

SIMATIC

SPC3 Hardware Description

(Siemens PROFIBUS Controller according to IEC 61158)

Version: 1.6 Date: 2009/04

Liability Exclusion

We have tested the contents of this document regarding agreement with the hardware and software described. Nevertheless, there may be deviations, and we don't guarantee complete agreement. The data in the document is tested periodically, however. Required corrections are included in subsequent versions. We gratefully accept suggestions for improvement

Copyright

Copyright © Siemens AG 2003. All Rights Reserved.

Unless permission has been expressly granted, passing on this document or copying it, or using and sharing its content are not allowed. Offenders will be held liable. All rights reserved, in the event a patent is granted or a utility model or design is registered.

Subject to technical changes.

Versions

Release	Date	Changes
V 1.1	12/23/99	Chapter 8.2 Current consumption without bus accesses
		Chapter 10.1 Contact persons
V 1.2	09/25/02	Included the specification of the different manufacturers in
		Chap. 8.1, 8.3, 8.5 and 10.3 Order numbers
		chap 10.1 contact persons
V 1.3	2003/04	Included the specification of the different manufacturers in
		Chap. 8.1, 8.3, 8.5 and 10.3
V 1.4	2005/12	Order numbers for the lead free version
V 1.5	2006/03	Correction of the Order numbers in Chapter 10.1
V 1.6	2009/04	Correction of the Order numbers in Chapter 10.1

Directory

1 INTE	RODUCTION	6
2 FUN	ICTION OVERVIEW	7
3 PIN	DESCRIPTION	8
4 MEN	MORY ALLOCATION	10
4.1 N	Memory Area Distribution in the SPC3	10
4.2 F	Processor Parameters (Latches/Register)	12
4.3	Organizational Parameters (RAM)	14
5 ASIC	C INTERFACE	15
5.1 N	Mode Register	15
5.1.1 5.1.2	Mode Register 0 Mode Register 1 (Mode-REG1, writable):	15 17
	Status Register	18
5.3 I	Interrupt Controller	20
5.4 V	Watchdog Timer	23
5.4.1	Automatic Baud Rate Identification	23
5.4.2 5.4.3		23 23
6 DD0	OFIBUS-DP INTERFACE	24
6 PRO	PRIBUS-DP INTERFACE	24
6.1 I	DP_Buffer Structure	24
	Description of the DP Services	27
6.2.1	Set_Slave_Address (SAP55)	27
6.2.2 6.2.3	Set_Param (SAP61) Check_Config (SAP62)	28 29
6.2.4	Slave_Diagnosis (SAP60)	30
6.2.5	Write_Read_Data / Data_Exchange (Default_SAP)	31
6.2.6	Global_Control (SAP58)	33
6.2.7	Read_Inputs (SAP56)	34
6.2.8 6.2.9	Read_Outputs (SAP57) Get_Config (SAP59)	34 34
7 HAR	RDWARE INTERFACE	35
	Universal Processor Bus Interface	35
7.1.1	General Description	35
7.1.2	Bus Interface Unit (BIU)	35
7.1.3 7.1.4	Switching Diagram Principles Application with the 80 C 32	37
7.1.4	Application with the 80 C 32 Application with th 80 C 165	4(
=	••	

7.1	1.6 Interface Signals	41
7.2	UART	41
7.3	ASIC Test	41
8 TI	ECHNICAL DATA	42
8.1	Maximum Limit Values	42
8.2	Permitted Operating Values	42
8.3	DC-Specifikation of the I/O- Drivers	42
8.4	AC-Specification for the Output Drivers	43
8.5 8.5 8.5 8.5	Timing Characteristics 5.1 SYS Bus Interface 5.2 Timing in the Synchronous C32-Mode: 5.3 Timing in the Asynchronous Intel Mode (X86 Mode): 5.4 Timing in the Synchronous Motorola Mode (E_Clock-Mode, for example, 68HC11): 5.5 Timing in the Asynchronous Motorola-Mode (for example, 68HC16): 5.6 Serial Bus Interface 5.7 Housing 5.8 Processing Instructions	44 44 45 47 48 50 52 53
9 PI	ROFIBUS INTERFACE	55
9.1	Pin Assignment	55
9.2	Example for the RS 485 Interface	56
10	APPENDIX	57
10.1	Addresses	57
10.2	General Definition of Terms	58
10.3	Ordering of ASICs	58
11	APPENDIX A: DIAGNOSTICS PROCESSING IN PROFIBUS DP	59
11.1	Introduction	59
11	Diagnostics Bits and Expanded Diagnostics .2.1 STAT_DIAG .2.2 EXT_DIAG .2.3 EXT_DIAG_OVERFLOW	59 59 59 61
11.3	Diagnostics Processing from the System View	61
12	APPENDIX B: USEFUL INFORMATION	62
12.1	Data format in the Siemens PLC SIMATIC	62

1 Introduction

For simple and fast digital exchange between programmable logic controllers, Siemens offers its users several ASICs. These ASICs are based on and are completely handled on the principles of the EN 50170 Vol. 2, of data traffic between individual programmable logic controller stations.

The following ASICs are available to support intelligent slave solutions, that is, implementations with a microprocessor.

The **ASPC2** already has integrated many parts of Layer 2, but the **ASPC2** also requires a processor's support. This ASIC supports baud rates up to 12 Mbaud. In its complexity, this ASIC is conceived primarily for master applications.

Due to the integration of the complete PROFIBUS-DP protocol, the **SPC3** decisively relieves the processor of an intelligent PROFIBUS slave. The **SPC3** can be operated on the bus with a baud rate of up to 12 MBaud.

However, there are also simple devices in the automation engineering area, such as switches and thermoelements, that do not require a microprocessor to record their states.

There are two additional ASICs available with the designations **SPM2** (Siemens Profibus Multiplexer, Version 2) and **LSPM2** (Lean Siemens PROFIBUS Multiplexer) for an economical adaptation of these devices. These blocks work as a DP slave in the bus system (according to DIN E 19245 T3) and work with baud rates up to 12 Mbaud. A master addresses these blocks by means of Layer 2 of the 7 layer model. After these blocks have received an error-free telegram, they independently generate the required response telegrams.

The LSPM2 has the same functions as the SPM2, but the LSPM2 has a decreased number of I/O ports and diagnostics ports.

2 Function Overview

The SPC3 makes it possible to have a price-optimized configuration of intelligent PROFIBUS-DP slave applications.

The processor interface supports the following processors:

Intel: 80C31, 80X86 Siemens: 80C166/165/167

Motorola: HC11-,HC16-,HC916 types

In SPC3, the transfer technology is integrated (Layer 1), except for analog functions (RS485 drivers), the FDL transfer protocol (Fieldbus Data Link) for slave nodes (Layer 2a), a support of the interface utilities (Layer 2b), some Layer 2 FMA utilities, and the complete DP slave protocol (USIF: User Interface, which makes it possible for the user to have access to Layer 2). The remaining functions of Layer 2 (software utilities and management) must be handled via software.

The **integrated 1.5k Dual-Port-RAM** serves as an interface between the SPC3 and the software/application. The entire memory is subdivided into 192 segments, with 8 bytes each. Addressing from the user takes place directly and from the internal microsequencer (MS) by means of the so-alled base pointer. The base-pointer can be positioned at any segment in the memory. Therefore, all buffers must always be located at the beginning of a segment.

If the SPC3 carries out a DP communication the SPC3 automatically sets up all DP-SAPs. The various telegram information is made available to the user in separate data buffers (for example, parameter setting data and configuration data). Three change buffers are provided for data communication, both for the output data and for the input data. A change buffer is always available for communication. Therefore, no resource problems can occur. For optimal diagnostics support, SPC3 has two diagnostics change buffers into which the user inputs the updated diagnostics data. One diagnostics buffer is always assigned to SPC3 in this process.

The **bus interface** is a parameterizable synchronous/asynchronous 8-bit interface for various Intel and Motorola microcontrollers/processors. The user can directly access the internal 1.5k RAM or the parameter latches via the 11-bit address bus.

After the processor has been switched on, procedural-specific parameters (station address, control bits, etc.) must be transferred to the **Parameter Register File** and to the **mode registers**.

The MAC status can be scanned at any time in the status register.

Various events (various indications, error events, etc.) are entered in the **interrupt controller**. These events can be individually enabled via a mask register. Acknowledgement takes place by means of the acknowledge register. The SPC3 has a common interrupt output.

The integrated **Watchdog Timer** is operated in three different states: 'Baud_Search', 'Baud_Control,' and 'DP_Control'.

The Micro Sequencer (MS) controls the entire process.

Procedure-specific parameters (buffer pointer, buffer lengths, station address, etc.) and the data buffer are contained in the integrated **1.5kByte RAM** that a controller operates as Dual-Port-RAM.

In **UART**, the parallel data flow is converted into the serial data flow, or vice-versa. The SPC3 is capable of automatically identifying the baud rates (9.6 kBd - 12 MBd).

The **Idle Timer** directly controls the bus times on the serial bus cable.

3 Pin Description

The SPC3 has a 44-pin PQFP housing with the following signals:

Pin	Signal Name	In/Out	Description	Source / Destination		
1	XCS	I©	Chip-Select	C32 Mod	e: place on VDD. de: CS-Signal	
				CPU (80C165)		
2	XWR/E_Clock	I©	Write signal /EI_Clock	k for Motor	ola	CPU
3	DIVIDER	I©	Setting the scaler fact			
			low potential means of			
4	XRD/R_W	I©	Read signal / Read_V	Vrite for Mo	otorola	CPU
5	CLK	I(TS)	Clock pulse input			System
6	VSS					
7	CLKOUT2/4	0	Clock pulse divided b			System, CPU
8	XINT/MOT	I©	<log> 0 = Intel interfa <log> 1 = Motorola in</log></log>			System
9	X/INT	0	Interrupt	lenace		CPU, Interrupt-Contr.
10	AB10	I(CPD)	Address bus		C32 mode: <log> 0</log>	or o, interrupt contr.
1.0	710	1(01 5)	71001000 000		C165 mode: address bus	
11	DB0	I©/O	Data bus	C32 Mod	e: Data/address bus multiplexed	CPU, memory
12	DB1	I©/O	1		de: Data/address bus separated	,
13	XDATAEXCH	0	Data_Exchange state			LED
14	XREADY/XDTACK	0	Ready for external CF			System, CPU
15	DB2	I©/O	Data bus		C32 mode: data bus/address bus multiplexed	CPU, memory
16	DB3	I©/O			C165 mode: data/address bus separate	
17	VSS					
18	VDD					
19	DB4	I©/O	Data bus			
20	DB5	I©/O		CPU, memory		
21	DB6	I©/O				
22	DB7	I©/O				
23	MODE	I	<log> 0 = 80C166 Da</log> <log> 1 = 80C32timing</log>	System		
24	ALE/AS	I©	Address latch enable		e: ALE de: <log> 0</log>	CPU (80C32)
25	AB9	I	Address bus	C32 mod	e: <log> 0 de: address bus</log>	CPU (C165), memory
26	TXD	0	Serial send port			RS 485 sender
27	RTS	0	Request to Send			RS 485 sender
28	VSS					
29	AB8	I©	Address bus		e: <log> 0 de: address bus</log>	
30	RXD	I©	Serial receive port			RS 485 receiver
31	AB7	I©	Address bus			System, CPU
32	AB6	I©	Address bus			System, CPU
33	XCTS	I©	Clear to send <log></log>	FSK modem		
34	XTEST0	I©	Pin must be placed fix			
35	XTEST1	I©	Pin must be placed fix			
36	RESET	I(CS)	Connect reset input w	ith CPU's	port pin.	
37	AB4	I©	Address bus	System, CPU		
38	VSS					
39	VDD	10				
40	AB3	I©	A dalaga a a la con			Curtain CDU
41	AB2	I©	Address bus			System, CPU
42	AB5	I©	Address bir			System CDLI
43	AB1	I©	Address bus			System, CPU
44	AB0	I©				

Figure 3.1: SPC3 Pin Assignment

Note: • All signals that begin with X.. are LOW active

• VDD = +5V, VSS = GND

Input levels: I ©: CMOS

PROFIBUS Interface Center

SPC3

I (CS):	CMOS Schmitt trigger
I (CPD):	CMOS with pull down
I (TS):	TTLt Schmitt trigger

4 Memory Allocation

4.1 Memory Area Distribution in the SPC3

The figure displays the division of the SPC3 1.5k internal address area.

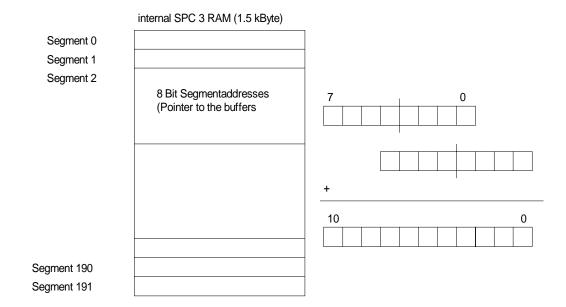
The internal latches/register are located in the first 21 addresses. The internal latches/register either come from the controller or influence the controller. Certain cells can be only read or written. The internal work cells to which the user has no access are located in RAM at the same addresses.

The organizational parameters are located in RAM beginning with address 16H. The entire buffer structure (for the DP-SAPS) is written based on these parameters. In addition, general parameter setting data (station address, Ident no., etc.) are transferred in these cells and the status displays are stored in these cells (global control command, etc.).

Corresponding to the parameter setting of the organizational parameters, the user-generated buffers are located beginning with address 40H. All buffers or lists must begin at segment addresses (48 bytes segmentation).

Address	Function		
000H	Processor para Latches/registe (22 bytes)		internal work cells
016H	Organizational parameters (42 bytes)		
040H	DP- buffer:	Data In (3) * Data Out (3) * Diagnostics (2) Parameter sett	
5FFH		Configuration of Auxiliary buffer SSA-buffer(1)	data (2)

Figure 4.1: SPC3 Memory Area Distribution


Caution:

The HW prohibits overranging the address area. That is, if a user writes or reads past the memory end, 400H is subtracted from this address and the user therefore accesses a new address. This prohibits overwriting a process parameter. In this case, the SPC3 generates the RAM access violation interrupt. If the MS overranges the memory end due to a faulty buffer initialization, the same procedure is executed.

