
OPC Custom Interface 1

OPC Automation Interface 2

Edition: 3

C79000–G7076–C225–01

OPC Server Interface

Manual

This manual is based on version 2.0 of the OPC
specification from the OPC Foundation.

This manual is available only in English.

Computing

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precau-
tions are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precau-
tions are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the
technical descriptions, and only in connection with devices or components from other manufacturers
which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed cor-
rectly, and operated and maintained as recommended.

Trademarks
SIMATIC�, SIMATIC HMI� and SIMATIC NET� are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights
may be violated if they are used by third parties for their own purposes.

Safety Guidelines
This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

We have checked the contents of this manual for agreement with the hardware and
software described. Since deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the data in this manual are reviewed regularly
and any necessary corrections included in subsequent editions. Suggestions for
improvement are welcomed.

Disclaimer of LiabilityCopyright Siemens AG 1999 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of a utility model
or design, are reserved.

Siemens AG
Automation and Drives (A&D)
Industrial Automation Systems (AS)
Postfach 4848, D- 90327 Nürnberg

� Siemens AG 1999
Technical data subject to change.

Siemens Aktiengesellschaft

i
OPC Server Interface
C7900–G7076–C225–01

Contents

1 OPC Custom Interface 1-1.

1.1 Creating and Using an OLE Object in C/C++ 1-2.

1.2 Additional Information about the Interface Description for the OPC Custom
Interface 1-5.

1.3 The “OPC Server” Object 1-6.

1.4 Objects of the “OPC Group” Class 1-11.

1.5 IDataObject Interface 1-16.

2 OPC Automation Interface 2-1.

2.1 Creating and Using an OLE Object in Visual Basic 2-2.

2.2 Object Model for the Automation Interface 2-5.

2.3 The “OPCServer” Object 2-6.

2.4 The “OPCBrowser” Object 2-8.

2.5 The “OPCGroups” Collection Object 2-10.

2.6 The “OPCGroup” Object 2-12.

2.7 The “OPCItems” Collection Object 2-15.

2.8 The “OPCItem” Object 2-17.

Figures

1-1 OPC Server Object 1-6.
1-2 OPC Group Object 1-11.
1-3 IAdviseSink (Client) and IDataObject (Server) Interfaces 1-16.
2-1 Activating the Reference for the Automation Interface 2-2.
2-2 Object Model for the Automation Interface 2-5.

Tables

1-1 Objects and Interfaces of the OPC Custom Interface 1-5.
2-1 Properties of the “OPCServer” Object 2-6.
2-2 Properties of the “OPCBrowser” Object 2-8.
2-3 Properties of the “OPCGroups” Object 2-10.
2-4 Properties of the “OPCGroup” Object 2-12.
2-5 Properties of the “OPCItems” Collection Object 2-15.
2-6 Properties of the “OPCItem” Object 2-17.

Contents

ii
OPC Server Interface

C7900–G7076–C225–01

1-1
OPC Server Interface
C7900–G7076–C225–01

OPC Custom Interface

Chapter Overview

This chapter shows how to use the OPC custom interface. It also lists the
interfaces and methods of the OPC customer interface. This is not a detailed
interface description but contains supplementary information and notes relating
specifically to the Computing software.

There is now an extended version of the OPC custom interface, specification 2.0.
Version 2.0 supplements the existing OPC custom interface in several aspects
particularly those simplifying the handling of asynchronous communication.

The interfaces of Version 1.0 of the OPC interface are completely upwards
compatible with Version 2.0.

Section Description Page

1.1 Creating and Using an OLE Object in C/C++ 1-2

1.2 Additional Information about the Interface Description for the OPC
Custom Interface

1-5

1.3 The “OPC Server” Object 1-6

1.4 Objects of the “OPC Group” Class 1-11

1.5 IDataObject Interface 1-16

1

OPC Custom Interface

1-2
OPC Server Interface

C7900–G7076–C225–01

1.1 Creating and Using an OLE Object in C/C++

The following sections illustrate step-by-step how you can call the methods of an
instance of an OLE class in C++. Note the difference between the term “Class” in
OLE and in C++:

� OLE Classes: A Windows object is an instance of an OLE class. The term OLE
class differs from the class in C++.

� C++ Classes: A class in C++ is a type definition. An OLE class is, however, an
object description and does not contain types.

Class Identification Code

Each OLE class can be identified uniquely by a 128-bit long identification code, the
CLSID. This is used by the operating system for the unique assignment of a DLL
or EXE file that implements this class. A client that wishes to use an object of a
class requires only the CLSID.

ProgID

To simplify the identification of OPC servers, there is normally a readable name,
the ProgID assigned in the CLSIDs. While a CLSID is always unique due to the
algorithm for compilation, it is possible that a ProgID exists more than once. Just
like the CLSID, the ProgID is specified by the vendor of an OPC server.

The ProgID for the OPC server of Computing is: OPCServer.WinAC

Creating a COM Object

A COM object is created in five steps:

1. Initialize COM.

2. Query the CLSID.

3. Create an Object.

4. Call an OPC function.

5. Release the interfaces used.

Step 1: Initialize COM

Before you can use the functions of COM, the COM library must be initialized with
the following call:

HRESULT r1;

r1 = CoInitialize(NULL);

OPC Custom Interface

1-3
OPC Server Interface
C7900–G7076–C225–01

Step 2: Query the CLSID

If the name of an object is known, the CLSID can be queried using the OLE
function “CLSIDFromProgID”.

Example: The following program section illustrates how to query the CLSID for the
OPC server for Computing.

CLSID clsid; // Get the CLSID from the Name

r1 = CLSIDFromProgID((L”OPCServer.WinAC”),&clsid);

Step 3: Create an Object

If a client wants to use an object, it transfers the CLSID to the operating system
and requests an object instance. Regardless of where the server is located, the
object request is always directed to COM.

The “CoCreateInstance” function creates an object belonging to the required class.
This function includes certain intermediate steps via the “IClassFactory” interface.
Creating an object using IClassFactory is more efficient when several objects of a
class must be created.

Example: The following lines show how an object of the class “OPC server” with
reference to the “IUnknown” interface can be created.

