

(Advanced PROFIBUS Controller
according to EN 50170)

Version: V1.1

Date: 01/15/2009

ASPC 2 / Software
User

Description

SchnittStellenCenter ASPC 2

Page 2 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Liability Exclusion
We have tested the contents of this document regarding agreement with the
hardware and software described. Nevertheless, there may be deviations,
and we don’t guarantee complete agreement. The data in the document is
tested periodically, however. Required corrections are included in
subsequent versions. We gratefully accept suggestions for improvement

Copyright
Copyright © Siemens AG 1995. All Rights Reserved.
Unless permission has been expressly granted, passing on this document
or copying it, or using and sharing its content are not allowed. Offenders
will be held liable. All rights reserved, in the event a patent is granted or a
utility model or design is registered.

Subject to technical changes.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 3
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Table of Contents

1 INTRODUCTION 5

2 SOFTWARE STRUCTURE 5

2.1 Overview 6
2.1.1 Introduction 6
2.1.2 Delivery Form 6
2.1.3 Settings 6
2.1.4 Procedure 19
2.1.5 Scope of Delivery 19

3 AMPRO2 INTERFACE 20

3.1 User Interface 22

3.2 Service Primitives 22

3.3 Interface Models 24
3.3.1 Task Interface with Operating System Environment (L2_TASK_IFA_OS) 24
3.3.2 Calling Interface with Operating System Environment (L2_CALL_IFA_OS) 25
3.3.3 Calling Interface without Operating System Environment (L2_CALL_IFA_CALLBACK) 26

3.4 Application Blocks 29

3.5 Buffer Handling between Layer 2 and Layer-2 User 31

3.6 Integrated Memory Management 31

3.7 Special Features of the AMPRO2 ASPC2 38

3.8 Description of Service-Related Interfaces 46
3.8.1 FMA Services 46

3.9 General Return Value 54
3.9.1 "resp_status" 54

3.10 Error Outputs on AMPRO2 55

4 AMPRO2 CBF DISTRIBUTOR 56

4.1 General 56
4.1.1 Description of the Procedure 56
4.1.2 Definitions 57

4.2 Implementation 58
4.2.1 Number of AMPRO2 CBFs Per User 58
4.2.2 CBF Server Functions 59
4.2.3 Initialization of the AMPRO2 CBF Distributor 60

5 DPM INTERFACE 61

5.1 Introduction 61
5.1.1 Communication Model 61

SchnittStellenCenter ASPC 2

Page 4 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.2 Definitions 62
5.1.3 Structure of AMPRO-DPM 67
5.1.4 Consistency Assurance 70
5.1.5 Prerequisites for Use of AMPRO-DPM 72

5.2 User Interface 80
5.2.1 Call Structures 80
5.2.2 Slave Control Block (SLCB) 82
5.2.3 AMPRO-DPM Functions 86
5.2.4 Call Back Functions (CBFs) of the USER 128
5.2.5 Slave Families Supported by AMPRO-DPM 145
5.2.6 Coding Rules 154

6 PARAMETER MODULE DESCRIPTION 158

6.1 Data Layout 158
6.1.1 General 158
6.1.2 Parameter Data 159

6.2 Data Storage 161
6.2.1 General 161
6.2.2 Parameter Data 162

6.3 Header 163
6.3.1 S7-Related Header 163
6.3.2 COM-Related Header 165

6.4 Pointer Field 165
6.4.1 Pointer Field for Parameter Data 166

6.5 Structures of the Parameter Data 167
6.5.1 Bus Parameter Record 167
6.5.2 Slave Parameter Record 174

7 APPENDIX 193

7.1 Address List 193

7.2 List of Related Literature 194

7.3 List of Abbreviations 195

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 5
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

1 Introduction
The ASPC2 ASIC requires extensive software (i.e., approx. 64 Kbytes) for use as a DP master. Use of the
software requires a license. Master license fees are 15 000€. for object code and 45 000€ for source code,
regardless of the number desired.

2 Software Structure

AMPRO2

PROFIBUS-DP

 ASPC2 ASIC

CBF-DIS-
 TRIBUTOR

AMPRO2-
 USER

DPM

USER

Finished software modules

User program

Function calls

Interrupt

P
a

ra
m

e
te

r
b

in
a

ry
 f

il
e

 Parameter file created by COM

Figure 1: Software structure

SchnittStellenCenter ASPC 2

Page 6 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

2.1 Overview

2.1.1 Introduction

Since the software is designed to support a wide variety of compilers, processors, ASIC types, memory
models and development environments, all function call interfaces and data pointers have been assigned
attributes so that the finished software can be linked to the environment very precisely. It is important that
the applicable header files have correct settings so that the finished modules can be optimally linked.

2.1.2 Delivery Form

AMPRO2, AMPRO-DPM and the CBF distributor are available in a library which the user can integrate in his
programs, or with all source code files which are then generated by the user together with his own source
code. How AMPRO2, AMPRO-DPM and the CBF distributor are delivered depends on the particular
licensing contract (mandatory for both packages).

2.1.2.1 Library

When this form of delivery is selected, the sources must be generated with the type of compiler which the
user would like to use before the sale takes place, since ANSI-C libraries do not exist.
This requires precise information on the settings for the different software modules and the development
environment. See section 2.1.3.

2.1.2.2 C-Sources

When this form of delivery is selected, all sources of the software modules are included. These modules can
be adapted to various development environments by using various settings.
See section 2.1.3.

2.1.3 Settings

Using various header files, the access attributes can be specified for the functions and data of the individual
modules.
Header files are listed below.

File Explanation
config.h Setting for compiler type, ASIC, access attributes for AMPRO2 and DPM
config.txt Detailed explanation of all possible settings in config.h
dev_def.h Access attributes for DPM and other AMPRO2 users
sys_comm.h Definitions for the integrated memory management of AMPRO2
sys_cbd.h Definitions and structures for the CBF

The sample application shown below explains most of the settings which you can made for these files.

2.1.3.1 Example

Prerequisite

Processor: 80C165
Development environment: BSO Tasking

2.1.3.1.1 config.h
The settings for the AMPRO2 module are made in the config.h file.
/***/
/* 1. POINTER-ATTRIBUTES */
/***/
/*--*/
/* 1.1 PTR_ATTR */

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 7
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

/*--*/
#define PTR_ATTR_NEAR
/*--*/
/* 1.2 L2_DATA_PTR_ATTR */
/*--*/
#define L2_DATA_PTR_ATTR_FAR
/*--*/
/* 1.3 L2_CODE_ATTR */
/*--*/
#define L2_CODE_ATTR ATTR_NEAR
/*--*/
/* 1.4 L2_IFA_CODE_ATTR */
/*--*/
#define L2_IFA_CODE_ATTR ATTR_NEAR
/*--*/
/* 1.5 L2_CALL_BACK_CODE_ATTR */
/*--*/
#define L2_CALL_BACK_CODE_ATTR ATTR_NEAR
/*--*/
/* 1.6 L2_STACK_DATA_ATTR */
/*--*/
/* not required for TOOL_CHAIN_TASKING */
/*--*/
/* 1.7 L2_CLEAR_GLOBAL_DATA */
/*--*/
/* not required for the IM 308-C */
/***/
/* 2. L2-INTERFACE */
/***/
#define L2_CALL_IFA_CALLBACK
/***/
/* 3. HARDWARE */
/***/
#define IM308C
#define L2_SHELL_CODE_ATTR ATTR_HUGE
/***/
/* 4. ASIC */
/***/
/*--*/
/* 4.1 SELECTION */
/*--*/
#define AMPRO2_ASPC2
/*--*/
/* 4.2 ASPC2 selected */
/*--*/
/*--*/
/* 4.2.1 ASPC2_ATTR */
/*--*/
#define ASPC2_ATTR_MEM_FAR
/*--*/
/* 4.2.2 ASPC2_STEP */
/*--*/
#define ASPC2_GREATER_EQUAL_STEP_C
/*--*/
/* 4.2.3 ASPC2_MEMORY-AREA */
/*--*/
#define L2_MEM_START_PAGE_HOST 0
/*--*/
/* 4.2.4 ASPC2-ADR-MODE */
/*--*/

SchnittStellenCenter ASPC 2

Page 8 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

/* not used for the IM 308-C */
/*--*/
/* 4.2.5 ASPC2-EOI */
/*--*/
/* not used for the IM 308-C */
/*--*/
/* 4.2.6 L2-LOCK-MACROS */
/*--*/
/* not used for the IM 308-C */
/*--*/
/* 4.2.7 L2-ASIC-LOCK */
/*--*/
/* not used for the IM 308-C */
/**/
/* 5. HOST-uP */
/**/
/*--*/
/* 5.1 SELECTION */
/*--*/
#define PROC_80C165
/*--*/
/* 5.3 80C165/80C167 selected */
/*--*/
/*--*/
/* 5.3.1 DATA-PAGE-LIMIT */
/*--*/
#define L2_MEM_DISABLE_DATA_PAGE_LIMIT
/**/
/* 6. OPERATING-SYSTEM */
/**/
/*--*/
/* 6.1 SELECTION */
/*--*/
#define NO_OS
/**/
/* 7. TOOL-CHAIN */
/**/
#define TOOL_CHAIN_TASKING
#define L2_PRAGMA_GLOBAL
/**/
/* 8. INTERNAL (don't change !) */
/**/
#include "l2_attr.h"

2.1.3.1.2 dev_def.h
The dev_def.h file in accordance with the settings for the AMPRO2 user
/* */
/* D e s c r i p t i o n : */
/* This file includes all attribute-definitiones for one device. The */
/* USER has to decide, which kind of attributes he want's to use and */
/* than he has to edit the entries of this file according to his in- */
/* tention. */
/* */
/* A t t e n t i o n : */
/* This file must be created by the USER and he must keep all entries */
/* in a good condition by himself according to the preconditions made */
/* by any of the AMPRO-parts. If no USER-entries are required, the */
/* empty file-body must remain anyway. If AMPRO2s file CONFIG.H */
/* contains a define-value for the device, this define may be used to */

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 9
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

/* protect the file against accidental usage. This technique is */
/* advantageous, but it's not essential. */
/* */
/**/
/**/
/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/
/* Reinclude-protection */
#ifndef COMM_DEV__DEV_DEF_H
#define COMM_DEV__DEV_DEF_H
/*+--+*/
/*¦ Device-specific definitiones ¦*/
/*+--+*/
#if defined (IM308C) /* See COMMON\CONFIG.H for this definition. */
/*+--+*/
 /*¦ AMPRO-parts used by the device ¦*/
 /*+---+*/
 /*
 With the following definitiones the USER has to tell AMPRO, which kind
 of functions his device is able to process. The four possible functions
 are DPM, DPS, DPX1 and DPX2. If any of the functions are needed, a
 definition must be created as follows:

 DEVICE_USES_XXXX where XXXX mus be replacd by the components name.

 The entries should be enabled or disabled by using comment-signs and not
 by deleting any line.
 */
#define DEVICE_USES_DPM
#define DEVICE_USES_DPS

 /* #define DEVICE_USES_DPX1 */

 /* #define DEVICE_USES_DPX2 */
/*+--+*/
 /*¦ Usage of AMPRO2-shell-functions ¦*/
 /*+---+*/
 /*
 With the following definitiones the USER has to tell AMPRO, if he want's
 to force any of the DP-components to use the AMPRO2-functions directly
 or to use shell-functions, so calling the AMPRO2-functions arcoss a
 second function. These shell functions are used to transform huge- or
 far-calls from one segment into near-calls inside another segment.
 The shell-functions may be selective enabled for each component enabled
 above. If any of the shell-function-set are needed, a definition must be
 created for each DP-component as follows:

 XXXX_USES_L2_SHELL where XXXX mus be replacd by the components name.

 The entries should be enabled or disabled by using comment-signs and not
 by deleting any line.
 */
 #ifdef DEVICE_USES_DPM
 /* #define DPM_USES_L2_SHELL */
 #endif

 #ifdef DEVICE_USES_DPS
 #define DPS_USES_L2_SHELL
 #endif

SchnittStellenCenter ASPC 2

Page 10 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 #ifdef DEVICE_USES_DPX1
 /* #define DPX1_USES_L2_SHELL */
 #endif

 #ifdef DEVICE_USES_DPX2
 #define DPX2_USES_L2_SHELL
 #endif

 /*+--+*/
 /*¦ area attributes ¦*/
 /*+--+*/
 /*
 The following attribute names must be changed according to the USERs
 hardware and locater rules. All attribute names consists of their
 primary name and the attribute in one definition. The attributes which
 can be used are ..._NEAR, ..._FAR and ..._HUGE. Further informations
 about each of the attribute names may be taken out of the specification
 for each DP-component.

 e.g.:
 The area HEINZ_DATA should have the attribute 'far', so it's attribute
 name listed below must look as follows:

 HEINZ_DATA_FAR
 */

 /*- function attribute names ---*/

 #define DPM_IFA_FUNC_ATTR_HUGE /* see AMPRO-DPM-specification */
 #define DPM_CALL_BACK_FUNC_ATTR_HUGE /* see AMPRO-DPM-specification */
 #define DPM_INT_FUNC_ATTR_NEAR /* see AMPRO-DPM-specification */

 #define DPX2_IFA_FUNC_ATTR_HUGE /* see AMPRO-DPX2-specification */
 #define DPX2_CALL_BACK_FUNC_ATTR_HUGE /* see AMPRO-DPX2-specification */
 #define DPX2_INT_FUNC_ATTR_NEAR /* see AMPRO-DPX2-specification */

 #define SYS_CBD_FUNC_ATTR_HUGE /* attribute name of the main CBF-server */

 #define EXT_FUNC_ATTR_NEAR /* old attribute name */

 /*- data attribute names ---*/

 #define DPM_IFA_DATA_ATTR_NEAR /* see AMPRO-DPM-specification */
 #define DPM_INT_DATA_ATTR_NEAR /* see AMPRO-DPM-specification */

 #define DPX2_INT_DATA_ATTR_NEAR /* see AMPRO-DPX2-specification */
 #define DPX2_IFA_DATA_ATTR_NEAR /* see AMPRO-DPX2-specification */

 #define DPM_USER_DATA_ATTR_NEAR /* see AMPRO-DPM-specification */
 #define DPM_PROC_DATA_ATTR_FAR /* see AMPRO-DPM-specification */
 #define DPM_MOD_DATA_ATTR_HUGE /* see AMPRO-DPM-specification */

 #define DPX2_USER_DATA_ATTR_NEAR /* see AMPRO-DPX2-specification */
 #define DPX2_PROC_DATA_ATTR_FAR /* see AMPRO-DPX2-specification */
 #define DPX2_MOD_DATA_ATTR_HUGE /* see AMPRO-DPX2-specification */

 #define ERR_DATA_ATTR_NEAR /* attribute name for ERROR_CB */

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 11
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 #define PAM_MOD_ATTR_HUGE /* attribute name for modul PAM */
 #define DAM_DPR_ATTR_FAR /* attribute name for modul DAM */
 #define DAM_ZRAM_ATTR_HUGE /* attribute name for modul DAM */

 #define S7_DATA_ATTR_NEAR /* attribute name for modul DAM */

 #define EXT_DATA_ATTR_NEAR /* old attribute name */

 /*+--+*/
 /*¦ Further Definitiones ¦*/
 /*+--+*/

 /*- module format --*/
 /*
 The parameter module data structures may have high-endian- (Intel-) or
 low-endian- (Motorola-) format. The following define value tells AMPRO-DPM
 the format type of the parameter module. Two different values are possible:

 high-endian-format: DPM_MODULE_FORMAT_HIGH_ENDIAN (Intel)
 low-endian-format: DPM_MODULE_FORMAT_LITTLE_ENDIAN (Motorola)
 */

 #define DPM_MODULE_FORMAT_HIGH_ENDIAN
 #define DPX2_MODULE_FORMAT_HIGH_ENDIAN

#else

 #error "The file COMM_DEV\DEV_INC.H was created only for the device IM 308-C !"

#endif

/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/

/* Reinclude-protection */
#else
 #pragma message ("The header COMM_DEV\DEV_DEF.H is included twice or more !")
#endif

2.1.3.1.3 sys_comm.h
The sys_comm.h file contains the settings for memory management.

/**/
/**/
/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/
/* Reinclude-protection */
#ifndef COMM_DEV__SYS_COMM_H
#define COMM_DEV__SYS_COMM_H
/*+--+*/
/*¦ SYS_CBD-Handling for ASIC Interrupts ¦*/

SchnittStellenCenter ASPC 2

Page 12 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

/*+--+*/
/*
 Interrupt Processing
 There are three possibilities to process the AMPRO2-interrupts:

 If the following macro is defined, the ASIC-queues are emptied full.
 This means: The next ASIC Interrupt will be generated after execution of
 all con/ind list entries or if the 1ms timer is expired.

 #define SYS_EMPTY_ASIC_QUEUES_FULL

 If the following macro is defined, the ASIC-queues are emptied single.
 This means: The next ASIC Interrupt will be generated earliest after 1ms.
 Every interrupt only one con/ind list entry will be executed.

 #define SYS_EMPTY_ASIC_QUEUES_SINGLE

 If the following macros are defined, the ASIC-queues are emptied as often
 as the given number shows.
 This means: The next ASIC Interrupt will be generated after execution of
 up to 'cnt' con/ind list entries or if the 1ms timer is expired.

 #define SYS_EMPTY_ASIC_QUEUES_MULTIPLE
 #define SYS_EMPTY_ASIC_QUEUES_CNT (UBYTE) 0xNN
*/

#define SYS_EMPTY_ASIC_QUEUES_MULTIPLE
#define SYS_EMPTY_ASIC_QUEUES_CNT (UBYTE) 0x02

#if !defined(SYS_EMPTY_ASIC_QUEUES_FULL) && !defined(SYS_EMPTY_ASIC_QUEUES_SINGLE) &&
!defined(SYS_EMPTY_ASIC_QUEUES_MULTIPLE)
 #pragma error ("Within COMM_DEV\SYS_COMM.H is no AMPRO2-Int processing technique defined !")
#endif

#if (defined(SYS_EMPTY_ASIC_QUEUES_FULL) &&
defined(SYS_EMPTY_ASIC_QUEUES_MULTIPLE))
 || (defined(SYS_EMPTY_ASIC_QUEUES_FULL) && defined(SYS_EMPTY_ASIC_QUEUES_SINGLE)
)
 || (defined(SYS_EMPTY_ASIC_QUEUES_SINGLE) &&
defined(SYS_EMPTY_ASIC_QUEUES_MULTIPLE))
 #pragma error ("Within COMM_DEV\SYS_COMM.H is only one AMPRO2-Int processing technique
allowed !")
#endif

#if (defined(SYS_EMPTY_ASIC_QUEUES_FULL) && defined(SYS_EMPTY_ASIC_QUEUES_CNT))
 || (defined(SYS_EMPTY_ASIC_QUEUES_SINGLE) && defined(SYS_EMPTY_ASIC_QUEUES_CNT))
 || (defined(SYS_EMPTY_ASIC_QUEUES_MULTIPLE) && !defined(SYS_EMPTY_ASIC_QUEUES_CNT)
)
 #pragma error ("Within COMM_DEV\SYS_COMM.H only with SYS_EMPTY_ASIC_QUEUES_MULTIPLE
SYS_EMPTY_ASIC_QUEUES_CNT is allowed !")
#endif

/*+--+*/
/*¦ AMPRO2-Memory-Management (all lens are in byte !) ¦*/
/*+--+*/

/*+--+*/

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 13
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

/*¦ Application-Blocks ¦*/
/*+--+*/

/*- MCP --*/

 #define SYS_MCP_L2_APB_NO 1 /* used for AMPRO2-FLC...-Reset as well as for ASIC-WD */
 #define SYS_MCP_L4_APB_NO 0

/*- AMPRO-DPM --*/
/*
 The following application-blocks are used by DPM:

 L2-APBs fixed: 3 set_master_mode: exchange, lock, withdraw
 +1 mark_cycle: mark
 +1 init: bus_access
 +1 set_slave_address: ssla
 +8 set_slave_mode: dummy (depending on DPM_MAX_GC_REQ_NO)
 --
 14 L2-APBs fixed

 L2-APBs per slave: 2 input/output_update: change_i_buffer, change_o_buffer
 +1 diag
 +1 data
 +1 withdraw_slave: withdraw_repeat
 +1 cfg, not used for DP-Siemens-SPM-Slaves
 +1 set_master_mode: clear, only used for DP-Siemens-Slaves

 7 L2-APBs per slave

 L4-APBs fixed: 1 timer_expired: tex
 +1 set_master_mode: smm
 +8 set_slave_mode: ssm (depending on DPM_MAX_GC_REQ_NO)
 --
 10 L4-APBs fixed

 L4-APBs per slave: 1 prm

 1 L4-APBs per slave
*/

#ifdef DEVICE_USES_DPM
 #define SYS_DPM_MAX_SLAVE_NO 122 /* max. number of slaves */

 #define SYS_DPM_L2_APB_NO_FIX (6 + DPM_MAX_GC_REQ_NO)
 #define SYS_DPM_L2_APB_NO_VAR 7
 #define SYS_DPM_L2_APB_NO (SYS_DPM_L2_APB_NO_FIX + (SYS_DPM_MAX_SLAVE_NO *
SYS_DPM_L2_APB_NO_VAR))

 #define SYS_DPM_L4_APB_NO_FIX (2 + DPM_MAX_GC_REQ_NO)
 #define SYS_DPM_L4_APB_NO_VAR 1
 #define SYS_DPM_L4_APB_NO (SYS_DPM_L4_APB_NO_FIX + (SYS_DPM_MAX_SLAVE_NO *
SYS_DPM_L4_APB_NO_VAR))
#else
 #define SYS_DPM_L2_APB_NO 0
 #define SYS_DPM_L4_APB_NO 0
#endif

/*- AMPRO-DPS --*/

SchnittStellenCenter ASPC 2

Page 14 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

#ifdef DEVICE_USES_DPS
 #define SYS_DPS_L2_APB_NO 41 /* 1 used by MCP for L2_MAC_RESET in case of DPS
active. */
 /* 1 APB added for ASPC2 error workaround. StPo/04.07.96 */
 #define SYS_DPS_L4_APB_NO 0
#else
 #define SYS_DPS_L2_APB_NO 0
 #define SYS_DPS_L4_APB_NO 0
#endif

/*- AMPRO-DPX1 ---*/

#ifdef DEVICE_USES_DPX1
 #define SYS_DPX1_L2_APB_NO 0
 #define SYS_DPX1_L4_APB_NO 0
#else
 #define SYS_DPX1_L2_APB_NO 0
 #define SYS_DPX1_L4_APB_NO 0
#endif

/*- AMPRO-DPX2 ---*/

#ifdef DEVICE_USES_DPX2
 #define SYS_DPX2_L2_APB_NO 4
 #define SYS_DPX2_L4_APB_NO 3
#else
 #define SYS_DPX2_L2_APB_NO 0
 #define SYS_DPX2_L4_APB_NO 0
#endif

/*- Defines for all components ---*/

#define SYS_L2_APB_PRE_RESERVED 0
#define SYS_L2_APB_POST_RESERVED 0

#define SYS_L2_APB1_PRE_RESERVED SYS_L2_APB_PRE_RESERVED
#define SYS_L2_APB1_POST_RESERVED SYS_L2_APB_POST_RESERVED

#define SYS_L4_APB_PRE_RESERVED 0
#define SYS_L4_APB_POST_RESERVED DPM_L4_APB_DATA_LEN /* = l4-header-length, must be
even !!! */

#define SYS_L2_APB2_PRE_RESERVED SYS_L4_APB_PRE_RESERVED
#define SYS_L2_APB2_POST_RESERVED SYS_L4_APB_POST_RESERVED

#define SYS_L2_APB_NO (SYS_MCP_L2_APB_NO \
 + SYS_DPM_L2_APB_NO \
 + SYS_DPS_L2_APB_NO \
 + SYS_DPX1_L2_APB_NO \
 + SYS_DPX2_L2_APB_NO)
#define SYS_L2_APB1_NR SYS_L2_APB_NO

#define SYS_L4_APB_NO (SYS_MCP_L4_APB_NO \
 + SYS_DPM_L4_APB_NO \

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 15
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 + SYS_DPS_L4_APB_NO \
 + SYS_DPX1_L4_APB_NO \
 + SYS_DPX2_L4_APB_NO)
#define SYS_L2_APB2_NR SYS_L4_APB_NO

#define SYS_LEN_MEM_L2_APB (SYS_L2_APB_NO * ((correct_size_to_even__ (L2_LEN_APB))
\
 + (correct_size_to_even__ (SYS_L2_APB_PRE_RESERVED)) \
 + (correct_size_to_even__ (SYS_L2_APB_POST_RESERVED))))
#define SYS_L2_LEN_MEM_APB1 SYS_LEN_MEM_L2_APB

#define SYS_LEN_MEM_L4_APB (SYS_L4_APB_NO * ((correct_size_to_even__ (L2_LEN_APB))
\
 + (correct_size_to_even__ (SYS_L4_APB_PRE_RESERVED)) \
 + (correct_size_to_even__ (SYS_L4_APB_POST_RESERVED))))
#define SYS_L2_LEN_MEM_APB2 SYS_LEN_MEM_L4_APB

#define SYS_LEN_MEM_APB (SYS_LEN_MEM_L2_APB + SYS_LEN_MEM_L4_APB)

/*+--+*/
/*¦ Data-Blocks ¦*/
/*+--+*/

/*- AMPRO-DPM --*/

/*- AMPRO-DPS --*/

#ifdef DEVICE_USES_DPS
 #define SYS_L2_DB4_NR_OVERHEAD_DPS 49 /* number of db4 for DPS2 */
#endif

/*- AMPRO-DPX1 ---*/

/*- AMPRO-DPX2 ---*/

#ifdef DEVICE_USES_DPX2
 #define SYS_L2_DB4_NR_OVERHEAD_DPX2 2 /* number of db4 for DPX2 */
#endif

/*- Defines for all components ---*/

#define SYS_L2_DB_PRE_RESERVED 0
#define SYS_L2_DB_POST_RESERVED 0

#define SYS_L2_MAC_EVENT_BUF_NR 3 /* mac-event-buffer */
#define SYS_L2_MAC_EVENT_BUF_SIZE 200

#define SYS_L2_LAS_EVENT_BUF_NR 3 /* las-event-buffer */
#define SYS_L2_LAS_EVENT_BUF_SIZE 128 /* was (HSA + 1) */

SchnittStellenCenter ASPC 2

Page 16 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

#define SYS_L2_LEN_SCB_RESERVE 0x10 /* SCB should be segment-aligned (Microsoft:
base_seg = 16 Bit) */
#define SYS_L2_LEN_MEM_RESERVE 1 /* memory-block should be word-aligned -> reserve = 1
Byte */

/* length of the APM_VAR-area ca. 22k (0x5800): 16k APB1, 4k APB2, 2k rest (SCB, Init-Blk, BusPar-Blk,
Event-Bufs (MAC, LAS) */
#define SYS_L2_LEN_MEM_VAR ((correct_size_to_even__ (L2_LEN_SCB))
\
 + (correct_size_to_even__ (L2_LEN_INIT_BLOCK)) \
 + (correct_size_to_even__ (L2_LEN_BUS_PAR_BLOCK)) \
 + SYS_L2_MAC_EVENT_BUF_NR * (correct_size_to_even__
(SYS_L2_MAC_EVENT_BUF_SIZE)) \
 + SYS_L2_LAS_EVENT_BUF_NR * (correct_size_to_even__
(SYS_L2_LAS_EVENT_BUF_SIZE)) \
 + (correct_size_to_even__ (SYS_L2_LEN_SCB_RESERVE)) \
 + (correct_size_to_even__ (SYS_L2_LEN_MEM_RESERVE)))

#define SYS_L2_LEN_MEM_DATA 0x20000 /* 128k for data-blocks */

#define SYS_L2_LEN_MEM_APB_VAR (SYS_LEN_MEM_APB + SYS_L2_LEN_MEM_VAR)

/*+--+*/
/*¦ structures / variables / definitions ¦*/
/*+--+*/

/*+--+*/
/*¦ Variables ¦*/
/*+--+*/

/*- AMPRO2-Memory-Management ---*/

#if defined (SYS)

 #pragma save_attributes
 #pragma global
 #pragma class NB=SYS_L2_MEM_APB
 #pragma combine NB=P

 ubyte sys_l2_mem_apb_var [SYS_L2_LEN_MEM_APB_VAR];

 #pragma class HB=SYS_L2_MEM_DATA
 #pragma combine HB=P

 ubyte huge sys_l2_mem_data [SYS_L2_LEN_MEM_DATA];

 #pragma restore_attributes

#else

 extern ubyte sys_l2_mem_apb_var [SYS_L2_LEN_MEM_APB_VAR];
 extern ubyte huge sys_l2_mem_data [SYS_L2_LEN_MEM_DATA];

#endif

/*+--+*/

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 17
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

/*¦ Function Prototypes ¦*/
/*+--+*/

#if defined (SYS)

 #pragma save_attributes
 #pragma global

 void huge system_error_function (ERRCB);

 #pragma restore_attributes

#else

 extern void huge system_error_function (ERRCB);

#endif

/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/

/* Reinclude-protection */
#else
 #pragma message ("The header COMM_DEV\SYS_COMM.H is included twice or more !")
#endif

2.1.3.1.4 sys_cbd.h
/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/

/* Reinclude-protection */
#ifndef COMM_DEV__SYS_CBD_H
#define COMM_DEV__SYS_CBD_H

/*+--+*/
/*¦ CBD: Definitiones ¦*/
/*+--+*/

#if defined SYS_CBD

 /*+--+*/
 /*¦ Code-Pragmas ¦*/
 /*+--+*/

 #pragma class PR=SYS_CB_SERVER_CODE
 #pragma combine PR=P

 /*+--+*/
 /*¦ cbf_server_function quantities ¦*/
 /*+--+*/
 /*
 Attention please: For the IM308C-Hardware

SchnittStellenCenter ASPC 2

Page 18 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 - the FUNC1-define is used by the dpm_l2_cb_server,
 - the FUNC2-define is used by the dpx1_l2_cb_server,
 - the FUNC3-define is used by the dpx2_l2_cb_server,
 - the FUNC4-define is used by the dps_l2_cb_server.

 This general layout can be used by every AMPRO2-CBF-USER.
 */

 #define SYS_CBD_FUNC1_CBF_NR 70 /* numbers of cbfs for cbf-server-function1 */
 #define SYS_CBD_FUNC2_CBF_NR 20 /* numbers of cbfs for cbf-server-function2 */
 #define SYS_CBD_FUNC3_CBF_NR 20 /* numbers of cbfs for cbf-server-function3 */
 #define SYS_CBD_FUNC4_CBF_NR 20 /* numbers of cbfs for cbf-server-function4 */

 /* The following values are only used with the APB's element 'subsystem', */
 /* therefore they are directly casted to AMPRO2's type UBYTE. */

 #define SYS_CBD_FUNC1_MIN_NR (UBYTE) 0 /* function1 begins with subsystem-no. 0 */
 #define SYS_CBD_FUNC1_MAX_NR (UBYTE) (SYS_CBD_FUNC1_MIN_NR +
SYS_CBD_FUNC1_CBF_NR - 1)

 #define SYS_CBD_FUNC2_MIN_NR (UBYTE) (SYS_CBD_FUNC1_MAX_NR + 1)
 #define SYS_CBD_FUNC2_MAX_NR (UBYTE) (SYS_CBD_FUNC2_MIN_NR +
SYS_CBD_FUNC2_CBF_NR - 1)

 #define SYS_CBD_FUNC3_MIN_NR (UBYTE) (SYS_CBD_FUNC2_MAX_NR + 1)
 #define SYS_CBD_FUNC3_MAX_NR (UBYTE) (SYS_CBD_FUNC3_MIN_NR +
SYS_CBD_FUNC3_CBF_NR - 1)

 #define SYS_CBD_FUNC4_MIN_NR (UBYTE) (SYS_CBD_FUNC3_MAX_NR + 1)
 #define SYS_CBD_FUNC4_MAX_NR (UBYTE) (SYS_CBD_FUNC4_MIN_NR +
SYS_CBD_FUNC4_CBF_NR - 1)

#endif

/*+--+*/
/*¦ Structures ¦*/
/*+--+*/

struct sys_cbd_def
{
 /* CBF-server-function pointers */
 void func_ptr_name__(SYS_CBD_FUNC_ATTR, error) (ERRCB);
 void func_ptr_name__(SYS_CBD_FUNC_ATTR, server_function_1) (L2_APB_PTR);
 void func_ptr_name__(SYS_CBD_FUNC_ATTR, server_function_2) (L2_APB_PTR);
 void func_ptr_name__(SYS_CBD_FUNC_ATTR, server_function_3) (L2_APB_PTR);
 void func_ptr_name__(SYS_CBD_FUNC_ATTR, server_function_4) (L2_APB_PTR);

};

/*+--+*/
/*¦ Variables, External-Function-Definitiones ¦*/
/*+--+*/

#if defined SYS_CBD

 /*+--+*/

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 19
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 /*¦ CBD: Variables ¦*/
 /*+--+*/

 #pragma save_attributes
 #pragma class NB=SYS_CB_SERVER_DATA
 #pragma combine NB=P

 struct sys_cbd_def _sys_cbd;

 #pragma restore_attributes

 /*+--+*/
 /*¦ CBD: External-Function-Definitiones ¦*/
 /*+--+*/

 extern void SYS_CBD_FUNC_ATTR server_function_1 (L2_APB_PTR);
 extern void SYS_CBD_FUNC_ATTR server_function_2 (L2_APB_PTR);
 extern void SYS_CBD_FUNC_ATTR server_function_3 (L2_APB_PTR);
 extern void SYS_CBD_FUNC_ATTR server_function_4 (L2_APB_PTR);

#else

 /*+--+*/
 /*¦ Variables for common use ¦*/
 /*+--+*/

 extern struct sys_cbd_def _sys_cbd;

#endif

/*+--+*/
/*¦ Literallies ¦*/
/*+--+*/

/* Reinclude-protection */
#else
 #pragma message ("The header COMM_DEV\SYS_CBD.H is included twice or more !")
#endif

2.1.4 Procedure

The following must be included in the user program.

 Initialization and any allocation of memory blocks for AMPRO2 and DPM
 Initialize the CBF distributor and include in the interrupt routine of the processor
 Set up structure for the FLC_FMA_MAC_RESET reset function of AMPRO2 and execute the function
 Communication with DPM via the functions and call back functions

2.1.5 Scope of Delivery

 Files in path SRC_DIR\COMMON:
File Explanation
ampro2.h Conditional include calls depending on the processor and ASIC

SchnittStellenCenter ASPC 2

Page 20 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

config.fra Fragment for config.h
config.h Setting for compiler type, ASIC, access attributes for AMPRO2 and DPM
config.txt Detailed explanation of all possible settings of config.h
dpm_comm.h Definitions and structures for DPM
dpm_err.h Definitions for error function for DPM
dp_attr.h Attributes for function calls and memory accesses for the various modules
dp_comm.h Conditional include calls depending on the modules used
dp_defma.h Macros and attributes for function calls and memory accesses
dp_error.h General definitions for error function and appropriate include calls
dp_types.h General definitions
dp_vers.txt Version of the global header files
hstruktr.txt Structure of the linked head files
im308c.cfg Configuration for IM308C
l2_attr.h Attributes for memory access and function calls depending on the settings
l2_user.h Definitions and structures for AMPRO2
l2_util.h ASPC2 macros
plausibl.h Check settings in config.h
typ_asp2.h Definitions and structures for ASPC2
typ_comp.h General definitions

 Files in path SRC_DIR\COMM_DEV:
File Explanation
ap2_err.h Definitions for error function for AMPRO2
dev_def.h Access attributes for DPM and other AMPRO2 users
dev_err.h Include calls for error function for general modules
dev_inc.h Include calls for general modules
haw_err.h Definitions for error function for hardware module
im_types.h General definitions
sys_cbd.h Definitions and structures for the CBF distributor
sys_comm.h Definitions for the integrated memory management of AMPRO2
sys_err.h Definitions for error function
sys_shll.h Definitions for the shell functions for memory management

 Files in path SRC_DIR\AMPRO2\COMMON:
File Explanation
ampro2.h Conditional include calls depending on the processor and the ASIC
config.fra Fragment for config.h
config.h Setting for compiler type, ASIC, access attributes for AMPRO2 and DPM
config.txt Detailed explanation of all possible settings of config.h
l2_attr.h Attributes for memory access and function calls depending on the settings
l2_user.h Definitions and structures for AMPRO2
l2_util.h ASPC2 macros
plausibl.h Check settings in config.h
typ_asp2.h Definitions and structures for ASPC2
typ_comp.h General definitions

 Applicable sources or library files for the individual modules

3 AMPRO2 Interface

 Basis for AMPRO2 (Advanced Multi-user PROfibus layer 2) is PROFIBUS standard
 EN 50170, part 1.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 21
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

USER_TASK

OPERATING-
SYSTEM

1.

AMPRO2

BUS_
MEDIUM

L2_FLC_APPL_BLK
L2_MAC_APPL_BLK
L2_FMA_APPL_BLK

BIT_STREAM
BUS_LEVEL
RTS

SchnittStellenCenter ASPC 2

Page 22 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.1 User Interface
 AMPRO2 (Advanced Multi-user PROfibus layer 2) is the link between

 BUS_MEDIUM and the LAYER2 user (e.g., AMPRO4).

 To issue a job (REQuest), the user must supply a structured memory area for management and
 user data. So-called application blocks are defined for the various classes of services.

 L2_FLC_APPL_BLK For FLC services
 L2_MAC_APPL_BLK For MAC services
 L2_FMA_APPL_BLK For FMA services

 A job can be issued by the user (USER_TASK) via an operating system call
 (OPERATING_SYSTEM) or via a direct AMPRO2 call.

 Confirmation of execution (CONfirmation) or indication of a received telegram (INDication) or an
 event (FMA_INDication) is also performed with an application block.

 This is returned to the mailbox of the user when the operating system environment is used. When
 an operating system environment is not used, this can be fetched with an AMPRO2 call.

The scope of performance of the user interface is described in detail in the next few sections. Since this
user interface applies to all AMPRO2 implementations, it should be pointed out that each implementation
does not offer all services described. Each service contains a remark to this effect.
The description of this interface requires a knowledge of the PROFIBUS standard.

3.2 Service Primitives
 REQUEST

 This primitive is used to transfer layer-2 service requests of a layer-2 user. A distinction is made
 between FMA requests, MAC requests and FLC requests depending on the type of service.
 CONFIRMATION

 This primitive is used to confirm to the user the request after performance of the service by layer 2.
 Depending on the service performed, FMA confirmation, MAC confirmation or FLC confirmation is then
 provided.

 INDICATION
 This primitive is used to report events to the layer-2 user. A distinction is made between telegram
 receipt (MAC indication) and other events in the MAC (FMA indication) or FLC (FLC indication).

The following diagram shows an example of MAC service SRD for better comprehension of the location of
the service primitives from the viewpoint of the layer-2 user.

lokale Station remote Station

Layer2-Anwender Layer2 Layer2-AnwenderLayer2

REQUEST
(SRD)

CONFIRMATION
(SRD)

RS485-Busmedium

primitiv.drw

INDICATION
(SRD)

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 23
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Detailed list of all service primitives

(0x15) L2_FLC_CONFIRM_INVALID_APB Acknowledgment of a service request with an application block from an invalid
 memory area
 (only occurs with AMPRO2-ASPC2 with PTR_ATTR_FAR)
(0x10) L2_FLC_CONFIRM_INVALID_OPCODE Acknowledgment of a service request with an invalid job
 (invalid opcode in L2 application block)

(0x10) L2_FMA_REQUEST Service request for an FMA job
(0x0D) L2_FMA_CONFIRM Acknowledgment of an FMA job
(0x11) L2_FMA_INDICATION Reporting of events in the MAC

(0x04) L2_MAC_REQUEST_LOW Service request for a low-priority MAC job
(0x05) L2_MAC_REQUEST_HIGH Service request for a high-priority MAC job
(0x06) L2_MAC_CONFIRM_LOW Acknowledgment of a low-priority MAC job
(0x07) L2_MAC_CONFIRM_HIGH Acknowledgment of a high-priority MAC job
(0x02) L2_MAC_INDICATION_LOW Reporting of receipt of a low-priority telegram in MAC
(0x03) L2_MAC_INDICATION_HIGH Reporting of receipt of a high-priority telegram in MAC

(0x09) L2_MAC_REP_REQUEST Service request for a MAC repeat job
(0x0E) L2_MAC_REP_CONFIRM_NEGATIVE Return of a MAC repeat job when an unexpected response occurs
(0x0F) L2_MAC_REP_CONFIRM_WITHDRAW Return of a MAC repeat job after MAC_REPEAT_WITHDRAW request
(0x18) L2_REP_REQUEST Service request for a MAC repeat auxiliary job
(0x14) L2_REP_CONFIRM Acknowledgment of a MAC repeat auxiliary job

(0x14) L2_MAC_REQUEST_COLLECT_LOW Service request for a low-priority MAC group job
(0x15) L2_MAC_REQUEST_COLLECT_HIGH Service request for a high-priority MAC group job
(0x16) L2_MAC_CONFIRM_COLLECT_LOW Acknowledgment of a low-priority MAC group job
(0x17) L2_MAC_CONFIRM_COLLECT_HIGH Acknowledgment of a high-priority MAC group job

(0x19) L2_MAC_REQUEST_DP_COLLECT Service request for a MAC-DP group job
(0x1A) L2_MAC_CONFIRM_DP_COLLECT Acknowledgment of a MAC-DP group job
(0x1C) L2_MAC_REQUEST_DP_COLLECT_FPT Service request for a MAC-DP group job with "Force Pass-Token"
(0x1D) L2_MAC_CONFIRM_DP_COLLECT_FPT Acknowledgment of a MAC-DP group job with "Force Pass-Token"

(0x00) L2_FLC_REQUEST Service request for an FLC job
(0x01) L2_FLC_CONFIRM Acknowledgment of an FLC job
(0x0A) L2_FLC_INDICATION Return of an old SRD response buffer
(0x12) L2_FLC_IND_RES_WITHDRAW Return of an indication resource after IND_RESOURCE_WITHDRAW request
(0x1A) L2_FLC_IND_REPLY_WITHDRAW Return of an SRD response buffer after REPLY_WITHDRAW request

(0x12) L2_MAC_INDICATION_LOW_INVALID Return of so-called invalid indications
 (See MAC_INDICATION_LOW_INVALID service.)
 (only occurs with AMPRO2-SPC and AMPRO2-SPC-DP)

SchnittStellenCenter ASPC 2

Page 24 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.3 Interface Models
The interface between layer 2 and the layer-2 user is provided by a so-called application block interface.
The application blocks which have already been mentioned are used for this interface.

3.3.1 Task Interface with Operating System Environment (L2_TASK_IFA_OS)

REQUESTs (i.e., jobs) are transferred from a layer-2 user to layer 2 by sending an application block to the
mailbox of the layer-2 task via the operating system.

Available functions shown by example MTK-E111:

 Transfer a REQUEST ...
mtk_m_send (l2 task ID, application block pointer);- from task level:
mtk_mi_send (l2 task ID, application block pointer); from a certain besy-controlled interrupt handler:
 The related CONFIRMATION is always reported via
 the mailbox of a layer-2 user task

 l2 task ID: Task identifier of the layer-2 task
 = receiver task of the application block
 Application block pointer: Pointer to an L2 application block:
 The application block contains the job-related
 parameters of the REQUEST.

All CONFIRMATIONs (i.e., acknowledgments) and all INDICATIONs (i.e., events) of layer 2 are reported via
the operating system by sending the related application block to the mailbox of a layer-2 user task. This
layer-2 user task must be specified in the REQUEST under the "subsystem" parameter in the application
block. The layer-2 user can fetch the CONFIRMATIONs and INDICATIONs from the mailbox via an
operating system call.

Available function shown by MTK-E111:

 mtk_m_receive (Address of an application block pointers); Fetch a CONFIRMATION or
 INDICATION from the mailbox at task level

 Application block pointer: Pointer to an L2 application block:
 A received application block contains the job-
 related parameters of a CONFIRMATION or an
 INDICATION.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 25
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

3.3.2 Calling Interface with Operating System Environment (L2_CALL_IFA_OS)

REQUESTs (i.e., jobs) are transferred from a layer-2 user to layer 2 by calling a layer-2 function.

Available functions:

l2_init (); Initialization of the layer-2 interface:
 This function must be executed once before the
 FLC_FMA_MAC_RESET service.

 Transfer a REQUEST with "synchronous"
 processing ...
return_value = l2_req (application block pointer); from task level:
return_value = l2_req_int (application block pointer); from a certain besy-controlled interrupt handler:
 (See also notes on use of the layer-2 function
 "l2_req" or "l2_req_int" at the end of the section.)

return_value = L2_DIR_CON: The service was immediately processed
 "synchronously" by layer 2 and is confirmed directly.
 The related CONFIRMATION is immediately
 available to the user in the same application block,
 and can be evaluated.
return_value = L2_NOT_DIR_CON: Although the service was accepted by layer 2, it could
 not be processed immediately. The related
 CONFIRMATION is reported later via the mailbox of a
 layer-2 user task.

 Transfer of a REQUEST ...
l2_req_ret_by_mbx (application block pointer); from task level:
l2_req_int_ret_by_mbx (application block pointer); from a certain besy-controlled interrupt handler:
 The related CONFIRMATION is always reported via
 the mailbox of a layer-2 user task.

 Application block pointer: Pointer to an L2 application block:
 The application block contains the job-related
 parameters of the REQUEST.

All CONFIRMATIONs (i.e., acknowledgments) which are not processed "synchronously" by layer 2 and all
INDICATIONs (i.e., events) are reported via the operating system by sending the related application block to
the mailbox of a layer-2 user task. This layer-2 user task must be specified in the REQUEST under the
"subsystem" parameter in the application block. The layer-2 user can fetch the CONFIRMATIONs and
INDICATIONs from the mailbox via an operating system call.

Available function shown in example MTK-E111:

 mtk_m_receive (address of an application block pointer); Fetch a CONFIRMATION or an
 INDICATION from the mailbox at task level

 Application block pointer: Pointer to an L2 application block:
 A received application block contains the job-related
 parameters of a CONFIRMATION or an INDICATION.

SchnittStellenCenter ASPC 2

Page 26 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.3.3 Calling Interface without Operating System Environment (L2_CALL_IFA_CALLBACK)

REQUESTs (i.e., jobs) are transferred from the layer-2 user to layer 2 by calling a layer-2 function.

 The "subsystem" parameter in the application block never applies to REQUESTs.

Available functions:

l2_init (lock_l2_req_fct_ptr, unlock_l2_req_fct_ptr); Initialization of the layer-2 interface:
 This function must be executed once during software
 startup before the FLC_FMA_MAC_RESET service.

 lock_l2_req_fct_ptr: Pointer to a user function which disables all processing levels with
 "l2_req ()" calls
 unlock_l2_req_fct_ptr: Pointer to a user function which reenables all processing levels with
 "l2_req ()"call

return_value = l2_req (application block pointer); Transfer a REQUEST with "synchronous" processing
 (See also notes on use of layer-2 function "l2_req"
 or "l2_req_int"" at the end of this section.)
 return_value = L2_DIR_CON: The service was immediately processed
 "synchronously" by layer 2 and is confirmed directly.
 The related CONFIRMATION is immediately available
 to the user in the same application block, and can be
 evaluated.
 return_value = L2_NOT_DIR_CON: Although the service was accepted by layer 2, it could
 not be processed immediately. The related
 CONFIRMATION can be fetched later by the user with
 the "l2_con_ind" function.

 Application block pointer: Pointer to an L2 application block:
 The application block contains the job-related parameters of
 the REQUEST.