^{*} Data In is the input data from PROFIBUS slave to master Data out is the output data from PROFIBUS master to slave

The complete internal RAM of the SPC 3 is divided logically into 192 segments. Each segment consists of 8 bytes. For more informations about the contents of the 3 memory areas see previous chapter. The physical address is build by multiplikation with 8.

4.2 Processor Parameters (Latches/Register)

These cells can be either read only or written only. SPC3 carries out "address swapping" for an access to the address area 00H - 07H (word register) in the Motorola mode. That is, the SPC3 exchanges

address bit 0 (generated from an even address, one uneven, and vice-versa). The following sections more clearly explain the significance of the individual registers.

Address		Name	Bit No.	Significance (Read Access!)
Intel / I	Motorla			
00H	01H	Int-Req-Reg	70	Interrupt Controller Register
01H	00H	Int-Req-Reg	158	
02H	03H	Int—Reg	70	
03H	02H	Int—Reg	158	
04H	05H	Status-Reg	70	Status Register
05H	04H	Status-Reg	158	
06H	07H	Reserved		
07H	06H			
08	Н	DIN_Buffer_SM		Buffer assignment of the
		70		DP_Din_Buffer_State_Machine
09	Н	New_DIN_Buffer_Cmd	10	The user makes a new DP Din buffer available in the N state.
0.4	H	DOUT_Buffer_SM	70	Buffer assignment of the
				DP_Dout_Puffer_State_Machine
0E	H	Next_DOUT_Buffer_Cm	d 10	
00	N 1	DIAC Duffer CM	2.0	state.
00	, _П	DIAG_Buffer_SM	30	Buffer assignment for the DP_Diag_Puffer_State_Machine
00	\L	New DIAG Puffer Cmd		The user makes a new DP Diag Buffer available to
		10		the SPC3.
0E	Ή	User_Prm_Data_OK	10	The user positively acknowledges the user
0F	.П	UserPrmDataNOK	1 0	parameter setting data of a Set_Param-Telegram. The user negatively acknowledges the user
UI-	11	OSEIFIIIDAIANON	10	parameter setting data of a Set_Param-Telegram.
10	Н	User_Cfg_Data_OK	10	The user positively acknowledges the configuration
				data of a Check_Config-Telegram.
11	Н	User_Cfg_Data_NOK	10	The user negatively acknowledges the configuration data of a Check_Config-Telegram.
12	Ή	Reserved		data of a official point follogram.
13				
14		SSA_Bufferfreecmd		The user has fetched the data from the SSA buffer
	= =			and enables the buffer again.
15	Н	Reserved		

Figure 4.2: Assignment of the Internal Parameter Latches for READ

Address Intel		Name	Bit No.	Significance (Write Access !)
/Motoro	la			
00H	01H	Int-Req-Reg	70	Interrupt- Controller - Register
01H	00H	Int-Req_Reg	158	· -
02H	03H	Int-Ack-Reg	70	
03H	02H	Int-Ack-Reg	158	
04H	05H	Int-Mask-Reg	70	
05H	04H	Int—Mask-Reg	158	
06H	07H	Mode-Reg0	70	Setting parameters for individual bits
07H	06H	Mode-Reg0-S	158	
08	Н	Mode-Reg1-S	70	
09	Н	Mode-Reg1-R 70		
0A	ιН	WD Baud Ctrl -Val	70	Root value for baud rate monitoring
0B	3H	MinTsdr_Val	70	MinTsdr time
00	CH			
00	Н	Reserved		
0E	H			
0F	H			
10	H			
11	Н			
12	:H			
13	H			
14	H			
15	H			

Figure 4.3: Assignment of the Internal Parameter Latches for WRITE

4.3 Organizational Parameters (RAM)

The user stores the organizational parameters in RAM under the specified addresses. These parameters can be written and read.

SPC3

Address		Name	Bit No.	Significance			
Intel				3			
/Motorola							
16H		R_TS_Adr	70	Set up station address of the relevant SPC3			
17	Н	reserved		Pointer to a RAM address which is presetted with 0FFH			
18H	19H	R_User_Wd_Value	70	Based on an internal 16-bit wachdog timer, the user is			
				monitored in the DP_Mode.			
19H	18H	R_User_Wd_Value	158				
1A		R_Len_Dout_Puf		Length of the 3 Dout buffers			
1B		R_Dout_buf_Ptr1		Segment base address of Dout buffer 1			
1C		R_Dout_buf_Ptr2		Segment base address of Dout buffer 2			
1D		R_Dout_buf_Ptr3		Segment base address of Dout buffer 3			
1E		R_Len_Din_buf		Length of the 3 Din buffers			
1F		R_Din_buf_Ptr1		Segment base address of Din buffer 1			
20		R_Din_buf_Ptr2		Segment base address of Din buffer 2			
21		R_Din_buf_Ptr3		Segment base address of Din buffer 3			
22		reserved		Preset with 00H.			
23		reserved		Preset with 00H.			
24		R Len Diag buf1		Length of Diag buffer 1			
25		R Len Diag buf2		Length of Diag buffer 2			
26		R_Diag_Puf_Ptr1		Segment base address of Diag buffer 1			
27		R_Diag_Puf_Ptr2		Segment base address of Diag buffer 2			
28	H	R Len Cntrl Pbuf1		Length of Aux buffer 1 and the control buffer belonging to it,			
				for example, SSA-Buf, Prm-Buf, Cfg-Buf, Read-Cfg-Buf			
29	H	R Len Cntrl Puf2		Length of Aux-Buffer 2 and the control buffer belonging to it,			
0.4		D.A. D. (O.I		for example, SSA-Buf, Prm-Buf, Cfg-Buf, Read-Cfg-Buf			
2A	Н	R Aux Puf Sel		Bit array, in which the assignments of the Aux-buffers ½ are			
OD.	11	D. A b.uf Dard		defined to the control buffers, SSA-Buf, Prm-Buf, Cfg-Buf			
2B		R_Aux_buf_Ptr1		Segment base address of auxiliary buffer 1			
2C 2D		R_Aux_buf_Ptr2		Segment base address of auxiliary buffer 2			
2E		R_Len_SSA_Data R SSA buf Ptr		Length of the input data in the Set_Slave_Address-buffer			
2F		R Len Prm Data		Segment base address of the Set_Slave_Address-buffer			
30				Length of the input data in the Set_Param-buffer			
31		R_Prm_buf_Ptr R Len Cfg Data		Segment base address of the Set_Param-buffer Length of the input data in the Check_Config-buffer			
32		R Cfg Buf Ptr					
33		R_Len_Read_Cfg_D	lata	Segment base address of the Check_Config-buffer Length of the input data in the Get_Config-buffer			
34		R_Read_Cfg_buf_Pf		Segment base address of the Get_Config-buffer			
35		reserved	.!	Preset with 00H.			
36		reserved		Preset with 00H			
37		reserved		Preset with 00H.			
38		reserved		Preset with 00H.			
39		R_Real_No_Add_Ch	ange	This parameter specifies whether the DP slave address may			
	• •		larige	again be changed at a later time point.			
3A	H	R_Ident_Low		The user sets the parameters for the Ident_Low value.			
3B		R_Ident_High		The user sets the parameters for the Ident_High value.			
3C		R_GC_Command		The Global_Control_Command last received			
3D		R_Len_Spec_Prm_b	ouf	If parameters are set for the Spec_Prm_Buffer_Mode (see			
		on_opoo_i	. J.	mode register 0), this cell defines the length of the param			
				buffer.			
		1		l			

Figure 4.4: Assignment of the Organizational Parameters

5 ASIC Interface

The registers that determine both the hardware function of the ASIC as well as telegram processing are described in the following.

5.1 Mode Register

Parameter bits that access the controller directly or which the controller directly sets are combined in two mode registers (0 and 1) in the SPC3.

5.1.1 Mode Register 0

Setting parameters for Mode Register 0 takes place in the offline state only (for example, after switching on). The SPC3 may not exit *offline* until Mode Register 0, all processor parameters, and organizational parameters are loaded (START_SPC3 = 1, Mode-Register 1).

Address		Bit Position								
Control	7	6	5	4	3	2	1	0		
Register										
06H (Intel)	Freeze_ Support- ed	Sync_ Support- ed	EARLY_ RDY	INT_ POL	MinTSDR		DIS_ STOP_ CON TROL	DIS_ START_ CON TROL	Mode Reg0 70	

Address		Bit Position								
Control	15	14	13	12	11	10	9	8		
Register										
07H			Spec_Cle	Spec_Prm_	WD	User	EOI	DP	Mode-Reg0	
(Intel)			ar_Mode	Puf_Mode	Test	Time	Time	Mode	13 8	
(*)	**)		base	base			

^{*)} When Spec_Clear_Mode (Fail Safe Mode) = 1 the SPC3 will accept data telegramm with a data unit=0 in the state Data Exchange. The reaction to the outputs can be parameterized f.e. in the parameterization telegram (only available from version Step C).

^{**)} When using a big number of parameters to be transmitted from the PROFIBUS-Master to the slave the Auxiliary buffer ½ has to have the same size like the Parameterization buffer. Sometimes this could reach the limit of the available memory space in the SPC3. When Spec_Prm_Puf_Mode = 1 the parameterization data are processed directly in this special buffer and the Auxiliary buffers can be held compact.

Figure 5.1: Mode-Register 0 Bit 12 .. 0.(can be written to, can be changed in offline only)

5.1.2 Mode Register 1 (Mode-REG1, writable):

Some control bits must be changed during operation. These control bits are combined in Mode-Register 1 and can be set independently of each other (Mode_Reg_S) or can be deleted independently of each other (Mode_Reg_R). Various addresses are used for setting and deleting. Log '1' must be written to the bit position to be set or deleted.

Address	Bit Position								Designation
Control Register	7	6	5	4	3	2	1	0	
08H			Res_ User_WD	EN_ Change_ Cfg_ Puffer	User_ Leave_ Master	Go_ Offline	EOI	START_ SPC3	Mode-Reg_S 70
09H			Res_ User_WD	EN_ Change_ Cfg_ Puffer	User_ Leave_ Master	Go_ Offline	EOI	START_ SPC3	Mode-Reg_R 70

Bit 0	START_SPC3								
	Exiting the	e Offline state							
	1 =	SPC3 exits offline and goes to passive-idle. In addition, the idle timer and							
		Wd timer are started and 'Go_Offline = 0' is set.							
Bit 1	EOI								
	End of Inte	-							
	1 =	End of Interrupt: SPC3 switches the interrupt outputs to inactive and again sets EOI to log.'0.'							
Bit 2	Go_Offline								
	Going into	the offline state							
	1 =	After the current requests ends, SPC3 goes to the offline state and again							
		sets Go_Offline to log.'0.'							
Bit 3	User_Leave_Master								
	Request to	o the DP_SM to go to 'Wait_Prm.'							
	1 =	The user causes the DP_SM to go to 'Wait_Prm.' After this action, SPC3							
		sets User_Leave_Master to log.'0.'							
Bit 4	En_Change_C								
		ouffer exchange (Cfg buffer for Read_Cfg buffer)							
	0 =	With 'User_Cfg_Data_Okay_Cmd,' the Cfg buffer may not be exchanged for							
		the Read_Cfg buffer.							
	1 =	With 'User_Cfg_Data_Okay_Cmd,' the Cfg buffer must be exchanged for the							
D:4 F	Dan Hann Wal	Read_Cfg buffer.							
Bit 5	Res_User_Wd								
		the User_WD_Timers							
	1 =	SPC3 again sets the User_Wd_Timer to the parameterized value							
		'User_Wd_Value150.' After this action, SPC3 sets Res_User_Wd to log.'0.'							

Figure 5..2: Mode Register1 S and Mode Register1 R Bit7..0.(writable)

SIEMENS

5.2 Status Register

The status register mirrors the current SPC3 status and can be read only.

Address		Designation							
Control	7	6	5	4	3	2	1	0	
Register									
04H (Intel)	WD_	State	DP_	State	RAM access violation	Diag_ Flag	FDL_ IND_ST	Offline/ Passive- Idle	Status-Reg 70
	1	0	1	0					

Address		Bit Position											
Control	15	14	13	12	11	10	9	8					
Register													
05H (Intel)		SPC3 F	Release				Status-Reg 158						
, ,	3	2	1	0	3	2	1	0					

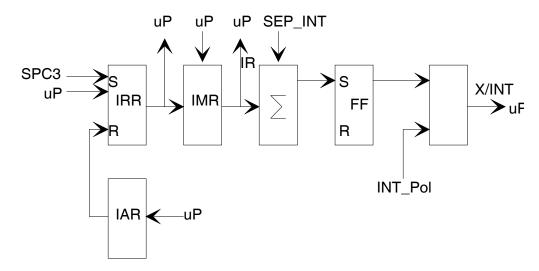

Bit 0	Offline/Passive-Idle
DILU	
	Offline-/Passive-Idle state
	0 = SPC3 is in offline.
D:: 4	1 = SPC3 is in passive idle.
Bit 1	FDL_IND_ST
	FDL indication is temporarily buffered.
	0 = No FDL indication is temporarily buffered.
D'' 0	1 = No FDL indication is temporarily buffered.
Bit 2	Diag_Flag
	Status diagnostics buffer
	0 = The DP master fetches the diagnostics buffer.
	1 = The DP master has not yet fetched the diagnostics buffer.
Bit 3	RAM Access Violation
	Memory access > 1.5kByte
	0 = No address violation
	1 = For addresses > 1536 bytes, 1024 is subtracted from the current address,
	and there is access to this new address.
Bits 4,5	DP-State10
	DP-State Machine state
	00 = 'Wait_Prm' state
	01= 'Wait_Cfg' state
	10 = 'DATA_EX' state
	11= Not possible
Bits 6,7	WD-State10
	Watchdog-State-Machine state
	00 = 'Baud_Search' state
	01= 'Baud_Control' state
	10 = 'DP_Control' state
	11= Not possible
Bits 8,9	Baud rate30:
10,11	The baud rates SPC3 found
,	0000 = 12 MBaud
	0001 = 6 MBaud
	0010 = 3 MBaud
	0011 = 1.5 MBaud
	0100 = 500 kBaud
	0101 = 187.5 kBaud
	0110 = 93.75 kBaud
	0111 = 45.45 kBaud
	1000 = 19.2 kBaud
	1001 = 9.6 kBaud
	Rest = Not possible
Bit 12	SPC3-Release30:
13,14,	Release no. for SPC3
15	0000 = Release 0
	Rest = Not possible

Figure 5.3: Status Register Bit15 .. 0.(readable)

5.3 Interrupt Controller

The processor is informed about indication messages and various error events via the interrupt controller. Up to a total of 16 events are stored in the interrupt controller. The events are carried out on an interrupt output. The controller does not have a prioritization level and does not provide an interrupt vector (not 8259A compatible!).