IUnknown * pOPCUnknown;

r1 = CoCreateInstance (clsid, NULL, CLSCTX_LOCAL_SERVER,

IID_IUnknown, (void**) &pOPCUnknown);

Step 4: Call an OPC Function

In this step, a method of the “IOPCServer” interface of the created object will be
used to learn the status of the server. First, a pointer to the “IOPCServer” interface
is made available via “IUnKnown”. Finally, the “GetStatus” method is called.

Example: The program shown below outputs the status of the server and the
vendor information. If the “GetStatus” method is called successfully, the OPC
server allocates the memory areas for the return information via the “IMalloc”
interface. The user must release these memory areas again.

IOPCServer *pOPCServer;

OPCSERVERSTATUS *pss;

r1 = pOPCUnknown–>QueryInterface(IID_IOPCServer,

(void**)&pOPCServer);

r1 = pOPCServer –>GetStatus(&pss);

printf(”Status.szVendorInfo = %ls\n”, pss–> szVendorInfo);

// Remember to release the memory returned by the method

pIMalloc–>Free(pss–>szVendorInfo);

pIMalloc–>Free(pss);

OPC Custom Interface

1-4
OPC Server Interface

C7900–G7076–C225–01

Step 5: Release the Interfaces Used

Objects include reference counters to detect when the object is no longer required
and can remove itself from memory. Each time the “QueryInterface” function is
called, the reference counter is incremented. To release the object, the counter
must be reset.

Example: Using the following commands, the reference counter for the interfaces
“IUnknown” and “IOPCServer” is reset.

pOPCServer–>Release();

pOPCUnknown–>Release();

OPC Custom Interface

1-5
OPC Server Interface
C7900–G7076–C225–01

1.2 Additional Information about the Interface Description for the
OPC Custom Interface

A comprehensive description of the OPC interfaces is beyond the scope of this
manual. This is supplied as a file along with this product as an original English
document from the OPC Foundation. The documents are located in the ”DOC”
directory in the product directory of the OPC server for Computing.

The following supplementary information about the interfaces lists the objects of
OPC, their interfaces and the methods defined in these interfaces and points out
particular characteristics of the OPC server for Computing.

Return Values

All the listed methods return a result of the type HRESULT.

Overview of the Objects and Interfaces

Table 1-1 Objects and Interfaces of the OPC Custom Interface

Object Interface

IOPCServer

IOPCServerPublicGroups (optional)

IOPCBrowseServerAddressSpace (optional)

OPCServer IOPCItemProperties (new with V 2.0)

IConnectionPointContainer (new with V 2.0)

IOPCCommon (new with V 2.0)

IPersistFile (optional)

IOPCGroupStateMgt

IOPCPublicGroupStateMgt (optional)

IOPCASyncIO2 (new with V 2.0)

IOPCAsyncIO (no longer necessary with V2.0)
OPCGroup

IOPCItemMgt

IConnectionPointContainer (new with V 2.0)

IOPCSyncIO

IDataObject (no longer necessary with V2.0)

EnumOPCItemAttributes IEnumOPCItemAttributes

OPC Custom Interface

1-6
OPC Server Interface

C7900–G7076–C225–01

1.3 The “OPC Server” Object

The OPC server class has various attributes that contain information about the
status, the version etc. of an OPC server object. The OPC server class also has
methods with which a client can manage the objects of the OPC group class. A
client application addresses only an object of this class directly using COM
mechanisms. The other objects are created by corresponding OPC methods.

The methods of the IOPCServer interface are used to manage the objects in the
OPC group class. Using the methods of the IOPCBrowseServerAddressSpace
interface, it is possible to investigate the address area of the server.

Figure 1-1 illustrates the “OPC server” object with its interfaces.

OPC
Server Object

IUnknown

IOPCItemsProperties (V2.0)

IConnectionPointContainer (V2.0)

IOPCCommon (V2.0)

IOPCBrowseServerAddressSpace
IOPCServer

Figure 1-1 OPC Server Object

IOPCServer Interface

This interface contains methods to manage groups within a server object. It is also
possible to obtain information about the current status of the server.

AddGroup (szName, bActive, dwRequestedUpdateRate, hClientGroup,

pTimeBias, pPercentDeadband, dwLCID, phServerGroup,

pRevisedUpdateRate, riid, ppUnk)

Creates a group in the server object.

Notes:

� The ”pTimeBias” parameter is not evaluated by the OPC server for Computing.

� “LCID” is irrelevant for the OPC server for Computing.

� The “UpdateRate” is specified by the configuration parameter “Minimum Update
Rate” as a multiple of the configuration value.

� The “pPercentDeadband” parameter is only effective for variables of the real
(VT_R4) type.

� If the “szName” parameter is empty, a name is generated beginning with the
underscore character (for example, “_123456”). User-defined names should
therefore not begin with the underscore character.

OPC Custom Interface

1-7
OPC Server Interface
C7900–G7076–C225–01

CreateGroupEnumerator (dwScope, riid, ppUnk)

Creates various enumerators for the group.

Note: Since there are no public groups in the OPC server for Computing, the return
values for the parameter ”dwScope” ”...PRIVATE” and ”...PUBLIC” are identical.

GetErrorString (dwError, dwLocale, ppString)

Supplies the error message for a specific error code.

Note: The OPC server for Computing supports German and English error texts.
Errors detected by the Windows operating system are explained in the language in
which the operating system was installed.

GetGroupByName (szName, riid, ppUnk)

Supplies an additional interface pointer for the name of a private group, in other
words the reference counter is incremented.

GetStatus (ppServerStatus)

Supplies the status information of the server.

Note: The return value of the OPC server for Computing is the name and the
version of the OPC server.

RemoveGroup (hServerGroup, bForce)

Deletes a group on the server.

Note: The OPC server for Computing does not support the use of the ”bForce”
parameter. It is not possible to delete groups to which references are still active.

IOPCBrowseServerAddressSpace Interface

This interface contains methods with which the address area of the server can be
queried. The address area contains all the OPC items known to the server.

BrowseAccessPaths (szItemID, ppIEnumString)

This provides the possibility of querying the access path of an ItemID.

Note: Not required with the OPC server for Computing.

OPC Custom Interface

1-8
OPC Server Interface

C7900–G7076–C225–01

BrowseOPCItemIDs (dwBrowseFilterType, szFilterCriteria,

vtDataTypeFilter, dwAccessRightsFilter, ppIEnumString)

Supplies a string of the type ”IEnumString” whose content is specified by the call
parameters. The position from which the list is created can be set using the
”ChangeBrowsePosition” method.

