SIEMENS

SIMATIC S5
S5-135U/155U
CPU 928/CPU 928B/CPU 948
List of Operations

Siemens AG
Automation Group
Industrial Automation Systems
Postfach 4848,D-90327 Nürnberg

© Siemens AG 1996 Subject to alteration	Progress
Siemens Aktiengesellschaft	in Automation.

Order No: 6ES5 997-3UA23
Printed in the Fed. Rep. of Germany

SIEMENS

SIMATIC S5

S5-135U/155U
CPU 928/CPU 928B/CPU 948

List of Operations

Order No.
6ES5 997-3UA23, Release 01

This publication is protected by copyright. Transmission and reproduction of this document as well as use and notification of its contents are not permitted without express authority. This also applies to translation into other languages.
Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.
Technical data subject to alteration.
Copyright © Siemens AG 1996 All Rights Reserved
Order No.: 6ES5 997-3UA23
Order from: Elektronikwerk Karlsruhe
Printed in the Federal Republic of Germany

Contents

Page
Explanatory Notes on the List of Operations 1
Explanatory Notes on the Operands 3
Explanatory Notes on the Formal Operands (Block Parameters) 7
Basic Operations 10
Boolean Logic Operations 10
Set/Reset Operations/Binary 16
Load Operations 20
Transfer Operations 28
Timer Operations 34
Counter Operations 36
Arithmetic Operations 38
Comparison Operations 42
Block Call Operations 48
Block End Operations 52
Null Operations 54
Stop Operation 54
Display Construction Operations 54
Supplementary Operations 56
Logic Operations 56
Digital Operations 56
Bit Test Operations 58
Set/Reset Operations 62
Timer and Counter Operations 66
Load and Transfer Operations 70
Conversion Operations 74
Shift and Rotate Operations 76
Jump Operations 78
Other Operations 80

Page

System Operations 86
Load and Transfer Operations 86
Arithmetic Operations 94
Jump Operations 96
Other Operations 96
Set Operations 100
Register to Register Transfer Operations 102
Load, Transfer and Arithmetic Operations with the Base Address Register 102
Access to local, word-oriented memory 106
Test/set Busy location (global area) 106
Access to global, byte-oriented memory 108
Access to global, word-oriented memory 110
Open page 110
Test/set Busy location (page area) 110
Access to byte-oriented pages 112
Access to word-oriented pages 114
Machine Code Listing 116
Alphabetical Index of Operations (with Machine Code) 131
Explanatory Notes on the Condition Codes 144
List of Organization Blocks 146
OBs for Program Processing 146
OBs for Start-up Procedures 148
OBs for Handling Controller Errors in the CPU 928/CPU 928B 150
OBs for Handling Controller Errors in the CPU 948 154
OBs with Special Functions 156
Address Area Divisions 168

Explanatory Notes on the List of Operations

Abbreviations	Explanations
ACCU 1 ACCU 2 ACCU 3 ACCU 4	The four 32-bit accumulators
ACCU 1-H ACCU 2-H ACCU 3-H ACCU 4-H	The high word of the four 32-bit accumulators
ACCU 1-L ACCU 2-L ACCU 3-L ACCU 4-L	The low word of the four 32-bit accumulators
Condition codes CC0/CC1 OV Y 1 0 N	Condition codes $0 / 1$ (see pages 144,145) Overflow; this condition code is set e.g. if the number range is exceeded during arithmetic operations. Stored overflow; this condition code is set if at least one arithmetic operation causes an overflow (for detection of arithmetic errors). The condition code is set/reset depending on the statement. Condition code is set Condition code is reset Condition code is not affected (see Explanatory Notes on the Condition Codes)
Formal operand	Symbolic label with up to 4 characters. The first character must be a letter (see page 7ff).

Abbreviations	Explanations
PI	Process Image \rightarrow memory areas for data that are read from the I/Os and/or transferred to the I/Os. The I/O image remains in these memory areas during one program cycle and is updated prior to the next. The binary logic and set/reset operations always use the PI.
PII/PIQ	Process Image of Inputs/Outputs
RLO	Binary Result of Logic Operation (1 bit)
RLO-dependent command flow?	Command execution depends on the RLO The statement is executed only if RLO = "1". The statement is executed only on the leading edge of the RLO (RLO changes from " 0 " to "1"). The statement is executed only after the RLO changes from "1" to " 0 " (falling edge). The statement is always executed.
RLO reset?	Command affects the RLO RLO is set to " 1 " or " 0 ". Please refer to the function description of the corresponding statement for explanation on how the new RLO is formed. RLO is set to " 1 ". RLO does not change.
RLO reloaded?	The RLO does not change. The RLO cannot be combined any further. If a command which reloads the RLO is followed by a binary logic operation, the scan result is reloaded and a new RLO is started. The RLO can be combined further.
STL	Statement List method of representation in STEP 5.

Explanatory Notes on the Operands

Abbr	Description	Permissible Value Range for Operands		$\begin{aligned} & \text { Size } \\ & \text { in } \\ & \text { Bits } \end{aligned}$
		CPU	Range	
BN	Byte constant (fixed-point no.)	all	-128 to +127	8
C	Counter	all	0 to 255	-
D	Data bit	all	0.0 to 255.15	1
DB	Data block	928 928B 948	3 to 255 2 to 255	-
DD	Data double word	all	0 to 254	32
DH	Double word constant (hexadecimal)	all	0 to FFFF FFFF	32
DL	Data word (left-hand byte)	all	0 to 255	8
DR	Data word (right-hand byte)	all	0 to 255	8
DW	Data word (in a DB or DX)	all	0 to 255	16
DX	Data block (extension)	$\begin{gathered} \hline 928 / \\ 928 \mathrm{~B} \\ 948 \end{gathered}$	1 to 255 3 to 255	-
F	Flag	all	0.0 to 255.7	1
FB	Function block	all	0 to 255	-
FD	Flag double word	all	0 to 252	32
FW	Flag word	all	0 to 254	16
FX	Function block (extension)	all	0 to 255	-

Abbr	Description	Permissible Value Range for Operands		$\begin{aligned} & \text { Size } \\ & \text { in } \\ & \text { Bits } \end{aligned}$
		CPU	Range	
FY	Flag byte	all	0 to 255	8
I	Input (in PII)	all	0.0 to 127.0	1
IB	Input byte (in PII)	all	0 to 127	8
ID	Input double word (in PII)	all	0 to 124	32
IW	Input word (in PII)	all	0 to 126	16
KB	Constant (1 byte)	all	0 to 255	8
KC	Constant (count)	all	0 to 999	16
KF	Constant (fixed-point number)	all	$\begin{aligned} & -32768 \\ & \text { to }+32767 \end{aligned}$	16
KG	Constant (floating-point number)	all	$\begin{aligned} & \pm 0,1701412 \cdot 10^{39} \\ & \text { to } \\ & \pm 0,1469368 \cdot 10^{-38} \end{aligned}$	32
KH	Constant (hexadecimal code)	all	0 to FFFF	16
KM	Constant (2-byte bit pattern)	all	Arbitrary bit pattern	16
KS	Constant (2 characters)	all	ASCII characters	16
KT	Constant (time)	all	0.0 to 999.3	16
KY	Constant (2 bytes)	all	$\begin{aligned} & 0 \text { to } 255 \\ & \text { (per byte) } \end{aligned}$	16
OB	Organization block	all	1 to 39	-
OB	Operating system special function	$\begin{gathered} 928 / \\ 928 \mathrm{~B} \\ \\ 948 \end{gathered}$	$110 \text { to } 255$ 121 to 255	-
OW	Word of the extended I/O area (without PII/PIQ update)	all	0 to 254	16
OY	Byte of the extended I/O area (without PII/PIQ update)	all	0 to 255	8

Abbr	Description	Permissible Value Range for Operands		$\begin{aligned} & \text { Size } \\ & \text { in } \\ & \text { Bits } \end{aligned}$
		CPU	Range	
PB	Program block	all	0 to 255	-
PW	Peripheral word of - digital inputs (direct reading of the PII) - analog inputs/digital inputs (without PII update) - digital outputs (with PIQ update) - analog outputs/digital outputs (without PIQ update)	all	0 to 126 128 to 254 0 to 126 128 to 254	16
PY	Peripheral byte of - digital inputs (direct reading of the PII) - analog inputs/digital inputs (without PII update) - digital outputs (with PIQ update) - analog outputs/digital outputs (without PIQ update	all	0 to 127 128 to 255 0 to 127 128 to 255	8
Q	Output (with PIQ update)	all	0.0 to 127.0	1
QB	Output byte (with PIQ update)	all	0 to 127	8
QD	Output double word (with PIQ update)	all	0 to 124	32
QW	Output word (with PIQ update)	all	0 to 126	16
RI	Interface data area	all	0 to 255	16
RJ	Extended interface data area	all	0 to 255	16
RS	System data area	all	0 to 255	16
RT	Extended system data area	all	0 to 255	16

Abbr	Description	Permissible Value Range for Operands		$\begin{aligned} & \text { Size } \\ & \text { in } \\ & \text { Bits } \end{aligned}$
		CPU	Range	
S	Flag, additional (S flag)	$\begin{gathered} 928 \\ 928 B \\ 948 \end{gathered}$	n/a 0.0 to 1023.7 0.0 to 4095.7	1
SB	Sequence block	all	0 to 255	-
SD	Flag double word, additional (S flag double word)	$\begin{gathered} 928 \\ 928 B \\ 948 \end{gathered}$	n/a 0 to 1020 0 to 4092	32
SW	Flag word, additional (S flag word)	$\begin{gathered} 928 \\ 928 \mathrm{~B} \\ 948 \end{gathered}$	n/a 0 to 1022 0 to 4094	16
SY	Flag byte, additional (S flag byte)	$\begin{gathered} 928 \\ 928 \mathrm{~B} \\ 948 \end{gathered}$	n/a 0 to 1023 0 to 4095	8
T	Timer	all	0 to 255	-

Explanatory Notes on the
 Formal Operands
 (Block Parameters)

A maximum of 126 different formal operands (nos. 1 to 126) can be programmed per FB/FX.

Parameter Type	Data Type		Actual Operands Permitted
I, Q		for an operand with bit address	I, Q, F
		for an operand with byte address	$\begin{aligned} & \text { IB, QB, FY, DL, DR, } \\ & \text { PY, OY } \end{aligned}$
		for an operand with word address	IW, QW, FW, DW, PW, OW
		for an operand with double word address	ID, QD, FD, DD
D	KM	for a binary pattern (16 bits)	Constants
		for 2-byte serial absolute value numbers from 0 to 255	
	KH	for a 4 digit hexadecimal number	
		for a character (max. 2 alphanum. characters)	
		for a time in BCD with time base 1.0 to 999.3	
		for a count value in BCD from 0 to 999	
		for a fixed-point number from -32768 to +32767	
		for a floating-point number from $\begin{aligned} & \pm 0,1701412 \cdot 10^{39} \text { to } \\ & \pm 0,1469368 \cdot 10^{-38} \end{aligned}$	

Parameter Type	Data Type	Actual Operands Permitted	
B	Type specification not permitted	DB	Data blocks: statement C DB is executed
		FB	Function blocks (permitted without parameters only) are called unconditionally: JU FB
		OB	Organization blocks are called unconditionally: JU OB
		PB	Program blocks are called unconditionally : JU PB
		SB	Sequence blocks are called unconditionally: JU SB
T	Type specification not permitted	T	
C	Type specification not permitted	C	

Intentionally blank!

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution = Operation with this	times in $\mu \mathrm{s}$ not possible CPU	
		C	CC0	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~V} \end{aligned}$							
						1	2	3	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	CPU 948

Boolean Logic Operations

All logic operations generate a result (RLO).
The first RLO in a string of logic operations generates the new RLO from the signal status scanned. All subsequent logic operations generate the new RLO from the signal status scanned, and gate it with the old RLO. The string of logic operations is terminated by an operation that reloads the RLO (e.g., set/reset operation).

Basic Operations

Permissible for all blocks

Function

Boolean Logic Operations (continued)

Basic Operations

Permissible for all blocks

Ope- ration STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution $=$ Operation with this		times in $\mu \mathrm{s}$ not possible CPU					
		$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{c} \\ 1 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~V} \end{aligned}$	0												
											1	2	3		CPU 928	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$

Function

Boolean Logic Operations (continued)

Basic Operations

Permissible for all blocks

Ope ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution $=$ Operation with this		times in $\mu \mathrm{s}$ not possible CPU	
		$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{c} \\ 1 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~V} \end{aligned}$	O \mathbf{S}								
							1	2	3		CPU 928	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$

Function

Boolean Logic Operations (continued)

Set/Reset Operations, Binary

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution $=$ Operation with this	times in $\mu \mathrm{s}$ not possible CPU	
		$\begin{array}{\|l\|} \hline c \\ c \\ 1 \end{array}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathbf{o} \\ & \mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~s} \end{aligned}$							
							1	2	3	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$

Function

Set/Reset Operations, Binary (continued)

Basic Operations

Permissible for all blocks

Load Operations

The original contents of ACCU 1 are passed on to ACCU 2 before the byte, word or double word addressed is loaded into ACCU 1. During byte and word operations, the high bits (not loaded) of ACCU 1 are deleted (bits 8 to 31 for byte operations, bits 16 to 31 for word operations). If you use ACCU 3 and ACCU 4, you must insert the "ENT" operation from the supplementary operation set to restore the accumulator contents.

