10

Index (continued)

U-Memory checksum, status word, G-24

UDC (up-down counter), 6-164

UNLK (unlock memory) instruction, 6-167

User error cause, status word, G-18

User subroutine (U) memory, 4-11

V
V-flags

analog alarm, 8-6
loop, 9-11

V-Memory, 4-4

Variable (V) memory, 4-4

Variable subscripting, SF program math, 7-49

Velocity algorithm, loop, 9-7, 9-10

VMEbus, address, accessing non-existent, 6-89,
6-187

VMEbus error, 4-11, 6-89, 6-187

W
WAND (word AND), 6-168

WOR (word OR), 6-170

Word defined, 2-2

Word image register, 3-5, 4-4

Word moves
LDA (load address), 6-54

LDC (load data constant), 6-59
MIRW (move image register to word), 6-86
MOVE (move element), 6-88
MOVW (move word), 6-96
MWFT (move word from table), 6-100
MWI (move word with indirect addressing),

6-102
MWIR (move word to image register), 6-104
MWTT (move word to table), 6-106
SHRW (word shift register), 6-134

Writeable memory, 4-3

WROT (word rotate), 6-172

WTOT (word to table), 6-174

WTTA (word to table AND), 6-176

WTTO (word to table OR), 6-178

WTTXO (word to table exclusive OR), 6-180

WXOR (word exclusive OR), 6-182
application example, E-28–E-29

X
X contact, 5-7

XSUB (external subroutine call), 6-184

Y
Y coil, 5-10

Y contact, 5-7

Customer Response

We would like to know what you think about our user manuals so that we can serve you better.
How would you rate the quality of our manuals?

Excellent Good Fair Poor

Accuracy
Organization
Clarity
Completeness
Graphics
Examples
Overall design
Size
Index

Would you be interested in giving us more detailed comments about our manuals?

Yes! Please send me a questionnaire.

No. Thanks anyway.

Your Name:

Title:

Telephone Number: ()

Company Name:

Company Address:

Manual Name: SIMATIC 545/555/575 Programming Reference User Manual Edition: Second

Manual Assembly Number: 2806090–0002 Date: 08/98

Order Number: PPX:505–8204–2

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.3 JOHNSON CITY, TN

FOLD

FOLD

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ATTN: Technical Communications M/S 519
SIEMENS ENERGY & AUTOMATION INC.
3000 BILL GARLAND RD
P O BOX 1255
JOHNSON CITY TN 37605–1255

SIMATIC and SINEC are trademarks of Siemens AG.

SoftShop, PowerMath, SmarTune, PCS, Series 505, Series 500, APT, PEERLINK, and TISOFT are trademarks of Siemens Energy &
Automation, Inc.

IBM and AT are registered trademarks and XT is a trademark of International Business Machines Corporation.

DEC is a registered trademark and VAX is a trademark of Digital Equipment Corporation.

Microtec is a registered trademark of Microtec Research, Inc.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS, Windows, and Quick C are registered trademarks of Microsoft Corporation.

Turbo C is a registered trademark of Borland International, Inc.

	Title
	Contents
	Preface
	Introduction
	New Features
	How to Use This Manual
	SIMATIC 505 SoftShop for Windows
	TISOFT Programming Software
	Technical Assistance
	Manual Contents

	1 Series 505 System Overview
	1.1 The 545, 555, and 575 Systems
	System Components
	Using PROFIBUS-DP I/O
	Local I/O
	Expansion I/O Channels
	Series 505 Remote I/O
	PROFIBUS-DP I/O
	Output Response on PROFIBUS- DP Slave Devices
	Assigning I/O Point Numbers

	1.2 Program Execution Operations
	CPU Scan Operations
	Interrupt RLL Execution
	Cyclic RLL Execution
	Discrete Scan
	Analog Task Processing
	Cyclic Analog Tasks
	Non-cyclic Analog Tasks
	Setting the Scan

	2 Data Representation
	2.1 Definitions
	Byte
	Word
	Long Word
	Image Register
	I/O Point

	2.2 Integers
	Signed 16-Bit Integers
	Unsigned 16-Bit Integers
	Signed 32-Bit Integers

	2.3 Real Numbers
	2.4 Binary-Coded Decimal
	2.5 Format for an Address Stored in a Memory Location

	3 I/O Concepts
	3.1 Reading and Updating the I/O
	Discrete Image Register
	Word Image Register

	3.2 Normal I/O Updates
	Discrete Control
	Analog Control

	3.3 High Speed I/O Updates
	Immediate I/O
	Modules that Support Immediate I/O
	Configuring Immediate I/O

	3.4 Interrupt I/O Operation
	Overview
	Configuring the Interrupt Input Module

	3.5 Control Relays
	Using Retentive and Non-retentive Control Relays

	4 Controller Memory
	4.1 Introduction to Controller Memory
	Overview of Controller Memory Types
	RLL Access to the Memory Types