 The "l2_req ()" function must be protected against multiple calls at different levels (e.g., call from main
 level and from various interrupt levels).
 This lock is provided internally by AMPRO2. Two function pointers to user functions are transferred for
the "l2_init ()" function. These functions are called by AMPRO2 within the "l2_req ()" function.
 The user must disable or reenable all levels with "l2_req ()" calls in accordance with the user
 environment.

 Adhere to the AMPRO2 application notes for the above locking mechanisms.
 The "l2_init ()" and "l2_con_ind ()" functions are not recursive and may only be used by the user at one

 level. Mutual calling of these functions must also be locked.

All CONFIRMATIONs (i.e., acknowledgments) which are not processed "synchronously" by layer 2 and all
INDICATIONs (i.e., events) must be fetched by the layer-2 user by calling the layer-2 function "I2_con_ind"
(polling).

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 27
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Available function:

Application block pointer = l2_con_ind (); Polling of a CONFIRMATION or INDICATION:
 When no CONFIRMATION or INDICATION is currently stored
 intermediately in layer 2, application block pointer = 0 is
 returned.
 When a CONFIRMATION or an INDICATION is present in
 layer 2, it is returned via the application block pointer. High-
 priority CONFIRMATIONs and INDICATIONs are reported first.

 Application block pointer: 0 or pointer to an L2 application block:
 A received application block contains the job-related parameters of
 a CONFIRMATION or an INDICATION.

Notes on use of layer-2 function "l2_req" or "l2_req_int":

When the layer-2 function "l2_req" or "l2_req_int" is used for transferring REQUESTs to layer 2, services
which can be "synchronously" processed by layer 2 are confirmed directly (return_value = L2_DIR_CON).
The related CONFIRMATION is immediately available to the user in the same application block, and can be
evaluated.
This mechanism distinguishes between services which are always confirmed directly and services which are
only directly confirmed when errors occur.
 The "subsystem" parameter in the application block never applies to REQUESTs which are always

 confirmed directly.
 The services which the FLC can execute without the MAC are usually processed "synchronously."

The following are always confirmed directly (i.e., synchronously).

 Jobs with an application block from an invalid memory area
 (only occurs with AMPRO2-ASPC2 with PTR_ATTR_FAR)
 (AMPRO2 acknowledges with opcode = L2_FLC_CONFIRM_INVALID_APB.)
 Jobs with invalid opcode (AMPRO2 acknowledges with opcode = L2_FLC_CONFIRM_INVALID_OPCODE.)
 FMA jobs with invalid service_code (AMPRO2 acknowledges with opcode = L2_FMA_CONFIRM and L2_STATUS_IV.)
 MAC repeat auxiliary jobs with invalid req_fc (AMPRO2 acknowledges with opcode = L2_REP_CONFIRM and
 L2_STATUS_IV.)
 FLC jobs with invalid req_fc (AMPRO2 acknowledges with opcode = L2_FLC_CONFIRM and L2_STATUS_IV.)
 FLC repeat jobs with invalid req_fc (AMPRO2 acknowledges with opcode = L2_FLC_CONFIRM and L2_STATUS_IV.)

SchnittStellenCenter ASPC 2

Page 28 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Layer-2 services which are always confirmed directly (i.e., synchronously)

 FLC_FMA_MAC_RESET
 MAC_RESET
 TIME_TTH_READ
 SAP_ACTIVATE
 SAP_MODIFY
 SAP_DEACTIVATE
 SAP_STATUS_READ
 LAS_READ
 MAC_EVENT_RESOURCE_WITHDRAW
 LAS_EVENT_RESOURCE_WITHDRAW
 SAP_LOCK
 SAP_UNLOCK
 MAC_REQ_UNLOCK
 MAC_REQ_WITHDRAW
 CLEAR_MODE_ACTIVATE
 CLEAR_MODE_DEACTIVATE
 USER_TIMER_START
 USER_TIMER_STOP
 WATCHDOG_UPDATE
 MAC_STATUS_READ

 MAC_REPEAT_EXCHANGE_SYNCHRON
 MAC_REPEAT_WITHDRAW

 IND_RESOURCE_WITHDRAW
 REPLY_UPDATE (bei AMPRO2-SPC und AMPRO2-SPC-DP)
 REPLY_WITHDRAW

 FLC_REPEAT_EXCHANGE
 FLC_REPEAT_STATUS_READ

Layer-2 services which are only confirmed directly (i.e., synchronously) when the following errors occur

 MAC_EVENT_RESOURCE_PROVIDE: All states "L2_STATUS_NO" and all "L2_STATUS_IV"
 LAS_EVENT_RESOURCE_PROVIDE: All states "L2_STATUS_NO" and all "L2_STATUS_IV"
 MAC_REQ_LOCK: All states "L2_STATUS_NO" and all "L2_STATUS_IV"

 SDA: All resp states "L2_STATUS_IV"
 SDN: All resp states "L2_STATUS_IV"
 SRD: All resp states "L2_STATUS_IV"
 FDL_STATUS: All resp states "L2_STATUS_IV"
 NOP: All resp states "L2_STATUS_IV"

 SDA-REPEAT: All resp states "L2_STATUS_IV"
 SDN-REPEAT: All resp states "L2_STATUS_IV"
 SRD-REPEAT: All resp states "L2_STATUS_IV"
 FDL_STATUS-REPEAT: All resp states "L2_STATUS_IV"
 NOP-REPEAT: All resp states "L2_STATUS_IV"
 MAC_REPEAT_EXCHANGE: All resp states "L2_STATUS_NO" and all "L2_STATUS_IV"

 COLLECT_SERVICE: All resp states "L2_STATUS_IV"
 DP_COLLECT_SERVICE: All resp states "L2_STATUS_IV"
 DP_FPT_COLLECT_SERVICE: All resp states "L2_STATUS_IV"

 IND_RESOURCE_PROVIDE: All resp states "L2_STATUS_NO" and all "L2_STATUS_IV"
 REPLY_UPDATE_SINGLE: All resp states "L2_STATUS_NO" and all "L2_STATUS_IV"
 REPLY_UPDATE_MULTIPLE: All resp states "L2_STATUS_NO" and all "L2_STATUS_IV"

 IND_RESOURCE_REPEAT_PROVIDE: All resp states "L2_STATUS_NO" and all "L2_STATUS_IV"

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 29
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

3.4 Application Blocks
The interface between layer 2 and the layer-2 user is provided by a so-called application block interface.
The application blocks which have already been mentioned are used for this purpose. All layer-2 application
blocks are type "struct l2_appl_blk".

The transfer mechanisms have already been described in the preceding sections. Below is the physical
setup of the application blocks.

L2 FMA application block:

Chain control
pointer

*
*

next_blk_ptr
prev_blk_ptr

Management
data

UBYTE
UBYTE
* or
UWORD

opcode
subsystem
id_ptr

FMA header UBYTE
UBYTE
*
*
UBYTE
UBYTE
...

as.fma.service_code
as.fma.status
as.fma.ptr1
as.fma.ptr2
as.fma.length
as.fma.sap_nr
as.fma. ... (service-related)

L2 FLC/L2 MAC application block with layer-2 data buffers:

Chain control
pointer

*
*

next_blk_ptr
prev_blk_ptr

Management
data

UBYTE
UBYTE
* or UWORD

opcode
subsystem
id_ptr

Response
header

*
UBYTE
UBYTE

as.flc.ptr1.resp_ptr
as.flc.resp_length
as.flc.resp_status

Request header *
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE

as.flc.ptr2.req_ptr
as.flc.req_length
as.flc.rem_adr
as.flc.loc_adr
as.flc.req_fc
as.flc.rem_sap
as.flc.loc_sap

L4 header (Optional)

SchnittStellenCenter ASPC 2

Page 30 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

L2 FLC/L2 MAC application block with chained application blocks:

Chain control
pointer

*
*

next_blk_ptr
prev_blk_ptr

Management
data

UBYTE
UBYTE
* or UWORD

opcode
subsystem
id_ptr

Response
header

*
UBYTE
UBYTE

as.flc.ptr1.queue_ptr
as.flc.resp_length
as.flc.resp_status

Request header *
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE

as.flc.ptr2.queue_ptr
as.flc.req_length
as.flc.rem_adr
as.flc.loc_adr
as.flc.req_fc
as.flc.rem_sap
as.flc.loc_sap

L2 FLC/L2 MAC application block for MAC repeat auxiliary services:

Chain control
pointer

*
*

next_blk_ptr
prev_blk_ptr

Management
data

UBYTE
UBYTE
* or UWORD

opcode
subsystem
id_ptr

Response
header

*
UBYTE
UBYTE

as.flc.ptr1.apb_ptr
as.flc.resp_length
as.flc.resp_status

Request header *
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE

as.flc.ptr2.data_ptr
as.flc.req_length
as.flc.rem_adr
as.flc.loc_adr
as.flc.req_fc
as.flc.rem_sap
as.flc.loc_sap

Short description of the parameters:

The chain control pointers are used to chain several application blocks.
The opcode parameter is used for precise specification of the service primitive. See section on service
primitives.
The subsystem parameter contains the task identifier of the desired receiver task for CONFIRMATION or
INDICATION for the interface models with operating system environments. This is usually the same task
which initiated the corresponding REQUEST.
The id_ptr parameter is available to the user for use as desired. It remains unchanged when the application
block is processed by layer 2.
The remaining layout of the application block depends on the service involved and is described in detail in
the section on service-related interfaces.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 31
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

3.5 Buffer Handling between Layer 2 and Layer-2 User
During dynamic operation of layer 2, memory blocks containing information and data are exchanged
between layer 2 and the layer-2 user. The amount of memory required depends on the particular service
involved.

Since AMPRO2 does not have its own memory management, the layer-2 user must provide layer 2 with all
required memory blocks. After using them, layer 2 returns these memory blocks to the layer-2 user.

Basic rules:
The application block returned for a CONFIRMATION is the same physical block as the corresponding
REQUEST.
 Example: SAP_ACTIVATE CONFIRMATION and corresponding SAP_ACTIVATE REQUEST
The application block returned for an INDICATION is the same physical application block as the
corresponding REQUEST.
 Example 1: SDA INDICATION and corresponding IND_RESOURCE_PROVIDE REQUEST
 Example 2: MAC_EVENT INDICATION and corresponding MAC_EVENT_RESOURCE_PROVIDE
 REQUEST

3.6 Integrated Memory Management
AMPRO2 offers the user integrated memory management. This memory management system can be used
to dynamically manage application blocks of 2 different sizes (APBx with "PTR_ATTR" attribute), memory
blocks of variable size (VAR with "PTR_ATTR" attribute) and data blocks of 4 different sizes (DBx with
"L2_DATA_PTR_ATTR" attribute).
APBx memory management is recommended for the management of the AMPRO2 application blocks.
VAR memory management is recommended for the management of the layer-2 init block, layer-2 bus
parameter block, SCB, LAS buffer, MAC-EVENT buffer, LAS-EVENT buffer and the SAP lock list.
DBx memory management is recommended for the management of the AMPRO2 telegram buffer.
The various types of memory have separate initialization functions. A large memory area is transferred to
AMPRO2 with these initialization functions. The integrated memory management system divides this
memory area into individual memory blocks of the required type and requested size. These individual
memory blocks can then be requested dynamically by the AMPRO2 memory management system and
released again.

 All sizes are specified in bytes.
 In addition, otherwise allocated memory blocks can be used as AMPRO2 buffer, provided the special

features of the particular AMPRO2 version are considered.
 The following additional requirements apply to the AMPRO2 ASPC2.

 - The memory areas transferred with the initialization functions of the various AMPRO2 memory types
 must be located at even-numbered addresses.
 - All sizes must be even numbers. - All leaders and trailers for the initialization functions
 - The net sizes of data blocks for "l2_mem_init_dbx"
 - The requested memory sizes for "l2_mem_alloc_var"
 - If necessary, the user must provide filler bytes for all the above cases.
 - If these requirements are not met, AMPRO2 returns a negative acknowledgment.

SchnittStellenCenter ASPC 2

Page 32 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Layout of the various AMPRO2 memory types

apbx_ptr

verdeckter APBx-Vorspann
optional

0...x Bytes (parametrierbar)

Speichertyp APBx:

APBx-Nettoblock
mandatory

APB-Größe (fest)

APBx-Nachspann
optional

0...x Bytes (parametrierbar)

var_ptr

Speichertyp VAR:

VAR-Speicherblock
mandatory

1...x Bytes (variabel)

dbx_ptr

verdeckter DBx-Vorspann
optional

0...x Bytes (parametrierbar)

Speichertyp DBx:

DBx-Nettoblock
mandatory

6...x Bytes (parametrierbar)

DBx-Nachspann
optional

0...x Bytes (parametrierbar)

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 33
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Memory sizes for the various AMPRO2 memory types

 Maximum permissible
total length for one single

memory block
(can be parameterized)

(theoretical size)

Maximum permissible
length of the transferable

memory area with the
respective initialization

function
 APBx: PTR_ATTR_NEAR with 80C16X 64 KB 64 KB
 PTR_ATTR_NEAR with 80X86/V25PLUS 64 KB 64 KB
 PTR_ATTR_BASED_SEG with 80X86/V25PLUS 64 KB 64 KB
 PTR_ATTR_FAR with 80C16X 16 KB 16 KB

Optional: Unlimited 1)
 PTR_ATTR_FAR with 80X86/V25PLUS 64 KB 64 KB
 VAR: PTR_ATTR_NEAR with 80C16X 63 KB 63 KB
 PTR_ATTR_NEAR with 80X86/V25PLUS 63 KB 63 KB
 PTR_ATTR_BASED_SEG with 80X86/V25PLUS 63 KB 63 KB
 PTR_ATTR_FAR with 80C16X 16 KB 16 KB
 PTR_ATTR_FAR with 80X86/V25PLUS 63 KB 63 KB
 DBx: L2_DATA_PTR_ATTR_NEAR with 80C16X 64 KB 64 KB
 L2_DATA_PTR_ATTR_NEAR with 80X86/V25PLUS 64 KB 64 KB
 L2_DATA_PTR_ATTR_BASED_SEG with 80X86/V25PLUS 64 KB 64 KB
 L2_DATA_PTR_ATTR_FAR with 80C16X 16 KB 16 KB

Optional: Unlimited 2)
 L2_DATA_PTR_ATTR_FAR with 80X86/V25PLUS: in FLAT
 model:
 Other:

64 KB
64 KB

4 GB
64 KB

 L2_DATA_PTR_ATTR_HUGE with 80C16X 64 KB Unlimited
 L2_DATA_PTR_ATTR_HUGE with 80X86/V25PLUS 64 KB Unlimited

1) In 80C16X environments and with PTR_ATTR_FAR, the optional compiler switch
 "L2_MEM_DISABLE_DATA_PAGE_LIMIT" (in config.h) can be used for the initialization functions of the
 APBx memory types to cancel the 16-KB upper memory limit. An unlimited memory area can then be
 transferred. In this case, the AMPRO2 memory management system ensures that a requested APBx
 does not exceed page limits. If necessary, AMPRO2 memory management inserts gaps in the memory
 for this purpose.

2) In 80C16X environments and with L2_DATA_PTR_ATTR_FAR the optional compiler switch
 "L2_MEM_DISABLE_DATA_PAGE_LIMIT" (in config.h) can be used for the initialization functions of the
 DBx memory types to cancel the 16-KB upper memory limit. An unlimited memory area can then be
 transferred. In this case, AMPRO2 memory management system ensures that a requested DBx
 does not exceed page limits. If necessary, AMPRO2 memory management inserts gaps in the memory
 for this purpose.

SchnittStellenCenter ASPC 2

Page 34 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

General functions available:

 l2_mem_init (lock_l2_mem_fct_ptr, unlock_l2_mem_fct_ptr);

 Basic initialization of AMPRO2 memory management
 This function must be executed once during software startup before using
 the memory management system.

 lock_l2_mem_fct_ptr: Pointer to user function which disables all processing levels with function
 calls of AMPRO2 memory management.
 unlock_l2_mem_fct_ptr: Pointer to user function which reenables all processing levels with function
 calls of AMPRO2 memory management.

 All the following functions of AMPRO2 memory management must be protected again multiple calls from
different levels (e.g., call from both the main level and various interrupt levels). The call of different
 functions must also be mutually locked.
 This lock is provided internally by AMPRO2. For this purpose, two function pointers to user functions
 are transferred with the "I2_mem_init()" function. These functions are called by AMPRO2 within every
 function of AMPRO2 memory management (exception: "I2_mem_init ()"). In these functions, the user
 must disable or reenable all levels with function calls of AMPRO2 memory management in accordance
 with the user environment.

 The notes on AMPRO2 applications must also be adhered to for the above locking mechanisms.
 The "l2_mem_init ()" function is not recursive and may only be called by the user on one level.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 35
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Available functions for the APBx application blocks with x = 1 to 2

 counter = l2_mem_init_apbx (pre_reserved, post_reserved, mem_start_ptr, mem_end_ptr);

 Initialization function for memory type APBx:
 This function can be used to reset and initialize AMPRO2 memory
 management for APBx application blocks. This function can be executed
 more than once during run time.

 pre_reserved: Size in bytes of an optional, hidden APBx leader
 For example, this leader can be used for mailbox management data for the
 MTK-E111 operating system.
 post_reserved: Size in bytes of an optional APBx trailer
 For example, this trailer can be used for layer-4 header data.
 mem_start_ptr, mem_end_ptr: Pointer to the first or last element of the transferred memory area.
 A memory area for a maximum number of 65535 APBx may be
 transferred.
 mem_start_ptr 0 is not permitted.

 counter = 0: Although APBx memory management has been reset, it could not be
 initialized due to a user error.
 - mem_start_ptr = 0
 - (mem_start_ptr points to an odd-numbered address.)
 - (The size of the leader or trailer is an odd number.)
 counter = 1...65535: APBx memory management has been reset and initialized.
 "counter" points of the number of allocated APBx.

 apb_ptr = l2_mem_alloc_apbx ();

 An APBx is allocated via APBx memory management. Such an APBx can
 be reenabled with the "l2_mem_free_apb" function.

 apb_ptr = 0: No APBx available
 apb_ptr != 0: Pointer to allocated APBx

 return_value = l2_mem_free_apb (apb_ptr);

 An APBx is enabled via APBx memory management.
 Note: Run time optimization of the "l2_mem_free_apb" function
 is obtained by allocating the memory areas for APB1 to APB2 to
 ascending addresses. In addition, the run time of this function is shorter
 when APB1 is enabled than when APB2 is enabled.

 apb_ptr: Pointer to an APBx to be enabled

 return_value = TRUE: APBx was enabled.
 return_value = FALSE: Memory block is unknown and could not be enabled.

SchnittStellenCenter ASPC 2

Page 36 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Available functions for variable-size memory blocks

 counter = l2_mem_init_var (mem_start_ptr, mem_end_ptr);

 Initialization function for memory type VAR:
 This function can be used to reset and initialize AMPRO2 memory
 management for memory blocks of variable size (VAR).
 This function can be executed more than once during run time.

 mem_start_ptr, mem_end_ptr: Pointer to the first or last element of the transferred memory area.
 The transferred memory area must be at least 2 bytes in size.

 counter = 0: Although VAR memory management was reset, it could not be initialized
 due to a user error.
 - The transferred memory area does not have the minimum size.
 - (mem_start_ptr points to an odd-numbered address.)
 counter = 1: VAR memory management was reset and initialized.

 var_ptr = l2_mem_alloc_var (size);

 A variable-size memory block is allocated via VAR memory management.
 Such a memory block cannot be enabled again.

 size: Size in bytes of the requested memory block. Value range: > 1

 var_ptr = 0: No memory block with the requested size available
 (or memory block with an odd-numbered length was requested)
 var_ptr != 0: Pointer to allocated memory block

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 37
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Available functions for DBx data blocks with x =1 to 4:

 counter = l2_mem_init_dbx (netto_size, pre_reserved, post_reserved, mem_start_ptr,
mem_end_ptr);

 Initialization function for memory type DBx:
 This function can be used to reset and initialize AMPRO2 memory
 management for DBx data blocks.
 This function can be performed more than once during run time.

 netto_size: Net size in bytes of a DBx data block. Value range: > 6
 pre_reserved: Size in bytes of an optional, hidden DBx leader
 post_reserved: Size in bytes of an optional DBx trailer
 For example, this trailer can be used for the PROFIBUS telegram trailer for
 AMPRO2-EMUL165.
 mem_start_ptr, mem_end_ptr: Pointer to the first or last element of the transferred memory area.
 A memory area for a maximum number of 65535 DBx may be transferred.
 mem_start_ptr 0 is not permitted.

 counter = 0: Although DBx memory management was reset, it could not be initialized
 due to a user error.
 - The net size of the data block is too small.
 - mem_start_ptr = 0
 - (mem_start_ptr points to an odd-numbered address.)
 - (The net size of the data block is an odd number.)
 - (The size of the leader or trailer is an odd number.)
 counter = 1...65535: DBx memory management was reset and initialized.
 "counter" points to the number of allocated DBx.

 dbx_ptr = l2_mem_alloc_dbx ();

 A DBx is allocated via DBx memory management. Such a DBx can be
 reenabled with the "I2_mem_free_db" function.

 dbx_ptr = 0: No DBx available
 dbx_ptr != 0: Pointer to allocated DBx

 return_value = l2_mem_free_db (db_ptr);

 A DBx is enabled via DB memory management.
 Note: A run time optimization of the "l2_mem_free_db" function can be
 obtained by allocating the memory areas for DB1 to DB 4 to ascending
 addresses. In addition, the run time of this function is shorter when DB1 is
 enabled than when DB2 is enabled, and so on.

 db_ptr: Pointer to DBx to be enabled

 return_value = TRUE: DBx was enabled.
 return_value = FALSE: Memory block is unknown and could not be enabled.

SchnittStellenCenter ASPC 2

Page 38 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.7 Special Features of the AMPRO2 ASPC2
 The AMPRO2 ASPC2 is an implementation of PROFIBUS layer 2 with ASIC support by ASPC2. Currently in

existence are implementations on SIEMENS controllers SAB 80C165 and SAB 80C167 and the 80x86 processor
family (WINDOWS).
 When the AMPRO2 ASPC2 is used, the ASPC2 error report must also be considered.

This report is available from the project leader at AUT E 132.
 The AMPRO2 ASPC2 supports the ASIC releases ASPC2-STEP-B and ASPC2-STEP-C.

AMPRO2 adjusts automatically to the respective ASIC Step.
 The AMPRO2 ASPC2 only supports interface model "L2_CALL_IFA_CALLBACK"

(can be set in config.h).
 When theAMPRO2 ASPC2 is used with ASPC2 Step B in connection with SIEMENS controllers SAB 80C165

and SAB 80C167, only the write mode with byte-high-enable (BHE) is supported.
When ASPC2 Step C or later is used, write mode with write-low/write-high (WRL/WRH) is also supported. This
mode must be set on the hardware, however.
See also ASPC2 specifications. Careful with compatibility.
 The AMPRO2 ASPC2 only supports receipt of SD3 telegrams. Sending of SD3 telegrams is not supported.
 Address extensions: The AMPRO2 ASPC2 does not support segment extensions.

 For SAP extensions, the AMPRO2 ASPC2 supports only source and destination extension
 at the same time (i.e., both local and remote SAP equal default SAP or both don't equal
 default SAP).
 The AMPRO2 ASPC2 supports the default SAP.
 For the baud rates supported by the AMPRO2 ASPC2, see the baud rate table.

See the FLC_FMA_MAC_RESET service.
 The services supported by the AMPRO2 ASPC2 are marked separately () in the section on service-related

interfaces.
 The AMPRO2 ASPC2 uses the following FIFO sizes for the different ASIC releases.

 - For ASPC2 STEP B: 64 bytes
 - For ASPC2 STEP C and later: 128 bytes (fixed)
 The AMPRO2 ASPC2 offers a user timer for use as desired with parameterizable interval time.

See FMA service USER_TIMER_START.
 For improved support of PROFIBUS-DP, the AMPRO2 ASPC2 offers the following extra functions.

See also ASPC2 specifications.
 - DP mode. See below.
 - Repeat services. See sections 1.1.6.3. and 1.1.6.6.
 - Consistency support for sending. See below.
 - Consistency support for receiving (blocked mode). See below.
 - Consistency control logic support for initiator. See below.
 - Consistency control logic support for responder. See below. Not available with ASPC2 STEP B.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 39
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 DP mode can be parameterized on the AMPRO2 ASPC2 instead of the normal operating mode.
The parameter "aspc2_par.l2_mode" in the layer-2 init-block must be set to "L2_PROFIBUS_DP" for the
FLC_FMA_MAC_RESET service.
In DP mode, the following changes apply to the AMPRO2 ASPC2. See also ASPC2 specifications.
 - During token handling, Min_Slave_Intervall is monitored in accordance with PROFIBUS-DP for the
 active station instead of the setpoint token rotation time (TTR). After receipt of a token telegram, the
 AMPRO2 ASPC2 checks to determine whether Min_Slave_Intervall has expired for this station.
 If Min_Slave_Intervall has expired, the AMPRO2 ASPC2 locally starts Min_Slave_Intervall again and
 sends a GAP request. The normal GAP procedure is disabled for this. The MAC job list is then processed.
 See below.
 If Min_Slave_Intervall has not yet expired, the token is immediately passed to the next station.
 - For active stations during the FLC_FMA_MAC_RESET service, the AMPRO2 ASPC2 automatically
inserts a force-pass-token (FPT) with repeat function in the low-priority MAC job list. After processing by
the MAC, this internal FPT is automatically put at the end of the low-priority MAC job list, and thus
 continuously specifies the cycle for token passing.
 This cycle consists of a GAP scan and all jobs from the MAC job list up to the concluding internal FPT.
 The internal FPT job is imaged in the AMPRO2 ASPC2 on a "NOP" service or on an SDN-LOW on the
own station for ASPC2 STEP B.
 - During this cycle, the user can insert the following jobs for active stations.
 All MAC repeat jobs (opcode = L2_MAC_REP_REQUEST) are immediately entered in the low-
priority MAC job list. It is these jobs which primarily determine the cycle.
 All high-priority MAC jobs (opcode = L2_MAC_REQUEST_HIGH) are immediately entered in the
 high-priority MAC job list and can under some conditions increase the length of the cycle
considerably (responsibility of the user).
 With low-priority MAC jobs (opcode = L2_MAC_REQUEST_LOW), a maximum of 1 job per cycle is
 entered in the low-priority MAC job list. Additional service requests for low-priority MAC jobs are
 stored intermediately in layer 2, and entered sequentially in the low-priority MAC job list during
 subsequent cycles.

SchnittStellenCenter ASPC 2

Page 40 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 The AMPRO2 ASPC2 offers special consistency support for sending.
 - For the initiator, the transfer of L2 sending data from external memory to the FIFO is performed with a lock
 cycle when sending request telegrams with a user data length less than or equal to 122 bytes (ASPC2 STEP
 B: 58 bytes).
 - For the responder, the transfer of L2 sending data from external memory to the FIFO is performed with a
 lock cycle when sending response telegrams with a user data length less than or equal to 122 bytes
 (ASPC2 STEP B: 58 bytes).
 - The sending procedure is not started until at least one L2 user data byte has been transferred to the FIFO
 which means that access authorization for consistent data existed.
 Exception: When the ASPC2 STEP B is used, the sending procedure is already started for the initiator after
 at least one L4 header data byte has been transferred to the FIFO.
This consistency support is always active during sending.
 The AMPRO2 ASPC2 also offers special consistency support for receiving - the so-called blocked mode. In this

mode, the following procedures in the AMPRO2 ASPC2 are performed differently.
 - For the initiator, the transfer of receiving data from the FIFO to external memory is not performed until a
 completely correct telegram receipt occurs when receiving response telegrams with a user data length less
 than or equal to 122 bytes (ASPC2 STEP B: 58 bytes).
 - For the responder, the transfer of receiving data from the FIFO to external memory is not performed until a
 completely correct telegram receipt occurs when receiving request telegrams with a user data length less
than or equal to 122 bytes (ASPC2 STEP B: 58 bytes).
 - In both cases, the transfer of L2 receiving data is performed with a lock cycle.
 - In non-blocked mode or when larger amounts of user data are involved, the transfer is performed
 immediately when the FIFO threshold is reached.
Blocked mode can be activated with the "aspc2_par.blocked_mode" parameter in the layer-2 init-block during the
LC_FMA_MAC_RESET service.
Exception: On the ASPC2 STEP B, this mode cannot be explicitly activated. Blocked mode is automatically
 activated in DP mode. Otherwise it is always deactivated.
Caution: Blocked mode is mandatory when the ASPC2 transfers consistent L2 receiving data directly to the
 image memory. In addition, blocked mode is required when the user performs consistent direct
 accesses to the L2 receiving data without using the AMPRO2 MAC_REPEAT_EXCHANGE or
 FLC_REPEAT_EXCHANGE service.
 In all other cases, blocked mode should not be used since it can slow down bus reaction time.
 The AMPRO2 ASPC2 also offers consistency control logic support for the initiator for both the request and

response directions. See also ASPC2 specifications. The RDCONS signal can be activated for a MAC job for the
duration of the transfer of the request data from the request buffer (sending buffer) to the ASPC2 FIFO. Similarly,
the WRCONS signal can be activated during the transfer of the response data from the ASPC2 FIFO to the
response buffer (receiving buffer). One or both consistency controls per MAC job can be used simultaneously.

In the application block, parameter "as.flc.req_fc" contains so-called consistency control bits for activation of
consistency control logic support. By using or-logic (addition), these control bits can be set with the following
Req-Fc masks, thus enabling the applicable consistency control.
 Req-Fc mask for RDCONS: L2_RDCONS (0x10)
 Req-Fc mask for WRCONS: L2_WRCONS (0x20)
Affected services: SDA-REQUEST, SDA-CONFIRMATION,
 SDN-REQUEST, SDN-CONFIRMATION,
 SRD-REQUEST, SRD-CONFIRMATION,
 SDA-REPEAT-REQUEST, SDA-REPEAT-NEGATIVE-CONFIRMATION,
 SDN-REPEAT-REQUEST, SDN-REPEAT-NEGATIVE-CONFIRMATION,
 SRD-REPEAT-REQUEST, SRD-REPEAT-NEGATIVE-CONFIRMATION,
 MAC_REPEAT_APB_WITHDRAW-CONFIRMATION
Prerequisite for use of consistency control logic support is, among others, the correct setting of
"aspc2_par.diagnose_port" in the layer-2 init-block for the FLC_FMA_MAC_RESET service.
Exception: The AMPRO2 ASPC2 does not offer consistency control logic support for layer-4 header data.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 41
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 The AMPRO2-ASPC2 also offers consistency control logic support for the responder for both request and
response directions. See also ASPC2 specifications. The WRCONS signal can be activated for receipt of a
telegram during the transfer of the request data from the ASPC2 FIFO to the request buffer (receiving buffer).
Similarly, the RDCONS signal can be activated during the transfer of the response data from the response buffer
(sending buffer) to the ASPC2 FIFO. One or both consistency controls per telegram receipt can be used
simultaneously.
Exception: The ASPC2 STEP B does not offer consistency control logic support for the responder.

 In the application block, the "as.flc.req_fc" parameter contains so-called consistency control bits for activation of
consistency control logic support. By using or-logic (addition), these control bits can be set with the following
Req-Fc masks, thus activating the applicable consistency control. With the ASPC2 STEP B, these consistency
control bits are irrelevant to requests and can thus be disregarded for AMPRO2.
 Req-Fc mask for WRCONS: L2_WRCONS (0x20)
Affected services: IND_RESOURCE_PROVIDE-REQUEST,
 IND_RESOURCE_PROVIDE-CONFIRMATION,
 IND_RESOURCE_REPEAT_PROVIDE-REQUEST,
 IND_RESOURCE_REPEAT_PROVIDE-CONFIRMATION,
 IND_RESOURCE_WITHDRAW-INDICATION,
 SDA-INDICATION,
 SDN-INDICATION,
 SRD-INDICATION
 Req-Fc mask for RDCONS: L2_RDCONS (0x10)
Affected services: REPLY_UPDATE_SINGLE-REQUEST,
 REPLY_UPDATE_SINGLE-CONFIRMATION,
 REPLY_UPDATE_SINGLE-INDICATION,
 REPLY_UPDATE_MULTIPLE-REQUEST,
 REPLY_UPDATE_MULTIPLE-CONFIRMATION,
 REPLY_UPDATE_MULTIPLE-INDICATION,
 REPLY_WITHDRAW-INDICATION
Prerequisite for use of consistency control logic support is, among others, the correct setting of
"aspc2_par.diagnose_port" in the layer-2 init-block during the FLC_FMA_MAC_RESET service.
Exception: The AMPRO2 ASPC2 does not offer consistency control logic support for layer-4 header data.

SchnittStellenCenter ASPC 2

Page 42 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 The AMPRO2 ASPC2 also offers a special clear mode for the sending direction for an initiator. See also ASPC2
specifications. Among others, this mode can be used for the clear function for a DP master (DPM).
Prior to transfer to AMPRO2, all MAC repeat request jobs which are to be included in the clear function later are
selected (i.e., marked) for clear mode.
Clear mode can be dynamically activated or deactivated later with the CLEAR_MODE_ACTIVATE or
CLEAR_MODE_DEACTIVATE FMA services.
When clear mode is activated, all MAC repeat request jobs which are currently in AMPRO2 and which were
selected for clear mode before transfer to AMPRO2 are included in the clear function.
The following MAC jobs can be included in the clear function.
 SDA-REPEAT-REQUEST, SDN-REPEAT-REQUEST, and SRD-REPEAT-REQUEST
The clear function has two modes.
 Clear-Mode-Data: In this mode, AMPRO2 sets the L2 data bytes to 00H when reading from the
 sending buffer (request buffer) for the selected MAC repeat request jobs. This causes
 zeros to be sent instead of the data from the sending buffer. The amount of sending
data remains unchanged.
 Clear-Mode-Length: In this mode, AMPRO2 sets the length of the L2 data bytes to 00H when reading
 from the sending buffer (request buffer) for the selected MAC repeat request jobs. In
 other words, the data from the sending buffer are not sent.
Caution: Clear mode has no effect on any layer-4 header data which may exist. These data are sent unchanged
 in clear mode.
Exception: The ASPC2 STEP B does not support clear mode.

All MAC repeat request jobs which are to be included in the clear function must be selected before transfer to
AMPRO2. In the application block, the "as.flc.loc_adr" parameter contains so-called clear control bits. These
control bits can be set with the following Loc-Adr masks, thus selecting the jobs for the clear function.
These clear control bits do not apply to requests on the ASPC2 STEP B and thus do not pertain to AMPRO2.
A maximum of one clear mode per MAC repeat job can be selected simultaneously.
 Loc-Adr mask for Clear-Mode-Data: L2_CLEAR_DATA (0x10)
 Loc-Adr mask for Clear-Mode-Length: L2_CLEAR_LEN (0x08)
Affected services: SDA-REPEAT-REQUEST, SDA-REPEAT-NEGATIVE-CONFIRMATION,
 SDN-REPEAT-REQUEST, SDN-REPEAT-NEGATIVE-CONFIRMATION,
 SRD-REPEAT-REQUEST, SRD-REPEAT-NEGATIVE-CONFIRMATION,
 MAC_REPEAT_APB_WITHDRAW-CONFIRMATION
Caution: When clear mode is used (e.g., by the DPM), the clear control bits of all MAC repeat request jobs
 which are not to be included in the clear function must be set to a defined 0.
 Careful when using new AMPRO2 applications which use clear mode!
Exception: The clear control bits do not apply to FDL_STATUS-REPEAT and NOP-REPEAT.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 43
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 The ASPC2 has an address area of 1 MB. The start address of this address area is transferred under
"aspc2_par.l2_mem_start_ptr_host" in accordance with the hardware link in the layer-2 init-block.
 A so-called system control block (SCB) must be transferred to the AMPRO2 ASPC2 for the

FLC_FMA_MAC_RESET service. This SCB is used for the internal coordination of FLC and ASPC2. The SCB
and all L2 application blocks must be located in the AMPRO2 ASPC2 in a physically contiguous 64-K area. The
start address of this 64-K memory area is transferred in the layer-2 init-block under
"aspc2_par.scb_apb_base_ptr_host". The location of the SCB within this area is set with the
"aspc2_par.scb_offset" parameter. The AMPRO2 ASPC2 supports the pointer attributes "near," "based," and "far"
("PTR_ATTR") for the SCB and the application blocks. An application block pointer of 0 is not permitted with the
AMPRO2 ASPC2.
 On the AMPRO2 ASPC2, all telegram buffers are purely user data buffers (i.e., they contain only user data in

accordance with PROFIBUS). Telegram buffers are all sending buffers (for request and response telegrams) and
all receiving buffers (for request and response telegrams).
The structure of all telegram buffers is shown below.

l2-data-pointer

PROFIBUS-Nettodaten

L2-Nettodaten=0...246Bytes

Telegramm-Puffer bei AMPRO2-ASPC2:

With the AMPRO2 ASPC2, the telegram buffers can be located within the entire memory area. The pointer
attributes "near," "based", "far" and "huge" are supported ("L2_DATA_PTR_ATTR").
No telegram buffer is required for services which have a user data length of 0 bytes (e.g., SDA REQUEST with 0
bytes of user sending data).
Possible AMPRO2 ASPC2 accesses to the telegram buffers:
 Sending buffer: Read-accesses only
 Receiving buffer: Write-accesses also

SchnittStellenCenter ASPC 2

Page 44 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 With the AMPRO2 ASPC2, the user must ensure that the base addresses of all L2 application blocks, all L2
telegram buffers and the system control block are located at even-numbered addresses (i.e., word alignment). The
ASPC2 always accesses these memory areas by word.
When the length of L2 telegram buffers is an odd number, the user must add a filler byte.
 As responder, the ASPC2 ASIC supports the default SAP and L2 SAPs in the parameterizable area from SAP 0 to

a maximum of SAP 253. On the AMPRO2 ASPC2, this area is currently set to a constant SAP 0 to 63.
The default SAP and SAPs 0 to 63 are supported as initiator.
 In contrast to PROFIBUS, SAP 63 is not reserved on the AMPRO2 ASPC2 for the global access address. SAP 63

is handled the same as the other SAPs. Adherence to the PROFIBUS specifications for SAP 63 is left to the
judgment of the layer-2 user.
In accordance with PROFIBUS, SAP 63 is only permitted as the destination SAP for SDA and SDN jobs.
 The reaction of the AMPRO2 ASPC2 to the receipt of an unknown or unsupported request telegram is shown in

the table on the plausibility checks during receipt of request telegrams (MAC indication). See the
SAP_ACTIVATE service.
 The AMPRO2 ASPC2 requires receiving memory (indication resource/repeat indication resource) for the receipt of

a REQUEST telegram (MAC INDICATION). Such a resource consists of application block and indication
buffer. It must be provided by the user with the
"IND_RESOURCE_PROVIDE/IND_RESOURCE_REPEAT_PROVIDE" service. The resources are transferred
to layer 2 as related to SAP and are also managed by it in this way. Receipt of a REQUEST telegram for a SAP
which has no resource is not processed further by layer 2 and is acknowledged negatively on the bus. The telegram
is received correctly when a resource is available for this SAP.
The AMPRO2 ASPC2 uses the SAP-related resources directly for telegram receipt (i.e., no alternating buffer
system). After the telegram has been received correctly, the telegram is reported first in the SAP via MAC
INDICATION when a "normal" indication resource is involved. When a repeat indication resource is involved, a
repeat check is performed instead. See section 1.1.6.6.
On the AMPRO2 ASPC2, the assignment of application block to indication buffer which existed with the
"IND_RESOURCE_PROVIDE" service is retained for MAC INDICATIONs. When repeat indication resources
are involved, the assignment of application block to indication buffer which existed with the
"IND_RESOURCE_REPEAT_PROVIDE" service is only retained for MAC INDICATIONs when the
"FLC_REPEAT_EXCHANGE" service is not executed. In addition, a SAP-related optimization of the length of
the indication buffer can be performed.
 No MAC indication is triggered on the AMPRO2 ASPC2 for the responder for SDA and SRD services for which

user data are not transferred in either the request or the response telegram (i.e., empty polling). In this case, the
indication resource remains in layer 2.
Exception: When SAP contains a repeat indication resource, empty polling is not checked and a repeat check is
performed instead. See section 1.1.6.6.
When empty polling is involved, the table on plausibility of receipt of a request telegram (MAC indication) must be
adhered to. See the SAP_ACTIVATE service.
 On the AMPRO2 ASPC2, the correct time sequence of the reporting of MAC confirmations and MAC indications

of the same priority is ensured. MAC confirmations and MAC indications are reported in the order in which they
occurred.
A different mechanism is used for reporting MAC repeat confirmations. This mechanism meets the requirements
of PROFIBUS-DP.
 On the AMPRO2 ASPC2, layer 2 SRD response data of the responder can only be made available with the

REPLY_UPDATE_SINGLE or REPLY_UPDATE_MULTIPLE service.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 45
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 The AMPRO2 ASPC2 supports the layer-4 header for request telegrams in both sending and receiving directions.
Typical of this function is the fact that other data can be inserted at the beginning of the telegram user data portion
before the data from the request buffer (e.g., layer-4 and/or layer-7 header data). One fixed header length and two
parameterizable header lengths are supported. The parameterizable header lengths are set with the
FLC_FMA_MAC_RESET service in the layer-2 init-block under "aspc2_par.l4_hlen_var1" and
"aspc2_par.l4_hlen_var2".

 The "opcode" parameter in the application block contains so-called L4 header control bits for activation of layer-4
header support. By using or-logic (addition), these control bits can be set with the following opcode masks, thus
enabling the desired layer-4 header support.
 Opcode mask for 2-byte fixed length: L2_L4_HLEN_FIXED (0x20)
 Opcode mask for parameterizable length 1: L2_L4_HLEN_VAR1 (0x40)
 Opcode mask for parameterizable length 2: L2_L4_HLEN_VAR2 (0x60)
Affected services: SDA-REQUEST, SDA-CONFIRMATION, SDA-INDICATION,
 SDN-REQUEST, SDN-CONFIRMATION, SDN-INDICATION,
 SRD-REQUEST, SRD-CONFIRMATION, SRD-INDICATION,
 SDA-REPEAT-REQUEST, SDA-REPEAT-NEGATIVE-CONFIRMATION,
 SDN-REPEAT-REQUEST, SDN-REPEAT-NEGATIVE-CONFIRMATION,
 SRD-REPEAT-REQUEST, SRD-REPEAT-NEGATIVE-CONFIRMATION,
 MAC_REPEAT_APB_WITHDRAW-CONFIRMATION,
 IND_RESOURCE_PROVIDE-REQUEST, IND_RESOURCE_PROVIDE-CONFIRMATION,
 IND_RESOURCE_WITHDRAW-INDICATION,
 IND_RESOURCE_REPEAT_PROVIDE-REQUEST,
 IND_RESOURCE_REPEAT_PROVIDE-CONFIRMATION
When layer-4 header support is used, the layer-4 header data are placed in the application block directly behind the
request header. This additional storage requirement must be taken into consideration for the affected application
blocks. With AMPRO2 memory management, this can be implemented with the APBx trailer. The
"as.flc.req_length" parameter in the application block only specifies the amount of user data in the request buffer,
thus providing the L2 telegram with user data ("as.flc.req_length" + layer-4 header length).

When the AMPRO2 ASPC2 as responder receives a request telegram whose user data length is less than the layer-
4 header length selected in the corresponding indication resource, the AMPRO2 ASPC2 provides a negative
acknowledgment to the bus. See the table on the plausibility of receipt of a request telegram (MAC indication) for
the SAP_ACTIVATE service. In this case, the user does not receive a MAC indication. The indication resource
remains in layer 2.
 The AMPRO2 ASPC2 performs a plausibility check of the sending length for MAC request jobs. If the addition

of the user data length in the sending buffer (req_length) and any layer-4 header length which may be present
results in an invalid (i.e., too large) value in accordance with PROFIBUS, this job is not sent to the bus and is
negatively acknowledged with the status "L2_STATUS_IL". In addition, the MAC EVENT
"L2_REQ_LENGTH_ERROR" is generated.
Exception: When the ASPC2 STEP B is used, AMPRO2 sends this "incorrect" job with a user data length of 0
without the layer-4 header data. However, the user receives a positive MAC confirmation. In addition, the MAC
EVENT "L2_REQ_LENGTH_ERROR" is generated.
 A so-called alternating buffer system is used for MAC EVENT resources. The first buffer of this system must be

transferred with the FLC_FMA_MAC_RESET service in the layer-2 init-block under "first_mac_event_buf_ptr".
MAC EVENT buffers are available in various lengths.
 The AMPRO2 ASPC2 reveals to the user the function for processing all ASPC2 interrupts (i.e., provides

flexibility). This function must be performed by the user when an ASPC2 interrupt occurs. The user can adapt the
corresponding interrupt framework to his specific environment.

 Syntax: UWORD L2_IFA_CODE_ATTR l2_aspc2_int_handler (void);

 The return parameter contains the current value of ASPC2 register IMR (i.e.,
 interrupt mask register).

SchnittStellenCenter ASPC 2

Page 46 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.8 Description of Service-Related Interfaces
This description of the service-related interfaces explains each layer-2 service as it relates to the service
primitive (i.e., REQUEST, CONFIRMATION and INDICATION. The entire application block with relevant
transfer parameters or the return data is described for each service primitive. This service-related
description applies unchanged to all interface models contained in section 1.1.2. Special attention must be
paid to the special features of the various AMPRO2 implementations. See section 1.1.5.
All C designators are shown in italics. All structures and constants required by the layer-2 user are included
in the header file "l2_user.h".
A "P" following a parameter stands for its plausibility via AMPRO2. A "(P)" following a parameter stands for
partial plausibility.

 When a job with an application block from an invalid memory area was transferred to layer 2, the
 AMPRO2 acknowledges with opcode = L2_FLC_CONFIRM_INVALID_APB.
 (Only occurs with the AMPRO2 ASPC2 with PTR_ATTR_FAR)

 When a job with an invalid or unsupported opcode was transferred to layer 2, AMPRO2
 acknowledges with opcode = L2_FLC_CONFIRM_INVALID_OPCODE.

 When an FMA job with an invalid or unsupported service_code was transferred to layer 2, AMPRO2
 acknowledges with opcode = L2_FMA_CONFIRM and status = L2_STATUS_IV.

 When a MAC repeat auxiliary job with an invalid or unsupported req_fc was transferred to layer 2, the
 AMPRO2 acknowledges with opcode = L2_REP_CONFIRM and resp_status = L2_STATUS_IV.

 When an FLC job with an invalid or unsupported req_fc was transferred to layer 2, AMPRO2
 acknowledges with opcode = L2_FLC_CONFIRM and resp_status = L2_STATUS_IV.

3.8.1 FMA Services

3.8.1.1 FLC_FMA_MAC_RESET

FLC_FMA_MAC_RESET REQUEST

This service resets layer 2. In addition, this service transfers new initialization and bus parameters. All
internal layer-2 data structures are initialized again. All jobs and user memory in layer 2 are lost.