Basic Operations

Permissible for all blocks

Basic Operations

Permissible for all blocks

Basic Operations

Permissible for all blocks

Ope-ra-	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $\forall=$Operation with this not possible CPU				Function
tion		$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{V} \end{aligned}$									
STL						1	2	3		$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Load Operations (continued)													
L	PY 0 to 255	N	N	N	N		N	N		$13^{1)}$	1.4 1)	$1.7{ }^{1)}$	Load a peripheral byte from the digital/analog inputs into ACCU 1-L
L	PW 0 to 254	N	N	N	N	N	N	N		$15^{1)}$	$2.1^{1)}$	$2.69{ }^{1)}$	Load a peripheral word from the digital/analog inputs into ACCU 1-L: byte $\mathrm{n} \rightarrow$ bits $8-15$, byte $\mathrm{n}+1 \rightarrow$ bits $0-7$
L	OY 0 to 255	N	N	N	N		N	N		$13^{1)}$	$1.4{ }^{\text {1) }}$	$1.7{ }^{1)}$	Load a byte of the extended I/O area into ACCU 1-L
L	OW 0 to 254	N	N	N	N	N	N	N		$15^{1)}$	$2.1^{1)}$	$2.7{ }^{1)}$	Load a word of the extended I/O area into ACCU 1-L: byte $\mathrm{n} \rightarrow$ bits $8-15$, byte $\mathrm{n}+1 \rightarrow$ bits $0-7$
L	T 0 to 255	N	N	N	N		N	N		12	0.81	0.30	Load a time in binary code into ACCU 1-L
L	C 0 to 255	N	N	N	N	N	N	N		12	0.81	0.30	Load a count in binary code into ACCU 1-L
LC	T 0 to 255	N	N	N	N	N	N	N		12	3.7	0.39	Load a time in BCD into ACCU 1-L (including binary-BCD conversion)
LC	C 0 to 255	N	N	N	N	N	N	N		12	3.7	0.39	Load a count in BCD into ACCU 1-L (including binary-BCD conversion)

1) Execution time for single processing operation and for immediate bus access in multiprocessing operations. I/Os acknowledge within $0.1 \mu \mathrm{~s}$ or proportionally longer execution time for longer acknowledgement time.

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $=$Operation with this not possible CPU			Function
		$\begin{array}{\|l} \hline \mathrm{C} \\ \mathrm{C} \\ \mathbf{1} \end{array}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & 0 \end{aligned}$	O	O							
						1	2	3	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	

Transfer Operations

The contents of ACCU 1 are transferred to the operand specified.

T		0 to 127			N	N	0		N	N		11	0.75	0.18	Transfer the contents of ACCU 1-L (bits 0-7) to an input byte (into the PII)
T	IW	0 to 126			N	N	0	N	N	N		15	0.8	0.41	Transfer the contents of ACCU 1-L (bits 0-7) to an input word (into PII): bits $8-15 \rightarrow$ byte n , bits $0-7 \rightarrow$ byte $\mathrm{n}+1$
T	ID	0 to 124			N	N	0	N	N	N		16	1.9	0.59	Transfer the contents of ACCU 1 to an input double word (into the PII): bits $24-31 \rightarrow$ byte n, \quad bits $16-23 \rightarrow$ byte $n+1$, bits $8-15 \rightarrow$ byte $n+2$, bits $0-7 \rightarrow$ byte $n+3$
T	QB	0 to 127			N	N	0	N	N	N		11	0.75	0.18	Transfer the contents of ACCU 1-L (bits 0-7) to an output byte (into the PIQ)
T	QW	0 to 126	N		N	N	0	N	N	N		15	0.8	0.41	Transfer the contents of ACCU 1-L (bits 0-7) to an output word (into the PIQ): bits $8-15 \rightarrow$ byte n , bits $0-7 \rightarrow$ byte $\mathrm{n}+1$
T	QD	0 to124			N	N	0	N	N	N		16	1.9	0.59	Transfer the contents of ACCU 1 to an output double word (into the PIQ): bits $24-31 \rightarrow$ byte n, bits $16-23 \rightarrow$ byte $n+1$, bits $8-15 \rightarrow$ byte $n+2$, bits $0-7 \rightarrow$ byte $n+3$
T	FY	0 to255			N	N	0	N	N	N		11	0.75	0.18	Transfer the contents of ACCU 1-L to a flag byte (bits 0-7)
T	FW	0 to 254			N	N	0	N	N	N		15	0.8	0.41	Transfer the contents of ACCU 1-L to a flag word: bits $8-15 \rightarrow$ byte n, \quad bits $0-7 \rightarrow$ byte $\mathrm{n}+1$
T	FD	0 to 252			N	N	0	N	N	N		16	1.9	0.59	Transfer the contents of ACCU 1 to a flag double word: bits $24-31 \rightarrow$ byte n, \quad bits $16-23 \rightarrow$ byte $n+1$, bits $8-15 \rightarrow$ byte $n+2$, bits $0-7 \rightarrow$ byte $n+3$

Basic Operations

Permissible for all blocks

Ope- ra-	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $X=$Operation with this not possible CPU			Function
tion		$\begin{aligned} & C \\ & C \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \hline \mathbf{O} \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$							
STL						1	2	3	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Transfer Operations (continued)												
T	SY 0 to 1023		N	N	0		N	N	-	2.3		Transfer the contents of ACCU 1-L to an S flag byte (bits 0-7)
	SY 0 to 4095		N	N	0		N	N			0.39	
T	SW 0 to 1022	N	N	N	0	N	N	N		2.3		Transfer the contents of ACCU 1-L to an S flag word: bits 8-15 \rightarrow byte n, \quad bits $0-7 \rightarrow$ byte $\mathrm{n}+1$
	SW 0 to 4094	N	N	N	0		N	N			0.41	
T	SD 0 to 1020	N	N	N	0	N	N	N		3.4		Transfer the contents of ACCU 1 to an S flag double word: bits $24-31 \rightarrow$ byte n, bits $16-23 \rightarrow$ byte $n+1$, bits $8-15 \rightarrow$ byte $\mathrm{n}+2$, bits $0-7 \rightarrow$ byte $\mathrm{n}+3$
	SD 0 to 4092	N	N	N	0	N	N	N			0.59	
T	DL 0 to 255	N	N	N	0	N	N	N	17	1.5	0.68	Transfer the contents of ACCU 1-L (bits 0-7) to a data word (left byte) in a DB/DX
T	DR 0 to 255	N	N	N	0	N	N	N	17	1.4	0.68	Transfer the contents of ACCU 1-L (bits 0-7) to a data word (right byte) in a DB/DX
T	DW 0 to 255	N	N	N	0	N	N	N	17	1.4	0.41	Transfer the contents of ACCU 1-L (bits 0-15) to a data word in a DB/DX
T	DD 0 to 254	N	N	N	0	N	N	N	18	1.9	0.59	Transfer the contents of ACCU 1 to a data double word in a DB/DX: bits $16-31 \rightarrow$ word n, bits $0-15 \rightarrow$ word $n+1$

Basic Operations

Permissible for all blocks

1) Execution time for single processing operation and for immediate bus access in multiprocessing operation. I/Os acknowledge within $0.1 \mu \mathrm{~s}$ or proportionally longer execution time for longer acknowledgement time.

Basic Operations

Permissible for all blocks

Basic Operations

Permissible for all blocks

Ope-ration STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ \neqOperation with this not possible CPU				Function
		$\begin{array}{\|c\|} \hline c \\ c \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{c} \\ \mathbf{c} \\ 0 \\ \hline \end{array}$										
							12	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Counter Operations													
CU	C 0 to 255		N	N	N		$Y \uparrow N$	Y		5	2.1	0.18	Counter counts up 1
$C D$	C 0 to 255		N	N	N		$Y \uparrow N$	Y		5	2.0	0.18	Counter counts down 1
S	C 0 to 255	N	N	N	N		$\mathrm{Y} \uparrow \mathrm{N}$	Y		12	3.8	0.18	Set counter with the value stored in ACCU 1-L (BCD number from 0 to 999)
R	C 0 to 255	N	N	N	N		Y N	Y		12	1.4	0.18	Reset counter

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $\searrow=$Operation with this not possible CPU			Function
		$\begin{array}{\|l\|} \hline \mathrm{C} \\ \mathrm{C} \\ 1 \\ \hline \end{array}$	c c c c 1 0	$\begin{aligned} & \mathrm{o} \\ & \mathrm{v} \end{aligned}$								
						1	2	3	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	

Arithmetic Operations

The result (numerical value) of an arithmetic operation is stored in ACCU 1. All other accumulator contents change as follows:

```
For +F, -F, xF,:F: For +G, -G, xG,:G, +D, -D:
```

ACCU-2-L: = ACCU-3-L ACCU 2: = ACCU 3
ACCU-3-L: $=$ ACCU-4-L ACCU 3: $=$ ACCU 4
ACCU-4-L: $=$ ACCU-4-L ACCU 4: $=$ ACCU 4

The original contents of ACCU 2-L or ACCU 2 are lost. Whether the result is $<0,>0$ or $=0$ can be evaluated via CC0 and CC1 (see Explanatory Notes on the Condition Codes).

Fixed-point numbers, 16 bits

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $X=$Operation with this not possible CPU				Function
		$\begin{array}{\|l\|} \hline \mathrm{C} \\ \mathrm{C} \\ 1 \end{array}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{C} \\ & 0 \end{aligned}$	\mathbf{o}	$\begin{aligned} & 0 \\ & \mathbf{s} \end{aligned}$								
						1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	

Arithmetic Operations (continued)

Floating-point numbers, 32 bits

When performing arithmetic operations with a 16-bit mantissa (defaut), the eight low bits are set to " 0 ".

+G	-			Y	Y			N			25	9.1	3.3	Add two floating-point numbers: ACCU 1 + ACCU 2
-G	-			Y	Y	Y	N	N			25	9.1	3.5	Subtract one floating-point number from another: ACCU 1 - ACCU 2
xG	-			Y	Y	Y	N				25	12.1	5.2	Multiply one floating-point number by another: ACCU $1 \times$ ACCU 2
:G	-			Y	Y	Y	N				25	15.6	6.3	Divide one floating-point number by another: ACCU 2: ACCU 1; Result: ACCU 1-L: mantissa low ACCU 1-H: mantissa high and exponen

Basic Operations

Permissible for all blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $=$Operation with this not possible CPU			Function
		$\begin{array}{\|l} \hline \mathrm{C} \\ \mathrm{C} \\ \mathbf{1} \end{array}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & 0 \end{aligned}$	O	O							
						1	2	3	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	

Comparison Operations

The contents of ACCU 2 (operand) are compared with the contents of ACCU 1 (operand 2). The RLO is set to "1"
if the comparison condition is fulfilled or to " 0 " if it is not fulfilled.
Whether the contents of ACCU 2 are $<,>$ or $=$ those in ACCU 1 , can be evaluated via CC0 and CC1
(see Explanatory Notes on the Condition Codes).
Fixed-point numbers, 16 bits

! $=$ F	-	Y Y 0	N Y N	18	0.8	0.30	Compare two fixed-point numbers for equal to: if ACCU $2-L=A C C U 1-L$, the RLO is " 1 "
><F	-	$\begin{array}{llll}Y & Y & 0 & 0\end{array}$	N Y N	18	0.8	0.30	Compare two fixed-point numbers for not equal to: if ACCU $2-L \neq \operatorname{ACCU} 1-L$, the RLO is "1"
>F	-	Y Y 0	N Y N	18	0.8	0.30	Compare two fixed-point numbers for greater than: if ACCU 2-L > ACCU 1-L, the RLO is "1"
>=F	-	$\begin{array}{llll}Y & Y & 0 & 0\end{array}$	N Y N	18	0.8	0.30	Compare two fixed-point numbers for greater than or equal to: if ACCU $2-L \geq$ ACCU $1-L$, the RLO is "1"
$<\mathrm{F}$	-	Y Y 0	N Y N	18	0.8	0.30	Compare two fixed-point numbers for less than: if ACCU $2-L$ < ACCU $1-L$, the RLO is "1"
$<=F$	-	$\begin{array}{llll}Y & Y & 0 & 0\end{array}$	N Y N	18	0.8	0.30	Compare two fixed-point numbers for less than or equal to: if ACCU $2-L \leq$ ACCU $1-L$, the RLO is " 1 "

Basic Operations

Permissible for all blocks

$\begin{array}{\|c\|} \hline \text { Ope- } \\ \text { ra- } \\ \text { tion } \\ \text { STL } \\ \hline \end{array}$	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $X=$Operation with this not possible CPU				Function
		C C 1	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & 0 \end{aligned}$	$\begin{array}{l\|} \hline \mathbf{O} \\ \mathbf{V} \\ \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$								
						1	2	3		$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Comparison Operat Floating-point numbers													
$!=G$	-		Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for equal to: if ACCU 2 = ACCU 1 , the RLO is " 1 "
><G	-	Y	Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for not equal to: if ACCU $2 \neq$ ACCU 1 , the RLO is " 1 "
>G	-	Y	Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for greater than: if ACCU $2>$ ACCU 1 , the RLO is "1"
$>=G$	-	Y	Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for greater than or equal to: if $\operatorname{ACCU} 2 \geq$ ACCU 1 , the RLO is "1"
<G	-	Y	Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for less than: if ACCU $2<$ ACCU 1 , the RLO is " 1 "
$<=G$	-		Y	0	0	N	Y	N		20	1.9	1.4	Compare two floating-point numbers for less than or equal to: if ACCU $2 \leq$ ACCU 1 , the RLO is " 1 "

Basic Operations

Permissible for all blocks

Basic Operations

Permissible for all blocks

	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $X=$Operation with this not possible					Function
		$\begin{aligned} & \mathbf{A} \\ & \mathbf{N} \\ & \mathbf{Z} \\ & \mathbf{1} \end{aligned}$	$\begin{array}{l\|} \hline \mathbf{A} \\ \mathbf{N} \\ \mathbf{Z} \\ \mathbf{0} \end{array}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$									
						1	2	3			$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Block Call Operations														
JU	PB 0 to 255	N	N	N	0		N	Y			12	3.7	$\begin{gathered} 1.5 / 6.0 \\ 5) \end{gathered}$	Unconditional program block call
JU	FB 0 to 255	N	N	N	0		N	Y			12	3.7	$1.5 / 6.0$	Unconditional function block call
DOU	FX 0 to 255	N	N	N	0		N	Y			13	5.8	$1.5 / 6.0$	Unconditional extended function call
JU	SB 0 to 255	N	N	N	0		N	Y			12	3.7	$1.5 / 6.0$	Unconditional sequence block call
JU	OB 1 to 39	N	N	N	0		N	Y			12	3.7	$1.5 / 6.0$	Unconditional organization block call
JU	OB 40 to 255	1)	1)	1)	1)	N	1)	Y			2)	2)	2)	Unconditional call of a special function organization block of the operating system
JC	PB 0 to 255	N	N	N	$0^{3)}$	Y	1	Y			11/12 ${ }^{4)}$	$\underset{4)}{2.7 / 3.7}$	$\begin{gathered} 1.6 / 6.1 \\ 5) \end{gathered}$	Conditional program block call (if RLO is "1")
JC	FB 0 to 255	N	N	N	$0^{3)}$	Y	1	Y			12/12 ${ }^{4)}$	$\underset{4}{2.7 / 3.7}$	$\underset{5)}{1.6 / 6.1}$	Conditional function block call (if RLO is "1")

1) The condition codes are set or not set according to the special function executed (see Programming Guide Special Function OBs)
2) For execution times see List of Special Functions, page 130ff.
3) The Os bit remains unchanged if RLO $=0$ (not for CPU 948).
4) Time applies when RLO $=0 /$ RLO $=1$.
5) Time applies when "interruption at block limits".