	4.2 Controller Memory Types
	Ladder Memory
	Image Register Memory
	Control Relay Memory
	Special Memory
	Compiled Special (CS) Memory
	Temporary Memory
	Variable Memory
	Constant Memory
	Status Word Memory
	Timer/Counter Memory
	Table Move Memory
	One Shot Memory
	Shift Register Memory
	Drum Memory
	PGTS Discrete Parameter Area
	PGTS Word Parameter Area
	User External Subroutine Memory
	Global Memory: 575 Only
	VME Memory: 575 Only

	5 Programming Concepts
	5.1 RLL Components
	RLL Concept
	RLL Contact
	RLL Coil
	RLL Box Instruction
	RLL Rung Structure
	RLL Scan Principles

	5.2 Program Compile Sequence
	5.3 Using Subroutines
	RLL Subroutine Programs
	SF Programs
	External Subroutines

	5.4 Cyclic RLL
	Overview
	Cyclic RLL Execution

	5.5 Interrupt RLL (545/555 only)
	The Interrupt RLL Task
	Operation
	Performance Characteristics
	Troubleshooting

	5.6 Using Real-Time Clock Data
	BCD Time of Day
	Binary Time of Day
	Time of Day Status

	5.7 Entering Relay Ladder Logic
	SoftShop 505 for Windows
	TISOFT
	Using APT
	COM PROFIBUS

	5.8 Doing Run-Time Program Edits
	Editing in Run Mode
	Avoid These Actions During Run-Time Edits
	Additional Considerations When Doing Run-Time Edits

	5.9 Password Protection
	Protected Program Elements
	Disabled and Enabled Passwords
	Password Protection Levels
	Determining the Current State of Password
	Password Effect on EEPROM

	6 RLL Instruction Set
	6.1 Safety Considerations
	Overview
	Failure of the Control System
	Inconsistent Program Operation
	Editing an Active Process

	6.2 Introduction
	6.3 Absolute Value
	ABSV Description
	ABSV Operation

	6.4 Add
	ADD Description
	ADD Operation

	6.5 Bit Clear
	BITC Description
	BITC Operation

	6.6 Bit Pick
	BITP Description
	BITP Operation

	6.7 Bit Set
	BITS Description
	BITS Operation

	6.8 Convert Binary to BCD
	CBD Description
	CBD Operation

	6.9 Convert BCD to Binary
	CDB Description
	CDB Operation

	6.10 Compare
	CMP Description
	CMP Operation

	6.11 Coils
	6.12 Contacts
	6.13 Counter (Up Counter)
	CTR Description
	CTR Operation
	Using the Counter Variables

	6.14 Discrete Control Alarm Timer
	DCAT Description
	DCAT State Changes
	DCAT Operation
	Open (Input On)
	Close (Input Off)
	Using the DCAT Variables

	6.15 Date Compare
	DCMP Description
	DCMP Operation

	6.16 Divide
	DIV Description
	DIV Operation

	6.17 Time Driven Drum
	DRUM Description
	DRUM Operation
	Calculating Counts/ Step
	Using DRUM Variables

	6.18 Date Set
	DSET Description
	DSET Operation

	6.19 Time/Event Driven Drum
	EDRUM Description
	EDRUM Operation
	Calculating Counts/Step
	Timer-triggered Advance Only
	Event-triggered Advance Only
	Timer and Event-Triggered Advance
	Timer or External Event-triggered Advance
	Using EDRUM Variables

	6.20 Unconditional End
	END Description
	END Operation

	6.21 Conditional End
	ENDC Description
	ENDC Operation

	6.22 Go To Subroutine
	GTS Description
	GTS Operation

	6.23 Indexed Matrix Compare
	IMC Description
	IMC Operation

	6.24 Immediate I/O Read/Write
	IORW Description
	IORW Operation

	6.25 Jump
	JMP Description
	JMP/JMPE Operation

	6.26 Load Address
	LDA Description
	LDA Operation
	Specifying Source
	Specifying Index for Source
	Specifying Destination
	Specifying Index for Destination