The controller consists of an Interrupt Request Register (IRR), an Interrupt Mask Register (IMR), an Interrupt Register (IR), and an Interrupt Acknowledge Register (IAR).

Each event is stored in the IRR. Individual events can be suppressed via the IMR. The input in the IRR is independent of the interrupt masks. Event signals not masked out in the IMR generate the X/INT interrupt via a sum network. The user can set each event in the IRR for debugging.

Each interrupt event the processor processed must be deleted via the IAR (except for New_Prm_Data, New_DDB_Prm_Data, and New_Cfg_Data). Log '1' must be written on the relevant bit position. If a new event and an acknowledge from the previous event are present at the IRR at the same time, the event remains stored. If the processor subsequently enables a mask, it must be ensured that no prior input is present in the IRR. For safety purposes, the position in the IRR must be deleted prior to the mask enable.

Prior to exiting the interrupt routine, the processor must set the "end of interrupt signal (E01) = 1" in the mode register. The interrupt cable is switched to inactive with this edge change. If another event must be stored, the interrupt output is not activated again until after an interrupt inactive time of at least 1 usec or 1-2 ms. This interrupt inactive time can be set via 'EOI_Timebase.' This makes it possible to again come into the interrupt routine when an edge-triggered interrupt input is used.

The polarity for the interrupt output is parameterized via the INT_Pol mode bit. After the hardware reset, the output is low-active.

Address		Bit Position											
Control	7	6	5	4	3	2	1	0					
Register													
00H	Res	Res	Res	User_	WD_DP_	Baud_	Go/Leave	MAC_	Int-Req-Reg				
(Intel)				Timer_	Mode_	rate_	Data_	Reset	70				
(Clock	Timeout	Detect	EX						

Address		Bit Position											
Control	15	14	13	12	11	10	9	8					
Register													
01H	Res	Res	DX_OUT	Diag_	New_	New_	New_	New_GC	Int-Reg-Reg 7				
(Intel)				Puffer_	Prm_	Cfg_	SSA_	Com	158				
((01)				Changed	Data	Data	Data	mand					

Bit 0	MAC_Reset
	After it processes the current request, the SPC3 has arrived at the offline state (through
	setting the 'Go_Offline bit' or through a RAM access violation).
Bit 1	Go/Leave_DATA_EX
	The DP_SM has entered or exited the 'DATA_EX' state.
Bit 2	Baudrate_Detect
	The SPC3 has exited the 'Baud_Search state' and found a baud rate.
Bit 3	WD_DP_Control_Timeout
	The watchdog timer has run out in the 'DP_Control' WD state.
Bit 4	User_Timer_Clock
	The time base for the User_Timer_Clocks has run out (1/10ms).
Bit 5	Res
	For additional functions
Bit 6	Res
	For additional functions
Bit 7	Res
	For additional functions
Bit 8	New_GC_Command
	The SPC3 has received a 'Global_Control telegram' with a changed 'GC_Command-
	Byte,' and this byte is stored in the 'R_GC_Command' RAM cell.
Bit 9	New_SSA_Data
	The SPC3 has received a 'Set_Slave_Address telegram' and made the data available
	in the SSA buffer.
Bit 10	New_Cfg_Data
	The SPC3 has received a 'Check_Cfg telegram' and made the data available in the Cfg
	buffer.
Bit 11	New_Prm_Data
	The SPC3 has received a 'Set_Param telegram' and made the data available in the
	Prm buffer.
Bit 12	Diag_Puffer_Changed
	Due to the request made by 'New_Diag_Cmd,' SPC3 exchanged the diagnostics buffer
	and again made the old buffer available to the user.
Bit 13	DX_OUT
	The SPC3 has received a 'Write_Read_Data telegram' and made the new output data
	available in the N buffer. For a 'Power_On' or for a 'Leave_Master,' the SPC3 deletes
D:: 4.4	the N buffer and also generates this interrupt.
Bit 14	Res
D:: 1=	For additional functions
Bit 15	Res
I	For additional functions

Figure 5.4: Interrupt Request Register, IRR Bit 15..0 (writable and readable)

The other interrupt controller registers are assigned in the bit positions, like the IRR.

Address	Register		Reset State	Assign	ment
02H /	Interrupt Register	Readable	All bits deleted		
03H	(IR)	only			
04H /	Interrupt Mask	Writable, can	All bits set	Bit =	Mask is set and the interrupt
05H	Register	be changed		1	is disabled.
	(IMR)	during			Mask is deleted and the
		operation		Bit =	interrupt is enabled.
		-		0	
02H /	Interrupt	Writable, can	All bits deleted	Bit =	The IRR bit is deleted.
03H	Acknowledge	be changed		1	The IRR bit remains
	Register	during		Bit =	unchanged.
	(IAR)	operation		0	_

Figure 5.5: Additional Interrupt Registers

The 'New_Prm_Data', 'New_Cfg_Data' inputs may not be deleted via the Interrupt Acknowledge Register. The relevant state machines delete these inputs through the user acknowledgements (for example, 'User_Prm_Data_Okay' etc.).

5.4 Watchdog Timer

5.4.1 Automatic Baud Rate Identification

The SPC3 is able to identify the baud rate automatically. The "baud search" state is located after each RESET and also after the watchdog (WD) timer has run out in the 'Baud_Control_state.'

As a rule, SPC3 begins the search for the set rate with the highest baud rate. If no SD1 telegram, SD2 telegram, or SD3 telegram was received completely and without errors during the monitoring time, the search continues with the next lowest baud rate.

After identifying the correct baud rate, SPC3 switches to the "Baud_Control" state and monitors the baud rate. The monitoring time can be parameterized (WD_Baud_Control_Val). The watchdog works with a clock of 100 Hz (10 msec). The watchdog resets each telegram received with no errors to its own station address. If the timer runs out, SPC3 again switches to the baud search state.

5.4.2 Baud Rate Monitoring

The located baud rate is **constantly** monitored in 'Baud_Control.' The watchdog is reset for each error-free telegram to its own station address. The monitoring time results from multiplying both 'WD_Baud_Control_Val' (user sets the parameters) by the time base (10 ms). If the monitoring time runs out, WD_SM again goes to 'Baud_Search'. If the user carries out the DP protocol (DP_Mode = 1, see Mode register 0) with SPC3, the watchdog is used for the "DP_Control' state, after a 'Set_Param telegram' was received with an enabled response time monitoring 'WD_On = 1.' The watchdog timer remains in the baud rate monitoring state when there is a switched off 'WD_On = 0' master monitoring. The PROFIBUS DP state machine is also not reset when the timer runs out. That is, the slave remains in the DATA_EXchange state, for example.

5.4.3 Response Time Monitoring

The 'DP_Control' state serves response time monitoring of the DP master (Master_Add). The set monitoring times results from multiplying both watchdog factors and multiplying the result with the momentarily valid time base (1 ms or 10 ms):

T_{WD} = (1 ms or 10 ms) * WD_Fact_1 * WD_Fact_2 (See byte 7 of the parameter setting telegram.)

The user can load the two watchdog factors (WD_Fact_1, and WD_Fact_2) and the time base that represents a measurement for the monitoring time via the 'Set_Param telegram' with any value between 1 and 255.

EXCEPTION: The WD_Fact_1=WD_Fact_2=1 setting is not permissible. The circuit does not check this setting.

Monitoring times between 2 ms and 650 s - independent of the baud rate - can be implemented with the permisible watchdog factors.

If the monitoring time runs out, the SPC3 goes again to 'Baud_Control,' and the SPC3 generates the 'WD_DP_Control_Timeout-Interrupt'. In addition, the DP_State machine is reset, that is, generates the reset states of the buffer management.

If another master accepts SPC3, then there is either a switch to 'Baud_Control" (WD_On = 0), or there is a delay in 'DP_Control' (WD_On = 1), depending on the enabled response time monitoring (WD_On = 0).

6 PROFIBUS-DP Interface

6.1 DP_Buffer Structure

The DP mode is enabled in the SPC3 with 'DP_Mode = 1' (see mode Register0). In this process, the following SAPS are fixed reserved for the DP mode:

Default SAP: Data exchange (Write_Read_Data)

SAP53: reserved

SAP55: Changing the station address (Set_Slave_Address)

SAP56: Reading the inputs (Read_Inputs)
SAP57: Reading the outputs (Read_Outputs)

SAP58: Control commands to the DP-Slave (Global_Control)

SAP59: Reading configuration data (Get_Config)

SAP60: Reading diagnostics information (Slave_Diagnosis)
SAP61: Sending parameter setting data (Set_Param)
SAP62: Checking configuration data (Check_Config)

The DP Slave protocol is completely integrated in the SPC3 and is handled independently. The user must correspondingly parameterize the ASIC and process and acknowledge transferred messages. Except for the default SAP, SAP56, SAP57, and SAP58, all SAPS are always enabled. The remaining SAPS are not enabled until the the DP Slave Machine (DP_SM) goes into the 'DATA_EX' state. The user has the possibility of disabling SAP55. The relevant buffer pointer R_SSA_Puf_Ptr must be set to '00H' for this purpose. The DDB utility is disabled by the already described initialization of the RAM cells.

The DP_SAP buffer structure is displayed in Figure 6.1. The user configures all buffers (length and buffer beginning) in the 'offline state.' During operation, the buffer configuration must not be changed, except for the length of the Dout-/Din buffers.

The user may still adapt these buffers in the 'Wait_Cfg' state after the configuration telegram (Check_Config). Only the same configuration may be accepted in the 'DATA_EX' state.

The buffer structure is divided into the data buffer, diagnostics buffer, and the control buffer.

Both the output data and the input data have three buffers each available with the same length. These buffers function as change buffers. One buffer is assigned to the 'D' data transfer, and one buffer is assigned to the 'U' user. The third buffer is either in a Next 'N' state or Free 'F' state, whereby one of the two states is always unoccupied.

Two diagnostics buffers that can have varying lengths are available for diagnostics. One diagnostics buffer is always the 'D' assigned to SPC3 for sending. The other diagnostics buffer belongs to the user for preparing new diagnostics data, 'U.'

The SPC3 first reads the different parameter setting telegrams (Set_Slave_Address, and Set_Param) and the configuring telegram (Check_Config) into Aux-Puffer1 or Aux-Puffer 2.....

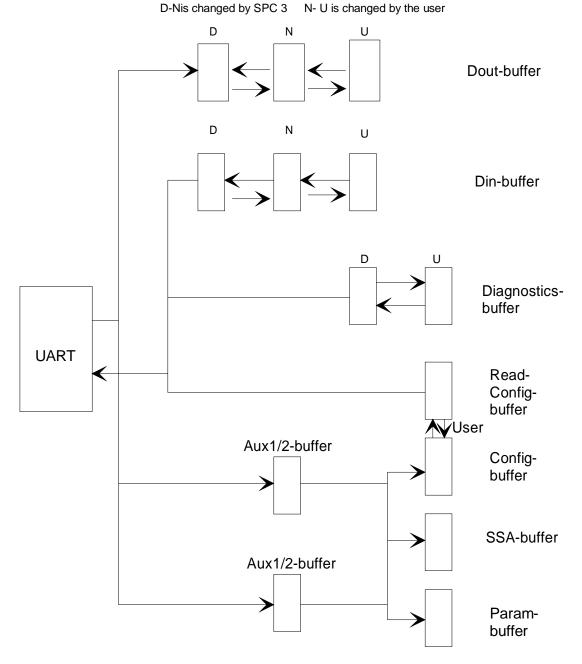


Figure 6.1: DP_SAP Buffer Structure

Data exchanged with the corresponding target buffer (SSA buffer, Prm buffer, and Cfg buffer). Each of the buffers to be exchanged must have the same length. The user defines which Aux_buffers are to be used for the above-named telegrams in the 'R_Aux_Puf_Sel' parameter cell. The Aux- buffer1 must always be available. The Aux-buffer2 is optional. If the data profiles of these DP telegrams are very different, such as the data amount in the Set_Param telegram is significantly larger than for the other telegrams, it is suggested to make an Aux-Buffer2 available (Aux_Sel_Set_Param = 1) for this telegram. The other telegrams are then read via Aux-Buffer 1 (Aux_Sel_..=0). If the buffers are too small, SPC3 responds with "no resources"!

Address				Bit	Position	on			Designation
RAM	7	6	5	4	3	2		0	
Register									
2AH	0	0	0	0	0	Set_	Check_	Set_	R_Aux_Puf_Sel
						Slave_ Adr	Cfg	Prm	
				l .	l	X1			
							X1	X1	See below for coding.

X1	Coding
0	Aux_Buffer1
1	Aux_Buffer2

Figure 6.2: Aux-Buffer Management

The user makes the configuration data (Get_Config) available in the Read_Cfg buffer for reading. The Read_Cfg buffer must have the same length as the Cfg_buffer.

The Read_Input_Data telegram is operated from the Din buffer in the 'D state', and the Read_Output_Data telegram is operated from the Dout buffer in the 'U state.'