 The FLC_FMA_MAC_RESET service must be executed as the first service during layer-2 startup.
 On the layer-2 task interface (L2_TASK_IFA_OS), additional jobs in the mailbox of the layer-2 task are

 not deleted during the FLC_FMA_MAC_RESET service (i.e., they are processed afterwards).

next_blk_ptr Disregard
prev_blk_ptr Disregard
opcode P L2_FMA_REQUEST
subsystem Task identifier of the receiver task for the confirmation
id_ptr Can be used as desired by the user
as.fma.service_code P L2_FLC_FMA_MAC_RESET
as.fma.status Disregard
as.fma.ptr1 Pointer to completed layer-2 init-block
as.fma.ptr2 Pointer to completed layer-2 bus parameter block
as.fma.length Disregard
as.fma.sap_nr Disregard
as.fma. ... Disregard

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 47
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Layer-2 init-block for AMPRO2 ASPC2: ("struct l2_init_blk")
 See also ASPC2 specifications.
 Possible access: "as.fma.ptr1 -> init_blk.first_mac_event_buf_ptr"

first_mac_event_buf_ptr Pointer to first MAC EVENT buffer. Minimum length: first_mac_event_buf_length in layer-2 init-

block
Remains in layer 2 for L2_STATUS_OK. First buffer for the alternating buffer system.
See also MAC_EVENT service.

first_mac_event_buf_leng
th

P Length of the first MAC EVENT buffer: 1 to 255 bytes

user_error_fct_ptr Pointer to user error function. This function is called by layer 2 when serious errors are detected.
Function type: void (*user_error_fct_ptr) (UBYTE error_code, void PTR_ATTR *error_ptr).
Layer 2 transfers an error code and an error pointer to the function. See also section 1.1.6.8.
Provision of error handling in this function is recommended so that layer 2 is returned to its correct
status. A return to the calling program may not be made at the end of the user error function.

reset_asic_fct_ptr Pointer to user function which performs a hardware reset of the ASPC2. The hardware must be
equipped with the RESET pin so that the ASPC2 can reset the hardware. Keep ASPC2
specifications in mind.
Function type: void (*reset_asic_fct_ptr) (void);

mask_int_asic_fct_ptr Pointer to user function which masks the ASPC2 interrupt
Function type: void (*mask_int_asic_fct_ptr) (void);
Note: All interrupts including the priority level of the ASPC2 interrupt are usually disabled within
 this function, or the ASPC2 interrupt is explicitly disabled. When explicit disabling is
used, any other interrupt (also interrupts with lower priority) can extend this interrupt disable.
 When an interrupt disable is extended, operation of the ASPC2 and thus data flow may
 deteriorate due to AMPRO2.

unmask_int_asic_fct_ptr Pointer to user function which enables the ASPC2 interrupt again
Function type: void (*unmask_int_asic_fct_ptr) (void);

mask_int_global_fct_ptr Pointer to user function which globally masks all interrupts
Function type: void (*mask_int_global_fct_ptr) (void);
Note: This interrupt disable is required in addition to the "mask_int_asic_fct_ptr" disable for brief
 ASPC2 lock times within AMPRO2. If this disable is extended by other causes,
 excessively long ASPC2 lock times may increase bus reaction times or cause bus
 collisions. For this reason, a global interrupt disable is recommended.
 When explicit disabling is used, any other interrupt (also interrupts with lower priority) can
 extend this interrupt disable. When a disable caused by increasing the priority level to a
 certain value occurs, any higher-priority interrupt can extend this interrupt disable.
Caution: Since the "mask_int_global_fct_ptr" interrupt disable is executed within the interrupt
 disable with "mask_int_asic_fct_ptr", an interrupt enable via "unmask_int_global_fct_ptr"
 may not cancel an interrupt disable by "mask_int_asic_fct_ptr".

unmask_int_global_fct_pt
r

 Pointer to user function which globally enables all interrupts again.
Function type: void (*unmask_int_global_fct_ptr) (void);

aspc2_par.asic_adr. ...
 as_mem_ptr
 as_io_offset

 Start address of the 64-byte internal ASPC2 register record from the viewpoint of the host
processor (in accordance with hardware integration)
 - As pointer for allocation in the memory area
 - As I/O offset for allocation in the I/O area. This I/O offset only applies when several
 AMPRO2s are used.

aspc2_par.l2_mem_start
_
 ptr_host

P Start address of the 1-MB ASPC2 address area for communication memory from the viewpoint of
the host processor
Corresponds to address 0 from the viewpoint of the ASPC2 (in accordance with hardware
integration)
Value range:
 80x86, V25: L2_DATA_PTR_ATTR_FAR:
 PC_WIN_95, RMOS_FLAT: ptr = x
 else: base = x, offset = 0
 else: base = 0, offset = 0
 8016x: irrelevant (Start address can be set in config.h via
 L2_MEM_START_PAGE_HOST)

aspc2_par.scb_apb_base
_
 ptr_host

P Start address of the 64-KB memory area for the ASPC2 system control block (SCB) and L2
application blocks from the viewpoint of the host processor. Must be located in the 1-MB ASPC2
address area (in accordance with hardware integration).
Value range: PC_WIN_31, RMOS: aspc2_par.l2_mem_start_ptr_host in layer-2 init-block
 PC_WIN_95, RMOS_FLAT: aspc2_par.l2_mem_start_ptr_host + offset,
 whereby offset < 0xFFFFF (1 MB)
Caution: No own logical address may be obtained from the operating system. Basis is the
 logical address of the 1-MB ASPC2 address area.
 else: base = x, offset = 0

...

SchnittStellenCenter ASPC 2

Page 48 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

aspc2_par.scb_offset P Offset of the ASPC2 system control block (SCB) within the 64-KB memory area. See above.
Value range:
 ASPC2_ADR_MODE_LINEAR: 0
 else: 80x86, V25: 0...(10000h - L2_LEN_SCB)
 8016x: PTR_ATTR_NEAR: 0...(F000h - L2_LEN_SCB)
 L2_APB_ATTR_FAR_16KB: 0...(4000h - L2_LEN_SCB)
 L2_APB_ATTR_FAR_64KB: 0...(10000h - L2_LEN_SCB)
Note: In addition, the SCB must be located at an even-numbered address (i.e., word alignment)
and have a minimum length of L2_LEN_SCB (l2_user.h).

aspc2_par.diagnose_port ASPC2 diagnosis mode for the diagnostic port:
 L2_ASPC2_DIAG_MS_CONS: Partial diagnosis for micro-sequencer and
 consistency control signals WRCONS and
 RDCONS
 L2_ASPC2_DIAG_MS: Diagnosis for micro-sequencer
 L2_ASPC2_DIAG_KS_LOCK_CONS: Partial diagnosis for channel sequencer,
 BUSLOCKOUT and the WRCONS and
 RDCONS control signals
 L2_ASPC2_DIAG_KS_LOCK: Diagnosis for channel sequencer and
 BUSLOCKOUT

aspc2_par.shared_dualp
_
 mem

 Type of external communication memory:
 L2_ASPC2_SHARED_MEM: Shared memory mode
 L2_ASPC2_DUALP_MEM: Dual-port memory mode

aspc2_par.xreqrdy_delay Delay time between 'XENBUF active' and 'XREQRDY active ' in dual-port memory mode:
Value range for L2_ASPC2_DUALP_MEM: L2_ASPC2_XREQRDY_DELAY_1_CLOCK,
 L2_ASPC2_XREQRDY_DELAY_3_CLOCKS
Not applicable to L2_ASPC2_SHARED_MEM

aspc2_par.l2_mode Layer-2 param: L2_PROFIBUS: ASPC2 in normal operating mode
 L2_PROFIBUS_DP: ASPC2 in DP mode. See chap. 1.1.5.1.
 L2_PROFIBUS_MONITOR: ASPC2 in monitor mode
 Only the FLC_FMA_MAC_RESET service is
 supported in monitor mode.

aspc2_par.holda_pol Polarity of "HOLDA" signals: L2_ASPC2_HOLDA_POL_LOW, L2_ASPC2_HOLDA_POL_HIGH
aspc2_par.int_pol Polarity of interrupt outputs: L2_ASPC2_INT_POL_LOW, L2_ASPC2_INT_POL_HIGH
aspc2_par.int_config ASPC2 interrupt mode: L2_ASPC2_NOT_SEP_INT: All interrupts on pin "INT-EV"

 (L2_ASPC2_SEP_INT not supported by AMPRO2 ASPC2)
aspc2_par.start_bit_contr
ol

 ASPC2 start bit check: L2_ASPC2_START_BIT_CONTROL_OFF,
 L2_ASPC2_START_BIT_CONTROL_ON

aspc2_par.stop_bit_contr
ol

 ASPC2 stop bit check: L2_ASPC2_STOP_BIT_CONTROL_OFF,
 L2_ASPC2_STOP_BIT_CONTROL_ON

aspc2_par.tok_err_limit Threshold value for the number of non-plausible token telegrams per 256 consecutive token
rotations
When reached, the MAC generates MAC EVENT "L2_MAC_RESET_LAS_USELESS" for active
stations and goes to "listen token."
Value range: 1 to 255

aspc2_par.resp_err_limit Threshold value for the number of incorrect response telegrams per 16 consecutive request
telegrams (exception: SDN)
When reached, the MAC generates MAC-EVENT "L2_DOUBLE_TOKEN" for active stations and
goes to "active idle."
Value range: 1 to 15

aspc2_par.l4_hlen_var1 P Layer-4 header length in words: Value range: 1 to 16
 (corresponding L2_L4_HLEN_VAR1 opcode mask)

aspc2_par.l4_hlen_var2 P Layer-4 header length in words: Value range: 1 to 16
 (corresponding L2_L4_HLEN_VAR2 opcode mask)

aspc2_par.seg_0_wait_c
nf

 Configuration of the external communication memory for ASPC2 accesses
Memory area: 0 to 256 KB:
 General wait states: L2_ASPC2_WAIT_1... L2_ASPC2_WAIT_4
 Ready activation: L2_ASPC2_USE_EXT_RDY, L2_ASPC2_NOT_USE_EXT_RDY
 Additional wait state: L2_ASPC2_USE_RDY_WAIT, L2_ASPC2_NOT_RDY_WAIT
Note: The general wait states are inserted before Ready when Ready is activated. The
 additional settable wait state is inserted after Ready when Ready is activated. No
 additional wait state can be parameterized for L2_ASPC2_WAIT_1.
 Configuration is performed by adding the setting of all three classes.
 Example: aspc2_par.seg_0_wait_cnf = L2_ASPC2_WAIT_2 +
 L2_ASPC2_USE_EXT_RDY +
 L2_ASPC2_NOT_RDY_WAIT;

aspc2_par.seg_1_wait_c
nf

 Configuration of the external communication memory for ASPC2 accesses
Memory area: 256 to 512 KB: ditto

aspc2_par.seg_2_wait_c
nf

 Configuration of the external communication memory for ASPC2 accesses
Memory area: 512 to 768 KB: ditto

aspc2_par.seg_3_wait_c
nf

 Configuration of the external communication memory for ASPC2 accesses
Memory area: 768 KB to 1 MB: ditto

...

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 49
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

aspc2_par.quick_access_
 mode

 Optional quick-access mode for optimized data transfer between ASPC2 and external memory
Not applicable to ASPC2-STEP B since not supported
Value range for all other ASPC2-STEPs:
 L2_ASPC2_QUICK_ACCESS_MODE_OFF, L2_ASPC2_QUICK_ACCESS_MODE_ON

aspc2_par.blocked_mode Optional blocked mode for transfer of receiving data from ASPC2 to external memory
See also section 1.1.5.1.
Not applicable to ASPC2-STEP B: Blocked mode is automatically activated in DP mode.
Value range for all other ASPC2-STEPs:
 L2_ASPC2_BLOCKED_MODE_OFF, L2_ASPC2_BLOCKED_MODE_ON
Caution: Blocked mode is mandatory when the ASPC2 transfers L2 user data directly to image
 memory. In addition, blocked mode is required when the user directly accesses the L2
 user data buffer without using the MAC_REPEAT_EXCHANGE or
 FLC_REPEAT_EXCHANGE AMPRO2 services. In all other cases, blocked mode should
 not be used since it can increase bus reaction times.

aspc2_par.int_delay_time Settable minimum time between two ASPC2 interrupts. Time starts with acknowledgment of EOI.
Not applicable to ASPC2-STEP B: 1µsec is always used here.
Value range for all other ASPC2-STEPs:
 L2_ASPC2_INT_DELAY_1_US, L2_ASPC2_INT_DELAY_1_MS

aspc2_par.user_timer_ba
se

 Time interval for the internal AMPRO2 user timer (cyclic timer)
See also USER_TIMER_START FMA service.
Not applicable to monitor mode: Is not supported
Not applicable to ASPC2-STEP B: 2.1 sec is always used here.
Value range for all other cases:
 L2_ASPC2_USER_TIMER_10_MS: Interval time of 10 msec
 L2_ASPC2_USER_TIMER_2100_MS: Interval time of 2.1 sec

aspc2_par.user_timer_
 fct_ptr

 Pointer to user function which is called cyclically each time the user timer expires.
The user timer must also be started.
See also USER_TIMER_START FMA service.
Function type: void (*aspc2_par.user_timer_fct_ptr) (void);
Not applicable to monitor mode: Is not supported
This parameter is also irrelevant when the user timer is never started.
Note: This user function is called each time the interval time expires for the ASPC2 interrupt
 handler. Since the user timer is scanned at the end of the ASPC2 interrupt handler, this
 user function can be delayed when many interrupts occur. The user timer can be
 dynamically started (USER_TIMER_START FMA service) and stopped
 (USER_TIMER_STOP FMA service).

monitor_par.filter_sd4 Filter for token telegrams
 L2_ASPC2_SD4_FILTER_ON: Filter
 L2_ASPC2_SD4_FILTER_OFF: No filter

monitor_par.filter_
 fdl_status

 Filter for FDL status telegrams
 L2_ASPC2_FDL_STATUS_FILTER_ON: Filter
 L2_ASPC2_FDL_STATUS_FILTER_OFF: No filter

monitor_par.adr_selector
_1

 When an address selector is used, all telegrams to and from this station are recorded, but
Broadcast telegrams are suppressed. When both selectors are used, only the telegrams between
2 defined stations are recorded.
Value range: L2_ASPC2_NO_MON_ADR_SELECTOR: Selector off
 0 to 126: Selector on

monitor_par.adr_selector
_2

 Same as above
Caution: Selector 2 may only be activated when selector 1 is activated.

monitor_par.write_blk_ptr Write pointer to the monitor list (i.e., chaining of the monitor application blocks)
Caution: Entry must be in ASIC format.

monitor_par.read_blk_ptr Read pointer to the monitor list (i.e., chaining of the monitor application blocks)
Caution: Entry must be in ASIC format.

monitor_par.trigger_1_
 offset

 Trigger offset in bytes of word 1 to be compared (in reference to the base address of the monitor
application block)
Caution: The word to be compared must be located at an even-numbered address.

monitor_par.trigger_1_
 mask

 Certain bits are selected or masked in word 1 to be compared (e.g., lower or higher byte).

monitor_par.trigger_1_
 compare

 Comparison value 1
Trigger 1 is triggered when
word (trigger_1_offset) AND trigger_1_mask == trigger_1_compare

monitor_par.trigger_2_
 offset

 Trigger offset in bytes of word 2 to be compared (in reference to base address of the monitor
application block)
Caution: The word to be compared must be located at an even-numbered address.

monitor_par.trigger_2_
 mask

 Certain bits are selected or masked in word 2 to be compared (e.g., lower or higher byte).

monitor_par.trigger_2_
 compare

 Comparison value 2
Trigger 2 is triggered when
word (trigger_2_offset) AND trigger_2_mask == trigger_2_compare

...

SchnittStellenCenter ASPC 2

Page 50 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

monitor_par.timeout_fct_
ptr

 Pointer to user function which is called when a TIMEOUT event occurs
This is used to determine whether there is still any activity on the bus. Timeout for passive
stations is greater than that of active stations.
Function type: void (*monitor_par.timeout_fct_ptr) (void);
Note: This user function is called within the ASPC2 interrupt handler when a TIMEOUT event
 occurs.

monitor_par.monitor_
 full_fct_ptr

 Pointer to user function which is called when the monitor list is full.
Function type: void (*monitor_par.monitor_full_fct_ptr) (void);
Note: This user function is called within the ASPC2 interrupt handler when the monitor list is full.

monitor_par.monitor_
 trigger_fct_ptr

 Pointer to user function which is called when a trigger procedure occurred
Function type: void (*monitor_par.monitor_trigger_fct_ptr) (void);
Note: This user function is called within the ASPC2 interrupt handler when a trigger procedure
 occurs.

windows_par.selector_
 l2_mem_seg
_0

 Additional parameter for support of the DP ISA card under Windows 3.1
 Selector for RAM segment 0 of DP ISA card (memory area: 0 to 64 KB)

windows_par.selector_
 l2_mem_seg
_1

 Additional parameter for support of the DP ISA card under Windows 3.1
 Selector for RAM segment 1 of DP ISA card (memory area: 64 to 128 KB)

windows_par.selector_
 l2_mem_seg
_2

 Additional parameter for support of the DP ISA card under Windows 3.1
 Selector for RAM segment 2 of DP ISA card (memory area: 128 to 192 KB)

windows_par.selector_
 l2_mem_seg
_3

 Additional parameter for support of the DP ISA card under Windows 3.1
 Selector for RAM segment 3 of DP ISA card (memory area: 192 to 256 KB)

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 51
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Layer-2 init-block for AMPRO2 SPC2: ("struct l2_init_blk")
 The SPC2 is equipped with an internal 2-KB RAM. This RAM contains all telegram buffers for handling

telegram communication on the bus. The organization of this RAM can be parameterized in the layer-2 init-
block. See also notes on configuration of the internal SPC2 RAM at the end of the layer-2 init-block.

 See also SPC2 specifications.
 Possible access: "as.fma.ptr1 -> init_blk.first_mac_event_buf_ptr"

first_mac_event_buf_ptr Pointer to first MAC EVENT buffer. Minimum length: first_mac_event_buf_length in layer-2 init-

block
Remains L2_STATUS_OK in layer 2. First buffer for the alternating buffer system. See also the
MAC_EVENT service.

first_mac_event_buf_leng
th

P Length of the first MAC EVENT buffer: 1 to 255 bytes

ind_buf_length_min P Minimum user data length for all indication buffers of this station. See section 1.1.5.
Maximum permissible user data length for all indication telegrams on this station.
Minimum value: Minimum from (246, ((spc2_par.ind_size * 8) - 8)) bytes

user_error_fct_ptr Pointer to user error function. This function is called by layer 2 when serious errors are detected.
Function type: void (*user_error_fct_ptr) (UBYTE error_code, void PTR_ATTR *error_ptr);
Layer 2 transfers an error code and an error pointer to the function. See also section 1.1.6.8 on
error ouputs for AMPRO2. Error handling is recommended in this function so that layer 2 is
returned to its correct status. A return to the calling program may not be made at the end of the
user error function.

reset_asic_fct_ptr Pointer to user function which performs a hardware reset of the SPC2. The hardware must be
equipped with the RESET pin so that the SPC2 can be reset. Adhere to SPC2 specifications.
Function type: void (*reset_asic_fct_ptr) (void);

mask_int_asic_fct_ptr Pointer to user function which masks the SPC2 interrupt and also the collect interrupt for
AMPRO2 operating system integration.
Function type: void (*mask_int_asic_fct_ptr) (void);
Note: All interrupts including the priority level of the SPC2 interrupt (collect interrupts) are
usually disabled within this function or the SPC2 interrupt and the collect interrupt are explicitly
 disabled. When explicit disabling is used, all other interrupts (also those of lower priority)
 can extend this interrupt disable. SPC2 performance and thus AMPRO2 data flow may
 deteriorate.

unmask_int_asic_fct_ptr Pointer to a user function which enables the SPC2 interrupt and collect interrupt again.
Function type: void (*unmask_int_asic_fct_ptr) (void);

mask_int_global_fct_ptr Pointer to user function which globally masks all interrupts
Function type: void (*mask_int_global_fct_ptr) (void);
Note: This interrupt disable is required for brief SPC2 lock times within AMPRO2 in addition
 to the "mask_int_asic_fct_ptr" disable. When this interrupt disable is extended by other
 causes, excessive SPC2 lock times can cause slower bus reaction times or bus
collisions. A global interrupt disable is recommended for this reason. When explicit
disabling is used, all interrupts (also those of lower priority) can extend this interrupt disable.
When disabling by increasing the priority level to a certain value is used, all higher-priority
 interrupts may extend this interrupt disable.
Caution: Since the interrupt disable via "mask_int_global_fct_ptr" is executed within the interrupt
 disable via "mask_int_asic_fct_ptr", an interrupt enable via
"unmask_int_global_fct_ptr" may not cancel an interrupt disable via "mask_int_asic_fct_ptr".

unmask_int_global_fct_ptr Pointer to user function which globally enables all interrupts again
Function type: void (*unmask_int_global_fct_ptr) (void);

gen_int_os_collect_fct_ptr Pointer to user function which generates the OS collect interrupt for AMPRO2 operating system
integration. This function is not required unless AMPRO2 is being executed under an operating
system environment (L2_TASK_IFA_OS und L2_CALL_IFA_OS).
Function type: void (*gen_int_os_collect_fct_ptr) (void);

spc2_par.spc2_adr_valid FALSE: The SPC2 address is set in config.h.
TRUE: The SPC2 address is set in parameters "spc2_adr_seg" and "spc2_adr_offset".
Caution: Only possible when the SPC2 is located in the FAR area
 ("SPC2_ATTR_MEM_FAR")

spc2_par.spc2_adr_seg Segment of the SPC2 address (only valid for "spc2_adr_valid" = TRUE)
spc2_par.spc2_adr_offset Offset of the SPC2 address (only valid for "spc2_adr_valid" = TRUE)
spc2_par.tok_err_limit Threshold value for the number of non-plausible token telegrams per 256 consecutive token

rotations
When reached, the MAC generates the "L2_MAC_RESET_LAS_USELESS" MAC EVENT for
active stations and goes to "listen token."
Value range: 1 to 255

spc2_par.l4_hlen_var1 P Layer-4 header length 1 in words: Value range: 1 to 16
(corresponding opcode mask L2_L4_HLEN_VAR1)

spc2_par.l4_hlen_var2 P Layer-4 header length 2 in words: Value range: 1 to 16
(corresponding opcode mask L2_L4_HLEN_VAR2)

spc2_par.sap_max P Highest SAP number supported during receipt of indications (responder functionality)
Value range: 0 to 63. The default SAP and SAP 0 are always supported.
Note: When a request telegram is received on a SAP with a higher SAP number, the AMPRO2
 SPC2 generates a negative acknowledgment for the bus with "no service activated" ("rs").

...

SchnittStellenCenter ASPC 2

Page 52 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

spc2_par.scb_base_ptr Pointer to system control block (SCB)
Note: The SCB must have a minimum length of L2_LEN_SCB (l2_user.h).

spc2_par.int_pol Polarity of the interrupt outputs: L2_SPC2_INT_POL_LOW, L2_SPC2_INT_POL_HIGH
spc2_par.int_config SPC2 interrupt mode: L2_SPC2_NOT_SEP_INT: All interrupts are on pin "INT-EV".

 L2_SPC2_SEP_INT is not supported by the AMPRO2 SPC2.
spc2_par.rdy_config SPC2 ready signal mode: L2_SPC2_NOT_EARLY_RDY, L2_SPC2_EARLY_RDY
spc2_par.req_high_size Length of the "Request-Queue-High" SPC2 list in 8-byte multiples

Value range: 0: List not activated.
 2 to 229: List is activated. Corresponds to telegrams with user data lengths of
 maximum of 6 to 246 bytes.

spc2_par.req_low_size Length of the "Request-Queue-Low" SPC2 list in 8-byte multiples
Value range: 0: List not activated.
 2 to 229: List is activated. Corresponds to telegrams with user data lengths of
 maximum of 6 to 246 bytes.

spc2_par.reply_on_req_
 high_size

 Length of the "Reply-on-Request-High" SPC2 list in 8-byte multiples
Value range: 0: List not activated.
 1 to 229: List is activated. Corresponds to telegrams with user data lengths of
 maximum of 6 to 246 bytes.

spc2_par.reply_on_req_
 low_size

 Length of the "Reply-on-Request-Low" SPC2 list in 8-byte multiples
Value range: 0: List not activated.
 1 to 229: List is activated. Corresponds to telegrams with user data lengths of
 maximum of 6 to 246 bytes.

spc2_par.ind_size P Length of the "Indication-Queue" SPC2 list in 8-byte multiples
See also the ind_buf_length_min parameter.
Value range: 1 to 230 Corresponds to telegrams with user data lengths of maximum of 6 to 246
bytes.
Note: The following conditions must be met if the user wants to prevent the SPC2 from
 generating a "non resource" ("rr") acknowledgment for the bus.
 - An indication resource must be available in the SAP for receipt of the telegram.
 - The indication queue must be parameterized for at least 2 maximum-length telegrams
(in accordance with PROFIBUS, a MAC indication is not triggered until the next telegram
 has been received correctly).
 - The indication queue must have room for receipt of a new telegram. The SPC2
interrupt handler must empty the indication queue fast enough. We recommend
assigning the SPC2 interrupt handler a high priority and not disabling it too long.
See also the mask_int_asic_fct_ptr parameter in the layer-2 init-block.

spc2_par.reply_on_ind_
 block1_number

P Number of type-1 memory blocks for the "Reply-on-Indication" SPC2 list
Value range: 0 Parameter spc2_par.reply_on_ind_block1_size irrelevant
 1 to 229 Parameter spc2_par.reply_on_ind_block1_size specifies the block size.

spc2_par.reply_on_ind_
 block1_size

P Size of a type-1 memory block for the "Reply-on-Indication" SPC2 list in 8-byte multiples
Value range: 1 to 31 Corresponds to telegrams with user data lengths of maximum of 6 to 246
 bytes

spc2_par.reply_on_ind_
 block2_number

P Number of type-2 memory blocks for the "Reply-on-Indication" SPC2 list
Value range: 0 Parameter spc2_par.reply_on_ind_block2_size irrelevant
 1 to 229 Parameter spc2_par.reply_on_ind_block2_size specifies the block size.

spc2_par.reply_on_ind_
 block2_size

P Size of a type-2 memory block for the "Reply-on-Indication" SPC2 list in 8-byte multiples
Value range: 1 to 31 Corresponds to telegrams with user data lengths of maximum of 6 to 246
 bytes

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 53
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Baud Rate Table

 AMPRO2 ASPC2
(48 MHz Clock)

 L2_KBAUD_9_6
 L2_KBAUD_19_2
 L2_KBAUD_93_75
 L2_KBAUD_187_5
 L2_KBAUD_375
 L2_KBAUD_500
 L2_KBAUD_750
 L2_MBAUD_1_5
 L2_MBAUD_2_625
 L2_MBAUD_3
 L2_MBAUD_3_5
 L2_MBAUD_4
 L2_MBAUD_5_25
 L2_MBAUD_6
 L2_MBAUD_10_5
 L2_MBAUD_12

FLC_FMA_MAC_RESET CONFIRMATION

next_blk_ptr Undefined
prev_blk_ptr Undefined
opcode L2_FMA_CONFIRM
subsystem Unchanged in comparison to REQUEST
id_ptr Unchanged in comparison to REQUEST
as.fma.service_code L2_FLC_FMA_MAC_RESET (unchanged in comparison to REQUEST)
as.fma.status The following values for status contain the status of the confirmation in the 8 bits. See

section 1.1.6.7.
- L2_STATUS_OK: Positive acknowledgment. FLC_FMA_MAC_RESET was executed.
- L2_STATUS_IV: Negative acknowledgment. Invalid parameter in REQUEST.
 - Parameter error in the layer-2 init-block or in the layer-2 bus parameter block

as.fma.ptr1 Unchanged in comparison to REQUEST. Unchanged layer-2 init-block returned.
as.fma.ptr2 Unchanged in comparison to REQUEST. Unchanged layer-2 bus parameter block returned.
as.fma.length Unchanged in comparison to REQUEST
as.fma.sap_nr Unchanged in comparison to REQUEST
as.fma. ... Unchanged in comparison to REQUEST

SchnittStellenCenter ASPC 2

Page 54 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

3.9 General Return Value

3.9.1 "resp_status"

Value range for "as.flc.resp_status" for MAC confirmations (4-bit evaluation)

Bit 7 6 5 4 3 2 1 0

 (. w . .) 0 0 0 0 (0x00) L2_STATUS_OK (Bits 4 to 7 must be masked.)
 more information in bits 4 to 7 (short ack. SC yes/no, ...)
 (0 w . .) 0 0 0 1 (0x01) L2_STATUS_UE (Bits 4 to 7 must be masked.)
 (0 w . .) 0 0 1 0 (0x02) L2_STATUS_RR (Bits 4 to 7 must be masked.)
 (0 w . .) 0 0 1 1 (0x03) L2_STATUS_RS (Bits 4 to 7 must be masked.)
 (0 0 0 0) 0 1 0 1 (0x05) L2_STATUS_WD (Bits 4 to 7 must be masked.)
 (0 w . .) 1 0 0 0 (0x08) L2_STATUS_DL (Bits 4 to 7 must be masked.)
 (0 w . .) 1 0 0 1 (0x09) L2_STATUS_NR (Bits 4 to 7 must be masked.) Remark 1)
 (0 w . .) 1 0 1 0 (0x0A) L2_STATUS_DH (Bits 4 to 7 must be masked.)
 (0 0 0 0) 1 0 1 1 (0x0B) L2_STATUS_IV (Bits 4 to 7 must be masked.)
 (0 w . .) 1 1 0 0 (0x0C) L2_STATUS_RDL (Bits 4 to 7 must be masked.) Remark 1)
 (0 w . .) 1 1 0 1 (0x0D) L2_STATUS_RDH (Bits 4 to 7 must be masked.) Remark 1)
 (1 0 0 0) 1 1 1 0 (0x0E) L2_STATUS_IL (Bits 4 to 7 must be masked.)
 (1 w . .) 1 1 1 1 (0x0F) L2_STATUS_NA (Bits 4 to 7 must be masked.):
 more information in bits 4 to 7

 0 w . . 0 0 0 0 (0x00) L2_STATUS_OK: No short ack. in acc. w. PROFIBUS
 1 w 0 0 0 0 0 0 (0x80) L2_STATUS_SC + L2_STATUS_OK: Short ack. (SC) in acc. w. PROFIBUS
 1 w 0 1 1 1 1 1 (0x9F) L2_STATUS_NA_TIMEOUT: Timeout occurred (no reaction or no plausible
 reaction from remote station
 1 w 1 0 1 1 1 1 (0xAF) L2_STATUS_NA_DOUBLE_TOKEN: Double token occurred (no plausible reaction from remote
 station).
 1 w 1 1 1 1 1 1 (0xBF) L2_STATUS_NA_BUFFER_ERROR: Buffer error occurred while receiving a response telegram.
 Receiving buffer does not exist on local station or is too
 small, or remote station sent response data by mistake.

In accordance with PROFIBUS, bits 4 and 5 contain the FDL status of the remote station for the states
L2_STATUS_OK (not for short acknowledgment SC, SDN and NOP),
L2_STATUS_UE, L2_STATUS_RR, L2_STATUS_RS, L2_STATUS_DL, L2_STATUS_NR,
L2_STATUS_DH, L2_STATUS_RDL and L2_STATUS_RDH .

 . . 0 0 (0x00) L2_STATION_PASSIVE: Passive station
 . . 0 1 (0x10) L2_STATION_ACTIVE_NOT_READY: Active station not ready Remark 1)
 . . 1 0 (0x20) L2_STATION_ACTIVE_READY: Active station ready for logical token ring
 . . 1 1 (0x30) L2_STATION_ACTIVE: Active station in logical token ring

In addition, the AMPRO2 ASPC2 indicates in bit 6 whether a telegram repeat was or was not performed in
accordance with PROFIBUS during execution of this MAC job. This bit is set when a repeat occurred. This
bit is always 0 for all other AMPRO2 versions.
 In a MAC repeat job, the repeat bit is only valid for the last job performed (cycle).

 . 1 (0x40) L2_STATUS_RETRY: Telegram repeat in accordance with PROFIBUS

Examples:
 1 0 1 1 0 0 0 0 L2_STATUS_SC + L2_STATION_ACTIVE + L2_STATUS_OK
 0 0 1 1 0 0 1 1 L2_STATION_ACTIVE + L2_STATUS_RS
 0 1 0 0 1 0 0 0 L2_STATUS_RETRY + L2_STATION_PASSIVE + L2_STATUS_DL

Remarks: 1) These states do not occur when the remote station contains an AMPRO2
 implementation.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 55
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Additional value range for "as.flc.resp_status" and "as.fma.status" (8-bit evaluation):

Bit 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 (0x00) L2_STATUS_OK (All 8 bits are valid.)
 0 0 0 0 0 1 0 0 (0x04) L2_STATUS_LO (All 8 bits are valid.)
 0 0 0 0 0 1 0 1 (0x05) L2_STATUS_LL (All 8 bits are valid.)
 0 0 0 0 0 1 1 0 (0x06) L2_STATUS_NO (All 8 bits are valid.)
 0 0 0 0 0 1 1 1 (0x07) L2_STATUS_LR (All 8 bits are valid.)
 0 0 0 0 1 0 1 1 (0x0B) L2_STATUS_IV (All 8 bits are valid.)
 0 0 0 0 1 1 1 1 (0x0F) L2_STATUS_TO (All 8 bits are valid.)

 0 0 0 0 0 0 0 0 (0x00) L2_STATUS_OK_PROCESSED ((All 8 bits are valid.)
 0 0 0 0 0 1 0 1 (0x05) L2_STATUS_OK_NOT_PROCESSED (All 8 bits are valid.)

3.10 Error Outputs on AMPRO2
 Function type: void user_error_fct (UBYTE error_code, void PTR_ATTR *error_ptr);

 Error codes: See below.
 Error ptr: The error pointer is either 0 or points to the application block which was being
 processed by AMPRO2 when the error occurred.
 See also description of the user_error_fct_ptr parameter in the layer-2 init-block.

 (FLC_FMA_MAC_RESET service)

Error codes for the AMPRO2 ASPC2:

(0x50) L2_INTERNAL_OPCODE_ERROR Opcode error on AMPRO2
(0x51) L2_CON_IND_OPCODE_ERROR Opcode error on the L2 con-ind handler
(0x53) L2_ASPC2_STEP_ERROR_TOO_OLD ASPC2 STEP error. This STEP is no longer supported by this
 AMPRO2.
 (Check "ASPC2_GREATER_EQUAL_STEP_x" in config.h.)
(0x54) L2_ASPC2_STEP_ERROR_TOO_NEW ASPC2 STEP error. This STEP is no longer supported by this
 AMPRO2.
 (A more recent AMPRO2 may need to be obtained.)

SchnittStellenCenter ASPC 2

Page 56 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

4 AMPRO2 CBF Distributor

4.1 General
Since AMPRO2 does not yet have l2_open() functionality, a call back function distributor (i.e., CBF
distributor) has been implemented. This CBF distributor must be available to all other AMPRO2 users so
that the CBFs can be sent to the appropriate users.

4.1.1 Description of the Procedure

Each module required by AMPRO2 issues service requests as the requester with the "l2_req(apb_ptr)" call
to AMPRO2, or expects confirmation as the responder from AMPRO2. The confirmation or response is
reported via call back functions to the responder or requester. The appropriate job block (apb_ptr) is
transferred to the responder/requester with the confirmation/response. The job can now be evaluated by the
applicable module based on the job block.

The requester sends a l2_req() to AMPRO2. AMPRO2 executes the job and sends the response to the CBF
distributor. The distributor uses the job block (apb_ptr->subsystem) to determine the applicable module and
calls the CBF server (CB_SERVER(apb_ptr) of the module with the reference of the job block. The final call
back function is called on the CBF server based on the job block (apb_ptr->subsystem).

AMPRO2

CBF-Verteiler

MODUL AMPRO-DPM

CB_SERVER(apb)

func_1(apb)

func_1(apb)

func_1(apb)

l2_req(apb)

MODUL-2

CB_SERVER(apb)

func_1(apb)

func_1(apb)

func_1(apb)

l2_req(apb)

MCP (Master-Control-
Programm von
AMPRO-DPM)

ERROR(errorcb)

Module structure of the CBF distributor/server concept based on the AMPRO2-DPM

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 57
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

4.1.2 Definitions

The following files are required for the CBF distributor.

 - SYS_CBD.H // Contains the required definitions
 - SYS_CBD.C // Contains the CBF distributor

The CBF distributor internally calls an error function when errors occur. This function is reported to the CBF
distributor and must correspond to the error function of the AMPRO2-DPM.

4.1.2.1 CBF Distributor Structure

The CBF distributor requires the following structure.

struct srv_def
{
 /* CBF server function pointers */

 void SYS_CBD_FUNC_ATTR error (ERRCB);
 void SYS_CBD_FUNC_ATTR server_function_1 (L2_APB_PTR);
 void SYS_CBD_FUNC_ATTR server_function_2 (L2_APB_PTR);
 void SYS_CBD_FUNC_ATTR server_function_3 (L2_APB_PTR);
 void SYS_CBD_FUNC_ATTR server_function_4 (L2_APB_PTR);

};

The size of the structure must be adapted to the AMPRO2 users. The structure is currently designed for 4
different modules. When more modules are required, the server_function_x() entries must be expanded.

4.1.2.2 CBF Distributor Function

The CBF distributor is defined as follows in the SYS_CBD.C file.

 void L2_CALL_BACK_CODE_ATTR ampro2_cbf_distributor (void)

4.1.2.3 CBF Server Function

The CBF server functions of the individual modules or the CBF distributor must be defined as shown below.

 void SYS_CBD_FUNC_ATTR server_function_X (L2_APB_PTR);

Since the CBF server function is inserted as a pointer in the CBF distributor structure, any function name can
be selected.

4.1.2.4 CBF Error Function

The CBF distributor also requires an error() function. This error() function is also inserted in the CBF
distributor structure. The ERRCB structure is not described here. For details, see the specifications of the
AMPRO-DPM.

 void SYS_CBD_FUNC_ATTR error (ERRCB)

SchnittStellenCenter ASPC 2

Page 58 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

4.2 Implementation
Each module required by AMPRO2 must have a way of receiving the call back functions of AMPRO2. The
number of required CBF functions per module and the number of AMPRO2 users must be known to the CBF
distributor.

To make assignment of the CBF functions to the AMPRO2 users simple, use the following organization.
 CBF user 1 is assigned function identifier 1 for the CBF distributor.
 CBF user 2 is assigned function identifier 2 for the CBF distributor.
 ...
 CBF user x is assigned function identifier x for the CBF distributor.

When more than the 4 AMPRO2 users currently provided for exist, the concept of the CBF distributor must
be expanded by the user.

The SYS_CBD_FUNC_ATTR attribute is defined for the function attributes in "fw_defma.h". Setting of this
attribute depends on the hardware and must be set by the user in accordance with his particular
requirements.

4.2.1 Number of AMPRO2 CBFs Per User

The number of CBF functions per CBF server must be specified for the CBF distributor. The following
specifications have been used for our example.
- For CBF server 1: 70 CBF functions
- For CBF server 2: 20 CBF functions
- For CBF server 3: 20 CBF functions
- For CBF server 4: 20 CBF functions

Definition of the CBF areas for the individual AMPRO2 users in SYS_CBD.H

/*+---¦*/
/*¦ Note: for the IM308C-Hardware the FUNC1-define is used by the dpm_l2_cb_server, ¦*/
/*¦ the FUNC2-define is used by the dpx1_l2_cb_server, ¦*/
/*¦ the FUNC3-define is used by the dpx2_l2_cb_server, ¦*/
/*¦ the FUNC4-define is used by the dps_l2_cb_server, ¦*/
/*¦ This general layout can used by every AMPRO2-CBF-USER ¦
/*+---¦*/

 #define SRV_FUNC1_CBF_NR 70 /* numbers of cbfs for cbf-server-function1
 #define SRV_FUNC2_CBF_NR 20 /* numbers of cbfs for cbf-server-function2
 #define SRV_FUNC3_CBF_NR 20 /* numbers of cbfs for cbf-server-function3
 #define SRV_FUNC4_CBF_NR 20 /* numbers of cbfs for cbf-server-function4

 #define SRV_FUNC1_MIN_NR 0 /* function_1 begins with subsystem-n

 #define SRV_FUNC1_MAX_NR SRV_FUNC1_MIN_NR + SRV_FUNC1_CBF_NR - 1

 #define SRV_FUNC2_MIN_NR SRV_FUNC1_MAX_NR
 #define SRV_FUNC2_MAX_NR SRV_FUNC2_MIN_NR + SRV_FUNC2_CBF_NR - 1

 #define SRV_FUNC3_MIN_NR SRV_FUNC2_MAX_NR
 #define SRV_FUNC3_MAX_NR SRV_FUNC3_MIN_NR + SRV_FUNC3_CBF_NR - 1

 #define SRV_FUNC4_MIN_NR SRV_FUNC3_MAX_NR
 #define SRV_FUNC4_MAX_NR SRV_FUNC4_MIN_NR + SRV_FUNC4_CBF_NR - 1

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 59
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

4.2.2 CBF Server Functions
Each user must provide a function which calls the applicable CBF of the module (i.e., the CBF server). It is
practical to identify this CBF server when the corresponding AMPRO2 user is initialized (e.g., in the
AMPRO2 user's own "open()" function) and enter it in the CBF distributor structure.

The CBF server receives a pointer to the application block (APB) as transfer parameter. The APB contains
the "apb->subsystem" entry in which the original identifier of the CBF is entered. The CBF can now call the
appropriate function using this identifier.

We recommend using a pointer array for implementation of the CBF server. Based on "apb->subsystems", a
jump is then made within the CBF server to the array and the function pointer to which the array entry is
assigned is called.

Definition the AMPRO-DPM CBF Server in AMPRO-DPM

/*+--+*/
/*¦ function: dpm_l2_cb_server ¦*/
/*¦ ¦*/
/*¦ duty: At the moment AMPRO2 is not able to call USER-CBF's, so ¦*/
/*¦ the USER has to call the CBF's by himself. While this ¦*/
/*¦ ability is missing, the following function calls all ¦*/
/*¦ CBF's for AMPRO-DPM. ¦*/
/*¦ ¦*/
/*¦ parameters: L2_APB_PTR ¦*/
/*¦ ¦*/
/*¦ return value: none ¦*/
/*+--+*/

DPM_EXTERN_SMCO void SYS_CBD_FUNC_ATTR dpm_l2_cb_server (L2_APB_PTR apb_ptr)
{
 (*_dpm.cbf.arr[apb_ptr->subsystem].func_ptr) (apb_ptr);
}

Definition of the CBF structure in the AMPRO2-DPM for its CBF server

struct cbf_def
{
 Unsigned8 func_code;
 Unsigned8 res;
 void func_ptr_name__(L2_CALL_BACK_CODE_ATTR,L2_APB_PTR);
};

struct cbf_str_def
{
 struct cbf_def diag1;
 struct cbf_def prm;
 struct cbf_def cfg;
 struct cbf_def diag2;
 struct cbf_def data;
 struct cbf_def prm_unlock;
...
};

SchnittStellenCenter ASPC 2

Page 60 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

4.2.3 Initialization of the AMPRO2 CBF Distributor
The "_srv" CBF distributor structure must be initialized by a higher-level instance. The CBF server functions
and an error function are entered as pointers in this structure. The structure must be initialized by AMPRO2
before startup. CBF server functions which are not used must be initialized with ZERO. The error function is
called by the CBF distributor when an error occurs. FW_ERROR.H contains the error definitions of the error
function.

In addition to initializing the structure, the actual CBF distributor ("ampro2_cbf_distributor(void)") must be
entered in ASIC event.
The required AMPRO2 interrupt handler has already been called internally before
ampro2_cbf_distributor(void).

/* enter the "error-function" for the ampro2_cbf_distributor() */
_srv.error = system_error_function;

Initialization of the CBF server for the AMPRO-DPM after the dpm_open() function

/* get the dpm_l2_server-function and enter it in the _srv-struct */
_srv.server_function_1 = mcp. dpm_ptr-> dpm_l2_cb_server;

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 61
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5 DPM Interface

5.1 Introduction

5.1.1 Communication Model

Communication of the individual SW elements with the AMPRO-DPM and with AMPRO2 is handled by
function calls and call back functions (i.e., CBF). This technique permits hardware-dependent program
sections to be relocated easily, thus making AMPRO2 and AMPRO-DPM independent of the hardware. An
otherwise essential mailbox system can also be omitted along with the time required for transmission and
coordination (e.g., by an operating system).

Initialization of this service is triggered by the user with normal function calls. The user uses an XXX_OPEN
call to obtain the addresses of these functions from the partner beforehand. All AMPRO-DPM functions
which are relevant to the USER are explained in detail in the section on AMPRO-DPM functions.

In contrast, call back functions must be supplied by the user. AMPRO2 or AMPRO-DPM requires the
address of this function before it can call a CBF. Their transfer by the USER is performed in the job blocks
described below. Pointers to the job blocks are usually the transfer parameters of the normal functions.
When an event occurs in a SW package (e.g., AMPRO-DPM) which also pertains to the other SW package
(e.g., that of the USER), a previously specified function of the other package is called. Page 66 of the
section on sequence charts shows a flow chart of the procedure.
Since CBFs are usually executed at the interrupt level, their execution times and code should be kept as
short as possible. This function must still be provided even when a CBF is not required by the destination
system. Its body can consist of the "return" command only (i.e., dummy function). The same applies to all
normal functions described here (detailed description starting on page 86) and CBFs (detailed description
starting on page 127).
Communication with the CBF permits recursive function calls. For example, when the AMPRO-DPM calls a
function of the USER, the USER could call an AMPRO-DPM function before exiting the first function. Such
recursive calls are only possible under certain conditions. They may never be used for the AMPRO-DPM.
AMPRO2 may only execute a maximum of one additional AMPRO2 job from a call back function. See the
specifications of AMPRO2 for prerequisites applicable to the use of recursive calls by AMPRO2.
All functions of the AMPRO-DPM are non-reentrant (i.e., the user may not start the same function again as
long as a function call is running). The AMPRO-DPM usually performs a plausibility check on this. An
AMPRO-DPM function may also not be called from a CBF. When the USER wants to use an AMPRO-DPM
function in reaction to an AMPRO-DPM CBF, he must set a flag within the CBF, conclude the CBF, and then
start the required function based on the flag. See also section on call structure for the USER on page 81.
Most CBFs of the USER must be able to be called within the USER call. This procedure is described in
more detail in the description of the CBFs starting on page 127.

The AMPRO-DPM does not take action on its own initiative. It requires external triggering to process the
required software sections. This trigger is provided by the USER for new jobs or for time control of the
USER. Cyclic processing of already issued jobs is ensured by return messages from AMPRO2 to AMPRO-
DPM.

SchnittStellenCenter ASPC 2

Page 62 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.2 Definitions

5.1.2.1 Sequence of Bytes of a Word

There are two ways to organize the two bytes of a word.

Address Big-Endian-
(Intel™-)
Format

 Little-Endian-
(Motorola™-)

Format

: : :
x + 1 High byte Low byte

x Low byte High byte
: : :

Unfortunately, both techniques must also be used in this system depending on the particular definition. For
example, all words which are sent via PROFIBUS-DP must be transferred in Little-Endian format. The
required word format is pointed out separately in some important instances.

5.1.2.2 Use of the ISO/OSI Reference Model

Of the 7 layers of the ISO/OSI reference model, layers 1 and 2 of the PROFIBUS standard are defined for a
PROFIBUS system. On AMPRO2, layer 2 is also divided into two "half layers" so that the jobs of the
individual layers can be better described. The following figure shows the divisions and designations of the
layers. The abbreviations used in the figure are also used for the applicable AMPRO2 services. For
example, the AMPRO2 command for a general reset of the interface is FLC_FMA_MAC_RESET.

Figure 2: Use of the ISO/OSI reference model for AMPRO2

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 63
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.1.2.3 Inputs/Outputs

The term input or output as used in these specifications always refers to the DP master. Data which are
transferred from a DP slave to the DP master are inputs. Data which are transferred from the DP master to
the DP slave are outputs. The following figure illustrates these designations.

DP Master PROFIBUS-DP DP Slave

Outputs Send Receive Outputs
Inputs Receive Send Inputs

Figure 3: Direction of data transmission for inputs and outputs

5.1.2.4 Types of Variables

The following globally accessible definitions exist for the variable types used in these specifications in
accordance with the PROFIBUS-DP standard.