Basic Operations

Permissible for all blocks

1) The OS bit remains unchanged if RLO $=0$ (not for CPU 948).
2) Time applies when RLO $=0 /$ RLO $=1$.
3) The condition codes are set or not set according to the special function executed (see Programming Guide Special Function OBs).
4) Only if the RLO = 0 before the OB is called, otherwise the RLO can be influenced according to the special function executed (see Programming Guide - Special Function OBs).
5) For execution times see List of Special Functions, page 156 ff .
6) Time applies when "interruption at block limits".

Basic Operations

Permissible for all blocks

1) The OS bit remains unchanged if RLO $=0$ (not for CPU 948).
2) Time applies when RLO $=0 /$ RLO $=1$.

Basic Operations

Permissible for all blocks

Ope ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution Operation with this	times in $\mu \mathrm{s}$ not possible CPU	
		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~V} \end{aligned}$							
						1	2	3	CPU 928	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	CPU 948

Function

Null Operations

NOP 0	-	N	N	N	N	N	N	N		0.9	

Stop Operation

STP	-	N N N N	$\mathrm{N} N \mathrm{~N}$		-		Direct transition to "STOP" mode CPU 948: transition to communication stop (operating mode SMOOTH STOP), program processing aborted at cycle end or by the system program

Display Construction Operations

BLD	0-255	$\mathrm{N} N \mathrm{~N} N$	N N N	0.9	0.57	0.18	Display construction statement/NOP for the programmable controller
BLD	130	N N N N	N N N	0.9	0.57	0.18	Display construction operation for the programmer: generate blank line by carriage return
BLD	131	N N N N	$\mathrm{N} N \mathrm{~N}$	0.9	0.57	0.18	Display construction operation for the programmer: switch over to statement list (STL)
BLD	132	N N N N	N N N	0.9	0.57	0.18	Display construction operation for the programmer: switch over to control system flowchart CSF)
BLD	133	N N N N	N N N	0.9	0.57	0.18	Display construction operation for the programmer: switch over to ladder diagram (LAD)
BLD	255	N N N N	$\mathrm{N} N \mathrm{~N}$	0.9	0.57	0.18	Display construction operation for the programmer: terminate segment

Supplementary Operations

Permissible only in function blocks

Binary Logic Operations

$A=$	Formal operand	N	N	N	N		Y	N	$22^{1)}$	$2.4{ }^{1)}$	$0.91^{1)}$	AND operation: scan a formal operand for "1" (parameter type: I, Q, T, C; data type: BI)
AN=	Formal operand	N	N	N	N		Y	N	$22^{1)}$	$2.4{ }^{1)}$	0.91 1)	AND operation: scan a formal operand for "0" (parameter type: I, Q, T, C; data type: BI)
$\mathrm{O}=$	Formal operand	N	N	N	N	N	Y	N	$22^{1)}$	$2.4{ }^{1)}$	0.91 1)	OR operation: scan a formal operand for "1" (parameter type: I, Q, T, C; data type: BI)
$\mathrm{ON}=$	Formal operand	N	N	N	N		Y	N	$22^{1)}$	$2.4{ }^{1)}$	0.91 1)	OR operation: scan a formal operand for "0" (parameter type: I, Q, T, C; data type: BI)

Digital Operations

The result (= "0" or \neq " 0 ") can be evaluated via CC0 and CC1
(see Explanatory Notes on the Condition Codes)

AW	-	Y 000 N	$\mathrm{N} N \mathrm{~N}$	11	0.57	0.18	Combine contents of ACCU 2 and ACCU 1 (word operation) through logic AND: result is stored in ACCU 1
OW	-	Y 000	N N N	11	0.57	0.18	Combine contents of ACCU 2 and ACCU 1 (word operation) through logic OR: result is stored in ACCU 1
XOW	-	Y 000 N	$\mathrm{N} N \mathrm{~N}$	11	0.57	0.18	Combine contents of ACCU 2 and ACCU 1 (word operation) through logic EXOR: result is stored in ACCU 1

1) The execution time of the substituted operation must be added.

Supplementary Operations

Permissible only in function blocks

Ope-ration STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $=$ Operation not possible with this CPU			Function
		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~S} \end{aligned}$							
						1	2	3	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	

Bit Test Operations

These operations scan the status of a bit and update it in the RLO.

TB	I 0.0 to 127.7	N	N	N	N	N Y				0.48	Scan an input bit for signal status "1"
TB	Q 0.0 to 127.7	N	N	N	N	N Y	N			0.48	Scan an output bit for signal status "1"
TB	F 0.0 to 255.7	N	N	N	N	$N \quad$ Y	N			0.48	Scan a flag bit for signal status "1"
TB	T 0.0 to 255.15	N	N	N	N	N Y	N			0.48	Scan a bit of a timer word for signal status "1"
TB	C 0.0 to 255.15	N	N	N	N	N Y	N			0.48	Scan a bit of a counter word for signal status "1"
TB	D 0.0 to 255.15	N	N	N	N	N Y	N			0.77	Scan a bit of a data word (DB/DX) for signal status "1"
TB	$\begin{aligned} & \text { RI } 0.0 \\ & \text { to } 255.15 \end{aligned}$	N	N	N	N	N Y	N			0.48	Scan a bit in the RI area for signal status "1"
TB	$\begin{aligned} & \text { RJ } 0.0 \\ & \text { to } 255.15 \end{aligned}$	N	N	N	N	N Y	N			0.48	Scan a bit in the RJ area for signal status "1"
TB	$\begin{aligned} & \text { RS } 0.0 \\ & \text { to } 255.15 \end{aligned}$	N	N	N	N	N Y	N			0.48	Scan a bit in the RS area for signal status "1"
TB	$\begin{aligned} & \text { RT } 0.0 \\ & \text { to } 255.15 \end{aligned}$	N	N	N	N	N Y	N			0.48	Scan a bit in the RT area for signal status "1"

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $=$ Operation not possible with this CPU			Function
		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$							
						1	2	3	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & \text { 928B } \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	

Bit Test Operations (continued)

These operations scan the status of a bit and update it in the RLO.

Supplementary Operations

Permissible only in function blocks

1) The execution time of the substituted operation must be added.

Supplementary Operations

Permissible only in function blocks

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $\forall$$=$ Operation with this not possible CPU				Function
		$\begin{array}{\|l\|} \hline \mathbf{c} \\ \mathbf{c} \\ \mathbf{1} \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{c} \\ \mathbf{c} \\ \mathbf{0} \\ \hline \end{array}$										
							12	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Timer and Counter Operations													
$\mathrm{SP}=$	Formal operand	$\mathrm{N} N \mathrm{~N} N$				Y \uparrow N Y				$16^{2)}$	 $1.9^{2)}$ $1.9^{2)}$	$0.64{ }^{2}$	Start timer specified as formal operand as pulse with the value stored in ACCU 1-L (parameter type: T)
$\mathrm{SD}=$	Formal operand					Y ¢N Y				$16^{2)}$		0.64 2)	Start timer specified as formal operand as ON delay with the value stored in ACCU 1-L (parameter type: T)
SEC=	Formal operand	N	N	N	N	Y¢N				$15^{2)}$	$1.9{ }^{2)}$	0.64 2)	Start timer specified as formal operand as extended pulse with the value stored in ACCU 1-L or set counter specified as formal operand with the count stored in ACCU 1-L (parameter type: T, C)
SSU=	Formal operand	N	N	N	N		Y ¢N	Y		$16^{2)}$	$1.9{ }^{2)}$	0.64 2)	Start timer specified as formal operand as stored ON delay with the value stored in ACCU 1-L or increment a counter specified as formal operand (parameter type: T, C)
SFD=	Formal operand	N	N	N	N		1) N	Y		$16^{2)}$	$1.9{ }^{2)}$	$0.64{ }^{\text {2) }}$	Start timer specified as formal operand as stored OFF delay with the value stored in ACCU 1-L or decrement a counter specified as formal operand (parameter type: T, C)
$\mathrm{FR}=$	Formal operand	N	N	N	N		Y ¢N	Y		$13^{2)}$	$1.9{ }^{\text {2) }}$	0.64 2)	Enable formal operand (timer/counter) for cold restart (for description see FR T or FR C); (parameter type: T, C)

1) The RLO is evaluated according to the executed operation.
${ }^{2)}$ The execution time of the substituted operation must be added.

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $\forall=$Operation with this not possible										
		$\begin{array}{\|c\|} \hline \mathrm{c} \\ \mathrm{c} \\ \mathbf{1} \end{array}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{0} \end{aligned}$						Function										
						1	2	3								$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Timer and Counter Operations (continued)																			
FR	T 0 to 255	N	N	N	N	Y	N	Y			$2^{1)}$	1.6	0.18	Enable timer for cold restart. The operation is executed only on the leading edge of the RLO (change from "0" to "1"). The timer is restarted if the RLO is "1" at the time of the start operation.					
FR	C 0 to 255	N	N	N	N		N	Y			$2^{1)}$	1.6	0.18	Enable a counter for setting or counting up or down. This operation is executed only on the leading edge of the RLO (change from " 0 " to " 1 "). The counter is restarted if the RLO = "1" at the time of the set operation. The counter is counted up or down if the RLO = "1" at the time of the "counting up" (CU) or "counting down" (CD) operation.					

1) Time applies when RLO $=$ " 0 "/RLO $=$ " 1 ".

Supplementary Operations

Permissible only in function blocks

1) The execution time of the substituted operation must be added.

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution times in $\mu \mathbf{s}$ $\forall$$=$ Operation with this not possible CPU				Function														
		$\begin{array}{\|l\|} \hline \mathbf{c} \\ \mathbf{c} \\ 1 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{O} \\ & \mathrm{~s} \end{aligned}$																							
							2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$																
Load and Transfer Operations (continued) Load operations: the value in ACCU 1 is shifted and stored in ACCU 2. Zeros are supplied for unused bits in ACCU 1.																												
T	RI 0 to 255		N	N	0			N	N		11	0.57	0.18	Transfer the contents of ACCU 1-L to a word in the interface data area														
T	RJ 0 to 255	N	N	N	0		N N	N	N		11	0.57	0.18	Transfer the contents of ACCU 1-L to a word of the extended interface data area														
T	RS 60 to 63	N	N	N	0			N	N		11	0.57	0.18	Transfer the contents of ACCU 1-L to a word in the system data area														
T	RT 0 to 255		N	N	0			N	N		11	0.57	0.18	Transfer the contents of ACCU 1-L to a word of the extended system data area														

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution times in $\mu \mathbf{s}$ $Z=$Operation with this not possible CPU				Function														
		C 1		$\begin{aligned} & \mathbf{o} \\ & \mathbf{v} \end{aligned}$																								
							1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$															
Conversion Operations The data in ACCU 1 is converted.																												
CFW	-	N	N	N	N			N	N		15	0.57	0.18	Form one's complement of ACCU 1-L (bits 0-15)														
CSW	-	Y	Y	Y	Y			N	N		15	0.57	0.18	Form two's complement of ACCU 1-L (bits 0-15). Result can be evaluated via CCO/CC1 and OV														
CSD	-	Y	Y	Y	Y			N	N		18-25 ${ }^{11}$	0.94	0.43	Form two's complement of ACCU 1-L (bits $0-31$). Result can be evaluated via CCO/CC1 and OV														
DEF	-	N	N	N	N			N	N		22	1.9	0.30	Convert a 16-bit fixed point from BCD into binary														
DUF	-	N	N	N	Y			N	N		24	3.2	0.43	Convert a 16 -bit fixed point from binary into BCD														
DED	-	N	N	N	N			N	N		31-39	7.7	0.48	Convert a 32-bit fixed point from BCD into binary														
DUD	-	N	N	N	Y			N	N		19-39 ${ }^{1)}$	9.8	0.62	Convert a 32-bit fixed point from binary into BCD														
FDG	-	N	N	N	N			N	N		18-39 ${ }^{11}$	5.2	2.6	Convert a fixed-point number (32 bits) into a floating-point number														
GFD	-	N	N	N	Y		N N	N	N		15-33 ${ }^{11}$	4.4	1.5	Convert a floating-point number into a fixed-point number (32 bits)														

1) The time is dependent on the date in ACCU 1 (non-linear).

Supplementary Operations

Permissible only in function blocks

Shift and Rotate Operations

The data in ACCU 1 is shifted or rotated. The bit shifted or rotated last can be evaluated via CC0 and CC1.

SLW	$0-15^{1)}$	Y 000	$\mathrm{N} N \mathrm{~N}$	8-16 ${ }^{\text {2) }}$	1.9	0.32	Shift the contents of ACCU 1-L (word) to the left by the value n specified in the parameter ($n=0$ to 15). Positions becoming vacant are padded with zeros.
SRW	$0-15^{1)}$	Y 000	$\mathrm{N} N \mathrm{~N}$	6-12 ${ }^{\text {2) }}$	2.0	0.32	Shift the contents of ACCU 1-L (word) to the right by the value n specified in the parameter $(n=0 \text { to } 15) .$ Positions becoming vacant are padded with zeros.
SLD	$0-32^{1)}$	Y 000	$\mathrm{N} N \mathrm{~N}$	7-23 ${ }^{\text {2) }}$	2.6	0.48	Shift the contents of ACCU 1 (double word) to the left by the value specified in the parameter $(\mathrm{n}=0 \text { to } 32)$ Positions becoming vacant are padded with zeros.
SSW	$0-15^{1)}$	Y 000	$\mathrm{N} N \mathrm{~N}$	$7-13^{2)}$	2.1	0.32	Shift the contents of ACCU 1-L (word) including its sign to the right by the value n specified in the parameter ($\mathrm{n}=0$ to 15). Positions becoming vacant are padded with the sign (bit 15)
SSD	$0-32^{1)}$	Y 000	$\mathrm{N} N \mathrm{~N}$	$10-20^{2)}$	3.5	0.48	Shift the contents of ACCU 1 (double word) to the right by the value n specified in the parameter ($\mathrm{n}=0$ to 32). Positions becoming vacant are padded with the sign (bit 32)
RLD	$0-32^{1)}$	Y 000	N N N	6-26 ${ }^{\text {2) }}$	2.6	0.48	Rotate ACCU 1 to the left (32 bits wide) from position 0 to 32
RRD	$0-32^{1)}$	Y 0	$\mathrm{N} N \mathrm{~N}$	7-26 ${ }^{\text {2) }}$	2.7	0.48	Rotate ACCU 1 to the right (32 bits wide) from position 0 to 32

1) With the operand $=" 0$ " an NOP operation is executed; the condition codes are not affected.
2) The time is dependent on the size of the (non-linear) operand.