Notes:

� “BRANCH” excludes the filters for Type and AccessRights.

� The rules for creating a filter are as follows:

– Asterisk (*) Any character string, including empty strings

– Plus (+) Any character string, however at least one character

– Question marks (?) Any single character

– Square brackets ([]) One single character from the specified set

� To use one of the filter characters, this must be preceded by a back slash (\).

ChangeBrowsePosition (dwBrowseDirection, szString)

Allows you to browse through the address area. You can change to the higher level
or to a branch.

GetItemID (szItemDataID, szItemID)

Creates a complete ItemID in the hierarchical address area. This function is
necessary since browsing itself only provides the designations below the current
node.

Note: The description of GetItemID in OPC specification is inconsistent with the
description of ChangeBrowsePosition. With ChangeBrowsePosition, it is not
possible to specify a complete ItemID. For this reason, the OPC server for
Computing only currently supports the command GetItemID for single leaves
(LEAF).

QueryOrganization (pNameSpaceType)

Supplies the structure of the address area. The address area can be organized
with a flat or hierarchical structure.

Note: The structure of the address area of the OPC server for Computing is
structured hierarchically.

OPC Custom Interface

1-9
OPC Server Interface
C7900–G7076–C225–01

IOPCCommon Interface (Version 2.0)

This interface of version 2.0 of the OPC Custom Interface contains methods
allowing the language settings and the name of the client to be made known to the
server.

SetLocaleID (dwLcid)

Sets the language code of the server. The language code specifies the language in
which the server outputs text.

Note: The OPC server for Computing supports English and German.

GetLocaleID (pdwLcid)

Fetches the language code of the server.

Note: The OPC server for Computing supports English and German.

QueryAvailableLocaleIDs (pdwLcid)

Provides all the available language codes of the server.

Note: The OPC server for Computing supports English and German.

GetErrorString (dwError, ppString)

Provides the error text for a specific error code in the set language.

SetClientName (szName)

Transfers a descriptive text for the client to the server. The descriptive text can be
used for any purpose by the server, for example for logging in trace files.

IConnectionPointContainer Interface

This interface is a standard COM interface for reporting asynchronous events via
connection points. For more detailed information about using connection points,
refer to the documentation of OLE/COM.

IOPCItemProperties (V 2.0) Interface

This interface of version 2.0 contains methods allowing specific server information
to be queried about an item.

QueryAvailableProperties (szItemID, pdwCount, ppPropertyIDs,

ppDescriptions, ppvtDataTypes)

Returns a list of available properties for an item.

OPC Custom Interface

1-10
OPC Server Interface

C7900–G7076–C225–01

GetItemProperties (szItemID, dwCount, pdwPropertyIDs, ppvData,

ppErrors)

Provides the values of the properties of an item transferred in a list of PropertyIDs.

LookupItemIDs (szItemID, dwCount, pdwPropertyIDs, ppszNewItemIDs,

ppErrors);

Provides (whenever possible for the propertyID) a list of ItemIDs for a list of
PropertyIDs. These ItemIDs can be included in a group simplifying and speeding
up access to the data.

Note: The OPC server for Computing does not support this function. The call is
rejected with error message 0x8004001 (not implemented).

OPC Custom Interface

1-11
OPC Server Interface
C7900–G7076–C225–01

1.4 Objects of the “OPC Group” Class

The “OPC Group” class manages the individual process variables, the OPC items.
Using these group objects, a client can form semantically meaningful units of OPC
items and execute operations with them.

Figure 1-2 illustrates an object of the “OPC Group” class and its interfaces.

OPC
Group Object

IUnknown

IOPCItemsAttributes

IDataObject

IOPCAsyncIO

IOPCGroupStateMgt
IOPCItemMgt

IOPCSyncIO

IConnectionPointContainer (V 2.0)

IOPCAsyncIO2 (V 2.0)

Figure 1-2 OPC Group Object

IOPCItemMgt Interface

This interface provides methods to manage more than one item in a group.
Time Stamp

With each value read, OPC supplies a time stamp. This indicates when this value
was received or when it was changed. Since the SIMATIC systems do not use a
time stamp, the time at which the value is received on the server is used as the
time stamp.

OPC Custom Interface

1-12
OPC Server Interface

C7900–G7076–C225–01

AddItems (dwNumItems, pItemArray, ppAddResults, ppErrors)

Adds one or more items to a group.

Notes:

� A unique name of an item for the OPC server for Computing is as follows:

Examples MD0:Real

EB0
DB1.DBD0

This name can be specified completely in the ItemID. The AccessPath must
then be empty.

� As an alternative, the part of the name in square brackets can be included in
the AccessPath.

Example: AccessPath: “”

MD0:Real

� It is possible to add the same OPC item to the same group more than once. In
this case each of these items nevertheless has its own server handle.

The server handles of the items are only unique within a group and not for all
items of all groups.

� Valid data types are as follows: VT_UI1, VT_UI2, VT_UI4, VT_I1, VT_I2,
VT_I4, VT_R4, VT_BOOL, VT_BSTR

CreateEnumerator (riid, ppUnk)

Creates an enumerator for the items of a group.

RemoveItems (dwNumItems, phServer, ppErrors)

Deletes one or more items from a group.

SetActiveState (dwNumItems, phServer, bActive, ppErrors)

Sets the active state of one or more items in a group.

SetClientHandles (dwNumItems, phServer, phClient, ppErrors)

Sets the client handle of one or more items in a group.

SetDatatypes (dwNumItems, phServer, pRequestedDatatypes, ppErrors)

Sets the requested data type of one or more items in a group.

Note: See AddItem

OPC Custom Interface

1-13
OPC Server Interface
C7900–G7076–C225–01

ValidateItems (dwNumItems, pItemArray, bBlobUpdate,

ppValidationResults, ppErrors)

Checks the validity of an OPC item, for example whether it was added to a group
without any error occurring, and supplies information such as the canonical data
type.

Note: See AddItem

IOPCGroupStateMgt Interface

The IOPCGroupStateMgt interface provides methods with which groups can be
managed. It is possible to edit group-specific parameters and to copy groups.