Designation Type Length Sign

Octet 8 bits -

Unsigned8 Integer 8 bits / 1 octet Without sign
Unsigned16 Integer 16 bits / 2 octets Without sign
Unsigned32 Integer 32 bits / 4 octets Without sign

Signed8 Integer 8 bits / 1 octet With sign
Signed16 Integer 16 bits / 2 octets With sign
Signed32 Integer 32 bits / 4 octets With sign

Boolean Integer 8 bits / 1 octet Without sign
Bitfield Integer - Without sign

An octet is always an 8-bit value for which no sign is defined. All other data types are made up of one or
more octets.
Boolean-type variables can only assume one of the two values DP_TRUE or DP_FALSE. See also the
section on coding rules for the definitions of boolean values starting on page 154. The size of the integer for
the type bitfield is not constant since it corresponds to the natural integer size of the processor and the
compiler. In accordance with ANSI-C regulations, it is defined as "unsigned int" without the modifier "long" or
"short" so that the compiler can use the type most suitable for it. The variable type "bit" (1-bit integer without
sign) is sometimes used in these specifications. This is not a separate type. A bit is addressed via a bitfield
(format: bitfield) or via binary integer operations (format: unsigned16). Details are provided at appropriate
points.
In addition to these basic types, the octet-string and visible-string types are mentioned in the DP standard.
Since these types are not explicitly used by the AMPRO-DPM, they have not been defined separately.

SchnittStellenCenter ASPC 2

Page 64 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.2.5 Data/Coding Areas

5.1.2.5.1 Overview
Several different memory attributes (e.g., near, far, huge, etc.) must be assigned for the data and codes
based on the individual location of the particular memory areas and processor type. All attributes are
provided with definitions so that the attributes can be changed and remain independent of each other. All
pointer accesses and all function calls must be modified with attribute definitions even when the selected
attribute is a default setting. In principle, each firmware section can be used with another attribute internally
and for communication with other sections. These have already been defined for AMPRO2 in the
"\COMMON\CONFIG.H" file. In addition, the specifications described in the following sections have been
made for AMPRO2.
The USER must specify the area modifiers when the system is configured. This information can then be
used to generate the user's own AMPRO2-DPM library especially customized to this one system. When
performing any further system generations, the USER must adhere to the agreements previously made or
request a new AMPRO2-DPM library.
The following figure shows all required attribute definitions and illustrates their direction of action.

Figure 4: Illustration of area attributes

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 65
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.1.2.5.2 Attributes for AMPRO2
The mnemonic "L2_..." contains all definitions which are relevant to the AMPRO2. The two AMPRO2
function attributes apply equally to the USER and AMPRO-DPM. In addition to the area for internal data, the
AMPRO2 data area is divided into two parts (i.e., the area for application blocks and the area for the blocks
of data to be transferred).

L2_IFA_CODE_ATTR Attribute for AMPRO2 functions called by the user (i.e.,
AMPRO-DPM and the USER)

L2_CALL_BACK_CODE_ATTR Attribute for user functions called by AMPRO2

L2_APB_ATTR Attribute for the AMPRO2 memory area for application
blocks

L2_DATA_ATTR Attribute for the AMPRO2 memory area for data blocks

5.1.2.5.3 Attributes for AMPRO-DPM
Similar to AMPRO2, the mnemonic "DPM_..." is assigned to all areas for communication between AMPRO-
DPM and the USER. The following definitions are used.

DPM_IFA_FUNC_ATTR Attribute for the AMPRO-DPM functions called by the
USER

DPM_CALL_BACK_FUNC_ATTR Attribute for the USER functions called by AMPRO-
DPM

DPM_INT_FUNC_ATTR Attribute for AMPRO-DPM functions only called by
AMPRO-DPM itself (i.e., internal functions)

DPM_IFA_DATA_ATTR Attribute for the AMPRO-DPM data area (i.e., slave
control and job blocks) for the USER

DPM_INT_DATA_ATTR Attribute for the internal AMPRO-DPM data area
(structure DPM). The USER receives a pointer to this
area after calling the "dpm_open ()" function. See page
86 ff.

5.1.2.5.4 Other Attributes
In addition to the mnemonics for the individual firmware parts, mnemonics have been introduced for certain
memory areas which cannot be associated directly with a package. These memory areas are the area for
process data (i.e., inputs, outputs and diagnoses) and the area for parameter data records.

DPM_PROC_DATA_ATTR Attribute for the process data area (i.e., inputs, outputs
and diagnoses)

DPM_MOD_DATA_ATTR Attribute for the parameter data records

The USER can also make entries for identification of the job blocks described below. These have an
separately defined, internal USER data attribute.

DPM_USER_DATA_ATTR Attribute for the USER data area

SchnittStellenCenter ASPC 2

Page 66 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.2.6 Direction of Access for Processing the Job Blocks

All job blocks described in these specifications have four columns to the right showing the accessing
direction of the individual fields of a block. The two USER columns apply to the user. The two other
columns apply to AMPRO-DPM. The meaning of the entries in the USER columns is shown below.

Entry Meaning

No entry This field cannot be read or write-accessed by the USER. These
fields are reserved for AMPRO-DPM.

"X" in L column only This field can only be read-accessed by the USER (e.g., for status
messages and so on), but not write-accessed.

"X" in both columns This field must be write-accessed by the USER. The USER may
also monitor his entries.

"X" in S column only Not possible. Would serve no useful purpose anyway.

5.1.2.7 Sequence Charts

Sequence charts have been prepared for most commands. These charts illustrate the principle of procedure
of a function and are provided for better comprehension of the internal processes and the resulting reactions
of AMPRO-DPM. The following figure shows such a sequence chart using a call back function as an
example.

Figure 5: A sequence chart

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 67
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

The function designations used in the sequence charts do not show the precise names of the individually
called functions. Collective designations and short designations have been used to provide a clear overview
and not confuse you with details.
For an in-depth description of the function procedures and the correct designations, see the SDL diagrams
in part 2 of this documentation or the PROFIBUS-DP standard.

5.1.3 Structure of AMPRO-DPM

AMPRO-DPM consists of three parts which will now be described in more detail.

 DPM-USIF DPM User Interface

 DPM-SLSM DPM Slave State Machine

 DPM-DATR DPM Data Transfer

5.1.3.1 DPM-USIF (AMPRO-DPM User Interface)

The DPM-USIF is started by the USER with the AMPRO-DPM functions. See below. Using the USER's
parameters, the DPM-USIF generates all required job application blocks and internal management
structures including the required memory allocation, and transfers the first job to AMPRO2 (e.g., for the first
diagnostic request after the "add_slave ()" AMPRO-DPM function is called). After receiving the response,
AMPRO2 returns the application blocks to the DPM-SLSM and not the DPM-USIF.
As already mentioned, functions which are not required can be programmed as dummy functions (i.e., only
one "return" as function body). The next few sections provide a detailed description of the individual
functions and the required transfer parameters.

5.1.3.1.1 List of the AMPRO-DPM Functions
The DPM-USIF offers the user the following functions.

dpm_open: Registers the USER as user of AMPRO-DPM and permits the user
access to all of the following functions.
See description starting on page 86.

init: Initializes the internal management structures and allocates
appropriate resources.
See description starting on page 88.

add_slave: Adds a slave to AMPRO-DPM management, allocates the
appropriate resources and, if possible, starts data communication
with the slave.
See description starting on page 96.

withdraw_slave: Concludes data communication with a slave, releases the related
resources and removes the slave from AMPRO-DPM
management.
See description starting on page 100.

restart_slave: If possible, restarts data communication with a slave which has
exited the DATA or DIAG2_STATUS state in master operating
mode AUTOSTOP.
See description starting on page 103.

set_master_mode: Performs the change in state of the master and handles the slaves
accordingly.
See description starting on page 104.

set_slave_mode: Sends a global control command to one, several or all slave
groups assigned to the master, or to one specific slave.

SchnittStellenCenter ASPC 2

Page 68 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

See description starting on page 107.

set_slave_address: Sets the PROFIBUS station address of a slave whose address can
be changed.
See description starting on page 113.

mark_cycle: Reports a complete slave polling cycle to the USER. This service
is used to determine whether all slaves have received current data.
See description starting on page 117.

close: Logs off the USER as user of AMPRO-DPM.
See description starting on page 126.

In addition to these basic functions, the DPM-USIF offers functions for processing long consistency and
Buffered_Mode.

input_update: Starts processing for receipt of new input data.
See description starting on page 118.

output_update: Starts processing for transmission of new output data.
See description starting on page 121.

consistency_update: Update cycle for updating the input buffer data of slaves with long
consistency or Buffered_Mode slaves.
See description starting on page 123.

A timer is required for processing the slaves. This timer must be provided by the USER. Correct
processing of the standard DP protocols is not possible without this timer. The following function is part of
the timer processing system. The function must be called cyclically by the user.

timer_expired: Executes actions required after the timer provided by the USER
expires.
See description starting on page 124.

Some parts of the communication are handled by CBFs and are interrupt-controlled. To be able to call these
CBFs within the interrupt routine, AMPRO-DPM provides the user with a function distributor.

dpm_l2_cb_server: Calls the AMPRO-DPM CBFs during an interrupt routine.
See description starting on page 127.

5.1.3.1.2 List of the CBFs of the USER
The USER should also provide functions for AMPRO-DPM. These are used to inform the USER of
important occurrences on AMPRO-DPM. They are also indispensable for maintenance of data
communication.

init_done: Response message for calling the "init ()" function.
See description starting on page 128.

state_report: Operating state indication for a slave.
See description starting on page 128.

withdraw_slave_done: Response message for calling the "withdraw_slave ()" function.
See description starting on page137.

set_master_mode_done: Response message for calling the "set_master_mode ()" function.
See description starting on page 136.

set_slave_mode_done: Response message for calling the "set_slave_mode ()" function.
See description starting on page 138.

set_slave_address_done: Response message for calling the "set_slave_address ()" function.
See description starting on page 138.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 69
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

mark_cycle_done: Response message for the "mark_cycle ()" job.
See description starting on page 139.

set_timer: The USER must start the timer reserved for AMPRO-DPM.
See description starting on page 140.

bus_accessible: Note on functionality of the bus (e.g., when a short circuit occurs).
See description starting on page 140.

error: An error which AMPRO-DPM is unable to handle has occurred.
This error corresponds to a system crash. The USER must
provide a reaction (e.g., software reset).
See description starting on page 143.

The following CBFs are required to ensure data consistency.

write_inp_data_to_pda: The USER must copy inputs from a buffer to the process data area
while the consistency disable is activated.
See description starting on page141.

read_outp_data_from_pda: The USER must copy outputs from the process data area to a
buffer while the consistency disable is activated.
See description starting on page141.

write_diag_data_to_pda: The USER must copy diagnostic data from a buffer to the process
data area while the consistency disable is activated.
See description starting on page142.

clear_cons_input_data: The USER must clear the outputs in the process data area . while
the consistency disable is activated.
See description starting on page 142.

consistency_update_done: The USER receives a message indicating that the update cycle for
the inputs of the slaves has been performed with long consistency
or Buffered-Mode.
See description starting on page 143.

The following CBFs are required for certain S7_Slaves for which the configuration is requested after startup.

copy_s7_get_cfg_data: The USER receives a pointer-pointer to the buffer with the current
configuration data which the user must check.
See description starting on page 141.

In addition to these functions, AMPRO-DPM must be temporarily able to ensure that it will not be interrupted
by an ASIC interrupt and thus by an AMPRO2 function. The functions for disabling and enabling the ASIC
interrupt must already be supplied by the user for AMPRO2. See page 79 ff.

asic_int_disable: Disable the ASIC interrupt.
See description starting on page 143.

asic_int_enable: Enable the ASIC interrupt.
See description starting on page 143.

SchnittStellenCenter ASPC 2

Page 70 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.3.2 DPM-SLSM (AMPRO-DPM Slave State Machine)

The DPM-SLSM is started by AMPRO2 when it receives a job block with a confirmation. The originator of
this job was the DPM-SLSM itself or the DPM-SLSM. The DPM-SLSM evaluates the block and handles the
related slave in accordance with the PROFIBUS-DP standard, or, when a DP Siemens slave is involved, in
accordance with ET 200 communication specifications. AMPRO-DPM enters the next status which the slave
assumes in the slave control block (SLCB), transfers to AMPRO-DP the application block required for the
change in state and waits for this block to be returned.
For some changes in state or for certain changes within a state in the state machine, AMPRO-DPM calls a
call back function of the user whose address was previously provided to AMPRO-DPM by the user. See
description of the "state_report ()" function starting on page 128. Using this call back function, the USER
can have certain functions executed (e.g., address an LED when a slave has failed). AMPRO-DPM is not
aware of the effect of this function. Also applicable here: Functions not required by the USER must still be
executed with at least a "return" command (i.e., dummy function).
For the individual function calls, see the sequence charts of the different functions.

5.1.3.3 DPM-DATR (AMPRO-DPM Data Transfer)

DPM-DATR is responsible for correct transmission of the data between USER and AMPRO2. In SLCB, the
user must transfer one pointer to the input, output and diagnostic data area for each slave. AMPRO-DPM
(i.e., the PROFIBUS ASIC or the processor on which AMPRO-DPM is being used) must be able to access
these areas with normal memory commands or DMA transfers without any additional information since the
current process data of DPM-DATR are directly transferred to these areas or read from these areas.
Depending on the requirements, the transmission of data can performed with various consistency assurance
procedures. For further information, see the section on consistency assurance (page 70 ff.).

5.1.4 Consistency Assurance
Possible process data flows are divided into three groups for consistency assurance (i.e., inputs, outputs
and diagnoses). For the inputs and outputs, one of the three possible types of consistency can be selected
(i.e., "without", "short" or "long"). The selection is made by making an entry in the Slave_User_Data field of
the slave parameter record. See the section on parameterization starting on page 73. In contrast,
diagnostic data must always be transferred with "long" consistency.

At total of up to 244 bytes each of inputs, outputs and diagnoses can be transferred per slave. Depending
on the type of consistency required, this maximum length may have to be reduced.

5.1.4.1 "Without" Consistency or Byte Consistency

The "without consistency" type of access actually means byte consistency. This type of access is divided
into direct accesses and accesses in Buffered_Mode.

5.1.4.1.1 Direct Access
With direct access, AMPRO-DPM or the PROFIBUS ASIC takes all sending data directly from the output
data area. All receiving data are entered directly in the input data area. Only the two pointers (entered in
the SLCB) to the input and output areas are required. When an array of several bytes is involved, the data
can be updated at every byte boundary (i.e., a contiguous information field may not be longer than one byte).
This access technique ensures the fastest possible data update cycle and the transmission of large amounts
of data up to 244 bytes. In addition, it is the simplest way to transfer data both for AMPRO-DPM and the
USER. This type of data transmission can only be used for inputs under certain conditions, however. See
the section on Buffered_Mode below.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 71
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.1.4.1.2 Buffered_Mode
Due to several AMPRO2 characteristics, processing of the inputs without consistency is only possible up to a
specified data length used by the PROFIBUS ASIC (ASPC2 STEP B: 58 bytes; ASPC2 STEP C: 122 bytes).
When larger input data areas of a slave are involved, the inputs must be stored intermediately by AMPRO-
DPM. AMPRO-DPM obtains this buffer from AMPRO2 memory management when "add_slave ()" is called
based on the entries in the slave parameter record. The data may not be transferred to the process data
area until receipt of the telegram is complete and correct. The processor must handle this copying
procedure itself. The USER must keep the number of update cycles as low as possible so that the
processor is not overloaded too frequently with telegrams (e.g., at 12 Mbaud). The procedure corresponds
to "long" consistency. See below.
In Buffered_Mode, input data may not exceed 244 bytes per slave.

5.1.4.2 "Short" Consistency

Using appropriate entries in the AMPRO2 application blocks, the ASPC2 PROFIBUS ASIC can activate a
hardware consistency mechanism before accessing the process data area. If the USER and the ASIC
simultaneously access the process data area with consistency, the READY signal is withdrawn from one of
the partners. The READY signal for access to the process data area is returned to the other partner
immediately after the first partner concludes its access. This type of consistency permits the same simple
and fast direct accesses as with byte consistency, even for contiguous information fields of more than 8 bits.
In addition to READY withdrawal, the ASIC permits disabling with HOLD signals. For more detailed
information, see the documentation of AMPRO2.
Basic prerequisite: The hardware must be equipped with suitable consistency control logic. The duration of
the READY delay or the HOLD disable presents another problem. Since one of the partners is completely
stopped during this time, it must be ensured that the amount of data transferred with "short" consistency
does not become too large. When the USER host accesses the process data area for too long a period of
time, this causes errors in telegram processing particularly when high baud rates are used. The maximum
duration of such an access must be calculated empirically by the USER based on the particular hardware
environment. This must usually be calculated for each baud rate separately. The maximum amount of data
which can be transferred with "short" consistency (i.e., the consistency limit) is determined from the
maximum duration. For ASPC2 STEP B, the consistency limit may not exceed 58 bytes in each direction.
For ASPC2 STEP C, the limit is 122 bytes.

5.1.4.3 "Long" Consistency

When greater amounts of data are to be transferred than are possible with "short" consistency, "long"
consistency must be set. "Long" consistency uses Buffered_Mode (i.e., when "add_slave ()" is called,
AMPRO-DPM occupies several data buffers of AMPRO2 memory management. During cyclic data
communication, AMPRO2 executes the AMPRO-DPM jobs with a set of these buffers. At certain points in
time, these buffers are disabled by AMPRO-DPM and replaced with new ones. Transfer of the data to the
process data area uses a consistency control which can be implemented on both hardware and software
(e.g., semaphores). The USER can specify the type of lock. It only has to be set before the data are copied
and then reset again. AMPRO-DPM uses a CBF to initiate the start of the copying procedure.
When the consistency lock is activated, one condition must be fulfilled, however. Activation may not cause a
delay. For example, when the USER must copy data in a shared memory area with a CBF call of AMPRO-
DPM, the user determines that the other party is accessing the shared memory area while the consistency
lock is activated. In this case, the USER may not wait "inside" the CBF for the other party to finish the
copying procedure which was just started. Instead, the USER must intermediately store the data to be
copied somewhere else and conclude the CBF immediately. The USER cannot start copying the data to the
required area until he has received access to the shared memory later.
The DP standard states that length and characteristics of the input and output data of a slave must be
specified with configuration identifiers. One of these identifiers may describe a data area of up to 128 bytes
in length. This also permits consistent areas with up to 128 bytes. When "long" consistency is used, slave
data are processed by slave and not identifier. This permits use of long consistency data lengths of up to
244 bytes for the individual consistent areas.

SchnittStellenCenter ASPC 2

Page 72 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.5 Prerequisites for Use of AMPRO-DPM

5.1.5.1 Programming Language

AMPRO-DPM is written in programming language C. Since only ANSI-C elements were used, the call
interface for AMPRO-DPM is the same for all ANSI-C-compatible C or C++ compilers.
If the USER system is to be written in another programming language, the USER must adhere to the ANSI-C
conventions when calling AMPRO-DPM functions. Since all global headers must also be rewritten in the
new language, we recommend using an ANSI-C-type language for the USER system too.

5.1.5.2 Layer-2 Interface "AMPRO2"

The AMPRO2 layer-2 firmware must be used as the interface to layer 2 (part 1 of PROFIBUS standard).
AMPRO2 is built directly on the PROFIBUS ASIC used and must be adapted to the particular ASIC type.
AMPRO2 must have been initialized before the first AMPRO-DPM call of a USER instance. The following
parameters must be set, among others.

 "DP" operating mode

 Times in accordance with the required bus parameter record

The AMPRO-DPM software cannot check these parameters for plausibility. COM ET 200 for Windows
(starting with V 1.0) is a suitable parameterization tool since it offers an easy-to-use environment and also
handles the extensive calculations of the bus parameters suitable for the configured ET 200/DP system. In
addition, AMPRO2 memory management must be initialized by the USER so that it can make both the layer-
2 and layer-4 application blocks available. See section on resource requirements starting on page 75.
AMPRO-DPM uses only some of the functions and services provided by AMPRO2. These are listed in the
following tables.

AMPRO2 functions:

 l2_mem_alloc_apb1 ()

 l2_mem_alloc_apb2 ()

 l2_mem_alloc_db1 ()

 l2_mem_alloc_db2 ()

 l2_mem_alloc_db3 ()

 l2_mem_alloc_db4 ()

 l2_mem_free_apb ()

 l2_mem_free_db ()

 l2_req ()

AMPRO2 service primitives:

 Opcodes

 L2_FMA_REQUEST

 L2_MAC_REP_CONFIRM_WITHDRAW

 L2_MAC_REP_REQUEST

 L2_MAC_REQUEST_HIGH

 L2_REP_REQUEST

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 73
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 Opcode modifiers
Only two of these entries are required. The USER can specify in DPMIB which of the three
definitions are to be used. See page 88 ff.

 L2_L4_HLEN_FIXED

 L2_L4_HLEN_VAR1

 L2_L4_HLEN_VAR2

AMPRO2 services

 Service codes

 L2_CLEAR_MODE_ACTIVATE

 L2_CLEAR_MODE_DEACTIVATEFehler! Textmarke nicht definiert.

 L2_MAC_REP_EXCHANGE_REQ

 L2_MAC_REP_EXCHANGE_RESP

 L2_MAC_REP_EXCHANGE_REQ_RESP

 L2_MAC_REP_EXCHANGE_REQ_SY

 L2_MAC_REP_EXCHANGE_RESP_SY

 L2_MAC_REP_EXCHANGE_REQ_RESP_SY

 L2_MAC_REP_WITHDRAW

 L2_MAC_REQ_LOCK

 L2_MAC_REQ_UNLOCK

 L2_SDN_HIGH

 L2_SRD_HIGH

 L2_SRD_LOW

 Service code modifiers

 L2_RDCONS

 L2_WRCONS

5.1.5.3 Parameterization

To process the slave, AMPRO-DPM requires from the USER a complete slave data record corresponding to
the parameter module description. AMPRO-DPM expects this information in exactly this format. The USER
transfers the slave data record by entering a suitable pointer in the SLCB. See section on the SLCB starting
on page 82 and the "add_slave ()" function starting on page 96.
As long as the slave remains activated, AMPRO-DPM must be able to access this record at all times without
any other mechanisms. This must be possible without any other mechanisms. The PROFIBUS ASIC used
by AMPRO2 must also be able to access certain parts of this record (see table) directly. The following table
shows which areas of a slave parameter record are used by which components.

SchnittStellenCenter ASPC 2

Page 74 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Components of the Slave Parameter Record Access by
Name Designator AMPRO-DPM PROFIBUS ASIC

S7 CPU header - No No
COM-related header - Yes or no No
General slave data Slave_Para_Data Yes No
Parameterization data Prm_Data Yes Yes
Configuration data Cfg_Data Yes Yes
Address table Add_Tab No No
Slave user data Slave_User_Data Yes No
STS configuration data STS_Cfg_Data No (up to now) No (up to now)
S7 substitute configuration data S7_Ersatz_Cfg_Data No (up to now) No (up to now)
COM private data - No No

The USER can transfer the parameter record to AMPRO-DPM as one complete record or in individual
components. When the complete parameter record is transferred, AMPRO-DPM must determine the
location of the individual components based on the required COM-related headers. When the parameter
record is transferred in individual components, the USER transfers to AMPRO-DPM one pointer for each
partial component. AMPRO-DPM can then disregard the COM header. See section on SLCB starting on
page 82.
Since the areas STS configuration data and S7 substitute configuration data have not yet been defined, they
have not been used either. These data blocks may find use in the future with later versions of AMPRO-DPM
after appropriate specifications have been made for these areas in the parameter module description.
Special notification will be provided.
The USER can use the master-related parameters also defined in the parameter module description (e.g.,
bus parameter record, master or host parameters, and so on) in any desired format since they must be taken
by the USER from the parameter record for specific functions and entered in the AMPRO-DPM job blocks,
and are not transferred directly to AMPRO-DPM.

We recommend using a suitable parameterization tool (e.g., COM ET 200 for Windows starting with version
V 1.0) to generate these parameter records.
Although several entries are required as words in the parameter module description, the sequence of entry
of the bytes within a word depends on the parameterization tool which was used to generate the parameter
record. For example, COM ET 200 generates all word entries in Big-Endian format (see page 62) when
exporting a parameter file to a memory card or as a binary file. However, Little-Endian format is used for
exporting as an S7 data block. Macros which convert the word entries to the required format are used when
processing the parameter record so that AMPRO-DPM can react to these differences. These macros are
controlled by a compiler switch which must be entered in the "COMM_DEV\DEV_DEF.H" file:
DPM_MODULE_FORMAT_xxxx_ENDIAN. In this definition, the string ..._xxxx_... must be replaced by the
format of the parameter record (i.e., with ..._HIGH_... for High-Endian format or with ..._LITTLE_... for Little-
Endian format). For more information on the "COMM_DEV\DEV_DEF.H" file, see part 3 of these
specifications.

5.1.5.4 Consistency Monitoring

When the transmission of consistent data is required on the USER side, the USER must provide a suitable
means of monitoring (hardware/software) the consistency requirements.
This operating mode is enabled on AMPRO-DPM when the parameter record is transferred. When the
USER is unable to guarantee consistency, the USER must ensure that this parameter record does not
contain a module which requires consistent processing. See also the section on consistency assurance
starting on page 70.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 75
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.1.5.5 Resource Requirements

Caution: All specifications in this section may change in the course of
development or due to new functions or requirements.

5.1.5.5.1 Operating System
Both AMPRO2 and AMPRO-DPM are totally independent of the operating system. Use of an operating
system depends on how many processors the USER wants to use in addition to AMPRO2 and AMPRO-
DPM and the scope of these processes. In addition, the timer (see page 78) or stack and error handling
may require an operating system if there is no other way to implement these functions. An operating system
can be omitted when the required functions can be provided by other means and the scope of the USER
programs is minimized.
The USER can also convert the CBF interface of AMPRO-DPM to a mailbox interface when necessary.

5.1.5.5.2 Memory
If not otherwise specified, all values given here for required memory refer to AMPRO-DPM only. Additional
code and data memory is required for firmware packages such as AMPRO2, the operating system and the
USER area.

AMPRO-DPM and the user require memory resources. Some of the resources for AMPRO-DPM must be
provided by the USER with the AMPRO2's own memory management. This memory management is
primarily block-oriented and can provide up to six different types of data blocks. This relieves the USER of
managing memory during operation.
Before startup of AMPRO-DPM, the USER must initialize AMPRO2 memory management in addition to
initializing the AMPRO2 layer-2 interface. This is performed with the "l2_mem_init_... ()" function whereby
each call stands for a certain data area. The USER transfers the functions to a sufficiently dimensioned
memory area which can hold all blocks of the type selected. Additional conditions apply to the location of the
areas for application blocks. To put it simply, this area must be located within a 64-kbyte segment together
with the SCB (i.e., System Control Block) of the ASIC. See also the cb_segment_start_ptr entry in DPMIB
starting on page 88. In contrast, the AMPRO2 data blocks for the input and output area are only required for
Buffered_Mode (see page 71 ff.) for slaves with "long" consistency or for large amounts of input data. They
are allocated automatically by AMPRO-DPM when necessary.

The following is an example of total memory requirements for version V 1.0 for the IM 308-C.

Code Total: 118 kB (approx.)
 Of this total, AMPRO2: 17 kB (approx.)
 Of this total, AMPRO-DPM: 37 kB (approx.)

Data Data blocks: 128 kB (approx.)
 Application blocks: 23 kB (approx.)
 Total internal processing: 25.7 kB (approx.)
 Of this total, AMPRO2: 0.5 kB (approx.)
 Of this total, AMPRO-DPM: 0.5 kB (approx.)

However, each time new modules are added, conditions and environment must be examined again by the USER and the memory
requirements of the new module calculated again.

SchnittStellenCenter ASPC 2

Page 76 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.1.5.5.2.1 Code
Since the amount of code depends on a number of factors (e.g., the compiler used to generate the code, the
type and organization of the hardware and similar), the exact amount cannot be specified here. It is
possible, however, to limit the total functionality of the firmware and reduce the amount of code. Generation
of such subsets may affect the following areas.

 Without Siemens DP slaves

 Without processing using "long" consistency

 Without slave deactivation

These subsets are not yet contained in the code. They must be supplied based on USER requirements.

5.1.5.5.2.2 Data
AMPRO2-L2 application blocks (L2-APB):

Size: 24 bytes

The size depends on the memory model used. The specified value applies to the
"SMALL" model. Use of models which require the FAR pointer for data increases
memory requirements by at least 6 bytes.

Number (global): 14 APBs

- 8 "dummy_apb" APBs for the "set_slave_mode ()" function
- 1 "exchange_apb" APB, 1 "withdraw_apb" APB and 1 "lock_apb" APB for the

"set_master_mode ()" function
- 1 "mark_apb" APB for the "mark_cycle ()" function
- 1 "ssla_apb" APB for the "set_slave_address ()" function
- 1 "bus_accessible" APB for the "bus_accessible ()" CBF

Number per slave: Max. of 7 APBs

- 1 "diag" APB for slave states DIAG1 and DIAG2
- 1 "cfg" APB for slave state CFG and the Read_Input service
- 1 "data" APB for slave state DATA and the Read_Output service
- 1 "withdraw_repeat" APB for the Withdraw_Repeat service
- 1 "change_i_buffer" APB for data communication (only required for slaves in

Buffered_Mode or slaves with "long" consistency)
- 1 "change_o_buffer" APB for data communication (only required for slaves in

Buffered_Mode or slaves with "long" consistency)
- 1 "clear" APB for the Clear_Data service (only required for Siemens DP slaves)

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 77
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

AMPRO2-L4 application blocks (L4-APB), type 1:

Size: 26 bytes (2 bytes more than the L2-APB)

This size also depends on the memory model used. The specified value applies to
the "SMALL" model. Use of models which require the FAR pointer for data increases
memory requirements by at least 6 bytes.

Number (global): 10 APBs

- 8 "ssm_apb" APBs for the "set_slave_mode ()" function
- 1 "smm_apb" APB for the Global_Control service, OPERATE and CLEAR

functions, and for cycle monitoring
- 1 "tex_apb" APB for the "timer_expired ()" function

Number per slave: None

AMPRO2-L4 application blocks (L4-APB), type 2:

Size: 28 bytes (4 bytes more than the L2-APB)

This size also depends on the memory model used. The specified value applies to
the "SMALL" model. Use of models which require the FAR pointer for data increases
memory requirements by at least 6 bytes.

Number (global): None

Number per slave: 1 APB

- 1 "prm" APB for the PRM and PRM_UNLOCK slave states

AMPRO2 data blocks (L2-DB):

Size: Up to 244 bytes

Number (global): Max. of 3 DBs

- 1 DB with 244 bytes for the Global_Control service, OPERATE and CLEAR
functions, and for "long" consistency or Buffered_Mode

- 1 DB with 244 bytes for the Set_Slave_Address service
- 1 DB with 6 bytes as scratchpad buffer

Number per slave: Max. of 9 DBs

- 3 DBs for input data (only for slaves with inputs which must be operated in
Buffered_Mode)

- 3 DBs for output data (only for slaves with outputs which must be operated in
Buffered_Mode)

- 2 DBs for diagnostic data. (The second DB is only required for DP Siemens
slaves. Standard DP slaves require only one DB.)

- 1 DB for parameterization data (only for DP Siemens slaves with the "SPM"
PROFIBUS ASIC)

- 1 DB for communication data (only for standard DP slaves in "Shared_IO"
mode)

To save memory space, the sizes of the individual blocks set up by the USER should
be as close as possible to the lengths required by the slaves. AMPRO2 memory
management can handle up to four different block sizes for data blocks. One of the
blocks must always have the maximum length of 244 bytes. The size of the other
blocks should be selected so that as little unused space as possible is created in the

SchnittStellenCenter ASPC 2

Page 78 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

blocks for a parameterization. AMPRO-DPM evaluates the blocks sizes selected by
the USER. See the db_len_... entries in DPMIB starting on page 88.

Other data areas:

Internal data: All internal data of AMPRO-DPM are located in the private portion of the DPM
structure. The total size of the structure including the portion accessible by the USER
is approx. 0.7 kbytes.

SLCBs: The USER must provide an SLCB for each slave. These have a minimum size of

approx. 128 bytes. Since station addresses from 0 to 125 are permitted for the
slaves, AMPRO-DPM can manage up to 125 slaves (one address is reserved for the
master). When all 125 slaves are used, the SLCB memory address area has a
minimum total size of approx. 15.7 kbytes.

This size is dependent on the memory model used and the distance of the
components from each other. The specified value applies to code and data pointer
with a size of NEAR (2 bytes). The SLCB contains approx. 31 different pointers. For
models which use the 4-byte pointers for internal and external data and for the code
(i.e., size: FAR), the size of the SLCB increases by 62 bytes to 190 bytes, thus giving
the total SLCB memory area a size of approx. 23.2 kbytes.

Process data: The USER must also provide memory areas for the storage of process data. Three

areas with a length of up to 244 bytes each are required for each slave. The exact
length is dependent on the size of the data areas required by the slave.

- 1 area for input data
- 1 area for output data
- 1 area for diagnostic data

In addition to these areas, AMPRO-DPM requires a 48-byte area in the process data
area for master diagnostics. See also the entry master_diag_ptr in DPMIB starting on
page 88.

Job blocks: Additional job blocks for calling the AMPRO-DPM functions are also required. These

blocks are only required while the particular function is being executed and can be
used for other purposes later. To put it simply, all these blocks must be located within
a 64-kB segment. See entry cb_segment_start_ptr in DPMIB starting on page 88.
The block sizes are listed below.

- DPMIB: Approx. 66 bytes
- SMMCB: Approx. 20 bytes
- SSMCB: Approx. 22 bytes (required up to 8 times; see page 107 ff.)
- SSLACB: Approx. 30 bytes
- MARKCB: Approx. 20 bytes

Also here, the stated sizes depend on the pointer sizes used. See also the remark for
SLCBs. Since each block must have at least two pointers, exact specification of the
individual block sizes is impossible.

5.1.5.5.3 Timer
A timer must be provided by the USER for the various timer intervals required by the PROFIBUS-DP
standard (e.g., DX_Control_Intervall and so on). See the "timer_expired ()" function starting on page 124.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 79
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.1.5.5.4 Interrupt Handler
The following interrupt handlers are used.

 AMPRO2 interrupt handler of the USER

 Timer interrupt

 Handler for data consistency (when required)

When SPM slaves are used, interrupt reaction times must be shorter than 10 msec. No special
requirements exist for other types of slaves. However, the effect of all delay times on all PROFIBUS time
parameters must be allowed for.

5.1.5.5.5 Disable Times
AMPRO-DPM does not trigger disable times for itself, but disable times do occur while AMPRO2 is being
executed.
In certain situations, AMPRO-DPM may not be interrupted by an AMPRO2 interrupt. This is locked by
AMPRO-DPM. The interrupt locking functions must be supplied to AMPRO-DPM by the USER. In the
simplest cases, these functions only consist of clearing or setting the interrupt enable flag. They are always
used in pairs by AMPRO2 and AMPRO-DPM. However, the USER should ensure (e.g., with one of counters
used by both functions) that a multiple call of the "interrupt disable" function is not actually enabled again
until after the same number of calls of the "interrupt enable" function.

Run times of the jobs are dependent on the specific system. The various call of the "state_report ()" function
can be used to determine the individual AMPRO-DPM run times for the changes in state. See description of
this function starting on page 128. Several measurements should be performed for each change in state to
eliminate isolated delays caused by rare interrupts. In addition, this procedure can be used to determine the
run time of the USER software at the same time.

SchnittStellenCenter ASPC 2

Page 80 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2 User Interface

5.2.1 Call Structures

5.2.1.1 Call Structure for AMPRO-DPM

AMPRO-DPM provides the USER with an Includefile in which all structures relevant to the USER are
defined. One of theses call structures is the call structure for the AMPRO-DPM functions. This structure can
be used by the USER to utilize most of the AMPRO-DPM functions. The transfer parameters of the
functions are usually data blocks containing additional information on the particular service. To improve the
organization of the programs, each of the data block structures and the pointers to these data block
structures has been provided with a separate definition. The files containing the designators are located in
the "\COMMON" directory of the transferred sources. These definitions are listed below as applicable to the
structure described here.

#define DPM struct dpm_def /* File DPM_COMM.H */

#define SLCB struct slcb_def /* File DPM_COMM.H */
#define DPMIB struct dpmib_def
#define SMMCB struct smmcb_def
#define SSMCB struct ssmcb_def
#define SSLACB struct sslacb_def
#define MARKCB struct markcb_def

#define ERRCB struct errcb_def /* File: DP_ERROR.H */

#define DPM_PTR DPM DPM_INT_DATA_ATTR * /* File: DPM_COMM.H */

#define SLCB_PTR SLCB DPM_IFA_DATA_ATTR * /* File: DPM_COMM.H */
#define DPMIB_PTR DPMIB DPM_IFA_DATA_ATTR *
#define SMMCB_PTR SMMCB DPM_IFA_DATA_ATTR *
#define SSMCB_PTR SSMCB DPM_IFA_DATA_ATTR *
#define SSLACB_PTR SSLACB DPM_IFA_DATA_ATTR *
#define MARKCB_PTR MARKCB DPM_IFA_DATA_ATTR *

#define ERRCB_PTR ERRCB DPM_IFA_DATA_ATTR * /* File: DP_ERROR.H */

This results in the following structure definition.

DPM /* File: DPM_COMM.H */
{
 /* public part */

 Unsigned16 DPM_IFA_FUNC_ATTR (*close) (Unsigned8);
 Unsigned16 DPM_IFA_FUNC_ATTR (*init) (DPMIB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*add_slave) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*withdraw_slave) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*suspend_slave) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*restart_slave) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*set_master_mode) (SMMCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*set_slave_mode) (SSMCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*input_update) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*output_update) (SLCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*consistency_update)(void);
 Unsigned16 DPM_IFA_FUNC_ATTR (*timer_expired) (void);
 Unsigned16 DPM_IFA_FUNC_ATTR (*mark_cycle) (MARKCB_PTR);
 Unsigned16 DPM_IFA_FUNC_ATTR (*set_slave_address) (SSLACB_PTR);

 void SYS_CBD_FUNC_ATTR (*dpm_l2_cb_server) (L2_APB_PTR);

 /* private part */

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 81
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 ...
 ... /* This part does not apply to the USER ! */
 ...
};

To be able to use the AMPRO-DPM functions, the USER must first call the "dpm_open ()" function (similar to
a constructor). The return value of "dpm_open()" is the pointer to the AMPRO-DPM functions as shown in
the above listed structure. See description of the "dpm_open ()" function starting on page 86. AMPRO-DPM
sets this pointer to the beginning of the structure so that the USER can use this pointer to utilize the
remaining AMPRO-DPM functions.
The return value of all AMPRO-DPM functions is a status word which provides the USER with an identifier
indicating the status of the current function. See page 154 ff. and the description of the functions.

5.2.1.2 Call Structure for the USER

Some functions (i.e., the CBFs) must be provided by the USER for AMPRO-DPM. These functions must
comply with the following declarations.

void DPM_CALL_BACK_FUNC_ATTR (*init_done) (Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*state_report) (SLCB_PTR);
void DPM_CALL_BACK_FUNC_ATTR (*withdraw_slave_done) (SLCB_PTR, Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*set_master_mode_done) (SMMCB_PTR, Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*set_slave_mode_done) (SSMCB_PTR, Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*set_slave_address_done) (SSLACB_PTR, Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*mark_cycle_done) (MARKCB_PTR, Unsigned16);
void DPM_CALL_BACK_FUNC_ATTR (*consistency_update_done)(Unsigned16);

void DPM_CALL_BACK_FUNC_ATTR (*set_timer) (Unsigned32);
void DPM_CALL_BACK_FUNC_ATTR (*bus_accessible) (Boolean);

void DPM_CALL_BACK_FUNC_ATTR (*error) (ERRCB);

void DPM_CALL_BACK_FUNC_ATTR (*write_inp_data_to_pda)
 (SLCB_PTR, Unsigned8 L2_DATA_ATTR **);
void DPM_CALL_BACK_FUNC_ATTR (*read_outp_data_from_pda)
 (SLCB_PTR, Unsigned8 L2_DATA_ATTR **);
void DPM_CALL_BACK_FUNC_ATTR (*write_diag_data_to_pda)
 (SLCB_PTR, Unsigned8 L2_DATA_ATTR **);
void DPM_CALL_BACK_FUNC_ATTR (*copy_s7_get_cfg_data)
 (SLCB_PTR, Unsigned8 L2_DATA_ATTR **, Unsigned8);
void DPM_CALL_BACK_FUNC_ATTR (*clear_cons_input_data)
 (SLCB_PTR, Unsigned8 L2_DATA_ATTR **, Unsigned8);

void DPM_CALL_BACK_FUNC_ATTR (*input_update_done) (SLCB_PTR);
void DPM_CALL_BACK_FUNC_ATTR (*output_update_done) (SLCB_PTR);

void DPM_CALL_BACK_FUNC_ATTR (*asic_int_disable) (void);
void DPM_CALL_BACK_FUNC_ATTR (*asic_int_enable) (void);

None of the USER CBFs permit return values to AMPRO-DPM. When the USER is unable to execute a
function within a CBF and this error also affects communication with AMPRO-DPM, the USER must set an
appropriate USER flag, conclude the CBF, and execute his reaction to the flag setting with a new command
to AMPRO-DPM if necessary.

Since all AMPRO-DPM functions are not reentrant (see section on communication model starting on page
61), this procedure must also be used when the USER wants to call an additional AMPRO-DPM function in
reaction to an AMPRO-DPM CBF. A USER call directly from the CBF is not permitted.

Most USER CBFs must be able to be called within the USER call. For more details, see description of the
CBFs starting on page 127.

SchnittStellenCenter ASPC 2

Page 82 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.2 Slave Control Block (SLCB)
The user provides one job data block (i.e., the Slave Control Block (SLCB)) per slave for the slave-related
functions. The easiest way for the USER to manage the SLCBs is in an array which the USER sets up
permanently for the maximum possible number of slaves. A possible definition is shown below.

 SLCB slcb[MAX_ANZ_SLAVES];

Before the block can be used for the first job, the user must enter a pointer to the slave parameter record of
the current slave in the SLCB (among others). AMPRO-DPM reads all internally required parameters from
this area, and enters these and other internal data records in the private area of the SLCB which the USER
cannot access. For this reason, each of the slave parameter records must be located in a memory area
which can be accessed by AMPRO-DPM. In addition, this memory area must be able to be accessed
without using any special access mechanisms. The USER must also provide pointers to all areas
applicable to data maintenance (e.g., pointers to the areas for input, output and diagnostic data, and so on).

The following tables show the three-part layout of the SLCB for each slave. The entries can be used as
desired before the SLCB is transferred to AMPRO-DPM for the first time. Not until the "add_slave ()" call is
executed (see page 96 ff.) do the following access restrictions take effect.

5.2.2.1 Header

The header shown below precedes all job blocks still to be described below. The header is used for
identification of the USER, the job and for internal AMPRO-DPM chaining of several blocks.

Type Designation Direction of Access
 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode
Unsigned8 subsystem X X X
L2_TYPE_ID_PTR id_ptr X X

next_blk_ptr:
prev_blk_ptr:

Internal AMPR-DPM chain control pointer to the next or previous SLCB. After transferring the SLCB to
AMPRO-DPM for the first time, the USER may never access these pointers again. See "add_slave ()"
function starting on page 96.

opcode:

The currently requested function identifier is usually transferred here. The byte is not used here since it is
not applicable to the SLCB.

subsystem:

Based on this variable, the USER identifies himself to AMPRO-DPM. It contains the dpm_handle which is
used to describe the "dpm_open ()" function in more detail. See page 86 ff.

id_ptr:

This pointer can be used as desired by the USER. It can be used as an integer value instead of a pointer.
For example, it can be used by the USER to recognize the SLCB again within the USER's own
management.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 83
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.2.2 General Portion

This area of the SLCB is processed by both USER and AMPRO-DPM. Several entries must be provided by
the USER while AMPRO-DPM informs the USER of others. During operation, the USER can access current
information from this portion after receiving access rights to the SLCB.

Type Designation Direction of Access
 USER DPM
 L S L S
DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "state_report ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "withdraw_slave_done ()"
CBF

X X X

Unsigned8 ts X X X
Unsigned8 type X X X
Unsigned8 last_state X X X
Unsigned8 actual_state X X X
DPM_MOD_DATA_ATTR * slave_para_set_ptr (pointer to the

MOD_DATA_HEADER structure)
X X X

DPM_MOD_DATA_ATTR * para_data_ptr (pointer to the
SLAVE_PARA_DATA structure)

X X X

DPM_MOD_DATA_ATTR * prm_data_ptr (pointer to the
SLAVE_PRM_DATA structure)

X X X

DPM_MOD_DATA_ATTR * cfg_data_ptr (pointer to the
SLAVE_CFG_DATA structure)

X X X

DPM_MOD_DATA_ATTR * user_data_ptr (pointer to the
SLAVE_USER_DATA structure)

X X X

DPM_MOD_DATA_ATTR * sts_cfg_data_ptr (pointer to the
SLAVE_STS_CFG_DATA structure)

X X X

DPM_MOD_DATA_ATTR * s7_cfg_data_ptr (pointer to the
SLAVE_S7_CFG_DATA structure)

X X X

DPM_PROC_DATA_ATTR * input_data_ptr (pointer to an Unsigned8
array)

X X X

Unsigned8 input_data_len X X X
Unsigned8 input_data_db_no X X X
Unsigned8 Reserved for later developments
DPM_PROC_DATA_ATTR * output_data_ptr (pointer to an Unsigned8

array)
X X X

Unsigned8 output_data_len X X X
Unsigned8 output_data_db_no X X X
Unsigned8 special_functions X X X
DPM_PROC_DATA_ATTR * diag_data_ptr (pointer to the SLAVE_DIAG

structure)
X X X

DPM_PROC_DATA_ATTR * act_diag_data_len_ptr (pointer to an
Unsigned16 value)

X X X

Unsigned8 act_diag_data_len X X X
Boolean new_diag_data X X X
Unsigned8 max_s7_cfg_data_len X X X
Unsigned8 max_s7_cfg_data_db_no X X X

SchnittStellenCenter ASPC 2

Page 84 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Pointer to the "state_report ()" CBF:
Pointer to the"withdraw_slave_done ()" CBF:

Here, the USER can enter for each slave the function which is to be called as a call back function at a
certain time. See also the section on USER CBFs starting on page 127. The USER decides whether to
provide one function for each slave or use one function for several slaves.

ts:

Slave station number from 0D to 125D. Station number 126D is reserved as the default address for special
applications. ts must be entered by the USER.

type:

The appropriate slave type must also be entered by the USER. This corresponds to the declarations in the
parameter model description. Several predefined definitions are permitted for type. These are summarized
in the table of slave types on page 155.

last_state:
actual_state:

Current and last state of the slave. Possible entries include SL_DEACT, SL_DIAG1, SL_PRM, SL_CFG,
SL_DIAG2, SL_DATA and so on. See the "state_report ()" function starting on page 128 and the table on
page 155. These states must not be initialized by the USER. This is handled by the "add_slave ()" function.
See page 96 ff.

slave_para_set_ptr:

para_data_ptr:
prm_data_ptr:
cfg_data_ptr:
user_data_ptr:
dst_cfg_data_ptr:
s7_cfg_data_ptr:

A complete slave parameter record must be prepared for each slave. See section on parameterization
starting on page 73. Except for the station number and the slave type in the first partial parameter record
(Slave_Para_Data), the entries in this parameter record are not checked for plausibility. It is up to the USER
to ensure that the specifications of the parameter module description are adhered to for the slave parameter
record. The best way to ensure this is to use COM ET 200 for Windows (starting with version V 1.0) to
create the parameter records. In addition to the specifications from the parameter module description, the
parameter record must fulfill other requirements which have already been described in the section
mentioned above.
Two methods are available to the USER to transfer the slave parameter record to AMPRO-DPM. One
method is to create a contiguous parameter record or take it from the data base. In the slave_para_set_ptr
entry of the SLCB, the USER transfers a type MOD_DATA_HEADER_PTR pointer to the COM header of
this record. AMPRO-DPM uses the COM header to evaluate the complete record, determine (if necessary)
the component pointers, and enter these in the following pointers. The component pointers may not be read
or write-accessed by the USER.
In certain situations, it is better to split up the parameter record and store the individual components at
different locations instead of storing the complete parameter record in one place. AMPRO-DPM can then no
longer use the COM header to determine the location of the individual components, and the USER must
supply this information. To do this, the USER enters one pointer to each partial parameter record in the
pointers para_data_ptr, prm_data_ptr, cfg_data_ptr, user_data_ptr, dst_cfg_data_ptr and s7_cfg_data_ptr of
the SLCB. This makes the COM header irrelevant for AMPRO-DPM. To indicate this situation, the USER
must enter the value ZERO in slave_para_set_ptr. AMPRO-DPM then uses the pointers entered in the
structure without further modification.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 85
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

input_data_ptr:

Pointer to input data (Unsigned8 array) in the process data area. When input data are available on the
slave, AMPRO-DPM uses this area to store the input data of the slave in accordance with the receiving
telegram. This pointer can be disregarded when the slave is not equipped with inputs.

input_data_len:

Length of the input data. When the slave is not equipped with inputs, 0H must be entered here.

input_data_db_no:

When the inputs of the slave must be transferred with "long" consistency (see section on consistency
assurance starting on page 70), AMPRO-DPM enters the number of the data block size required for these
input data here during the "add_slave ()" function (see page 96). If the USER wants to transfer a new buffer
to AMPRO-DPM during the call of the "write_inp_data_to_pda ()" CBF (see page 141 ff.), this value is
helpful when selecting the appropriate DB allocation function of AMPRO2 memory management.
This entry can be disregarded when another type of consistency is defined for the slave. In this case, FFH is
entered here.

output_data_ptr:

Pointer to output data (Unsigned8 array) in the process data area. When output data are available on the
slave, AMPRO-DPM reads the output data of the slave from this area and sends them. This pointer can be
disregarded when the slave is not equipped with outputs.

output_data_len:

Length of the output data. When the slave is not equipped with outputs, 0H must be entered here.

output_data_db_no:

When the outputs of the slave must be transferred with "long" consistency (see section on "long"
consistency), AMPRO-DPM enters the number of the data block size required for these output data here
during the "add_slave ()" function (see page 96). If the USER wants to transfer a new buffer to AMPRO-
DPM during the call of the "read_outp_data_from_pda ()" CBF (see page 141 ff.), this value is helpful when
selecting the appropriate DB allocation function of AMPRO2 memory management.
This entry can be disregarded when another type of consistency is defined for the slave. In this case, FFH is
entered here.

special_functions:

When the slave requires special handling in regard to AMPRO-DPM, the USER must announce this in
special_functions. The entry is bit-coded.
Currently, special handling is only available for slave status S7_GET_CFG on BIT 0 (1 = activated; 0 =
deactivated). To activate this special handling, the Special_Function entry must be assigned
DPM_SL_SF_S7_GET_CFG for activation or DPM_SL_SF_NO_S7_GET_CFG for deactivation.

diag_data_ptr:

Type SLAVE_DIAG pointer to diagnostic data in the process data area. AMPRO-DPM stores the diagnostic
data of the slave in this area.

act_diag_data_len_ptr:

Pointer to the diagnostic data length (Unsigned16) in the process data area. AMPRO-DPM stores the
current length of the diagnostic data of the slave in this area in the form of a byte entry. This is also done for
the subsequent SLCB entry. Even when this entry in the process data area is not required by the USER, the
address of a dummy byte must still be specified by the USER.