Supplementary Operations

Permissible only in function blocks

Jump Operations

The jump operations are executed depending on the RLO (only operation JC) or CC0/CC1 and the OV and OS bits (see Evaluation of CC0 and CC1, page 120)

$\mathrm{JU}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	1.3	1.0	0.59	Unconditional jump to a symbolic address
$\mathrm{JC}=$	Symbolic address max. 4 characters	N	N	N	N	Y 1	Y	$\begin{gathered} \text { 0.9/1.3 } \\ \text { 1) } \end{gathered}$	$\begin{gathered} 0.7 / 1.0 \\ 1) \end{gathered}$	$0.4 / 0.8$ 1)	Conditional jump to a symbolic address, executed only if RLO = 1 ; if RLO = " 0 ", it is set to "1"
$\mathrm{JZ}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	$11 / 12$	1.1/1.4	$0.4 / 0.8$ 1)	Jump if result is " 0 ": the jump is only made if $\mathrm{CC} 1=0$ and $\mathrm{CCO}=0$
$\mathrm{JN}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	$\begin{gathered} 11 / 12 \\ \text { 1) } \end{gathered}$	$\begin{array}{\|c} 1.1 / 1.4 \\ 1) \end{array}$	$\begin{gathered} 0.4 / 0.8 \\ 1) \end{gathered}$	```Jump if result = "0": the jump is only made if ") CC1 = 0 and CC0 = 1 or CC1 = 1 and CC0 = 0 or CC1 = 1 and CC0 = 0```
$\mathrm{JP}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	$\begin{gathered} 11 / 12 \\ \text { 1) } \end{gathered}$	$1.1 / 1.4$ 1)	$0.4 / 0.8$ 1)	Jump if result > "0": the jump is only made if $C C 1=1$ and $C C 0=0$
$\mathrm{JM}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	$11 / 12$	$\begin{gathered} 1.1 / 1.4 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 0.4 / 0.8 \\ 1) \end{gathered}$	Jump if result < "0": the jump is only made if $C C 1=0$ and $C C 0=1$
$\mathrm{JO}=$	Symbolic address max. 4 characters	N	N	N	N	N N	N	$11 / 12$	$1.1 / 1.4$	$0.4 / 0.8$ 1)	Jump on "overflow": the jump is only made if the OV bit is set.
JOS=	Symbolic address max. 4 characters	N	N	N	0	N N	N	$\begin{gathered} 11 / 12 \\ \text { 1) } \end{gathered}$	$0.9 / 1.3$ 1)	$\begin{gathered} 0.7 / 0.9 \\ 1) \end{gathered}$	Jump on "stored overflow": the jump is only made if the OS bit is set

1) Jump condition: fulfilled/not fulfilled

Supplementary Operations

Permissible only in function blocks

Ope-ration STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $Z=$ Operation not possible with this CPU			Function
		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{S} \end{aligned}$							
						1	2	3	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Other Operations												
IA	-	N	N	N	N	N	N	N	25	25	0.30	Disable interrupt: process interrupts are no longer serviced
RA	-	N	N	N	N	N	N	N	25	25	0.30	Enable interrupt: cancels the effect of IA
IAE	-	N	N	N	N	N	N	N	X		0.32	Disable addressing error
RAE	-	N	N	N	N	N	N	N			0.32	Enable addressing error: cancels the effect of IAE
BAS	-	N	N	N	N	Y	N	Y			0.50	Disable output command: PIQ is no longer affected, i.e., the outputs are no longer changed by the S Q, R Q, =Q, T PY, T PW operations.
BAF	-	N	N	N	N	Y	N	Y	$>$	K	0.50	Enable output command: cancels the effect of BAS

Supplementary Operations

Permissible only in function blocks

1) New value of

New value of	$\vdots=$	Old value o
ACCU 1	$\vdots=$	ACCU 1
ACCU 2	$\vdots=$	ACCU 2
ACCU 3	$\vdots=$	ACCU 2
ACCU 4		$=$
The original contents of	ACCU 4 are lost.	

2) Semaphore locations on the coordinator module
3) Add the waiting time for the bus allocation

Supplementary Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1dep. 2 affect. 3 reload				Execution times in $\mu \mathbf{s}$ $\forall=$ Operation with this not possible CPU				Function
		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{array}{l\|} \hline \mathbf{o} \\ \mathbf{v} \end{array}$										
						1		2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Other Operations (continued)														
DO=	Formal operand		1)	1)	1)	1)	1)	1)	1)		12 2)	1.7 2)	$0.82{ }^{2)}$	Call block as formal operand (only C DB, JU PB/FB/SB/OB can be substituted)
DO	DW 0 to 255	N	N	N	N	N	N		N		12-23	3.3	$0.84{ }^{\text {2) }}$	Process data word: the following operation is executed with the parameter specified in the data word ${ }^{3)}$
DO	FW 0 to 254	N	N	N	N	N	N		N		23-26	3.2	$0.75{ }^{\text {2) }}$	Process flag word: the following operation is executed with the parameter specified in the flag word ${ }^{3)}$

1) The condition codes are evaluated and changed according to the operation executed.
2) The execution time of the substituted operation must be added.
3) The following operations are possible:

- A.., AN..., O.., ON.., S..., R...=..
with the areas I, Q, F and S,
- FR T, R T, SF T, SR T, SP T, SS T, SE T,

FRC, RC, S C, CD C, CUC,

- L.., T..
with the areas $P, O, I, Q, F, S, D, R I, R J, R S$ and $R T$,
- L T, L C,
- LC T, LC C,
- $\mathrm{JU}=, \mathrm{JC}=, \mathrm{JZ}=, \mathrm{JN}=, \mathrm{JP}=, \mathrm{JM}=, \mathrm{JO}=$,
- SLW, SRW,
- D, I, SED, SEE,
- C DB, JU.., JC.., G DB, GX DX, CX DX, DOC FX, DOU FX

System Operations

Permissible only in function blocks

Ope-ra-	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ = Operation with this not possible CPU				Function ${ }^{3}$
tion		$\begin{aligned} & \hline \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathbf{c} \\ & \mathbf{0} \end{aligned}$										
STL						1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Load and Transfer Operations													
LIR	$\begin{aligned} & \text { Register no. } \\ & 0 \text { to } 15 \end{aligned}$	N	N	N	N	N	N	N		7-23	$\underset{\text { 2) }}{10-12}$	$\frac{0.9-2.1}{2,1}$	Load register with the contents of a memory word addressed by ACCU $1^{1)}$
TIR	Register no. 0 to 15	N	N	N	N	N	N	N		7-23	$\underset{\text { 2) }}{10-12}$	${ }_{\text {0. }}^{0.7-1.9}$	Transfer register contents into the memory word addressed by ACCU $1^{1)}$

1) Registers for LIR and TIR (register width $=16$ bits)

Reg.-No.	Register designation	
0	ACCU 1-H	high word ACCU 1
1	ACCU 1-L	low word ACCU 1
2	ACCU 2-H	high word ACCU 2
3	ACCU 2-L	low word ACCU 2
5	BSP (only on CPU 948)	Block Stack Pointer
6	DBA	Start address of the current data block (address of the first DW)
8	DBL	Length of the current data block (number of data words)
9	ACCU 3-H	high word ACCU 3
10	ACCU 3-L	low word ACCU 3
11	ACCU 4-H	high word ACCU 4
12	ACCU 4-L	low word ACCU 4
15	SAC (not on CPU 948)	Step Address Counter

- Access to the 8-bit memory:

LIR: the high byte of the register is loaded with FFH (except on CPU 948, S flag and I/Os)
TIR: the high byte of the register is lost
2) Execution time for single processing operation and for immediate bus access in multiprocessing operation. I/Os acknowledge within 0.1μ s or proportionally longer execution time for longer acknowledgement time.
3) Differences in the CPU 948:

The operations LIR/TIR operate with 20 bit absolute addresses.
Specifying the address in ACCU 1:
ACCU-1-H: \quad Bit no. 15 to $4=0$
Bit no. 3 to $0=$ address bits nos. 19 to 16
ACCU-1-L: Bit no. 15 to 0 = address bits nos. 15 to 0

System Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	$\begin{aligned} & \text { Condition } \\ & \text { codes } \\ & \text { affected } \end{aligned}$				RLO 1 dep. 2 affect. 3 reload				Execution times in $\mu \mathbf{s}$ XOperation with this not possible CPU				Function ${ }^{3}$
		$\begin{array}{\|l\|} \hline \mathbf{c} \\ \mathbf{c} \\ \mathbf{1} \end{array}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{0} \end{aligned}$											
							1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Load and Transfer Operations (continued)														
LDI	Register name	N	N	N	N				N				1.1-3.2	Load the specified 32 bit register with the contents of a memory word n addressed by ACCU $1-\mathrm{H} / \mathrm{L}$ and the following word $\mathrm{n}+1^{3 \text { 3 }}$: register HIGH = memory word n register LOW = memory word $\mathrm{n}+1$
TDI	Register name	N	N	N	0				N				1.0-2.4	Transfer the contents of the specified 32 bit register into the memory word n addressed by ACCU $1-\mathrm{H} / \mathrm{L}$ and the following word $\mathrm{n}+1^{33}$: memory word n = register HIGH memory word $\mathrm{n}+1=$ register LOW

1) Registers for LDI and TDI (register width $=32$ bits)

Reg.-No.	Register designation
A1	ACCU 1
A2	ACCU 2
SA	SAC = STEP address counter
BA	BA register (block start address,
bit no. 0 to 19)	
BR register (block address register,	
bit no. 0 to 19)	

- Access to the 8-bit memory:

LDI: the HIGH byte of the register is loaded with FFH (except on CPU 948, S flag and I/Os)
TDI: the high byte of the register is lost
2) Execution time for single processing operation and for immediate bus access in multiprocessing operation. I/Os acknowledge within 0.1μ s or proportionally longer execution time for longer acknowledgement time.
3) Specifying the address in ACCU 1:

ACCU-1-H: \quad Bit no. 15 to $4=0$
Bit no. 3 to $0=$ address bits nos. 19 to 16
ACCU-1-L: Bit no. 15 to 0 = address bits nos. 15 to 0

System Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ $=$ Operation with this not possible CPU				Function (only CPU 928/928B)
		$\begin{array}{\|l\|} \hline \mathbf{c} \\ \mathbf{c} \\ \mathbf{1} \end{array}$	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{C} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{l\|l} \hline 0 & 0 \\ \mathrm{v} & \mathrm{~s} \end{array}$								
						1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Load and Transfer Operations (continued)													
TNB	$\begin{aligned} & \text { Length of area } \\ & 0 \text { to } 255 \end{aligned}$	$\mathrm{N} \mathrm{N} \times \mathrm{O}^{1}$				$\mathrm{N} N \mathrm{~N}$				$\begin{aligned} & 66- \\ & 1226 \end{aligned}$	$\begin{gathered} 25- \\ 1258 \\ \text { 2) } \end{gathered}$		Block transfer 0 to 255 bytes 3): End address of target area in ACCU 1-L End address of source area in ACCU 2-L
TNW	Length of area 0 to 255	N	N	N	$0^{1)}$		N	N		$\begin{gathered} 65- \\ 2340 \end{gathered}$	25- 2400 2)	X	Block transfer 0 to 255 words $^{3)}$: End address of target area in ACCU 1-L End address of source area in ACCU 2-L

${ }^{1)}$ With CPU 928/928B the OS bit is not influenced by TNB 0/TNW 0 .
2) Execution time for single processing operation and for bus access in multiprocessing operation. I/Os acknowledge within 0.1μ s or proportionally longer execution time for longer acknowledgement time.
3) Block transfer operations function decrementally, i.e., the number of words/bytes specified is transferred starting with the end address. Source area and target area must be located completely within one of the following memory areas:

Address area	Size	Memory area
$0000-7 F F F$	16 bit	User memory
$8000-$ DD7F	16 bit	DB RAM
DD80 - E3FF	16 bit	DB 0
E400 - E7FF	8 bit	S flag area
E800 - EDFF	16 bit	System data area
EE00 - EFFF	8 bit	Flag and PQ area
F000 - FFFF	8 bit	I/O

A conversion takes place in case of block transfers between 8 and 16 bit memory areas. Two bytes are converted into a word and vice versa.

System Operations

Permissible only in function blocks

Load and Transfer Operations (continued)

The block transfer operations of the CPU 948 listed below function with 20 bit absolute addresses. Only these operations can be interrupted by timeout (QVZ) and power failure (NAU).

TNW	Length of area 0 to 255	N N N 0	N N N			$\begin{gathered} 2-250 \\ \text { 1) } \\ 3-560 \end{gathered}$	Block transfer in words in the 16 bit memory area ${ }^{2)}$
TXB	-	$\mathrm{N} \quad \mathrm{N} N 0$	$\mathrm{N} N \mathrm{~N}$			$\begin{gathered} 3-180 \\ \text { 1) } \\ 5-480 \end{gathered}$	Block transfer from the 8 bit to the 16 bit memory area ${ }^{2)}$: The byte from address n is transferred into the high byte, the byte from address $\mathrm{n}+1$ is transferred into the low byte of the target date.
TXW	-	N N N	$\mathrm{N} N \mathrm{~N}$			$\begin{gathered} 3-180 \\ 1) \\ 5-480 \end{gathered}$	Block transfer from the 16 bit to the 8 bit memory area ${ }^{2)}$: The high byte of the source date is transferred into the byte with address n, the low byte of the source date is transferred into the byte with address $\mathrm{n}+1$.

1) Execution time for single processing operation and for immediate bus access in multiprocessing operation. I/Os acknowledge within 0.1μ s or proportionally longer execution time for longer acknowledgement time.

Address area of the CPU 948
00000 to E FBFF (16 bit)
E A000 to E AFFF (8 bit - S flag)
E FC00 to E FFFF (8 bit)
F 0000 to F FFFF (8/16 bit)

2) Block transfer operations function decrementally, i.e., the number of words specified is transferred starting with the end address. The end address of the target area (20 bit) must be located in ACCU 1, the end address of the source area (20 bit) must be located in ACCU 2. Both the source and the target area must be completely within a memory area listed in the table.