	6.27 Load Data Constant
	LDC Description
	LDC Operation

	6.28 Lock Memory
	LOCK Description
	Acquiring Control of the Lock
	How the Lock Protects Memory

	6.29 Motor Control Alarm Timer
	MCAT Description
	MCAT State Changes
	MCAT Operation
	Open Input Turns On
	Close Input Turns On
	Using the MCAT Variables

	6.30 Master Control Relay
	MCR Description
	MCR/MCRE Operation

	6.31 Maskable Event Drum, Discrete
	MDRMD Description
	MDRMD Operation
	Defining the Mask
	Calculating Counts/Step
	Timer-triggered Advance Only
	Event-triggered Advance Only
	Timer and Event-Triggered Advance
	Timer or External Event-Triggered Advance
	Using MDRMD Variables

	6.32 Maskable Event Drum, Word
	MDRMW Description
	MDRMW Operation
	Defining the Mask
	Calculating Counts/Step
	Timer-triggered Advance Only
	Event-triggered Advance Only
	Timer and Event-Triggered Advance
	Timer or External Event-triggered Advance
	Using MDRMD Variables

	6.33 Move Image Register from Table
	MIRFT Description
	MIRFT Operation

	6.34 Move Image Register to Table
	MIRTT Description
	MIRTT Operation

	6.35 Move Image Register to Word
	MIRW Description
	MIRW Operation

	6.36 Move Element
	MOVE Description
	MOVE Operation
	Specifying Type of Elements
	Specifying Source
	Specifying Index for Source
	Specifying Destination
	Specifying Index for Destination
	Specifying Number of Elements to Move