SchnittStellenCenter ASPC 2

Page 86 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

diag_data_db_no:

During the "add_slave ()" function (see page 96), AMPRO-DPM enters the number of the data block size
which is required for these diagnostic data here. If the USER wants to transfer a new buffer to AMPRO-
DPM during the call of the "write_diag_data_to_pda ()" CBF (see page 142 ff.), this value is helpful when
selecting the appropriate DB allocation function of AMPRO2 memory management.

act_diag_data_len:

Current length of the diagnostic data in the process data area

new_diag_data:

When a new diagnosis was generated during the last change in state of the slave, this variable contains the
value DP_TRUE. See page 154. The USER can then evaluate the diagnostic data in the process data area
up to the length specified in "act_diag_data_len ". When no diagnosis was generated during the last change
in state of the slave, this variable contains the value DP_FALSE.

max_s7_cfg_data_len:

Length of the configuration data after startup of an S7_GET_CFG slave

max_s7_cfg_data_db_no:

When the current slave is a type S7_GET_CFG slave, AMPRO-DPM enters the number of the data block
size required for these output data during the "add_slave ()" function. See page 96. If the USER wants to
transfer a new buffer to AMPRO-DPM during the call of the "copy_s7_get_cfg_data ()" CBF (see page 141
ff.), this value is helpful when selecting the appropriate DB allocation function of AMPRO2 memory
management.

5.2.2.3 Private Portion for AMPRO-DPM

This area is used by AMPRO-DPM to store values which are required internally. The USER may not read or
write-access this area.

5.2.3 AMPRO-DPM Functions
AMPRO-DPM calls may not be called again during a call. The USER must ensure that one of his interrupt
routines does not call a function which was already started by him during his normal program. AMPRO-DPM
cannot check this for plausibility, howver.
When a CBF is called in addition to a USER job (e.g., during the "set_master_mode ()" function - see
description starting on page 104, or the "set_master_mode_done ()" CBF - see description starting on
page 138), the USER may also not call the same job again as long as this sequence has not yet been
concluded. Exception: "set_slave_mode ()" function (see description starting on page 107). If attempted
anyway, the USER receives an error message as return value since this USER error can be monitored by
AMPRO-DPM.

5.2.3.1 dpm_open (Unsigned8 DPM_IFA_DATA_ATTR *)

5.2.3.1.1 Description
To be able to use the AMPRO-DPM functions, the USER must first call the "dpm_open ()" function (similar to
a constructor; definition in source file "\COMMON\DPM_COMM.H"). This is the only AMPRO-DPM function

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 87
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

which the USER cannot start via the "DPM" AMRPO-DPM call structure (see page 80 ff.) since the USER
does not receive the pointer to the AMPRO-DPM call structure until the "dpm_open ()" function.
The USER transfers the address of a byte variable to the function. AMPRO-DPM provides a permanently
defined, global memory area for the AMPRO-DPM call structure itself. During this function, "dpm_open ()"
specifies a handle which is stored in the byte variable addressed by the pointer. This handle must be
entered for USER identification in the job blocks (in the subsystem component) for all subsequent AMPRO-
DPM jobs. This handle has no other meaning for the USER.
The return value of the function is the already stated pointer to the AMPRO-DPM call structure. This
structure does not yet contain all function pointers since the USER must call the "init ()" function (see page
88 ff.) before AMPRO-DPM can be used again. To make this procedure fail safe, the AMPRO-DPM call
structure contains (after "dpm_open ()") only the pointers to the "init ()" and "close ()" functions (see page
126 ff.) and the pointer to the "dpm_l2_cb_server ()" interrupt distributor (see page 127 ff.). The other
pointers still have the value ZERO. They are entered before the "init_done ()" CBF is called. See page
128 ff.

5.2.3.1.2 Call
Sample call:

The following sample program illustrates the access procedure. After "dpm_open ()", the "add_slave ()"
function is called for slave x. The variables and function definitions specified here also apply to the sample
programs of other functions.

Function definitions from the "\COMMON\DPM_COMM.H" file:
extern DPM_PTR DPM_IFA_FUNC_ATTR dpm_open
 (Unsigned8 DPM_IFA_DATA_ATTR *);

Required variables:
SLCB DPM_IFA_DATA_ATTR slcb[MAX_ANZ_SLAVES];
DPM_PTR dpm_ptr;
Unsigned8 dpm_handle;
DPMIB dpmib;

Unsigned16 status;

Function parts:
/* Call OPEN function */
dpm_ptr = dpm_open ((DPM_UNSIGNED8_PTR) &dpm_handle);

 ...

/* Complete DPMIB and call init */
dpmib.opcode = DPM_INIT;
dpmib.subsystem = dpm_handle;
dpmib.id_ptr = (L2_TYPE_ID_PTR) 0x0815;
 ...
 ...
 ...
status = dpm_ptr -> init ((DPMIB_PTR) &dpmib);

 ...

/* Complete SLCB and call add_slave */
slcb[x].subsystem = dpm_handle;
slcb[x].id_ptr = (L2_TYPE_ID_PTR) x;
 ...
 ...
 ...
status = dpm_ptr -> add_slave ((SLCB_PTR) &slcb[x]);

SchnittStellenCenter ASPC 2

Page 88 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.2 init (DPMIB_PTR)

5.2.3.2.1 Description
Before the "init ()" function can be called, AMPRO2 memory management must have been initialized and an
AMPRO2 reset executed. In addition, the "init ()" function must be the first AMPRO-DPM function to be
called after "dpm_open ()".
By calling the function, AMPRO-DPM initializes all internal data structures, reports to AMPRO2 with
"l2_open ()", obtains the required memory blocks from AMPRO2 memory management, and fills in the
internal portion of the DPM structure. AMPRO-DPM then fills in all already detected, global application and
data blocks in accordance with the specifications of the particular services. After initialization, AMPRO-DPM
attempts to send an initial telegram via the bus to check its functionality. Not until this is successfully
accomplished does the USER receive the "init_done ()" CBF with the return message that the "init ()"
function has been concluded.
The first telegram is sent immediately before conclusion of the "init ()" function, and the "init_done ()" CBF is
usually not called until the end of "init ()". Particularly when high baud rates are used, telegram transmission
may have already been concluded before AMPRO-DPM is able to conclude the "init ()" function. If this
happens, the USER receives the "init_done ()" return message CBF while the "init ()" function is still running.
This can happen in any of the functions still to be described. The USER cannot be absolutely sure that the
functions will be processed in strict sequence.

This function may only be executed once. A new start is only permitted after the "close ()" function is called.
See page 126 ff. A second call of "init ()" before "close ()" is rejected by AMPRO-DPM with an error
message. The transfer parameter is a completed block of the DPMIB structure. The layout of this block is
shown below.

5.2.3.2.2 DPM Init Block (DPMIB)

5.2.3.2.2.1 Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (DPM_INIT) X X X
Unsigned8 subsystem (dpm_handle) X X X
L2_TYPE_ID_PTR id_ptr (can be used by the USER as

desired)
X X

The header is completed similar to the header description of the SLCB. See page 82 ff. The function
identifier DPM_INIT (see page 156) must be entered here for opcode and the handle supplied by the
"dpm_open ()" function must be entered for subsystem (see page 86 ff.).

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 89
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.2.2.2 General Portion

Type Designation Direction of Access
 USER DPM
 L S L S
DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "asic_int_enable ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "asic_int_disable ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "set_timer ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Reserved for later developments

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "bus_accessible ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "init_done ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "error ()" CBF X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "write_inp_data_to_pda ()"
CBF

X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the
"read_outp_data_from_pda ()" CBF

X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the
"consistency_update_done ()" CBF

X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "copy_s7_get_cfg_data ()"
CBF

X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "write_diag_data_to_pda ()"
CBF

X X X

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "clear_cons_input_data ()"
CBF

X X X

DPM_PROC_DATA_ATTR * master_diag_ptr (pointer to the
MASTER_DIAG_DATA) structure)

X X X

DPM_IFA_DATA_ATTR * cb_segment_start_ptr X X X
Unsigned32 min_slave_interval X X X
Unsigned32 dx_control_interval X X X
Unsigned8 Reserved for later developments
Unsigned8 ts X X X
Unsigned8 db_len_1 X X X
Unsigned8 db_len_2 X X X
Unsigned8 db_len_3 X X X
Unsigned8 db_len_4 X X X
Unsigned8 sync_mask X X X
Unsigned8 freeze_mask X X X
Unsigned8 l2_apb_func_no X X X
Unsigned8 Reserved for later developments
Unsigned8 l4_apb_type1_func_no X X X
Unsigned8 l4_apb_type1_opcode_mask X X X
Unsigned8 l4_apb_type2_func_no X X X
Unsigned8 l4_apb_type2_opcode_mask X X X
Unsigned8 special_functions X X X
Unsigned8 asic_type X X X
Unsigned8 master_class X X X
Unsigned8 Reserved for later developments

SchnittStellenCenter ASPC 2

Page 90 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Pointer to the "asic_int_enable ()" CBF:
Pointer to the "asic_int_disable ()" CBF:

The USER must enter the routines for disabling and enabling the ASIC interrupt here. For a description of
each CBF, see page 127 ff.

Pointer to the "set_timer ()" CBF:
theCBFPointer to the "bus_accessible ()" CBF:
Pointer to the "init_done ()" CBF:
Pointer to the "error ()" CBF
Pointer to the "write_inp_data_to_pda ()" CBF
Pointer to the "read_outp_data_from_pda ()" CBF
Pointer to the "write_diag_data_to_pda ()" CBF
Pointer to the "input_update_done ()" CBF
Pointer to the "output_update_done ()" CBF

These pointers must point to the individual CBF. For a description of each CBF, see page 127 ff.

master_diag_ptr:

AMPRO-DPM maintains a list with various master and slave-related information to provide the USER with a
quick overview of the status of all AMPRO-DPM functions. The layout of this list is shown below.

Area Type Meaning Explanation
System_Diagnostic bit Slave no. 0D Bit no. X = 0B:
(SD) bit Slave no. 1D Slave no. X has not
 bit Slave no. 2D reported diagnoses.
 : : Bit no. X = 1B:
 bit Slave no. 124D Slave no. X has
 bit Slave no. 125D reported diagnoses.
 bit[2D] Reserved -
Master_Status Unsigned8 USIF_State Master status: MA_STOP,

MA_CLEAR or MA_OPERATE
 Unsigned8 Ident_Number_high Hardware ident number high
 Unsigned8 Ident_Number_low Hardware ident number low
 Unsigned8 MASTER_HW_Version AMPRO-DPM hardware version
 Unsigned8 MASTER_FW_Version AMPRO-DPM firmware version
 Unsigned8 USER_HW_Version Hardware version of USER
 Unsigned8 USER_FW_Version Firmware version of USER
 Unsigned8

[9D]
Reserved -

Data_Transfer_List bit Slave no. 0D Bit no. X = 0B:
(DTL) bit Slave no. 1D Slave no. X is not
 bit Slave no. 2D in DATA status.
 : : Bit no. X = 1B:
 bit Slave no. 124D Slave no. X is
 bit Slave no. 125D in DATA status.
 bit[2D] Reserved -

This master diagnosis (MASTER_DIAG_DATA structure; defined in the "\COMMON\DPM_COMM.H" file)
contains the three master diagnostic information areas described in the PROFIBUS standard (i.e.,
"Master_Status", "Data_Transfer_List" (DTL) and "System_Diagnostic" (SD). In addition to the information
for the USER, the USER can use this field to inform another master (e.g., a class-2 DP master) of his own
hardware and firmware release status and his ident number.
Each of the three areas of the master diagnostic field which can be accessed by AMPRO-DPM via the
transferred pointer has a length of 16D bytes for a total length of exactly 48D bytes.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 91
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Before the "init ()" function is called, the USER initializes the entries Ident_Number, MASTER_HW_Version,
USER_HW_Version and USER_FW_Version. These entries are accepted by AMPRO-DPM without a
plausibility check. The entries for MASTER_HW_Version and USER_HW_Version will usually be the same,
however. The USER now calls the "init ()" function. AMPRO-DPM enters its own firmware version identifier
in the MASTER_FW_Version field of the "Master_Status" area and the MA_STOP state in the USIF_State
field.

The relevant bits of the "Data_Transfer_List" and "System_Diagnostic" areas are preset with 0B. From this
time on, the entire field is cyclically updated by AMPRO-DPM (i.e., after the "init ()" function is called, the
USER may only read-access this field but never write-access it).

The "Data_Transfer_List" and "System_Diagnostic" areas are bit fields. One bit is assigned to each slave
station. The two bit fields must be combined into 8 words each for generation of the firmware which is stored
in Big-Endian (Intel™) format. See also section on the sequence of the bytes of a word on page 62. The
following table shows the slave station numbers assigned to each bit.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word

0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
7 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96
8 - - 125 124 123 122 121 120 119 118 117 116 115 114 113 112

A bit in the "Data_Transfer_List" area is always set when the corresponding slave has achieved or retained
the DATA state at least once during the past three (approx.) data cycles. For more details on the slave
states, see the "state_report ()" function. The list is cyclically cleared at intervals of "Dx_Control_Interval / 2"
(see below) and set up again. The status before clearing takes place is always entered in the master
diagnostic area. For more details, see the PROFIBUS-DP standard.

A bit is set for the first time in the "System_Diagnostic" area when the corresponding slave exits the DEACT
state. This bit is reset when the slave changes to the DATA state. The bit is always set during processing
when the slave reports diagnoses (i.e., state not DATA or DEACT). In other words, a single diagnostic
telegram can also cause the bit to be set during the data cycle (status transition DIAG2 DATA). The bit
is also set in STOPPED status.

cb_segment_start_ptr:

All job blocks for AMPRO-DPM must be located within a 64-kB segment. See also section on required
memory resources starting on page 75. The location of this segment can be selected as desired by the
USER except that the SCB (System Control Block) required for the PROFIBUS ASIC must be located in the
same segment. In addition, the segment must always start at a real segment boundary (offset 0000H) if the
entire segment is to be used.
The cb_segment_start_ptr entry is used by the USER to transfer to AMPRO-DPM a pointer to the beginning
of the segment. The job blocks can be distributed anywhere within the segment except that the beginning of
the first block and the end of the last block may not extend outside the segment. The remaining areas of this
segment can also be used as desired.
This special feature is due to the fact that AMPRO-DPM only has one 16-bit word at its disposal for correct
allocation of an AMPRO2 confirmation. To be able to support all sizes of the memory model of the user
despite this restriction, the 16-bit word is used as an offset to the cb_segment_start_ptr whose size can be
selected as desired.

SchnittStellenCenter ASPC 2

Page 92 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

min_slave_interval:
dx_control_interval:

The entries required for the two timer parameters are described in detail by the PROFIBUS standard or in
the ET 200 communication specifications. Their values have a significant effect on the timer run times
requested with the "set_timer ()" function.
The entries are made in 100-µsec units for min_slave_interval and in 10-msec units for dx_control_interval.
Min_slave_interval describes the minimum time between two data telegrams to a slave. When AMPRO-
DPM is used with the ASPC2 PROFIBUS ASIC, adherence to this time is monitored directly by the ASIC. All
other telegrams except data telegrams (e.g., Global_Control commands, diagnostic requests and so on) are
not affected by this interval. The slave with the longest min_slave_interval determines the wait time for the
entire system.
Dx_control_interval should be selected in accordance with the PROFIBUS-DP standard to give the master
sufficient time to complete at least six complete data cycles with all parameterized slaves. A new
Global_Control telegram with the current master status (MA_OPERATE or MA_CLEAR) is sent when half
the interval has passed. In addition, the "Data_Transfer_List in the master diagnosis is updated with this
time interval. See above.

ts:

This parameter must contain the PROFIBUS station address of the master.

db_len_1:
db_len_2:
db_len_3:
db_len_4:

Since AMPRO-DPM uses the memory management of AMPRO2, the USER must have initialized this
memory management system before AMPRO-DPM is started. See page 75 ff.
AMPRO2 memory management supplies several fixed-length block types for data (data blocks = DB) and
free memory management for block sizes which vary with the program run time. Since the variable blocks
cannot be enabled again, only fixed block sizes are used for AMPRO-DPM.
Up to four types which can be identified by number are available for the DB. Only their lengths vary. The
USER specifies the lengths and uses this specification to initialize memory management. In addition, the
USER informs AMPRO-DPM of his choice in DPMIB. AMPRO-DPM then uses the "l2_mem_alloc_dbx ()"
AMPRO2 functions to allocate a DB of the smallest possible block type for the amount of data available per
block. The x in the function name stands for the block type number. If a block size is not used, the USER
must specify a length of 0H for its type number.
Since the USER himself selects the lengths, he can also adapt the block size to the current parameterization
(i.e., number of slaves, type and setup) and to available memory in the user system.

sync_mask:
freeze_mask:

These two entries specify which of the possible groups are SYNC groups and which are FREEZE groups for
a Global_Control_Command. See the "set_slave_mode ()" function. Bit 0 corresponds to group 0 and so
on. When the applicable bit is set for a group in both the SYNC mask and the FREEZE mask, this is a group
for both commands. Groups with two cleared bits are not parameterized.

l2_apb_func_no:
l4_apb_type1_func_no:
l4_apb_type2_func_no:

In addition to the data blocks, AMPRO-DPM requires three different sizes of application blocks (APB; see
section on memory resource requirements starting on page 75) from AMPRO2 memory management. The
expected numbers of APBs for each size depend on the number, type and operating modes of the
configured slaves. To save memory space, total memory space available for APBs can be optimized to a
special application, or, even better, be designed to accommodate the maximum number of APBs which can
occur.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 93
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

AMPRO2 memory management can handle up to two different APB sizes. To permit the USER to optimize
definition (i.e., use as little space as possible) of his APB sizes and their allocation to the
"l2_mem_alloc_apb1 ()" or "l2_mem_alloc_apb2 ()" function, AMPRO-DPM expects the number of the APB
allocation function in the variables l2_apb_func_no, l4_apb_type1_func_no and l4_apb_type2_func_no with
which the applicable APB must be obtained by AMPRO2. A possible allocation is shown below.

APB sizes:
APB, size 1: 26 bytes for L2-APBs and for type-1 L4-APBs
APB, size 2: 28 bytes for type-2 L4-APBs

Entries in the variables:
l2_apb_func_no: 1
l4_apb_type1_func_no: 1
l4_apb_type2_func_no: 2

l4_apb_type1_opcode_mask:
l4_apb_type2_opcode_mask:

AMPRO2 offers up to three different L4 header lengths for the use of L4 APBs (i.e., a fixed length of 2 bytes
and two variable lengths). The latter must be declared when the FLC_FMA_MAC_RESET AMPRO2
function is called. AMPRO-DPM requires the 2-byte (L4 APB, type 1) and 4-byte (L4 APB, type 2) lengths.
During running operation, AMPRO2 uses various masks which are added to the normal opcode to determine
when it is necessary to use data added to the APB as L4 headers. These masks are defined in the
"\COMMON\L2_USER.H" file as shown below.

Fixed L4 header size: L2_L4_HLEN_FIXED

Variable L4 header size 1: L2_L4_HLEN_VAR1

Variable L4 header size 2: L2_L4_HLEN_VAR2

To allow the USER as much freedom as possible when designing his system, AMPRO-DPM does not
prescribe the masks to be used. They can be transferred when AMPRO-DPM starts up. The USER enters
the AMPRO2 masks in the variables l4_apb_type1_opcode_mask and l4_apb_type2_opcode_mask. These
masks have the 2 and 4-byte lengths as specified by the declarations in the FLC_FMA_MAC_RESET
function. An example is shown below.

Declaration with call of the FLC_FMA_MAC_RESET AMPRO2 function:
Fixed L4 header size 1: 2 bytes (cannot be used and thus cannot be parameterized)
Variable L4 header size 1: 8 bytes (used by other components when necessary)
Variable L4 header size 2: 4 bytes (also used by AMPRO-DPM)

Entries in DPMIB:
l4_apb_type1_opcode_mask: L2_L4_HLEN_FIXED
l4_apb_type2_opcode_mask: L2_L4_HLEN_VAR2

special_functions:

The individual bits of this byte can be used to trigger functions of the master which are implemented in
AMPRO-DPM in addition to the services required by the DP standard. Currently, only bits 0 to 3 are
required. Bits 4 to 7 are reserved for later developments. The layout of the byte is shown below.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0B 0B 0B 0B LCCO AÜDNA NoTest ASTP

ASTP:

This bit switches the AUTOSTOP master operating mode on (ASTP = 1B) or off (ASTP = 0B). When this
mode is activated, slaves which exit the DATA state are removed from the processing cycle when a change
in state from DATA or DIAG2_STATUS via PRM_UNLOCK to STOPPED occurs. See "state_report ()" CBF
starting on page 129. The USER must then call the "restart_slave ()" function when the station is to be
processed again. See page 103 ff.

SchnittStellenCenter ASPC 2

Page 94 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

NoTest:

Bit 1 can be used to select whether AMPRO-DPM is to use a dummy job to test whether the bus is available
(bit 1 = 0) during startup. When bit 1 = 1, the test is omitted. In this case, the "init ()" function is always
concluded synchronously with the return value DPM_OK, and the "init_done ()" CBF is not called. Caution:
If the USER disables the test, he must ensure that a functional bus is available for AMPRO-DPM. Applicable
conditions include: The master has already been accepted in the ring as an active station. The bus does
not have a short circuit. And so on.

AÜDNA:

The DP standard states that a slave in the DATA state does not receive a response from the master as long
as polling with data telegrams is being performed and the slave has not reported again with or without errors.
The status of the slave entered by AMPRO-DPM in this case: DATA_NA. See the "state_report ()" CBF
starting on page 129. After a message without errors, data communication is resumed immediately. After a
message with errors, a branch is made to DIAG1 or DIAG2_STATUS depending on the type of error.
This also takes place when a bus short circuit occurs. When the RS 485 interfaces are floating or RS 485
driver blocks of different capacities are used (e.g., due to age), the master may not receive the responses of
the slave although the slave receives all telegrams from the master. In the case described above, the
outputs of the slave remain set although the master recognized a slave malfunction since trigger monitoring
(ASÜ) of the slave does not expire. This can endanger the safety of the system.
To solve this problem, AÜDNA = 0B can be selected as a form of slave handling which deviates from the DP
standard. For slaves for which the ASÜ is enabled, all errors in the states PRM, CFG, DIAG2,
DIAG2_STATUS and DATA cause an immediate transition to PRM_UNLOCK and then to DIAG1. These
slaves never reach the DATA_NA state. For slaves without ASÜ, processing remains the same as that
defined in the DP standard. Bit AÜDNA = 1B must be set when the procedure causing safety risks is to be
used in accordance with the DP standard for all slaves. We strongly advise against this.
This behavior does not occur when the AUTOSTOP function is used since the described principle is already
used in the core. Setting of the AÜDNA bit is irrelevant in this case.

LCCO:

When slaves are operated with "long" consistency or in Buffered_Mode, the current output data buffer which
is sent to the slave cannot be accessed by the USER via the SLCB. This makes it impossible for the USER
to clear the current buffer (e.g., when a slave malfunction occurs or when master mode changes to CLEAR).
When the slave returns to the data state again (DATA, DATA_NA), the data which were provided before are
sent to the slave. From the viewpoint of the USER, these data may be out of data, however.
To prevent this, the USER can use LCCO = 1B (LongConsistencyClearOutputs) to automatically clear the
current output data buffer in the above described cases. When the slave returns to the data state, it first
receives the data telegrams which were cleared. When the "output_update ()" function (see page 121 ff.) is
called by the USER, the new data are sent in conclusion.

asic_type:

Some of the AMPRO2 features used by AMPRO-DPM can only be used with certain types of PROFIBUS
ASICs. Currently, only the ASPC2 PROFIBUS ASIC can be used for AMPRO-DPM. This ASIC is available
in two versions (i.e., STEP B and STEP C). AMPRO2 can determine which ASIC STEP is being used. The
USER receives one of the two AMPRO2 definitions ASPC2_STEP_ID_B or ASPC2_STEP_ID_C as the
return value. The USER must transfer this exact value to AMPRO-DPM in the asic_type variable.
Depending on this setting, AMPRO-DPM uses or does not use the special functions of the later release of
the ASPC2 (i.e., STEP C).

master_class:

This parameter controls how AMPRO-DPM evaluates responses to DIAG1 telegrams. A class-1 master
usually terminates an attempt to contact a slave when the slave reports in the diagnosis that it has already
been locked by another master. The slave continues to receive DIAG1 telegrams until the other master
releases the slave again. Only after this release may the class-1 master access the slave. The
master_class parameter must be initialized with the value DPM_MASTER_CLASS_1 to achieve this normal
behavior. See the COMMON\DPM_COMM.H file.
When AMPRO-DPM is used as a class-2 master, this master must usually check correct parameterization of
all slaves. The class-2 master attempts to contact all slaves briefly. The slaves are enabled again after the
check. To ensure that this procedure can be performed quickly, AMPRO-DPM does not wait for another

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 95
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

master to release the slave and ignores the Master_Lock entry of the diagnosis, thus "capturing" the slave
for the class-2 master. The master_class parameter must be initialized with the value
DPM_MASTER_CLASS_2 to obtain this behavior.

5.2.3.2.3 Call
Sequence chart:

Calling the function, initialization and starting the dummy job

Receipt of confirmation of the dummy job and response message to the USER

Sample call:
 status = dpm_ptr -> init ((DPMIB_PTR) &dpmib);

Possible return values for status:

DPM_OK_CBF The job was started correctly. Call of the CBF indicates
the end of execution.

ERR_DPM_INIT_DONE Error: The "init ()" function has already been started
since the last "dpm_open ()" call.

ERR_DPM_REQ_ACTIVE Error: The last "init ()" call is still being processed.

SchnittStellenCenter ASPC 2

Page 96 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

ERR_DPM_MEM_ALLOC Error: Not enough memory space is available.

ERR_DPM_WRONG_ASIC_TYPE Error: Neither the define value ASPC2_STEP_ID_B
nor the value ASPC2_STEP_ID_C was entered
as the ASIC type.

ERR_DPM_INVALID_PAR Error: Wrong parameter in the USER request

5.2.3.3 add_slave (SLCB_PTR)

5.2.3.3.1 Description
The "add_slave ()" function causes AMPRO-DPM to set up the internal management structures for the slave
specified by the transferred SLCB. This can be done in all master states (MA_STOP, MA_CLEAR, or
MA_OPERATE). In the master state MA_CLEAR or MA_OPERATE, AMPRO-DPM also attempts to include
the slave in the processing cycle, and, if possible, make contact with the slave. This function is called once
per slave.
The slave control block of the slave (must be completed correctly beforehand) is used as the transfer
parameter. The initial operating mode of a slave is always DEACT. This applies until the first call of the
"state_report ()" function reports a new state. This new state is usually the transition from DEACT DIAG1.
See "state_report ()" function starting on page 128. During each call, AMPRO-DPM fetches the required
number of application and data blocks from AMPRO2 memory management and completes them
accordingly.
After "add_slave ()", communication continues with interrupt control. During normal operation, once a slave
has been activated, it must be removed from the processing cycle with "withdraw_slave ()" (see page 100 ff.)
when further processing is to be suppressed regardless of the state of the master. When the AUTOSTOP
master operating mode is used (see special_functions entry in DPMIB starting on page 88), the slave is
automatically deactivated by AMPRO-DPM when necessary. The slave is restarted with the "restart_slave
()" function. See page 103 ff. All management information for the slave is retained in this state. When the
slave is to be permanently removed from the processing cycle (i.e., management information is also
cleared), the "withdraw_slave ()" function must be called even in AUTOSTOP master operating mode.

5.2.3.3.2 Call
Sample call: Slave no. x is to be included.
 status = dpm_ptr -> add_slave ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK Service transferred correctly to AMPRO2

ERR_DPM_REQ_ACTIVE Error: The last "init ()" call is still being processed.

ERR_DPM_MEM_ALLOC Error: Not enough memory space is available.

ERR_DPM_INVALID_PAR Error: Wrong parameter in the USER request

ERR_DPM_UNKNOWN_TYPE Error: When a previously unknown slave type
identifier from 0 to 127 is specified, this slave is
treated as a normal standard DP slave.
Unknown identifiers from 128 to 255 are
acknowledged with this error return value.

5.2.3.3.2.1 Processing for the Slaves Parameterized for the Master
The following sequence charts show the start of the processing cycle for a standard DP slave which reacts
immediately and correctly. In addition, the slave must be parameterized as a slave of this master. Previous
ET 200 slaves (i.e., DP Siemens slaves) are covered here too but the telegram sequence and the layout of

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 97
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

the individual telegrams changes depending on the type of slave. For an overview of all possible status
transitions for all types of slaves, see the section on slave families supported by AMPRO-DPM starting on
page 145.

Sequence charts:

Call of the function by the USER and request first diagnosis (DIAG1)

Evaluate confirmation to DIAG1 and send parameterization (PRM)

SchnittStellenCenter ASPC 2

Page 98 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Evaluate confirmation to PRM and send parameterization (CFG)

Evaluate confirmation to CFG and request second diagnosis (DIAG2)

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 99
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Evaluate confirmation to DIAG2 and perform data communication (DATA) with the slave

The standard DP slave is now in the data cycle (i.e., continuous process data communication is taking
place). The master does not process the slave again unless consistent data are involved or an error occurs.
This procedure adheres to the procedure for error treatment described in the PROFIBUS-DP standard or the
procedure for consistent data described in these specifications.

SchnittStellenCenter ASPC 2

Page 100 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.3.2.2 Processing of Slaves Not Parameterized for the Master (Shared_Input Slaves)
In addition to the form of communication described above, standard DP slaves provide the capability of
allowing several masters to read the inputs of the slave. Prerequisite is that one of the masters has
processed the slave as described above. This master is the main or parameterization master of the slave.
When the slave assumes the DATA state with the parameterization master, all other masters can read the
inputs of this slave as auxiliary or Shared_Input masters. However, only the parameterization master can
read and set the outputs. An entry in the parameter record of the slave determines which master is the
parameterization master. See parameter module description starting on page 158. When the current
master is only an auxiliary master, it processes the slave with special data telegrams. See Read_Input on
page 135. Separate designators are defined for the states in which the slave sends special Shared_Input
telegrams. See "state_report ()" function starting on page 128.

5.2.3.4 withdraw_slave (SLCB_PTR)

5.2.3.4.1 Description
The "withdraw_slave ()" function can be used by the USER to deactivate a slave which was previously
transferred to AMPRO-DPM with "add_slave ()". This function can be called in all master states (i.e.,
MA_STOP, MA_CLEAR or MA_OPERATE).
After a "withdraw_slave ()" call, AMPRO-DPM must stop the slave handler of the slave specified with the
transferred SLCB. See "state_report ()" CBF starting on page 129. If the slave is not in the DIAG1,
STOPPED or PRM_UNLOCK state, AMPRO-DPM initiates the transition of the slave state to PRM_LOCK to
log itself off on the slave. The slave assumes the DEACT state. The transition to DEACT occurs
immediately from the states DIAG1, STOPPED or PRM_UNLOCK. The USER is informed of each of these
transitions in state by "state_report ()". The slave handler is stopped. AMPRO-DPM releases all APBs and
DBs which were allocated by AMPRO2 memory management for the slave with "add_slave ()", and the
SLCB is removed from internal AMPRO-DPM management.
Depending on the current state of the master and the slave, this function can be processed either
synchronously or asynchronously. The USER recognizes this by the different return values (i.e., DPM_OK
for synchronous processing and DPM_OK_CBF for asynchronous processing). The "withdraw_slave_done
()" CBF (see page 136 ff.) is only called after the DPM_IOK_CBF return value as the return message on the
conclusion of the "withdraw_slave ()" function. Otherwise, the function has already been concluded at the
end of the function call.

When the function has been processed and, if necessary, the CBF has been concluded, sole access rights
to the SLCB (as before "add_slave ()" was called) are returned to the USER. In addition to simple
deactivation, the USER can now change the parameter record of the slave, or update it and transfer it again
to AMPRO-DPM with "add_slave ()". See page 96 ff. In addition, "withdraw_slave ()" must be called for
every activated slave when AMPRO-DPM is to be stopped completely with the "close ()" function. See page
126 ff.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 101
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.4.2 Call
Sequence charts:

In these sequence charts, slave no. x is already in the data cycle. The procedure for other states conforms
to the PROFIBUS-DP standard or the ET 200 communication specifications (e.g., wait for return of the last
diagnostic job instead of issuing the Withdraw_Repeat job). For state transitions, see also "state_report ()"
starting on page 129.

Function called by the USER. Start AMPRO-DPM job "Withdraw_Repeat":

Evaluate confirmation for "Withdraw_Repeat" and send "PRM_Unlock" to the slave

SchnittStellenCenter ASPC 2

Page 102 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Evaluate confirmation for "PRM_Unlock" and inform USER

Sample call: Slave no. x is to be removed from the processing cycle.
 status = dpm_ptr -> withdraw_slave ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK The complete job has been executed correctly. The
CBF is no longer called.

DPM_OK_CBF The job was started correctly. The end of execution is
indicated by the CBF call.

ERR_DPM_REQ_ACTIVE Error: The last call of the "init ()" function or the
"withdraw_slave ()" function is still being
processed.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 103
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.5 restart_slave (SLCB_PTR)

5.2.3.5.1 Description
The "restart_slave ()" function can only be called when AUTOSTOP master mode has been activated. See
section on DPMIB starting on page 88. In this mode, slaves which exit the DATA or DIAG2_STATUS state
are removed from the processing cycle with a change in state via PRM_UNLOCK to STOPPED (see
"state_report" CBF starting on page 129). The STOPPED slave state can also only be reached in
AUTOSTOP master mode. This master mode is recommended when the USER reaction to a station failure
requires substantially more time than the processing cycle on the bus. When the slave assumes STOPPED
status, the USER can take his time when reacting to this event. After conclusion of USER processing, the
USER transfers the SLCB of the slave via "restart_slave ()" back to the AMPRO-DPM which will process the
slave when the DIAG1 state is assumed (i.e., similar to "add_slave ()").
The USER could obtain similar behavior by starting the "withdraw_slave ()" function after the "state_report ()"
CBF has been called for a slave which has just exited the DATA or DIAG2_STATUS state. After processing
and evaluating the diagnoses, the USER could start up the slave handler again with "add_slave ()". The
disadvantage of this procedure is that each "withdraw_slave ()" would cause the entire internal AMPRO-
DPM management of the slave (i.e., conditional allocation of APBs and DBs, initialization of the blocks and
the internal lists and variables) to be cleared and each "add_slave ()" would cause it to be set up again. If,
as in this case, the USER only wants to deactivate the slave handler temporarily and not stop the slave
completely, the continuous set up and clearing of the management information serves no purpose and is
also very time consuming. The AUTOSTOP master mode offers decisive advantages here.
"restart_slave ()" can only be called in AUTOSTOP master mode and only when a slave which was
transferred to AMPRO-DPM before with "add_slave ()" is in STOPPED status. As with all other transitions,
USER accesses to the SLCB are only permitted while the "state_report ()" CBF is being processed. If
necessary, the USER must use internal flags for the rest of his program. See also section on
communication model starting on page 61. During the time between which the "state_report ()" CBF is
called with slave transition to STOPPED and the "restart_slave ()" function is called by the USER, the slave
is not addressed via the bus but AMPRO-DPM must occasionally access the SLCB to update certain entries.
For this reason, the SCLB can be maintained in this slave status in an internal AMPRO-DPM list. A slave in
STOPPED status can also be deactivated with "withdraw_slave ()" without the USER having to call
"restart_slave ()" beforehand.

5.2.3.5.2 Call
Sequence charts:

Processing of the "restart_slave ()" function call is the same as processing of the "add_slave ()" call. See
the sequence charts of "add_slave ()".

Sample call: Slave no. x is to be started again.
 status = dpm_ptr -> restart_slave ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK Service transferred correctly to AMPRO2

ERR_DPM_WRONG_SLAVE_STATE Error: The slave is not in SL_STOPPED status.

ERR_DPM_REQ_ACTIVE Error: The last call of the "init ()" function or the
"restart_slave ()" function is still being
processed.

ERR_DPM_SLAVE_IS_PROCESSED Error: To prevent user errors, the "restart_slave ()"
function can reject a second call of the function
for the same slave more frequently than before.

SchnittStellenCenter ASPC 2

Page 104 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.6 suspend_slave (SLCB_PTR)

5.2.3.6.1 Description
Calling the "suspend_slave" function is only recommended when AUTOSTOP master mode has been
activated. See section on DPMC_IB. In this mode, slaves which exit the DATA or DIAG2_STATUS
state are removed from the processing cycle with a change in state from there over
PRM_UNLOCK to STOPPED. See "state_report ()" CBF starting on page 129. This master mode is
recommended when the USER reaction to a station failure requires substantially more time than the
processing cycle on the bus. When the slave assumes STOPPED status, the USER can take his time when
reacting to this event.
In addition to the automatic transition to STOPPED, the USER can force this transition by calling the
"suspend_slave" function. This is recommended when processing of one or more slaves is to be frozen after
the USER detects an error in one of his components, for example. As with the automatic transition to
STOPPED, a restart of the slave must be performed by calling the "suspend_slave" function. See page
103 ff.
The "suspend_slave" function cannot be called unless a slave which was previously transferred with
"add_slave" is not in STOPPED status. Separate indication of the end of "suspend_slave" function
execution is not required. As with automatic transition, the call of the "state_report ()" CBF with slave
transition to STOPPED is usually used as the acknowledgment. As with all other transitions, the USER may
only access the SLCB while the "state_report ()" CBF is being processed. If necessary, the USER must use
internal flags for further processing of his program. See also section on communication model and the
description of "restart_slave".
When the master is in STOP status, the slaves are usually in DEACT status. In this case, the USER can
use the "suspend_slave" function to suspend one or more slaves in advance before the next change in state
of the master to CLEAR or OPERATE. As an exception, the transition of the slave from DEACT to
STOPPED takes place without the "state_report ()" CBF being called. The return value of the
"suspend_slave" function tells the USER that this has happened.

5.2.3.6.2 Call
Sequence charts:

Processing of the "suspend_slave" function is very similar to processing of the "withdraw_slave" function.
See sequence charts of the "withdraw_slave" function.

Sample call:

Sample call: Slave no. x is to be started again.
 status = dpm_ptr -> suspend_slave ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK Service executed correctly. The slave is in STOPPED
status. No more calls of the "state_report ()" CBF will
be made.

ERR_DPM_OK_CBF Service transferred correctly to AMPRO2. Further
processing can be taken from the transitions reported
with the "state_report ()" CBF.

ERR_DPM_WRONG_SLAVE_STATE Error: The slave is already in the SL_STOPPED state.

ERR_DPM_REQ_ACTIVE Error: A request is already active.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 105
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.7 set_master_mode (SMMCB_PTR)

5.2.3.7.1 Description
The "set_master_mode ()" function sets the operating mode of the master as specified by the transfer
parameter, and treats all activated slaves as described in the PROFIBUS-DP standard. Possible states are
MA_STOP, MA_CLEAR and MA_OPERATE.
The MA_OFFLINE state mainly pertains to the start of the layer-2 interface. Since the DP master would only
be able optimize the start of AMPRO2 with its own interests in mind, this start must be performed by the
user. For this reason, the MA_OFFLINE state is also not defined for AMPRO-DPM.
The default master mode is MA_STOP before "set_master_mode ()" is called for the first time. Depending
on the type of change in state, only the return value of the AMPRO-DPM job is generated as the return
message, or the "set_master_mode_done ()" USER CBF may also be called.

The first call of the "set_timer ()" CBF (see page 140 ff.) always takes place during the first USER call of the
"set_master_mode ()" function. The CBF call is usually omitted for all subsequent calls of the USER
function.

The "add_slave ()" and "withdraw_slave ()" functions can be called in any master state. However, cyclic
data communication does not start until the MA_OPERATE state is assumed. A direct change from
MA_STOP to MA_OPERATE or from MA_OPERATE to MA_STOP is not possible. This transition must
always take place over the MA_CLEAR state. Even when the master changes states, all slaves transferred
with "add_slave ()" (see page 96 ff.) remain with AMPRO-DPM until they are withdrawn by the USER again
with "withdraw_slave ()". See page 100 ff. The call of the "set_master_mode_done ()" CBF is delayed by at
least one and not more than two data cycles for transitions from MA_CLEAR to MA_OPERATE or from
MA_OPERATE to MA_CLEAR. This ensures that all slaves are informed of the last change in state of the
master.

DP Siemens slaves cannot be set to CLEAR mode with the Global_Control command MA_CLEAR. A
Singlecast telegram (SDN high without data) is required for each of the DP Siemens slaves with the SPM or
SPC ASIC as called for in the ET 200 communication specifications. This telegram is sent to each DP
Siemens slave. The USER is not aware of this special treatment, however.

The DP standard defines CLEAR behavior of the class-1 master as follows. While this master is in
MA_CLEAR status, it must send all slaves normal data telegrams with user data zeroed out. In addition to
this procedure and beyond the specifications of the DP standard, the slave can be sent a data telegram with
no user data at all while the master is in MA_CLEAR status, instead of a normal data telegram. The master
does not begin sending data telegrams with current data again until a change in state to MA_OPERATE
occurs. This FAILSAFE (FASA) procedure can only be used for slaves which can also be parameterized as
FAILSAFE (FASA) slaves. By making appropriate entries in the slave parameter record, the USER causes
AMPRO-DPM to use this procedure for certain slaves. See page 174.

The following table shows a list of possible AMPRO-DPM reactions.

SchnittStellenCenter ASPC 2

Page 106 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Possible changes in state:

Previous State

New State

STOP CLEAR OPERATE

STOP Action None Deactivate all
existing slave
stations

None

 Return value of the
DPM function

DPM_OK DPM_OK_CBF ERR_DPM_NOT_
ALLOWED

 Call of the call back
function

No After execution No

CLEAR Action Activate all existing
slave stations

None Issue first "Clear"
global control
command

 Return value of the
DPM function

DPM_OK DPM_OK DPM_OK_CBF

 Call of the call back
function

No No After execution

OPERATE Action None Issue first "Operate"
global control
command

None

 Return value of the
DPM function

ERR_DPM_NOT_
ALLOWED

DPM_OK_CBF DPM_OK

 Call of the call back
function

No After execution No

5.2.3.7.1.1 set_master_mode Control Block (SMMCB) Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (DPM_SET_MASTER_MODE) X X X
Unsigned8 subsystem (dpm_handle) X X X
L2_TYPE_ID_PTR id_ptr (Can be used by the USER as

desired)
X X

The header is filled out the same as the header description of the SLCB (see page 82 ff.) except that the
function identifier DPM_SET_MASTER_MODE (see page 156) must be entered for opcode here and the
handle supplied by the "dpm_open ()" function (see page 86 ff.) must be entered for subsystem.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 107
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.7.1.2 General Portion
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to "set_master_mode_done ()"
CBF

X X X

Unsigned8 Status
(MA_STOP; MA_CLEAR; MA_OPERATE)

X X X

Unsigned8 Reserved

Pointer to "set_master_mode_done ()" CBF :

This pointer must point to the "set_master_mode_done ()" CBF of the USER. See page 136.

status:

The new master status desired (A_STOP, MA_CLEAR or MA_OPERATE) must be entered by the USER
here. See page156.

5.2.3.7.2 Call
Sample call:
 status = dpm_ptr -> set_master_mode ((SMMCB_PTR) &smmcb);

Possible return values for status:

DPM_OK The complete job was executed correctly and the CBF
is no longer called.

DPM_OK_CBF The job was started correctly. CBF call indicates end of
execution.

ERR_DPM_REQ_ACTIVE Error: The last call of the "init ()" function or the
"set_master_mode ()" function is still being
processed.

ERR_DPM_NOT_ALLOWED Error: The requested change in state cannot be
performed from the current state of the master.

5.2.3.8 set_slave_mode (SSMCB_PTR)

5.2.3.8.1
For more precise specification of this service, the user must transfer a pointer to the correctly completed
set_master_mode control block (SMMCB structure; definition in the "\COMMON\DPM_COMM.H" file). This
block is required once.