All buffer pointers are 8-bit segment addresses, because the SPC3 internally has only 8-bit address registers. For a RAM access, SPC3 adds an 8-bit offset address to the segment address shifted by 3 bits (result: 11-bit physical address). As regards the buffer start addresses, this results in an 8-byte graunularity from this specification.

6.2 Description of the DP Services

6.2.1 Set_Slave_Address (SAP55)

6.2.1.1 Sequence for the Set_Slave_Address Utility

The user can disable this utility by setting the 'R_SSA_Puf_Ptr = 00H' buffer pointer. The slave address must then be determined, for example, by reading a switch, and written in the R_TS_Adr. RAM register.

The user must make a retentive memory possibility available (for example, EEPROM) to support this utility. It must be possible to store the 'station address' and the 'Real_No_Add_Change' ('True' = FFH) parameter in this external EEPROM. After each restart caused by a power failure, the user must again make these values available to SPC3 in the R_TS_Adr und R_Real_No_Add_Change RAM register.

If SAP55 is enabled and the Set_Slave_Address telegram is correctly accepted, SPC3 enters all net data in the Aux-Puffer1/2, exchanges the Aux buffer1/2 for the SSA buffer, stores the entered data length in 'R_Len_SSA_Data', generates the 'New_SSA_Data' interrupt and internally stores the new 'station address' and the new 'Real_No_Add_Change' parameter. The user does not need to transfer this changed parameter to SPC3 again. After the user has read the buffer, the user generates the 'SSA_Puffer_Free_Cmd' (read operation on address 14H). This makes SPC3 again ready to receive an additional Set Slave Address telegram (such as from another master).

SPC3 reacts independently when there are errors.

Address	Bit Position								Designation
Control Register	7	6	5	4	3	2	1	0	
14H	0	0	0	0	0	0	0	0	SSA_Puffer_Free_Cmd
				don't	care				

Figure 6.3: Coding SSA_Buffer_Free_Cmd

6.2.1.2 Structure of the Set Slave Address Telegram

The net data are stored as follows in the SSA buffer:

Byte				Bit Po	sition		-	Designation	
	7	6	5	4	3	2	1	0	
0									New_Slave_Address
1									Ident_Number_High
2									Ident_Number_Low
3									No_Add_Chg
4-243									Rem_Slave_Data additional application-
									specific data

Figure 6.4: Data Format for the Set_Slave_Address Telegram

6.2.2 Set_Param (SAP61)

6.2.2.1 Parameter Data Structure

SPC3 evaluates the first seven data bytes (without user prm data), or the first eight data bytes (with user prm data). The first seven bytes are specified according to the standard. The eighth byte is used for SPC3-specific characteristics. The additional bytes are available to the application.

Byte				Bit Po	sition				Designation
	7	6	5	4	3	2	1	0	
0	Lock Req	Unlo. Req	Sync Req	Free Req	WD on	Res	Res	Res	Station status
1									WD_Fact_1
2									WD_Fact_2
3									MinTSDR
4									Ident_Number_High
5									Ident_Number_Low
6									Group_Ident
7	0	0	0	0	0	WD_ Base	Dis Stop	Dis Start	Spec_User_Prm_Byte
8-243									User_Prm_Data

Byte 7	Spec_User_P	rm_Byte	
Bit	Name	Significance	Default State
0	Dis_Startbit	The start bit monitoring in the receiver is switched off with this bit.	Dis_Startbit= 1 , that is, start bit monitoring is switched off.
1	Dis_Stopbit	Stop bit monitoring in the receiver is switched off with this bit.	Dis_Stopbit= 0, that is, stop bit monitoring is not switched off.
2	WD_Base	This bit specifies the time base used to clock the watchdog. WD_Base = 0: time base 10 ms WD_Base = 1: time base 1 ms	WD_Base= 0, that is, the time base is 10 ms
3-7	res	to be parameterized with 0	0

Figure 6.5: Data Format for the Set_Param_Telegram

6.2.2.2 Parameter Data Processing Sequence

In the case of a positive validatation for more than seven data bytes, SPC3 carries out the following reaction, among others:

SPC3 exchanges Aux-Puffer1/2 (all data bytes are input here) for the Prm buffer, stores the input data length in 'R_Len_Prm_Data', and triggers the 'New_Prm_Data Interrupt'. The user must then check the 'User_Prm_Data' and either reply with the 'User_Prm_Data_Okay_Cmd' or with 'User_Prm_Data_Not_Okay_Cmd.' The entire telegram is input in the buffer, that is, application-specific parameter data are stored beginning with data byte 8 only.

The user response (User_Prm_Data_Okay_Cmd or User_Prm_Data_Not_Okay_Cmd) again takes back the 'New_Prm_Data' interrupt. The user may not acknowledge the 'New_Prm_Data' interrupt in the IAR register.

The relevant diagnostics bits are set with the 'User_Prm_Data_Not_Okay_Cmd' message and are branched to 'Wait Prm.'

The 'User_Prm_Data_Okay' and 'User_Prm_Data_Not_Okay' acknowledgements are reading accesses to defined registers with the relevant signals:

'User_Prm_Finished': No additional parameter telegram is present.

• 'Prm Conflict': An additional parameter telegram is present, processing again

'Not_Allowed',
 Access not permitted in the current bus state

Address				Bit Po	sition				Designation
Control Register	7	6	5	4	3	2	1	0	
0EH	0	0	0	0	0	0	\downarrow	\downarrow	User_Prm_Data_Okay
							0	0	User_Prm_Finished
							0	1	PRM_Conflict
							1	1	Not_Allowed

Address				Bit Po	sition				Designation
Control	7	6	5	4	3	2	1	0	
Register									
0FH	0	0	0	0	0	0	\downarrow	\downarrow	User_Prm_Data_Not_Okay
							0	0	User_Prm_Finished
							0	1	PRM_Conflict
							1	1	Not_Allowed

Figure 6.6: Coding User_Prm_Data_Not/_Okay_Cmd

If an additional Set-Param telegram is supposed to be received in the meantime, the signal 'Prm_Conflict' is is returned for the acknowledgement of the first Set_Param telegram, whether positive or negative. Then the user must repeat the validation because the SPC3 has made a new Prm buffer available.

6.2.3 Check_Config (SAP62)

The user takes on the evaluation of the configuration data. After SPC3 has received a validated Check_Config-Telegram, SPC3 exchanges the Aux-Puffer1/2 (all data bytes are entered here) for the Cfg buffer, stores the input data length in 'R_Len_Cfg-Data,' and generates 'New_Cfg_Data-Interrupt'.

The user must then check the 'User_Config_Data' and either respond with 'User_Cfg_Data_Okay_Cmd' or with 'User_Cfg_Data_Not_Okay_Cmd' (acknowledgement to the Cfg_SM). The net data is input in the buffer in the format regulation of the standard.

The user response (User_Cfg_Data_Okay_Cmd or the User_Cfg_Data_Not_Okay_Cmd response) again takes back the 'New_Cfg_Data' interrupt and may not be acknowledged in the IAR.

If an incorrect configuration is signalled back, various diagnostics bits are changed, and there is branching to 'Wait Prm."

For a correct configuration, the transition to 'DATA_EX' takes place immediately, if no Din_buffer is present (R_Len_Din_Puf = 00H) and trigger counters for the parameter setting telegrams and configuration telegrams are at 0. Otherwise, the transition does not take place until the first 'New_DIN_Puffer_Cmd' with which the user makes the first valid 'N buffer" available. When entering into 'DATA_EX,' SPC3 also generates the 'Go/Leave_Data_Exchange-Interrupt.

If the received configuration data from the Cfg buffer are supposed to result in a change of the Read-Cfg-buffer (the change contains the data for the Get_Config telegram), the user must make the new Read_Cfg data available in the Read-Cfg buffer before the 'User_Cfg_Data_Okay_Cmd" acknowledgement. After receiving the acknowledgement, SPC3 exchanges the Cfg buffer with the Read-Cfg buffer, if 'EN_Change_Cfg_buffer = 1' is set in mode register1.

During the acknowledgement, the user receives information about whether there is a conflict or not. If an additional Check_Config telegram was supposed to be received in the meantime, the user receives the 'Cfg_Conflict' signal during the acknowledgement of the first Check_Config telegram, whether positive or negative. Then the user must repeat the validation, because SPC3 has made a new Cfg buffer available.

The 'User_Cfg_Data_Okay_Cmd' and 'User_Cfg_Data_Not_Okay_Cmd' acknowledgements are read accesses to defined memory cells (see Section 2.2.1) with the relevant 'Not_Allowed', 'User_Cfg_Finished,' or 'Cfg_Conflict' signals (see Figure 3.7). If the 'New_Prm_Data'and 'New_Cfg_Data' are supposed to be present simultaneously during power up, the user must maintain the Set_Param and then the Check_Config. acknowledgement sequence.

Address				Bit Po	sition				Designation
Control Register	7	6	5	4	3	2	1	0	
10H	0	0	0	0	0	0	\downarrow	\downarrow	User_Cfg_Data_Okay
							0	0	User_Cfg_Finished
							0	1	Cfg_Conflict
							1	1	Not_Allowed

Address				Bit Po	sition				Designation
Control	7	6	5	4	3	2	1	0	
Register									
11H	0	0	0	0	0	0	\downarrow	\downarrow	User_Cfg_Data_Not_Okay
							0	0	User_Cfg_Finished
							0	1	Cfg_Conflict
							1	1	Not_Allowed

Figure 6.7: Coding of the User_Cfg_Data_Not/_Okay_Cmd

6.2.4 Slave_Diagnosis (SAP60)

6.2.4.1 Diagnostics Processing Sequence

Two buffers are available for diagnostics. The two buffers can have varying lengths. SPC3 always has one diagnostics buffer assigned to it, which is sent for a diagnostics call-up. The user can pre-process new diagnostics data in parallel in the other buffer. If the new diagnostics data are to be sent now, the user uses the 'New_Diag_Cmd' to make the request to exchange the diagnostics buffers. The user receives confirmation of the exchange of the buffers with the 'Diag_Puffer_Changed Interrupt.'

When the buffers are exchanged, the internal 'Diag_Flag' is also set. For an activated 'Diag_Flag,' SPC3 responds during the next Write_Read_Data with high-priority response data that signal the relevant master that new diagnostics data are present at the slave. Then this master fetches the new diagnostics data with a Slave_Diagnosis telegram. Then the 'Diag_Flag" is reset again. If the user signals 'Diag_Stat_Diag = 1,' however (static diagnosis, see the structure of the diagnostics buffer), then 'Diag_Flag' still remains activated after the relevant master has fetched the diagnosis. The user can poll the 'Diag_Flag' in the status register to find out whether the master has already fetched the diagnostics data before the old data is exchanged for the new data.

Status coding for the diagnostics buffers is stored in the 'Diag_bufferSM' processor parameter. The user can read this cell with the possible codings for both buffers: 'User,' 'SPC3,' or 'SPC3_Send_Mode.'

Address				Bit Po	sition				Designation
Control	7	6	5	4	3	2		0	
Register									
0CH	0 0 0 0 D_Puf2 D_P								Diag_Puffer_SM
					X1	X2	X1	X2	See below for coding.

X1	X2	Coding
0	0	Each for the D_Buf2 or D_Buf1
0	1	User
1	0	SPC3
1	1	SPC3_Send_Mode

Figure 6.8: Diag_Buffer Assignment

The 'New_Diag_Cmd' is also a read access to a defined processor parameter with the signal as to which diagnostics buffer belongs to the user after the exchange, or whether both buffers are currently assigned to SPC3 ('no Puffer', 'Diag_Puf1', 'Diag_Puf2').

Address				Bit Po	sition				Designation
Control Register	7	6	5	4	3	2	1	0	
0DH	0	0	0	0	0	0	\downarrow	\downarrow	New_Diag_Cmd
							0	0	no Puffer
							0	1	Diag_Puf1
							1	0	Diag_Puf2

Figure 6.9: Coding Diag_Puffer_SM, New_Diag_Cmd

6.2.4.2 Structure of the Diagnostics Buffer:

The user transfers the diagnostics buffer displayed in the figure below to SPC3. The first 6 bytes are space holders, except for the three least significant bit positions in the first byte. The user stores the diagnostics bits, 'Diag.Ext_Diag' 'Diag.Stat_Diag," and Diag.Ext.Diag_Overflow' in these three bit positions. The remaining bits can be assigned in any order. When sending, SPC3 pre-processes the first six bytes corresponding to the standard.

Byte				Bit Po	sition				Designation
	7	6	5	4	3	2	1	0	
0						Ext_ Diag Over f	Stat Diag	Ext_ Diag	Spaceholder
1									Spaceholder
2									Spaceholder
3									Spaceholder
4									Spaceholder
5									Spaceholder
6-n			Th	e user i	must in	put		•	Ext_Diag_Data (n = max 243)

Figure 6.10: Structure of the Diagnostics Buffer for Transfer to the SPC3

The 'Ext-Diag_Data' the user must enter into the buffers follow after the SPC3-internal diagnostics data. The three different formats are possible here (device-related, ID-related, and port-related). In addition to the 'Ext_Diag_Data,' the buffer length also includes the SPC3 diagnostics bytes (R_Len_Diag_Puf1, R_Len_Diag_Puf2).

6.2.5 Write_Read_Data / Data_Exchange (Default_SAP)

6.2.5.1 Writing Outputs

SPC3 reads the received output data in the D buffer. After error-free receipt, SPC3 shifts the newly filled buffer from 'D' to 'N.' In addition, the 'DX_Out_Interrupt' is generated. The user now fetches the current output data from 'N.' The buffer changes from 'N' to 'U' with the 'Next_Dout_Buffer_Cmd,' so that the current data of the application can be sent back for the master's Read_Outputs.