	6.37 Move Word
	MOVW Description
	MOVW Operation

	6.38 Multiply
	MULT Description
	MULT Operation

	6.39 Move Word from Table
	MWFT Description
	MWFT Operation

	6.40 Move Word with Index
	MWI Description
	MWI Operation

	6.41 Move Word to Image Register
	MWIR Description
	MWIR Operation

	6.42 Move Word to Table
	MWTT Description
	MWTT Operation

	6.43 NOT
	NOT Description
	NOT Operation

	6.44 One Shot
	One Shot Description
	One Shot Operation

	6.45 PID Loop
	PID Fast Loop Description
	PID Operation

	6.46 Parameterized Go To Subroutine
	PGTS Description
	PGTS Operation

	6.47 Parameterized Go To Subroutine (Zero)
	PGTSZ Description
	PGTSZ Operation

	6.48 Read Slave Diagnostic (RSD)
	RSD Description
	RSD Operation

	6.49 Return from Subroutine
	RTN Description
	RTN Operation

	6.50 Subroutine
	SBR Description
	SBR Operation

	6.51 Call an SF Program
	SFPGM Description
	SFPGM Operation
	In-line SFPGM Execution

	6.52 Call SF Subroutines from RLL
	SFSUB Description
	SFSUB Operation
	In-line SFSUB Execution

	6.53 Bit Shift Register
	SHRB Description
	SHRB Operation

	6.54 Word Shift Register
	SHRW Description
	SHRW Operation

	6.55 Skip / Label
	SKP / LBL Description
	SKP / LBL Operation

	6.56 Scan Matrix Compare
	SMC Description
	SMC Operation

	6.57 Square Root
	SQRT Description
	SQRT Operation

	6.58 Search Table For Equal
	STFE Description
	STFE Operation

	6.59 Search Table For Not Equal
	STFN Description
	STFN Operation

	6.60 Subtract
	SUB Description
	SUB Operation

	6.61 Table to Table AND
	TAND Description
	TAND Operation

	6.62 Start New RLL Task
	TASK Description
	TASK Operation

	6.63 Time Compare
	TCMP Description
	TCMP Operation

	6.64 Table Complement
	TCPL Description
	TCPL Operation

	6.65 Text
	Text Box Description

	6.66 Timer
	TMR/TMRF Description
	TMR/TMRF Operation
	Using the Timer Variables

	6.67 Table to Table OR
	TOR Description
	TOR Operation

	6.68 Time Set
	TSET Description
	TSET Operation

	6.69 Table to Word
	TTOW Description
	TTOW Operation

	6.70 Table to Table Exclusive OR
	TXOR Description
	TXOR Operation

	6.71 Up/Down Counter
	UDC Description
	UDC Operation
	Using the UDC Variables

	6.72 Unlock Memory
	UNLCK Description
	UNLCK Operation

	6.73 Word AND
	WAND Description
	WAND Operation

	6.74 Word OR
	WOR Description
	WOR Operation

	6.75 Word Rotate
	WROT Description
	WROT Operation

	6.76 Word to Table
	WTOT Description
	WTOT Operation

	6.77 Word to Table AND
	WTTA Description
	WTTA Operation

	6.78 Word to Table OR
	WTTO Description
	WTTO Operation

	6.79 Word to Table Exclusive OR
	WTTXO Description
	WTTXO Operation

	6.80 Word Exclusive OR
	WXOR Description
	WXOR Operation

	6.81 External Subroutine Call
	XSUB Description
	XSUB Operation

	7 Special Function Programs
	7.1 Defining Special Function Programs
	Introduction
	Special Function Program Types
	SF Programs Called from RLL
	SF Programs Called from Loops/Analog Alarms

	7.2 Using PowerMath with Special Function Programming
	What is PowerMath?
	32-Bit Signed and 16-Bit Unsigned Integer Math
	SF Operators, Functions, and Instructions
	Why Choose Compiled Mode for an SF Program or Subroutine?
	Why Choose Interpreted Mode for an SF Program or Subroutine?
	What Can Be Compiled?
	How Do SF Programs Execute?
	How Do SF Subroutines Execute?
	CALL Subroutine Statement Execution

	7.3 SF Program Statements
	7.4 Executing Special Function Programs
	Priority/non-priority SF Programs
	In-Line Execution of Compiled SF Programs
	Cyclic Programs
	Restricted Programs Called by Loops
	Restricted Programs Called by Analog Alarms

	7.5 Executing Special Function Subroutines
	Calling SF Subroutines
	Designing SF Subroutines

	7.6 Memory Usage by SF Programs
	7.7 Entering SF Program Header with TISOFT
	7.8 Reporting SF Program or SFSUB RLL Instruction Errors
	Reporting Errors with the SFEC Variable
	Reporting Errors with Discrete Points
	Reporting Errors with V or WY Memory

	7.9 Entering Special Function Programming Statements
	7.10 Convert BCD to Binary
	BCDBIN Description
	BCDBIN Operation

	7.11 Convert Binary Inputs to BCD
	BINBCD Description
	BINBCD Operation

	7.12 Call Subroutine
	CALL Description
	CALL Operation

	7.13 Correlated Data Table
	CDT Description
	CDT Operation

	7.14 Exit on Error
	EXIT Description
	EXIT Operation

	7.15 Fall Through Shift Register--Input
	FTSR-IN Description
	FTSR-IN Operation

	7.16 Fall through Shift Register--Output
	FTSR-OUT Description
	FTSR-OUT Operation

	7.17 Go To/Label Function
	IF/IIF
	7.18 IF/IIF/THEN/ELSE Functions
	IF/THEN/ELSE Description
	IF Operation

	7.19 Integer Math Operations
	IMATH Description
	IMATH Operation

	7.20 Lead/Lag Operation
	LEAD/LAG Description
	LEAD/LAG Operation

	7.21 Real/Integer Math Operations
	MATH Description
	MATH Operation
	Using Word Indexing
	Using Element Indexing
	Indexing Loop and Analog Alarm Variables
	Using Multiple Subscripts
	MATH Examples

	7.22 Pack Data
	PACK Description
	PACK TO Operation
	PACK FROM Operation

	7.23 Pack Analog Alarm Data
	PACKAA Description
	PACKAA Operation

	7.24 Pack Loop Data
	PACKLOOP Description
	PACKLOOP Operation

	7.25 Pack Ramp/Soak Data
	PACKRS Description
	PACKRS Operation

	7.26 Pet Scan Watchdog
	PETWD Description

	7.27 Printing
	PRINT Description
	PRINT Operation

	7.28 Return from SF Program/Subroutine
	7.29 Scaling Values
	SCALE Description
	SCALE Operation

	7.30 Sequential Data Table
	SDT Description
	SDT Operation

	7.31 Synchronous Shift Register
	SSR Description
	SSR Operation

	7.32 Unscaling Values
	UNSCALE Description
	UNSCALE Operation

	7.33 Comment

	8 Programming Analog Alarms
	8.1 Overview
	8.2 Analog Alarm Programming and Structure
	Analog Alarm Numbers and Variable Names
	Programming Tables
	Analog Alarm C-Flags

	8.3 Specifying Analog Alarm V-Flag Address
	Alarm V-Flag Address

	8.4 Specifying Analog Alarm Sample Rate
	Sample Rate

	8.5 Specifying Analog Alarm Process Variable Parameters
	Process Variable Address
	PV Range Low/High
	PV is Bipolar 20% Offset
	Square Root of PV