5.2.3.8.2 Description
The "set_slave_mode ()" command sets the slave mode (i.e., SYNC or UNYSNC and FREEZE or
UNFREEZE) for one or more of the parameterized groups of slaves. AMPRO-DPM performs this function
once. The group or groups of slaves remain in this mode until the mode is specified again with another

SchnittStellenCenter ASPC 2

Page 108 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

"set_slave_mode ()" command. When execution of the service is complete, the USER receives the SSMCB
together with a status message from the "set_slave_mode_done ()" CBF. See page 138.
Although the interface for the USER is the same for all operating mode parameters, AMPRO-DPM handles
the SYNC/UNSYNC parameter differently than the FREEZE/UNFREEZE parameter. The sequence charts
in the following sections show these differences.
It is not necessary for the USER to make sure (e.g., with the "mark_cycle ()" function) that there is at least
one data cycle before or after "set_slave_mode ()" is called. AMPRO-DPM ensures that at least one data
cycle was processed for each call before the USER receives the job acknowledgment via
"set_slave_mode_done ()".

This command can only be executed for standard DP slaves. In addition, all desired slaves must be
assigned to one of up to eight groups. Each group is used to specify only the SYNC/UNSYNC command,
only the FREEZE/UNFREEZE command or both commands. All of the slaves assigned to a group must also
be able to process each of the group services.
In contrast to other commands, "set_slave_mode ()" can be processed up to eight times simultaneously.
This requires a new SSMCB for each call to be processed simultaneously. The SSMCBs are transferred to
AMPRO-DPM with one of the later calls of "set_slave_mode ()". To determine which block the USER has
received back with "set_slave_mode_done ()", the combination group number/operating mode or the id_ptr
entry in the header of the SSMCB can be used. In addition, the USER can also provide additional CBFs so
that another CBF is called depending on the SSMCB.
In all jobs which are processed simultaneously, different bits should be set in each job for the group number
since a standard DP slave may not receive two or even more "set_slave_mode ()" telegrams in such short
succession without receiving data in-between. Correct processing of the "set_slave_mode ()" calls would
still be endangered even if a slave sent a non permanent diagnosis before the "set_slave_mode ()" telegram.
For state transition DATA DIAG2_STATUS DATA; see "state_report ()" CBF starting on page 129. To
prevent the slave from outputting old data at the time of synchronization as could happen in the case above,
the call of the "set_slave_mode_done ()" CBF must be delayed by at least two data cycles when at least one
of the grouped slaves of a job is in the state DIAG2_STATUS.

5.2.3.8.3 set_slave_mode Control Block (SSMCB)
To specify this service in more detail, the user must transfer a pointer to the correctly completed
set_slave_mode control block (definition: SSMCB) each time "set_slave_mode ()" is called. This block is
required for all slaves as many times as simultaneous calls are to be processed. The number can be
between one and eight blocks depending on the maximum number of calls.

5.2.3.8.3.1 Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (DPM_SET_SLAVE_MODE) X X X
Unsigned8 subsystem (dpm_handle) X X X
L2_TYPE_ID_PTR id_ptr (Can be used by the USER as

desired)
X X

The header is completed the same as the header description of the SLCB (see page 82 ff.) except that the
function identifier DPM_SET_SLAVE_MODE (see page 156) must be entered for opcode and the handle
supplied by the "dpm_open ()" function (see page 86 ff.) must be entered for subsystem.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 109
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.8.3.2 General Portion
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to CBF "set_slave_mode_done ()" X X X

Unsigned8 remote_add (0D-125D; 127D) X X X
Unsigned8 gc_command

(SL_SYNC or SL_UNSYNC and
SL_FREEZE or SL_UNFREEZE)

X X X

Unsigned8 gc_group_select (01H-FFH; bit-coded) X X X
Unsigned8 Reserved (job_no) X X

Pointer to "set_slave_mode_done ()" CBF:

This pointer must point to the "set_slave_mode_done ()" CBF of the USER. See page 138.

remote_add:

When the current job is to apply to only one slave, the PROFIBUS address of this slave (0D to 125D) must be
entered here. When a group of slaves is addressed, 127D (i.e., global access address in accordance with
standards) must be entered here. In both cases, a correct parameter is also required for gc_group_select.
Even when only one slave is to be addressed, this slave will ignore the telegram when it is not included in
the selected gc_group_select value.
There is no point in sending a "set_slave_mode ()" job to only one slave however, since this service is
usually used to synchronize the data update cycle of several slaves.

gc_command:

The USER enters the function requested by him (i.e., SL_SYNC or SL_UNSYNC, or SL_FREEZE or
SL_UNFREEZE) here. See section on rules of coding for slave operating modes on page 155.

gc_group_select:

Every standard DP slave for which the "set_slave_mode ()" command is to be executed must be assigned to
a group by the USER. These groups contain slaves which can handle only SYNC/UNSYNC or only
FREEZE/UNFREEZE or both. A slave which can handle both services can be assigned to a SYNC group
but not vice versa. The two masks which the USER transferred with the "init ()" call in DPMIB (see page
88 ff.) determine which group handles which service. These masks are used to check the currently
transferred value for plausibility.
The parameter is bit-coded (i.e., bit 0B stands for group 0D, bit 1B stands for group 1D and so on). 00H (i.e.,
all slaves) is not permitted. FFH (i.e., all slave groups) must be used instead.

Reserved (job_no):

This entry is required internally by AMPRO-DPM for management of the jobs. It is not applicable to the
USER and may not be changed by him.

SchnittStellenCenter ASPC 2

Page 110 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.8.4 Call
Sample call:
 status = dpm_ptr -> set_slave_mode ((SSMCB_PTR) &ssmcb);

Possible return values for status:

DPM_OK_CBF The job was started correctly. The CBF call indicates
end of execution.

ERR_DPM_REQ_ACTIVE Error: The last call of the "init ()" function has still not
been concluded, or the maximum number of
simultaneous "set_slave_mode ()" calls was
already reached with the last call. This job and
all later jobs must wait at least until a running
"set_slave_mode ()" job has been concluded.

ERR_DPM_INVALID_MODE Error: Wrong master mode. Only possible in master
mode MA_CLEAR or MA_OPERATE.

ERR_DPM_INVALID_PAR Error: Wrong parameter in the USER request

5.2.3.8.4.1 SYNC/UNSYNC Slave Operating Modes
When the USER issues the SYNC command, the values entered last in the output data area must be frozen
by the appropriate slaves. However, since "set_slave_mode ()" can be called immediately after the last
change of the outputs, AMPRO-DPM ensures that all slaves receive at least one more data telegram before
the SYNC Global_Control command is issued. The total delay time up to the issuing of the
"set_slave_mode_done ()" return message is approximately the time required for one data cycle plus an
additional single job.
During the time between which the "set_slave_mode ()" function is called and the response with the
"set_slave_mode_done ()" function, the USER may no longer permit accesses to the output data areas of
the addressed slaves.

Sequence charts:

USER calls the function. Start a dummy job.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 111
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Evaluate confirmation of the dummy job and start the Global_Control service

Evaluate confirmation of the Global_Control service and inform USER

SchnittStellenCenter ASPC 2

Page 112 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.8.4.2 FREEZE/UNFREEZE Slave Operating Mode
As soon as the USER calls the "set_slave_mode ()" function for FREEZE, the corresponding job is sent to
AMPRO2. After the addressed slaves have received the indication, these slaves must freeze their inputs.
Depending on the type of slave (i.e., purely hardware or purely software or mixed), the slave may not be able
to react to the command immediately. New input data are still transferred even after the FREEZE command.
AMPRO-DPM also takes this delay into consideration and maintains a wait time as for SYNC. Use of the
"mark_cycle ()" command by the USER is not necessary. The USER does not receive the return message
via the "set_slave_mode_done ()" CBF until this time has expired.
Also similar to the SYNC command, when the FREEZE command is used, the USER must suppress access
to the input areas of the addressed slaves between the time the command is issued and the CBF is called.

Sequence charts:

Function called by USER. Start Global_Control service.

Evaluate confirmation of the Global_Control service and start a dummy job

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 113
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Evaluate confirmation of the dummy job and inform USER

5.2.3.8.4.3 Simultaneous Execution of SYNC or UNSYNC and FREEZE or UNFREEZE
When the USER specifies in the function call that SYNC or UNSYNC and FREEZE or UNFREEZE are to be
executed simultaneously, the auxiliary jobs are omitted for both jobs. The FREEZE job is used instead of
the dummy job for SYNC and vice versa.
As before, use of the "mark_cycle ()" command by the USER is not necessary since AMPRO-DPM
maintains the two wait times. The USER must only ensure that neither the input nor output data areas can
be accessed again until the "set_slave_mode_done ()" function is received.

5.2.3.9 set_slave_address (SSLACB_PTR)

5.2.3.9.1 Description
The "set_slave_address ()" command sets the PROFIBUS station address of a slave. This service can only
be used for standard DP slaves.
Acceptance of the change in address by the slave is a prerequisite. This is not possible when the station
address of the slave can only be changed with a DIP switch, for example. In addition, the USER must
ensure that neither the current address of the slave (0D-125D or default address 126D) nor the new address
to be set is already set for another station of the bus system. The most reliable way to prevent address
conflicts is to use a point-to-point link between the AMPRO-DPM module and the slave. The slave may not
be located under the old address when in the SL_DATA state since it ignores all requests for address
change when in this state. There are several ways for the USER to achieve this. When a slave is
configured under the old station address, its processing may not be started with "add_slave ()" (see page
96 ff.) or it must be explicitly concluded with "withdraw_slave ()" (see page 100 ff.). Instead, the master can
also be put into the MA_STOP state with "set_master_mode ()" (see page 104 ff.) since, although the master
can send address change requests in this mode, the slaves are not processed.

To change the address of a slave, the USER transfers a correctly completed Set_slave_address control
block (definition: SSLACB) to AMPRO-DPM. After the station address has been changed, the USER
receives the return response together with the SSLACB via the "set_slave_address_done ()" CBF.

SchnittStellenCenter ASPC 2

Page 114 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.9.2 set_slave_address Control Block (SSLACB)
To specify the service in more detail, the user must transfer a pointer to the correctly completed
set_slave_address control block (definition: SSLACB). This block is only required once for all slaves.

5.2.3.9.2.1 Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (DPM_SET_SLAVE_ADDRESS) X X X
Unsigned8 subsystem (dpm_handle) X X X
L2_TYPE_ID_PTR id_ptr (Can be used by the USER as

desired)
X X

The header is filled out the same as the header description of the SLCB (see page 82 ff.) except that the
function identifier DPM_SET_SLAVE_ADDRESS (see page 156) must be entered for opcode and the
handle supplied by the "dpm_open ()" function (see page 86 ff.) must be entered for subsystem.

5.2.3.9.2.2 General Portion
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to "set_slave_address_done ()"
CBF

X X X

Unsigned8 remote_add (0D-126D) X X X
Unsigned8 new_slave_add (0D-125D) X X X
Unsigned8 ident_no_high X X X
Unsigned8 ident_no_low X X X
Unsigned8 no_add_chg (DP_TRUE, DP_FALSE) X X X
Unsigned8 Reserved
Unsigned8 status X X X
Unsigned8 rem_slave_data_length X X X
DPM_PROC_DATA_ATTR * rem_slave_data_ptr (pointer to an

Unsigned8 array)
X X X

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 115
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Pointer to "set_slave_address_done ()" CBF:

This pointer must point to the "set_slave_address_done ()" CBF of the USER. See page 138.

remote_add:

The USER must enter the current address of the slave (0D-126D) here. This can also be the default address
(126D) as defined.

new_slave_add:

The USER must enter the address of the slave (0D-125D) to be set here. The default address (126D) cannot
be used here.

ident_no_high:
ident_no_low:

These two bytes are assigned the high or low byte of the PNO ident number of the slave. Each standard DP
slave must be assigned an ident number by the PNO. See also the description of the DPMIB. AMPRO-
DPM uses this number to determine whether the slave with the set remote_add is really the slave which the
USER is thinking of.

no_add_chg:

This boolean parameter specifies whether the slave will or will not permit its address to be changed again
after the current change in address. An entry of DP_TRUE permits later changes. An entry of DP_FALSE
does not permit later changes.

status:

Since this variable provides the USER with information on the status of the service on the bus, it cannot be
evaluated until after the block is returned with the "set_slave_address_done ()" CBF. See page 138.

rem_slave_data_length:

The USER can immediately transfer any data record to the slave with the change-of-address telegram. If
this is to be done, the USER must fill a data block with these data and enter its length (1D - 240D bytes) in
rem_slave_data_length. When no data exist, 0D must be entered.

rem_slave_data_ptr:

When additional data are to be transferred, the pointer to these data (Unsigned8 array) must be entered
here. When rem_slave_data_length is 0D, this pointer can be disregarded.

SchnittStellenCenter ASPC 2

Page 116 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.9.3 Call
Sequence charts:

Function is called by the USER and the Set_Slave_Address job is started.

Evaluate confirmation of the Set_Slave_Address job and inform USER

Sample call:
 status = dpm_ptr -> set_slave_address ((SSLACB_PTR) &sslacb);

Possible return values for status. (This is the return value of the "set_slave_address ()" function and not the
status in SSLACB.)

DPM_OK_CBF The job was started correctly. Call of the CBF indicates
end of execution.

ERR_DPM_REQ_ACTIVE Error: The last "set_slave_address ()" or "init ()" call is
still being processed.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 117
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.10 mark_cycle (MARKCB_PTR)

5.2.3.10.1 Description
The "mark_cycle ()" service is used to synchronize the USER with AMPRO-DPM. The USER receives the
return response to this command (i.e., the "mark_cycle_done ()" CBF - see page 139) when every activated
slave has been addressed at least once since the function started. "mark_cycle ()" can only be called in the
master modes MA_CLEAR and MA_OPERATE. If the master mode is changed while "mark_cycle ()" is
being executed, the USER receives an appropriate error message in MARKCB with the CBF.
This service is primarily used to maintain the wait times before or after the SYNC/UNSYNC and
FREEZE/UNFREEZE Global_Control services in accordance with the PROFIBUS-DP standard. Since these
wait times are adhered to by AMPRO-DPM anyway (see use of the "set_slave_mode ()") service, if required
at all, the USER can use the service for other purposes.

5.2.3.10.2 mark_cycle Control Block (MARKCB)
To specify the service in more detail, the user must transfer a pointer to the correctly completed mark_cycle
control block (definition: MARKCB). This block is required globally only once.

5.2.3.10.2.1 Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (DPM_MARK_CYCLE) X X X
Unsigned8 subsystem (dpm_handle) X X X
L2_TYPE_ID_PTR id_ptr (can be used by the USER as

desired)
X X

The header is completed the same as the header description of the SLCB (see page 82 ff.) except that the
function identifier DPM_MARK_CYCLE (see page 156) must be entered for opcode and the handle (see
page 86 ff.) supplied by the "dpm_open ()" function must be entered for subsystem.

5.2.3.10.2.2 General Portion
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_CALL_BACK_
FUNC_ATTR *

Pointer to the "mark_cycle_done ()" CBF X X X

Unsigned8 status X X X
Unsigned8 dia X X X

SchnittStellenCenter ASPC 2

Page 118 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Pointer to "mark_cycle_done ()" CBF:

This pointer must point to the "mark_cycle_done ()" CBF of the USER. See page 139.

status:

This entry is one of the return values for the USER. AMPRO-DPM enters the return values in accordance
with the PROFIBUS-DP standard here. The USER cannot evaluate this entry until after the return of the
block with the "mark_cycle_done ()" function. See page 139.

dia:

This entry is the second return value for the USER. AMPRO-DPM enters the return values in accordance
with the PROFIBUS-DP standard here. The USER cannot evaluate this entry until after the return of the
block with the "mark_cycle_done ()" function. See page 139.

5.2.3.10.3 Call
Sequence chart:

The "mark_cycle ()" service is executed the same as the "set_slave_mode ()" service except that the two
jobs for "mark_cycle ()" are auxiliary jobs. See the sequence charts of the "set_slave_mode ()" service.

Sample call:
 status = dpm_ptr -> mark_cycle ((MARKCB_PTR) &markcb);

Possible return values for status. (This is the return value of the "mark_cycle ()" function and not the status
in MARKCB.)

DPM_OK_CBF The job was started correctly. The call of CBF indicates
end of execution.

ERR_DPM_REQ_ACTIVE Error: The last "mark_cycle ()" or "init ()" call is still
being processed.

ERR_DPM_INVALID_MODE Error: Wrong master mode. Only possible in master
mode MA_CLEAR or MA_OPERATE.

5.2.3.11 input_update (SLCB_PTR)

5.2.3.11.1 Description
Use of this function is only required for inputs in Buffered_Mode. The same also applies to "long"
consistency since this is imaged in Buffered_Mode.
To receive current input data at all times, the user must request this with the "input_update ()" function. The
pointer to the SLCB of the slave for which the inputs of the stated types are entered in the slave parameter
record is used as the transfer parameter of the function. When this slave is in the DATA state (in any other
state, the USER receives an error message) and AMPRO-DPM is in the master state OPERATE or CLEAR
(in STOP status, the USER also receives an error message), AMPRO-DPM calls the
"write_inp_data_to_pda ()" CBF. See page 141 ff.
First, the USER receives the pointer to the SLCB as the parameter of the CBF. The pointer to the process
data area of the inputs of this slave is entered there (entry: input_data_ptr). Second, the USER receives a
pointer-pointer to the buffer which has just been exchanged. The USER must then provide for the data
transfer. There are two ways to accomplish this.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 119
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 If the process data area is shared memory area (i.e., dual-port RAM or similar), the USER must
activate consistency control for the area specified by the process data pointer when inputs with
"long" consistency are involved. The pointer-pointer is then used to copy all data from the
buffer to the process data area. The SLCB contains the required length (entry: input_data_len).
Consistency control is deactivated, and the CBF is concluded.
Inputs in Buffered_Mode are handled the same way except that activation and deactivation of
the consistency control logic is omitted.

Caution:
Activation and deactivation of the consistency lock during the "write_inp_data_to_pda ()" CBF
must never increase the run time for the CBF.

 When the data must be sent with an operating system message for example, the buffer can
also be sent directly. In this case, the USER will have to supply a new buffer from AMPRO2
memory management which is then entered in the buffer pointer by the USER. At the end of
the CBF, AMPRO-DPM expects a buffer with any contents to be valid. To make it easier to
select the data buffer size, the buffer's number is entered in the SLCB (entry:
input_data_db_no). This number can be used by the USER to select the appropriate
"I2_mem_alloc_dbx ()" function of AMPRO2 memory management.
When using this technique, the USER should not forget to transfer the length specification from
the SLCB (entry: input_data_len) together with the buffer.

The "input_update ()" function must be called by the USER when necessary for a slave.
The frequency of several "input_update ()" calls in sequence should not exceed the activation interval of the
"consistency_update ()" function. If "input_update ()" is called too frequently, an appropriate error message
is generated for the USER and no new input data are available. Based on this error message, the USER
can increase the call interval of the "input_update ()" function, for example.

The minimum time interval for updating the input data depends on the bus rotation time and the hardware
base on which AMPRO-DPM is executed. Updating can usually be performed every several milliseconds
(approx. 5 msec). Shorter update rates endanger the functionality of AMPRO-DPM because of the
increased processor load. In addition, since new input data usually do not exist yet, the input data do not
have to be updated anyway. The bus parameter TTR also offers a time base one or more of which must be
inserted between the "input_update ()" calls.

SchnittStellenCenter ASPC 2

Page 120 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.11.2 Call
Sequence chart:

"input_update ()" function called by the USER

Sample call: New input data are to be copied for slave no. x.
 status = dpm_ptr -> input_update ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK Service executed correctly

ERR_DPM_REQ_ACTIVE Error: The "init ()" call is still being processed.

ERR_DPM_NO_CONS_SLAVE Error: Neither "long consistency" nor Buffered_Mode
is entered in the slave parameter record for the
inputs of the slave.

ERR_DPM_NOT_ALLOWED Error: AMPRO-DPM is not in the OPERATE or
CLEAR master state.

ERR_DPM_NOT_IN_DATA Error: The slave is not in DATA status. The data
could not be updated.

ERR_DPM_CONS_REQ_ACTIVE Error: No new input data are available yet. The
"consistency_update ()" function has not been
called between the calls of "input_update ()".

ERR_DPM_NOT_PROCESSED Error: No new input data are available yet. The
master has not yet polled the slave again.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 121
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.3.12 output_update (SLCB_PTR)

5.2.3.12.1 Description
Use of this function is only required for outputs with "long" consistency. Buffered_Mode is not required for
outputs.
To receive current output data at all times, the user must request these data with the "output_update ()"
function. The pointer to the SLCB of the slave for which outputs with "long" consistency are entered in the
slave parameter data record serves as the transfer parameter of the function. When this slave is in the
DATA state (in any other state, the USER receives an error message), AMPRO-DPM requests the current
output data of the slave from the USER. The "read_outp_data_from_pda ()" CBF is called. See page
141 ff. This CBF is always started within the "output_update ()" function. See sequence chart. The USER
receives a pointer to the SLCB as a parameter of the CBF. Located there is the pointer to the process data
area of the outputs of this slave (entry: output_data_ptr). The USER also receives a pointer-pointer to an
empty buffer. The USER must now provide for the data transfer. There are two ways to accomplish this.

 If the process data area is a shared memory area (i.e., dual-port RAM or similar), the USER
must first activate consistency control for the area specified by the process data pointer. All
data are then copied from the process data area to the buffer via the pointer-pointer. The SLCB
contains the required length (entry: output_data_len). Consistency control is then deactivated,
and the CBF is concluded.

Caution:
Activation and deactivation of the consistency block during the "read_outp_data_from_pda ()"
CBF must never increase the run time of the CBF.

 When the USER has received the output data with an operating system message for example,
the buffer can also be sent directly to AMPRO-DPM. In this case, the USER must first receive
the empty buffer and then add the buffer with the new ouputs to the buffer pointer-pointer. The
empty buffer can continue to be used or it can be returned with the "I2_mem_free_db ()"
function of AMPRO2 memory management.
When using this technique, the USER should not forget to transfer the length specification from
the SLCB (entry: output_data_len) together with the buffer.

When AMPRO-DPM has received a buffer with new ouputs from the USER, it transfers this buffer to
AMPRO2 with the MAC_REPEAT_EXCHANGE service for further use in the data cycle. In response,
AMPRO-DPM receives an empty buffer which is used for the next "output_update ()" call.
If the slave is not included in the data cycle while the "output_update ()" function is being executed, the data
buffer which has just been transferred is accepted anyway. This data buffer is then sent immediately after
the slave returns to the data cycle. This means that the USER can "preset" the data buffer. When the
USER does not preset the data buffer, the last valid data buffer is sent when a slave returns to the DATA
state. However, these data may be out-of-date for the application process. A special_function bit (i.e.,
LCCO) has been defined to circumvent this behavior. When this special function is activated, the current
output buffer is internally cleared when necessary by AMPRO-DPM.

The "output_update ()" function is usually called by the USER when needed (e.g., after an access to the
input data area).
When this function must also be called cyclically, the same restrictions apply as with the "input_update ()"
function. Call frequency should not be greater than the current target rotation time. If greater, the USER
receives an appropriate error message. A maximum frequency of not less than 5 msec must be selected.

SchnittStellenCenter ASPC 2

Page 122 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.3.12.2 Call
Sequence chart:

The "output_update ()" function is called, and the buffer exchange is started by the USER.

Evaluation of the AMPRO2 request and post-processing

Sample call: New output data are to be transferred for slave no. x.

status = dpm_ptr -> output_update ((SLCB_PTR) &slcb[x]);

Possible return values for status:

DPM_OK Service executed correctly

ERR_DPM_REQ_ACTIVE Error: The "init ()" call is still being processed. The
output data were not accepted.

ERR_DPM_NO_CONS_SLAVE Error: Neither "long" consistency nor Buffered_Mode
is entered in the slave parameter record for the
outputs of the slave.

ERR_DPM_NOT_ALLOWED Error: AMPRO-DPM is not in OPERATE or CLEAR
master status. The output data were not
accepted.

ERR_DPM_NOT_IN_DATA Error: The slave is not in DATA status but the data
were accepted.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 123
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

ERR_DPM_CONS_REQ_ACTIVE Error: The current output data buffer was accepted,
and the data will be sent later. An
"output_update ()" which was triggered shortly
before is still active. The call frequency of
"output_update ()" is too high. DP bus
performance is too low.

ERR_DPM_NOT_PROCESSED Error: The last output data could not be sent and have
been overwritten by new output data. The call
frequency of "output_update ()" is too high. DP
bus performance is too low.

ERR_DPM_BUFFER_OVERWRITE Error: The last output data could not be sent and have
been overwritten by new output data. The call
frequency of "output_update ()" is too high. The
function has been activated several times.

5.2.3.13 consistency_update (void)

5.2.3.13.1 Description
Use of "long" consistency and Buffered_Mode requires that cyclic updating of the inputs within AMPRO-DPM
be exited. This is the only way to provide the USER with a current input buffer via the synchronous
"input_update ()" service. See page 118 ff.
The "consistency_update ()" function executes a complete update cycle for the inputs. The
"consistency_update_done ()" call back function (i.e., CBF) also exists for this function. This CBF marks the
end of a complete "consistency_update ()" call.
The USER must call "consistency_update ()" cyclically. We recommend starting the cyclic call of this
function before "input_update ()" is called for the first time. A good time to start the cyclic call is after
initialization of AMPRO-DPM or before master mode changes from STOP to CLEAR. To ensure new input
data are actually available after each "consistency_update ()", the update interval should not be shorter than
the target rotation time or not shorter than 10 msec (processor load).
An error message is generated when the call is performed too frequently.

5.2.3.13.2 Call
Sequence chart:

Call the "consistency_update ()" function, and start buffer exchange within AMPRO-DPM

SchnittStellenCenter ASPC 2

Page 124 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Evaluate confirmation of the "consistency_update ()" job, and inform USER after all exchange jobs have
been returned

Sample call: The inputs are to be updated for slaves with "long" consistency or slaves in Buffered_Mode.

status = dpm_ptr -> consistency_update ();

Possible return values for status:

DPM_OK_CBF Service executed correctly. The
"consistency_update_done()" CBF is called.

ERR_DPM_REQ_ACTIVE Error: The "init ()" call is still being processed.

ERR_DPM_CONS_REQ_ACTIVE Error: Function is already active. The
"consistency_update_done()" CBF is not called.

ERR_DPM_NO_CONS_SLAVE Error: No consistent slave or no slave in
Buffered_Mode exists. The
"consistency_update_done()" CBF is not called.

ERR_DPM_NOT_ALLOWED Error: AMPRO-DPM is not in OPERATE or CLEAR
master status. The
"consistency_update_done()" CBF is not called.

5.2.3.14 timer_expired (void)

5.2.3.14.1 Description
Some internal AMPRO-DPM functions (e.g., monitoring of the Min_Slave_Interval or the
Dx_Control_Interval) require time monitoring. The USER must provide AMPRO-DPM with a timer since the
run time, setting accuracy precision and read-access technique of this timer are dependent on the hardware.
AMPRO-DPM initiates the start of this timer with the "set_timer ()" CBF. See page 140 ff. The user receives
a double word (Unsigned32) with the timer starting value in milliseconds as the transfer parameter of this
function. The USER must start the timer in this function with the parameterized value and then conclude the

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 125
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

function. The size of the starting value depends on the timer values for the Min_Slave_Interval and the
Dx_Control_Interval which the USER transferred with the "init ()" command. See page 88 ff. The starting
value is usually half the value of the Dx_Control_Interval. A greater value is generated internally by
AMPRO-DPM when the smaller value expires a number of times.
As soon as the timer has expired, the USER must call the "timer_expired ()" AMPRO-DPM function and
restart the timer with the value transferred at the beginning. The cycle of the timer function call must
continue until AMPRO-DPM has transferred a new time parameter to the USER with another call of
"set_timer ()". The USER must terminate the current timer, load the timer with the new value and then start
the timer again. When AMPRO-DPM transfers the value 0H, the USER must only stop the timer. During a
USER call of "timer_expired ()", the "timer_expired ()" function may not be called again until the first call has
been concluded.
If AMPRO-DPM recognizes that the bus cannot be processed temporarily during the "timer_expired ()"
function, the USER receives a different return value than the normal one. If this happens several times,
AMPRO-DPM reports this error to the USER by calling the "bus_accessible ()" CBF. See page 140 ff. This
CBF is already called during the call of the "timer_expired ()" function.

5.2.3.14.2 Call
Sequence chart:

Sample call:
 status = dpm_ptr -> timer_expired ();

SchnittStellenCenter ASPC 2

Page 126 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Possible return values for status:

DPM_OK Service transferred to AMPRO2 correctly

DPM_OK_CBF Service transferred to AMPRO2 correctly but the bus
cannot be accessed at this time. If this condition
persists, the "bus_accessible ()" CBF is started after
"timer_expired ()" has been called several times. See
page 140 ff.

ERR_DPM_REQ_ACTIVE Error: The last "timer_expired ()" or "init ()" call is still
being processed.

5.2.3.15 close (Unsigned8)

5.2.3.15.1 Description
The opposite of the "dpm_open ()" function (see page 86 ff.) is required to stop AMPRO-DPM in a defined
state. This function is called "close ()". As the name indicates, unlike "dpm_open ()", this function is not
separately defined. Instead the USER receives a pointer (among others) to "close ()" after "dpm_open ()" is
called in the AMPRO-DPM call structure (see page 80 ff.).
Before "close ()" can be called during running operation, all slaves must be deactivated with "withdraw_slave
()". See page 100 ff. All other functions of AMPRO-DPM and all CBF calls must be concluded. In addition,
the master must be in MA_STOP status. "close ()" can be called when all these preparations have been
concluded. The handle supplied by "dpm_open ()" is used as the transfer parameter. After the call,
AMPRO-DPM releases all remaining resources of AMPRO2 memory management and clears all internal
management structures. The USER can now rearrange AMPRO2 memory management, prepare his
system for a new start or a restart, or continue with another job. The USER must report again with
"dpm_open ()" before the AMPRO-DPM functions can be used again after "close ()".

5.2.3.15.2 Call
Sample call:

Function definition from the "\COMMON\DPM_COMM.H" file
extern DPM_PTR DPM_IFA_FUNC_ATTR dpm_open (Unsigned8 DPM_IFA_DATA_ATTR *);

Required variables:
SLCB DPM_USER_DATA_ATTR slcb[MAX_ANZ_SLAVES];
DPM_PTR dpm_ptr;
Unsigned8 dpm_handle;
Unsigned16 status;

Function portions:
/* Call the OPEN function */
dpm_ptr = dpm_open ((Unsigned8 DPM_IFA_DATA_ATTR *) &dpm_handle);

 ...
 ... /* Use the AMPRO-DPM functions */
 ...

/* Call the CLOSE function */
status = dpm_ptr -> close (dpm_handle);

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 127
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Possible return values for status:

DPM_OK Complete conclusion of AMPRO-DPM tasks was
executed correctly.

ERR_DPM_WRONG_HANDLE Error: The handle transferred as the parameter is not
permitted.

ERR_DPM_SLAVE_ACTIVE Error: At least one slave activated before with
"add_slave ()" has still not been deactivated
with "withdraw_slave ()".

ERR_DPM_REQ_ACTIVE Error: At least one previously started service has still
not been completely concluded.

ERR_DPM_INVALID_MODE Error: The master is not in MA_STOP status.

5.2.3.16 dpm_l2_cb_server (L2_APB_PTR)

5.2.3.16.1 Description
Starting with version V2.0, AMPRO2 offers the capability of reporting back all jobs via call back functions
(CBF). Each of these jobs is transferred to AMPRO2 with an application block (APB) and reported back with
this APB. The subsystem entry of each APB must contain the number of the function which is to be called
as CBF.
In the ASIC interrupt routine which the USER must provide, this number is used to select and call the
appropriate CBF. Since a subdistributor (i.e., "dpm_I2_cb_server ()") handles this distribution for AMPRO-
DPM, the USER must not know all the internal CBFs between AMPRO-DPM and AMPRO2. The USER
must only know the range of CBF numbers to which AMPRO-DPM is assigned. When the USER receives
an APB with a CBF number from this range in the interrupt routine (i.e., the main distributor), the USER calls
the "dpm_I2_cb_server ()" function and specifies the APB.
The CBF numbers 0D to 69D are permanently reserved for AMPRO-DPM.

5.2.3.16.2 Call
Sample call:

An example of the interrupt routine of the USER is shown below. It is based on the example from the
AMPRO2 application notes. Since portions of functions for interrupt processing may still have to be added
before and after this function, this example only concerns itself with the CBF distributor.
While the interrupt routine is being processed, dpm_ptr which was completed by the "dpm_open ()" function
(see page 86 ff.) must be globally known. The "dpm_I2_cb_server ()" function could have been entered
during the initialization of the USER system in a pointer known to the interrupt routine instead. The contents
of this pointer would then have been called during the interrupt routine instead of the above-stated call.

void L2_CALL_BACK_CODE_ATTR ampro2_cbf_distributor (void)
{
 L2_APB_PTR apb_ptr;

 l2_aspc2_int_handler();

 while (apb_ptr = l2_con_ind())
 {
 if (apb_ptr->subsystem <= 69)
 {
 dpm_ptr->dpm_l2_cb_server (apb_ptr);
 }
 else
 {
 /* Here the CBF-distributors for other components may be added */
 /* or the "error()"-function may be called in case of a wrong */

SchnittStellenCenter ASPC 2

Page 128 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 /* subsystem-value. */
 }
 }
}

5.2.4 Call Back Functions (CBFs) of the USER

As already stated in the section on the communication model on page 61, CBFs are used to inform the
USER of the status of a previously started AMPRO-DPM function, certain slave states or errors which have
occurred.
CBFs are functions without return values which must be supplied by the USER. See section on the call
structure for the USER starting on page 81. Their call roughly corresponds to the occurrence of an interrupt.
Although the effect of these functions is irrelevant to AMPRO-DPM, their run times should be kept as short
as possible. As transfer parameter, the USER usually first receives a job block directly (the "error ()"
function - see description starting on page 143) or a pointer to this block (i.e., other functions). When the
"state_report ()" function is involved (see description starting on page 129), the USER may only read-access
the transferred block while the function is running. For all other functions with block pointers, the USER
receives the block back. Transfer of the status messages from AMPRO-DPM to the USER is performed, if
necessary, with the other parameter (type Unsigned16). This status word corresponds to the return value of
normal functions.

The CBFs are divided into functions which originated when the USER triggered a service and functions
which are triggered by AMPRO-DPM and are not dependent on USER requests. All CBFs which are called
after USER requests are identified with a "..._done" in the function name.

Caution:

All CBFs which are called because of a USER job cannot only be called at the end of the user function but
also any time beforehand. AMPRO-DPM starts the corresponding CBF as soon as the job has been
executed. Depending on the priority of the USER job and the duration of execution, this point in time can be
either before or after the end of the USER request. The USER must always be prepared for the possibility
that the CBF for a job concluded with DPM_OK_CBF may already have been called.
In actual practice, this requirement can be implemented with two busy flags (i.e., one for the function and
one for the CBF). Before each function is called, the USER sets both flags to busy. Both flags are reset
after the function has been concluded with DPM_OK. After the DPM_OK_CBF return value of the function,
only the function flag is cleared. In the CBF, the other flag is reset. In both cases, the current function call
has been concluded when both flags have been cleared again. If the USER system does not have a multi-
tasking or multi-processing environment, the BUSY function flag can be omitted.

5.2.4.1 init_done (Unsigned16)

When the "init ()" function started by the USER (see page 88 ff.) has been executed, the "init_done ()"
function is called as the return message for the user. AMPRO-DPM receives the pointer to this function from
the USER in DPMIB together with the job. The transfer parameter status word contains information on the
status of the job. At the end of the function, the job block (i.e., DPMIB) can be used again by the USER.
Very different delay times can occur between the time when the "init ()" function is called and the time when
the CBF is called. This depends on the physical setup of the bus and the parameterization. If, for example,
the USER has transferred a master station number in the DPMIB which is larger than the HSA of the active
PROFIBUS station already on the bus, the master will never receive the token and never obtain sending
rights. This suppresses the CBF call permanently. The same situation also occurs when the bus lines are
short circuited. Even during normal operation without such errors, long delays can occur before the master
receives the token. Assume, for example, the lowest baud rate (i.e., 9.6 kbaud) and parameterization of all
time values to their maximum values, and, in addition, poor distribution (i.e., very high and very low numbers)
of the station numbers of the active stations with a heavy bus load. Under these conditions, it might take
several days (days is not a typographical error) until the master receives the token. This example shows
how important realistic bus parameters, adjustment of the bus load to the actual requirements and a correct
(optimized if possible) bus setup are.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 129
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

After the "dpm_open ()" function has been called, the USER receives a pointer to the AMPRO-DPM call
structure but, to prevent operator errors, this structure only contains a few function pointers at this time. See
the "dpm_open ()" function starting on page 86. All other pointers have the value ZERO. The remaining
pointers are not entered in the structure until the "init_done ()" function is called.

The "init_done ()" function is also one of those CBFs which can already be called while the "init ()" function is
still running. This can occur particularly when a bus with a high baud rate is being used without any
additional masters or active stations. The USER must then use internal flags to ensure that the "bus is ready
for operation" information is not lost. The "init ()" function itself is always (when no errors occur) concluded
with the DPM_OK_CBF return message even when the CBF was already called before the end of the
function. See also the introduction to this section.

Possible values for the status word:

DPM_OK Service executed correctly

5.2.4.2 state_report (SLCB_PTR)

The "state_report ()" function is used to inform the USER of the previous, next or current status of the slave.
The transferred SLCB may only be read-accessed by the USER and only while the function is being
executed. After the function has been concluded, AMPRO-DPM regains sole access rights to the block.

5.2.4.2.1 Slave States with Parameterizing Master
The following states are defined for each slave. See section on coding rules for slave states on page 155.

Operating Mode Explanation
DEACT The slave is not being processed.
DIAG1 The slave is being polled for the first time or has experienced a failure. The slave

now reports diagnoses until it can be parameterized.
PRM The slave is being parameterized.
CFG The slave is being configured.
DIAG2 The slave reports diagnoses or long-term status messages until it assumes

another status due to the messages.
DIAG2_STATUS The slave is signaling a status message.
S7_GET_CFG The configuration will be fetched from the slave next. Only applicable to

S7_GET_CFG slaves.
DATA The master is exchanging data with the slave.
DATA_NA The slave malfunctioned after the master exchanged data with the slave.
PRM_UNLOCK The slave is being deactivated.
STOPPED The slave is not being processed since its handler was stopped due to

AUTOSTOP master operating mode.

DEACT is the original status of each slave before "add_slave ()". The DEACT state can be entered in the
SLCB by the USER as actual_state before the first "add_slave ()" command. However, this is not absolutely
necessary and is only used to improve comprehension and simplify internal communication for the USER.
When the "state_report ()" is called for the first time, DEACT is always returned as last_state. After the
"withdraw_slave_done ()" CBF is called, DEACT is the actual_state of the slave.
The "state_report ()" function is called each time the operating mode changes. In addition, in the DIAG2
state, every new diagnostic telegram is reported with "state_report ()".

AMPRO-DPM usually uses a special feature of AMPRO2 (i.e., the repeat jobs) in connection with the
ASPC2 PROFIBUS ASIC. A repeat job permits AMPRO-DPM to specify continuation of the slave state

SchnittStellenCenter ASPC 2

Page 130 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

machine expected with the current state of the slave when issuing jobs. If the expected process occurs, the
ASIC can continue processing alone without any help from AMPRO-DPM. AMPRO-DPM does not interfere
until a change in the slave state occurs. This is the only way to reduce the extreme load of the processor
despite the ASIC at a maximum baud rate of 12 Mbaud to a realistic value. For the USER, this means that
only changes in state are usually reported with "state_report ()".
Repeat jobs usually cannot be used while the slave handler is booting since a change in slave status is
usually required after each job from AMPRO-DPM to AMPRO2. The ASIC usually does not begin
processing the AMPRO-DPM jobs alone until the first DATA DATA transition occurs. After this transition
occurs, at least one data telegram has been transferred to the slave. Cyclic processing of the slave can now
begin, and an initial current image of the inputs of the slave is available to the master.

In addition to the slave states described in the DP standard, the DIAG2_STATUS, S7_GET_CFG, DATA_NA
and STOPPED states reported by AMPRO-DPM have been added.
The USER could generate the DIAG2_STATUS and DATA_NA states but he would have to obtain this
information from several locations which would take time. Since AMPRO-DPM has this information at its
direct disposal, the use of these states can simplify processing for the USER considerably.
The slave state S7_GET_CFG only occurs with type S7_GET_CFG S7 slaves. See
"copy_s7_get_cfg_data ()" function on page 141. STOPPED is a special state which only occurs in
connection with the AUTOSTOP master operating mode.

When a slave is in the DATA state, it can always provide status messages to the master. However, these
states are transferred in the DIAG2 state the same as "real" error messages. Determination of whether the
diagnostic message of the current DIAG2 state is an error message or a status message is based on the
transition sequence of the states (i.e., DATA DIAG2 DATA (status message) or DATA DIAG2
not DATA (error message)). The DIAG2_STATUS state has been provided to relieve the USER of this time-
consuming evaluation.
When a slave in the DATA state requests a diagnostic telegram, its next status is DIAG2_STATUS. After the
master has received the diagnoses, it changes the slave state back to DATA if a status message is involved.
The corresponding next state (e.g., DIAG2 for another diagnostic request of the slave) is entered for all other
messages. A transition from DIAG2_STATUS DIAG2_STATUS is not possible. This state can only be
assumed once. The slave can only assume DIAG2_STATUS from the DATA state.

DATA_NA is similar to the DIAG1 state. The slave no longer responds to the requests of the master.
Despite this, the slave is still supplied with current data telegrams. When the slave becomes available again
after a period of time (any length of time), a complete new registration does not absolutely have to be
performed after DATA_NA. If the slave is able to process the received data telegram correctly, its next state
is DATA. Such transitions usually occur when the threshold monitoring time of the slave is disabled or the
time has not yet expired. If the slave does not return to the bus until after the threshold monitoring time has
expired, it reports an error for the data telegram and is included again via DIAG1.

The following table shows the transitions in operating mode which are reported. The two right-hand columns
specify which entry is made for the status change in the master diagnostic field for this slave. See the "init
()" function. DTL stands for Data_Transfer_List. SD stands for System_Diagnostic. After initialization, the
value 0B is entered for both areas. This means that the corresponding slave is in the DEACT state.
However, the DTL is not transferred with the current status. Instead, it is cleared after one half of one
Dx_Control_interval by the DPM-USIF and transferred to the master diagnostic area as specified by the
PROFIBUS-DP standard. The DPM-SLSM only sets the bits when necessary but does not clear them.
Changes of the DTL are thus reported with a delay of up to one half of one Dx_Control_interval. The SD list
contains the current state.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 131
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Operating Mode Information for the USER DTL SD
Previous Current
DEACT DIAG1 The slave will be included next in the processing

cycle with DIAG1 telegrams.
0B 1B

STOPPED DIAG1 A slave which was previously removed from the
processing cycle due to the AUTOSTOP master
mode will be re-included next in the processing
cycle with DIAG1 telegrams.

0B 1B

DIAG1 PRM The slave will be parameterized next. 0B 1B
PRM CFG The slave will be configured next. 0B 1B
CFG DIAG2 The slave will be diagnosed next. 0B 1B
PRM DIAG2 Only applicable to Siemens DP slaves with SPM

ASIC:
The slave will be diagnosed next.

0B 1B

DIAG2 DIAG2 The last diagnostic message of the slave was
entered in the data area specified by SLCB. The
diagnostic status remains valid.

0B 1B

DIAG2 S7_GET_CFG Only applicable to S7_GET_CFG slaves:
The configuration will be requested next from the
slave.

0B 1B

DIAG2 DATA The last diagnostic message of the slave was
entered in the data area specified by the SLCB.
Data communication with the slave can be
started next.

1B 0B

S7_GET_CFG DATA Only applicable to S7_GET_CFG slaves:
The current configuration has been successfully
fetched. Data communication with the slave can
be started next.

0B 1B

DATA DATA Data communication with the slave is taking
place. This transition is usually reported once
per startup of the slave handler.

1B 0B

DATA DATA_NA The slave failed after data communication with it
took place.

0B 1B

DATA_NA DATA After a short failure, the slave can be processed
again with data telegrams without having to be
added again.

1B 0B

DATA,
DATA_NA

DIAG2_STATUS The slave will be diagnosed next. The slave has
just received a data telegram, however.

1B 1B

DIAG2_STATUS DATA The diagnosis which was requested last was a
status message. The slave is receiving data
telegrams again.

1B 0B

DIAG2_STATUS DIAG2 The diagnosis which was requested last was an
error message. The slave continues to receive
diagnostic telegrams.

0B 1B

Any mode except
PRM_UNLOCK,
DEACT or
STOPPED

DIAG1 The slave has failed permanently or has reported
a serious error. Transition from DIAG2_STATUS
or DATA is not possible in AUTOSTOP master
mode.

0B 1B

Any mode except
DIAG1, DEACT
or STOPPED

PRM_UNLOCK The slave is being removed from the processing
cycle.

0B 1B

DIAG1,
PRM_UNLOCK,
STOPPED

DEACT The slave was deactivated due to a USER
request. Transition from STOPPED can only
take place in AUTOSTOP master mode.

0B 0B

DIAG1,
PRM_UNLOCK

STOPPED The slave was removed from the processing
cycle due to AUTOSTOP master mode.

0B 0B

SchnittStellenCenter ASPC 2

Page 132 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.4.2.2 Slave Handler with Parameterizing Master

5.2.4.2.2.1 Transitions in Slave State during Normal Operation
The following figure shows the states and transitions in state for a slave in accordance with the PROFIBUS-
DP standard.
The STOPPED state cannot be assumed during normal master operation. After PRM_UNLOCK a branch is
always made to DEACT since this state can only be assumed after a "withdraw_slave ()" call. The two
shaded states (i.e., DIAG2_STATUS and DATA) are the states in which data communication is performed
with the slave.

Figure 6: Transitions in slave state with parameterizing master during normal operation

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 133
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.4.2.2.2 Transitions in Slave State during AUTOSTOP Master Mode
In AUTOSTOP master mode, transitions from DATA and DIAG2_STATUS to DIAG1 are not possible since a
PRM_UNLOCK sequence is always started from these two states when an error occurs. The DATA_NA
state does not occur at all. Transition from PRM_UNLOCK or DIAG1 to DEACT is made when the slave
was deactivated before with "withdraw_slave ()". Transition to STOPPED occurs immediately after the
DATA or DIAG2_STATUS state is exited. The two shaded states (i.e., DIAG2_STATUS and DATA) are the
states in which data communication with the slave takes place.

Figure 7: Transitions in slave state with parameterizing master during AUTOSTOP mode

SchnittStellenCenter ASPC 2

Page 134 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.4.2.2.3 Transitions in Slave State during S7_GET_CFG Slave Mode
Transitions in slave state during S7_GET_CFG slave mode are the same as those of a standard DP slave.
An additional S7_GET_CFG slave state must be integrated in the slave handler for operation of
S7_GET_CFG slaves. See page 129 ff.

The S7_GET_CFG state is achieved when the slave reports in the DIAG2 state that it is ready for data
communication. Instead of changing immediately to the data cycle, the current configuration is requested
from the slave and then provided to the USER. See page 141 ff. The change to the data cycle occurs after
the configuration has been requested.

Figure 8: Transitions in slave state with parameterizing master during S7_GET_CFG mode

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 135
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Slave States with Shared_Input Master
The following operating modes are defined for each Shared_Input slave.

Operating Mode Explanation
DEACT The slave does not react because it is turned off, for example.
DIAG1 The slave reports diagnoses until it is parameterized by another master.
SIO_GET_CFG The configuration of the slave is being checked.
SIO_DIAG2 The slave reports diagnoses or status messages until it assumes another state

due to the messages.
SIO_RD_IO The master reads the inputs of the slave.
STOPPED The slave is not processed since its handler has been stopped by the

AUTOSTOP master mode.