For TXB and TXW ACCU 3 must contain the block length (number of words, 0 to 127).

A conversion takes place in case of block transfers between 8 and 16 bit memory areas. Two bytes are converted into a word and vice versa.

System Operations

Permissible only in function blocks

Ope- ra- tion STL	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ XOperation with this not possible CPU			Function	
		$\begin{aligned} & \mathrm{c} \\ & \mathrm{C} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{0} \end{aligned}$		$\begin{array}{l\|} \hline \mathbf{O} \\ \mathbf{v} \end{array}$								
					1	2	3	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$			
Arithmetic Operations													
ADD	$\begin{gathered} \text { BN }-128 \text { to } \\ +127 \end{gathered}$	$\mathrm{N} N \mathrm{~N}$				$\mathrm{N} N \mathrm{~N}$		N	11	0.57	0.18	Add byte constant (fixed-point number) to contents of ACCU 1-L (operation includes sign change); ACCUs 2 to 4 remain unchanged	
ADD	$\begin{gathered} \text { KF }-32768 \text { to } \\ +32767 \end{gathered}$	N	N	N		N	N	N	N	12	1.2	0.39	Add fixed-point constant (word) to contents of ACCU 1-L; ACCUs 2 to 4 remain unchanged
ADD	$\begin{aligned} & \text { DH0 to } \\ & \text { FFFF FFFFF } \end{aligned}$	N	N	N N		N N		N	14	1.7	0.57	Add fixed-point constant (double word) to contents of ACCU 1 ; ACCUs 2 to 4 remain unchanged	
+D	-	Y Y Y Y					N N	N	11	1.6	0.64	Add two double word fixed-point numbers ${ }^{1}$: ACCU $1+$ ACCU 2 ; result can be evaluated via CC0/CC1	
-D	-	Y	Y	Y	Y	N	N	N	11	1.6	0.62	Subtract two double word fixed-point numbers ${ }^{1}$: ACCU 2 - ACCU 1; result can be evaluated via CC0/CC1	

1) For changes to ACCU 2 and ACCU 3 see Arithmetic Operations, page 38

System Operations

Permissible only in function blocks

$\begin{gathered} \hline \text { Ope- } \\ \text { ra- } \\ \text { tion } \\ \text { STL } \end{gathered}$	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ XOperation with this not possible CPU				Function
		$\begin{aligned} & \hline \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{1} \end{aligned}$		$\begin{aligned} & \mathrm{o} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{S} \end{aligned}$								
						1	2	3		$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
Jump Operation													
JUR	$\begin{array}{\|l\|l\|} \hline-32768 \text { to } \\ +32767 \end{array}$		N	N	N		N	N		11	1.2	0.68	Any jump within a function block
Other Operations													
DI	-	1)	1)	1)	1)	1)	1)	1)		$12^{2)}$	$1.7{ }^{2)}$	$1.1{ }^{\text {2) }}$	Execute an operation ${ }^{3}$) whose operation code is stored in a formal operand. The number of the formal operand must be stored in ACCU 1.
DO	RS 60 to 63	1)	1)	1)	1)	1)	1)	1)		$12^{2)}$	$0.8{ }^{2)}$	$0.71{ }^{2}$	Execute an operation ${ }^{3)}$ whose operation code is stored in the system data
TAK	-	N	N	N	N	N	N	N		5	0.8	$0.18{ }^{\text {2) }}$	Swap the contents of ACCU 1 and ACCU 2.

1) The codes are evaluated and changed according to the operation executed.
2) The execution time of the operation must be added.
3) The following operations are possible:

- A.., AN.., O.., ON.., S.., R.., =..
with the areas I, Q, F, and S,
- FR T, R T, SF T, SR T, SP T, SS T, SE T, FR C, R C, S C, CD C, CU C,
- L.., T..
with the areas $P, O, I, Q, F, S, D, R I, R J, R S$ and $R T$,
- L T, LC,
- LC T, LC C,
- $\mathrm{JU}=, \mathrm{JC}=, \mathrm{JZ}=, \mathrm{JN}=, \mathrm{JP}=, \mathrm{JM}=, \mathrm{JO}=$,
- SLW, SRW,
- D, I, SED, SEE,
- C DB, JU.., JC.., G DB, GX DX, CX DX, DOC FX, DOU FX

System Operations

Permissible only in function blocks

[^0]
System Operations

Permissible only in function blocks

Ope-ra-	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload			Execution times in $\mu \mathbf{s}$ = Operation not possible with this CPU				Function
tion		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$								
STL						1	2	3		$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Set Operations													
SU	$\begin{aligned} & \text { RS } 60.0 \text { to } \\ & 63.15 \end{aligned}$		N	N	N	N	N	Y				0.48	Set a bit in the RS area unconditionally
SU	RT 0.0 to RT 255.15	N	N	N	N	N	N	Y			X	0.48	Set a bit in the RT area unconditionally
RU	$\begin{aligned} & \text { RS } 60.0 \text { to } \\ & 63.15 \end{aligned}$	N	N	N	N	N	N	Y		x		0.48	Reset a bit in the RS area unconditionally
RU	RT 0.0 to RT 255.15		N	N	N	N	N	Y		x		0.48	Reset a bit in the RT area unconditionally

System Operations

Permissible only in function blocks

Register to Register Transfer Operations

These operations transfer the contents of one register into another register.

Load, Transfer and Arithmetic Operations with the

Base Address Register

The base address register (32 bits) allows address arithmetic and indirect load and transfer operations without using the accumulators for addressing. The following applies:
Absolute address = contents of base address register + constant

1) The bits 2^{15} to 2^{31} are set to " 0 ".
2) The bits 2^{20} to 2^{31} of the BR register are set to " 0 ".

System Operations

Permissible only in function blocks

Ope-ra-	Operands	Condition codes affected				RLO 1 dep. 2 affect. 3 reload				Execution times in $\mu \mathbf{s}$ XOperation with this not possible CPU													
tion				V	O					Function (only for CPU 948)													
STL							1								$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$						
Register to Register Transfer Operations These operations transfer the contents of one register into another register.																							
MAS	-	N	N	N	N		N N	N			2		0.66	Transfer the contents of ACCU 1 (bits 2^{0} to 2^{19}) into the step address counter (SAC)									
MAB	-	N	N	N	N			N					0.30	Transfer the contents of ACCU 1 (bits 2^{0} to 2^{19}) into the base address register (BR)									
MSA	-		N	N	N			N					0.30	Transfer the contents of the step address counter (SAC) into ACCU 1									
MSB	-	N	N	N	N			N			l		0.18	Transfer the contents of the step address counter (SAC) into the base address register (BR) ${ }^{1)}$									
MBA	-	N	N	N	N			N			4	$>$	0.30	Transfer the contents of the base address register (BR) into ACCU 1									
MBS	-	N	N	N	N			N			K		0.48	Transfer the contents of the base address register (BR) into the step address counter (SAC)									
Load, Transfer and Arithmetic Operations with the Base Address Regist The base address register (20 bits) allows address arithmetic and indirect load and transfer operations without using the accumulators for addressing. The following applies: Absolute address = contents of base address register + constant																							
MBR	0 to F FFFF	N	N	N	N		N N	N	N		1	\sqrt{x}	0.48	Load a 20 -bit constant into the base address register									
ABR	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N	N	N	N								0.39	Add a 16-bit constant to the contents of the base address register									

1) The bits 2^{20} to 2^{31} are set to " 0 ".

System Operations

Permissible only in function blocks

Access to local, word-oriented memory: ${ }^{11}$

LRW	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	N		N	N		39	3.6	0.59	Add the constant specified to the contents of the BR register and load the address of the word specified into ACCU 1-L ${ }^{1)}$.
LRD	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	N	N	N	N		39	5.0	0.77	Add the constant specified to the contents of the BR register and load the address of the double word specified into ACCU $1^{1 \text { 1) }}$.
TRW	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	0	N	N	N		39	3.4	0.59	Add the constant specified to the contents of the BR register and transfer the contents of ACCU 1-L to the address of the word specified ${ }^{1)}$.
TRD	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	0	N	N	N		39	5.0	0.77	Add the constant specified to the contents of the BR register and transfer the contents of ACCU 1 to the address of the double word specified ${ }^{1)}$.

Test/set Busy location (global area): ${ }^{1)}$

TSG	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	$\begin{array}{llll}Y & Y & 0 & N\end{array}$	$\mathrm{N} \mathrm{N} N$	$24^{2)}$	$4.7{ }^{2)}$	$2.9{ }^{2}$	Add the specified constant to the contents of the BR register, and test and set the Busy location ${ }^{1)}$ addressed.

1) Possible absolute addresses:

	CPU 928/928B	CPU 948
LRW/TRW	0000 to E3FF and E800 to EDFF	00000 to E FBFF
LRD/TRD	0000 to E3FE and E800 to EDFE	00000 to E FBFE
TSG	0000 to EFFF	F 0000 to F FFFF

2) Execution time for single processor operation and for bus access in multiprocessor operation. I/Os acknowledge within 0.1μ s or proportionally longer execution times for longer acknowledgement time.

System Operations

Permissible only in function blocks

Access to global, byte-oriented memory:

$\begin{aligned} & \text { LY } \\ & \text { GB } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N	N	N	N	N	N		N	N	$22^{1)}$	$3.0{ }^{1)}$	$1.8{ }^{1)}$	Add the specified constant to the contents of the BR register and load the byte addressed into ACCU 1-LL ${ }^{2}$.
$\begin{aligned} & \text { LY } \\ & \text { GW } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	N	N		N	N	$26^{1)}$	$3.9{ }^{1)}$	$2.4{ }^{1)}$	Add the specified constant to the contents of the BR register and load the word addressed into ACCU 1-L ${ }^{2}$.
$\begin{aligned} & \text { LY } \\ & \text { GD } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	N	N		N	N	$31^{1)}$	$5.5{ }^{1)}$	$4.4{ }^{1)}$	Add the specified constant to the contents of the BR register and load the double word addressed into ACCU $1^{2 \text { 2) }}$.
TY GB	$\begin{aligned} & \text { - 32768to } \\ & +32767 \end{aligned}$	N		N	N	0	N		N	N	21 ${ }^{1)}$	$2.9{ }^{1)}$	$1.8{ }^{1)}$	Add the specified constant to the contents of the $B R$ register and transfer the contents of ACCU 1-LL to the byte addressed ${ }^{2)}$.
TY GW	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	0	N		N	N	$25^{1)}$	$3.7{ }^{1)}$	$2.5{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1-L to the word addressed ${ }^{2}$)
TY GD	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	0	N		N	N	$30^{1)}$	$5.3{ }^{1)}$	$4.0{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1 to the double word addressed ${ }^{2)}$.

1) Execution time for single processor operation and for bus access in multiprocessor operation. I/Os acknowledge within 0.1μ s or proportionally longer execution times for longer acknowledgement time.
2) Possible absolute addresses:

	CPU 928/928B	CPU 948
LY GB/TY GW	0000 to EFFF	F 0000 to F FFFF
LY GW/TY GW	0000 to EFFE	F 0000 to F FFFE
LY GD/TY GD	0000 to EFFC	F 0000 to F FFFC

System Operations

Permissible only in function blocks

Access to global, word-oriented memory:

$\begin{aligned} & \text { LW } \\ & \text { GW } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$			N	N	N		N	N	$27^{1)}$	$4.3{ }^{1)}$	$1.8{ }^{\text {1) }}$	Add the specified constant to the contents of the BR register and load the word addressed into ACCU 1-L ${ }^{2)}$.
$\begin{aligned} & \text { LW } \\ & \text { GD } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$			N	N	N	N	N	N	$33{ }^{1)}$	$5.7{ }^{1)}$	$2.4{ }^{1)}$	Add the specified constant to the contents of the BR register and load the double word addressed into ACCU 1-L ${ }^{2}$).
$\begin{aligned} & \text { TW } \\ & \text { GW } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$			N	N	0	N	N	N	$26^{1)}$	$4.0{ }^{1)}$	$1.8{ }^{\text {1) }}$	Add the specified constant to the contents of the BR register and load the word addressed into ACCU 1-L ${ }^{2}$.
$\begin{aligned} & \text { TW } \\ & \text { GD } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$	N		N	N	0	N	N	N	$32{ }^{1)}$	$5.4{ }^{1)}$	$2.5{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1 to the double word addressed ${ }^{2}$.

Open page:

ACR	-	$\mathrm{N} N \mathrm{~N} \mathrm{~N}$	$\mathrm{~N} N \mathrm{~N}$		$11^{1)}$		$0.57^{1)}$	$0.32^{1)}$
	Open the page whose number is in ACCU 1-L ${ }^{3)}$.							

Test/set Busy location (page area):

1) Execution time for single processor operation and for bus access in multiprocessor operation. I/Os acknowledge within 0.1μ s or proportionally longer execution times for longer acknowledgement time.
2) Possible values: 0 to 255
3) Possible absolute addresses:

	CPU 928/928B	CPU 948
LW GB/TW GW	0000 to EFFF	F 0000 to F FFFF
LW GW/ TW GW	0000 to EFFE	F 0000 to F FFFE
TSC	F400 to FBFF	F F400 to F FBFF

System Operations

Permissible only in function blocks

Access to byte-oriented pages:

$\begin{aligned} & \mathrm{LY} \\ & \mathrm{CB} \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		$\mathrm{N} N \mathrm{~N} N$	N N	N	$29^{1)}$	$3.6{ }^{1)}$	$2.6{ }^{1)}$	Add the specified constant to the contents of the BR register and load the byte addressed from the page opened into ACCU 1-LL ${ }^{2}$).
$\begin{aligned} & \text { LY } \\ & \text { CW } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		N N N N	N N	N	$30^{1)}$	$4.5{ }^{1)}$	$3.4{ }^{\text {1) }}$	Add the specified constant to the contents of the BR register and load the word addressed from the page opened into ACCU 1-L ${ }^{2}$.
$\begin{aligned} & \mathrm{LY} \\ & \mathrm{CD} \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		N N N N	N N	N	$34^{1)}$	$6.1^{1)}$	$5.2{ }^{1)}$	Add the specified constant to the contents of the BR register and load the double word addressed from the page opened into ACCU 1^{2}.
$\begin{aligned} & \text { TY } \\ & \text { CB } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		N N N 0	$N \mathrm{~N}$	N	$28{ }^{1)}$	$3.5{ }^{1)}$	$2.5{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1-LL to the byte addressed on the page opened ${ }^{2)}$.
$\begin{aligned} & \text { TY } \\ & \text { CW } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		N N N 0	$N \mathrm{~N}$	N	$29^{1)}$	$4.2{ }^{1)}$	$3.3{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1- L to the word addressed on the page opened ${ }^{22}$.
$\begin{aligned} & \text { TY } \\ & \text { CD } \end{aligned}$	$\begin{aligned} & -32768 \text { to } \\ & +32767 \end{aligned}$		N N N 0	N N	N	$34^{1)}$	$5.9{ }^{1)}$	$4.8{ }^{1)}$	Add the specified constant to the contents of the BR register and transfer the contents of ACCU 1 to the double word addressed on the page opened ${ }^{2}$.