	8.6 Specifying Analog Alarm Deadband
	Alarm Deadband

	8.7 Specifying Analog Alarm Process Variable Alarm Limits
	PV Alarms: Low-low, Low, High, High-high

	8.8 Specifying Analog Alarm Setpoint Parameters
	Remote Setpoint
	Clamp SP Limits

	8.9 Specifying Analog Alarm Special Function Call
	Special Function

	8.10 Specifying Analog Alarm Setpoint Deviation Limits
	Deviation Alarms: Yellow, Orange

	8.11 Specifying Other Analog Alarm Process Variable Alarms
	Rate of Change Alarm
	Broken Transmitter Alarm

	9 Programming Loops
	9.1 Overview
	9.2 Using the PID Loop Function
	Manual Mode
	Auto Mode
	Cascade Mode
	Changing Loop Mode

	9.3 Loop Algorithms
	PID Position Algorithm
	PID Velocity Algorithm

	9.4 Programming Loops
	Loop Numbers and Variable Names
	Programming Tables
	Loop C-Flags

	9.5 Specifying Loop PID Algorithm
	Pos/Vel PID Algorithm

	9.6 Specifying Loop V-Flag Address
	Loop V-Flag Address

	9.7 Specifying Loop Sample Rate
	Sample Rate

	9.8 Specifying Loop Process Variable Parameters
	Process Variable Address
	PV Range Low/high
	PV is Bipolar 20% Offset
	Square Root of PV

	9.9 Specifying Loop Ramp/Soak Profile
	Defining Ramp/Soak Operation
	Defining Ramp/Soak Steps
	Controlling the Ramp/Soak Operation
	Ramp/Soak for SP
	Programming Ramp/ Soak

	9.10 Specifying Loop Output Parameters
	Loop Output Address
	Output is Bipolar
	20% Offset on Output

	9.11 Specifying Loop Alarm Deadband
	Alarm Deadband

	9.12 Specifying Loop Process Variable Alarm Limits
	PV Alarms Low-low, Low-high, High-high

	9.13 Specifying Loop Setpoint Parameters
	Remote Setpoint
	Clamp SP Limits

	9.14 Specifying Loop Tuning Parameters
	Loop Gain, Reset, Rate
	Removing Integral Action
	Removing Derivative Action
	Removing Proportional Action
	Freeze Bias
	Adjust Bias

	9.15 Specifying Loop Derivative Gain Limiting
	Limiting Coefficient

	9.16 Specifying Loop Special Function Call
	Special Calculation/ Special Function
	Calculation Scheduled on Setpoint
	Calculation Scheduled on Process Variable
	Calculation Scheduled on Output

	9.17 Specifying Loop Locked Changes
	Lock Setpoint, Auto/ Manual, Cascade

	9.18 Specifying Loop Error Operation
	Error Operation
	Error Deadband
	No Error Calculation

	9.19 Specifying Reverse Acting Loops
	Reverse Acting
	Direct-Acting Loop
	Reverse-Acting Loop

	9.20 Specifying Loop Setpoint Deviation Limits
	Deviation Alarms Yellow, Orange

	9.21 Specifying Other Loop Process Variable Alarms
	Rate of Change Alarm
	Broken Transmitter Alarm

	9.22 Using SmarTune Automatic Loop Tuning (555 CPUs Only)
	Overview of SmarTune
	The Loop Tuning Process Equation
	The Proportional Component
	The Integral Component
	The Derivative Component
	Variable Parameters
	Value Parameters

	A Memory and Variable Types
	A.1 RLL Variable Access
	A.2 SF Program Variable Access

	B RLL Memory Requirements
	B.1 Memory Requirements

	C Controller Performance
	C.1 Calculating Performance
	Calculating Normal Scan Time
	Calculating the Cyclic RLL Execution Time
	Total Scan Time Including Cyclic RLL

	C.2 Tuning the Timeline
	Basic Strategy
	Using Peak Elapsed Time Words
	Using the Status Words
	Concepts to Remember When Tuning Timeline

	C.3 RLL Execution Times
	C.4 SF Program Statement Execution Times

	D Loop and Analog Alarm Flag Formats
	D.1 Loop Flags
	D.2 Analog Alarm Flags

	E Selected Application Examples
	E.1 Using the SHRB
	SHRB Application Example
	Explanation