If the user's evaluation cycle time is shorter than the bus cycle time, the user does not find any new buffers with the next 'Next_Dout_Buffer_Cmd' in 'N.' Therefore, the buffer exchange is omitted, At a 12 Mbd baud rate, it is more likely, however, that the user's evaluation cycle time is larger than the bus cycle time. This makes new output data available in 'N' several times before the user fetches the next buffer. It is guaranteed, however, that the user receives the data last received.

For 'Power_On', 'Leave_Master' and the Global_Control-Telegram 'Clear,' SPC3 deletes the D buffer and then shifts it to 'N.' This also takes place during the power up (entering into 'Wait_Prm'). If the user fetches this buffer, he receives the 'U_buffer cleared' display during the 'Next_Dout_Buffer_Cmd.' If the user is still supposed to enlarge the output data buffer after the Check_Config telegram, the user must delete this delta in the N buffer himself (possible only during the power-up phase in the 'Wait Cfg' state).

If 'Diag.Sync_Mode = 1', the D buffer is filled but not exchanged with the Write_Read_Data-Telegram, but rather exchanged at the next Sync or Unsync.

The user can read the buffer management state with the following codes for the four states: 'Nil', 'Dout_Puf_Ptr1-3'. The pointer for the current data is in the "N" state.

Address				Bit Po	sition				Designation
Control	7 6 5 4 3 2							0	
Register									
0AH	F U				١	1)	Dout_Puffer_SM
	X1 X2 X1 X2			X2	X1	X2	X1	X2	See below for coding.

X1	X2	Coding
0	0	Nil
0	1	Dout_Puf_Ptr1
1	0	Dout_Puf_Ptr2
1	1	Dout_Puf_Ptr3

Figure 6.11: Dout_Buffer Management

When reading the 'Next_Dout_Buffer_Cmd' the user gets the information which buffer (U-buffer) belongs to the user after the change, or whether a change has taken place at all.

Address				Bit I	Position				Designation
Control Register	7	6	5	4	3	2	1	0	
0BH	0	0	0	0	U_ Buffer Cleared	State_ U_ Buffer	Ind_U_ Buffer		Next_Dout_Buf_Cmd
							0	1	Dout_Buf_Ptr1
							1	0	Dout_Buf_Ptr2
							1	1	Dout_Buf_Ptr3
						0			No new U buffer
						1			New U buffer
					0				U buffer contains data
					1				U buffer was deleted

Figure 6.12: Next_Dout_Puffer_Cmd

The user must delete the U buffer during initialization so that defined (deleted) data can be sent for a Read_Output Telegram before the first data cycle.

6.2.5.2 Reading Inputs

SPC3 sends the input data from the D buffer. Prior to sending, SPC3 fetches the Din buffer from 'N' to 'D.' If no new buffer is present in 'N,' there is no change.

The user makes the new data available in 'U'. With the 'New_Din_buffer_Cmd,' the buffer changes from 'U' to 'N'. If the user's preparation cycle time is shorter than the bus cycle time, not all new input data are sent, but just the most current. At a 12 Mbd baud rate, it is more probable, however, that the user's preparation cycle time is larger than the bus cycle time. Then SPC3 sends the same data several times in succession.

During start-up, SPC3 first goes to 'DATA_EX' after all parameter telegrams and configuration telegrams are acknowledged, and the user then makes the first valid Din buffer available in 'N' with the 'New_Din_Buffer_Cmd.

If 'Diag.Freeze_Mode = 1', there is no buffer change prior to sending.

The user can read the status of the state machine cell with the following codings for the four states: 'Nil', 'Dout_Puf_Ptr1-3.' (See Figure 3.13.) The pointer for the current data is in the "N" state.

Address				Bit Po	sition			Designation	
Control	7	6	5	4	3	2		0	
Register									
H80	F	-	Ų	J	١	1)	Din_Buffer_SM
	X1	X2	X1	X2	X1	X2	X1	X2	See below for coding.

X1	X2	Coding
0	0	Nil
0	1	Din_Buf_Ptr1
1	0	Din_Buf_Ptr2
1	1	Din_Buf_Ptr3

Figure 6.13: Din_Buffer Management

When reading the 'New_Din_Buffer_Cmd' the user gets the information which buffer (U-buffer) belongs to the user after the change (Din Buf Ptr 1-3).

Address	Bit Position								Designation
Control Register	7	6	5	4	3	2	1	0	
09H	0	0	0	0	0	0	\downarrow	\downarrow	New_Din_Buf_Cmd
							0	1	Din_Buf_Ptr1
							1	0	Din_Buf_Ptr2
							1	1	Din_Buf_Ptr3

Figure 6.14: Next_Din_Buffer_Cmd

6.2.5.3 User_Watchdog_Timer

After power-up ('DATA_EX' state), it is possible that SPC3 continually answers Write_Read_Data-telegrams without the user fetching the received Din buffers or making new Dout buffers available. If the user processor 'hangs up,' the master would not receive this information. Therefore, a 'User_Watchdog_Timer' is implemented in SPC3.

This User_Wd_Timer is an internal 16-bit RAM cell that is started from a 'R_User_Wd_Value15..0' value the user parameterizes and is decremented with each received Write_Read_Data telegram from SPC3. If the timer attains the '0000hex' value, SPC3 transitions to the 'Wait_Prm' state, and the DP_SM carries out a 'Leave_Master.' The user must cyclically set this timer to its start value. Therefore, 'Res_User_Wd = 1' must be set in mode register 1. Upon receipt of the next Write_Read_Data telegram, SPC3 again loads the User_Wd_Timer to the parameterized value 'R_User_Wd_Value15..0' and sets 'Res_User_Wd = 0' (Mode Register 1). During power-up, the user must also set 'Res_User_Wd = 1', so that the User_Wd_Timer is even set at its parameterized value.

6.2.6 Global Control (SAP58)

SPC3 itself processes the Global_Control-Telegrams in the manner already described. In addition, this information is available to the user.

The first byte of a valid Global_Control command is stored in the R_GC_Comand RAM cell. The second telegram byte (Group_Select) is processed internally.

Address			Designation						
RAM	7	6	5	4	3	2	1	0	
Cell									
3CH	Res	Res	Sync	Un	Freeze	Un	Clear_	Res	R_GC_Command
				sync		freeze	Data		

Bit	Designation	Significance
0	Reserved	
1	Clear_Data	With this command, the output data is deleted in 'D' and is changed to 'N.'
2	Unfreeze	With "Unfreeze," freezing input data is cancelled.
3	Freeze	The input data is fetched from 'N' to 'D' and "frozen". New input data is not fetched again until the master sends the next 'Freeze' command.
4	Unsync	The "Unsync" command cancels the "Sync" command.
5	Sync	The output data transferred with a WRITE_READ_DATA telegram is changed from 'D' to 'N.' The following transferred output data is kept in 'D' until the next 'Sync' command is given.
6,7	Reserved	The "Reserved" designation specifies that these bits are reserved for future function expansions.

Figure 6.15: Data Format for the Global_Control Telegram

If the Control_Comand byte changed at the last received Global_Control telegram, SPC3 additionally generates the 'New_GC_Command' interrupt. During initialization, SPC3 presets the 'R_GC_Command' RAM cell with 00H. The user can read and evaluate this cell.

So that Sync and Freeze can be carried out, these functions must be enabled in the mode register.

6.2.7 Read_Inputs (SAP56)

ComDeC

SPC3 fetches the input data like it does for the Write_Read_Data Telegram. Prior to sending, 'N' is shifted to 'D,' if new input data are available in 'N.' For 'Diag.Freeze_Mode = 1,' there is no buffer change.

6.2.8 Read_Outputs (SAP57)

SPC3 fetches the output data from the Dout buffer in 'U'. The user must preset the output data with '0' during start-up so that no invalid data can be sent here. If there is a buffer change from 'N' to 'U' (through the Next_Dout_Buffer_Cmd) between the first call-up and the repetition, the new output data is sent during the repetition.

6.2.9 Get Config (SAP59)

The user makes the configuration data available in the Read_Cfg buffer. For a change in the configuration after the Check_Config telegram, the user writes the changed data in the Cfg buffer, sets 'EN_Change_Cfg_buffer = 1' (see Mode-Register1), and SPC3 then exchanges the Cfg buffer for the Read_Cfg buffer. (See Section 3.2.3.) If there is a change in the configuration data (for example, for the modular DP systems) during operation, the user must return with 'Go Offline' (see Mode Register1) to 'Wait_Prm' to SPC3.

7 Hardware Interface

7.1 Universal Processor Bus Interface

7.1.1 General Description

SPC3 has a parallel 8-bit interface with an 11-bit address bus. SPC3 supports all 8-bit processors and microcontrollers based on the 80C51/52 (80C32) from Intel, the Motorola HC11 family, as well as 8-/16-bit processors or microcontrollers from the Siemens 80C166 family, X86 from Intel, and the HC16 and HC916 family from Motorola. Because the data formats from Intel and Motorola are not compatible, SPC3 automatically carries out 'byte swapping' for accesses to the following 16-bit registers (interrupt register, status register, and mode register0) and the 16-bit RAM cell (R-User_Wd_Value). This makes it possible for a Motorola processor to read the 16-bit value correctly. Reading or writing takes place, as usual, through two accesses (8-bit data bus).

Due to the 11-bit address bus, SPC3 is no longer fully compatible to SPC2 (10-bit address bus). However, AB(10) is located on the XINTCI output of the SPC2 that was not used until now. For SPC3, the AB(10) input is provided with an internal pull-down resistor. If SPC3 is to be connected into existing SPC2 hardware, the user can use only 1 kByte of the internal RAM. Otherwise, the AB(10) cable on the modules must be moved to the same place.

The Bus Interface Unit (BIU) and the Dual Port RAM Controller (DPC) that controls accesses to the internal RAM belong to the processor interface of the SPC3.

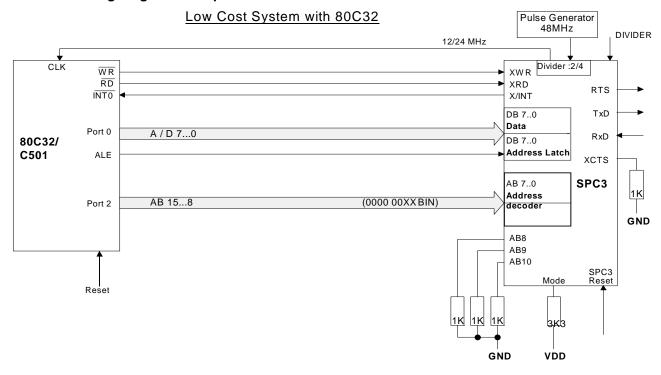
In addition, a clock rate divider is integrated that the clock pulse of an external clock pulse generator divided by 2 (Pin: DIVIDER = High-Potential) or 4 (Pin: DIVIDER = Low-Potential) makes available on the pin CLKOUT2/4 as the system clock pulse so that a slower controller can be connected without additional expenditures in a low-cost application. SPC3 is supplied with a clock pulse rate of 48MHz.

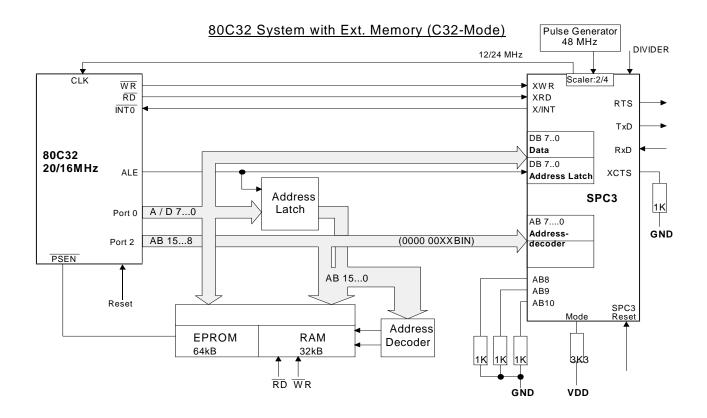
7.1.2 Bus Interface Unit (BIU)

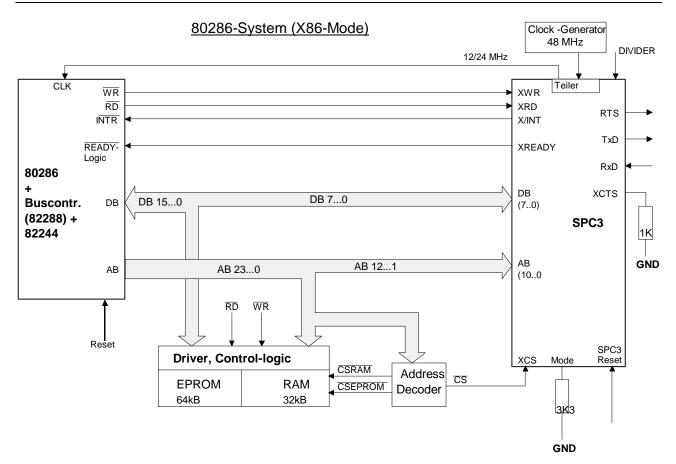
The BIU forms the interface to the connected processor/microcontroller. This is a synchronous or asynchronous 8-bit interface with an 11-bit address bus. The interface is configurable via 2 pins (XINT/MOT, MODE). The connected processor family (bus control signals such as XWR, XRD, or R_W, and the data format) is specified with the XINT/MOT pin. Synchronous (rigid) or asynchronous bus timing is specified with the MODE pin.

Various Intel system configurations are displayed in the figures in Section 7.1.3. The internal address latch and the integrated decoder must be used in the C32 mode. One figure displays the minimum configuration of a system with SPC3, whereby the block is connected to an EPROM version of the controller. Only a pulse generator is necessary as an additional block in this configuration. If a controller is to be used without an integrated program memory, the addresses must once again be latched off for the external memory. The connection schematic in the next figure is applicable for all Intel/Siemens processors that offer asynchronous bus timing and evaluate the ready signal.