DEACT, DIAG1 and STOPPED correspond to the states for the parameterizing master. The slave exits the
DIAG1 state as soon as another master (or the parameterizing master of the slave) has parameterized the
slave. Based on the configuration of the slave, the Shared_Input master checks to determine whether it is
communicating with the desired slave. The Shared_Input master then reads the diagnoses in the
SIO_DIAG2 state until the slave reports that it is ready for data communication (or until an error occurs
which causes a transition back to DIAG1). After transition to SIO_RD_IO, no more diagnoses are read from
the slave until the slave or the parameterizing master is stopped or fails. The slave state usually changes to
DIAG1 afterwards. In AUTOSTOP master mode, the new slave state is STOPPED. Every change in state
and every new diagnosis is reported to the USER with "state_report ()".
The following table shows the transitions in state which are reported. The same conditions apply to DTL and
SD as for the parameterizing master.

Operating Mode Information for the USER DTL SD
Previous Current
DEACT DIAG1 The slave will be included next in the processing

cycle with DIAG1 telegrams.
0B 1B

STOPPED DIAG1 A slave which was previously removed from the
processing cycle because of AUTOSTOP master
mode will be included next in the processing
cycle with DIAG1 telegrams.

0B 1B

DIAG1 SIO_GET_CFG The configuration of the slave will be checked
next.

0B 1B

SIO_GET_CFG SIO_DIAG2 The slave will be diagnosed next. 0B 1B
SIO_DIAG2 SIO_DIAG2 The last diagnostic message of the slave was

entered in the data area specified in SLCB. The
diagnostic state remains valid.

0B 1B

SIO_DIAG2 SIO_RD_IO The last diagnostic message of the slave was
entered in the data area specified in SLCB. The
inputs of the slave can be read next.

1B 0B

SIO_RD_IO SIO_RD_IO The inputs of the slave are read. This transition
is usually reported once per startup of the slave
handler.

1B 0B

Any mode except
DEACT

STOPPED The slave was removed from the processing
cycle due to AUTOSTOP master mode.

0B 1B

SIO_GET_CFG,
SIO_DIAG2,
SIO_RD_IO

DIAG1 The slave has failed or has reported a serious
error (not from SIO_RD_IO in AUTOSTOP
master mode).

0B 1B

Any mode DEACT The slave is deactivated. 0B 0B

SchnittStellenCenter ASPC 2

Page 136 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

The primary difference between the slave diagnosis of the Shared_Input master and the slave diagnosis of
the parameterizing master is contained in status byte 1. When the parameterizing master is involved, bit 7
(i.e., "Master_Lock") must be cleared before the slave assumes the DATA state since otherwise another
master has already parameterized the slave. When the Shared_Input master is involved, "Master_Lock"
must be set before the slave assumes the SIO_RD_IO state since otherwise the slave has not yet been
parameterized by another master.

5.2.4.2.3 Slave Handler with Shared_Input Master

5.2.4.2.3.1 Transitions in Slave State during Normal Operation
The following figure shows several other transitions in state for the Shared_Input master in addition to the
transitions in operating state of the slave with the parameterizing master. The shaded SIO_RD_IO state is
the only state in which the inputs are requested cyclically by the slave.

Figure 9: Transitions in slave state with the Shared_Input master during normal operation

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 137
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.4.2.3.2 Transitions in Slave State during AUTOSTOP Master Mode
In AUTOSTOP master mode, the transition from SIO_RD_IO to STOPPED occurs when the slave or the
parameterizing master fails. Transition to DEACT does not occur until after the "withdraw_slave ()" function
is called. The shaded SIO_RD_IO state is the only state in which inputs are requested cyclically by the
slave.

Figure 10: Transitions in slave state with the Shared_Input master during AUTOSTOP mode

5.2.4.3 withdraw_slave_done (SLCB_PTR, Unsigned16)

When called and processed correctly, this function informs the USER that the slave which was deactivated
with the previous "withdraw_slave ()" call (see page 100 ff.) has been removed from the processing cycle in
a defined state and the memory areas for the slave have been returned to AMPRO2. The SLCB of this
slave can now be completed again by the USER. The second transfer parameter (i.e., the status word)
contains information on the job.

Possible values for the status word:

DPM_OK Service executed correctly

SchnittStellenCenter ASPC 2

Page 138 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.4.4 set_master_mode_done (SMMCB_PTR, Unsigned16)

After the "set_master_mode ()" function started by the USER has been executed, the
"set_master_mode_done ()" function is called as the return message for the user. AMPRO-DPM receives
from the USER the pointer to this function in SMMCB together with the job. The second transfer parameter
(i.e., the status word) contains information on the job. After the function, the job block (SMMCB) can be
used again by the USER.

Possible values for the status word:

DPM_OK Service executed correctly

5.2.4.5 set_slave_mode_done (SSMCB_PTR, Unsigned16)

After the "set_slave_mode ()" function (see page 107 ff.) started by the USER has been executed, the
"set_slave_mode_done ()" function is called as the return message for the user. AMPRO-DPM receives
from the USER the pointer to this function in SSMCB together with the job. The second transfer parameter
(i.e., the status word) contains information on the job. After the function, the transferred job block (i.e.,
SSMCB) can be used again by the USER. When necessary, there can be eight of these functions present if
they are being used to separate the return message of the jobs.

Possible values for the status word:

DPM_OK Service executed correctly

5.2.4.6 set_slave_address_done (SSLACB_PTR, Unsigned16)

After the "set_slave_address ()" function (see page 113 ff.) started by the USER was executed, the
"set_slave_address_done ()" function is called as the return message for the user. AMPRO-DPM receives
from the USER the pointer to this function in SSLACB together with the job. The second transfer parameter
(i.e., the status word) contains information on the job. In addition to the information in the status word,
further error classifications can be made via the status parameter in SSLACB. The entries there correspond
to the AMPRO2 or PROFIBUS error messages. After the function, the job block (i.e., SSLACB) can be used
again by the USER.

Possible values for the status word:

DPM_OK Service executed correctly

ERR_DPM_L2_RES_SSLA Error: An error occurred while the job was being
processed. The status parameter in SSLACB
provides information on the type of error.

Possible values for the status SSLACB parameter when the status word has the value DPM_OK:

DPM_STATUS_OK Service executed correctly

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 139
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Possible values for the status SSLACB parameter when the status word has the value
ERR_DPM_L2_RES_SSLA:

L2_STATUS_UE Error: The slave is not designed to process the
service.

L2_STATUS_RR Error: The slave cannot process the service due to a
(temporary) lack of resources.

L2_STATUS_RS Error: The service is not activated on the slave (at this
time).

L2_STATUS_WD Error: The service was terminated due to a short
circuit on the bus.

L2_STATUS_NA_TIMEOUT Error: The slave does not respond.

L2_STATUS_NA_BUFFER_ERROR Error: The slave responds with a wrong telegram
length in the response telegram.

L2_STATUS_NA_DOUBLE_TOKEN Error: A bus failure has occurred.

DPM_STATUS_RE Error: The slave responds incorrectly.

5.2.4.7 mark_cycle_done (MARKCB_PTR, Unsigned16)

When this function is called in response to start the "mark_cycle ()" USER function (see page 117 ff.), the
master has completed a full polling cycle of the slaves. From this time on, it is ensured that all slaves have
received current data. The second transfer parameter (i.e., the status word) contains information on the job.
In addition to the status word, further state and error classifications can be made with the status and dia
parameters in MARKCB. After the function, the job block (i.e., MARKCB) can be used again by the USER.

Possible values for the status word:

DPM_OK Service executed correctly

Possible values for the status MARKCB parameter:

DPM_STATUS_OK Service executed correctly

DPM_STATUS_NO While "mark_cycle ()" was being executed, the USER
changed the master mode to MA_STOP causing the
service to be terminated.

Possible values for the dia MARKCB parameter:
(This parameter is not valid unless the status MARKCB parameter has the value DPM_STATUS_OK.)

DP_FALSE No diagnosis available. All activated slaves were
included in the data cycle while "mark_cycle ()" was
being processed.

DP_TRUE Diagnosis available. At least one activated slave was
not included in the data cycle while "mark_cycle ()" was
being processed.

SchnittStellenCenter ASPC 2

Page 140 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.4.8 set_timer (Unsigned32)

Each time this CBF is called, the user must stop (if already started) and restart the timer provided for
AMPRO-DPM.
The transfer parameter specifies the new run time of the timer in milliseconds. When the transferred value is
0H, the timer must only be stopped. AMPRO-DPM can call a new "set_timer ()" at any time except when the
function is already being called. See section on communication model starting on page 61.
If, for any reason, the USER is unable to start the timer, he must conclude the "set_timer ()" call and then
conclude DP communication via "set_master_mode ()" (the concluding state of the master must be
MA_STOP) since the slaves cannot be processed correctly without the timer. Slave processing may not be
started again until the timer is available.
The "set_timer ()" CBF is called for the first time after the master mode changes from MA_STOP to
MA_CLEAR. See "set_master_mode ()" function starting on page 104. This CBF is always called within the
call of the "set_master_mode ()" USER function. From this point on, the USER must call the "timer_expired
()" function cyclically as described starting on page 124. As a rule, "set_timer ()" is only started again once
(i.e., to deactivate the timer when the master mode changes from MA_CLEAR to MA_STOP). This CBF is
always called before the "set_master_mode_done ()" CBF is called. See page 138.

With this AMPRO-DPM version, the parameters of the timer (e.g., accuracy, fluctuation and drift) can be
specified by the USER based on user capabilities and requirements. Changes in timer accuracy only affect
the DX_Control_Intervall. All other times are directly maintained by the ASPC2 PROFIBUS ASIC with the
accuracy called for by PROFIBUS. However, fluctuations in excess of 10% should be avoided so that the
update interval for the Data_Transfer list does not vary too much, for example. See section on the DPMIB
starting on page 88. When later firmware versions are involved or when another PROFIBUS ASIC is used
later, the timer must still be used for other tasks when necessary. For this reason, we strongly recommend
that an extremely precise timer be used not only with regard to the interface to the USER but also for later
expansions.

5.2.4.9 bus_accessible (Boolean)

This is one of the CBFs which is called by AMPRO-DPM without a previous job from the USER. The
parameter value DP_FALSE from "bus_accessible ()" informs the USER that a bus malfunction preventing
further communication with the slaves (e.g., a bus short circuit) has occurred during running operation. See
also description of the "init_done ()" CBF on page 128. All management and job data are retained during
this time, and the operating state of the master is "frozen.". As soon as the bus can be accessed again after
correction of the error (e.g., correction of the short circuit), the USER is informed of this with a new call of the
CBF. This time the parameter value is DP_TRUE. As a rule, the slaves must be re-included by AMPRO-
DPM in the processing cycle via the DIAG1 state.
When required, this CBF is always called within the "timer_expired ()" USER function. See page 124 ff.

Possible values for the status word:

DP_FALSE Bus cannot be accessed at this time.

DP_TRUE Bus can be accessed again.

In addition to the procedure described here, the USER can also generate his own mechanism for
recognizing the occurrence of a short circuit. AMPRO2 offers the new MAC_REQ_WITHDRAW service for
this purpose. After this service is called, all jobs which are still chained are returned to their senders with a
separate error identifier (i.e., L2_STATUS_WD). AMPRO-DPM handles this identifier the same as the
L2_STATUS_NA_TIMEOUT return message. When the USER utilizes this service, he can disregard the
information supplied by the "bus_accessible ()" CBF and enter a dummy function for this CBF instead. Or,
the USER can stop calling the function when the function pointer has a value of ZERO.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 141
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.4.10 write_inp_data_to_pda (SLCB_PTR,
 Unsigned8 L2_DATA_ATTR * DPM_IFA_DATA_ATTR *)

AMPRO-DPM only calls the "write_inp_data_to_pda ()" CBF when the USER has previously started the
"input_update ()" function (see page 118 ff.) for a slave with inputs with "long" consistency or with inputs in
Buffered_Mode. The description of the "input_update ()" function also contains a comprehensive description
of this CBF. A word for status messages is not required for this function.

5.2.4.11 read_outp_data_from_pda (SLCB_PTR,
 Unsigned8 L2_DATA_ATTR * DPM_IFA_DATA_ATTR *)

The "read_outp_data_from_pda ()" function is only called by AMPRO-DPM when the USER has previously
started the "output_update ()" function (see page 121 ff.) for a slave with outputs with "long" consistency.
The description of the "output_update ()" function also contains a comprehensive description of this CBF. A
word for status messages is not required for this function.

5.2.4.12 copy_s7_get_cfg_data (SLCB_PTR,
 Unsigned8 L2_DATA_ATTR * DPM_IFA_DATA_ATTR*, Unsigned8)

AMPRO-DPM only calls this function when the slave is an S7_GET_CFG slave. This type of slave can
contain both a physical and a logical configuration. The physical configuration is available when the slave
starts up. After parameterization and configuration, the S7 slave determines its logical configuration. The
logical configuration is available when the slave is ready for data communication after the DIAG2 phase.
The SLCM does not branch directly to the data cycle at this point. Instead, it requests the logical
configuration of the S7 slave. The "copy_s7_get_cfg_data ()" CBF is then called with this configuration, and
the SLSM branches to the data transfer phase.

The USER receives the pointer to the SLCB as a parameter of the CBF. The USER also receives a pointer-
pointer to a buffer with the current configuration data. The USER must provide for a check of the
configuration. There are two ways to accomplish this.

 If the configuration check is not time-consuming, evaluation can be performed with the
configuration supplied with the pointer-pointer. The third transfer parameter of
"copy_s7_get_cfg_data ()" (i.e., the Unsigned8 value) contains the current length of the
configuration data.

 If the configuration check is time-consuming, the USER can add a new AMPRO2 data buffer to
the pointer-pointer and perform the evaluation during the cyclic portion of his application.
In this case, the USER must obtain a new buffer from AMPRO2 memory management and
enter this buffer in the pointer-pointer. AMPRO-DPM expects a buffer with any content at the
end of the CBF to be valid. The buffer's number is entered in the SLCB (entry:
max_s7_cfg_data_db_no) to make it easier to select the size of the data buffer. Using this
number, the USER can select the appropriate "l2_mem_alloc_dbx ()" function from AMPRO2
memory management.
When using this technique, the USER should not forget to transfer the length specification from
the SLCB (entry: max_s7_cfg_data_len) together with the buffer.

SchnittStellenCenter ASPC 2

Page 142 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.4.13 write_diag_data_to_pda
(SLCB_PTR, Unsigned8 L2_DATA_ATTR **)

Diagnostic data must always be transferred with "long" consistency. For diagnoses, data communication is
not triggered by the USER but by AMPRO-DPM during the transition from a diagnostic state to any other
state before the "state_report ()" function is called. As soon as a new diagnosis must be reported, AMPRO-
DPM calls the "write_diag_data_to_pda ()" CBF. The USER receives a pointer to the SLCB as a parameter
of the CBF. The pointer to the process data area of the diagnoses of this slave (entry: diag_data_ptr) and
the current length of the diagnoses (entry: act_diag_data_len) is entered there. The USER also receives a
pointer-pointer to a buffer with the current diagnostic data. When Siemens DP slaves are involved, the
diagnoses are reformatted to the standard DP format. See section on diagnosis conversion starting on page
149. The USER must provide for the transfer of the diagnoses from the buffer to the process data area.
There are two ways to accomplish this.

 If the process data area is a shared memory area (i.e., dual-port RAM or similar), the USER
activates consistency control for the area specified by the process data pointer. Using the
pointer-pointer, the USER then copies all data from the buffer to the process data area. The
SLCB contains the required length. The USER then deactivates consistency control and
concludes the CBF.

Caution:
Activation and deactivation of the consistency lock during the "write_diag_data_to_pda ()" must
never be allowed to increase the run time of the CBF. See also section on consistency
assurance starting on page 70.

 If, for example, the data must be sent with an operating system message, the buffer can also be
sent directly. In this case, the USER must obtain a new buffer from AMPRO2 memory
management which the USER then enters in the buffer pointer. At the end of the CBF,
AMPRO-DPM expects a buffer of any content to be valid. To make it easier to select the data
buffer size, the buffer's number is entered in the SLCB (entry: diag_data_db_no). This number
can be used by the USER to select the appropriate "I2_mem_alloc_dbx ()" function of AMPRO2
memory management.
When using this technique, the USER should not forget to transfer the length specification from
the SLCB together with the buffer.

Since the "write_diag_data_to_pda ()" CBF is only called when new diagnostic data are available, the
new_diag_data entry in the SLCB can only have the value TRUE at this time. This function does not require
additional parameters (e.g., a word for status messages and similar).

5.2.4.14 clear_cons_input_data
(DPM_PROC_UNSIGNED8_PTR, unsigned8)

When "short" consistency is set for a memory area, the ASPC2 automatically ensures consistency, using
HW control logic. When a slave fails, AMPRO-DPM must clear the inputs of this slave via software.
Previously, this was done without consistency. To correct the problem, the user must provide the new
AMPRO-DPM version with a CBF which can clear input data while maintaining consistency. This CBF is
only called for slaves which are equipped with inputs with "short" consistency. As the parameter of the CBF,
AMPRO-DPM transfers a pointer to the input data area to be cleared and its length. The following function
can be used as an example. Depending on the design of the consistency control logic, the function may
have to be time-optimized. This can be accomplished by using word-access clearing within the for-loop or
by programming the entire function in Assembler.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 143
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

void clear_cons_input_data (DPM_PROC_UNSIGNED8_PTR, Unsigned8);

...

void clear_cons_inputs_data (DPM_PROC_UNSIGNED8_PTR input_byte_ptr, Unsigned8 len)
{
 /* USER-related activation of the HW consistency control logic */
 activate_input_short_cons ();

 for (; len--;) *input_byte_ptr++ = (Unsigned8) 0;

 /* USER-related deactivation of the HW consistency control logic */
 deactivate_input_short_cons ();
}

5.2.4.15 consistency_update_done (Unsigned16)

AMPRO-DPM only calls the "consistency_update_done ()" CBF when the USER previously started the
"consistency_update ()" function (see page 118 ff.) because of a slave with inputs with "long" consistency or
with inputs in Buffered_Mode. See section on consistency assurance starting on page 70. This call informs
the USER that the last "consistency_update ()" call has been executed and a complete update cycle has
been performed for the inputs.

Possible values for the status word:

DPM_OK Service executed correctly

5.2.4.16 asic_int_disable (void)

The USER must provide AMPRO-DPM with this function to disable the ASIC interrupts of the ASPC2. This
ensures reliable operation of AMPRO-DPM since the L2 calls may not be interrupted by other L2 requests.
This also applies to internal L2 requests from AMPRO-DPM. Multiple calls of this function must be logged to
ensure that the enable function which is called just as frequently actually enables the ASIC interrupt again.
See also section on disable times on page 79.

5.2.4.17 asic_int_enable (void)

The USER must provide AMPRO-DPM with this function to enable the ASIC interrupts of the ASPC2. This
ensures reliable operation of AMPRO-DPM since the L2 calls may not be interrupted by other L2 requests.
This also applies to internal L2 requests from AMPRO-DPM. When this function is called more than once,
each call must evaluate the call log of the interrupt disable function to ensure that the enable function which
is called just as frequently actually enables the ASIC interrupt again. See also section on disable times on
page 79.

5.2.4.18 error (ERRCB)

5.2.4.18.1 Description
When an error which cannot be handled by AMPRO-DPM occurs at any time during slave processing by
AMPRO-DPM or AMPRO2, AMPRO-DPM calls the "error ()" function. This corresponds to a system crash
for AMPRO-DPM during which one final error message can be sent. The USER receives a block providing

SchnittStellenCenter ASPC 2

Page 144 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

more details on the type of error. Using the information in this message, the USER can address LEDs and
so on. The USER should always save this block for service personnel.

Caution:

With this function, the block is transferred directly and not with a pointer to a block as is done with the other
functions.

5.2.4.18.2 ERRCB

5.2.4.18.2.1 Header
Type Designation Direction of Access

 USER DPM
 L S L S

DPM_IFA_DATA_ATTR * next_blk_ptr X X
DPM_IFA_DATA_ATTR * prev_blk_ptr X X
Unsigned8 opcode (irrelevant)
Unsigned8 subsystem (irrelevant)
Unsigned16 id_ptr (irrelevant)

The header of the ERRCB is only used to adapt the layout of this block to the other control blocks. Since no
values are entered, the USER cannot evaluate anything there.

5.2.4.18.2.2 General Portion
Type Designation Direction of Access

 USER DPM
 L S L S

Unsigned16 Firmware package X X X
Unsigned16 Function group of the firmware package X X X
Unsigned16 Status of the function group X X X
Unsigned16 Error number X X X
Unsigned16 Error detail X X X

Firmware package:

 AMPRO2

 AMPRO-DPM

Function groups of the firmware package:

 For AMPRO2:
 IFA
 MAC

 For AMPRO-DPM:
 DPM-USIF
 DPM-SLSM
 DPM-DATR

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 145
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Status of the function group:

Since this information applies to internal firmware program states, it is only of interest to the developer.

Error number:

This is an error identifier containing information on the type of error.

Error detail:

This is a supplement to the error identifier providing more details on the error.

For the identifiers for the firmware package and the function groups, see the section on coding rules starting
on page 154. A series of error numbers and more details on the error numbers are defined for each of the
packages and function groups. These are contained in the "COMMON\DP_ERROR.H" file and its files. All
current identifiers can be read-accessed from these files. To keep preparation and maintenance expenses
for these specifications low, we have not included a copy of these entries here.
Additional USER error identifiers can be entered under new headers which are linked as #include
statements in the global "\COMM_DEV\DEV_ERR.H" header. All error identifiers for the other components
of the IM 308-C firmware are defined in this header file, for example. These can be used as examples for
your own entries.

5.2.5 Slave Families Supported by AMPRO-DPM

5.2.5.1 Standard DP Slaves

In its function as a class-1 master in accordance with the PROFIBUS-DP standard, AMPRO-DPM supports
all slaves which comply with this standard.
Since this standard provides a very detailed description of the required behavior of a standard DP slave, it is
not necessary to discuss this topic here. Storage of the diagnostic data and all other formatted data
structures conform to the structures specified by the PROFIBUS-DP standard.

Standard DP slaves which are equipped with the LSPM PROFIBUS ASIC from Siemens require special
treatment.
Although the LSPM supports the protocol stack of a DP standard slave, the PRM_UNLOCK service cannot
be used. To be able to log off the slave from the master despite this, the PRM_UNLOCK procedure
described for the Siemens DP slaves is used instead. This special treatment can be disregarded by the
USER since the same PRM_UNLOCK status designator is used for this PRM_UNLOCK procedure.

5.2.5.2 Siemens DP Slaves

In addition to the standard DP slaves, AMRPO-DPM supports Siemens DP slaves in accordance with ET
200 communication specifications. There are two types of Siemens DP slaves.

 Slaves with the SPC PROFIBUS ASIC (e.g., the ET 200U, the IM 318-M and several other
special slaves of various manufacturers). This type of slave will now be called the SPC slave.

 Slaves with the SPM PROFIBUS ASIC (e.g., the ET 200K or IM 418-B, the ET 200B and
several other special slaves of various manufacturers). This type of slave will now be called the
SPM slave.

Since Siemens DP slaves require a subset of the functionalities prescribed by the PROFIBUS-DP standard,
Siemens DP functionality is the same as that of standard DP procedures. Since Siemens DP slaves always
assume the same states as standard DP slaves, the "state_report ()" CBF (see page 129 ff.) is called the
same as for the standard DP transitions in states. However, the telegram formats and contents used for the

SchnittStellenCenter ASPC 2

Page 146 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

individual states differ considerably from the standard DP telegrams. In addition, different types of telegrams
are sometimes required for the individual states depending on the type of Siemens DP slave.

Most of these differences are not of concern to the USER since AMPRO-DPM transfers most of the Siemens
DP specifications to the user interface in standard DP format. For this reason, only a few of the most
important differences will be discussed here. For detailed information, see the ET 200 communication
specifications.

5.2.5.3 DP S7 Slaves

The required configuration for certain types of S7 slaves must requested immediately after the startup
phase. These configuration data must be supplied to the USER for evaluation. The procedures described
below are used to implement this functionality.

In addition to the purely standard DP slaves, AMPRO-DPM supports DP S7 slaves which conform to the
PROFIBUS-DP standard but does not generate a DPX protocol. These S7 slaves are handled the same as
standard DP slaves. In addition to DP S7 slaves which conform to the PROFIBUS-DP standard, DP S7
slaves which can generate a logical configuration during startup are also supported. The primary
characteristic of these slaves is that the current configuration of the slave is requested by the DP master
during startup.

5.2.5.3.1 State Transitions of the Master
Standard DP slaves are cyclically informed of the current master state via the MA_CLEAR or MA_OPERATE
Global_Control command.
Siemens DP slaves expect a CLEAR message only once when the master assumes the MA_CLEAR state.
Afterwards, the duration of the MA_CLEAR master state and the transition from MA_CLEAR to
MA_OPERATE are irrelevant for Siemens DP slaves.
For this reason, an SDN_HIGH telegram without user data is sent once to every configured Siemens DP
slave when the master assumes MA_CLEAR. The slaves do not receive a new CLEAR telegram until the
master changes from MA_CLEAR to MA_OPERATE again. While the master is in the MA_CLEAR state, the
Siemens DP slaves also only receive output data cleared to 00H regardless of the status of the process data
of the slave. Current outputs are not sent again until after the transition of the master to MA_OPERATE.

5.2.5.3.2 Slave Handler with Parameterizing Master
Fundamental handling of the state machine for SPC slaves corresponds to the procedure described in the
PROFIBUS-DP standard. See "state_report" () CBF starting on page 129. Shared_Input operation cannot
be used with Siemens DP slaves. In addition, SPM slaves must be handled slightly differently. These
differences are described below.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 147
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.5.3.2.1 Slave State Transitions during Normal Operation for SPM Slaves
Since these slaves do not recognize the CFG state, a direct transition is made from PRM to DIAG2. In
addition, these slaves do not use the DATA_NA state. The following figure illustrates this behavior.

Figure 11: State transitions of SPM slaves with parameterizing master during normal operation

SchnittStellenCenter ASPC 2

Page 148 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

5.2.5.3.2.2 Slave State Transitions in AUTOSTOP Master Mode for SPM Slaves
During transitions to AUTOSTOP master mode, only the CFG slave state is omitted for SPM slaves. The
following figure illustrates this behavior.

Figure 12: State transitions of SPM slaves with parameterizing master in AUTOSTOP master mode

5.2.5.3.3 PRM_UNLOCK
In the state machine, various procedures are used to achieve the PRM_UNLOCK state. For standard DP
slaves which are not equipped with an LSPM2 ASIC, the PRM_UNLOCK service is handled as stated in the
PROFIBUS-DP standard.
Siemens DP slaves and standard DP slaves with the LSPM2 ASIC achieve the PRM_UNLOCK state when
the threshold monitoring time expires. This threshold monitoring time is set to the smallest possible value. A
parameter telegram with the entries "LOCK" and "WD=1" is sent for this purpose to the appropriate slaves.
This procedure ensures reliable release of previous slave families to a standard DP master.
This special treatment can be disregarded by the USER since the same state designator (i.e.,
PRM_UNLOCK) is used for this PRM_UNLOCK procedure.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 149
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.5.3.4 Diagnosis Conversion
All diagnostic data are provided to the USER in standard DP format. To obtain this uniform representation of
the diagnoses, the diagnoses of the Siemens DP slaves must be converted to standard DP format. There
are two different diagnosis formats for Siemens DP slaves (i.e., the SPC slave format and the SPM slave
format).
The following section explains how the diagnoses are converted for the two types of slaves.

5.2.5.3.4.1 Specifications for Both Types of Slaves
Designation of the data is shown below.

 MSB LSB

Byte 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
: : : : : : : : :

The first byte of a field has the number 0, the second byte has the number 1 and so on. A single bit is
specified with the array method. Bit 5 of byte 3 is designated as "3.5", for example. The LSB of byte X is
always designated as "X.0". The MSB of byte X is always designated as "X.7". The defined designations of
the bits and bytes are sometimes used instead of the numbers, but the syntax is always retained.

When any type of Siemens DP slave does not respond or no longer responds, the same diagnosis is stored
as for a standard DP slave: Length: 6 bytes; Stationstatus_1.Station_Non_Existent (0.0) set; bits 0.1 to 0.7
and bytes 1 to 5 cleared.

Siemens DP slaves which do not have diagnostic capability only generate the diagnoses for "station not
operating correctly" or "station has failed".

5.2.5.3.4.2 Handling of SPC Slaves
Since SPC slaves generate a standard DP diagnosis with a length of at least 13 bytes, all bits which are not
mentioned here always have a value of 0B. Conversion of the individual SPC diagnoses is shown below.

SchnittStellenCenter ASPC 2

Page 150 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

SPC Diagnosis Standard DP Diagnosis
Station diagnosis. Parameterization error
(0.2) = 1B

Diag.Cfg_Fault (0.2) = 1B
Diag.Ext_Diag (0.3) = 1B
Diag.Stat_Diag (1.1) = 1B

Station diagnosis. Single error (0.3) = 1B Diag.Ext_Diag (0.3) = 1B
Diag.Stat_Diag (1.1) = 1B
Device-related diagnosis (7.3) = 1B

Station status. Disable Port Write (1.7) = 1B Diag.Master_Lock (0.7) = 1B
Diag.Stat_Diag (1.1) = 1B

Station diagnosis.
Station cannot be controlled (0.1) = 1B

and
Station status. Disable Port Write (1.7) = 0 B

Diag.Station_Not_Ready (0.1) = 1B
Diag.Stat_Diag (1.1) = 1B

Station status. AG100 Slow Mode (1.4) = 1B Device-related diagnosis (7.0) = 1B
Station diagnosis. Load voltage missing
(0.4) = 1B
or
Station diagnosis.

Incorrect output activation (0.5) = 1B

or
Station diagnosis. Festo (0.6) = 1B

Diag.Ext_Diag (0.3) = 1B
Device-related diagnosis (7.4) = 0.4 (from)
Device-related diagnosis (7.5) = 0.5 (from)
Device-related diagnosis (7.6) = 0.6 (from)

Station status. Watchdog on (1.3) = 1B Diag.WD_On (1.3) = 1B
Station status. Station type (1.2-1.0) ≠ 001B

(Station type IM 318-B)
Diag.Prm_Fault (0.6) = 1B
Diag.Stat_Diag (1.1) = 1B

The following specifications also apply.

 Bit 1.2 of the standard DP diagnosis (station is a DP slave) is permanently set to 1B.

 Diag.Ext_Diag_Overflow (2.7) is permanently set to 0B for "normal" SPC slaves. If the slave
supplies manufacturer-related diagnoses, this bit is also set when more than the expected
number of diagnoses are sent by the slave.

 If stationsstatus.Disable Port Write (1.7) = Diag.Master_Lock (0.7) = 1B, the address 00H is
entered in Diag.Master_Add (byte 3). Otherwise the current station address of the master is
entered.

 The Ident_Number from the user-related portion of the slave parameter record
(Slave_User_Data) is entered in Motorola format in Ident_Number (bytes 5 and 6; byte 5 =
Ident_Number_High and byte 6 = Ident_Number_Low).

 02H is permanently entered as header for the device-related diagnosis (byte 6) since the device-
related diagnosis has a fixed user length of one byte.

 45H is permanently entered as header for the identifier-related diagnosis (byte 8) since the
identifier-related diagnosis has a fixed user length of 4 bytes.

 The module diagnoses (bytes 2 to 5) are transferred as the identifier-related diagnosis to bytes
9 to 12 of the standard DP diagnosis. When converted to standard DP format, this results in a
total length of 13D bytes for the diagnosis for "normal" SPC slaves.

 Some SPC slaves supply more than 6D bytes of diagnosis. These up to 26D additional bytes of
data are added to the previously written data with a second header for "device-related
diagnoses." When converted to standard DP format, this results in a total length of 15D to
42D bytes of diagnoses when the master receives 7D to 32D bytes of diagnosis from the SPC
slave.

 All bits which are not explicitly set (i.e., 1B) are cleared (i.e., 0B).

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 151
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.5.3.4.3 Handling of SPM Slaves
When the slave is an SPM station, a fixed value (07H) is entered in byte 6 as the header byte for device-
related diagnosis whose user length is 6D bytes. The identifier-related diagnosis is omitted. The first byte of
the device-related diagnosis (byte 7) is a group diagnosis. Byte 8 is always 00H. Bytes 9 to 12 indicate a
single diagnosis. When modules without diagnostic capability are involved, bytes 7 to 12 are always cleared
(i.e., 00H). The others can only handle the group diagnosis or the single diagnosis. Unused areas are
always cleared (i.e., 00H). When converted, the total length of the diagnosis is the same as that of "normal"
SPC slaves (i.e., fixed at 13D bytes).

The two status bytes (i.e., the last two bytes of the received Data_unit telegram) from the received diagnostic
telegram of the SPM slave are determined for the entries in bytes 7 to 12.

... ... Status0 Status1

The actual value of the high byte of the SPM hardware identification word (i.e., SPM_HWIdent_High) is
generated from the above. In this actual SPM_HWIdent_High, the bits are assigned in accordance with the
bits of status0 and status1 as shown below.

Status0 and Status1 Actual SPM_HWIdent_High
Status0.Code0 (0.6) = 1B
Status0.Code1 (0.7) = 1B

Code0 (0.0) = 1B
Code1 (0.1) = 1B

Status1.Type0 (1.4) = 1B
Status1.Type1 (1.5) = 1B
Status1.Type2 (1.6) = 1B

Type0 (0.2) = 1B
Type1 (0.3) = 1B
Type2 (0.4) = 1B

Status1.TS_Prom (1.7) = 1B TS_Prom (0.5) = 1B
Status1.Auto_Baud (1.1) = 1B Auto_Baud (0.6) = 1B
- 0.7 = 0B

The SPM subtype is then generated from the "Slave_Type" entered in "general slave data"
(Slave_Para_Data) of the slave parameter record.

Slave Type SPM Subtype
SPM general, code 0 SPM subtype 0
SPM general, code 1 SPM subtype 1
SPM general, code 2
ET 200B
ET 200C

SPM subtype 2

SPM general, code 3
ET 200K

SPM subtype 3

Further processing is performed in two steps. The first step depends on the subtype of the SPM. In the first
step, an evaluation is performed of the actual SPM_HWIdent_High obtained from the data received and,
when applicable, the diagnostic bits. The received status bytes are then evaluated.

SchnittStellenCenter ASPC 2

Page 152 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Subtype 0:

 The SPM ident byte is determined from the telegram.

... Ident Status0 Status1

This SPM ident byte must correspond to the "SPM_HWIdent_Low" byte entered in the "user
data" (i.e., Slave_User_Data) of the slave parameter record. In addition, the determined actual
SPM_HWIdent_High must correspond to the "SPM_HWIdent_High" byte entered in the "user
data" (i.e., Slave_User_Data) of the slave parameter record.

The following entries are made in the converted diagnosis when at least one of these two
conditions is not fulfilled.

 Diag.Cfg_Fault (0.2) = 1B

 Diag.Stat_Diag (1.1) = 1B

 Since subtype 0 SPM slaves have no further diagnostic capabilities, the remaining bytes 7 to 12
are always cleared (00H).

Subtype 1:

 Since the telegram of a subtype 1 SPM slave does not contain an ident byte, only the
determined actual SPM_HWIdent_High is checked for plausibility with the specified value.

... Status0 Status1

When a discrepancy occurs, the same procedure is followed as for subtype 0.

 Since subtype 1 SPM slaves have no further diagnostic capabilities, the remaining bytes 7 to 12
are always cleared (00H).

Subtype 2:

 Although the telegram of a subtype 2 SPM slave does contain an ident byte, this byte is the
seventh byte as seen from the end of the telegram.

... Ident Port F Port G Port H Port I Status0 Status1

Further evaluation of the ident byte and the status bytes is the same as for subtype 0.

 In addition to the ident byte, subtype 2 SPM slaves provide diagnoses of port bytes F to I.

... Ident Port F Port G Port H Port I Status0 Status1

To evaluate these ports, an additional branch is required based on the "Slave_Type" entered in
the "general slave data" (i.e., Slave_Para_Data) of the slave parameter record.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 153
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

 ET 200B with diagnosis
With this SPM station, bits 0 to 7 of the four port bytes are negated in bits and
entered in byte 7 (i.e., first byte of the device-related diagnosis: group diagnosis).

Port Byte Byte 7 of the Standard
DP Diagnosis

Port F / bit 0 = 0B 7.0 = 1B
Port F / bit 7 = 0B 7.1 = 1B
Port G / bit 0 = 0B 7.2 = 1B
Port G / bit 7 = 0B 7.3 = 1B
Port H / bit 0 = 0B 7.4 = 1B
Port H / bit 7 = 0B 7.5 = 1B
Port I / bit 0 = 0B 7.6 = 1B
Port I / bit 7 = 0B 7.7 = 1B

If, after this conversion, byte 7 of the standard DP diagnosis is not equal to 00H, the
Diag.Ext_Diag (0.3) bit is also set.
Since this ET 200B does not have single-diagnosis capability, bytes 8 to 12 are
always cleared (00H).

 ET 200B without diagnosis
Since this SPM station has neither group nor single-diagnosis capability, bytes 7 to
12 of the standard DP diagnosis are always cleared (00H).

 All other types of SPMs
For all other SPM slaves, the four port bytes are negated and entered in bytes 9 to
12. These bytes correspond to the single diagnosis.

Port Byte Byte of the Standard
DP Diagnosis

Port F / negated Byte 9
Port G / negated Byte 10
Port H / negated Byte 11
Port I / negated Byte 12

When at least one of bytes 9 to 12 is not equal to 00H, the Diag.Ext_Diag (0.3) bit is
also set. Since these slaves do not supply group diagnoses, bytes 7 and 8 of the
standard DP diagnosis are always cleared (00H).

This procedure can also be used for the ET 200C. Although it does not supply a
single diagnosis, FFH is always entered in all port bytes which produces the
message "no diagnosis."

Subtype 3:

 Since the telegram of a subtype 3 SPM slave does not contain an ident byte, only the
determined actual SPM_HWIdent_High is checked for plausibility with the specified value.

... Port F Port G Port H Port I Status0 Status1

Further evaluation of the status bytes is the same as for subtype 0.

SchnittStellenCenter ASPC 2

Page 154 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

 Evaluation of the port bytes is the same as the evaluation for subtype 2 slaves with the identifier
"other SPM slave types."

Now that the slave subtype has been processed, the following bits of the status bytes must be converted in
the second step.

Status Byte Standard DP Diagnosis
Status0.Disable_Port_Write (0.5) = 1B Diag.Master_Lock (0.7) = 1B

Diag.Stat_Diag (1.1) = 1B
Status1.Watch_Dog_on (1.1) = 1B Bit 1.3 (Diag.WD_On) = 1B

In conclusion, the following settings must also be made.

 Bit 1.2 of the standard DP diagnosis (i.e., the station is a DP slave) is permanently set to 1B.

 Diag.Ext_Diag_Overflow (2.7) is permanently set to 0B.

 If Status0.Disable Port Write (0.5) = Diag.Master_Lock (0.7;) = 1B, the address 00H is entered in
Diag.Master_Add (byte 3). If not, the current station address of the master is stored there.

 The Ident_Number from the user-related portion of the slave parameter record (i.e.,
Slave_User_Data) is entered in Motorola format (i.e., byte 5 = Ident_Number_High and byte 6 =
Ident_Number_Low) in the Ident_Number (bytes 5 and 6).

 All other bits which are not explicitly set (i.e., 1B) are cleared (i.e., 0B).

5.2.6 Coding Rules
This section provides the numerical values of the individual definitions and other information relevant to
implementation. For further information, see the applicable header files in the directories "\COMMON" and
"\COMM_DEV". All entries in this section have be copied to the specifications.

5.2.6.1 Global Definitions

5.2.6.1.1 Definition of the ZERO Pointer
In AMPRO-DPM, ZERO is defined as the void pointer with a value of 0H. If necessary, the USER can
change this definition is his programs. Use of the following procedure is recommended.

AMPRO-DPM:
 #define DP_NULL (void *) 0 /* File: DP_DEFMA.H */

5.2.6.1.2 Definitions for Boolean Values
In the DP standard, the following two values are defined for boolean variables. See also section on variable
types starting on page 63. Values other than these are not used by AMPRO-DPM.

 #define DP_TRUE (Unsigned8) 0xff /* File: DP_TYPES.H */
 #define DP_FALSE (Unsigned8) 0x00

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 155
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.6.2 Slave-Related Identifiers

5.2.6.2.1 Slave States
These definitions are located in the "\COMMON\DPM_COMM.H" file.

Identifier Code
SL_DEACT (Unsigned8) 01H
SL_STOPPED (Unsigned8) 0DH
SL_DIAG1 (Unsigned8) 02H
SL_PRM (Unsigned8) 03H
SL_CFG (Unsigned8) 04H
SL_DIAG2 (Unsigned8) 05H
SL_DIAG2_STATUS (Unsigned8) 0CH
SL_DATA (Unsigned8) 06H
SL_DATA_NA (Unsigned8) 07H
SL_PRM_UNLOCK (Unsigned8) 08H
SL_SIO_GET_CFG (Unsigned8) 09H
SL_SIO_DIAG2 (Unsigned8) 0AH
SL_SIO_RD_IO (Unsigned8) 0BH
SL_STS_PRM (Unsigned8) 10H
SL_S7_GET_CFG (Unsigned8) 11H

5.2.6.2.2 Slave Types
These definitions are located in the "\COMMON\DPM_COMM.H" file. The MSB of the identifier is used to
distinguish between standard DP slaves (MSB = 0B) and Siemens DP slaves (MSB = 1B).

Type Series Identifier Code
Standard DP DPM_SL_TYPE_DP (Unsigned8) 00H
slaves DPM_SL_TYPE_LSPM2 (Unsigned8) 10H
 DPM_SL_TYPE_DP_S7 (Unsigned8) 11H
Siemens DP DPM_SL_TYPE_ET200U (Unsigned8) 80H
slaves DPM_SL_TYPE_ET200B_DIAG (Unsigned8) 81H
 DPM_SL_TYPE_ET200B_NO_DIAG (Unsigned8) 82H
 DPM_SL_TYPE_SPM_0 (Unsigned8) 83H
 DPM_SL_TYPE_SPM_1 (Unsigned8) 84H
 DPM_SL_TYPE_SPM_2 (incl. ET 200C) (Unsigned8) 85H
 DPM_SL_TYPE_SPM_3 (incl. ET 200K) (Unsigned8) 86H

5.2.6.2.3 Slave Operating Modes
These definitions are located in the "\COMMON\DPM_COMM.H" file. The operating modes of the slave are
set with the "set_slave_mode ()" command. The Global_Control_Command parameter can be used to
activate or deactivate the SYNC and FREEZE functions. When several functions are to be executed
simultaneously, the identifiers must be or-linked. The function is deactivated when the bits for activation and
deactivation of a function are set at the same time.

SchnittStellenCenter ASPC 2

Page 156 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Identifier Code
SL_SYNC (Unsigned8) 20H
SL_UNSYNC (Unsigned8) 10H
SL_FREEZE (Unsigned8) 08H
SL_UNFREEZE (Unsigned8) 04H

5.2.6.3 Master-Related Identifiers

5.2.6.3.1 AMPRO-DPM Functions
These definitions are located in the "\COMMON\DPM_COMM.H" file. The identifiers are entered in the
opcode field of the individual blocks.

Identifier Code
DPM_INIT (Unsigned8) 01H
DPM_ADD_SLAVE (Unsigned8) 02H
DPM_WITHDRAW_SLAVE (Unsigned8) 03H
DPM_RESTART_SLAVE (Unsigned8) 0BH
DPM_SET_MASTER_MODE (Unsigned8) 04H
DPM_SET_SLAVE_MODE (Unsigned8) 05H
DPM_TIMER_EXPIRED (Unsigned8) 06H
DPM_INPUT_UPDATE (Unsigned8) 07H
DPM_OUTPUT_UPDATE (Unsigned8) 08H
DPM_MARK_CYCLE (Unsigned8) 09H
DPM_SET_SLAVE_ADDRESS (Unsigned8) 0AH
DPM_ERROR (Unsigned8) FFH

5.2.6.3.2 Master States
These definitions are located in the "\COMMON\DPM_COMM.H" file. Only the MA_STOP, MA_CLEAR and
MA_OPERATE states are defined for AMPRO-DPM. The USER also recognizes the OFFLINE state for
AMPRO-DPM.

Identifier Code
MA_OFFLINE (Unsigned8) 10H
MA_STOP (Unsigned8) 40H
MA_CLEAR (Unsigned8) 80H
MA_OPERATE (Unsigned8) C0H

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 157
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

5.2.6.4 Return Values/Error Identifiers

5.2.6.4.1 Identifiers for the Firmware Packages
These definitions are located in the "\COMMON\DP_ERROR.H" file.

Identifier Code
ERR_AMPRO2 (Unsigned16) 0001H
ERR_DPM (Unsigned16) 0010H

5.2.6.4.2 Identifiers for the Function Groups of the Firmware Packages
These definitions are located in the "\COMMON\DP_ERROR.H" file.

Identifier Code
ERR_AMPRO2_IFA (Unsigned16) 0001H
ERR_AMPRO2_MAC (Unsigned16) 0002H
ERR_DPM_USIF (Unsigned16) 0001H
ERR_DPM_SLSM (Unsigned16) 0002H
ERR_DPM_DATR (Unsigned16) 0003H

SchnittStellenCenter ASPC 2

Page 158 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6 Parameter Module Description
The description of the parameter module includes the bus, master and slave parameters for the application.
 Current version of the parameter data: V 1.01

6.1 Data Layout

6.1.1 General

Storage structure and the layout of the parameter module data are based on the PROFIBUS-DP /7/ standard
publication.

The data are stored in blocks. The blocks are located in succession in the memory area without gaps. They
always begin at word boundaries.

S7-Header

ablaufrelevanter Teil
(MC5)

 resveriert

COM-Header

Parameterdaten

MC5-Plus-Baustein COM-spezifischer Teil

Figure 13 : Layout of an MC5-Plus block

 COM uses or writes the following portions of an MC5-Plus block.

 - S7 header
 - Processing-related portion

 The portion of the block concerning processing consists of 2 parts.

 1. COM-related header
 2. COM data

 COM data are either parameters or operating system data.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 159
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.1.2 Parameter Data

Although the layout of the parameter records in the data area follows the suggestion in the standard, certain
conditions must be adhered to because of the ASIC. Data which are processed by word and sent directly
from the module to the bus must start at even-numbered word addresses.

A DP master parameter record consists of two data records each with a different layout (i.e., bus parameter
records and slave parameter records). (/7/)
The first block contains a pointer field for addressing each of the individual data records on the module.
When processing the data with import and export functions, it is assumed that the data are correct and
complete (i.e., syntax and semantics are not checked).

Block 1: Pointer field

The pointer field is used to address the individual parameter records.
On the memory module, the pointer field contains an additional free area so that additional parameter
records can be addressed. This is not reserved for storage in the binary file.

Block 2: Bus parameter record
The bus parameter record is always located in the 2nd block in the data area.
It consists of the following data structures.
- Bus parameters
- Master parameters (incl. host parameters)

Block 3-N: Slave parameter record 1-N
A slave parameter record consisting of the following data structures.
- General slave data
- Parameterization data
- Configuration data
- Address table
- User data

SchnittStellenCenter ASPC 2

Page 160 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

The following figure shows the layout of the parameter data.

Zeigerfeld

0000 H

- Busparameter
- Masterparameter (Hostparameter)

- allgemeine Slavedaten
- Parametrierdaten
- Konfigurierungsdaten
- Adresstabelle
- Anwenderdaten

...

: Zeiger auf ...

- Zeiger auf Parametersätze

Baustein 1

Baustein 2
Busparam etersatz

Slaveparam etersatz 1
Baustein 3

Adreßoffset
Datenbereich

S7-Header
COM-Header

S7-Header

COM-Header

S7-Header
COM-Header

 Figure 14 : Layout of the parameter data in the data area of the memory module

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 161
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.2 Data Storage

6.2.1 General

The following sequence of data words and Dwords applies to data storage in general.