1) Execution time for single processor operation and for bus access in multiprocessor operation. I/Os acknowledge within $0.1 \mu \mathrm{~s}$ or proportionally longer execution times for longer acknowledgement time.
2) Possible absolute addresses:

	CPU 928/928B	CPU 948
LY CB/TY CB	F400 to FBFF	F F400 to F FBFF
LY CW/TY CW	F400 to FBFE	F F400 to F FBFE
LY CD/TY CD	F400 to FBFC	F F400 to F FBFC

System Operations

Permissible only in function blocks

Access to word-oriented pages: ${ }^{1)}$

1) Execution time for single processor operation and for bus access in multiprocessor operation. I/Os acknowledge within 0.1μ s or proportionally longer execution times for longer acknowledgement time.
2) Possible absolute addresses:

	CPU 928/928B	CPU 948
LW CW/TW CW	F400 to FBFF	F F400 to F FBFF
LW CD/TW CD	F400 to FBFE	F F400 to F FBFE

Machine Code Listing

Explanation of subscripts
a + byte address
b + bit address

+ formal operand address
+ operand value
+ constant
+ block number
+ word address
+ number of shifts
+ relative jump destination address
+ register number
I + block length in bytes
$m+$ jump displacement (16 bits)
n + semaphore number
o + block length in words

B0 to B5: 1st to 6th machine code byte

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
0	0	0	0					NOP 0	
0	1	0	0					CFW	
0	2	$0_{\text {d }}$	$0_{\text {d }}$					L	T
0	3	0_{1}	0_{1}					TNB	
0	4	$0_{\text {d }}$	$0_{\text {d }}$					FR	T
0	5	0	0					BEC	
0	6	0 c	0 c					$\mathrm{FR}=$	
0	7	0 c	0 c					$\mathrm{A}=$	
0	8	0	0					IA	
0	8	8	0					RA	
0	9	0	0					CSW	

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
0	A	0d	0 d					L	FY
0	B	0d	0 d					T	FY
0	C	0 d	0 d					LD	T
0	D	0_{i}	0_{i}					$\mathrm{JO}=$	
0	E	0 c	0 c					LD=	
0	F	0c	0 c					$\mathrm{O}=$	
1	0	$0_{\text {e }}$	0 e					BLD	
1	0	8	2					BLD	130
1	0	8	3					BLD	131
1	0	8	4					BLD	132
1	0	8	5					BLD	133
1	0	F	F					BLD	255
1	1	$0_{\text {e }}$	0 e					1	
1	2	$0_{\text {d }}$	$0{ }_{\text {d }}$					L	FW
1	3	0 d	$0{ }_{\text {d }}$					T	FW
1	4	$0_{\text {d }}$	$0_{\text {d }}$					SF	T
1	5	0_{i}	0_{i}					$\mathrm{JP}=$	
1	6	0 c	$0{ }_{\text {c }}$					SFD=	
1	7	0c	0 c					S=	
1	8	0 d	0 d					DO	RS
1	9	0 e	0 e					D	
1	A	0d	0 d					L	FD
1	B	0d	0 d					T	FD
1	C	0 d	0 d					SE	T
1	D	0_{f}	$0_{\text {f }}$					JC	FB

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
1	E	0c	0c					SEC=	
1	F	0 c	0c					= $=$	
2	0	Of	0 f					C	DB
2	1	2	0					>F	
2	1	4	0					$<\mathrm{F}$	
2	1	6	0					><F	
2	1	8	0					!=F	
2	1	A	0					>=F	
2	1	C	0					<=F	
2	2	$0_{\text {d }}$	$0_{\text {d }}$					L	DL
2	3	0 d	0 d					T	DL
2	4	$0_{\text {d }}$	$0_{\text {d }}$					SD	T
2	5	$0{ }^{\text {i }}$	0_{i}					JM=	
2	6	0 c	0c					SD=	
2	7	0 c	0 c					AN=	
2	8	0 e	$0_{\text {e }}$					L	KB
2	9	0 h	0h					SLD	
2	A	$0_{\text {d }}$	$0_{\text {d }}$					L	DR
2	B	0 d	0 d					T	DR
2	C	0 d	0 d					SS	T
2	D	$0{ }_{\text {i }}$	0_{i}					$\mathrm{JU}=$	
2	E	0 c	0c					SSU=	
2	F	0 c	0c					$\mathrm{ON}=$	
3	0	0	1	0 e	0 e	0 e	0 e	L	KC
3	0	0	2	0 e	0 e	0 e	0 e	L	KT

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
3	0	0	4	0 e	0 e	0 e	0 e	L	KF
3	0	1	0	0 e	0 e	0 e	0 e	L	KS
3	0	2	0	0 e	0 e	0 e	0 e	L	KY
3	0	4	0	0 e	0 e	0e	0 e	L	KH
3	0	8	0	0 e	0 e	0 e	0e	L	KM
3	1	2	0					>G	
3	1	4	0					<G	
3	1	6	0					><G	
3	1	8	0					!=G	
3	1	A	0					>=G	
3	1	C	0					$<=G$	
3	2	$0_{\text {d }}$	$0_{\text {d }}$					L	DW
3	3	$0_{\text {d }}$	$0_{\text {d }}$					T	DW
3	4	$0_{\text {d }}$	$0_{\text {d }}$					SP	T
3	5	$0{ }_{\text {i }}$	$0{ }_{\text {i }}$					$\mathrm{JN}=$	
3	6	0 c	0 c					$\mathrm{SP}=$	
3	7	0 c	0 c					$\mathrm{RB}=$	
3	8	0	0	0 e	0 e	0 e	0 e	L	$K G^{1)}$
3	8	4	0	0 e	0 e	0 e	0 e	L	DH ${ }^{1)}$
3	9	2	0					>D	
3	9	4	0					<D	
3	9	6	0					$><$ D	
3	9	8	0					! $=$ D	
3	9	A	0					$>=$ D	

1) 3-word command with B4 and B5, filled with 0 e

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
3	9	C	0					$<=$ D	
3	A	0 d	0 d					L	DD
3	B	0 d	0 d					T	DD
3	C	0d	0d					R	T
3	D	Of	0 f					JU	FB
3	E	0 c	0c					RD=	
3	F	0 c	0 c					LW=	
4	0	0	0_{k}					LIR	
4	1	0	0					AW	
4	2	$0_{\text {d }}$	$0_{\text {d }}$					L	C
4	3	0 。	0 。					TNW	
4	4	$0_{\text {d }}$	$0_{\text {d }}$					FR	C
4	5	0_{i}	0_{i}					JZ=	
4	6	0 c	0c					L=	
4	7	$0_{\text {d }}$	$0_{\text {d }}$					L	RJ
4	8	0	0_{k}					TIR	
4	9	0	0					OW	
4	A	$0_{\text {d }}$	$0_{\text {d }}$					L	IB
4	A	8 d	0 d					L	QB
4	B	0 d	$0_{\text {d }}$					T	IB
4	B	8d	0 d					T	QB
4	C	0 d	$0_{\text {d }}$					LD	C
4	D	0 f	Of					JC	OB
4	E	0 d	0 d					DO	FW
4	F	$0_{\text {d }}$	$0_{\text {d }}$					L	RT

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
5	0	0 e	0 e					ADD	BN
5	1	0	0					XOW	
5	2	0 d	0 d					L	IW
5	2	8d	0 d					L	QW
5	3	0 d	0 d					T	IW
5	3	8d	0 d					T	QW
5	4	$0_{\text {d }}$	$0_{\text {d }}$					CD	C
5	5	0_{f}	$0_{\text {f }}$					JC	PB
5	6	0 c	$0{ }_{c}$					LDW=	
5	7	$0_{\text {d }}$	$0_{\text {d }}$					L	OW
5	8	0	0	0 e	0 e	0 e	0 e	ADD	KF
5	9	0	0					-F	
5	A	0 d	0 d					L	ID
5	A	8 d	$0_{\text {d }}$					L	QD
5	B	0 d	0 d					T	ID
5	B	8 d	$0_{\text {d }}$					T	QD
5	C	$0{ }_{\text {d }}$	$0_{\text {d }}$					S	C
5	D	0_{f}	0_{f}					JC	SB
5	F	0 d	0 d					L	OY
6	0	0	0					:F	
6	0	0	3					:G	
6	0	0	4					xF	
6	0	0	5	0e	0 e	0 e	0 e	ADD	DH ${ }^{1)}$
6	0	0	7					xG	

1) 3-word command with B4 und B5, filled with 0 e

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
6	0	0	8					ENT	
6	0	0	9					-D	
6	0	0	B					-G	
6	0	0	C	0	0	0_{i}	$0{ }_{\text {i }}$	JOS=	
6	0	0	D					+D	
6	0	0	F					+G	
6	1	0	$0_{\text {h }}$					SLW	
6	2	$0_{\text {d }}$	$0_{\text {d }}$					L	RS
6	3	$0_{\text {d }}$	$0{ }_{\text {d }}$					T	RS
6	4	$0_{\text {h }}$	$0_{\text {h }}$					RLD	
6	5	0	0					BE	
6	5	0	1					BEU	
6	6	0_{c}	$0_{\text {c }}$					T=	
6	7	$0_{\text {d }}$	$0_{\text {d }}$					T	RJ
6	8	0	0	$0_{\text {e }}$	$0_{\text {e }}$	$0_{\text {e }}$	$0_{\text {e }}$	LRW	
6	8	$0_{\text {h }}$	1					SSW	
6	8	0	2					GFD	
6	8	0	3	$0_{\text {e }}$	$0_{\text {e }}$	0 e	0 e	TRW	
6	8	0	4	0 e	0 e	0 e	0 e	LRD	
6	8	0	5	0 e	0 e	0 e	0 e	TRD	
6	8	0	6					FDG	
6	8	0	7					CSD	
6	8	0	8					DUF	
6	8	0	A					DUD	
6	8	0	B					LDI	A1

Machine Code								Operation	Operand
B0		B2		B3		B4			
L	R	L	R	L	R	L	R		
6	8	0	C					DEF	
6	8	0	E					DED	
6	8	0	F					TDI	A1
6	8	1	9					MAS	
6	8	2	9					MAB	
6	8	2	B					LDI	A2
6	8	2	F					TDI	A2
6	8	4	9					MSA	
6	8	4	B					LDI	SA
6	8	4	F					TDI	SA
6	8	6	9					MSB	
6	8	8	9					MBA	
6	8	9	9					MBS	
6	8	9	B					LDI	BA
6	8	9	F					TDI	BA
6	8	A	B					LDI	BR
6	8	A	F					TDI	BR
6	9	0	0 h					SRW	
6	A	0 d	0 d					L	RI
6	B	0 d	0 d					T	RI
6	C	0 d	0 d					CU	C
6	D	$0_{\text {f }}$	0 f					JU	OB
6	E	0 d	0 d					DO	DW
6	F	0 d	0 d					T	RT
7	0	0	0					STS	

Machine Code								Operation	Operand
B0		B2		B3		B4			
L	R	L	R	L	R	L	R		
7	0	0	2					TAK	
7	0	0	3					STP	
7	0	0	4					STW	
7	0	0	B	0 m	0 m	0 m	0 m	JUR	
7	0	0	C					LIM	
7	0	0	D					SIM	
7	0	0	E	0	0 b	0 g	0 g	RU	RT
7	0	0	E	4	$0{ }_{\text {b }}$	0 g	0 g	SU	RT
7	0	0	E	8	0 b	0 g	0 g	TBN	RT
7	0	0	E	C	$0{ }_{\text {b }}$	0 g	0 g	TB	RT
7	0	0	F					TXW	
7	0	1	5	0	0 b	0 g	0 g	RU	C
7	0	1	5	4	0b	0 g	0 g	SU	C
7	0	1	5	8	0 b	0 g	0 g	TBN	C
7	0	1	5	C	0 b	0 g	0 g	TB	C
7	0	1	E	0	0 b	0 g	0 g	RU	RJ
7	0	1	E	4	0b	0 g	0 g	SU	RJ
7	0	1	E	8	0 b	0 g	0 g	TBN	RJ
7	0	1	E	C	0b	0 g	0 g	TB	RJ
7	0	1	F					TXB	
7	0	2	5	0	0b	0 g	0 g	RU	T
7	0	2	5	4	0b	0 g	0 g	SU	T
7	0	2	5	8	0b	0 g	0 g	TBN	T
7	0	2	5	C	0b	0 g	0 g	TB	T
7	0	3	8	0	0 b	0 a	0 a	RU	I

Machine Code								Operation	Operand
B0		B2		B3		B4			
L	R	L	R	L	R	L	R		
7	0	3	8	0	0b	8a	0a	RU	Q
7	0	3	8	4	0b	0a	0a	SU	I
7	0	3	8	4	0b	8a	0a	SU	Q
7	0	3	8	8	0b	0 a	0a	TBN	1
7	0	3	8	8	0b	8a	0a	TBN	Q
7	0	3	8	C	0b	0 a	0a	TB	1
7	0	3	8	C	0 b	8a	0 a	TB	Q
7	0	4	6	0	0 b	0 g	0 g	RU	D
7	0	4	6	4	0b	0 g	0 g	SU	D
7	0	4	6	8	0 b	0 g	0 g	TBN	D
7	0	4	6	C	0 b	0 g	0 g	TB	D
7	0	4	7	0	0 b	0 g	0 g	RU	RI
7	0	4	7	4	0 b	0 g	0 g	SU	RI
7	0	4	7	8	0 b	0 g	0 g	TBN	RI
7	0	4	7	C	0 b	0 g	0 g	TB	RI
7	0	4	9	0	0 b	0 a	0 a	RU	F
7	0	4	9	4	0 b	0 a	0 a	SU	F
7	0	4	9	8	0 b	0 a	0 a	TBN	F
7	0	4	9	C	0b	0 a	0 a	TB	F
7	0	5	7	0	0b	0 g	0 g	RU	RS
7	0	5	7	4	0b	0 g	0 g	SU	RS
7	0	5	7	8	0b	0 g	0 g	TBN	RS
7	0	5	7	C	0b	0 g	0 g	TB	RS
7	1	0h	0 h					SSD	
7	2	$0_{\text {d }}$	$0_{\text {d }}$					L	PY