CloneGroup (szName, riid, ppUnk)

Creates a copy of a group. All group attributes are copied except for the following:

� The active state is set to FALSE

� A new server handle is assigned

Note: The “szName” parameter can be empty. In this case a unique name is
generated (see AddGroup).

GetState (pUpdateRate, pActive, ppName, pTimeBias, pPercentDeadband,

pLCID, phClientGroup, phServerGroup)

Fetches the status of the group. The client application must inform the OPC server
where the results are to be stored using a pointer.

Notes:

� The “pTimeBias” parameter has no significance for the OPC server for
Computing.

� The “pPercentDeadband” parameter has no significance for the OPC server for
Computing.

� The “LCID” parameter, in other words language-specific textual values in
read/write, has no significance for SIMATIC variables.

SetName (szName)

Allows the name of a group to be changed. The name must always be unique.

OPC Custom Interface

1-14
OPC Server Interface

C7900–G7076–C225–01

SetState (pRequestedUpdateRate, pRevisedUpdateRate, pActive,

pTimeBias, pPercentDeadband, pLCID, phClientGroup)

SetState allows various properties of the group to be changed.

Notes:

� The “pTimeBias” parameter has no significance for the OPC server for
Computing.

� The “pPercentDeadband” parameter has no significance for the OPC server for
Computing.

� The “LCID” parameter, in other words language-specific textual values in
read/write, has no significance for SIMATIC variables.

� The “UpdateRate” is specified by the configuration parameter “Minimum Update
Rate” as a multiple of this value.

IOPCSyncIO Interface

This interface provides methods for synchronous reading and writing. Synchronous
means that the client waits until the read or write operation is completed and only
then continues execution.

The use of synchronous calls is recommended when the client requires the result
for further processing. Other clients are not blocked since the OPC server for
Computing starts a separate thread for each client.

In general, it is advisable to use the IData interface for processing variable
changes (or IAdviseSink on the client side). This interface guarantees the highest
possible data throughput and also reduces the actual number of calls to the
absolute minimum (only when changes occur).

Read (dwSource, dwNumItems, phServer, ppItemValues, ppErrors)

Reads the values, status information or time stamp of one or more items in a
group. The values can be read from the cache of the server or directly from the
hardware. Reading from the cache is, however, only possible when the group is
activated.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”.

Write (dwNumItems, phServer, pItemValues, ppErrors)

Writes values for one or more items of a group to the hardware.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is ”Read/Write Timeout”.

OPC Custom Interface

1-15
OPC Server Interface
C7900–G7076–C225–01

IOPCAsyncIO Interface

This interface of the Group class provides methods for asynchronous reading and
writing of items. Asynchronous means that the client triggers a read or write
operation and then continues operation. Asynchronous operations provide a
transaction ID. When the server has completed the read or write operation, the
client receives a message sent to its IAdviseSink interface.

Cancel (dwTransactionID)

Cancels an outstanding job.

Read (dwConnection, dwSource, dwNumItems, phServer, pTransactionID,

ppErrors)

Sends an asynchronous read command. The result is sent to the IAdviseSink
interface of the client.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”. If the timeout
monitoring is aborted, there is a callback with hrStatus=E_ABORT.

Refresh (dwConnection, dwSource, pTransactionID)

Requests a current value for every active OPC item.

Write (dwConnection, dwNumItems, phServer, pItemValues,

pTransactionID, ppErrors)

Sends an asynchronous write command.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”. If the timeout
monitoring is aborted there is a callback with hrStatus=E_ABORT.

OPC Custom Interface

1-16
OPC Server Interface

C7900–G7076–C225–01

1.5 IDataObject Interface

The IDataObject interface is the standard interface of OLE for data transmission. It
contains methods for establishing a message connection between the client and a
server group.

Description of the Mechanism

If the server wants to send a message to a client, the client must provide a partner
for the server. This partner is the IadviseSink interface of the client. A server sends
a message to a client by calling the OnDataChange method of the IAdviseSink
interface of the client.

Representation of the Mechanism

Figure 1-3 illustrates how the “IAdviseSink” interface on the client and
“IDataObject” on the server interact.

Client Server

IDataObjectIAdviseSink

IAdviseSink::OnDataChange

IDataObject::DAdvise

Figure 1-3 IAdviseSink (Client) and IDataObject (Server) Interfaces

DAdvise (pFmt, adv, pSnk, pConnection);

Establishes a connection between a server and the client. If a client wants to
receive a message, it must establish a connection using this method. It transfers a
pointer to its IAdviseSink interface to the server.

DUnadvise (Connection)

Terminates an existing connection between a client and server.

OPC Custom Interface

1-17
OPC Server Interface
C7900–G7076–C225–01

IEnumOPCItemAttributes Interface

This interface based on the IEnum standard interface returns the items of a group.
The interface is supplied only by “IOPCItemMgr:CreateEnumerator”. It is not
obtainable with QueryInterface.

Clone (ppEnumItemAttributes);

Creates an identical copy of the enumerator.

Next (celt, ppItemArray, pceltFetched);

Fetches the next OPC item of the group.

Note: The OPC server for Computing does not support engineering units. EUType
and EUInfo are therefore irrelevant.

Reset (void);

Resets the list to the first item of the group.

Skip (celt);

Skips a number of items in the list.

IAsyncIO2 Interface (Version 2.0)

This interface in version 2.0 provides methods for asynchronous reading and
writing of items. Asynchronous means that the client triggers a read or write
operation and then continues operation. Version 2 of the interface for
asynchronous communication uses connection points. This simplifies the
processing of the transferred data.

Read (dwCount, phServer, dwTransactionID, pdwCancelID, ppErrors)

Sends an asynchronous read command. The result is sent to the client via a
connection point.

Note: The call is monitored by the timeout monitoring on the server. If the set time
is exceeded, this is indicated by the status E_ABORT.

Write (dwCount, phServer, pItemValues, dwTransactionID, pdwCancelID,

ppErrors)

Sends an asynchronous write command. The message indicating completion of
the job comes via the specified connection point.

Note: The call is monitored by the timeout monitoring on the server. If the set time
is exceeded, this is indicated by the status E_ABORT.

OPC Custom Interface

1-18
OPC Server Interface

C7900–G7076–C225–01

Cancel2 (dwCancelID)

Cancels an outstanding job.