In MOTOROLA format:
- Data words: High byte/low byte
- Storage of Dwords: High word/low word

In INTEL format:
- Data words: Low byte/high byte
- Storage of Dwords: Low word/high word

The PROFIBUS-DP /7/ standard applies to data transmission on the bus (i.e., the COM data must be
transferred in Motorola format).

Due to the functions and hardware, the Intel format is used for internal COM data storage.

The following specifications apply to the layout of the data structures in general.

 All length specifications in [bytes]

 TRUE = 0x01

 FALSE = 0x00

 DP_TRUE = 0xFF

 DP_FALSE = 0x00

 Significance of the bit positions
 0 : FALSE /No/Does not apply
 1 : TRUE / Yes /Applies

SchnittStellenCenter ASPC 2

Page 162 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.2.2 Parameter Data

 Configuration with COM ET 200 V5.0 is performed for the entire bus.
 A program file can thus contain several master systems.
 The parameter data of a master system are generated from

 a program file.

Programmdatei

Import/Export

Binärfile

 Figure 15: Handling of parameter data

6.2.2.1 Memory Module

Data storage:
The parameters for Prm_Data and Cfg_Data are stored in Motorola format. All other parameters are stored
in Intel format.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 163
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.3 Header

6.3.1 S7-Related Header

COM ET 200 V5.0 only uses the parameters shown.

Block type: S5_BSTTYP_DB (data block) [0x0A]

Block number:

COM uses the block/block numbers starting at 8000 H / 32768 dec.

Block Number Parameter Data

8000 H + 0 Pointer field
8000 H + 1 Bus parameter data
8000 H + 2... Slave parameter data 1...

Length of the total block

 = S7 block header + COM-related data (user data) + HW identification data

 ... + reserved area

Length of the COM-related data = COM-related header + COM data

COM data = [pointer field | bus parameter record | slave parameter record]

Length of the COM identifier data = Fixed

SchnittStellenCenter ASPC 2

Page 164 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.3.1.1 S7 CPU Header

Address
Offset BYTE

Designation Contents Value Range

0 to 1 Block identifier 0x7070

Unsigned16

2 Not used Unsigned8
3 Not used Unsigned8
4 to 5 bsttyp

Block type = S5_BSTTYP-DB Unsigned16

6 to 7

bstnr Block number = 0 to 65535 Unsigned16

8 to 11 geslen Length of the total block
incl. S7 header
(low word-high word)

Unsigned32

12 to 31 Not used Unsigned8
32 to 33 locdatalen

Length of reserved area Unsigned16

34 to 35 mc5len

Length of COM-related data Unsigned16

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 165
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.3.2 COM-Related Header

The parameter pointer and the station address entry depend on the data record identifier. Irrelevant pointers
are assigned 0xFFFF.
The offset indicated starts at the COM header (i.e., offset 0).

Address
Offset
BYTE

Designation Contents Value Range

0 Data record identifier 3 = Pointer field

1 = Bus parameter record
2 = Slave parameter record

Unsigned8

1 Station address Station addresses 1 to 125
- Master address
- Master address
- Slave address

Unsigned8

2 to 3 - Ptr_Field_Len
- Bus_Para_Len
- Slave_Para_Len

Pointer to the field with the length of
the entire parameter record
(length without header)

Unsigned16

4 to 5 - Ptr_Field
- Bus_Para_Data
- Slave_Para_Data

- Pointer to pointer field
- Pointer to Bus_Para_Data
- Pointer to Slave_Para_Data

Unsigned16

6 to 7 -
- Master_User_Data
- Slave_Prm_Data

- Disregard
- Pointer to master parameter
- Pointer to parameterization data

Unsigned16

8 to 9 -
- Reserved
- Cfg_Data

- Disregard
- Reserved
- Pointer to configuration data

Unsigned16

10 to 11 -
-
- Add_Tab

- Disregard
- Disregard
- Pointer to address table

Unsigned16

12 to 13 -
-
- Slave_User_Data

- Disregard
- Disregard
- Pointer to user data

Unsigned 16

14 to 15 -
-
- Reserved

- Disregard
- Disregard
- Reserved

Unsigned16

16 to 17 -
-
- Reserved

- Disregard
- Disregard
- Reserved

Unsigned16

18 to 19 -
- Reserved
- Reserved

- Disregard
- Reserved
- Reserved

Unsigned16

20 to 21 -
- Reserved
-

- Disregard
- Reserved
- Disregard

Unsigned16

22 to 31

 Not assigned Unsigned8

6.4 Pointer Field

SchnittStellenCenter ASPC 2

Page 166 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

The pointer field is located in the first block of the data area.
A Dword pointer is used in the pointer field to address the other data records in the data area.
The pointers are stored in the pointer field in ascending order in the order in which they were configured.

Definition of the Dword pointer:

- Contains absolute address
- Offset = 0 (start of the memory area)
- Points to the COM-related header of the respective block

Contents of the pointer:

 = FFFF FFFF H Pointer is not assigned.
 = 0000 0000 H Pointer was cleared.
 != 0000 0000 H or == FFFF FFFF H A data record is located under this address.

6.4.1 Pointer Field for Parameter Data

Address
Offset
BYTE

Designation Contents

Value Range

0 to 1 Ptr_Field_Len in bytes Length of the entire pointer

field including Ptr_Field_Len
Unsigned16

2 to 3 Number of pointer entries

1 to 125 Unsigned16

4 to 7 Pointer to data record 1
= bus parameter record

0000 1000 H *)

Unsigned32

8 to 11 Pointer to data record 2
= slave parameter record

0000 xxxx H

Unsigned32

12 to

... Unsigned32

 Pointer to data record N
= slave parameter record

0000 xxxx H

Unsigned32

*) Example of the data record pointer in the memory module

ATTENTION: Data record pointer to COM-related header

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 167
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5 Structures of the Parameter Data

6.5.1 Bus Parameter Record

The length of the entire parameter record specified in Bus_Para_Data includes the filler bytes required when
parameter records must start at even-numbered addresses.

The lengths of the individual parameter data (i.e., Master_User_Data and so on) do not include filler bytes.

6.5.1.1 Bus Parameters (Bus_Para_Data)

Address
Offset
BYTE

Designation

Contents

Value Range

0 to 1 Bus_Para_Len Length of the entire bus parameter

record including Bus_Para_Len
Unsigned16

2 FDL_Add Station address of the DP master Unsigned8
3 Baud rate

Baud rates
9, 8 and 7 are not in
accordance with the DP
standard.

9 = 12000 kbaud
8 = 6000 kbaud
7 = 3000 kbaud
6 = 1500 kbaud

4 = 500 kbaud
3 =187.5 kbaud
2 = 93.75 kbaud
1 = 19.2 kbaud
0 = 9.6 kbaud

Unsigned8

4 to 5 TSL Slot time Unsigned16
6 to 7 minTSDR = TRDY Station delay time Unsigned16
8 to 9 maxTSDR Station delay time Unsigned16
10 TQUI Quiet time Unsigned8
11 TSET Setup time Unsigned8
12 to 15 Ttr Unsigned32
16 G GAP update factor Unsigned8
17 HSA Highest station address Unsigned8
18 retry_ctr Retry counter Unsigned8
19 Bp_flag 0: No change in operating

 mode when error occurs
128: Change in operating mode
 when error occurs

Unsigned8

20 to 21 Min_Slave_Intervall Time interval between 2 accesses to
the slave
Time base: 100 [μsec]

Unsigned16

22 to 23 Poll_Timeout Master-master communication
monitoring time
Time base: 1 [msec]

Unsigned16

24 to 25 Data_Control_Time Max. data cycle time
Time base: 10 [msec]

= WdTimeout [msec] * 6 / time base

Unsigned16

26 to 31 Reserved Unsigned8

SchnittStellenCenter ASPC 2

Page 168 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.1.2 Master Parameter (Master_User_Data)

The manufacturer-related data applicable to the bus parameter record are located here.

Address
Offset
BYTE

Designation

Contents

Value Range

0 to 1 Master_User_Data_Len

Length of Master_User_Data
including Master_User_Data_Len

Unsigned16

2... Master_Class2_Name COM ET200 V05.00 Visible-String (33)
35... Master_Class1_Name IM 308-C V05.00 Visible-String (33)
68... TRDY

min. response delay
Slave pause Unsigned16

70... Tid1 idle time 1 Master pause Unsigned16
72... Tid2 idle time 2 Unsigned16
74... DeltaTtr Delta target rotation time Unsigned32
78 SAP

Master-slave
communication

(SSAP) Unsigned8

79 SAP
Master-master
communication

(SSAP and DSAP) Unsigned8

80 Reserved Unsigned8
81 Reserved Unsigned8
82 to Reserved Unsigned16
84 Reserved Unsigned8
85 Reserved Unsigned8
86 Reserved Unsigned8
87 Reserved Unsigned8
88 Reserved Unsigned8
89 Reserved Unsigned8
90 Reserved Unsigned8
91 Reserved Unsigned8
92 Reserved Unsigned8
93 Reserved Unsigned8
94 to Reserved Unsigned16
96 Group_Sync_Byte Unsigned8
97 Group_Freeze_Byte Unsigned8
98 IM 308-C mode Reserved Unsigned8

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 169
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

99 Ident_Number_High In acc. w. PNO / from ini. file Unsigned8
100 Ident_Number_Low Unsigned8
101 Reserved Unsigned8
102... WdTimeout Trigger mon. time [t_bit]

- system or
- user-defined

Unsigned32

106... IM 308-C firmware

Reserved (16 bytes) Unsigned8

122... DB_Len1 Buffer length Default: 32 Unsigned16
124... DB_Number1 No. of buffers Unsigned16
126... DB_Len2 Buffer length Default: 128 Unsigned16
128... DB_Number2 No. of buffers Unsigned16
130... DB_Len3 Buffer length Default: 186 Unsigned16
132... DB_Number3 No. of buffers Unsigned16
134... DB_Len4 Buffer length Default: 244 Unsigned16
136... DB_Number4 No. of buffers Unsigned16
138... Repeater TRUE Repeater on bus

FALSE No repeater on bus
Unsigned16

140 Reserved Unsigned8
141 Reserved Unsigned8
142... Reserved Unsigned16
144... L4_Header_Len1 L4 header length Default: 0 Unsigned16
146... APB_Number1 No. of APBs Unsigned16
148... L4_Header_Len2 L4 header length Default: 2 Unsigned16
150... APB_Number2 No. of APBs Unsigned16
152... L4_Header_Len3 L4 header length Default: 4 Unsigned16
154... APB_Number3 No. of APBs Unsigned16
156... L4_Header_Len4 L4 header length Default: 6 Unsigned16
158... APB_Number4 No. of APBs Unsigned16
160... DPxMaxAuftrag Max. no. of DPx jobs

per DP cycle Default: 1
Unsigned16

161 Special functions Bit 0: 0 = No AUTOSTOP
 1 = AUTOSTOP
 Default: 0
Bit1-7: Reserved

Unsigned8

162 Reserved Unsigned8
163 Reserved Unsigned8
164 Reserved Unsigned8

SchnittStellenCenter ASPC 2

Page 170 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

[Byteoffset 2...] MasterClass2Name:
[Byteoffset 35...] MasterClass1Name:

The versions are entered in accordance with the entries "COM_Version" and "HW_Version."

[Byteoffset 96] Group_Sync_Byte:
[Byteoffset 97] Group_Freeze_Byte:

Bit positions 0 to 7 correspond to groups 1 to 8.
The SYNC and FREEZE group options are entered by group (i.e., when a slave belongs to a group). SYNC
and FREEZE are set to 0 when no group is defined.

EXAMPLE:
Slave 2 belongs to groups 6, 5, 2 and 1. The groups have the following options.

Group option for group: 6 5 2 1
Sync_Byte: - x - x
Freeze_Byte: x - x x

SYNC and FREEZE bytes:

Bit position: 7 6 5 4 3 2 1 0
Group: 8 7 6 5 4 3 2 1
Sync_Byte: 0x11 0 0 0 1 0 0 0 1
Freeze_Byte: 0x23 0 0 1 0 0 0 1 1

[Byteoffset 102...] WDTimeout:
The factors WD_Faktor1 and WD_Faktor2 in Slave_Prm_Data are calculated from this trigger monitoring
time.

6.5.1.2.1 DB Buffer Sizes and Number of Buffers

General:

The parameters for buffer size and number of buffers are required by AMPRO2 memory management.

The buffer sizes are divided into 4 categories.
The number of buffers per buffer size is preset with a default value of 0.

Size in [bytes] Number
Buffer 1 32 0 to N
Buffer 2 128 0 to N
Buffer 3 186 0 to N
Buffer 4 244 0 to N

When the export memory module is used, all slaves in the master system are examined and, when the
conditions are fulfilled, the number of buffers is incremented by 1 for the appropriate buffer category. The
size is rounded to the next higher number.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 171
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Calculation of buffer size and number of buffers:

Calculation of the number of buffers per buffer size is based on the following conditions.

Entries per slave:

 - Consistency buffer:
 3 buffers for "long" consistency for inputs of the slave or for Buffered_Mode when a slave
 with only byte modules has exceeded the maximum telegram length for inputs
 The length of the buffer is determined by the length of the input bytes used.
 3 buffers for "long" consistency for outputs of the slave
 The length of the buffer is determined by the length of the output bytes used.

 - Diagnostic buffer:
 Always 1 buffer with the length DiagRespLen (see Slave_User_Data)
 1 buffer with the length DiagDataLen (see Slave_User_Data) for non standard DP slaves

 - Parameterization data buffer:
 1 buffer with the length of the parameterization data for SPM slaves

 - Configuration data buffer:
 1 buffer with the length of the configuration data for Shared_I/O slaves

Entries per master system:

- Always 1 buffer with the length of 244 bytes for zeroing the inputs for CLEAR_DATA

- Always 1 buffer with the length of 244 bytes for slave addressing

- Always 1 buffer with the length of 6 bytes

Checking the calculated buffer lengths:

The total length of the buffers must be checked for the following 2 data areas.

Dual Port RAM for process data:

 Length of the required buffers
 = sum of the input data lengths
 + sum of the output data lengths
 + sum of the diagnostic data lengths

The individual lengths are rounded off to the next higher even number.

SchnittStellenCenter ASPC 2

Page 172 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

When consistency identifiers have been assigned on a slave (length > 1 byte), the following additional buffer
lengths are required for dual port RAM.
 (Over all slots)
 + length of the consistent input portion
 + length of the consistent output portion
 + filler bytes for input portion and output portion, calculated as follows:
 1 byte if odd-numbered length and even-numbered offset in telegram or
 if odd-numbered length and odd-numbered offset

 2 bytes if even-numbered length and odd-numbered offset of identifier in telegram

 0 bytes if even-numbered length and even-numbered offset

The required buffers may not exceed an upper limit of 13684 bytes in the dual port RAM.
The limit can be set via master type file (SizeRAM1).
The length of the required buffers may not exceed the upper limit. Otherwise a warning is issued.

Internal data area (IM 308-C):

 Length of the required buffers
 = length1 x number1 + length2 x number2 + length3 x number3 + length4 x number4

The size of the internal RAM area can be specified with the master type file (SizeRAM2).
The following upper limit applies to the buffers required in the internal RAM area.

 Upper limit = internal size of 96 kbytes - dummy size

EXAMPLE of calculating the dummy size:

Size [in
Bytes]

Number Required Length Number of
Dummies

Dummy Size

Buffer 1 32 3 96 0.005 ∼ 1 32
Buffer 2 128 0 + 0 0 + 0
Buffer 3 186 0 + 0 0 + 0
Buffer 4 244 77 + 18788 1.146 ∼ 2 + 488
------ ------ ------ = 18884 ------ = 520

Number of dummies = required length / 16 Kbytes
The number of dummies is rounded off to the next higher even number.

IMPORTANT:
The number and size of the dummies is not entered for the required buffers.

The length of the required buffers may not exceed the upper limit calculated. Otherwise a warning is issued.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 173
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.1.2.2 L4 Header Lengths/Number of APBs

General:

- The parameters " L4_Header_Len“ and “APB_Number"
 are not used for the IM 308-C.

- The parameters " L4_Header_Len“ and “APB_Number"
 are required for AMPRO2 memory management.

- The L4_Header_Längen lengths are divided into 4 categories.

- APB_Number is preset to a default value of 0 for each L4_Header_Länge.

Length in [Bytes] Number
L4_Header_Len1 0 0 to N
L4_Header_Len2 2 0 to N
L4_Header_Len3 4 0 to N
L4_Header_Len4 6 0 to N

L4_Header_Len must be an even number.

Range of L4_Header_Len: 0 to 32

Calculation of APB_Number depending on the master type:

APB_Number is calculated for each L4_Header_Len based on the following conditions.

APB_Number1: Number of slaves x 7

APB_Number3: Number of slaves

SchnittStellenCenter ASPC 2

Page 174 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2 Slave Parameter Record

The following applies to all slave parameters.

The length specifications for the individual parameter data blocks (i.e., Prm_Data, Cfg_Data and so on)
do not include filler bytes.

6.5.2.1 General Slave Data (Slave_Para_Data)

Address Offset BYTE Designation Contents Value Range

0 to 1 Slave_Para_Len Length of the total slave

parameter record including
Slave_Para_Len

Unsigned16

2 Sl_Flag Status flag:
0 = Deactivated
128 = Activated

Unsigned8

3 Slave_Type 0 to 255 Unsigned8
4 to 15 Reserved Unsigned8

[Byteoffset 0...] Slave_Para_Len:

The length of the total slave parameter record including Slave_Para_Len includes the filler bytes required
when parameter data records must start at even-numbered addresses.

[Byteoffset 2] SI_Flag:

Current status of the slave on the bus. See also ident area.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 175
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

[Byteoffset 3] Slave_Type:

The slave type in accordance with the type file

Coding: Description:
0 Standard DP slave
1 to 15 Reserved
16 ... Manufacturer-related definitions

Slave_Type:

 Allocation in Acc.
w.
- DP standard
- SPC
- SPM

Code:

DP slave DP standard 0
SPC3 SPC

LSPM2 (ET200/B/C/DP due to ASIC) DP standard 16
DP S7 slave DP standard 17

ET 200U "old Siemens" IM 318-B SPC 128
ET 200B with diagnosis (old) SPM_Code_2 129
ET 200B without diagnosis (old) SPM_Code_2 130
SPM - general code 0 SPM 131

SPM - general code 1 SPM 132

SPM - general code 2 SPM 133
ET 200C " old Siemens "

SPM - general code 3 SPM 134
ET 200K IM 418-B

The following method is used to distinguish between standard DP slaves and non standard DP slaves.
- Standard DP slaves are coded in the area from 0 to 127.
- Non standard DP slaves are coded in the area starting at 128.

Criteria for distinction:

MSB (most significant bit) = 0 Standard DP slave
MSB = 1 Non standard DP slave

SchnittStellenCenter ASPC 2

Page 176 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2.2 Parameterization Data (Prm_Data)

The data which are transferred in the parameterization telegram are located here. For standard DP slaves,
these data conform to the DP standard. For all others, these data conform to communication specifications
V4.0 (/8/)
The parameterization data consist of bus and DP slave-related data.
In Prm_Data, a distinction must be made between standard DP slaves, SPC slaves and SPM slaves.
Prm_Data has a maximum length of 245 bytes.

Caution: Prm_Data must start at an even-numbered address.
 A filler byte must be added if necessary.

6.5.2.2.1 Prm_Data for Standard DP Slaves

Address
Offset
BYTE

Designation Contents Value Range

0 to 1
 [Standard]

Prm_Data_Len Length of Prm_Data including
Prm_Data_Len

Unsigned16

2 [1] station_status 7 Lock_Req
6 Unlock_Req
5 Sync_Req
4 Freeze_Req
3 Watchdog_On (WD)
2 to 0 Reserved

Unsigned8

3 [2] WD_Factor_1 Unsigned8
4 [3] WD_Factor_2 Unsigned8
5 [4] TSDRmin Station delay responder time Unsigned8
6 [5] Ident_Number_High In acc. w. PNO Unsigned8
7 [6] Ident_Number_Low Unsigned8
8 [7] Group_Ident Group Unsigned8
9 to 244
[8 to 244]

UserPar Manufacturer-related
parameterization data

Unsigned8

PNO : Profibus-Nutzer-Organisation (i.e., PROFIBUS user organization)

[Byteoffset 8] Group_Ident:

Bit positions 0 to 7 correspond to groups 1 to 8.

Parameterization of standard DP slaves with the SPC3, LSPM2, SPM2 ASICs:

All station types which use one of the SPC3, LSPM2 or SPM2 ASICs require uniform parameterization
provided by COM over the entire bus.
Layout of the parameterization telegrams for the affected stations types:

Attention: The first user-related byte (i.e., no. 8) is common to all types of ASICs.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 177
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.2.2.1.1 Parameterization of Standard DP Slaves with the SPM2 ASIC

Address
Offset
BYTE

Designation Contents Value Range

9 [8] 7 TBD2

6 TBD1
5 DDB_EN
4 Mask_Clear_DDB
3 EN_Sammel_Dia
2 WatchDogTime_Base
1 Disable_Stopbit
0 Disable_Sartbit
 Default 0x00

Unsigned8

10 [9] Mask for diagnostic port 1 Unsigned8
11 [10] Mask for diagnostic port 2 Unsigned8
12 [11] Mask for diagnostic port 3 Unsigned8
13 [12] Mask for diagnostic port 4 Unsigned8

Either 8 or 12 bytes are permitted.
Length: == 8 bytes User parameters are set to their default values.
Length: != 12 bytes User parameters are used.

6.5.2.2.1.2 Parameterization of Standard DP Slaves with the LSPM2 ASIC
Address
Offset
BYTE

Designation Contents Value Range

9 [8] 7 TBD3

6 TBD2
5 TBD1
4 Mask_Clear_DDB
3 EN_Sammel_Dia
2 WatchDogTime_Base
1 Disable_Stopbit
0 Disable_Sartbit
 Default 0x00

Unsigned8

10 [9] Mask for diagnostic port 1 Unsigned8
11 [10] Mask for diagnostic port 2 Unsigned8
12 [11] User_Def_PRM_3 Unsigned8
13 [12] User_Def_PRM_4 Unsigned8

Only 12 bytes are permitted.
Length: == 12 bytes User parameters are used.
Length: != 12 bytes Telegram is rejected with RS.

SchnittStellenCenter ASPC 2

Page 178 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2.2.1.3 Parameterization of Standard DP Slaves with the SPC3 ASIC

Address
Offset
BYTE

Designation Contents Value Range

9 [8] 7 TBD3

6 TBD2
5 DP_DDB_EN
4 Mask_Clear_DDB
3 TBD1
2 WatchDogTime_Base
1 Disable_Stopbit
0 Disable_Sartbit
 Default 0x00

Unsigned8

7 or more bytes are permitted.
Byte 8: User parameter are set to their default values.
Starting a byte 9: User parameters are used.

6.5.2.2.1.4 Parameterization of Standard DP Slaves with the ASPC2 ASIC

Address
Offset
BYTE

Designation Contents Value Range

9 [8] Bit

7 Protocol mode (DP/DPX)
6 Fail_Safe mode
5 DP_STS
4 CLEAR_STS
3 TBD1
2 WatchDogTime_Base
1 Disable_Stopbit
0 Disable_Startbit
 Default 0x00

Unsigned8

7 or more bytes are permitted.
Byte 8: User parameters are set to their default values.
Starting at byte 9: User parameters are used.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 179
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.2.2.2 Prm_Data for SPC Slaves

Address
Offset
BYTE

Designation Contents Value Range

0 to 1
 [SPC]

Prm_Data_Len Length of Prm_Data including
Prm_Data_Len

Unsigned16

2 [1] station_status Bit position:
7 Disable_Port_Write
6 Direct_Diagnose
5 Diagnosis_Error_Off
4 AG100_Slow_Mode
3 Watchdog_On (WD)
2 to 0 Station type

Unsigned8

3 [2] WD_Factor_1 Unsigned8
4 [3] WD_Factor_2 Unsigned8
5 [4] TSDRmin Station delay responder time Unsigned8
6 to 245
 [5 to 244]

UserPar Manufacturer-related
parameterization data

Unsigned8

[Byteoffset 2] station_status:

Bit 6 / Direct_Diagnose 0: Do not add diagnosis.
 1: Add diagnosis.

SchnittStellenCenter ASPC 2

Page 180 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2.2.3 Prm_Data for SPM Slaves

Address
Offset
BYTE

Designation Contents Value Range

0 to 1
 [SPM]

Prm_Data_Len Length of Prm_Data including
Prm_Data_Len

Unsigned16

2 [1] Port 1 Unsigned8
3 [2] Port 2 Unsigned8
4 [3] Port 3 Unsigned8
5 [4] Port 4 Unsigned8
6 [5] Configuration Bit position:

7 Output ports
 disabled/enabled
6 XDirectDiagnose
5 Mask out diagnosis
4 Trdy 1 = 55 bits (default)
 Trdy 0 = 11 bits
3 to 0 Data length of the response
 telegram

Unsigned8

7 [6] WD_Factor_1 0x00 Watchdog_Off
0x01 to 0xFF Watchdog_Time

Unsigned8

8 [7] This_Station

7 Store data in E2PROM
6 to 0 Station address

Unsigned8

9 [8] Diagnostic mask 1 Unsigned8
10 [9] Diagnostic mask 2 Unsigned8
11 [10] Diagnostic mask 3 Unsigned8
12 [11] Diagnostic mask 4 Unsigned8
13 to 245

[12 to 244]

UserPar Manufacturer-related
parameterization data

Unsigned8

The following applies to the ports and diagnostic masks.

 ET 200K General SPMs
Port 1 Port A - don't care Port A
Port 2 Port B Port B
Port 3 Port - don't care Port C
Port 4 Port - don't care Port D
Diagnostic mask 1 Diag_Mask_Port_C Diag_Mask_Port_A
Diagnostic mask 2 Diag_Mask_Port_D Diag_Mask_Port_B
Diagnostic mask 3 Diag_Mask_Port_A Diag_Mask_Port_C
Diagnostic mask 4 Diag_Mask_Port_BE Diag_Mask_Port_D

[Byteoffset 6] configuration:

Bit 6 / XDirect_Diagnose 0: Add diagnosis.
 1: Do not add diagnosis.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 181
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.2.2.4 Triggering Monitor Time (Watchdog)

DPN slaves:

[Byteoffset 3] WD_Factor_1:
[Byteoffset 4] WD_Factor_2:

Formula: WD_time [msec]= WD_Base x WD_Factor_1 x WD_Factor_2

WD_Base in [msec] 10 1
WD_Base in byte 8 for special ASICs 0 1

WD_Base: Default: 0 / 10 [msec]
General value range for Factor_1/_2: 1 to 255
Restriction: Both factors may not be 1.

The following applies to station types with special ASICs SPC3, LSPM2 and SPM2.

- For baud rates equal to or greater than 3 Mbaud and repeater on the bus, the DisableStartBit in
 parameterization byte 8 is set to 1 (default: 0).

- For baud rates equal to or greater than 1.5 Mbaud and a watchdog time of less than 40 [msec], the
 WatchDogTime factors are calculated again and WatchDogTime_Base is switched to 1 (i.e., to
 1 [msec]).

SPC slaves:

[Byte offset 3] WD_Factor_1:
[Byte offset 4] WD_Factor_2:

Formula: WD_time [msec] = WD_Base x WD_Factor_1 x WD_Factor_2

WD_Base = 33 [msec]
General value range for Factor_1/_2: 1 to 255
Restriction: Both factors may not be 1.

SPM slaves:

[Byteoffset 7] WD_Factor_1:

Formula: WD_time [sec] = Tbit[sec] x WD_Factor_1 x WD_Factor_2

Tbit[sec] = 1 / baud rate
WD_Factor_2 = 64 for baud rates of 9.6 and 19.2 kbaud
WD_Factor_2 = 512 for baud rates greater than 19.2 kbaud
Value range for Factor_1: 1 to 255

Baud rate [kBd]: 9.6 19.2 93.75 187.5 500 1500
Max. time [sec]: 1.7 0.8 1.4 0.7 0.2 0.1

SchnittStellenCenter ASPC 2

Page 182 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Rules for handling triggering monitor times:

The SPM type ASIC will not be handled separately here.
The WatchDog value depends on the baud rate.

Basic rules:

- An attempt should be made to keep the configured times the same for all slaves.

- The calculated time must be equal to or greater than the specified time.

- If the specified value is not within the possible value range of the factors, the minimum or
 maximum possible value is set as the default.

Rule 1:
Compliance with this rule is simple when only one type of ASIC is used on the bus. Use the time indicated
or entered as user-defined for the export function, and round off to the next higher unit.

Rule 2:
When a bus setup using "mixed" ASICs with a combination of 1 msec and 10 msec or 1 msec and 33 msec
as WatchDogTimeBase is used, all watch dog times must be set to the "high" value resulting from the 10-
msec or 33-msec time base.

Rule 3:
When the bus setup includes ASICs with a WatchDogBaseTime of 1 msec, 10 msec and 33 msec or 10
msec and 33 msec (a rare situation), the next tens unit of the entered time is used. For stations with the 33
msec time base, the next value equal to or greater than the specified value is used.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 183
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.2.3 Configuration Data (Cfg_Data)

The data which are transferred in the configuration telegram are located here.
For DP slaves, these data conform to the DP standard. For all others, these data conform to communication
specifications.

Caution: Cfg_Data must start at an even-numbered address.
 If necessary, a filler byte must be added.

The configuration data describe the real setup of the slave (i.e., slave configuration) or its modules (i.e.,
slots). Each slot is specified by an identifier.

The order of the entries corresponds to the slave configuration and starts with slot 0.

 - "Hidden slot"

 A hidden slot was configured (i.e., reserved) but does not exist in reality.
 The master treats it as an empty slot.
 It is entered in Cfg_Data as "empty slot."
 No entry is made in the address table.
 The configuration information is stored in the private COM data to obtain the complete
 configuration of the master system during import.

6.5.2.3.1 Cfg_Data for Standard DP Slaves

The following identifier bytes can be entered as configuration data.

 - Normal identifier byte/empty slot

 Or
 - Special identifier byte as empty slot with/without commentary

 Or
 - Special identifier byte with subidentifier for input with/without commentary

 Or
 - Special identifier byte with subidentifier for output with/without commentary

 Or
 - Special identifier byte with subidentifiers for output and subidentifier for
 input with/without commentary

SchnittStellenCenter ASPC 2

Page 184 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Address
Offset
BYTE

Designation Contents Value Range

0 to 1 Cfg_Data_Len Length of Cfg_Data including

Cfg_Data_Len
Unsigned16

L Normal identifier byte/empty slot Unsigned8

 ... or ...

M Special identifier byte

as empty slot
Unsigned8

M+1... Commentary Manufacturer-related data Octet-String(1 to 15)

 ... or ...

N Special identifier byte Unsigned8
N+1 Subidentifier for inputs Unsigned8
N+2... Commentary Manufacturer-related data Octet-String(1 to 15)

 ... or ...

O Special identifier byte Unsigned8
O+1 Subidentifier for outputs Unsigned8
O+2... Commentary Manufacturer-related data Octet-String(1 to 15)

 ... or ...

P Special identifier byte Unsigned8
P+1 Subidentifier for outputs Unsigned8
P+2 Subidentifier for inputs Unsigned8
P+3... Commentary Manufacturer-related data Octet-String(1 to 15)

... 245

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 185
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

The layout of the identifier bytes conforms to DP standard /7/.
Specifications of consistency refer to the slots. Length specifications in bytes.

Normal identifier byte:

Bit Designation Code Explanation
7 Consistency 0 / 1 Byte or word/total length
6 Format 0 / 1 Byte structure/word structure
5, 4 Input/output 00

01
10
11

Special identifier format
Input
Output
Input/output

3, 2, 1, 0 Length of the data 00 ... 1 byte/word to 16 bytes/words

Special identifier byte:

Bit Designation Code Explanation
7, 6 Next byte 00

01
10
11

Empty slot
A length byte for inputs follows.
A length byte for outputs follows.
A length byte for outputs and a length byte for
inputs follow.

5, 4 Input/output 00 Fixed for special identifier format
3, 2, 1, 0 Length of the data 00 ... Length of manufacturer-related data

(commentary)

Next/subidentifier of the special identifier byte (length byte) for inputs and outputs:

Bit Designation Code Explanation
7 Consistency 0 / 1 Byte or word/total length
6 Format 0 / 1 Byte structure/word structure
5 to 0 Length of the data 00 ... 1 byte/word to 64 bytes/words

Based on the layout of the identifier bytes, the following applies to slot consistency.

Slot Consistency Format
Bit 6

Consistency
Bit 7

Byte consistency 0 0
Word consistency 1 0
Byte-block consistency 0 1
Word-block consistency 1 1

SchnittStellenCenter ASPC 2

Page 186 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2.3.2 Cfg_Data for SPC Slaves

Address
Offset
BYTE

Designation Contents Value Range

0 to 1 Cfg_Data_Len Length of Cfg_Data including

Cfg_Data_Len
Unsigned16

2 Normal identifier byte/empty slot Unsigned8

Layout of the identifier byte:

Bit Code Explanation
7 0 / 1 Write consistency, Y/N
6 0 / 1 Read consistency, Y/N
5 0 / 1 Expanded diagnosis for DI/DO, Y/N
4, 3

00
01
10
11

Input/output:
Empty slot
Input
Output
Input/output

2
0 / 1

Analog/digital:
0 Length nibble; consistency byte
1 Length word; consistency word

1, 0
00
01
10
11

Length in nibbles/words
1
2
3
4

Based on the layout of the identifier bytes, the following applies to slot consistency.

Slot Consistency Write
Consistency
Bit 7

Read
Consistency
Bit 6

Output/Input
Bit 4/3

Analog/
Digital
Bit 2

Byte consistency 0 0 11 0
Byte block for input 1 1 11 0
Byte block for output 0 1 11 0
Byte block for input/output 1 1 11 0

Differentiation between input and output consistency is possible.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 187
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

6.5.2.3.3 Cfg_Data for SPM Slaves

Address
Offset
BYTE

Designation Contents Value Range

0 to 1 Cfg_Data_Len Length of Cfg_Data including

Cfg_Data_Len
Unsigned16

 Poor SPM slave. No Cfg_Data for you.

Consistency for SPM slaves is fixed at '11'.

6.5.2.4 Address Table (Add_Tab)

The address allocation list of the slaves is stored here.

Address
Offset
BYTE

Designation Contents Value Range

0 to 1

Add_Tab_Len Length of total Add_Tab including
Add_Tab_Len

Unsigned16

Address entries for allocated input and output addresses:

2 to 3 Input_Len

Length of input address entries
including Input_Len

Unsigned16

4... Address entries 1 to 245 Unsigned16

M Output_Len

Length of output address entries
including Output_Len

Unsigned16

M+2... Address entries 1 to 245 Unsigned16

SchnittStellenCenter ASPC 2

Page 188 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

Address entries for addressing in the DP window (dual-port RAM) [IM: Interface Module]

N1 IM_Input_Len Length of IM input address entries

including IM_Input_Len
Unsigned16

N+2... Address entries 1 to 245 Unsigned16

O IM_Output_Len Length of IM_Output address entries

including IM_Output_Len
Unsigned16

O+2 Address entries 1 to 245 Unsigned16

GAP address entries:
- Only for PLC 115U/CPU 941-944 and linear addressing P000 - P127

P GAP_Input_Len

Length of GAP_Input address
entries including GAP_Input_Len

Unsigned16

P+2... Address entries 1 to 245 Unsigned16

Q GAP_Output_Len

Length of GAP_Output address
entries including GAP_Output_Len

Unsigned16

Q+2 Address entries 1 to 245 Unsigned16

6.5.2.4.1 Layout of the Address Entries

Bits 15 - 14 Bit 13 Bit 12 Bits 11 - 8 Bits 7 - 0
Consistency
information

Page frame
addressing

P/Q area Page frame
number

Byte offset of the S5 address

- Consistency information:

Only "short" consistency is identified in the consistency bits.

15 14 Meaning Consistency RDY Consistency Control
0 1 Beginning of consistent area Beginning Yes On
1 1 End of consistent area End Yes Off
1 0 Consistent area, slave failure End No Off
0 0 Address not allocated Disregard No Unchanged

- Page frame addressing: Page frame Y = 1 | N = 0

- P/Q area: P area = 0 | Q = 1

- Page frame number: Page frame number contains coding to 4 bits of offset to the base page
 frame.

- Byte offset: The field codes the S5 address in the selected area.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 189
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

Example of page frame addressing and the P/Q area:

Contents Description
'00' P linear
'01' Q linear
'10' P page frame
'11' Q page frame

6.5.2.4.2 Consistency Information of the Address Entries

Address entries are slot-related depending on the consistency.

- BYTE consistency (i.e., no consistency)
- WORD consistency
- BYTE-BLOCK consistency
- WORD-BLOCK consistency

6.5.2.4.3 Special Characteristics of the Address Entry

Slave type ET 200U:

Definition in accordance with general slave data (Slave_Para_Data):
ET 200U "old Siemens" IM 318-B SPC

The entry is made in the following order.

1. Addresses of analog modules (slots)
 Word entries must be stored in Intel format (i.e., converted).
2. Addresses of digital modules

SchnittStellenCenter ASPC 2

Page 190 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

6.5.2.5 User Data (Slave_User_Data)

Address
Offset
BYTE

Designation Contents Value Range

0 to 1

Slave_User_Data_Len Length of Slave_User_Data
including Slave_User_Data_Len

Unsigned16

2 SAP_Chk_Cfg = 62 Unsigned8
3 SAP_Set_Prm = 61 Unsigned8
4 SAP_Slave_Diag = 60 Unsigned8
5 SAP_Get_Cfg = 59 Unsigned8
6 SAP_Global_Control = 58 Unsigned8
7 SAP_RD_Outp = 57 Unsigned8
8 SAP_RD_Inp = 56 Unsigned8
9 SAP_Set_Slave_Add = 55 Unsigned8
10 SAP_DST = 53 Unsigned8
11 SAP_Special_Fct1 255 = don´t care (cf. Prm_Data) Unsigned8
12 SAP_Special_Fct2 255 = don´t care (cf. Prm_Data) Unsigned8
13 Ident_Number_High In acc. w. PNO (cf. Prm_Data) Unsigned8
14 Ident_Number_Low Unsigned8
15 Fail_Save_Modus Fail-safe capability of a slave:

FALSE | TRUE (from type file)
Default: FALSE

Unsigned8

16 SPM_HWIdent_High Unsigned8
17 SPM_HWIdent_Low Unsigned8
18 DiagRespLen Length of the diagnostic telegram for

all slaves
Unsigned8

19 OutputDataLen Length of output data used Unsigned8
20 InputDataLen Length of input data used Unsigned8
21 DiagDataLen Max. length of the diagnostic data

after conversion in the dual-port
RAM

Unsigned8

22 SlaveChnLen Max. length of the slave channel
(0 since not used at this time)

Unsigned8

23 Error mode 0 No error mode Unsigned8
24 Consistency Unsigned8
25 Slave operating mode Unsigned8
26... Flags Unsigned32
30 Reserved Unsigned8

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 191
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

[Offset 18] Length of the diagnostic telegram for all slaves:
[Offset 21] Max. length of the diagnostic data after conversion in the dual-port RAM:

The length of the diagnostic data [in bytes] is calculated as shown below.

Slave Allocation

[18] Length of the Telegram [21] Max. Length of the Data

Standard DP slaves 6 to 244 6 to 244
SPC slaves 6

7 to 32
13 fixed
15 to 40
(Offset of 8 bytes)

SPM slaves 11 - SPM type
(SPM type = number)

13 fixed

Own definition See standard DP slaves. See standard DP slaves.

[Offset 24] Consistency:

Consistency differentiates between inputs and outputs.

Type Bit Description
Inputs 7 0 = Not buffered / 1= Buffered
 6, 5 00 = No consistency

01 = "Short" consistency
10 = "Long" consistency
11 = Reserved

 4 = 0
Outputs 3 0 = Not buffered / 1= Buffered
 2, 1 00 = No consistency

01 = "Short" consistency
10 = "Long" consistency
11 = Reserved

 0 = 0

Table for determining the type of addressing and information on consistency and buffering for the parameter
module:

 No Consistency

With Consistency

Applies to inputs/outputs I O I/O
Total telegram length in bytes ≤ 122* > 122* ≤ 244* ≤ 122* > 122*
Longest consistent area of an
identifier in bytes (station-wide)

1 1 1 1 < area
 ≤ CB**

> CB** > 1

Parameter module: Consistency
 None/short/long

None None None Short Long*** Long***

Parameter module: Buffering
 Yes/no

No Yes No No Yes Yes

Implementation
in IM 308-C stage

V 5.0 V 5.2 V 5.0 V 5.0 V 5.2 V 5.2

SchnittStellenCenter ASPC 2

Page 192 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

* The limits which are listed below are entered in the master type file.

Longest Consistent Area of an Identifier
in Bytes (Station-Wide)

Inputs Outputs

1 122 244
1 < area < consistency boundary 122 122

CB** Boundary between "long" and "short" consistency

*** When "long" consistency is used, all address pointers must be entered in the parameter module
 with a consistency of "11" (i.e., last consistent address).

Remark: A slave can be operating with "long" consistency for the inputs and "short" consistency for the
 outputs.

[Offset 25] Slave operating mode:

Bit Position Significance Designation
7 to 3 --- Reserved
2 0/1 Read_Output
1 0/1 Read_Input
0 0/1 XchangeData

Bit 0 Bit 1 Bit 2 Possible Settings
1 0 0 XChangeData
0 1 0 Read_Input
0 0 1 Read_Output Not yet available
0 1 1 Read_Input / Output Not yet available

[Offset 26] Flags

Slave information from the type file (binary-coded):

0 Slave is a Siemens slave.
1 Slave is a standard DP slave.
2 Slave can be programmed via bus.
3 Slave can be synced.
4 Slave can be frozen.
5 Slave is an ASI gateway in default mode.
6 Slave can buffer diagnosis.
7 Slave is active.
8 Slave requires even slot number.
9 Slave is an ASI gateway.
10 Slave is also a master.
11 Slave is publisher.
12 Slave is subscriber.
13 Only normal identifier format is permitted for slave.
14 Only special identifier format is permitted for slave.
15 Slave is S7 slave with 2 permanently preconfigured slots.
16 Slave is S7 slave with 3 permanently preconfigured slots.
17 Slave has I/O with channel capability.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 193
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

7 Appendix

7.1 Address List

PROFIBUS Nutzer Organisation
PNO
Office
Mr. Dr. Peter Wenzel
Haid- und Neu- Strasse 7
76131 Karlsruhe/Germany
Tel.: (0721) 9658-590

Contact Persons at the Interface Center in Germany

Siemens AG
DeptI IA SE DE DP3
Mr. Putschky
Würzburgerstr.121
90766 Fürth/Germany

Email:
gerd.putschky@siemens.com

Tel.: (0911) 750 - 2078
Fax: (0911) 750 - 2100

Contact Persons at the Interface Center in the USA

PROFIBUS Interface Center
One Internet Plaza
PO Box 4991
Johnson City, TN 37602-4991

Fax : (423) - 262 - 2103

Your Partner:
Tel.: (423) - 262 - 2576

Email:
profibus.sea@siemens.com

SchnittStellenCenter ASPC 2

Page 194 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

7.2 List of Related Literature

/1/ PROFIBUS-Norm DIN 19245, Teil 1. April 1991.

/2/ PROFIBUS-Norm DIN 19245, Teil 3. Normentwurf der PNO (PROFIBUS-Nutzerorganisation), Juli
1994.

/3/ Kiendl, M.: Terminologie-Datenbank für ET200, Version V 2.2. Siemens AG Amberg, Abt. AUT 125,
07.04.1995.

/4/ Gebhardt, M.: Parametermodul für ET200-Kernsystem V 5.0, Version V 1.04. Dokumenten-Nummer
ET2_S010, Siemens AG Erlangen, Abt. AUT 624, 04.05.1995.

/5/ Heinrich, A. / Spichtinger, K. / Tretter, B.: AMPRO2 User-Interface, Version V 2.4. Siemens AG
Amberg, Abt. AUT 1242B, 20.10.95 zur AMPRO2-Firmware V 2.4 vom 20.10.95.

/6/ Spichtinger, K. / Tretter, B.: AMPRO2 Application-Notes, Version V 2.3. Siemens AG Amberg, Abt.
AUT 1242B, 18.07.95.

/7/ Steindl, G.: Rahmen-Spezifikation, Version V 1.3. Siemens AG Amberg, Abt. AUT 1242B, 21.09.94.

/8/ Steindl, G.: Kommunikationsspezifikation ET 200, Version V 4.0. Siemens AG Amberg, Abt.
AUT 1242B, Januar 1994.

 ASPC 2 SchnittStellenCenter

ASPC 2 / Software User Description Release V1.1 Page 195
Copyright (C) Siemens AG 2009. All rights reserved. 01/09

7.3 List of Abbreviations
Most of the abbreviations used in these specifications are explained the terminology data base. Most of the
abbreviations listed in this section are not included in the data base.

AMPRO Advanced Multi-user PROFIBUS

APB Application Block

ASPC2 Advanced Siemens-PROFIBUS Controller 2; ASIC

AST AUTOSTOP; master operating mode

B Behind numbers; number system based on 2 (Binary)

CB Control Block

CBF Call Back Function

CFG Configuration slave state

D Behind numbers; number system based on 10 (Decimal)

DATA Data exchange slave state; data communication

DATA_NA Data Exchange but Not Available slave state

DATR Data Transfer

DB Data Block

DEACT Deactivated slave state

DIAG1 Diagnosis 1 slave state

DIAG2 Diagnosis 2 slave state

DP Decentral Periphery

DPM DP-Master; communication functions of a class-1 DP master in acc. w. standard

DPMIB DPM Init Block

DPS DP Slave; communication functions of a DP slave in acc. w. standard

DTL Data Transfer List

ERRCB Error Control Block

FASA Failsafe operating mode

FDL Fieldbus Data Link

FLC Fieldbus Link Control

FMA Fieldbus Management Layer

FW Firmware

H Behind numbers; number system based on 16 (Hexadecimal)

HW Hardware

IFA Interface

ISO International Organization for Standardization

L Direction of Access Lesen (lesen = read)

L2 Layer 2 of the ISO/OSI 7 layer model

L4 Layer 4 of the ISO/OSI 7 layer model

LSB Least Significant Bit

MAC Medium Access Control

SchnittStellenCenter ASPC 2

Page 196 Release V1.1 ASPC 2 / Software User Description
01/09 Copyright (C) Siemens AG 2009. All rights reserved.

MARKCB mark_cycle Control Block

MSB Most Significant Bit

OSI Open System Interconnection

PDA Process Data Area; process data area

PRM Parameterization of slave state

PRM_UNLOCK Cancellation of Parameterization of slave state

PROFIBUS Process Fieldbus

Req Request

Res Response

S Direction of Access Schreiben (schreiben = write)

SCB System Control Block for memory area required for the ASPC2

SD System Diagnosis

SDA Send Data with Acknowledge, PROFIBUS service

SDL Specification and Description Language

SDN Send Data with No Acknowledge; PROFIBUS service

SIO_DIAG2 Shared_Input/Output slave state Diagnose 2

SIO_GET_CFG Shared_Input/Output slave state Get_Config

SIO_RD_IO Shared_Input/Output slave state Read_Input/Output

SLCB Slave Control Block

SLSM Slave State Machine

SMMCB set_master_mode Control Block

SPC Siemens PROFIBUS Controller; ASIC

SPC Siemens PROFIBUS Multiplexer; ASIC

SRD Send and Request Data with reply; PROFIBUS service

SSLACB set_slave_address Control Block

SSMCB set_slave_mode Control Block

USIF User Interface