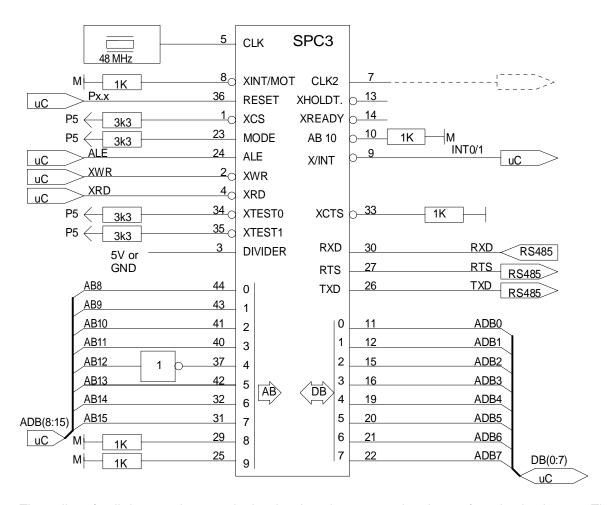
Notes:

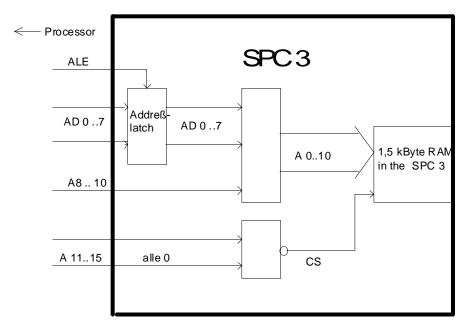

If the SPC3 is connected to an 80286 processor, or others, it must be taken into consideration that the processor carries out word accesses. That is, either a "swapper" is necessary that switches the characters out of the SPC3 at the relevant byte position of the 16-bit data bus during reading, or the least significant address bit is not connected, and the 80286 must read word accesses and evaluate only the lower byte, as displayed in the figure.

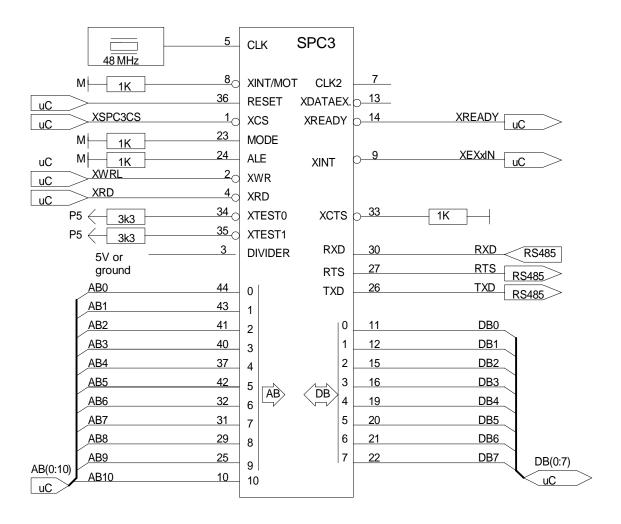

XINT/MO MODE	The SPC3 interface supports the following processors/microcontrollers.
1 1	Motorola microcontroller with the following characteristics:
synchron-ous	Synchronous (rigid) bus timing without evaluation of the XREADY signal
Motorola	8-bit non-multiplexed bus: DB70, AB100
	The following can be connected:
	HC11 types: K, N, M, F1
	HC16- und HC916 types with programmable E clock timing
	All other HC11 types with a multiplexed bus must select addresses AB70 externally
	from DB70 data.
	The address decoder is switched off in the SPC3. The CS signal is fed to SPC3.
	• For microcontrollers with chip select logic (K, F1, HC16, and HC916), the chip select
	signals are programmable as regards the address range, the priority, the polarity, and
	the window width in the write cycle or read cycle.
	• For microcontrollers without chip select logic (N and M), and others, an external chip
	select logic is required. This means additional hardware and a fixed assignment.
	Condition:
	• The SPC3 output clock (CLKOUT2/4) must be four times larger than the E_CLOCK.
	The SPC3 input clock (CLK) must be at least 10 times larger than the desired system
	clock (E_Clock). The divider pin must be placed at "low" (divider 4), and it results in an
	E_CLOCK of 3 MHz
1 0	Motorola microcontroller with the following characteristics:
asynchron-ous	Asychronous bus timing with evaluation of the XREADY signal
Motorola	8-bit non-multiplexed bus: DB70, AB100
	The following can be connected:
	HC16 and HC916 types All of the HC916 types
	 All other HC11 types with a multiplexed bus must externally select addresses AB70 from data DB70.
	The address decoder is switched off in SPC3. The CS signal is fed into SPC3.
	Chip select logic is available and programmable in all microcontrollers.
0 1	Intel microcontroller CPU basis is 80C51/52/32, microcontrollers from various
	manufacturers:
synchron-ous	Sychronous (rigid) bus timing without evaluation of the XREADY signal
Intel	8-bit multiplexed bus: ADB70
	The following can be connected:
	Microcontroller families from Intel, Siemens, and Philips, for example
	The address decoder is switched on in SPC3. The CS signal is generated for SPC3
	internally.
	• The lower address bits AB70 are stored with the ALE signal in an internal address
	latch. The internal CS decoder is activated in SPC3 that generates its own CS signal
	from the AB100 addresses.
	The internal address decoder is fixed wired, so that SPC3 must always be addressed
	under the fixed addresses AB70 = 00000xxxb. SPC3 selects relevant address window
	from the AB20 signals. In this mode, the CS-Pin (XCS) must be located at VDD (high
0 4	potential). Intel- and Siemens 16-/8-bit microcontroller families
0 1 asynchron.	
Intel	Asychronous bus timing with evaluation of the XREADY signal B bit pop-multiplexed bus: DB7.0. AB10.0.
	8 bit non-multiplexed bus: DB70, AB100 The following can be connected:
	Microcontroller families from Intel x86 and Siemens 80C16x, for example
	Address decoder is switched off in SPC3. The CS signal is fed in to the SPC3.
	External address decoding is always necessary.
	External chip select logic if the microcontroller is not present


Figure 7.1: Bus Interface

7.1.3 Switching Diagram Principles






7.1.4 Application with the 80 C 32

The pull up / pull down resistances in the drawing above are only relevant for a in circuit tester. The internal chip select logic is activated when the address pins A 11 .. A 15 are set to 0° . In the example above the starting address of the SPC3 is set to 0° 1000 .

7.1.5 Application with th 80 C 165

The pull up / pull down resistances in the drawing above are only relevant for a in circuit tester.

Dual Port RAM Controller

The internal 1.5k RAM of the SPC3 is a Single Port RAM. Due to an integrated Dual Port RAM controller, the controller, however, permits an almost simultaneous access of both ports (bus interface and microsequencer interface). When there is a simultaneous access of both ports, the bus interface has priority. This provides for the shortest possible access time. If SPC3 is connected to a microcontroller with an asynchronous interface, SPC3 can evaluate the Ready signal.

7.1.6 Interface Signals

The data bus outputs are high-resistance during the reset phase. All outputs are switched to high-resistance in the test mode. (See block test.)

Name	Input/ Output	Туре	Comments
DB(70)	I/O	Tristate	High-resistance for RESET
AB(100)			AB(10) has a pull down resistor.
MODE			Setting: syn/async interface
XWR/E_CLOCK	I		Intel: Write /Motorola: E-Clk
XRD/R_W	I		Intel: Read /Motorola: Read/Write
XCS	I		Chip Select
ALE/AS			Intel/Motorola: Address Latch Enable
DIVIDER	I		Scaling factor 2/4 for CLKOUT 2/4
X/INT	0	Tristate	Polarity programmable
XRDY/XDTACK	0	Tristate	Intel/Motorola: Ready-Signal
CLK	I		48 MHz
XINT/MOT	[Setting: Intel/Motorola
CLKOUT2/4	0	Tristate	24/12 MHz
RESET		Schmitt-Trigger	Minimum of 4 clock pulse cycles

Figure 7.2: Microprocessor Bus Signals

7.2 UART

The transmitter converts the parallel data structure into a serial data flow. Request-to-Send (RTS) is generated before the first character. The XCTS input is available for connecting a modem. After RTS active, the transmitter must hold back the first telegram character until the XCTS modem activates.

The receiver converts the serial data flow into the parallel data structure. The receiver scans the serial data flow with the four-fold transmission speed. Stop bit testing can be switched off for test purposes ("DIS_STOP_CONTROL = 1", in mode register 0 or 'Set_Param-Telegram' for DP). One requirement of the PROFIBUS protocol is that no rest states are permitted between the telegram characters. The SPC3 transmitter ensures that this specification is maintained. This following start bit test is switched off with the parameter setting "DIS_START_CONTROL = 1" (in mode register 0 or 'Set_Param telegram' for DP).

Specified by the four-fold scan, a maximum distortion of the serial input signal of X = -47% to y = +22% is permissible.

7.3 ASIC Test

All output pins and I/O pins can be switched in the high-resistance state via the XTESTO test pin. An additional XTEST1 input is provided (more information upon request) to test the block internally with test automatic devices (not in the target hardware environment!).

Pin No.	Name	Function	
34	XTEST0	VSS (GND)	All outputs high-resistance
		VDD (+5V)	Normal SPC3 function
35	XTEST1	VSS (GND)	Various test modes
		VDD (+5V)	Normal SPC3 function

Figure 7.3: Test Support

XTEST0 and XTEST1 must be placed on V_{DD} (+5V) via external pull-up resistors.

8 Technical Data

8.1 Maximum Limit Values

Parameter	Designation	Min	Max	Unit
Supply Voltage	V _{DD}	-0,3	6	V
Input Voltage	V _I	-0,3	VDD+0,3	V
Input Current	I ₁	-10	10	mA
Storage Temperature	T_{Stg}	-55	150	۰C
Ambient Temperature	TA	-40	85	°C
Lead Temp.	TL	k.A	300	٥C
(Soldering, 10 sec)				

Tabel 8.1: Maximum Limit Values

8.2 Permitted Operating Values

Parameter	Designation	M in	Max	Unit
				•
Supply Voltage	V_{DD}	4,5	5,5	V
Input High Voltage	V _{IHC}	0,7 V _{DD}	k.A.	V
Input Low Voltage	V _{ILC}	k.A.	0,3 V _{DD}	V
Schmitt-Trigger (CMOS)				
Input High Voltage	V _P / V _{IHC}	k.A.	0,8 VDD	V
Input Low Voltage	V _n / V _{ILC}	0,2 V _{DD}	k.A.	٧
Hysteresis Voltage	V _h	1	k.A.	V
Schmitt-Trigger (TTL)				
Input High Voltage	V _P / V _{IHC}	k.A.	2,1	٧
Input Low Voltage	V _n / V _{ILC}	0,7	k.A.	٧
Hysteresis Voltage	V _h	0,4	k.A.	٧

Tabel 8. 2: -Permitted Operating Values

8.3 DC-Specifikation of the I/O- Drivers

Parameter	Design.	Condition	Min	Max	Unit
Output High Voltage	V _{OH}	$V_{DD}=4,5V$	V _{DD} -0.5 *	k.A.	٧
Output High Voltage	V _{oH}	V _{DD} =4,5V	3.65 **	k.A.	٧
Output Low Voltage	V _{OL}	V _{DD} =4,5V	k.A.	0,4*	٧
Output Low Voltage	V _{OL}	V _{DD} =4,5V	k.A.	0,55**	V

^{*} at an output load of 4mA

Tabel 8.3: DC-Specifikation of the I/O- Drivers

^{**} at an output load of 8mA

Parameter	Design.	Min	Тур	Max	Unit
Input capacity	CIN	n.c	5	n.c.	pF
Output capacity	COUT	n.c	5	n.c.	pF
I/O-capacity	CI/O	n.c.	5	n.c.	pF

Tabel 8.4: Capacity of the I/O drivers

Paramete	r		Des	Min	Max	unit
Input leak	age current		I	-1	1	μΑ
Tristate current	output	leakage	I _{OZ}	-10	10	μΑ

Tabelle 8.5: Leakage current of the output drivers

8.4 AC-Specification for the Output Drivers

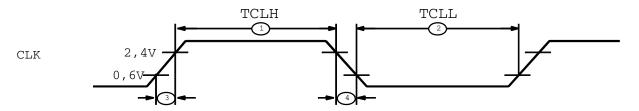
Signal lineeitung	Driver type	Driver power	Unit	kap. Last
DB(7:0)	Tristate	8	mA	100pF
TXD	Tristate	8	mA	50pF
RTS	Tristate	8	mA	50pF
X/INT	Tristate	8	mA	50pF
XREADY/XDSACK	Tristate	8	mA	50pF
XDATAEXCH	Tristate	8	mA	50pF
CLKOUT2/4	Tristate	8	mA	100pF

Hint:

The output power of the AMI-drivers is entspricht 8mA under the circumstances described in Tabel 8.3

Tabel 8.6: AC-Specifikation of the output drivers

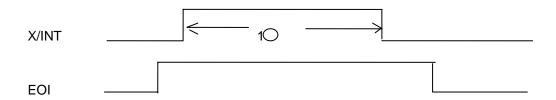
8.5 Timing Characteristics


The following is generally applicable: All signals beginning with 'X' are 'low active'. All signal runtimes are based on the capacitive loads specified in the table above.

8.5.1 SYS Bus Interface

Clock Pulse:

No.	Parameter	MIN	MAX	Unit
	Clock pulse 48 Mhz :			
1	Clock High Time	6.25	14.6	ns
2	Clock Low Time	6.25	14.6	ns
3	Rise Time		4	ns
4	Fall Time		4	ns


Clock Pulse Timing:

Distortions in the clock pulse signal are permitted up to a ratio of 40:60. At a threshold of 1.5 or 3.5 V:

Interrupts:

No.	Parameter	MIN	MAX	Unit
1	Interrupt Inactive Time (for EOI_Timebase = 0)	1	1	μS
	Interrupt Inactive Time	1	1	ms

After acknowledging an interrupt with EO1, a min. of 1 us or 1 ms is expected in SPC3 before a new interrupt is output.