Refresh (dwSource, dwTransactionID, pdwCancelID)

Requests a current value for every active OPC item.

SetEnable (bEnable)

Activates messages via connection points. Messages generated by the Refresh
method are sent regardless of these settings.

GetEnable (pbEnable)

Returns the current value of the flag for messages via connection points.

IConnectionPointContainer Interface

This interface is a standard COM interface for reporting asynchronous events via
connection points. For more detailed information about using connection points,
refer to the documentation of OLE or COM.

2-1
OPC Server Interface
C7900–G7076–C225–01

OPC Automation Interface

Chapter Overview

This chapter explains how to use the OPC automation interface. It also lists the
properties and methods of the OPC automation interface. This is not a detailed
interface description but contains supplementary information and notes relating
specifically to the OPC server of Computing.

Versions of the Automation Interface

The OPC automation interface was specified by the OPC Foundation in version
1.0. The specification, however, was unclear in some aspects. Some weaknesses
of version 1.0 became particularly clear with the introduction of Visual Basic 5.0.

Since mid-1998, there is a new version of the specification of the automation
interface available with version number 2.0. The extent to which this version is
approved by the OPC Foundation can be found in the product information.

The following descriptions relate to version 2.0 of the specification of the OPC
automation interface.

Section Description Page

2.1 Creating and Using an OLE Object in Visual Basic 2-2

2.2 Object Model for the Automation Interface 2-5

2.3 The “OPCServer” Object 2-6

2.4 The “OPCBrowser” Object 2-8

2.5 The “OPCGroups” Collection Object 2-10

2.6 The “OPCGroup” Object 2-12

2.7 The “OPCItems” Collection Object 2-15

2.8 The “OPCItem” Object 2-17

2

OPC Automation Interface

2-2
OPC Server Interface

C7900–G7076–C225–01

2.1 Creating and Using an OLE Object in Visual Basic

Visual Basic from Microsoft is a development environment that supports the
automation interface for the simple linking of OLE objects. The following sections
show how the OPC server is used via the automation interface 2.0 in Visual Basic.
At least version 4 of Visual Basic is required.

Tasks for Creating an OPC Object

Create a new Visual Basic project. Select the Project � References menu
command to display the “References” dialog box. As shown in Figure 2-1, activate
the reference for the automation interface 2.0 of the OPC server.

Creating an OPC Object in Visual Basic uses the following five basic tasks:

1. Declaring the Variables

2. Connecting to the OPC Server

3. Generating an OPC Group

4. Adding OPC Items

5. Synchronous Reading

Components

OK

Cancel

Available References:

OLE Automation
OPC Automation 2.0
Active Setup Control Library

Visual Basic For Applications
Visual Basic runtime objects and procedures
Visual Basic objects and procedures

ActiveMovie control type library
API Declaration Loader
Automation 1.0 Type Library

OPC Automation 2.0
Location: C:\SIEMENS\Common\OCX\S7WCDATX.OCX

Browse

Language: Standard

Select (click on) OPC Automation 2.0
and click on the “OK” button

Figure 2-1 Activating the Reference for the Automation Interface

Step 1: Declaring a Variable of the Object Type

In Visual Basic or Visual Basic for Applications, a variable of the type Object refers
to an OLE object. The DIM statement declares an object instance. Example:

Dim ObjServer As OPCServer

OPC Automation Interface

2-3
OPC Server Interface
C7900–G7076–C225–01

Step 2: Creating and Assigning the Object

Creating an OPC Server Object: Visual Basic programs are also OPC clients. To
be able to access a process variable, the client must first create a server object
and then connect to an OPC server.

Example: The following code section shows how a Visual Basic client can connect
to an OPC server object.

Set ObjServer = New OPCServer

ObjServer.Connect (”OPCServer.WinAC”)

Step 3: Generating an OPC Group

The next step is to create a group object to accommodate process variables.

First, the group object and then the collection object are declared. The declared
collection object is then assigned OPCGroups, a property of the server object. A
group is finally created by calling the Add method of the collection object.

Example: The following lines show how a group is created in Visual Basic.

’Declarations

Dim GroupObj As OPCGroup

Dim GroupCollection As OPCGroups

Set GroupCollection = ObjServer.OPCGroups

Set GroupObj = GroupCollection.Add(”MyGroup”)

Step 4: Adding OPC Items

OPC items will now be inserted in the created group object. The items represent
the connections to the process variables, their parameter ItemID specified which
variable will be addressed.

The AddItems method allows several items to be inserted into a group in one call.
The transfer parameters and the return values are therefore one-dimensional
arrays with identical sizes. The “lNumItems” variable contains the number of items
to be inserted.

When the method is called, the server initializes the values of the arrays
“lServerHandles”, “lErrors” and “ItemsObj”. The “IErrors” array contains status
information for each item inserted that indicated whether or not the item was
successfully inserted.

OPC Automation Interface

2-4
OPC Server Interface

C7900–G7076–C225–01

Example: The following example creates two items in the previously created OPC
group “GrpObj”. The first item represents MD0, and the second item represents
MD4.

’Declaration

Dim ItemCollection As OPCItems

Dim ItemServerHandle() As Long

Const MAX_INDEX = 2

Dim lNumItems As Long

Dim lClientHandles(MAX_INDEX) As Long

Dim perror() As Long

Dim szItemIDs(MAX_INDEX) As String

Dim AccPath(MAX_INDEX) As String

Dim ReqDataTypes(MAX_INDEX) As Integer

’Definition of ItemIDs

szItemIDs(1) = ”MD0:Real”

szItemIDs(2) = ”MD4:Real”

AccPath(1) = ””

AccPath(2) = ””

ReqDataTypes(1) = vbVLong

ReqDataTypes(2) = vbVString

lClientHandles(1) = 1

lClientHandles(2) = 2

’Add Items to Group

Set ItemCollection = GroupObj.OPCItems

ItemCollection.Add MAX_INDEX, szItemIDs, lClientHandles, _

ItemServerHandle, perror, ReqDataTypes, AccPath

Step 5: Synchronous Reading

In the last step, a synchronous read operation to read the process variables of a
group is executed. Synchronous means that the server only returns control to the
Visual Basic program after the required results have been returned via the
communications system. This means that the flow of communication is delayed by
the time required for this communication.