	E.2 Using the SHRW
	SHRW Application Example
	Explanation

	E.3 Using the TMR
	TMR Application Example #1
	Explanation #1
	TMR Application Example #2
	Application #3

	E.4 Using the BITP
	BITP Application Example
	Explanation

	E.5 Using the DRUM
	DRUM Application Example
	Explanation

	E.6 Using the EDRUM
	EDRUM Application Example
	Explanation

	E.7 Using the MIRW
	Application
	Explanation

	E.8 Using the MWIR
	Application
	Explanation

	E.9 Using the MWTT
	Application
	Explanation

	E.10 Using the MWFT
	Application
	Explanation

	E.11 Using the WXOR
	Application
	Explanation
	Inputs are Correct
	Inputs are Incorrect

	E.12 Using the CBD
	Application
	Explanation

	E.13 Using the CDB
	Application
	Explanation

	E.14 Using the One Shot
	Application
	Explanation

	E.15 Using the DCAT
	Application
	Explanation
	Normal Operation
	Valve Fails to Open
	Valve Fails to Close
	Sensor Fails

	E.16 Using Status Words
	Application
	Explanation

	F Special Function Program Error Codes
	G Status Words
	STW01: Non- fatal Errors
	STW02: Base Controller Status
	STW03 - STW09: PROFIBUS- DP Slave Status
	STW10: Dynamic Scan Time
	STW11 - STW138: I/ O Module Status
	STW139: Discrete Force Count
	STW140: Word Force Count
	STW141 - STW144: Date, Time, and Day of Week
	STW145 - STW146: Receive and Timeout Errors
	STW147: PROFIBUS-DP Slave Errors
	STW148: PROFIBUS-DP Bus Communication Errors
	STW149 - STW160: Reserved
	STW161: Special Function Processor Fatal Errors
	STW162: Special Function Processor Non-fatal Errors
	STW163: RLL Subroutine Stack Overflow
	STW164 - STW165: L-Memory Checksum C0
	STW166 - STW167: L-Memory Checksum C1
	STW168: Dual RBC Status
	STW169 - STW175: Reserved
	STW176: Dual Power Supply Status
	STW177 - STW183: Reserved
	STW184: Module Mismatch Indicator
	STW185 - STW191: Reserved
	STW192: Discrete Scan Execution Time
	STW193 - STW199: Reserved
	STW200: User Error Cause
	STW201: First Scan Flags
	STW202: Application Mode Flags (A - P)
	STW203: Application Mode Flags (Q - Z)
	STW204: Application Installed Flags (A - P)
	STW205: Application Installed Flags (Q - Z)
	STW206 - STW207: U- Memory Checksum C0
	STW208 - STW209: U- Memory Checksum C1
	STW210: Base Poll Enable Flags
	STW211 - STW217: PROFIBUS- DP Slave Enable Flags
	STW218: My Application ID
	STW219: RLL Task Overrun
	STW220: Interrupting Slots in Local Base
	STW221: Module Interrupt Request Count
	STW222: Spurious Interrupt Count
	STW223 - STW225: Binary Time-of-Day
	STW226: Time-of-Day Status
	STW227 - STW228: Bus Error Access Address
	STW229 - STW230: Bus Error Program Offset
	STW231: PROFIBUS-DP I/O System Status
	STW232 - STW238: PROFIBUS-DP Slave Diagnostic
	STW239 - STW240: CS-Memory Checksum C0
	STW241 - STW242: CS-Memory Checksum C1

	H External Subroutine Development
	H.1 Designing the External Subroutine
	Program Code Requirements
	Loading the Subroutine

	H.2 U-Memory Format
	Header
	Code and Constant Data
	Modifiable Data
	User Stack

	H.3 Guidelines for Creating C Language Subroutines
	Debugging the External Subrouting
	Static Data Initialization
	Accessing Discrete/Word Variables
	Floating Point Operations
	Unsupported C Language Features

	H.4 Developing an External Subroutine -- Example
	Example Header File
	Example Subrouting Source
	Preparing the Load Module
	Loading U-Memory
	Using the External Subroutines in RLL

	I Interboard Communications for the 575
	I.1 Using Applications to Enable CPUs to Exchange Data
	Applications
	Overview
	G-Memory Areas
	Required and Optional Applications
	Locking Mode Transitions for Two or More Applications

	I.2 Using Direct VMEbus Access to Communicate with Third-Party Boards
	Accessing VMEbus Masters and Slaves Directly

	I.3 Coordinating Access to Shared Memory
	Using Locks

	Index