D	00	O+	
	63	CL	

SPC3 requires a minimum of 400 clock	pulse cycles during the reset	phase so that it can be reset correctly	у.
--------------------------------------	-------------------------------	---	----

Reset	

8.5.2 Timing in the Synchronous C32-Mode:

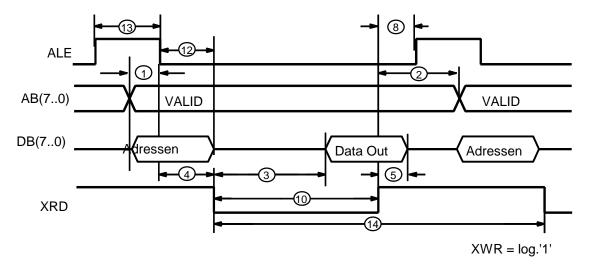
If SPC3 is operated at 48MHz, an 80C32 with a maximum clock pulse rate of 20MHz can be connected.

In the C32 mode, SPC3 saves the least significant addresses with the negative edge of ALE. At the same time, SPC3 expects the more significant address bits on the address bus. SPC3 generates a chipselect signal from the more significant address bits. The request for an access to SPC3 is generated from the negative edge of the read signal and from the positive edge of the write signal.

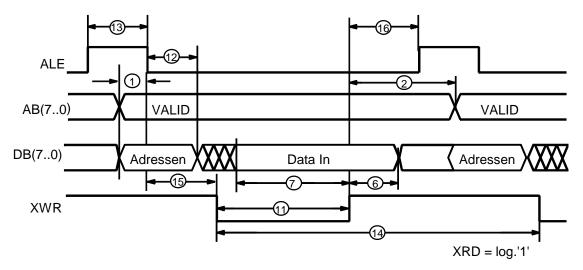
No.	Parameter	Min	Max	Unit
1	Address to ALE ↓ Setuptime	10		ns
2	Address (AB ₈₁₅) Holdtime after XRD \uparrow or XWR \uparrow	5		ns
3	XRD ↓ to Data Out (Zugriff auf RAM)		4T + 5	ns
	XRD ↓ to Data Out (Zugriff auf die Register)		(88,3) 4T + 18 (101,3)	ns
4	ALE ↓ to XRD ↓	20	, , ,	ns
5	Data Holdtime after XRD ↑	2	6	ns
6	Data Holdtime after XWR ↑	10		ns
7	Data Setuptime to XWR ↑	10		ns
8	XRD ↑ to ALE ↑	10		ns
10	XRD-Pulse-Width	6T - 10		ns
11	XWR-Pulse-Width	4T		ns
12	Address-Holdtime after ALE ↓	10		ns
13	ALE-Puls-Width	10		ns
14	XRD, XWR Cycletime	6T + 30		ns
15	ALE ↓ to XWR ↓	20		ns
16	XWR ↑ to ALE ↑	10		ns

Explanations:

T = Clock pulse cycle (48MHz)


TBD = to be defined

= Access to the RAM


= Access to the registers/latches

(3) = for T = 48MHz

Synchronous Intel-Mode, Processor-Read-Timing

Synchronous Intel-Mode, Processor-Write-Timing

8.5.3 Timing in the Asynchronous Intel Mode (X86 Mode):

In 80X86 operation, SPC3 acts like memory with ready logic. The access times depend on the type of accesses.

The request for an access to SPC3 is generated from the negative edge of the read signal or the positive edge of the write signal.

SPC3 generates the Ready signal synchronously to the fed in pulse. The Ready signal is reset when the read signal or write signal is deactivated. The data bus is switched to the Tristate with XRD = 1.

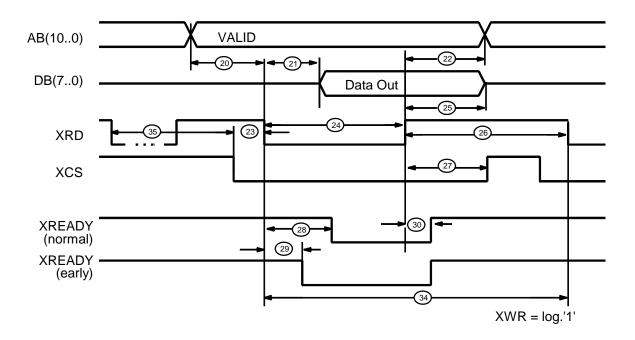
No.	Parameter	Min	Max	Unit
20	Address-Setuptime to RXD ↓ or XWR ↓	0		ns
21	XRD ↓ to Data valid (Zugriff auf RAM)		4T+5	ns
	XRD ↓ to Data valid (Zugriff auf die Register)		(88,3) 4T+18 (101,3)	ns
22	Address (AB ₁₀₀) Holdtime after XRD or XWR ↑	0	(- ,-,	ns
23	XCS $↓$ Setuptime to XRD $↓$ or XWR $↓$	- 5		ns
24	XRD-Puls-Width	6T – 10		ns
25	Data Holdtime after XRD ↑	(115) 2	6	ns
26	Read/Write-Inactive-Time	10		ns
27	XCS Holdtime after XRD ↑ or XWR ↑	0		ns
28	XRD/XWR ↓ to XRDY ↓ (Normal Ready)	4T + 5	5T+ 14	ns
29	XRD/XWR ↓ to XRDY ↓ (Early Ready)	3T + 5	4T+ 14	ns
30	XREADY-Holdtime after XRD or XWR	4.3	12.8	ns
31	Data Setuptime to XWR ↑	10		ns
32	Data Holdtime after XWR ↑	10		ns
33	XWR-Pulse-Width *	4T		ns
34	XRD, XWR Cycletime	6T		ns
35	last XRD ↓ to XCS ↓	4T + 10		ns
36	XCS ↑ to next XWR ↑	2T + 10		ns
37	XWR ↑ to next XWR ↑ (XCS don't care)	6T		ns

Explanations:

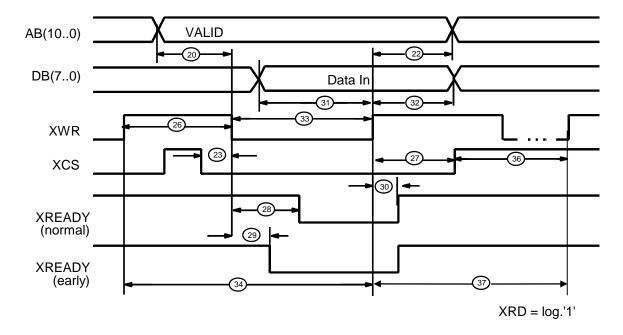
T = Clock pulse cycle (48MHz)

TBD = to be defined

⁽¹⁾ = Access to the RAM


e Access to the registers/latches

 $^{(3)}$ = For T = 48 MHz


*

SIEMENS

Asynchronous Intel-Mode, Processor-Read-Timing

Asynchronous Intel-Mode, Processor-Write-Timing

8.5.4 Timing in the Synchronous Motorola Mode (E_Clock-Mode, for example, 68HC11):

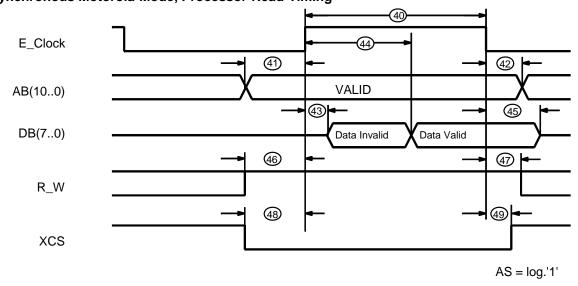
For a CPU clockline through the SPC3, the output clock pulse (CLKOUT2/4) must be 4 times larger than the E_CLOCK. That is, a clock pulse signal must be present at the CLK input that is **at least 10 times** larger than the desired system clock pulse (E_CLOCK). The Divider-Pin must be placed on <log. 0> (divider 4). This results in an E_CLOCK of 3MHz.

The request for a read access to SPC3 is derived from the positive edge of the E clock (in addition: XCS = 0, R W = 1). The request for a write access is derived from the negative edge of the E clock (in addition: XCS = 0, R W = 0).

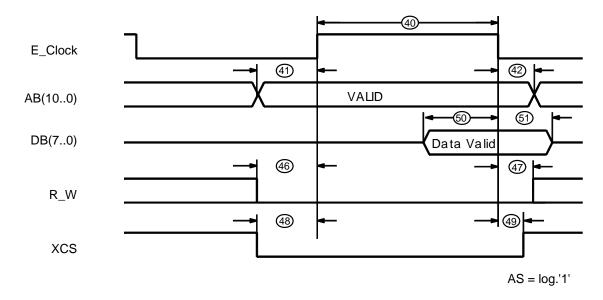
No.	Parameter	Min	Max	Unit
40	E_Clock-Pulse-Width	3T + 74.2		ns
41	Address (AB ₁₀₀) Setuptime to E_Clock ↑	10		ns
42	Address (AB ₁₀₀) Holdtime after E_Clock ↓	5		ns
43	E_Clock ↑ to Data Active Delay	5.7	17	ns
44	E_Clock ↑ to Data valid (Zugriff auf RAM)		4T + 5	ns
	E_Clock ↑ to Data valid (Zugriff auf die Register)		(88,3) 4T + 18 (101,3)	ns
45	Data Holdtime after E_Clock ↓	2	6.3	ns
46	R_W Setuptime to E_Clock ↑	10		ns
47	R_W Holdtime after E_Clock ↓	5		ns
48	XCS Setuptime to E_Clock ↑	0		ns
49	XCS Holdtime after E_Clock ↓	0		ns
50	Data Setuptime to E_Clock ↓	10		ns
51	Data Holdtime after E_Clock ↓	10		ns

Explanations:

T = Clock pulse cycle (48MHz)


TBD = to be defined

= Access to the RAM


= Access to the registers/latches

= For T = 48 MHz

Synchronous Motorola-Mode, Processor-Read-Timing

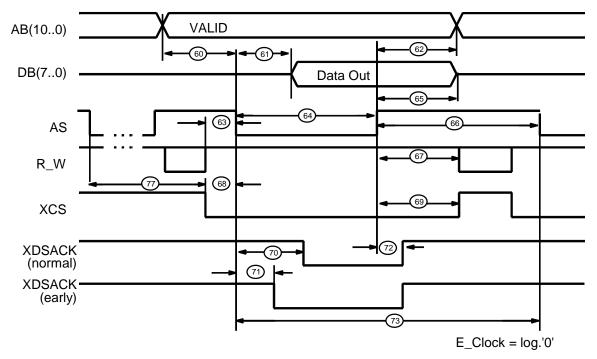
Synchronous Motorola-Mode, Processor-Write-Timing

8.5.5 Timing in the Asynchronous Motorola-Mode (for example, 68HC16):

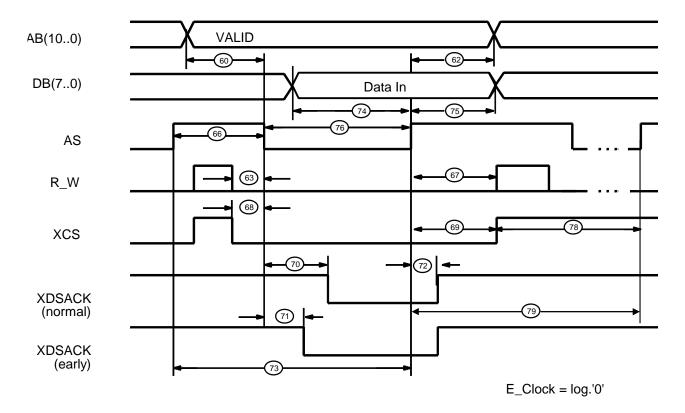
In the asynchronous Motorola mode, the SPC3 acts like memory with Ready logic, whereby the access times depend on the type of accesses.

The request for an access of SPC3 is generated from the positive edge of the AS signal (in addition: XCS='0', $R_W='1'$). The request for a write access is generated from the positive edge of the AS signal (in addition: XCS='0', $R_W='0'$).

No.	Parameter	Min	Max	Unit
60	Address-Setuptime to AS ↓	0		ns
61	AS ↓ to Data valid (Zugriff auf RAM)		4T + 5	ns
	AS ↓ to Data valid (Zugriff auf die Register)		(88,3) 4T + 18 (101,3)	ns
62	Address (AB ₁₀₀) Holdtime after AS ↑	10	(:::,=)	ns
63	R_W ↓ Setuptime to AS ↓	10		ns
64	AS-Puls-Width (Read)	6T - 10		ns
65	Data Holdtime after AS ↑	2	6.3	ns
66	AS-Inactive-Time	10		ns
67	R_W Holdtime after AS ↑	10		ns
68	XCS ↓ Setuptime to AS ↓	-5		ns
69	XCS Holdtime after AS ↑	0		ns
70	AS ↓ to XDSACK ↓ (Read, Normal Ready)	4T + 5	5T + 14	ns
71	AS ↓ to XDSACK ↓ (Read, Early Ready)	3T + 5	4T + 14	ns
72	XDSACK-Holdtime after AS ↑	4.3	12.7	ns
73	AS Cycletime	6T		ns
74	Data Setuptime to AS ↑	10		ns
75	Data Holdtime after AS ↑	10		ns
76	AS-Pulse-Width (Write) *	4T		ns
77	last AS ↓ (Read) to XCS ↓	4T + 10		ns
78	XCS ↑ to next AS ↑ (Write)	2T + 10		ns
79	AS ↑ to next AS ↑ (Write, XCS don't care)	6T		ns


Explanations:

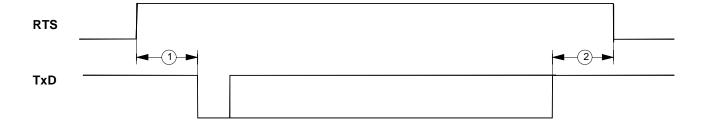
T = Pulse cycle (48MHz)