Example: Just like the AddItems command, OPCRead is also a group operation, in
other words several process variables within a group can be accessed with one
call. The “lNumItems” parameter specifies the number of variables to be read. The
individual variables themselves are described in the array “lServerHandles” by the
handle assigned by the server.

’Definition of the Variables for OPCRead

’Out Parameter

Dim vValues() As Variant

Dim pErrors() as Long

GroupObj.SyncRead OPCDevice, 2, ItemServerHandle, vValues, pErrors

OPC Automation Interface

2-5
OPC Server Interface
C7900–G7076–C225–01

2.2 Object Model for the Automation Interface

The object model for the OPC automation interface according specification 2.0
differs from the model described in Section 5.3: Separate collection objects
manage the objects OPC-Group and OPC-Item. The collection objects provide
functions for counting the objects assigned to them. The browsing functions are
also brought together in a separate object.

OPC–Browser
OPCGroups
(Collection)

OPCGroup

OPCItems
(Collection)

OPCServer

OPCItem

1:1 1:n

1:n

1:n

1:1

Figure 2-2 Object Model for the Automation Interface

OPC Automation Interface

2-6
OPC Server Interface

C7900–G7076–C225–01

2.3 The “OPCServer” Object

Objects of the OPC server class are created by the client. The properties of an
OPC server contain general information about the server. When an OPC server
object is created, an OPCGroup collection is also created as a property of the OPC
server object.

Properties of “OPCServer”

Table 2-1 Properties of the “OPCServer” Object

Property Type Brief Description

StartTime Date Time at which the server was started (in UTC)

CurrentTime Date The current time (UTC), as supplied to the server by
the system

LastUpdateTime Date The time (UTC), at which the server sent the last
update of data to the client

MajorVersion Integer The major version number of the server

MinorVersion Integer The minor version number of the server

BuildNumber Integer The build number of the server

VendorInfo String The vendor information

ServerState Long Status of the server

Bandwidth Long Bandwidth of the server

OPCGroups OPC Groups A collection of OPCGroup objects

PublicGroup
Names

Variant The names of the public groups provided by this server

OPCServers Variant The names (ProgID) of the registered OPC servers.

Use one of these names for the “Connect” method.
The names are returned as an array of strings.

Notes:

� The OPC server for Computing provides the following as vendor information:
“Computing OPC–Server”

� Public groups are not supported by the OPC server for Computing.

� The Bandwith property is not supported by the OPC server for Computing.

OPC Automation Interface

2-7
OPC Server Interface
C7900–G7076–C225–01

Methods of the “OPCServer”

Connect (ProgID As String, Optional NodeName As String) As Long

Structure of a link to an OPC server. The ProgID for Computing is:
OPCServer.WinAC

Disconnect ()

Structure of the link to an OPC server.

Note: The OPC server for Computing closes all communications connections after
the Disconnect of the last OPC client.

ReleaseAll ()

Deletes all current groups and items as preparation for a Disconnect.

CreateBrowser () As OPCBrowser

Creates an object of the OPCBrowser class to investigate the address area of the
server.

Note: Refer to the description of the object in Section 2.4.

GetErrorString (ErrorCode As Long , Optional LocaleID As Long) As

String

Supplies the error message for a specific error code.

Note: The OPC server for Computing supports German and English error texts.
Errors detected by the Windows operating system are explained in the language in
which the operating system was installed.

OPC Automation Interface

2-8
OPC Server Interface

C7900–G7076–C225–01

2.4 The “OPCBrowser” Object

The OPCBrowser object is a collection object with which the address area of the
OPC server can be investigated. An object of the OPCBrowser class must be
created by the CreateBrowser method of the OPCServer object. It is possible to
create several OPCBrowser objects for one server.

Properties of “OPCBrowser”

Table 2-2 Properties of the “OPCBrowser” Object

Property Type Brief Description

Organization Long The organizational structure of the addressarea:
hierarchy or flat

Filter String The filter effective for the ShowBranches and
ShowLeafs methods

DataType Integer The data type required for the ShowLeafs method. The
default of this property is vbEmpty.

AccessRights Long The access rights required for the ShowLeafs method

CurrentPosition String
(read-only)

Current position in the tree of the address area. The
value is “ ” when initialized in the root or when the
organization structure is flat.

Count Long Properties necessary for the collection, provides the
number of entries

Notes:

� The structure of the address area of the OPC server for Computing is
hierarchical.

� The rules for creating a filter are as follows:

– Asterisk (*) Any character string, including empty strings

– Plus (+) Any string of characters, however at least one character

– Question marks (?) Any single character

– Open/close bracket ([]) Exactly one character from the specified set

� To use one of the filter characters, this must be preceded by a back slash (\).

OPC Automation Interface

2-9
OPC Server Interface
C7900–G7076–C225–01

Methods of “OPCBrowser”

Item (Key As Variant) As String

Provides the name of the entry specified by the index “Key”.

ShowBranches ()

Enters the names of the branches of the current browse position into the collection.

ShowLeafs (Optional Flat As Boolean)

Enters the names of the leaves of the current browse position into the collection. If
the parameter ”Flat” is true, the collection with all leaves of the current and deeper
branches are filled starting from the current browse position. The default for ”Flat”
is false.

MoveUp ()

Moves the current position in the address area one level up.

MoveDown (Branch As String)

Moves the current position in the address area into the current branch (one level
deeper).

MoveToRoot ()

Moves the current position in the address area to the root.

GetItemID (Leaf As String) As String

Creates a complete ItemID in the hierarchical address area. This function is
necessary since browsing itself only provides the designations below the current
node.

GetAccessPaths (ItemID As String) As Variant

This provides the possibility of querying the access path of an ItemID.

Note: Not required with the OPC server for Computing.

OPC Automation Interface

2-10
OPC Server Interface

C7900–G7076–C225–01

2.5 The “OPCGroups” Collection Object

The OPCGroups object is a collection object for creating and managing OPC
groups. The default properties of OPC groups specify default values for creating all
OPC groups.

Public groups are not supported by the OPC server for Computing.