Machine Code								Opera－ tion	Ope－ rand
B0		B2		B3		B4			
L	R	L	R	L	R	L	R		
7	3	0 d	0 d					T	PY
7	4	0 h	0h					RRD	
7	5	0 f	0 f					JU	PB
7	6	0_{c}	0c					DO＝	
7	7	0 d	0 d					T	OW
7	8	0	0					IAE	
7	8	0	1	0	1	0_{f}	0_{c}	DOU	FX
7	8	0	2	0	9	0_{f}	0c	DOC	FX
7	8	0	3	1	1	$0_{\text {f }}$	$0_{\text {f }}$	CX	DX
7	8	0	4	0	0	0_{f}	Of	GX	DX
7	8	0	5	0	0	0_{f}	0_{f}	G	DB
7	8	0	6	0	0	0_{n}	0_{n}	SED	
7	8	0	7	0	0	0_{n}	0_{n}	SEE	
7	8	$0_{\text {e }}$	9	$0_{\text {e }}$	$0_{\text {e }}$	$0_{\text {e }}$	0 e	MBR	
7	8	0	A	0 。	0 。	0 。	0o	ABR	
7	8	0	B	$0{ }^{\text {b }}$	0_{a}	0_{a}	0a	A	S
7	8	0	D	$0_{\text {e }}$	$0_{\text {e }}$	0 e	0 e	LYCB	
7	8	0	E	$0_{\text {e }}$	0 e	0 e	0 e	LYGB	
7	8	1	0					RAE	
7	8	1	B	0 b	0a	0 a	0a	\bigcirc	S
7	8	1	D	0 e	0 e	0e	0 e	LYCW	
7	8	1	E	0 e	0 e	0 e	0 e	LYGW	
7	8	2	B	0 b	0 a	0a	0a	S	S
7	8	2	D	0 e	0 e	0 e	0 e	LYCD	
7	8	2	E	0 e	0 e	0e	0 e	LYGD	

Machine Code								Operation	Operand
B0		B2		B3		B4			
L	R	L	R	L	R	L	R		
7	8	3	B	0b	0a	0a	0a	$=$	S
7	8	3	D					ACR	
7	8	3	F	0	0b	0 g	0 g	A	D
7	8	3	F	1	0b	0 g	0 g	0	D
7	8	3	F	2	0b	0 g	0 g	AN	D
7	8	3	F	3	0b	0 g	0 g	ON	D
7	8	3	F	4	0 b	0 g	0 g	S	D
7	8	3	F	5	0 b	0 g	0 g	R	D
7	8	3	F	6	0b	0 g	0 g	$=$	D
7	8	4	B	$0{ }_{\text {b }}$	0a	0 a	0 a	AN	S
7	8	5	B	$0{ }_{\text {b }}$	0 a	0a	0a	ON	S
7	8	5	D	0 e	0 e	0 e	0 e	LWCW	
7	8	5	E	0 e	0 e	0 e	0 e	LWGW	
7	8	6	B	0 b	0 a	0 a	0 a	R	S
7	8	6	D	0 e	0 e	0 e	0 e	LWCD	
7	8	6	E	0 e	0 e	0 e	0 e	LWGD	
7	8	8	D	0 e	0 e	0 e	0 e	TYCB	
7	8	8	E	0 e	0 e	0 e	0 e	TYGB	
7	8	9	D	0 e	0 e	0 e	0 e	TYCW	
7	8	9	E	0 e	0 e	0 e	0 e	TYGW	
7	8	A	B	0	0d	0 d	0 d	L	SY
7	8	A	D	0 e	0 e	0 e	0 e	TYCD	
7	8	A	E	0 e	0 e	0 e	0 e	TYGD	
7	8	B	B	0	0 d	0 d	0 d	T	SY
7	8	C	B	0	$0_{\text {d }}$	$0_{\text {d }}$	$0_{\text {d }}$	L	SW

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
7	8	C	D	0 e	0 e	0 e	0 e	TSC	
7	8	C	E	0 e	0 e	0 e	0 e	TSG	
7	8	D	B	0	0 d	0 d	0 d	T	SW
7	8	D	D	0 e	0 e	0 e	0 e	TWCW	
7	8	D	E	0 e	0 e	0 e	0 e	TWGW	
7	8	E	B	0	0 d	0 d	0 d	L	SD
7	8	E	D	0 e	0 e	0 e	0 e	TWCD	
7	8	E	E	$0_{\text {e }}$	0 e	0 e	0 e	TWGD	
7	8	F	B	0	$0_{\text {d }}$	$0{ }_{\text {d }}$	$0_{\text {d }}$	T	SD
7	9	0	0					+F	
7	A	$0_{\text {d }}$	0 d					L	PW
7	B	$0_{\text {d }}$	$0_{\text {d }}$					T	PW
7	C	$0_{\text {d }}$	$0_{\text {d }}$					R	C
7	D	0_{f}	$0_{\text {f }}$					JU	SB
7	E	0	0					DI	
7	F	$0_{\text {d }}$	$0_{\text {d }}$					T	OY
8	$0{ }_{\text {b }}$	0_{a}	0 a					A	F
8	8b	$0_{\text {a }}$	$0_{\text {a }}$					\bigcirc	F
9	0b	$0{ }^{\text {a }}$	0 a					S	F
9	8b	0_{a}	$0{ }_{\text {a }}$					=	F
A	0b	$0{ }_{\text {a }}$	0 a					AN	F
A	8b	$0{ }^{\text {a }}$	$0{ }^{\text {a }}$					ON	F
B	0b	$0^{\text {a }}$	0 a					R	F
B	8	$0_{\text {d }}$	$0_{\text {d }}$					A	C
B	9	$0_{\text {d }}$	$0_{\text {d }}$					\bigcirc	C

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
B	A	0	0					A(
B	B	0	0					O	
B	C	0 d	0 d					AN	C
B	D	$0_{\text {d }}$	$0_{\text {d }}$					ON	C
B	E	0	0					BAS	
B	F	0	0)	
C	$0{ }_{\text {b }}$	0 a	$0{ }_{\text {a }}$					A	1
C	$0{ }_{\text {b }}$	8a	$0{ }_{\text {a }}$					A	Q
C	8b	0_{a}	$0{ }_{\text {a }}$					0	1
C	8b	8 a	$0_{\text {a }}$					0	Q
D	$0{ }_{\text {b }}$	0 a	$0{ }_{\text {a }}$					S	1
D	$0{ }_{\text {b }}$	8 a	$0{ }_{\text {a }}$					S	Q
D	8b	0 a	$0{ }_{\text {a }}$					=	1
D	8b	8a	$0_{\text {a }}$					=	Q
E	$0{ }_{\text {b }}$	0 a	$0{ }_{\text {a }}$					AN	1
E	$0{ }_{\text {b }}$	8a	$0{ }_{\text {a }}$					AN	Q
E	8b	0 a	0a					ON	1
E	8b	8a	$0^{\text {a }}$					ON	Q
F	0b	0 a	0 a					R	1
F	0b	8a	0 a					R	Q
F	8	0 d	$0_{\text {d }}$					A	T
F	9	$0{ }_{\text {d }}$	0d					\bigcirc	T
F	A	$0{ }_{\text {i }}$	$0{ }_{\text {i }}$					JC=	
F	B	0	0					\bigcirc	
F	C	$0{ }_{\text {d }}$	$0{ }_{\text {d }}$					AN	T

Machine Code								Operation	Operand
B0		B1		B2		B3			
L	R	L	R	L	R	L	R		
F	D	0 d	0 d					ON	T
F	E	0	0					BAF	
F	F	F	F					NOP 1	

Alphabetical Index of Operations

(with Machine Code)

For explanation of subscripts see page 116.

Operation	Operand	Page	Machine Code
A	C D F I Q S T	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { B } 8 \quad 00_{\mathrm{d}} 00_{\mathrm{d}} \\ & 7 \\ & 7 \end{aligned}$
A(---	16	B A 00
A =	Formal oper.	56	0700 c 0 c
ABR	Constant	102	
ACR	---	110	$\begin{array}{llll}7 & 8 & 3\end{array}$
ADD	BN DH KF	94 94 94	
AN	C D F	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	

Operation	Operand	Page	Machine Code
AN	$\begin{aligned} & \mathrm{I} \\ & \mathrm{Q} \\ & \mathrm{~S} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { E } 0_{b} 0_{a} 0_{a} \\ & \text { E } 0_{b} 8 a 0_{a} \\ & \begin{array}{lllll} 7 & 8 & 4 & \text { B } & 0_{b} 0_{a} 0_{a} 0_{a} \\ \text { F C } & 0 d & 0_{d} \end{array} \end{aligned}$
AN=	Formal oper.	56	$2700_{\text {c }}$
AW	---	56	4100
BAF	---	80	FE 00
BAS	---	80	B E 00
BE	---	52	6500
BEC	---	52	0500
BEU	---	52	$\begin{array}{llll}65 & 0\end{array}$
BLD	$0-255$ 130 131 132 133 255	54 54 54 54 54 54	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 \\ 1 & 0 & 8 & 2 \\ 1 & 0 & 8 & 3 \\ 1 & 0 & 8 & 4 \\ 1 & 0 & 8 & 5 \\ 1 & 0 & F & F \end{array}$
C	DB	50	200 f 0 f
CD	C	36	$5400_{\text {d }} 0_{\text {d }}$
CFW	---	74	0100
CSD	---	74	$\begin{array}{llll}68 & 7\end{array}$
csw	---	74	$\begin{array}{lllll}09 & 0\end{array}$
CU	C	36	$6 \mathrm{C} 00_{\mathrm{d}} 0_{\mathrm{d}}$
CX	DX	50	
D	0-255	82	$190^{\text {e }} 0_{\text {e }}$
DED	---	74	680 E
DEF	---	74	680 C
DI	---	96	7 E 00
132			C79000-N8576-C871-01

Operation	Operand	Page	Machine Code
JP =	Symb. addr.	78	$150{ }_{\text {i }} 0_{\mathrm{i}}$
JU	FB OB PB SB	48 48 48 48	$\begin{aligned} & 3 \mathrm{D} 0_{\mathrm{f}} 0_{\mathrm{f}} \\ & 6 \mathrm{D} 0_{\mathrm{f}} 0_{\mathrm{f}} \\ & 75 \\ & 7 \end{aligned}$
$\mathrm{JU}=$	Symb. addr.	78	$2 \mathrm{D} 0_{\mathrm{i}} 0_{\mathrm{i}}$
JUR	Constant	96	$7000 \quad \mathrm{~B} \quad 0_{\mathrm{m}} 0_{\mathrm{m}} 0_{\mathrm{m}} 0_{\mathrm{m}}$
JZ =	Symb. addr.	78	$450 \mathrm{i}^{\text {i }} \mathrm{i}_{\text {i }}$
L	C DD DH DL DR DW FD FW FY IB ID IW KB KC KF KG	26 24 22 22 24 24 22 20 20 20 20 20 24 24 24 24	

	Operand BR SA	Page 88 88	Machine Code				
			$\begin{array}{lll} 68 & \text { A B } \\ 68 & 4 & \text { B } \end{array}$				
LD =	Formal oper.	70	$0 \mathrm{E} 0 \mathrm{c} 0_{\mathrm{c}}$				
LDW =	Formal oper.	70	$5600_{c} 0_{c}$				
LIM	---	98	700 C				
LIR	Register no.	86	40000_{k}				
LRD	Constant	106	$6804400_{\text {e }} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LRW	Constant	106					
LW =	Formal oper.	70	$3 \mathrm{~F} 0_{\mathrm{c}} 0_{\mathrm{c}}$				
LW CD	Constant	114	$786 \mathrm{D} \quad 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LW CW	Constant	114	$785 \mathrm{D} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LW GD	Constant	110	$786 \mathrm{E} \quad 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LW GW	Constant	110	$785 \mathrm{E} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0 \mathrm{e}$				
LY CB	Constant	112	$7800 \mathrm{D} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0 \mathrm{e}$				
LY CD	Constant	112	$7822 \mathrm{D} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0 \mathrm{e}$				
LY CW	Constant	112	$7818 \mathrm{D} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LY GB	Constant	108	$7800 \mathrm{E} \quad 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LY GD	Constant	108	$782 \mathrm{E} \quad 0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$				
LY GW	Constant	108					
MAB	---	104	$68 \quad 29$				
MAS	---	104	$\begin{array}{lllll}68 & 1 & 9\end{array}$				
MBA	---	104	$\begin{array}{lllll}688 & 8\end{array}$				
MBR	Constant	104					
MBS	---	104	6899				
MSA	---	104	6849				
MSB	---	104	6869				
NOP 0	---	54	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$				
NOP 1	---	54	F F F F				

Operation	Operand	Page	Machine Code
0	C D F I Q S T	14 12 12 12 12 12 14 14	
O(---	16	B B 00
$0=$	Formal oper.	56	$0 \mathrm{~F} \quad 0 \mathrm{c} 0 \mathrm{c}$
ON	C D F I Q S T	14 14 14 14 14 14 14	
$\mathrm{ON}=$	Formal oper.	56	2 F 0 c 0 c
OW	---	56	4900
R	C D F । Q S T	$\begin{aligned} & 36 \\ & 18 \\ & 18 \\ & 16 \\ & 16 \\ & 18 \\ & 34 \end{aligned}$	
RA	---	80	$\begin{array}{llll}0 & 8 & 8\end{array}$