TBD = To Be Defined

- = Access to the RAM
- e Access to the register/latches
- = For T = 48MHz

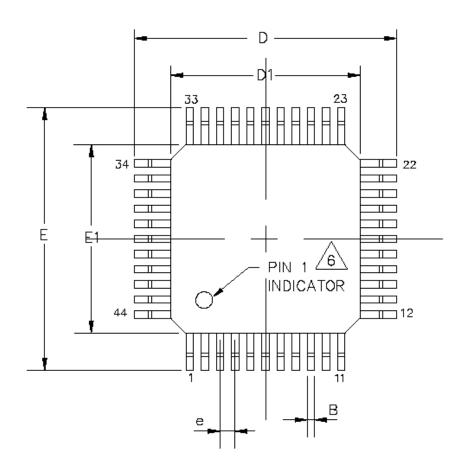
Asynchronous Motorola-Mode, Processor-Read-Timing

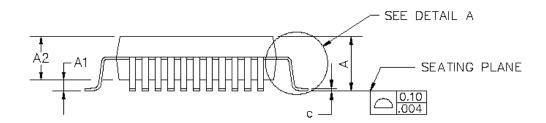
Asynchronous Motorola-Mode, Processor-Write-Timing

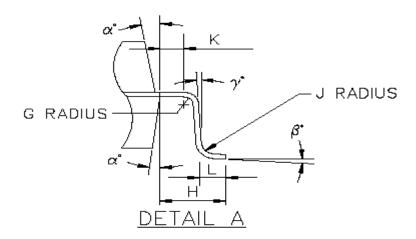


SIEMENS

8.5.6 Serial Bus Interface


No.	Parameter	MIN	MAX	Unit
	Pulse 48 MHz:			
1	RTS ↑ to TxD Setup Time	4T		
2	RTS \downarrow to TxD Hold Token	4T		


T = Clock pulse cycle (48MHz)



8.5.7 Housing PQFP-44 Housing

Symbol	Min	Тур	Max
Α	-	2.13	2.35
A 1	0.10	0.15	0.25
A2	1.95	2.00	2.10
D	13.65	13.90	14.15
D1	9.90	10.00	10.10
E	13.65	13.90	14.15
E1	9.90	10.00	10.10
L	0.65	0.80	0.95
e BASIC	-	0.80	-
В	0.30	-	0.45
С	0.13	-	0.23
α°	12	-	16
β°	0	-	7
γ°	0	-	-
G	0.13	-	-
Н	-	1.95	-
J	-	0.30	-
K	0.40	-	-
2H (Footprint)	-	3.90	-

8.5.8 Processing Instructions

ESD protective measures must be maintained for all electronic components.

SPC3 is a **cracking-endangered component** that must be handled as such.

A drying process must be carried out before SPC3 is processed. The component must be dried at 125° C for 24 hours and then be processed within 48 hours. This drying process may be carried out once only because the component is soldered.

It must also be ensured that the SPC3's connections are not bent. Flawless processing can be guaranteed only if a planity of less than 0.1 mm is ensured. **SPC3** is released for infrared soldering with a soldering profile according to CECC00802.

9 PROFIBUS Interface

9.1 Pin Assignment

The data transmission is performed in RS 485 operating mode (i.e., physical RS 485). The SPC3 is connected via the following signals to the galvanically isolated interface drivers.

Signal Name	Input/ Output	Function
RTS	Output	Request to send
TXD	Output	Sending data
RXD	Input	Receiving data

The PROFIBUS interface is a 9-way, sub D, plug connector with the following pin assignment.

Pin 1 - Free

Pin 2 - Free

Pin 3 - B line

Pin 4 - Request to send (RTS)

Pin 5 - Ground 5V (M5)

Pin 6 - Potential 5V (floating P5)

Pin 7 - Free

Pin 8 - A line

Pin 9 - Free

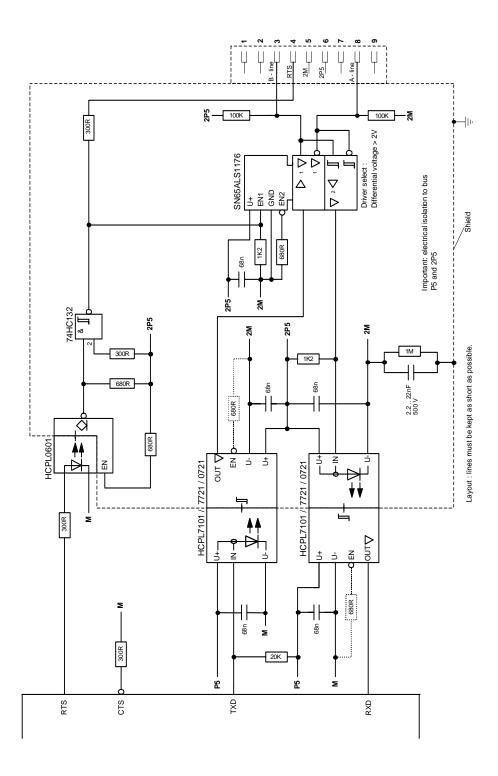
The cable shield must be connected to the plug connector housing.

The free pins are described as optional in EN 50170 Vol. 2. If used, they should conform to the specifications in DIN192453.

CAUTION:

The designations A and B of the lines on the plug connector refer to the designations in the RS 485 standard, and not the pin designation of driver ICs.

Keep the cable from driver to connector as short as possible.


Use of higher baud rates)i.e., 3 to 12 Mbaud) requires the use of new plug connectors. These connectors compensate for line interferences on all possible combinations of cables.

6ES7 972-0BB10-0XA0 with PG socket

6ES7 972-0BA10-0XA0 without PG socket

SIEMENS

9.2 Example for the RS 485 Interface

Explanations of the circuitry:

The bus driver input EN2 has to be connected to low potential to ensure that after transmission of a telegram the ASIC is able to listen to the transmitted data.

To minimize the capacity of the bus lines the user should avoid additional capacities. The typical capacity of a bus station should be 15 ... 25 pF.

10 Appendix

10.1 Addresses

PROFIBUS User Organisation

PNO Office Mr. Dr. Wenzel Haid- und Neu- Straße 7 76131 Karlsruhe Tel.: (0721) 9658-590

Technical contact person at ComDeC in Germany

Siemens AG I IA SE DE DP3 Mr. Putschky

Address: Postfach 2355 90713 Fürth

Tel.: (0911) 750 - 2078 Fax: (0911) 750 - 2100

email:

Gerd.Putschky@siemens.com

Technical contact person at the PROFIBUS Interface Center in the United States

PROFIBUS Interface Center One Internet Plaza PO Box 4991 Johnson City, TN 37602-4991

Fax: (423) - 262 - 2103

Your Partner:

Tel.: (423) - 262 - 2576

email:

profibus.sea@siemens.com

10.2 General Definition of Terms

ASPC2 Advanced Siemens PROFIBUS Controller, 2nd generation

SPC2 Siemens PROFIBUS Controller, 2 generation
SPC3 Siemens PROFIBUS Controller, 2nd generation
SPM2 Siemens PROFIBUS Controller, 3rd generation
SPM2 Siemens PROFIBUS Multiplexer, 2nd generation
LSPM2 Lean Siemens PROFIBUS Multiplexer, 2nd generation

DP Distributed I/Os

FMS Fieldbus Message Specification

MS MicroSequenzer SM State Machine

10.3 Ordering of ASICs

For Ordering SPC3 ASICs please refer to your contact person in the Siemens local branch office and use one of the ordering numbers depending on the amount you want to order.

ASIC SPC3	6ES7 195-0BD04-0XA0	Evaluation pack; 6pcs.
(Step C)	6ES7 195-0BD14-0XA0	Single tray; 96pcs.
	6ES7 195-0BD24-0XA0	Try box; 960pcs
	6ES7 195-0BD34-0XA0	10 tray box; 4800pcs
FW DP SPC3	6ES7 195-2BA00-0XA0	Disk
FW DPV1 SPC3	6ES7 195-2BA01-0XA0	Disk
FW DPV1 Upgrade SPC3	6ES7 195-2BA02-0XA0	Disk

The internet- address is: http://www.siemens.com/comdec

Here you have to select "PROFIBUS Manuals" to get the newest documentation about the PROFIBUS ASIC's.

When you select "Home" you can subscribe to the Newsletter for free, which inform you about the newest changes.

11 Appendix A: Diagnostics Processing in PROFIBUS DP

11.1 Introduction

PROFIBUS DP offers a convenient and multi-layer possibility for processing diagnostics messages on the basis of error states.

As soon as a diagnostics request is required, the slave will respond in the current data exchange with a high priority reply message. In the next bus cycle, the master then requests a diagnostics from this slave, instead of executing normal data exchange.

Likewise, any master (not only the assigned master!) can request a diagnostics from the slave. The diagnostics information of the DP slave consists of standard diagnostics information (6 bytes), and can be supplemented by user-specific diagnostics information.

In the case of the ASICs, SPM2, and LSPM2, extensive diagnostics is possible through corresponding wiring. In the case of the intelligent SPCx solution, adapted and convenient diagnostics processing can be carried out through programming.

11.2 Diagnostics Bits and Expanded Diagnostics

Parts of the standard diagnostics information are permanently specified in the firmware and in the micro-program of the ASICs through the state machine.

Request diagnostics only once ("update_diag(..)") if an error is present or changes. By no means should diagnostics be requested cyclically in the data exchange state; otherwise, the system will be burdened by redundant data.

Three information bits can be influenced by the application:

11.2.1 STAT_DIAG

Because of a state in the application, the slave can't make valid data available. Consequently, the master only requests diagnostics information until this bit is removed again. The PROFIBUS DP state is, however, Data Exchange, so that immediately after the cancellation of the static diagnostics, data exchange can start.

Example: failure of supply voltage for the output drivers

11.2.2 EXT DIAG

If this bit is set, a diagnostics entry **must** be present in the user-specific diagnostics area. If this bit is not set, a status message can be present in the user-specific diagnostics area.

User-Specific Diagnostics

The user-specific diagnostics can be filed in three different formats:

Device-Specific Diagnostics:

The diagnostics information can be coded as required.

	Bit 7	Bit 6	it 6 Bit 5-0		
Header Byte	0 Block length in bytes, including header				
Diagnostics Field	Coding of diagnostics is device-specific				
	Can be specified as required				

Identifier-Related Diagnostics:

For each identifier byte assigned during configuration (for example, 0 x 10 for 1 byte input), a bit is reserved.

In the case of a modular system with an identifier byte each per module, module-specific diagnostics can be indicated. One bit respectively will then indicate diagnostics per module.

	Bit 7	Bit 6	Bit 5-0	
Header Byte	0	1	Block length in bytes including hea	der
Bit Structure	1			1

↑ Identifier Byte 7 has

etc.

↑ Identifier Byte 0 has

diagnostics

diagnostics

Channel-Related Diagnostics:

In this block, the diagnosed channels and the diagnostics cause are entered in sequence. Three bits are required per entry.

	Bit 7	Bit 6	Bit 5	Bit 4 - 0
Header Byte	1	0	Identification Number	
Channel Number	Coding Chair Input/Output		Channe	el Number
Type of Diagnostics	Coding Channe			Coding Error Type

Coding of the error type is in part manufacturer-specific; other codings are specified in the Standard.

Example:

0	0	0	0	0	1	0	0	Device-related diagnostics.						
Device-specific								Meaning of the bits						
dia	diagnostics field of							is specified						
length 3								manufacturer-specific.						
0	1	0	0	0	1	0	1	Identifier-related diagnostics.						
							1	Identification number 0 has diagnostics.						
			1											
						1		Identification number 18 has diagnostics.						
1	0	0	0	0	0	0	0	Channel-related diagnostics, identification number 0.						
0	0	0	0	0	0	1	0	Channel 2.						
0	0	0	1	0	1	0	0	Overload, channel organized bit by bit.						
1	0	0	0	1	1	0	0	Channel-related diagnostics identification number 12.						
0	0	0	0	0	1	1	0	Channel 6.						
1	0	1	0	0	1	1	1	Upper limit evalue xceeded, channel organized word by word.						

Status

If the Bit EXT_DIAG is set to 0 , data is viewed as status info from the system view. f.e. cancellation of the error triggering the diagnostics.

11.2.3 EXT_DIAG_OVERFLOW

This bit is set if more diagnostics data is present than will fit in the available diagnostics data area. For example, more channel diagnostics could be present than the send buffer or the receive buffer makes possible.

11.3 Diagnostics Processing from the System View

Inasmuch as it is bus-specific, the diagnostics information of the slaves is managed solely by the master interface (for example, IM308B).

All diagnostics from the application are made available to the S6 program via corresponding data bytes. If the **External Diagnostics bit** is set, the slaves to be diagnosed can already be evaluated in the diagnostics overview. Then, a special error routine can be called up, whereby the standard diagnostics information and the user-specific information can be evaluated.

After eliminating the current diagnostics situation, this can be signalled as a status message from the slave without setting the external diagnostics bit.

With the COM ET200, a comfortable diagnostics tool is available on-line. At the present time, identification-related diagnostics information can be displayed with it in plain text. In later phases, channel-related diagnostics will also be supported. User-specific diagnostics are only displayed if the EXT_DIAG bit is set.

The figure below shows a screen during data processing, for example:

Set Program	n File AGNOSTICS		C:PNO4ET.	SIMATIC S5 / COM ET 200									
Station Nun	nber: 30						Station COMBI	Type:	ET	200U-			
Station Des	ignation:		Station4										
Station Sta			Slave not exchange External diag Configuration		for	data							
Device-Related Diagnostics													
			KH = 01										
Identificatio Diagnostics													
			Slot										
Active			3										
F1	F2	F3	F4	F5		F6		F7		F8 EXIT			

In the type file for the COM ET200 and in the GSD [device master data] file, fields are already provided for referencing device-specific bits and pertinent plain text messages (for example, Bit 7: "I have had it; good night!").

SIEMENS

12 Appendix B: Useful Information

12.1 Data format in the Siemens PLC SIMATIC

The SPC3 always sends data from the beginning of the buffer till the end. 16Bit values are shown in the Motorola format. For example:

Buffer pointer high byte

Buffer pointer +1 low byte