Properties of “OPCGroups”

Table 2-3 Properties of the “OPCGroups” Object

Property Type Brief Descritpion

Parent OPC Server
(read-only)

Provides a reference to the corresponding
OPC server object

DefaultGroupActive Boolean Specifies the initial value for the “ActiveState”
property of newly created OPC groups

Default: True

DefaultGroupUpdate Long Specifies the initial value for the “update rate”
property of newly created OPC groups

Default: 1000 milliseconds

DefaultDeadband Single Specifies the initial value for the “Deadband”
property of newly created OPC groups

DefaultLocale Long Specifies the initial value for the “locale ID”
property of newly created OPC groups

DefaultTimeBias Long Specifies the initial value for the “time bias”
property of newly created OPCGroups

Count Long Properties necessary for the collection,
provides the number of entries

Notes:

� The DefaultTimeBias property is not evaluated by the OPC server for
Computing.

� DefaultLocale is irrelevant for the OPC server for Computing.

� The DefaultGroupUpdate is specified by configuration parameter “Minimum
Update Rate” as a multiple of the configuration value.

� The DefaultDeadband property has no significance for the OPC server for
Computing.

OPC Automation Interface

2-11
OPC Server Interface
C7900–G7076–C225–01

Methods of “OPCGroups”

Item (Key As Variant) As OPCGroup

Provides a reference to the indexed object of the collection.

Add (Name As string, ByRef ServerHandle As Long) As OPCGroup

Creates a group in the server object.

Note: If the szName parameter is empty, a name is generated beginning with the
underscore character (for example “_123456”). User-defined names should
therefore not begin with the underscore character.

GetOPCGroup (Key As Variant) As OPCGroup

Provides the reference to an OPC group indicated by the name or the server
handle.

Remove (Key As Variant)

Deletes a group on the server.

RemoveAll (Key As Variant)

Deletes all groups and items of the server.

Events of “OPCGroups”

AllGroupsDataChange (GroupHandle as Long, MasterQuality as Long,

MasterError as Long, NumItems as Long, ClientHandles() as Long,
ItemValues() as Variant, Qualities() as Long, TimeStamps() as Date)

This event simplifies the processing of events throughout all groups of the
collection by reporting changes in the value and state of all items in all groups.

OPC Automation Interface

2-12
OPC Server Interface

C7900–G7076–C225–01

2.6 The “OPCGroup” Object

The “OPC Group” class manages the individual process variables, the OPC items.
Using these group objects, a client can form semantically meaningful units of OPC
items and execute operations with them.

Properties of “OPCGroup”

Table 2-4 Properties of the “OPCGroup” Object

Property Type Brief Description

Parent OPC Server Provides a reference to the corresponding OPC server
object

Name String The name of the group

IsPublic Boolean Returns “True” when this group is a public group,
otherwise False

IsActive Boolean Active state of the group

An active group creates events for all active items of
the group.

ClientHandle Long A handle assigned by the client and that can be used
in the client program to localize data (for example, a
line in a table)

ServerHandle Long A unique handle assigned for the group by the server

The client must transfer this handle with one of the
many methods that influence the group (for example,
Remove).

LocaleID Long Specifies the language ID for strings supplied by the
server (for example, error texts)

TimeBias Long Provides the time offset used to change the time stamp
of the data to the local time

DeadBand Single Specifies a bandwidth within which value changes do
not result in a message

UpdateRate Long The fastest rate at which a client is informed of
changes in values or states of items

OPCItems OPC Items Collections object “OPCItems” for managing the items
of a group

Notes:

� The TimeBias property is not evaluated by the OPC server for Computing.

� LocaleID is irrelevant for the OPC server for Computing.

� The UpdateRate is specified by the configuration parameter “Minimum Update
Rate” as a multiple of the configuration value.

� The PercentDeadBand property has no significance for the OPC server for
Computing.

OPC Automation Interface

2-13
OPC Server Interface
C7900–G7076–C225–01

Methods of “OPCGroup”

SyncRead (Source As Integer, NumItems As Long, ServerHandles() As

Variant, ByRef Values() As Variant, ByRef Errors() As Variant,

Optional ByRef Qualities As Variant, Optional ByRef TimeStamps As

Variant) As Long

Synchronous reading of the values, status information or time stamp of one or
more items in a group. The values can be read from the cache of the server or
directly from the hardware. Reading from the cache is, however, only possible
when the group is activated.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”.

SyncWrite (NumItems As Long, ServerHandles() As Variant, Values() As

Variant, ByRef Errors() As Variant) As Long

Synchronous writing of values for one or more items of a group to the hardware.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”.

AsyncRead (Source As Integer, NumItems As Long, ServerHandles() As

Variant, ByRef Errors() As Variant, ByRef TransactionID As Long) As

Long

Sends an asynchronous read command. The result is returned with the
“AsyncReadComplete” event.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”.

AsyncWrite (NumItems As Long, ServerHandles() As Variant, Values() As

Variant, ByRef Errors() As Variant, ByRef TransactionID As Long) As
Long

Sends an asynchronous write command. The result is returned with the
“AsyncWriteComplete” event.

Note: The call is monitored by the timeout monitoring on the server. The
corresponding configuration parameter is “Read/Write Timeout”.

AsyncRefresh (Source As Integer, ByRef TransactionID As Long) As Long

Requests a current value for every active OPC item. The results are returned by
the “DataChange” event.

OPC Automation Interface

2-14
OPC Server Interface

C7900–G7076–C225–01

AsyncCancel (TransactionID As Long)

Cancels an outstanding asynchronous job.

Events of “OPCGroup”

The OPC automation interface supplies the changes to the values of active terms
and the results of asynchronous operations with events.

DataChange (NumItems As Long, ClientHandles() As Long, ItemValues()

As Variant, Qualities() As Variant, TimeStamps() As Date)

The DataChange event occurs when it is detected that an active item has a
change value or a change quality. Checking value changes is triggered by the
UpdateRate timer. Only active items are created within a group of events.

AsyncReadComplete (TransactionID As Long, NumItems As Long,

ClientHandles() As Long, ItemValues() As Variant, Qualities() As

Variant, TimeStamps() As Date, Errors() As Variant)

The AsyncReadComplete event is triggered when a read job is completed.

AsyncWriteComplete (TransactionID As Long, NumItems As Long,

ClientHandles() As Long, Errors() As Variant)

The AsyncWriteComplete event is triggered when a write job is completed.

AsyncCancelComplete (TransactionID As Long)

The AsyncCancelComplete event is triggered when a cancel job is completed.