Operation TRD	Operand Constant	Page 106	Machine Code				
				68	0	5	$0_{e} 0_{e} 00_{e} 0{ }_{\text {e }}$
TRW	Constant	106		68	0	3	$0_{e} 0_{e} 0_{e} 0_{e}$
TSC	Constant	110		78	C	D	$0_{e} 0_{e} 0_{e} 0_{e}$
TSG	Constant	106		78	C	E	$0_{e} 0_{e} 00_{e} 0_{e}$
TW CD	Constant	114		78	E	D	$0_{\text {e }} 0_{\text {e }} 0_{e} 0_{e}$
TW CW	Constant	114		78	D	D	$0 \mathrm{e} 0 \mathrm{e}_{\mathrm{e}} 0 \mathrm{e} 0 \mathrm{e}$
TW GD	Constant	110		78	E	E	$0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$
TW GW	Constant	110		78	D	E	$0 \mathrm{e} 0_{\mathrm{e}} 0_{\mathrm{e}} 0_{\mathrm{e}}$
TXB	---	92		70	1	F	
TXW	---	92		70	0	F	
TY CB	Constant	112		78	8	D	$0_{e} 0_{e} 0_{e} 0_{e}$
TY CD	Constant	112		78	A	D	$0_{e} 0_{e} 0_{e} 0_{e}$
TY CW	Constant	112		78	9	D	$0_{e} 0_{e} 0_{e} 0_{e}$
TY GB	Constant	108		78	8	E	$0_{e} 0_{e} 0_{e} 0_{e}$
TY GD	Constant	108		78	A	E	$0_{e} 0_{e} 0_{e} 0_{e}$
TY GW	Constant	108		78	9	E	$0_{e} 0_{e} 0_{e} 0_{e}$
xow	---	56		51	0	0	
)		16		B F	0	0	
=	D F I Q S	18 18 18 18 18		78 $8 \mathrm{~b}$ D 8b D 8b 78	3 ba 0 a 8 a 3	F 0 a 0 a 0 a B	$60 \mathrm{~b} 0 \mathrm{~g} \mathrm{0g}$ $0_{b} 0_{\mathrm{a}} 0_{\mathrm{a}} 0_{\mathrm{a}}$
= $=$	Formal oper.	62		1 F	0 c		
>D	---	46		39	2	0	
<D	---	46		39	4	0	
><D	---	46		39	6	0	
!=D	---	46		39	8	0	

Operation	Operand	Page	Machine Code
$>=$ D	---	46	39 A 0
$<=$ D	---	46	39 C 0
+D	---	94	6000 D
-D	---	94	600089
:F	---	38	60000
xF	---	38	$\begin{array}{llll}6 & 0 & 0 & 4\end{array}$
+F	---	38	7900
-F	---	38	$\begin{array}{llll}5 & 9 & 0 & 0\end{array}$
$!=F$	---	42	$\begin{array}{lllll}2 & 1 & 8 & 0\end{array}$
>F	---	42	2120
$<\mathrm{F}$	---	42	2140
$><F$	---	42	2160
>=F	---	42	21 A 0
<=F	---	42	21 C 0
>G	---	44	$\begin{array}{llll}3 & 1 & 2 & 0\end{array}$
<G	---	44	$\begin{array}{llll}3 & 1 & 4 & 0\end{array}$
><G	---	44	3166
$!=G$	---	44	$\begin{array}{lllll}3 & 1 & 8 & 0\end{array}$
>=G	---	44	31 A 0
<=G	---	44	31 C 0
:G	---	40	60003
xG	---	40	$\begin{array}{llll}6 & 0 & 0 & 7\end{array}$
+G	---	40	6000 F
-G	---	40	60008

Explanatory Notes on the Condition Codes

Structure of the Condition Code Byte

Abbreviations	Description
CC 0 / CC 1	Condition codes 0/1 (see Evaluation of CC 0 and CC 1)
OV	Overflow. This condition code is set if the maximum number range is exceeded during arithmetic operations.
OS	Stored overflow. The overflow bit is stored. This is an indication of whether and when an overflow error has occurred in the course of arithmetic operations.
OR	Internal condition code of the processor relating to AND and OR operations.
STA	STATUS; Signal status of the bit scanned.
RLO	Result of Logic Operation. Contains the result of individual bit operations and comparison operations.
$\overline{\text { ERAB }}$	First bit scanned. $\overline{\text { ERAB }}=0$ identifies the beginning and the end of a string of logic operations. The first operation of the string sets the ERAB bit to 1". Only at the end of the string is the operaB bit reset (e.g. by a set/reset

Evaluation of CCO and CC1

$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & 0 \end{aligned}$	Arithmetic Operations	Digital Logic Operations	Com-Operations	Shift Operations	$\begin{aligned} & \text { For } \\ & \text { SED, } \\ & \text { SEE } \end{aligned}$	Jump Operations Executed
0	0	$\begin{aligned} & \text { Result } \\ & =0 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Result } \\ =0 \end{array} \end{aligned}$	$\begin{aligned} & \text { ACCU } 2 \\ & \bar{A} C C U \\ & 1 \end{aligned}$	shifted bit $=0$	Sema- phore has been set	JZ
0	1	$\begin{aligned} & \text { Result } \\ & <0 \end{aligned}$	-	ACCU 2 ACCU 1	-	-	$\begin{aligned} & \mathrm{JM} \\ & \mathrm{JN} \end{aligned}$
1	0	$\begin{aligned} & \text { Result } \\ & >0 \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \neq 0 \end{aligned}$	$\begin{aligned} & \text { ACCU } 2 \\ & \text { ACCU } 1 \end{aligned}$	shifted bit $=1$	Semaphore is set now	$\begin{aligned} & \mathrm{JP} \\ & \mathrm{JN} \end{aligned}$
1	1	Divide by 0	-	-	-	-	JN ${ }^{1)}$

1) not executed with CPU 948

List of Organization Blocks

Organization Block	$=O B$ available on this CPU$=\mathrm{OB}$ not available on this CPU			Function
	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
OBs for Program Processing				
OB 1	■ 1)	■ 1)	\square	OB for cyclic program processing
OB 2	■	\square	■ 3)	Interrupt-driven program processing
OB 3 to OB 8			■ 3)	Interrupt-driven program processing
OB 6		\square	■ 3)	Delay interrupt
OB 9		\square	■ 3)	Time-driven program processing
OB 10	10 ms	10 ms	$0.1 \mathrm{~s}^{2)}{ }^{\text {3) }}$	Time interrupts with set time grid
OB 11	20 ms	20 ms	$0.2 \mathrm{~s}^{\text {2) }}$ 3)	
OB 12	50 ms	50 ms	$0.5 \mathrm{~s}^{\text {2) 3) }}$	
OB 13	100 ms	100 ms	$1.0 \mathrm{~s}^{2)} 3$)	
OB 14	200 ms	200 ms	$2.0 \mathrm{~s}^{\text {2) 3) }}$	
OB 15	500 ms	500 ms	$5.0 \mathrm{~s}^{\text {2) }}$ 3)	
OB 16	1 s	1 s	$10.0 \mathrm{~s}^{2)}{ }^{3)}$	
OB 17	2 s	2 s	$20.0 \mathrm{~s}^{\text {2) }}$ 3)	
OB 18	5 s	5 s	$50.0 \mathrm{~s}^{\text {2) }}$ 3)	

1) alternative FB 0
2) Default setting, can be changed via DX 0
3) Details about the functions of these OBs of the CPU 948 can be found in the "CPU 948 Programming Guide".

List of Organization Blocks

Organization Block	$=O B$ available on this CPU\square $=\mathrm{OB}$ not available on this CPU			Function
	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { CPU } \\ & 948 \end{aligned}$	
OBs for Program Processing (continued)				
OB 31			- ${ }^{1)}$	Set cycle monitoring time
OB 39			■	Organization of the cyclic program for communication in SMOOTH STOP
OBs for Start-up Procedures				
OB 20	\square	■	■	Manual or automatic cold restart (can be set in DX 0)
OB 21	■	-	■	Manual warm restart
OB 22	■	■	■	Automatic warm restart after power failure
OB 38			■	Organization of the restart behavior for communication in SMOOTH STOP

1) The setting of the cycle monitoring time via OB 31 has a higher priority than the setting via DX 0 (CPU 948).

List of Organization Blocks

Organization Block	= OB not available on this CPU $=\mathrm{OB}$ not available on this CPU		Cause of error	Reaction without OB
	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$		
OBs for Handling Controller Errors in the CPU 928/928B				
OB 19	■	■	Call of a block not programmed (LZF)	Stop
OB 23	\square	\square	Timeout in the case of direct access to the I/O module (QVZ)	none
OB 24	■	■	Timeout when updating the process image and transferring interprocessor communication flags	none
OB 25	\square	\square	Addressing error (ADF)	Stop
OB 26	\square	\square	Scan time exceeded (ZYK-FE)	Stop
OB 27	\square	\square	Substitution error (BCF)	Stop
OB 28	\square	■	Stop by PG function/Stop switch/S5-BUS (ABBR)	Stop ${ }^{1)}$
OB 29	\square	\square	Operation error (BCF)	Stop
OB 30	■	\square	Parameter assignment error (BCF)	Stop
OB 31	\square	\square	Other execution time errors (LZF)	Stop

1) Switchover to the STOP state always occurs independently of whether OB 28 is programmed and how it is programmed.

List of Organization Blocks

Organization Block	= OB available on this CPU = OB not available on this CPU		Cause of error	Reaction without OB
	$\begin{aligned} & \hline \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$		
OBs for Handling Controller Errors in the CPU 928/928B (continued)				
OB 32	■	- 1)	Transfer errors in the case of data blocks (LZF) ${ }^{1 /}$	Stop
OB 33	\square	-	Collision of two timed interrupts (WECK-FE)	Stop
OB 34	■	-	Error in PID controller processing	Stop
OB 35		■	Interface error	none

1) On CPU 928B also loading error

List of Organization Blocks

Organization Block	Cause of error	Reaction without OB
OBs for Handling Controller Errors in the CPU 948		
OB 19	Call a block that is not loaded (KB) Open a data block that is not loaded (KDB)	none Stop
OB 23	Timeout during direct access (user program) to CP, IP, COR or I/O modules via the S 5 bus (QVZ)	none
OB 24	Timeout while updating the process image or transferring the IPC flags	none
OB 25	Addressing error (ADF) ${ }^{1)}$	Stop
OB 26	Cycle time exceeded (ZYK)	Stop
OB 27	Substitution error (SUF)	Stop
OB 28	Timeout in input byte IB 0 (QVZ)	Stop

1) if not inhibited by IAE

Organization Block	Cause of error	Reaction without OB
OBs for Handling Controller Errors in the CPU 948 (continued)		
OB 29	Timeout for distributed peripherals for the address areas: - F 0000 H to F EFFFH, F F200H to F FFFFH	none
OB 30	Parity error and QVZ in the user memory (PARE)	Stop
OB 32	Load/transfer error (TLAF)	Stop
OB 33	Collision of time interrupts: - Queue overflow (WEFES) - The time interrupt pulse has been masked for too long (WEFEH)	Stop none
OB 34	Error while generating a data block with G DB or GX DX (FEDBX)	Stop

List of Organization Blocks

List of Organization Blocks

List of Organization Blocks

Organization Block	Execution times in $\mu \mathrm{s}$= OB not available on this CPU			Function	
	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$		
Special Function OBs (continued)					
OB 152	,	40	\rightarrow	Cycle scan s	tistic
OB 153				Delay interrupt	
				Function no.	Function
		26	110	1	Define and start delay time
		23	72	2	Stop delay time
		32	80	3	Read current remaining time
OB 160-163	11	1.1		Repeat loops	
OB 170	$30+\mathrm{n} \cdot 5.6$	$30+n \cdot 5.6$		Read block stack (BSTACK); $\mathrm{n}=$ number of BSTACK elements	
OB 180	12	1.0	76	Random data block access	
OB 181	25	3.6	38	Test data blocks (DB/DX)	
OB 182		$80+n \cdot 0.3$	$\begin{gathered} 170+\mathrm{n} \cdot 1^{1)} \\ 170+\mathrm{n} \cdot 10.5^{2)} \end{gathered}$	Copy data area; ${ }^{3)}$ $\mathrm{n}=$ number of data words	
OB 185		19		Remove write protection	
OB 186		$23+4)$		Compress memory	

[^1]
List of Organization Blocks

List of Organization Blocks

1) See Manual "SIMATIC S5 - Standard Function Blocks

Handling Blocks CPU 928, CPU 928B
S5-135U, S5-155U Programmable Controllers"

List of Organization Blocks

Organization Block	Execution times in $\mu \mathrm{s}$ = OB not available on this CPU			Function
	$\begin{aligned} & \text { CPU } \\ & 928 \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 928 B \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & 948 \end{aligned}$	
Special Function OBs (continued)				
OB 240	$45+\mathrm{n}^{*} 7$	$45+\mathrm{n}^{*} 7$		Initialize a shift register; $\mathrm{n}=$ number of pointers
OB 241	$20+n * 5$	$20+n * 5$		Call a shift register; $\mathrm{n}=$ number of pointers
OB 242	17	17		Delete a shift register
OB 250	92	92		Initialize a PID controller
OB 251	340	340		Call a PID controller
OB 254	$40+n * 0.3$	$42+\mathrm{n}^{*} 0.3$	1472-2869	Copy a DX data block (extension); $\mathrm{n}=$ number of data words to be transferred
OB 255	$40+n * 0.3$	$42+\mathrm{n}^{*} 0.3$	1472-2869	Copy a DB data block; $n=$ number of data words to be transferred

Address Area Divisions

CPU 948

[^2]Siemens AG
AUT E 146

Östl. Rheinbrückenstr. 50
D-76181 Karlsruhe
Federal Republic of Germany

From:
Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

- Automotive
\square Chemical
\square Electrical Machinery
\square Food
\square Instrument and Control
\square Nonelectrical Machinery
- Petrochemical
\square Pharmaceutical
\square Plastic
\square Pulp and Paper
ㄱ Textiles
\square Transportation
\square Other

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

```
Title of Quick Reference: _ _ _ _ _ _ _ _ _ _ _ _ _ _
- - - - - - - - - - - - - - - - - - - - - - - - - -
Order No. of Quick Reference:
```


Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Is the text easy to understand?
4. Does the level of technical detail meet your requirements?
5. Please rate the quality of the graphics/tables?

Additional comments:

[^0]: 1) Add the time for the ISTACK operation (approx. $6.5 \mu \mathrm{~s}$)
[^1]: 1) For copy direction decrementing
 2) For copy direction incrementing
 3) CPU 948: The copy direction "decrementing" is standard. The
[^2]: ${ }^{1)}$ The last 20 words of the user memory cannot be used.