OPC Automation Interface

2-15
OPC Server Interface
C7900–G7076–C225–01

2.7 The “OPCItems” Collection Object

The OPCItems object is a collection object for creating and managing OPC items.
The default properties of OPCItems specify default values for all OPC items to be
created.

Properties of “OPCItems”

Table 2-5 Properties of the “OPCItems” Collection Object

Property Type Brief Description

Parent OPC Group Supplies a reference to the corresponding
OPCGroup object

DefaultRequestedDataType Integer Specifies the initial value for the
“RequestedDataType” property of newly added
items

The default value is vbEmpty for the canonical
data type.

DefaultAccessPath String Specifies the initial value for the “AccessPath”
property of newly added items

The default is an empty string.

DefaultIsActive Boolean Specifies the initial value for the ”Active State”
property of newly added items

The default value is true.

Count Long Properties necessary for the collection, provides
the number of entries

Methods of “OPCItems”

Item (ItemSpecifier As Variant) As OPCItem

Provides a reference to the item of the collection described by the ItemSpecifier
index. (The ”GetOPCItem” method, on the other hand, provides a reference via the
server handle.)

GetOPCItem (ServerHandle As Long) As OPCItem

Provides a reference to the server handle created by Add.

OPC Automation Interface

2-16
OPC Server Interface

C7900–G7076–C225–01

Add (NumItems As Long, ItemIDs() As String, ClientHandles() As Long,

ByRef ServerHandles() As Long, ByRef Errors() As Long, Optional

RequestedDataTypes() As Variant, Optional AccessPaths() As Variant)

Inserts one or more items in the OPCItems collection of a group.

Note: It is possible to add the same OPC item to the same group more than once.
in this case each of these items nevertheless has its own server handle. The
server handles of the items are only unique within a group and not for all items of
all groups.

Remove (NumItems As Long, ServerHandles() As Long, ByRef Errors() As

Long)

Deletes one or more items from a group.

Validate (NumItems As Long, ItemIDs() As String, ByRef Errors() As

Long, Optional RequestedDataTypes () As Variant, Optional
AccessPaths() As Variant)

Checks the validity of an OPC item, for example whether it was added to a group
without any error occurring, and supplies information such as the canonical data
type.
Note: See Add.

SetActive (NumItems As Long, ServerHandles() As Long, ActiveState As
Boolean, ByRef Errors() As Long)

Sets the active state of one or more items in a group.

SetClientHandles (NumItems As Long, ServerHandles() As Long,

ClientHandles() As Long, ByRef Errors() As Longt)

Changes the client handle of one or more items in a group.

SetDataTypes (NumItems As Long, ServerHandles() As Long,

RequestedDataTypes() As Long, ByRef Errors() As Long)

Sets the required data type of one or more items in a group.

OPC Automation Interface

2-17
OPC Server Interface
C7900–G7076–C225–01

2.8 The “OPCItem” Object

An object of the class OPC item represents a link to a process variable, for
example to the input module of a programmable controller. A process variable is
data of the process I/Os that can be written and/or read, for example the
temperature of a tank. Each process variable is associated with a value (variant
data type), a quality, and a time stamp.

Properties of “OPCItem”

Table 2-6 Properties of the “OPCItem” Object

Property Type Brief Description

Parent OPC Group Supplies a reference to the parent OPCGroup object

ClientHandle Long A handle that can be freely defined by the user to allow
simpler assignment of the process variable in internal
data structures of the client

ServerHandle Long A handle assigned uniquely to the item by the server

This handle is required in several operations to identify
an item.

AccessPath String The access path of the item as specified in the Add
function

AccessRights Long Provides the access rights of the variable

ItemID String The unique name of the item as specified in the Add
function

IsActive Boolean Specifies whether message events will be created for
this item

RequestedDataType Integer The data type in which the value of the item will be
supplied

Value Variant The last valid value of the variable (default property of
the OPCItem object)

Quality Long The quality of the value last read

The quality indicates the validity of the value of the
variable.

TimeStamp Date The time at which the last value was acquired

CanonicalDataType Integer The original data type of the item

EUType Integer Identifies the unit of the value

If no units are available, the value is always
“VT_EMPTY”.

EUInfo Variant Information about the unit of the value

Note: The OPC server for Computing does not support units (engineering units)

OPC Automation Interface

2-18
OPC Server Interface

C7900–G7076–C225–01

Methods of “OPCItem”

Read (Source As Integer, optional ByRef Value As Variant, optional

ByRef Quality As Variant, optional ByRef TimeStamp As Variant)

Reads the value, the quality, and/or the time stamp of this variable.

Write (Value As Variant)

Sets the value of this variable synchronously.

1
OPC Server Interface
C7900–G7076–C225–01

�

To

SIEMENS ENERGY & AUTOMATION INC

ATTN: TECHNICAL COMMUNICATIONS M/S 519

3000 BILL GARLAND ROAD

PO BOX 1255

JOHNSON CITY TN USA 37605–1255

From

Name: _

Job Title: _

Company Name: _

Street: _

City and State: _

Country: _

Telephone: _

Please check any industry that applies to you:

� Automotive

� Chemical

� Electrical Machinery

� Food

� Instrument and Control

� Non-electrical Machinery

� Petrochemical

� Pharmaceutical

� Plastic

� Pulp and Paper

� Textiles

� Transportation

� Other ___________________________

2
OPC Server Interface

C7900–G7076–C225–01

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Please give each of the following questions your own personal mark within a range from 1 (very
good) to 5 (very poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics and tables.

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

	Titel
	Contents
	1 OPC Custom Interface
	1.1 Creating and Using an OLE Object in C/C++
	1.2 Additional Information about the Interface Description for the OPC Custom Interface
	1.3 The “OPC Server” Object
	1.4 Objects of the “OPC Group” Class
	1.5 IDataObject Interface

	OPC Automation Interface
	2.1 Creating and Using an OLE Object in Visual Basic
	2.2 Object Model for the Automation Interface
	2.3 The “OPCServer” Object
	2.4 The “OPCBrowser” Object
	2.5 The “OPCGroups” Collection Object
	2.6 The “OPCGroup” Object
	2.7 The “OPCItems” Collection Object
	2.8 The “OPCItem” Object

